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Abstract

Voltage imaging is an emerging microscopy tech-
nique that can make neuroscientific research very
prominent. The images obtained with this imaging
method exhibit a substantial amount of noise. Cur-
rently, the new methods are developed and tested
to computationally denoise voltage imaging videos
with high efficiency and preservation of the video
structure. This research attempted to investigate
how well traditional denoising algorithms, such
as different types of blur or diffusion, perform
in denoising such videos. Specifically, five well-
established algorithms commonly used in biomed-
ical imaging were evaluated: Gaussian filter, bilat-
eral filter, anisotropic diffusion, wavelet filter, and
total variation minimization. The methods were ap-
plied to both real brain recordings (HPC2 dataset
[1]) and synthetic videos (Broad DSP CellMincer
[17]). Performance was assessed by measuring the
structural similarity index (SSIM) and signal-to-
noise ratio (SNR). Results suggest a trade-off be-
tween noise removal and structural preservation,
with total variation minimization and anisotropic
filtering performing particularly well in terms of
noise suppression. These classical methods re-
main relevant for data exploration and visualiza-
tion. For the methods to be used in a medi-
cal context, a more in-depth research should be
carried out on medical data. The deep learn-
ing methods remain relevant for the high-precision
applications. Code developed for the research

is available online at https://github.com/Rpplctns/
denoising-voltage-imaging-videos.git.

Figure 1: Example voltage imaging video frame (mouse brain)

Figure 2: Example frame denoised with TV minimization

1 Introduction

Voltage imaging is a microscopy technique that has proven to
be very effective in imagining the neural activity of the brain.
It is a promising technique that may help the neuroscience

researchers explain human behavior from a microscopic per-
spective of a network of single neurons. [6].

The general idea of voltage imaging is to measure the neu-
ral activity of the brain without need for use of an electrode.
Use of electrode only allows to observe one neuron at the
time. Voltage imaging on the other hand, could provide a
bigger picture of the neural activity in a brain. For that pur-
pose, an optical method that involves staining techniques was
already proposed in the 1970s [6] [15].

The problem with the method is that the images obtained
by voltage imaging often exhibit a substantial amount of
noise, due to the specification of the method, described in
detail in the next section. This causes huge difficulties in the
output interpretation, compromising the research and causing
the need for image denoising methods.

Many ways of denoising images have already been pro-
posed in general. This includes traditional methods [2] [4]
[8] and deep learning-based approaches [20]. A lot of re-
search has been done around these methods, their efficiency
is well-tested and many variants and optimizations has been
proposed for different use cases. However, there is no re-
liable information on the feasibility of using these methods
for denoising voltage microscopy images. Finally, denoising
methods such as SUPPORT [5] were introduced specifically
for the purpose of denoising such images. At this point, it
is still a subject of investigation whether the variants of more
general methods cannot be used with equally satisfactory per-
formance.

This study aims to answer the following research question.

What are the traditional, non-deep learning de-
noising methods used for denoising biomedical
and microscopy data, and how do they perform
in terms of preserving signal integrity and sup-
pressing noise in voltage imaging?

Answering the question requires defining which traditional
methods should be evaluated and describing them. Further-
more, it requires defining clear criteria of what is considered
a properly denoised image, what are the evaluation criteria.
Therefore, the question can be divided into the following sub-
questions.

What traditional video denoising methods are
there and which ones can be used for denoising
voltage imaging videos?

How can the suitability of a denoising method be
evaluated for voltage imaging?

How do the traditional methods perform in de-
noising voltage imaging videos?

This paper is structured as follows. In the Background sec-
tion, the purpose of voltage imaging is presented and the need
for denoising methods is described in detail. The Project
Contribution section of the paper describes what has been
done for the project. The Methodology section explains what
datasets, methods, and assessment criteria have been used for
the study and why. Finally, the Results & Deiscussion shows
the results of applying evaluation metrics to denoising meth-
ods and includes the answers to the research question. The
ethical aspects of the study are described in the Responsible
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Research section. In the end, all the experiment process and
results are summarized in the Conclusion, with the guidelines
for future research.

2 Background

This section outlines the basic principles of voltage imaging.
It also summarizes previous research on the method in ques-
tion and denoising of multimedia.

2.1 The Idea Behind Voltage Imaging

A neural network, such as, for example, a human brain, works
by transmitting electric impulses through neurons. The bi-
ological event of the nerve impulse, which is fundamental
in cell-to-cell communication, is called the action potential.
The general idea of voltage imaging is optical observation of
this electrical activity. This is done by observing fluorescent
indicators [15], which react for electricity. Initially, small
molecules of dye served as these indicators. More modern
approaches are now being used for that purpose, because of
the developments in nanobiology. Today, impulses are indi-
cated by genetically encoded voltage-sensitive proteins [6].

