

Delft University of Technology

The Distributed Dual Ascent Algorithm is Robust to Asynchrony

Bianchi, Mattia; Ananduta, Wicak; Grammatico, Sergio

DOI
10.1109/LCSYS.2021.3084883
Publication date
2022
Document Version
Final published version
Published in
IEEE Control Systems Letters

Citation (APA)
Bianchi, M., Ananduta, W., & Grammatico, S. (2022). The Distributed Dual Ascent Algorithm is Robust to
Asynchrony. IEEE Control Systems Letters, 6, 650-655. https://doi.org/10.1109/LCSYS.2021.3084883

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/LCSYS.2021.3084883
https://doi.org/10.1109/LCSYS.2021.3084883

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

650 IEEE CONTROL SYSTEMS LETTERS, VOL. 6, 2022

The Distributed Dual Ascent Algorithm is Robust
to Asynchrony

Mattia Bianchi , Member, IEEE , Wicak Ananduta , and Sergio Grammatico , Senior Member, IEEE

Abstract—The distributed dual ascent is an established
algorithm to solve strongly convex multi-agent optimization
problems with separable cost functions, in the presence
of coupling constraints. In this letter, we study its asyn-
chronous counterpart. Specifically, we assume that each
agent only relies on the outdated information received from
some neighbors. Differently from the existing randomized
and dual block-coordinate schemes, we show convergence
under heterogeneous delays, communication and update
frequencies. Consequently, our asynchronous dual ascent
algorithm can be implemented without requiring any coor-
dination between the agents.

Index Terms—Optimization algorithms, networked con-
trol systems, variational methods.

I. INTRODUCTION

D ISTRIBUTED multi-agent optimization is well suited for
modern large-scale and data-intensive problems, where

the volume and spatial scattering of the information render
centralized processing and storage inefficient or infeasible.
Engineering applications arise in power systems [1], communi-
cation networks [2], machine learning [3] and robotics [4], just
to name a few. A prominent role is played by asynchronous
algorithms, where communication and updates of the local
processors are not coordinated. The asynchronous approach
is advantageous in several ways: it eliminates the need for
synchronization, which is costly in large networks; it reduces
the idle time, when distinct processors have different com-
putational capabilities; it enhances robustness with respect to
unreliable, lossy and delayed, communication; and it alleviates
transmission and memory-access congestion. On this account,
in this letter we study a completely asynchronous implemen-
tation of the distributed dual ascent, a fundamental algorithm
for constrained optimization.

Literature review: The dual ascent consists of solving the
dual problem via the gradient method. Its major advantage

Manuscript received March 4, 2021; revised May 4, 2021; accepted
May 21, 2021. Date of publication May 28, 2021; date of cur-
rent version June 28, 2021. This work was supported in part by
Netherlands Organization for Scientific Research (NWO) through
Research Project OMEGA under Grant 613.001.702, and in part by
the European Research Council (ERC) through Research Project
COSMOS under Grant 802348. Recommended by Senior Editor
F. Dabbene. (Corresponding author: Mattia Bianchi.)

The authors are with the Delft Center for Systems and Control, TU
Delft, 2624 CD Delft, The Netherlands (e-mail: m.bianchi@tudelft.nl;
w.ananduta@tudelft.nl; s.grammatico@tudelft.nl).

Digital Object Identifier 10.1109/LCSYS.2021.3084883

with respect to augmented Lagrangian methods (e.g., method
of multipliers and alternating direction method of multipliers
(ADMM)) is decomposability: for separable problems, the
update breaks down into decentralized subproblems, allow-
ing for distributed and parallel (as opposed to sequential)
implementation. Although this “dual decomposition” is an old
idea [5], distributed algorithms based on the dual ascent are
still very actively researched [6], [7], [8].

Block-coordinate versions of the dual ascent, where only
part of the variables is updated at each iteration, are also
explored in the literature [9]. More generally, a variety of
distributed algorithms has been proposed to solve constraint-
coupled optimization problems, possibly with block-updates
and time-varying communication [10], [11], [12]. Nonetheless,
in all the cited works, a common clock is employed to
synchronize the communication and update frequencies.

On the contrary, a global clock is superfluous for
asynchronous methods. Since the seminal work [13],
distributed asynchronous optimization algorithms have
received increasing attention, especially with regards
to primal schemes [14], [15]. Most of the available
asynchronous dual approaches leverage randomized
activation [16], [17], [18], [19], where the update of each
agent is triggered by a local timer or by signals received
from the neighbors. However, no delay is tolerated, i.e., the
agents perform their computations using the most recent
information. This requires some coordination, since each
agent must wait for its neighbors to complete their tasks
before starting a new update. To deal with delays caused by
imperfect communication or non-negligible computational
time, primal-dual [20] and ADMM-type [21], [22] algorithms
have been analyzed. Yet, the method in [21] requires the
presence of a master node; meanwhile, in [20], [22], the
delays are assumed to be independent of the activation
sequences, which is not realistic [15], [20].

