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Abstract. A Bayesian network (BN) approach is used
to model and predict shore-break-related injuries and rip-
current drowning incidents based on detailed environmen-
tal conditions (wave, tide, weather, beach morphology) on
the high-energy Gironde coast, southwest France. Six years
(2011-2017) of boreal summer (15 June—15 September) surf
zone injuries (SZIs) were analysed, comprising 442 (fatal
and non-fatal) drownings caused by rip currents and 715 in-
juries caused by shore-break waves. Environmental condi-
tions at the time of the SZIs were used to train two sepa-
rate Bayesian networks (BNs), one for rip-current drownings
and the other one for shore-break wave injuries. Each BN
included two so-called “hidden” exposure and hazard vari-
ables, which are not observed yet interact with several of
the observed (environmental) variables, which in turn limit
the number of BN edges. Both BNs were tested for vary-
ing complexity using K-fold cross-validation based on mul-
tiple performance metrics. Results show a poor to fair pre-
dictive ability of the models according to the different met-
rics. Shore-break-related injuries appear more predictable
than rip-current drowning incidents using the selected pre-
dictors within a BN, as the shore-break BN systematically
performed better than the rip-current BN. Sensitivity and sce-
nario analyses were performed to address the influence of
environmental data variables and their interactions on ex-
posure, hazard and resulting life risk. Most of our findings
are in line with earlier SZI and physical hazard-based work;

that is, more SZIs are observed for warm sunny days with
light winds; long-period waves, with specifically more shore-
break-related injuries at high tide and for steep beach pro-
files; and more rip-current drownings near low tide with near-
shore-normal wave incidence and strongly alongshore non-
uniform surf zone morphology. The BNs also provided fresh
insight, showing that rip-current drowning risk is approxi-
mately equally distributed between exposure (variance re-
duction Vr = 14.4 %) and hazard (Vr = 17.4 %), while expo-
sure of water user to shore-break waves is much more impor-
tant (Vr = 23.5 %) than the hazard (Vr = 10.9 %). Large surf
is found to decrease beachgoer exposure to shore-break haz-
ard, while this is not observed for rip currents. Rapid change
in tide elevation during days with large tidal range was also
found to result in more drowning incidents. We advocate that
such BNs, providing a better understanding of hazard, expo-
sure and life risk, can be developed to improve public safety
awareness campaigns, in parallel with the development of
more skilful risk predictors to anticipate high-life-risk days.

1 Introduction

Wave-dominated beaches offer a playground for a variety of
activities, but at the same time they pose a threat to water
users. Following Stokes et al. (2017), a conceptual definition
of life risk at beaches can simplify in terms of the number
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of people exposed to life-threatening hazards. As a result,
a beach with a relatively high hazard level could exhibit a
low level of risk if the number of beach users is low and
vice versa. This way, the level of life risk can be modelled
indirectly by estimating hazard and exposure.

There are two primary causes of surf zone injuries (SZIs),
which can sometimes co-exit at the same beach (Castelle
et al., 2018): (i) rip currents resulting in drowning incidents
and (ii) shore-break waves which can result in, e.g., spine
and shoulder dislocations. Rip currents are intense seaward-
flowing narrow currents which can form through different
driving mechanisms related to breaking waves (Dalrymple
et al., 2011; Castelle et al., 2018). They form close to the
shoreline and often extend beyond the surf zone. Therefore
they can transport unsuspecting bathers offshore, who poten-
tially panic and drown (Drozdzewski et al., 2012; Brighton
et al., 2013). The shore-break wave hazard has received lit-
tle attention in the literature compared to rip-current hazard.
However, shore-break waves can cause a large number of
injuries (Puleo et al., 2016), including severe spine injuries
(Robbles, 2006). At certain beaches, shore-break waves can
even be the primary cause of SZIs, e.g. up to 88 % at Ocean
City, Maryland (Muller, 2018).

Rip flow speed, which is a proxy of rip-current hazard,
has been addressed on many beaches through both field mea-
surements and numerical modelling (see Castelle et al., 2016,
for a review). In brief, rip flow speed generally increases
with increasing wave height and period (e.g. MacMahan
et al., 2006), more shore-normal incidence (e.g. MacMa-
han et al., 2005), generally lower tide levels (e.g. Brander
and Short, 2001; Austin et al., 2010; Bruneau et al., 2011;
Houser et al., 2013; Scott et al., 2014) and more alongshore-
variable surf zone morphology (Moulton et al., 2017). It is
also well known that shore-break waves are associated with
steep beaches and longer-period waves (Battjes, 1974; Bal-
sillie, 1985). In addition, the number of SZIs is also greatly
influenced by the number of beachgoers exposing themselves
to surf zone hazards. Given that warm sunny days with low
winds typically result in increased beach attendance (Ibarra,
2011; Dwight et al., 2007), it is expected that during such
days the life risk, and thus the number of SZIs, is increased.

Prominent environmental controls on SZIs were identified
by comparing the frequency distribution of an environmen-
tal variable (e.g. significant wave height Hj, tide elevation
n) during an injury, with the background frequency distri-
bution of that variable (Scott et al., 2014; Castelle et al.,
2019). The difference between two frequency distributions
shows the disproportionate number of conditions that are
associated with SZIs. At two different beaches along the
Atlantic coast of Europe, Scott et al. (2014) and Castelle
et al. (2019) showed that the number of drowning inci-
dents increases disproportionately during warm sunny days
with light wind, maximising beach attendance, and shore-
normally incident long-period waves, maximising rip-current
activity. Although such analysis provides an indication of the

Nat. Hazards Earth Syst. Sci., 21, 2075-2091, 2021

E. de Korte et al.: Bayesian network modelling of surf zone injuries

prominent environmental controls, it does not uncover the in-
terplay between variables and the relative magnitude of each
variable. A related challenge based on current research is fil-
tering the effect of how water users’ choices are influenced
by environmental conditions (e.g. wave height Hy). For in-
stance Stokes et al. (2017) found that beach morphology type
has an impact on the number of water users. It can also be
hypothesised that high surf and heavy shore-break waves dis-
courage a number of the beachgoers from entering the water,
even on warm sunny days, resulting in less exposure. Finally,
the respective contributions of hazard and exposure to the
overall life risk for shore-break waves and rip current are vir-
tually unknown.