Among the techniques that can be used to monitor neural
activity, voltage imaging is a method that allows the observa-
tion of a larger chunk of a neural network. Other approaches
include electrode-based methods. However, these allow the
observation of only a single neuron at the time [6]. Magnetic
Resonance Imaging is a different approach that captures more
than just one neuron at a time. Unlike voltage imaging, it in-
volves observing the activity of certain regions of the brain
rather than focusing on the activity of particular neurons. An-
other imaging technique, called calcium imaging, provides a
good overview of the network. However, calcium molecules
move relatively slowly, compared to the rapid nature of the
action potential. Voltage imaging is therefore the best method
to observe quick nuances on a larger scale.

2.2 The Opportunities in Voltage Imaging

Emerging of voltage imaging provides neuroscience with a
means to observe the electrical activity of the brain with high
precision and speed. It allows for the observation of a spatial
neural region. It is a very powerful tool with a lot of potential
for neuroscience research, which focuses on understanding
how neurons connect and communicate. The technique en-
ables observation of the brain of an awake animal or human.
It can potentially lead to a deeper understanding of how elec-
trical impulses in certain regions of the brain correlate with
behavior and cognition. It can also be used to identify the
response to drugs.

2.3 Challenges in Voltage Imaging

The most important problem with voltage imaging is the
speed of the event. The action potential typically occurs in
the span of 2ms. Its most important “’rising phase” lasts about
250us [6]. The nature of the event is relatively quick. This
enforces a voltage indicator to be able to resolve changes on
the tenth of millisecond time span. As a result, the image ac-
quisition must also be fast, about 1000 Hz (compared to 1-10
Hz in calcium imaging). The little time to deliver photons

leads to an image being extremely noisy. That is the reason
why there is a need for computational denoising. The de-
noised video should possibly be used for image segmentation,
or visual observation. Therefore, a video should preserve the
structure of the object and possibly provide a clear, denoised
view on a neuron.

2.4 Image Denoising

Many digital image processing techniques were emerging in
1960s. They focus on the analysis of mathematical proper-
ties of an image, in an attempt to restore, enhance, encode,
or compress the picture [14]. Computational image restora-
tion can be done by filtering, denoising algorithms, or ma-
chine learning. The latter has proven to be more effective in
predicting the structure of the objects in the image and recon-
structing the actual contents. On the other hand, the older,
traditional approaches are more efficient in terms of compu-
tational resources. The traditional methods that will be dis-
cussed in this paper are introduced in the following subsec-
tions.

Gaussian Filtering

Gaussian filtering is a denoising approach, used to blur the
image and remove noise in this way [8]. It involves convolv-
ing the input medium with a Gaussian kernel, which smooths
the image by averaging the pixel values with their neighbors
based on the weights specified by the kernel.

The method finds an application in medicine, particularly
in denoising functional magnetic resonance imaging (fMRI)
to remove sensor noise [9] [11].

Gaussian filtering has been chosen in this study as a clas-
sical baseline for image denoising. It is simple to implement
and widely known denoising approach.

Bilateral Filtering

Bilateral filtering is a method used to denoise an image while
preserving structural features, such as the edges [8]. It is sim-
ilar to Gaussian filtering, but in addition to considering how
close the neighboring pixels are, it also takes into account
how similar they are in terms of intensity.

The method has been chosen because it balances edge
preservation with noise reduction, while it is still a simple
baseline method, as an improved version of Gaussian blur.
Edge preservation is especially relevant for voltage images,
as they contain features like neural boundaries that need to be
preserved.

Anisotropic Diffusion
Unlike isotropic filters, which smooth uniformly in all di-
rections, this approach diffuses intensity in the direction of
low gradient, while preserving differences along the edges
[2] [13]. The diffusion process if applied for a certain num-
ber of iterations with a certain step size. It serves similar pur-
pose as bilateral filtering, that is, is a method used for edge-
preserving denoising. However, this method works in a more
complex way, through solving partial differential equations.
Anisotropic diffusion is used in medical image processing
to denoise MRI scans because of its ability to preserve struc-
tural features of an image [9].



The method was chosen to be evaluated in this study as an-
other method designed for edge preservation denoising. Its
allows for a lot of flexibility and control due to the large
amount of parameters.

Wavelet Denoising

Wavelet denoising decomposes the input signal using a dis-
crete wavelet transform, and then a specified threshold is ap-
plied to filter the noise components from the signal compo-
nents [4].