Contributions: In this letter, we propose an asynchronous
implementation of the distributed dual ascent, according to the
celebrated partially asynchronous model, devised by Bertsekas
and Tsitsiklis [13, Sec. 7], where: (a) agents perform updates
and send data at any time, without any need for coor-
dination signals; (b) the agents use outdated information
from their neighbors to perform their updates. In particular,
we allow some agents to transmit more frequently, process
faster and execute more iterations than others, based exclu-
sively on their local clocks. The model also encompasses
the presence of heterogeneous delays or dropouts in the

2475-1456 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 24,2021 at 08:31:38 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5261-6718
https://orcid.org/0000-0002-6305-1329
https://orcid.org/0000-0002-6021-2350

BIANCHI et al.: DISTRIBUTED DUAL ASCENT ALGORITHM IS ROBUST TO ASYNCHRONY 651

communication. Differently from [21], only peer-to-peer com-
munication is required. Moreover, we do not postulate a
stochastic characterization of delays or activation sequences.
Instead, we merely assume bounds on the communication and
update frequencies. In this partially asynchronous scenario,
Low and Lapsley [23] studied a dual ascent algorithm, for
a network utility maximization (NUM) problem, with affine
inequality constraints modeling link capacity limits.

Here we consider a more general setting, and address the
presence of convex inequality and equality constraints. Our
main contribution is to prove the convergence of the sequence
generated by the asynchronous distributed dual ascent to an
optimal primal solution, under assumptions that are standard
for its synchronous counterpart and provided that small-
enough uncoordinated step sizes are employed. In fact, we
drop some of the technical conditions in [23] (see Section II),
and relax the need for a global step. Our strategy is to relate
the algorithm to a perturbed projected scaled gradient scheme.
With respect to asynchronous primal methods [13, Sec. 7.5]
and to the general fixed-point algorithm in [24], the main
technical challenge is that the agents are not able to com-
pute the partial gradients of the dual function locally; as a
consequence, we have to consider two layers of delays. To
validate our results, we provide a numerical simulation on the
optimal power flow (OPF) problem.

Notation: N is the set of natural numbers, including 0. R :=
R ∪ {∞} is the set of extended real numbers. 0n ∈ R

n is the
vector with all elements equal to 0; In ∈ R

n×n is an identity
matrix; we may omit the subscripts if there is no ambiguity.
For an extended value function f : R

n → R, dom(f) := {x ∈
R

n | f (x) < ∞}; f is ρ-strongly convex if x �→ f (x)− ρ
2 ‖x‖2

is convex, coercive if lim‖x‖→∞ f (x) = ∞. Given a positive
definite matrix P 	 0, ‖x‖P =:

√〈x,Px〉 is the P-weighted
norm; we omit the subscript if P = I. int(S) is the interior of
a set S.

II. PROBLEM SETUP AND MATHEMATICAL BACKGROUND

Let I = {1, 2, . . . ,N} be a set of agents. The agents can
communicate over an undirected network G(I, E); the pair
(i, j) belongs to the set of edges E ⊆ I × I if and only if
agents i and j can occasionally exchange information, with
the convention (i, i) ∈ E for all i ∈ I. We denote by Ni = {j |
(i, j) ∈ E} the neighbors set of agent i. The agents’ common
goal is to solve the following convex monotropic optimization
problem, where the decision vector xi ∈ R

ni of agent i is
coupled to the decisions of the neighbors Ni via convex shared
constraints:

min
xi∈Rni ,i∈I

∑

i∈I
fi(xi) (1a)

s.t.
∑

j∈Ni

ci,j(xj) ≤ 0pi , ∀i ∈ I (1b)

∑

j∈Ni

ai,j(xj) = 0ri , ∀i ∈ I, (1c)

Here, the cost fi : R
ni → R, the functions {cj,i : R

ni → R
pj , j ∈

Ni}, and the affine functions {aj,i : R
ni → R

rj : xi �→ Aj,ixi −
bj,i, j ∈ Ni} are local data kept by agent i.

Remark 1: Problems in the form (1) arise naturally in
resource allocation [2] and network flow problems [25],
e.g., NUM for communication networks [7] or OPF in energy
systems [1]. More generally, a well-known approach to solve a
(cost-coupled) distributed optimization problem is to recast it
as (1), by introducing slack variables to decouple the costs and
additional consensus constraints for consistency. For instance,
the problem {minz∈R

∑
i∈I fi(z)} is equivalent to

min
xi∈R,i∈I

∑
i∈I fi(xi) s.t. L−1(col((xi)i∈I)) = 0N−1, (2)

where L−1 is the (full row rank, see Assumption 1 below)
matrix obtained by removing the first row from the Laplacian
of a connected graph; indeed, (2) is an instance of (1).

In the following, we use the compact notation x :=
col((xi)i∈I) ∈ R

n and f (x) := ∑
i∈I fi(xi), where n :=∑

i∈I ni. Let us also define ci,j(xj) := 0pi , Ai,j := 0ri×nj

and ai,j(xj) := 0ri for all i ∈ I, j /∈ Ni; mi := pi + ri,
gi,j(xj) := col(ci,j(xj), ai,j(xj)), gi(xi) := col((gj,i(xi))j∈N),
and �i := R

pi
≥0 × R

ri , for all i, j ∈ I; g(x) := ∑
i∈I gi(xi),

m := ∑
i∈I mi and � := ∏

i∈I �i. We assume the following
conditions throughout the paper.