Prediction of SZIs together with a better understanding of
the interplay between weather and marine conditions and ef-
fect on life risk at the beach could help to better anticipate
high-risk days and further improve public safety awareness
campaigns on surf zone hazards. This requires a high-order
statistical approach like a Bayesian network (BN). BNs are
probabilistic graphical models that are based on a joint prob-
ability distribution of a set of variables with a possible mutual
causal relationship. BNs have been previously successfully
used in coastal science, estimating morphological changes,
changes in wave parameters in the surf-zone and coastal
flood risks (Gutierrez et al., 2011; Plant and Holland, 2011;
Fienen et al., 2013; Pearson et al., 2017). Stokes et al. (2017)
compared a BN to a multiple linear regression approach to
model exposure, hazard and, in turn, life risk to beach users
at 113 beaches with lifeguards in UK. Even though the mul-
tiple linear regression method moderately outperformed the
BN, Stokes et al. (2017) acknowledged the benefits of a BN
approach to identify the characteristics of high-risk beaches
from a large dataset. More recently, Doelp et al. (2019) used a
BN to predict SZIs on the Delaware coast, which are primar-
ily caused by shore-break waves (Puleo et al., 2016). They
showed that a BN approach can improve predictions 69.7 %
of the time but also acknowledged limitations in predicting
anomalous injuries. A BN approach has the potential both to
show good prediction skill to assist decision-making and to
provide a better understanding of rip-current and shore-break
hazards.

In this paper, a dataset (2011-2017) of 442 drowning in-
juries (fatal and non-fatal) and 715 shore-break injuries oc-
curring in boreal summer (15 June—15 September) and corre-
sponding environmental conditions along the Gironde coast
in southwest France are used to create BNs for rip-current-
related drownings and shore-break injuries. The study area
and SZI dataset are described in Sect. 2. Section 3 presents
the development of the BNs and the method used to train
them and address their performance. Results are shown in
Sect. 4 and are further discussed in Sect. 5 before conclu-
sions are drawn.

https://doi.org/10.5194/nhess-21-2075-2021
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2 Environmental and SZI dataset along the Gironde
coast

2.1 Study area

The Gironde coast is located in southwest France and
stretches approximately 140 km from the La Salie Beach (La
Teste) in the south to the Gironde Estuary in the north and is
interrupted by the Arcachon tidal inlet (Fig. 1a). It is a meso-
macrotidal environment with spring tidal range reaching 5 m.
Wave conditions vary seasonally with a 99.5 % exceedance
significant wave height H; of 5.6 m, and occasional severe
storms with Hy > 8 m. Summers are associated with smaller
waves with a mean H of around 1.2m and a dominant W-
NW incidence (Castelle et al., 2019).

The coast is composed of high-energy sandy beaches
backed by high and wide coastal dunes. Beaches are inter-
mediate double barred, with deep and more or less regu-
lar rip channels incising the intertidal inner bar with an av-
erage spacing of approximately 400 m (Fig. la and b). In-
tense rip currents can flow through the rip channels, with
rip flow intensity potentially exceeding 1 m/s even for low-
energy (Hs < 1 m) long-period waves (Castelle et al., 2016).
Rip-current flow is strongly modulated by the tide level,
with maximum rip-current activity occurring between low
and mid-tide in typical summer wave conditions (Bruneau
etal., 2011). In winter, more energetic wave conditions drive
a more dissipative gently sloping beach face. In contrast, the
upper part of the beach is steeper in summer due to smaller
waves. Beach slope and rip channel morphology also show
a large interannual variability enforced by large interannual
variability in the wave climate (Dodet et al., 2019). Overall,
beach states are similar along the coast but with increasingly
steep beach face and deeper and more spaced rip channels
southwards. Noteworthy is that beach morphology dramati-
cally changes along sectors adjacent to the Arcachon lagoon
and Gironde estuary where rip-current activity decreases,
but tide-driven currents become substantial (> 0.2 m/s dur-
ing ebb and flood).

The Gironde coast is known for a large population of
tourists visiting the beaches, which results in large numbers
of injuries sustained by beachgoers and surfers of all levels
(Fig. 1c) (Castelle et al., 2018; Tellier et al., 2019). Beaches
are patrolled by lifeguards during the summer months of July
and August. Patrolled periods are extended approximately
from 15 June to 15 September at the busiest beaches. A des-
ignated and supervised bathing zone is delimited by two blue
flags. However, many remote beach access paths through
coastal dune tracks and many access points are situated on
unpatrolled sections of beaches, kilometres away from any
lifeguard presence (Castelle et al., 2019).

https://doi.org/10.5194/nhess-21-2075-2021
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2.1.1 SZI data

The SZI dataset used herein is detailed in Tellier et al. (2021).
In short, SZIs were recorded by the medical emergency call
centre SAMU (Service d’Aide Médicale d’Urgence) of Bor-
deaux for the Gironde department. Calls from beachgoers
and lifeguards dealing with drowning or rescues received be-
tween January 2011 and November 2017 were used here. Ex-
cluding training calls, duplicates and calls lacking victims,
a total of 5022 injuries were collected. Table 2 shows that
the discrepancy between the total number of injuries and the
combined shore-break- and rip-current-related SZIs is due to
the large number of calls with insufficient information col-
lected. Noteworthy is that the 916 surfing-related injuries
(Table 1) occurring during this period were also disregarded
for analysis. The reason for this is that a large number of
surfer injuries involve collision with other surfers and are
likely influenced by other factors (e.g. surf break quality, surf
school activity) which are not related to physical hazards.