Wavelet denoising is commonly used in medicine and bi-
ology to denoise high-resolution microscopy images or EEG
scans [16].

The algorithm has been chosen as one of the most ba-
sic signal processing methods. It can be very effective for
non-stationary signals, like voltage traces in the microscopy
method.

Total Variation Minimization

The total variation of an image or signal is a measure of
how much the intensity changes across space or time [2].
The TV minimization method for denoising works by reduc-
ing small fluctuations, assumed to be noise, while preserving
sharp changes, assumed to be signal components.

This is a powerful algorithm which is widely applied in
the field. It is used to denoise MRI scans, positron emission
tomography (PET) scans, and microscopy [9].

The method is a widely known denoising algorithm. It def-
initely should be considered in the study, as the voltage imag-
ing photon shot noise exhibits a very high frequency.

Although many alternative denoising methods exist, this
study focuses on a representative set of classic, well-
established algorithms that span several key methodological
categories and find use in biomedical applications. Simpler
approaches such as mean or median filtering were excluded
due to their poor edge preservation. Similarly, Fourier-based
methods lack the localization necessary to handle rapid neural
events. The selected techniques represent a diverse set of tra-
ditional approaches that are interpretable, reproducible, and
widely cited in the denoising literature. This diversity allows
for a systematic comparison across algorithmic families and
ensures relevance to the wide range of signal characteristics
present in voltage imaging data.

2.5 Recently Proposed Denoising Approaches for
Voltage Imaging

Recent research around voltage imaging and deep learning
resulted in the development of specific denoising techniques.
These techniques allow data restoration from a voltage imag-
ing video. In particular, a group of Korean researchers pro-
posed a self-supervised deep learning method called SUP-
PORT [5]. CellMincer is an another method that uses self-
supervised deep learning. CellMincer also proved to be an
effective method for the use case [17]. Deep learning is ex-
tremely suitable for the task, but there remains a question if
they are necessary for proper restoration of the videos.

3 Project contribution

The section provides a brief overview of the work that has
been done as a part of the study and how it contributes to the
field of voltage imaging postprocessing.

3.1 Denoising Methods

Through the study, five denoising approaches have been eval-
uated. These are listed in the Background section. Some of
the methods have been implemented during the study, and
for some of them the scikit and medpy implementations have
been used [12] [7]. For these methods, the tweakable param-
eters have been enumerated in the Methodology section, and
the optimal values have been selected during the experimen-
tation process. For each method, numerical and visual results
are presented as the means to value their fitness for denoising
voltage imaging videos.

3.2 Evaluation

This study outlines relevant evaluation techniques. An eval-
uation metric is considered relevant if it provides a good
overview of whether a denoising method is suitable for volt-
age image denoising. Apart from the quantitative metrics,
qualitative results are shown and discussed in the Results sec-
tion. According to the evaluation metrics, the fitness of the
denoising approaches is valued and discussed.

3.3 Experiments

The paper explains the experimental setup of the study, that is,
what datasets have been used, what methods have been tested,
and how the parameter values were selected. The work dis-
cusses the alternatives to deep-learning approaches, and their
fit for the use case, based on the results of the experiments.

4 Methodology

This section elaborates on the approach to conducting the
experiments. It first outlines the datasets, then the denois-
ing techniques that are being investigated, then the evalua-
tion metrics, and finally a protocol for conducting the experi-
ments.

4.1 The Datasets

In the experiments it is desirable to use data that actually re-
semble voltage imaging videos. However, evaluation tech-
niques often require some ground truth to assess the fitness of
amethod. Because of that, in this study, two different datasets
are used:

* HPC2 [1] - set of 13 voltage imaging videos of the hip-
pocampus region of a mouse brain. The data set does
not include ground truth for video denoising. Two of
the images (00_02 and 00_03) are used for the evalua-
tion of the denoising methods, and visualization of how
accurate they are in preserving the contents of the video
while removing the noise. While the dataset provides
videos of various events happening in the brain, in this
research it has to be supported by another dataset which
contains a ground truth, for the experiments reasons.



Figure 3: Example HPC2 frame

* Broad DSP CellMincer Data [17] - synthetic dataset of
five videos with different noise levels. Contains a ground
truth for image denoising. The dataset is created with the
Optosynth tool, designed specifically for synthesizing
voltage imaging videos and adding Poisson/Gaussian
noise to them. It was created as a dataset for the de-
velopment of the CellMincer denoising method. The
study uses five videos with the highest noise available
(20 units).