Assumption 1 (Regularity and Convexity):
(i) For all i ∈ I, fi is proper, closed, and ρi-strongly convex,

for some ρi > 0.
(ii) For all i, j ∈ I, gi,j is componentwise convex and θi,j-

Lipschitz continuous on dom(fj), for some θi,j > 0.
(iii) There exists x̄ ∈ int(dom(f)) such that, for all i ∈ I,∑

j∈Ni
ci,j(x̄j) < 0pi and

∑
j∈Ni

ai,j(x̄j) = 0ri .
(iv) The matrix A := [Ai,j]i,j∈I has full row rank.

Under Assumption 1(iii), problem (1) is feasible. In addi-
tion, the strong convexity in Assumption 1(i) ensures that
there exists a unique solution x�, with finite optimal value
f � := f (x�) ∈ R; this condition is standard for dual gradi-
ent methods [6, Asm. 2.1], [9, Asm. 1], and commonly found
in the problems mentioned in Remark 1. Differently from
[23, Asm. C1], we do not assume differentiability of f , nor
that the functions fi’s are increasing (e.g., quadratic cost func-
tions are allowed here). We note that local constraints can be
enforced in (1) by opportunely choosing the domains of the
fi’s (which need not be bounded, see [23]). We also remark
that Assumption 1(ii) is automatically satisfied in the most
common case of affine inequality constraints [6], [7].

Given the information available to each agent, the natural
way of distributedly solving (1) is resorting to dual methods.
By Assumption 1(iii), strong duality holds [26, Th. 28.2], i.e.,

f � = q� := max
y∈� q(y), (3)

where q : � → R is the concave dual function,

q(y) := min
x∈Rn

f (x)+ 〈g(x), y〉, (4)

with dual variable y, and the maximum q� is attained in (3);
we denote by Y� the convex nonempty set of dual solu-
tions (namely, solutions of (3)). Moreover, Assumption 1 rules
out the case of redundant equality constraints; together with
Assumption 1(iii), it guarantees that the (convex) function −q
is coercive on �, and hence that Y� is bounded (for similar
arguments, see [27, Sec. VII, Th. 2.3.2], [8, Lem. 1]). For this
reason, Assumption 1(iii) and 1(iv) have been exploited for
particular instances of problem (1) [6, Asm. 2.1], [8, Asm. 1].

Authorized licensed use limited to: TU Delft Library. Downloaded on August 24,2021 at 08:31:38 UTC from IEEE Xplore. Restrictions apply.

652 IEEE CONTROL SYSTEMS LETTERS, VOL. 6, 2022

Algorithm 1 Asynchronous Distributed Dual Ascent

Initialization: ∀i ∈ I, yi(0) = 0mi , xi(0) = argmin
xi∈R

ni
fi(xi).

Local variables update: For all k ∈ N, each agent i ∈ I does:

if k ∈ Ti:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xi(k + 1) = argmin
xi∈R

ni

(
fi(xi)+

∑

j∈Ni

〈gj,i(xi), yj(τ
k
i,j)〉

)

yi(k + 1) = proj�i

(
yi(k)+ γi

∑

j∈Ni

gi,j(xj(τ
k
i,j))

)

(7a)

(7b)

otherwise:

{
xi(k + 1) = xi(k)

yi(k + 1) = yi(k).

(8a)

(8b)

A. Synchronous Distributed Dual Ascent Algorithm

Under Assumption 1(i) and 1(ii), the concave dual function
q in (4) is differentiable with Lipschitz gradient [7, Lem. II.1].
Thus, for a γ > 0 small enough, the dual ascent iteration

y(k + 1) = proj�(y(k)+ γ∇q(y(k))) (5)

converges to a dual solution. By the envelope theorem,
∇q(y) = g(x�(y)), where x�(y) := argminx∈Rn f (x)+〈g(x), y〉;
therefore, by assigning to agent i the Lagrangian multipliers
yi ∈ R

mi , with y = col((yi)i∈I), the update in (5) can be
written, for the single agent i, for all i ∈ I, as

xi(k + 1) = argmin
xi∈Rni

(
fi(xi)+ ∑

j∈Ni

〈gj,i(xi), yj(k)〉
)

(6a)

yi(k + 1) = proj�i

(
yi(k)+ γ

∑
j∈Ni

gi,j(xj(k + 1))
)
, (6b)

where the argmin is single valued by Assumption 1, and the
sequence (x(k))k∈N converges to the primal solution x�. We
emphasize that computing the update in (6) requires each
agent to receive information from all of its neighbors twice per
iteration: the first time because computing xi(k+1) requires the
knowledge of {yj(k), j ∈ Ni}; and the second time to collect
the quantities {gi,j(xj(k + 1)), j ∈ Ni}.

III. ASYNCHRONOUS DISTRIBUTED DUAL ASCENT

Let us now introduce an asynchronous version of the dis-
tributed dual ascent method (6), according to the partially
asynchronous model [13, Sec. 7.1]. The iteration is shown in
Algorithm 1, and it is determined by:

• a nonempty sequence Ti ⊆ N, for each i ∈ I. Agent i
performs an update only for k ∈ Ti.