A SZI was classified as shore-break when the medical file
explicitly stated “shore-break” or a French equivalent. Given
that along this coast approximately 80 % of the drowning in-
cidents involving bathers are caused by rip currents (Castelle
et al., 2018), rip-related SZIs (drownings) were determined
if a drowning stage (according to standardised medical clas-
sification) was reported in the medical file, with two no-
table exceptions. Drownings that were related to shore-break
waves were classified as shore-break, because they were pre-
sumably not associated with rip currents. Similarly, surfing-
related drownings were excluded as there is no evidence that
most of the drownings of surfers are related to rip currents.
Six mutually exclusive classes were found based on activ-
ity (see Table 2). Even though the activity was unknown for
1943 of the SZIs, drowning stage and the shore-break classi-
fier provided the information to classify some of these SZIs
as shore-break- or rip-related drowning. Amongst the popu-
lation, 45 % was male and 33 % female, and for 21 % the sex
was not recorded. The population is relatively young, with
43 % between 6 and 19 years old. A slightly elevated number
of SZIs was found for the age group between 36-45 years old
(see Fig. 2). This demographic is in line with another, shorter,
dataset described in Castelle et al. (2018). By far most SZIs
occurred at Lacanau beach (26 %), which is one of the most
popular beaches that consequently attracts crowds in summer
(see Fig. 2).

For the purpose of this study, only summer periods be-
tween 15 June and 15 September were taken for each year
because outside of this period SZIs become extremely rare
events, which poses challenges for BN training. In the sum-
mer periods 442 drowning SZIs and 715 shore-break SZIs
were found. This is the final population that was used in the
Bayesian network.

Nat. Hazards Earth Syst. Sci., 21, 2075-2091, 2021
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Gironde
estuary

Latitude

-0.75°
Longitude

-1.25° -0.25°

Figure 1. (a) Location map of the Gironde Coast, southwest France. Black circles indicate municipalities where injuries were reported.
Locations of Truc Vert beach and wave and tide data used in this study are also indicated; (b) aerial photograph of Truc Vert beach at low
tide, exposing rip channels (Vincent Marieu); (¢) crowded Lacanau beach in summer during a high tide (Julien Lestage).
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Figure 2. Distribution of (a) age and (b) location of SZIs between 8 January 2011 and 18 November 2017. Beaches are ordered from
north (left) to south (right).

2.2 Environmental data

Environmental conditions were estimated at the time of
each SZI by using a dataset comprising tide, wave and
weather data. The dataset is described in detail in Castelle
et al. (2019). Hourly weather data were collected at
the Météo-France weather station Cap Ferret (Fig. la)
from the RADOME (Réseau d’Acquisition de Données
d’Observations Météorologiques Etendu). A tidal component
analysis of a 3-month time series of continuous, storm-free
Eyrac tide gauge data (Fig. 1) was performed to reconstruct
a tide level time series at 10 min intervals. The average phase

Nat. Hazards Earth Syst. Sci., 21, 2075-2091, 2021

T T

Carcans
Lacanau
Le Porge
Léege
La Teste

lag between the Eyrac tide gauge and beaches of the study
area was estimated using tide charts from the Service Hydro-
graphique et Océanographique de la Marine (France), result-
ing in an estimated maximum tide elevation error of 0.3 m at
all sites, which is conservative. A wave model hindcast was
used to provide continuous wave conditions at the coast. The
WaveWatch 3 (Tolman, 2014) hindcast was performed on an
unstructured grid with a resolution increasing from 10 km
offshore to 200 m near the coast (Boudiére et al., 2013). Wave
conditions were extracted at an in situ directional wave buoy
location c. 10 km offshore of Truc Vert at ca. 50 m depth and
have been extensively validated with field data (e.g. Castelle

https://doi.org/10.5194/nhess-21-2075-2021
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Table 1. Activity distribution SZIs as indicated in the medical files
between 8 January 2011 and 18 November 2017.

Activity No. of SZIs
Swimming 1229
Surfing 827
Body-boarding 89
Beach-related 898
Skim-boarding 36
Unknown activity 1943
Total 5022

Table 2. Post-processed categories to distinguish between rip-
related drownings and shore-break injuries.

Class No. of SZIs
Swimming (non-drowning) 282
Rip-related drowning 575
Shore-break 750
Surfing/body-boarding 916
Beach-related 934
Unknown 1565
Total 5022

et al., 2020). The primary metocean variables used are tidal
elevation (1), significant wave height (H;), mean wave period
(Ty2), wave direction (9), temperature (7'), wind speed (U)
and insolation (). From tidal elevation, tidal range (TR) and
tidal gradient (dn) were derived. Maximum, minimum, mean
and standard deviation summer statistics are summarised in
Table 3.

Previous work along this stretch of coast showed, quali-
tatively, the importance of upper beach slope and rip chan-
nel development on shore-break-related injuries and drown-
ing incidents, respectively (Castelle et al., 2019). To further
quantitatively address this link with the longer dataset used
herein, we used monthly to bimonthly topographic surveys
performed at Truc Vert beach since 2003 (the reader is re-
ferred to Castelle et al., 2020, for a detailed description of
this beach monitoring program). This dataset was used to de-
rive two morphological metrics. First, the inverse foreshore
slope (IFS) was calculated as

1

5= gy W
where tan(f) is the beach slope between 1 and 3 m above
mean sea level (a.m.s.l.) from a linear regression. To filter
out extreme alongshore variations in IFS, the slope was aver-
aged over four cross-shore transects that were systematically
surveyed during the monitoring programme (Fig. 3).
Sinuosity (S) of the mean sea level iso-contour line was
used to provide a measure rip channel development. It was

https://doi.org/10.5194/nhess-21-2075-2021
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where L, is the true length, and Ly is the shortest Euclidean
distance between the first and last points of the contour line
(Fig. 4). A value larger than 1 indicates a high degree of sin-
uosity, whereas values close to 1 indicate a low degree of
sinuosity. Before calculating the sinuosity of the shoreline,
a high-pass filter was used to remove sinuous signals larger
than 400 m. This was done to filter out larger-scale undulat-
ing patterns that are not enforced by the inner-bar rip chan-
nels (Castelle et al., 2015).