Figure 4: Example noisy frame

Figure 5: Example clean frame (ground truth)

The Validation Set

Hyperparameter optimization requires the validation set.
The first 1000 (out of 7000) frames of the video op-
tosynth__1__20__5.tif have been chosen for a validation set.
The frames contain a representative piece of video. The set is
sufficiently small to enable running multiple methods multi-
ple times, with different parameter configuration.

4.2 The Denoising Approaches

This report focuses solely on traditional denoising methods.
The study implements and experiments on the feasibility of
these as a solution to voltage imaging problems. The follow-
ing methods have been tested in the research.

Gaussian Filtering
Gaussian filtering blurs the image in order to remove the
noise. In this study, it is used to denoise videos, and therefore

the 3-dimensional kernel is used, with a separate variance in
the Z (time) direction.

The properties of smoothing are specified by the following
parameters:

* Gaussian standard deviation in X and Y (spatial) dimen-
sions (o) - varied in [0.2, 1.8], where 0 means no de-
noising, 1 is a standard amount used in other medical
applications [11], and 1.8 is used as a slightly higher
value.

¢ Gaussian standard deviation in Z (temporal) dimension
(o) - varied in [0.2, 1.8].

* Kernel size - in this study 5 voxels (5 x 5 x 5), 7 and 9.
The number must be odd, and should not be too large as
the video frame is as little in height as about 100 pixels.

The method is not expected to perform particularly well in
terms of preserving the structure of an image because of its
simple mechanism, which may lead to blurring the edges.

Bilateral Filtering

Bilateral filtering introduces the means to preserve the struc-
ture of the object. In addition to the tweakable Gaussian fil-
tering parameters, the following is introduced:

* Intensity-domain standard deviation (o,) - to explore
lower and higher sigmas varied in [0, 2], as the data is
normalized.

The ability of preserving the edges is expected to have a
beneficial impact on the results, and because of that improve-
ment the method is expected to perform better than Gaussian
filtering.

Anisotropic Filtering

The method diffuses the image in the direction of lower gradi-
ent. The algorithm’s properties are specified by the following
parameters:

e Number of iterations - varied between 3 and 20.
* Diffusion rate () - varied in [0.01, 0.10]

* Edge sensitivity (k) - determines what level of local
change is treated as noise, and which is treated as an
edge. A value from [0.02, 0.20].

» Temporal-spatial ratio - the ratio of temporal to spatial
coordinates. Used because of the fact that the medium
is a video, so it is a 3-dimensional array of intensities
with an independent time dimension. The value ranged
between 0.5 and 2.0.

The parameters have been chosen to span from weaker to
stronger denoising, according to [13].

The method introduces a different approach to preserving
edges from the bilateral filtering. It is, similarly to the men-
tioned approach, expected to lead to better results that Gaus-
sian filtering.

Wavelet Filtering
The filtering method decomposes the input signal [4]. For
this method, the parameters to be specified are as follows:

e Wavelet family - chosen from the standard ones: haar
(square wave), db4 and symS5.



* Thresholding - soft or hard. The first means gradual
thresholding, the other is applying a hard cutoff.

» Temporal-spatial ratio

Total Variation Minimization

Total variation minimization (TV minimization) reduces the
number of high-frequency signals in the image. It was per-
formed with an algorithm proposed by Chambolle [3]. There
is one parameter that controls the denoising properties and
the temporal-spatial ratio:

* Weight (\) - amount of denoising, explored in the range
[0,0.02], consistent with typical values used in normal-
ized data [3].

» Temporal-spatial ratio

4.3 The Assessment Criteria

In the end, the feasibility of a denoising method is presented
with a quantitative value of evaluation metrics. For the study,
two metrics were proposed.

Structural Similarity Index Measure

Structural Similarity Index (SSIM) is a method to predict the
quality of a filtered digital medium [18]. It puts an empha-
sis on perceived quality and structure of the objects on the
image, as opposed to other methods (such as mean squared
error, signal-to-noise ratio), which often value the absolute
error instead. It requires a reference denoised image, that is,
a ground truth, to calculate the measured value.

The metrics have been chosen as primary evaluation met-
rics due to the importance of maintaining the structure of a
medical image after denoising, as only then does it allow a
researcher to draw scientific conclusions from it. The mea-
sure has been used in the use case. The researchers who de-
veloped CellMincer, self-supervised denoising method devel-
oped for voltage imaging, use SSIM to evaluate their denois-
ing method [17].