• an integer variable τ k
i,j, with 0 ≤ τ k

i,j ≤ k, for each i ∈ I,
j ∈ Ni, k ∈ N, which represents the number of steps by
which the information used in the updates of (xi, yi) at
step k is outdated. For example, τ k

i,j = k − δ means that
the variable yj(τ

k
i,j) that agent i uses to compute xi(k + 1)

is outdated by δ steps.
In particular, the following variables are available to agent i
when performing the update at k ∈ Ti:

yi(k), {yj(τ
k
i,j) | j ∈ Ni}, {gi,j(xj(τ

k
i,j)) | j ∈ Ni}. (9)

For mathematical convenience, τ k
i,j is defined also for k /∈ Ti,

even if these variables are immaterial to Algorithm 1. Note
that τ k

i,j ≥ 0 implies that at k = 0 all the agents have updated

information on the neighbors’ variables; this is not restrictive
and it is only meant to ease the notation (the same holds for
the initialization in Algorithm 1; see also [13, Sec. 7.1]).

Remark 2: The update in (7) differs from (6) even if τ k
i,j = k

for all i ∈ I, j ∈ Ni, k ∈ N, as in (6b) the agents are exploiting
the most recent information xj(k + 1).

In Algorithm 1, k should be regarded as an event counter,
an iteration index as seen by an external observer, which is
increased every time one or more agents complete an update. It
is introduced to give a global description of the algorithm, but
it is not known by the agents, who can compute and commu-
nicate without any form of coordination. We present a simple
example in Figure 1. Indeed, the partially asynchronous model
captures a plethora of asynchronous protocols (for different
choices of the parameters Ti’s, τ k

i,j’s), encompassing several
scenarios where: (a) the communication links of the network
G are lossy or active intermittently; (b) there are heterogeneous
delays on the transmission; (c) the local computation time can-
not be neglected; (d) the agents update their local variables
at different frequencies. We refer to [13] for an exhaustive
discussion.

Assumption 2 (Partial asynchronism, [13, Sec. 7.1, Asm.
1.1]): There exists a positive integer Q such that:

1) Bounded inter-update intervals: for all k ∈ N, for all
i ∈ I, it holds that {k, k + 1, . . . , k + Q − 1} ∩ Ti �= ∅;

2) Bounded delays: for all k ∈ N, for all i ∈ I and for all
j ∈ Ni, it holds that k − Q ≤ τ k

i,j ≤ k.
Remark 3: Assumption 2 is mild and easily satisfied in dis-

tributes computation; for instance, it holds for the scenario in
Figure 1, see [13, Sec. 7.1, Ex. 1.1], [15, Sec. III.A].

We are ready to enunciate our main result.
Theorem 1: Let Assumptions 1-2 hold. For all i ∈ I, let

θi :=
√∑

j∈Ni
θ2

j,i (10)

φi :=
∑

j∈Ni
θ2

j /ρi (11)

i :=
∑

j∈Ni
θi,j θj/ρj (12)

ξi :=
∑

j∈Ni

∑
l∈Nj

θl,j θj/ρj (13)

with θj,i and ρj as in Assumption 1, for all i, j ∈ I. Assume
that, for all i ∈ I, the step size γi > 0 is chosen such that

γ−1
i > 1/2φi + 3/2Q(
i + ξi), (14)

with Q as in Assumption 2. Then, the sequence (x(k))k∈N

generated by Algorithm 1 converges to the solution x� of the
optimization problem in (1).

Remark 4: Each agent i can locally compute the parame-
ters φi,
i, ξi in Theorem 1, only based on some information
from its direct neighbors. Thus, the choice of the step sizes
γi’s is decentralized, provided that the agents have access to
(an upper bound for) the asynchronism bound Q (otherwise,
vanishing step sizes can be considered).

Remark 5: As usual for partially asynchronous
optimization algorithms [13], [15], the upper bound in (14)
decreases if Q grows. This is a structural issue: we can
construct a problem satisfying Assumption 1 (similarly
to [13, Sec. 7.1, Ex. 1.3]) such that, for any fixed positive

Authorized licensed use limited to: TU Delft Library. Downloaded on August 24,2021 at 08:31:38 UTC from IEEE Xplore. Restrictions apply.

BIANCHI et al.: DISTRIBUTED DUAL ASCENT ALGORITHM IS ROBUST TO ASYNCHRONY 653

γi’s, there is a large enough Q and some sequences τ k
i,j’s , Ti’s

satisfying Assumption 2, for which Algorithm 1 diverges.

IV. CONVERGENCE ANALYSIS

In this section we prove Theorem 1. Our idea is to relate
Algorithm 1 to a perturbed scaled block coordinate ver-
sion of (5), and to show that, for small-enough steps sizes,
the error caused by the outdated information is also small
and does not compromise convergence. With respect to the
asynchronous gradient method in [13], the main technical
complication is that, for each update in (5), the agents com-
municate twice; in turn, the update of agent i depends on the
variables of its neighbors’ neighbors (or second order neigh-
bors). In the following, we denote by ỹi := col((yj)j∈Ni) and
˜̃yi := col((ỹj)j∈Ni) the dual variables of the neighbors and
second order neighbors of agent i, respectively.