The metocean and topographic data collected at Cap Ferret
or near Truc Vert are both located approximately in the centre
of the study area. This data were assumed to be representative
of wave and weather conditions along the entire study area.
When constructing a BN (see next section), probabilities of
a SZI occurrence must be compared to a probability of non-
SZI. Therefore, a discretisation in time is needed. A 1h time
window was chosen to count the number of SZIs. To avoid a
spurious distribution of non-SZIs, only daily hours between
7:00 and 19:00 were used.

3 Bayesian networks
3.1 Bayes’ theorem and BN structure

Bayesian networks (BN) are based on Bayes’ theorem (Korb
and Nicholson, 2010). This theorem states that probabilities
of a certain event can be updated, given new evidence, and
can be stated as (Bayes, 1763)

P(elh)P(h
P(h|8)=%, 3)

where P (h|e) is the probability for a hypothesis £, given the
evidence e. In Eq. (3), P(e|h) resembles the likelihood and
P (h) corresponds to the prior probability of # before any ev-
idence was given. Dividing the numerator by P (e) is a means
of normalising, so that conditional probabilities sum to 1. For
example P (h|e) could be the probability of a rip-current haz-
ard, given that the tide was low.

A BN is a graphical representation of the probabilistic re-
lations between a set of variables, using Bayes’ theorem to
describe the relation between variables (Korb and Nicholson,
2010). The links between nodes represent the direct depen-
dency between variables (or nodes). A constraint on linking
variables is that links cannot return to the beginning node,
completing the cycle. Therefore the graphical representation
of a BN is often referred to as a directed acyclic graph. If
there is an arc from variable A to B, variable A is termed
the parent variable and variable B the child variable. The re-
lation between variables is often assumed to be causal, but

Nat. Hazards Earth Syst. Sci., 21, 2075-2091, 2021
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Table 3. Statistics of environmental conditions of SZI records during summers between 15 June—15 September.

Environmental variable Maximum  Minimum Mean  Standard

deviation
Significant wave height Hg (m) 3.13 0.23 1.17 0.38
Mean wave period T (s) 11.64 2.66 6.19 1.94
Wave direction 6 (°) 340.10 247.30 291.67 7.82
Tidal elevation 1 (m) 2.21 -2.26 —0.03 1.09
Tidal range TR (m) 4.52 1.64 3.12 0.69
Tidal gradient dn (m h_l) 0.51 —0.51 0.05 0.26
Temperature T (°C) 36.23 15.47 25.07 3.36
Insolation / (min H_l) 60 0 48.17 14.77
Wind speed U (m s_l) 12.65 1.2 4.56 1.26
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Figure 3. (a) Example of a digital elevation model of Truc Vert beach on 29 April 2013, with the colour bar showing elevation above mean
sea level. The four cross-shore transects used to compute the inverse beach slope IFS between 1 and 3 m a.m.s.1. are indicated by the dashed
black lines. (b) Time series of IFS and (c¢) summer shore-break-related injuries.

is not necessarily the case. Once the structure is established,
relations between variables are quantified according to con-
ditional probability tables (CPTs), in the case of discrete vari-
ables. The probability of a value for a child variable is cal-
culated for each possible value that the parent variable can
take. Given that this is done for all variable nodes in the BN,
two types of probabilistic reasoning become possible. Firstly,

Nat. Hazards Earth Syst. Sci., 21, 2075-2091, 2021

there is predictive reasoning, where a value is specified for
each input variable. This results in a predicted probability for
a target variable. Secondly, diagnostic reasoning is the other
type for which, for example, given a SZI the BN can specify
the probability that it was low tide.

https://doi.org/10.5194/nhess-21-2075-2021
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Figure 4. (a) Example of a digital elevation model of Truc Vert beach on 29 April 2013, with the colour bar showing elevation above mean
sea level. The red line indicates the shortest Euclidean distance. Time series of (b) sinuosity S and (¢) number of summer rip-current-related

drownings.

3.2 Construction of the rip-current- and
shore-break-related BNs

Constructing a BN requires a trade-off between complexity
and predictability. This is determined by the number of vari-
ables chosen, the way variables are discretised and how the
variables are linked. In general a simpler model is preferred
over a complex model with the same performance, accord-
ing to the principle of Ockham’s razor (Jefferys and Berger,
1992). In this section we describe the choices that were made
related to this trade-off, using the BN software package Net-
ica v.6.05 (Norsys, 1998).

Based on earlier work on the environmental controls on
SZIs in southwest France (Castelle et al., 2019) and some
preliminary BN tests, the rip-current BN is made of (i) a haz-
ard component that depends on hydrodynamic forcing pa-
rameters Hg, Ty, 0, 11 and dn and a morphological compo-
nent S and (ii) an exposure component that depends on the
hour of the day H, temperature 7' and hourly insolation / de-
fined as sunshine duration (see Fig. 5). The shore-break BN
has a similar set-up, but the shoreline sinuosity is replaced

https://doi.org/10.5194/nhess-21-2075-2021

by the inverse foreshore slope (IFS), and the tidal gradient
(TG) is replaced by tidal range (TR). Such a structure was
motivated by the fact that sometimes a simpler and compu-
tationally less expensive network can be obtained by adding
so-called hidden or latent variables that limit the number of
links between variables or the number of variables to in-
clude in the network (Russel and Norvig, 2010, p. 817). In
this case, we used two hidden exposure and hazard variables
which are known to control life risk and the number of SZIs
(Stokes et al., 2017).

In order to compare the probability of an injury with the
probability of a non-injury, injuries were counted per hour
for all summers. Consequently, the variable injury count was
discretised as a binary variable with two possibilities: no in-
jury or an injury. Where the number of injuries per hour
exceeded 1, the cases were duplicated proportionally. Often
hidden learned variables tend to be discretised with a small
number of bins, as they do not have any prior information
available. After testing both BNs, three dummy bins were
chosen for the exposure variable and two dummy bins for
the hazard variable. The number of bins chosen for the in-

Nat. Hazards Earth Syst. Sci., 21, 2075-2091, 2021
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(b) Shore-break BN
[ hidden variables (learned)
[ input variables
[ output variable

Figure 5. Bayesian networks for (a) rip-current-related injuries and (b) shore-break injuries. Both BNs are defined by input variables, hidden

variables, an output variable and their linkages.

put variables determines the performance of the model to a
larger extent. Therefore, different discretisation options were
tested, keeping an equal bin width. This is shown in Sect. 3.4.