To compare Algorithm 1 and (5), the first step is to get rid
of the primal variables xi’s in Algorithm 1. Importantly, we
have to take into account that the xj’s in (7b) are not only
outdated, but also computed using outdated information. In
fact, for any i ∈ I, k ∈ Ti, the variable xj(τ

k
i,j) is computed by

agent j ∈ Ni, according to (7a), as

xj(τ
k
i,j) = argmin

xj∈R
nj

fj(xj)+
∑

l∈Nj

〈gl,j(xj), yl(τ̄
k
i,j,l)〉 (15)

=: x�j (ỹj(τ̄
k
i,j)), (16)

where, for all l ∈ Nj, τ̄ k
i,j,l := τ

p
j,l, and p is the last time agent

j performed an update prior to τ k
i,j (see Figure 1), i.e.,

p = p(i, j, k) := max({0} ∪ {t ∈ Tj | t ≤ τ k
i,j − 1}), (17)

(and (15) also holds if p(i, j, k) = 0 because of the initial
conditions in Algorithm 1). For brevity of notation, in (16), we
define τ̄ k

i,j := col((τ̄ k
i,j,l)l∈Nj) and ỹj(τ̄

k
i,j) := col((yl(τ̄

k
i,j,l)l∈Nj).

By replacing (16) in (7a), we obtain that, for all i ∈ I, k ∈ Ti

yi(k + 1) = proj�i

(
yi(k)+ γi

∑
j∈Ni

gi,j(x
�
j (ỹj(τ̄

k
i,j)))

)

=: proj�i

(
yi(k)+ γiFi(˜̃yi(τ̄

k
i))

)
, (18)

where τ̄ k
i := col((τ̄ k

i,j)j∈Ni), ˜̃yi(τ̄
k
i) := col((ỹj(τ̄

k
i,j))j∈Ni).

Hence, (18) expresses the update in (7b) as a function of
the outdated dual variables of the second order neighbors of
agent i. Since (18) makes use of second order information,
the maximum delay (in this notation) is not bounded by Q
anymore: instead, by (17) and Assumption 2, it holds that
p(i, j, k)−Q ≤ τ

p(i,j,k)
j,l = τ̄ k

i,j,l ≤ p(i, j, k), τ k
i,j−Q ≤ p(i, j, k) ≤

max(0, τ k
i,j − 1), k − Q ≤ τ k

i,j ≤ k; thus,

k − 3Q ≤ τ̄ k
i,j,l ≤ k − 1, (19)

for all k ≥ 1, and τ̄ 0
i,j,l = 0. Figure 1 illustrates how the lower

bound is obtained, with l = i.
We emphasize that the mapping Fi is not a partial gradi-

ent of the dual function (differently from the asynchronous
gradient method in [13]), – e.g., its argument lies in a dif-
ferent space. In particular, we note that ˜̃yi(τ̄

k
i) can contain

multiple instances of yl, for some l ∈ I (including yi), with

Fig. 1. An example of asynchronous updates and communication. We
consider a simple scenario, where each agent periodically broadcasts
its variables and computes an update using the latest data received
from its neighbors, according to its local clock. The communication is
subject to bounded delays. The figure only considers two neighbor-
ing agents i and j . The squares indicates the instants when the local
variables change value; the arrows indicates data transmission. The
global counter k increases every time an agent in the network com-
pletes its update. Here, agent i completes an update using the outdated
information xj (7), yj (7) and k is increased to 10: hence agent i is viewed
by an external observer as performing the update at k = 9, and τ9

i,j = 7.
The quantities in green are defined in Section IV.

different delays. Nonetheless, by the definition in (18), for any
y(k) ∈ R

m, we have

Fi(˜̃yi(k)) = ∇yiq(y(k)). (20)

In one word, if there is no delay, (18) corresponds to the yi-
update of the synchronous dual ascent (5) (however, there is
always delay in Algorithm 1, see (19) and Remark 2).

Finally, we can also rewrite Algorithm 1 as

(∀k ∈ N)(∀i ∈ I) yi(k + 1) = yi(k)+ γisi(k), (21)

where

si(k) := 1

γi
(proj�i

(yi(k)+ γiFi(˜̃yi(τ̄
k
i)))− yi(k)), (22)

if k ∈ Ti, si(k) = 0mi otherwise.
Before proceeding with the analysis of Theorem 1, we recall

the following results. The proof of Lemma 1 is standard and
omitted here (see, e.g., [9, Lem. 1]).

Lemma 1: For all j ∈ I, the mapping x�j in (16) is θj
ρj

-
Lipschitz continuous, with θj as in (10).

Lemma 2 (Weighted descent lemma, [6, Lemma 2.2]): Let
� = diag((φi ⊗ Imi)i∈I), φi as in (11), for all i ∈ I. Let q
be the dual function in (4). For any y, z ∈ R

m, it holds that
q(y) ≥ q(z)+ 〈y − z,∇q(z)〉 − 1/2‖y − z‖2

�.
Lemma 3 [13, Lem. 5.1]: Let si(k) be as in (22),

for all i ∈ I. Then, for all i ∈ I, k ∈ N, it holds that
〈si(k),Fi(˜̃yi(τ̄

k
i))〉 ≥ ‖si(k)‖2.

A. Proof of Theorem 1

Let
 := diag((γi ⊗ Imi)i∈I), s(k) = col((si(k))k∈N),
F(˜̃y(τ̄ k)) := col((Fi(˜̃yi(τ̄

k
i)))i∈I). By Lemma 2, we have

q(y(k + 1)) = q(y(k)+
s(k))

≥ q(y(k))− 1

2
‖
s(k)‖2

� + 〈
s(k),∇q(y(k))〉

= q(y(k))− 1

2
‖
s(k)‖2

� + 〈
s(k),F(˜̃y(τ̄ k))〉

Authorized licensed use limited to: TU Delft Library. Downloaded on August 24,2021 at 08:31:38 UTC from IEEE Xplore. Restrictions apply.

654 IEEE CONTROL SYSTEMS LETTERS, VOL. 6, 2022

+〈
s(k),∇q(y(k))− F(˜̃y(τ̄ k))〉
= q(y(k))− 1

2
‖
s(k)‖2

� + 〈
s(k),F(˜̃y(τ̄ k))〉
+〈
s(k),F(˜̃y(k))− F(˜̃y(τ̄ k))〉

≥ q(y(k))− 1

2
‖s(k)‖2

�
2 + ‖s(k)‖2

+〈
s(k),F(˜̃y(k))− F(˜̃y(τ̄ k))〉, (23)

where in the last equality we used (20) and the last inequality
follows by Lemma 3 (we recall that �,
 are diagonal matri-
ces). We next bound the last addend in (23). By definition of
Fi in (18) and the Cauchy–Schwartz inequality, we have

〈
s(k),F(˜̃y(k))− F(˜̃y(τ̄ k))〉
≥ −

∑

i∈I
‖γisi(k)‖‖Fi(˜̃yi(k))− Fi(˜̃yi(τ̄

k
i))‖

≥ −
∑

i∈I
‖γisi(k)‖

∑

j∈Ni

‖gi,j(x
�
j (ỹj(k)))−gi,j(x

�
j (ỹj(τ̄

k
i,j)))‖

≥ −
∑

i∈I
‖γisi(k)‖

∑

j∈Ni

θi,j
θj

ρj
‖ỹj(k)− ỹj(τ̄

k
i,j)‖

≥ −
∑

i∈I
‖γisi(k)‖

∑

j∈Ni

θi,j
θj

ρj

k−1∑

τ=k−3Q

‖col((γlsl(τ))l∈Nj)‖,

where in the third inequality we used Lemma 1 and
Assumption 1(ii), and the last follows by (21) and (19) (with-
out loss of generality, we let s(k) := 0m, for all k < 0).
Therefore, by the elementary relation 2|a||b| ≤ a2 + b2, we
obtain

〈
s(k),F(˜̃y(k))− F(˜̃y(τ̄ k))〉

≥ −
k−1∑

τ=k−3Q

∑

i∈I

∑

j∈Ni

θi,j
θj

ρj

1

2
‖γisi(k)‖2

−
k−1∑

τ=k−3Q

∑

i∈I

∑

j∈Ni

θi,j
θj

ρj

∑

l∈Nj

1

2
‖γlsl(τ)‖2. (24)

The first term on the right-hand side of (24) equals
−‖s(k)‖2

3
2 Q
2L

, with L := diag((
i ⊗ Imi)i∈I) and
i as in (12).

For the second term, since G is undirected, we reorder the
addends as

k−1∑

τ=k−3Q

∑

i∈I

∑

j∈Ni

θi,j
θj

ρj

∑

l∈Nj

1

2
‖γlsl(τ)‖2

=
k−1∑

τ=k−3Q

∑

i∈I

1

2
‖γisi(τ)‖2

⎛

⎝
∑

j∈Ni

∑

l∈Nj

θl,j
θj

ρj

⎞

⎠

=
k−1∑

τ=k−3Q

‖s(τ)‖2
1
2

2�
,

where � =: diag((ξi ⊗ Imi)i∈I) and ξi as in (13). Then, by
substituting in (23), we obtain

q(y(k + 1)) ≥ q(y(k))+ ‖s(k)‖2

(I− 1

2�
− 3
2 QL
)

−
k−1∑

τ=k−3Q

‖s(τ)‖2
1
2�

2, (25)

with I − 1
2�
 − 3

2 QL
 	 0 by the assumption on
 in (14).
Since (25) holds for any k, summing over k finally yields

q(y(k + 1))− q(y(0))

≥
k∑

τ=0

‖s(τ)‖2

(I− 1

2�
− 3
2 QL
)

− 3Q
k∑

τ=0

‖s(τ)‖2
1
2�

2

=
k∑

τ=0

‖s(τ)‖2

(I− 1

2�
− 3
2 Q(�+L)
)

, (26)

and I − 1
2�
 − 3

2 Q(�+ L)
 	 0 by assumption (14).
We know that q is bounded above on � by (3), and y(k) ∈

� for all k ∈ N; then, by taking the limit in (26), we have

lim
k→∞ s(k) = 0m. (27)

Hence, by the updates in (21) and by (27), we also have

lim
k→∞ ‖y(k + 1)− y(k)‖ = 0. (28)

Similarly, since, by Assumption 2(ii) and (21), ‖yj(k) −
yj(τ

k
i,j)‖ ≤ ∑k−1

τ=k−Q γj‖sj(τ)‖, it also follows that

lim
k→∞ ‖yj(k)− yj(τ

k
i,j)‖ = 0, ∀i ∈ I, j ∈ Ni. (29)