3.3 Bayesian network training

The probability tables of the hidden variables were calcu-
lated by using an algorithm that calculates the most likely
distribution of the data, given the probability distributions of
the other variables. The expectation maximisation (EM) al-
gorithm is widely used in BNs to determine the most likely
model given the data (Russel and Norvig, 2010). In a similar
manner the algorithm finds the most likely value for occa-
sionally missing data. The algorithm proceeds in the direc-
tion of the steepest gradient to find the minimum negative log
likelihood for a model, given the data. The number of bins
used to discretise variables in the BN determines how well
data are described. The larger the number of bins, the bet-
ter it describes the data until the point where there might be a
bin for each value. On the other hand, a larger number of bins
degrades the prediction skill of the BN, as it becomes harder
to predict the correct bin. A BN might be trained slightly
differently from one run to another, because it is a proba-
bilistic process. Therefore, we used K-fold cross-validation
to eliminate any bias that single model runs might hold. After
Fienen and Plant (2015), Gutierrez et al. (2015), and Pearson
et al. (2017) the cases were separated into k random parti-
tions, where n —n/k cases were used for training and cal-
ibration, and n/k cases were left out for testing/validation.
We used k£ = 10 so that test cases make up 10 % of the total
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dataset. After 10 folds, mean values of performance metrics
were taken to evaluate the performance of the BN.

3.4 BN performance metrics

Different performance metrics were used to address BN pre-
dictive performance. Here we used three relevant metrics:
skill sk, log likelihood ratio LLR and area under ROC (re-
ceiver operating characteristic) AUC.

Skill was adapted from Fienen and Plant (2015) and was
computed as

2

g,
sk=[1—-—=5]x100%, “4)
(e}

o
where o, is the mean squared error between observations and
the BN forecast, and o, is the variance of observations. The
skill metric in Eq. (4) expresses how close predictions of
an injury match with observations of an injury, with sk =1
meaning perfect prediction.

Because skill is not an optimal measure for binary output
variables, the AUC (area under ROC curve) was chosen as a
complementary metric (Marcot, 2012). AUC is based on the
ratio between the true positive predictions of the BN and the
false positive predictions. Figure 6a shows the sensitivity on
the y axis (true positive rate) and the specificity on the x axis
(false positive rate) of a typical ROC curve from one of the
model runs. If the dashed random classification line is equal
to the ROC curve, this indicates that the model is not able to
distinguish an injury from a non-injury. This corresponds to
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Figure 6. Receiver operating characteristic curve (ROC) of the
shore-break BN of one of the fold runs.

AUC = 0.5. Figure 6b shows the confusion matrix on which
the sensitivity and specificity are based.

The third metric is the log likelihood ratio (LLR), adapted
from Plant and Holland (2011) and Fienen et al. (2013). The
LLR compares the prior probability of an injury with the pos-
terior probability of a prediction, given the evidence (the in-
put variables), which reads

LLR =10g10(p(Fi|0)) ri—0)) = log10(P(F) ri=0y)s  (5)

where F; is a forecast, in this case of a SZI, and O; is an
independent observation that was withheld from the fore-
cast (e.g. a tidal elevation of —2.0m). The LLR expresses
the change in likelihood due to certain evidence in the form
of observations. A LLR that exceeds zero indicates that the
BN offers a better forecast than the prior probability. A LLR
that is lower than zero indicates that the prior probability is a
better forecast than the BN forecast. The LLR can be calcu-
lated for each predicted case and each variable and can then
be summed over the entire BN (}_LLR). The LLR penalises
wrong but confident predictions more than wrong predictions
that are uncertain (Plant and Holland, 2011; Pearson et al.,
2017). Therefore, it is a suitable metric to verify whether the
BN is over-fitting or not.

Finally, in order to address how each input variable influ-
ences the target variable (SZI), the percentage of variance
reduction Vr that was caused by updating the BN based on
the evidence was computed as

_V(F)=V(F|O)

) x 100 %, ()

where V (F) is the variance of a forecast prior to any evi-
dence, and V (F|O) is the variance of the forecast, given the
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new evidence. V (F) and V (F|O) are calculated as

N

V(F) =Y p(f(fi — EN), @)
j=1
M N

V(F)=Y Y p(filo(fj — E(fjlo), ®)

i=1j=1

where p(f;) is the prior probability of the jth forecast, f; is
the current value of the jth forecast, E(f;) is the expected
value predicted by the BN of the jth forecast, p(fjlo;) is
the predicted value of the jth forecast given the ith evidence
case, E(fj|o;) is the predicted value of the jth forecast given
the ith evidence case, M represents the number of evidence
data and N is the number of predictions.

4 Results
4.1 BN performance

To find the best BNs, a varying number of bins was tested
to evaluate the trade-off between calibration and validation.
For calibration, the BN was trained to make predictions of
an injury based on the input variables of 90 % of the train-
ing cases. For validation, predictions of an injury were made
based on the input variables of the 10 % left-out cases. Gen-
erally an increase in level of definition, i.e. number of bins,
leads to a decrease in predictive capability and vice versa
(Fienen and Plant, 2015; Fienen et al., 2013). Figures 7 and
8 show performance metrics for both the shore-break and rip-
current BN, respectively, as a function of the number of bins
for the input variables.