For any i ∈ I, consider the subsequence (si(k))k∈Ti , which
converges to 0 by (27). In view of (22), (proj�i

(yi(k) +
γiFi(˜̃yi(τ̄

k
i))) − yi(k))k∈Ti → 0. Therefore, by leverag-

ing the continuity of Fi (which directly follows by the
definition in (18) and Lemma 1) and of the projection
[13, Sec. 3.3, Prop. 3.2], (29) and (20) yield (proj�i

(yi(k) +
γi∇yiq(y(k)) − yi(k)))k∈Ti → 0. However, again by continu-
ity, (28) and Assumption 2(i), we can also infer convergence
of the whole sequence, limk→∞ proj�i

(yi(k)+γi∇yiq(y(k))−
yi(k) = 0mi , or

lim
k→∞

(
proj�i

(y(k)+
∇q(y(k))− y(k)
) = 0m. (30)

We note that q(y(k)) ≥ q(y(0)) for all k ∈ N, by (26); more-
over, −q is coercive on � by Assumption 1(iii) and 1(iv).
We conclude that the sequence (y(k))k∈N is bounded; in
turn, (30) implies that (y(k))k∈N converges to the set of dual
solutions Y�.

We can finally turn our attention to the primal problem (1).
By (7a), for any i ∈ I, k ∈ Ti, we have xi(k+1) = x�i (ỹi(τ

k
i)),

where x�i is defined in (16) and τ k
i := col((τ k

i,j)j∈Ni).
Moreover, by strong duality, for any y� = col((y�i)i∈I) ∈ Y�,
it holds that x�i (ỹ

�
i) = x�i , with ỹ�i := col((y�j)j∈Ni) and

col((x�i)i∈I) = x�. Therefore we can exploit (29), the fact
that (y(k))k is converging to Y�, and Lipschitz continuity of
x�i in Lemma 1, to conclude that (xi(k + 1))k∈Ti → x�i . The
conclusion follows because the convergence also holds for the
whole sequence, i.e., (xi(k))k∈N → x�i , by (8a).

V. NUMERICAL SIMULATION

We consider an OPF problem on the IEEE 14-bus
network [9, Fig. 2]. Each bus i ∈ I = {1, . . . , 14} has a
decision variable xi = col(Pi, ψi) ∈ R

2, where Pi ≥ 0 is the
power generated, bounded by generation capacities, and ψi is
the voltage phase of bus i. The goal is to minimize the sum

Authorized licensed use limited to: TU Delft Library. Downloaded on August 24,2021 at 08:31:38 UTC from IEEE Xplore. Restrictions apply.

BIANCHI et al.: DISTRIBUTED DUAL ASCENT ALGORITHM IS ROBUST TO ASYNCHRONY 655

Fig. 2. Distance from the optimum, with step sizes chosen to satisfy
their theoretical upper bounds (solid lines) and 100 times larger (dotted
lines).

of strongly convex quadratic local costs, subject to the cou-
pling flow constraints {Pi −Pd

i = ∑
j∈Ni

Bi,j(ψi −ψj),∀i ∈ I},
where Pd

i ≥ 0 is the power demand at bus i and Bi,j is
the susceptance of line (i, j), which represent the direct cur-
rent approximation of the power flow equations. We simulate
Algorithm 1 for the setup in Figure 1, with randomly chosen
delays and local clock frequencies. We compare four scenar-
ios, resulting in different values for Q, with the synchronous
dual ascent (6), in Figure 2. The case Q = 1 corresponds to a
synchronous algorithm, where all the agents update their vari-
ables at every iteration. For Q > 1, the agents perform updates
asynchronously, according to their own clocks. To compare
synchronous and asynchronous implementation, we take into
account the overall computation burden, i.e., the average num-
ber of updates performed per agent. For large values of Q, the
upper bounds on the step sizes γi’s in (14) decrease, resulting
in slower convergence. However, the bounds can be conser-
vative. In fact, Algorithm 1 still converges with step sizes
set 100 times larger than their theoretical upper bounds for
Q = 25, 50, 100 (but not for Q = 1).

VI. CONCLUSION

The distributed dual ascent retains its convergence prop-
erties even if the updates are carried out completely asyn-
chronously and using delayed information, provided that small
enough uncoordinated step sizes are chosen. Convergence rates
for primal-dual methods in this general asynchronous scenario
are currently unknown.

REFERENCES

[1] D. K. Molzahn et al., “A survey of distributed optimization and control
algorithms for electric power systems,” IEEE Trans. Smart Grid, vol. 8,
no. 6, pp. 2941–2962, Nov. 2017.

[2] L. Xiao, M. Johansson, and S. P. Boyd, “Simultaneous routing and
resource allocation via dual decomposition,” IEEE Trans. Commun.,
vol. 52, no. 7, pp. 1136–1144, Jul. 2004.

[3] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
2010.

[4] M. G. Rabbat and R. D. Nowak, “Decentralized source localization and
tracking [wireless sensor networks],” in Proc. IEEE Int. Conf. Acoust.
Speech Signal Process., vol. 3, 2004, pp. 921–924.