It can be observed that the shore-break BN performs
slightly better than the rip-current BN, as all performance
metrics score better. Calibration results of the BNs are fair,
with sk and AUC ranging from 0.15-0.43 and 0.89-0.98, re-
spectively. Validation sk is smaller and ranges from 0.078-
0.12 and 0.035-0.06 for the shore-break and rip-currents
BN, respectively. Validation AUCs are better, ranging from
0.71-0.8 and 0.63-0.68 for the shore-break and rip-current
BNs, respectively. The sum of the LLR is systematically
smaller than O for the validation of both BNs. This is either
an indication that the prior estimate is on average better than
the prediction of the model or that there are anomalous cases
where the wrong but confident prediction is heavily punished
by highly negative LLR values that result in a negative or
near-zero LLR sum.

Tables 4 and 5 show that, depending on the number of bins
chosen, model predictions are better than the prior probabil-
ity estimate 62.21 %—79.9 % of the time. When five bins are
chosen for the rip-current BN, 79 % of the time the model
prediction is of added value. When five bins are chosen for
the shore-break BN, 72 % of time the model prediction per-
forms better. This shows that the negative and near-zero sums
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Figure 7. Performance metrics of shore-break BN as a function of the number of bins of the input variables and for validation and calibration:
(a) skill sk, (b) area under ROC curve AUC and (c) the summed log likelihood ratio )  LLR.
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Figure 8. Performance metrics of rip-current BN as a function of the number of bins of the input variables and for validation and calibration:
(a) skill sk, (b) area under ROC curve AUC and (c) the summed log likelihood ratio ) LLR.

Table 4. The percentage of LLR > 0 for rip-current SZIs, indicating
whether the prediction of the model is better than the prior proba-
bility.

No. of bins  Prediction rip-current

SZIs (% LLR > 0)
Three bins 73.86 %
Four bins 77.30 %
Five bins 79.90 %
Six bins 61.60 %
Seven bins 62.21 %

of the LLR displayed in Figs. 7 and 8 must be caused by
anomalous events (the remaining percentages) that are confi-
dently predicted wrong.

The number of bins was varied from three to seven bins
to choose the best trade-off between complexity and accu-
racy. Only the number of input variable bins was adjusted,
keeping the output variables exposure, hazard and injury the
same. In general, an increase in the number of bins leads to
a better descriptive capability and a worse predictive capa-
bility (Fienen and Plant, 2015). When the number of bins
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Table 5. The percentage of LLR > 0 for shore-break SZIs, indi-
cating whether the prediction of the model is better than the prior
probability.

No. of bins  Prediction shore-break

SZIs (% LLR > 0)
Three bins 70.18 %
Four bins 70.08 %
Five bins 72.56 %
Six bins 65.10 %
Seven bins 69.50 %

is increased from three to four, a small decrease in sk and
AUC can be noticed. However, a further increase in the num-
ber of bins does not significantly lead to worse sk, AUC or
> LLR. AUC and sk show a small increase at six bins for the
shore-break BN (Fig. 7a, b) and at six to seven bins for the
rip BN (Fig. 7). Contrary to what is generally observed, val-
idation sk, AUC and ) LLR did not drop dramatically when
complexity was increased. However, the percentage LLR > 0
did drop for both BNs, when increasing the number of bins,
which is in line with expectations.
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4.1.1 Input variable sensitivity

Figure 9a shows the sensitivity of the shore-break BN to the
input variables (six bins) and to the hidden variables expo-
sure and shore-break hazard. For the shore-break BN, the
learned variable exposure (Vr = 23.5 %) has the strongest in-
fluence followed by the shore-break hazard variable (Vr =
10.9 %). This suggests that exposure of water users has a
more dominant control on the injury count than the shore-
break hazard forcing variables. This is also reflected in
Fig. 9b, where the hour of the day, temperature and insolation
have larger values for Vr. These variables are followed by
tide elevation, which is the most important shore-break haz-
ard control (Vr =0.17 %). Consequently, mean wave period
(Vr =0.07 %), tidal range (Vr = 0.06 %), significant wave
height (Vr =0.05 %) and wind speed (Vr = 0.039 %) fol-
low. The inverse foreshore slope IFS averaged over four
profiles distributed along the coast has a noticeable impact
(Vr = 0.065 %) on the shore-break hazard. Wave direction is
least sensitive to the injury count with Vr = 0.025 %.

Figure 9c shows the sensitivity of the rip-current BN to
the input variable (seven bins) including the hidden vari-
ables exposure and rip-current hazard. Rip-current exposure
(Vr =17.6 %) and hazard (Vr = 15.4 %) have similar influ-
ence, even though parents of exposure (insolation, tempera-
ture and hour) are more dominant in Fig. 9d. This suggests
that it is the combined effects of input variables that cause
a rip current (e.g. tide, wave direction and wave height) that
have a strong influence on the occurrence of drowning inci-
dents. This is different from what was observed for the shore-
break BN. Within the exposure variables, the most sensitive
for the rip-current BN are insolation (Vr = 1.67 %), tempera-
ture (Vr = 1.7 %) and hour of the day (Vr = 1.56 %). Within
hazard-related variables Hy and T, have the highest Vr with
0.36 % and 0.26 %, closely followed by wave direction with
0.25 %, suggesting that incident wave conditions are the most
important control on rip-current hazard. Shoreline sinuosity
S reduces variance by 0.065 %. Interestingly enough, the per-
centage of variance reduction of exposure variables is of sim-
ilar magnitude, although with different ordering, in both haz-
ards (Fig. 9b, d).

4.2 Scenario analysis

Apart from the predictive ability of a BN, probabilistic sce-
nario analysis can be a useful tool to understand how multiple
variables interact. Figure 10a shows the prior joint probabil-
ity distribution of the shore-break BN without updating based
on any evidence. The two hidden variables, exposure (three
bins) and hazard (two bins) do not contain any prior infor-
mation and thus have equal probabilities for each bin. Fig-
ure 10b shows the joint probability distribution for a trained
shore-break BN updated for the evidence that there was a
shore-break SZI. In the latter, the distribution of tidal ele-
vation shifts towards high tide. Additionally, there is a shift
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towards higher mean wave periods (7;) and a slight in-
crease in probabilities of larger wave heights (Hg). Further-
more, temperature, hour of the day and insolation show a pro-
nounced shift towards higher temperatures, less cloud cover
and the afternoon between 14:00 and 16:30. Noteworthy is
that when the BN was updated for larger wave heights, the
probability of a shore-break-related injury increased. How-
ever, when the BN was updated with the evidence of an in-
jury, intermediate wave height bins 0.75-1.5 and 1.5-2.25m
showed increased probability. This supports our hypothesis
that large shore-break waves (Hg > 2.5m) can discourage
bathers from entering the water, which results in fewer SZIs
despite that the shore-break hazard is increased.

A similar scenario analysis was performed for the rip-
current BN. Figure 11a shows prior probabilities of the rip-
current BN. The rip-current BN shows that according to
the prior probability a shore-break-related injury (5.60 %)
is more likely than a rip-current-related (fatal or non-fatal)
drowning (3.23 %). Figure 11b shows the updated probabil-
ity distributions for the rip-current BN, given that there is a
100 % chance of an injury. Although the probability distribu-
tion of the central bins of tidal gradients is similar in pattern,
extreme tidal gradients (]dn| > 0.43 m/h) show an increase in
probability by about 50 %. Larger tidal gradients (both neg-
ative and positive) show a slight increase in probability, sup-
porting the hypothesis that a rapid change in tidal elevation
can surprise water users by driving the rapid onset of rip-
current activity. Rip-current-related drownings are slightly
more likely to occur when tides are low, with increased prob-
abilities for larger Hy and Tp,. Wave direction shows a small
increase in drowning probability for the NW-oriented direc-
tions. More sinuous shorelines (larger S values) show slightly
increased probability of rip-current-related drowning (see
for § > 1.23 in Fig. 11b), suggesting that more alongshore-
variable surf zone morphology increases the rip-current haz-
ard. Wind speed has only little influence, although low wind
speeds are slightly more likely during a drowning incident.
Furthermore, the hour of the day shows a distribution that
corresponds with the expected beach attendance. However,
there is a disproportionate peak in the evening between 19:00
and 21:00. Furthermore, the highest peak is earlier between
13:00-15:00 (Fig. 11b) compared to shore-break injuries,
although the bins slightly overlap (14:00-16:33, Fig. 10b).
Temperature and insolation show comparable patterns to the
shore-break BN, with warm sunny days between 20-28 °C
having the highest probability.

Other rip-current BN scenarios were tested, providing in-
sight into variable interactions. For instance, an interaction
between the magnitude of shoreline sinuosity S and wave
angle of incidence was explored, given average wave con-
ditions (wave height and period) and a 100 % chance that
there was a rip hazard (Fig. 12a and b). It can be ob-
served that a low beach sinuosity (1-1.06) is correlated
with higher probabilities for the shore-normally incident
waves (around 279°), while large beach sinuosity is associ-
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Figure 9. Variance reduction (Vr) without hidden learned variables for the shore-break BN (seven bins) (a) with hidden learned variables and
(b) without learned hidden variables and for the rip-current BN (six bins) (¢) with hidden learned variables and (d) without hidden learned

variables.

ated with a larger probability for more NW angles of inci-
dence (295.43-311.57°). This indicates that for reasonably
alongshore-uniform beaches more shore-normally incident
wave conditions are required to have a rip-current hazard,
which is not necessary for rip-channelled beaches.

5 Discussion
5.1 BNs as a predictive tool for SZIs

Two separate BNs were created for shore-break SZIs and rip-
current SZIs. This allowed use of different beach morphol-
ogy metrics based on prior understanding of the physics of
shore-break waves and rip-current dynamics. In addition, two
hidden variables (exposure and hazard) were introduced for
both BNs to decrease the number of connections and increase
BN efficiency. Doelp et al. (2019) used population data to
test a SZI ratio, normalised by the population, in addition to
the binary injury likelihood. Although results were not dra-
matically improved in Doelp et al. (2019), including accurate
water user data should improve BN model predictions along
the Gironde coast. However, such data do not exist and will
require future research effort.

Performance metrics indicate that the BNs improve prior
estimates, but that BN still have a significant percentage of
wrong but confident predictions. This is due to over-fitting,
which is a common issue with training a BN on rare events
(unbalanced dataset) (Cheon et al., 2009). When the primary
objective of a BN is prediction rather than description, a syn-
thetic dataset can be created with an even distribution of
events, although it degrades the BN descriptive ability. A
similar suggestion to cope with this problem is to remove
anomalous confident but wrong predictions (Doelp et al.,
2019). Another issue limiting the BN predictive ability is that
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simple beach morphology parameters S and IFS were derived
from a single site (Truc Vert). Summer beach morphologies
surveyed along different beaches distributed along the coast
should help improve IFS and § estimation and, in turn, pre-
diction of rip-current drowning incidents and shore-break-
related injuries. Similarly, optical satellite images should be
explored to derive beach sinuosity S at the different beaches
along the coast (Castelle et al., 2021). As indicated earlier,
an estimation of beach attendance or water users should also
improve BN predictive ability. Therefore, at this stage other
tools should be used for life-risk prediction, like for instance
models based on simple correlations between meteorological
and oceanographic conditions and the incidence (Lushine,
1991; Lascody, 1998; Dusek and Seim, 2013; Scott et al.,
2014), on the numerical modelling of rip flow speed (Austin
et al., 2013), or on the combination of video images and nu-
merical modelling (Jiménez et al., 2007). Recently, using the
same SZI dataset, a logistic regression model was found to
predict the risk of drowning along the Gironde coast up to
3d in advance with good skill (Tellier et al., 2021).

Lastly, there were 1565 unknown injuries that could not be
attributed to either a shore-break- or a rip-current-related in-
jury. Theoretically, a well-trained BN could estimate which
of the SZIs is more likely based on the environmental condi-
tions. However, since the BNs are still limited in prediction,
this should be explored in the future using improved BNs.
Such a BN could help to retrospectively improve SZI statis-
tics along surf coasts.