[5] H. Everett, “Generalized Lagrange multiplier method for solving prob-
lems of optimum allocation of resources,” Oper. Res., vol. 11, no. 3,
pp. 399–417, 1963.

[6] I. Necoara and V. Nedelcu, “On linear convergence of a distributed dual
gradient algorithm for linearly constrained separable convex problems,”
Automatica, vol. 55, pp. 209–216, May 2015.

[7] A. Beck, A. Nedić, A. Ozdaglar, and M. Teboulle, “An o(1/k) gradient
method for network resource allocation problems,” IEEE Trans. Control
Netw. Syst., vol. 1, no. 1, pp. 64–73, Mar. 2014.

[8] A. Nedić and A. Ozdaglar, “Approximate primal solutions and rate anal-
ysis for dual subgradient methods,” SIAM J. Optim., vol. 19, no. 4,
pp. 1757–1780, 2009.

[9] W. Ananduta, C. Ocampo-Martinez, and A. Nedić, “Accelerated multi-
agent optimization method over stochastic networks,” in Proc. 59th IEEE
Conf. Decis. Control (CDC), 2020, pp. 2961–2966.

[10] A. Camisa, F. Farina, I. Notarnicola, and G. Notarstefano, “Distributed
constraint-coupled optimization over random time-varying graphs via
primal decomposition and block subgradient approaches,” in Proc. 58th
IEEE Conf. Decis. Control, 2019, pp. 6374–6379.

[11] A. Falsone and M. Prandini, “A distributed dual proximal minimization
algorithm for constraint-coupled optimization problems,” IEEE Control
Syst. Lett., vol. 5, no. 1, pp. 259–264, Jan. 2021.

[12] X. Li, G. Feng, and L. Xie, “Distributed proximal algorithms for
multiagent optimization with coupled inequality constraints,” IEEE
Trans. Autom. Control, vol. 66, no. 3, pp. 1223–1230, Mar. 2021.

[13] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed
Computation: Numerical Methods, vol. 23. Englewood Cliffs, NJ, USA:
Prentice Hall, 1989.

[14] K. Srivastava and A. Nedić, “Distributed asynchronous constrained
stochastic optimization,” IEEE J. Sel. Topics Signal Process., vol. 5,
no. 4, pp. 772–790, Aug. 2011.

[15] Y. Tian, Y. Sun, and G. Scutari, “Achieving linear convergence in dis-
tributed asynchronous multiagent optimization,” IEEE Trans. Autom.
Control, vol. 65, no. 12, pp. 5264–5279, Dec. 2020.

[16] I. Notarnicola, R. Carli, and G. Notarstefano, “Distributed partitioned
big-data optimization via asynchronous dual decomposition,” IEEE
Trans. Control Netw. Syst., vol. 5, no. 4, pp. 1910–1919, Dec. 2018.

[17] N. Bastianello, R. Carli, L. Schenato, and M. Todescato, “Asynchronous
distributed optimization over lossy networks via relaxed ADMM:
Stability and linear convergence,” IEEE Trans. Autom. Control, vol. 66,
no. 6, pp. 2620–2635, Jun. 2021.

[18] Y. Lin, I. Shames, and D. Nesic, “Asynchronous distributed optimization
via dual decomposition and block coordinate ascent,” in Proc. 58th IEEE
Conf. Decis. Control (CDC), 2019, pp. 6380–6385.

[19] F. Farina, A. Garulli, A. Giannitrapani, and G. Notarstefano, “A dis-
tributed asynchronous method of multipliers for constrained nonconvex
optimization,” Automatica, vol. 103, pp. 243–253, May 2019.

[20] T. Wu, K. Yuan, Q. Ling, W. Yin, and A. H. Sayed, “Decentralized
consensus optimization with asynchrony and delays,” IEEE Trans. Signal
Inf. Process. Netw., vol. 4, no. 2, pp. 293–307, Jun. 2018.

[21] T.-H. Chang, M.-C. Hong, W. Liao, and X. Wang, “Asynchronous dis-
tributed ADMM for large-scale optimization—Part I: Algorithm and
convergence analysis,” IEEE Trans. Signal Process., vol. 64, no. 12,
pp. 3118–3130, Jun. 2016.

[22] Z. Peng, Y. Xu, M. Yan, and W. Yin, “ARock: An algorithmic framework
for asynchronous parallel coordinate updates,” SIAM J. Sci. Comput.,
vol. 38, no. 5, pp. A2851–A2879, 2016.

[23] S. H. Low and D. E. Lapsley, “Optimization flow control. I. Basic
algorithm and convergence,” IEEE/ACM Trans. Netw., vol. 7, no. 6,
pp. 861–874, Dec. 1999.

[24] R. Hannah and W. Yin, “On unbounded delays in asynchronous parallel
fixed-point algorithms,” J. Sci. Comput., vol. 76, no. 5, pp. 299–326,
2018.

[25] R. T. Rockafellar, Network Flows and Monotropic Optimization.
Belmont, MA, USA: Athena Sci., 1998.

[26] R. T. Rockafellar, Convex Analysis. Princeton, NJ, USA: Princeton Univ.
Press, 1970.

[27] J. Hiriart-Urruty and C. Lemaréchal, Fundamentals of Convex Analysis.
Heidelberg, Germany: Springer, 2012.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 24,2021 at 08:31:38 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