5.2 Environmental controls on SZIs and implications
for beach safety management

In other studies frequency analysis was used to identify dis-

proportionate environmental conditions during SZIs (Scott
et al., 2014; Castelle et al., 2019). Some of the BN results are
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Figure 10. (a) Prior probability distribution of the shore-break BN. (b) Updated probability distribution where the probability of an injury
occurring was set to 100 %.
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Figure 11. (a) Prior probability distribution of the rip-current BN; (b) updated probability distribution of the rip-current BN when the
probability of an injury occurring was set to 100 %.
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Figure 12. (a) Scenario with low sinuosity resulting in more shore-normal wave direction (around 279°) with the rip-current BN. (b) Scenario
with medium sinuosity resulting in more obliquely incident (NW) wave conditions with the rip-current BN.

essentially in line with previous work. In short, more SZIs are
observed for warm sunny days with light winds. Rip-current-
related drowning incidents increase with increasing incident
wave energy (height and period), more shore-normal inci-
dence and lower tide level. In contrast, shore-break-related
injuries are sustained at high tide levels and moderate wave
height. In addition to previous work, here we proposed a
method to quantify the role of beach morphology in SZIs.
Beach sinuosity S, which is a measure of the alongshore vari-
ability of surf zone morphology, and inverse beach slope IFS
were found to influence the occurrence of rip-current-related
drowning incidents and shore-break-related injuries, respec-
tively. These results are in agreement with current knowledge
of rip flow intensity increasing with increasingly alongshore-
variable surf zone morphology (Moulton et al., 2017) and
shore-break waves occurring for steeper beach face (Battjes,
1974; Balsillie, 1985). We also found that rapid, positive or
negative, change in tide level elevation (large dn) increase
the probability of drowning incidents, with no difference be-
tween ebb and flood. Given that tide-driven current is negli-
gible compared with rip currents along most of the beaches
in southwest France, this suggests that rapid changes in tidal
elevation driving the rapid onset of rip-current activity can
surprise unsuspecting bathers and carry them offshore. How-
ever, another explanation is that some of the drowning in-
cidents occurred in sectors adjacent to the Arcachon lagoon
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and Gironde estuary where tide-driven currents, which are
maximised during ebb and flood (large |d7|), can be intense.

In addition to the primary environmental controls on SZlIs,
in this study for the first time it was possible to identify the
interaction between multiple input variables. For instance,
it was found that it is the combined effects of tide eleva-
tion, wave direction and wave height that control rip-current
hazard. In other words, even if you have shore-normally in-
cident waves near low tide, if wave height is very small,
there is no hazard and consequently a low probability of
rip-current-related drownings. Such interactions, which were
not possible to address in previous work (Scott et al., 2014;
Castelle et al., 2019), are in line with the understanding of
rip flow response to wave and tide conditions (Castelle et al.,
2016). Our scenario analysis also indicates that, for reason-
ably alongshore-uniform beaches, more shore-normally inci-
dent wave conditions are required to have a rip-current haz-
ard compared with rip-channelled beaches. This is also in
line with observations and model outputs showing that, for
the same obliquely incident wave conditions, rip cell cir-
culation is transformed into an undulating, less hazardous
longshore current for weakly (small §) alongshore-variable
surf zone morphology, while rip cell circulation can be sus-
tained for deep rip channels (MacMahan et al., 2008; Dal-
rymple et al., 2011). This shows that BNs including a pre-
defined hidden hazard variable can provide insight into the
influence of the primary input variables and their interactions
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on the hazard posed. Therefore, it could also be applied to
other injuries, e.g. related to surfing activity, for which the
causes (e.g. environmental, behavioural) and their interplay
are poorly understood.

Studies addressing the environmental controls on shore-
break-related SZIs are scarce (Puleo et al., 2016; Doelp et al.,
2019) compared to drowning studies. The shore-break BN
developed herein for the Gironde coast suggests that the
predicted decrease in exposure for Hs > 2.5 m, representing
heavy shore-break waves at the shoreline, is thought to dis-
courage beachgoers from entering the water near high tide.
Importantly, this was not observed for rip-current-related
drownings, which have a tendency to occur at low tide with
the inner surf zone located on a much more gently sloping
part of the beach profile. We hypothesise that in such less
adverse conditions, beachgoers are less discouraged to en-
ter the water, as opposed to facing large shore-break waves.
However, further investigation on beachgoer behaviour in the
presence of shore-break waves is required to test this hypoth-
esis. This will also involve estimation of beachgoer affluence
and estimation of the number of people in the surf exposing
themselves to the physical hazards.

In addition, our variable sensitivity analysis indicates the
shore-break-related injuries are more controlled by exposure-
related variables than by hazard-related variables, contrary to
rip-current-related drowning for which life risk is approx-
imately equally distributed between hazard and exposure.
This indicates that shore-break injuries are more likely to
occur during busy days, whether moderate or heavy shore-
break conditions are present. In contrast, the presence of in-
tense rip currents is critical to drowning incidents.

6 Conclusions

A Bayesian network (BN) approach was used to model
life risk and the controls and interactions of environmental
(metocean and morphological) data on SZIs along a high-
energy meso-macrotidal coast where shore-break and rip-
current hazards co-exist. In line with previous work, the BNs
show limited predictive skill. Although the shore-break and
rip-current BNs improve prior estimates, they still have a
large percentage of wrong but confident predictions, which
is not tenable for life-risk prediction on beaches. However,
the BNs provide fresh insight into the different environmen-
tal controls, their interactions, and their respective contribu-
tion to hazard and exposure. For the first time, the respective
contributions of exposure and hazards to the overall life risk
were quantified, showing the shore-break-related injuries are
more controlled by the exposure than by hazard, contrary to
rip-current-related drowning for which contributions are ap-
proximately equal. These results can guide the future devel-
opment, or modification, of public education messaging, par-
ticularly on shore-break hazard, which has received little at-
tention so far compared to rip currents, despite the large num-
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ber of severe injuries sustained in shore-break waves along
the Gironde coast. We advocate that such BNs should be de-
veloped in parallel with other risk predictors showing high
predictive skill but providing much less diagnostic capability
(Tellier et al., 2021).
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