The measure can be calculated using the following for-
mula:

(2papty + C1)(200, + Co)
(,UE + Mg + 01)(0'3 + 0',3 + 02)7

SSIM(z,y) =

where 11, and p,, are mean intensities over a window, o2 and

05 and standard deviations, and o, stands for covariance.
The final value is calculated as the mean value of all windows.
The Cy and Cy constants are calculated based on the pixel
range.

SSIM Range Quality Assessment
<0.5 Poor: significant distortion
0.5—-0.7 Fair: partially preserved structure
0.7—-1 Good: minimal perceptible loss

Table 1: Qualitative interpretation of SSIM (Structural Similarity
Index) values.

The results are compared with the values in the table 1.
Values of SSIM close to 1 indicate very good to perfect struc-
tural similarity [18].

Temporal Signal-to-Noise Ratio

The evaluation metric introduced as a method to evaluate
the efficiency of denoising techniques in denoising the first
dataset. The dataset does not contain a ground truth, hence
the need for a method that allows to approximate the amount
of noise from a denoised image alone.

The signal-to-noise (SNR) ratio measure has been chosen
in this research, due to its extensive use in medical imag-
ing [10]. Tt is widely used for magnetic resonance imaging
(MRI) scans, which require denoising, just as voltage imag-
ing videos.

The signal-to-noise ratio is a fundamental measure that in-
dicates the amount of noise in the video [19]. While it nor-
mally requires a ground truth to calculate the noise, there ex-
ists a way to approximate it from a video alone. The tem-
poral signal-to-noise ratio (tSNR) is a measure that addresses
the limitation of lack of ground truth for the task. It approx-
imates SNR using the temporal dynamics of the video. It is
defined as the mean signal at each pixel across time, divided
by its corresponding standard deviation.

tSNR(z,y) = Hay
Ou,y
In this study, mean tSNR for the entire video is calculated
to provide a single numerical value for the comparison of the
methods. Furthermore, 25th percentile of the tSNR values is
evaluated, as an overview of the worst-case behavior in the
problematic segments of the video.

tSNR Range Quality Assessment
< 20 Poor: high temporal noise
20 — 50 Moderate: usable but noisy
50 — 60 Good: high quality and useful
> 60 Very Good: very low noise

Table 2: Qualitative interpretation of temporal signal-to-noise ratio
(tSNR) values.

The results are compared with the values in the table 2.
According to research around the SNR measure for MRI pur-
poses, images with SNR values larger of 50-60 units are gen-
erally consider to have good quality, allowing for reliable de-
tection of subtle signal changes [19].

4.4 Experiment Protocol

Data normalization

Before running the experiments, the intensity of all videos in
normalized to ensure a consistent format, so 3 dimensional
arrays of floating point numbers on scale [0, 1]. All of the
videos are in grayscale, so each voxel is represented by the
intensity value.

Hyperparameters selection

First, the optimal hyperparameters are selected for each of
the denoising methods. The parameters are selected from the
domains specified in the Denoising Approaches subsection
of the Methodology. The selection is done based on the ex-
periments performed on the validation set, by calculating the
Structural Similarity Index measure. The optimal parameter
values are outlined in the results section.



Evaluation

After parameter selection, the denoising methods are run on
the datasets with optimal settings. The fitness of a method is
later assessed by the following criteria:

* The mean SSIM over the synthetic dataset.

* Mean tSNR and 25th percentile worst-case tSNR in real
neural videos.

* The qualitative evaluation of the denoised videos from
the real dataset.

5 Results & Discussion

This section presents and discusses the results of the experi-
ments, as conducted according to the protocol. It first presents
the numerical results of the SSIM calculation for different set-
tings of the denoising methods. As a result of that, the opti-
mal parameters are selected. Furthermore, the outcomes of
the experiments, as defined in the experiment protocol, are
listed. Finally, the section discusses the obtained results.

5.1 Parameters Optimization

All of the methods has been run for different setting on the
first 1000 frames of the optosynth__1_20__5 video.

Gaussian Filtering

Figure 6: Gaussian Filtering - SSIM

The results of the parameters tests are presented in the Figure
6. From the figure it can be deducted that the optimal values
of the parameters are the following:

e Kernel size = (9,9, 9)

e 0g,=0.2
® Oy = 1.8
Bilateral Filtering

Bilateral filter - SSIM

Figure 7: Bilateral Filtering - SSIM

The results of the parameters tests are presented in the Figure
7. From the figure it can be deducted that the optimal values
of the parameters are the following:

e Kernel size = (9,9, 9)
e 0,=0.2

® O = 1.8
® g; =2.0

Anisotropic Filtering

Anisotropic diffusion - SSIM

-ﬁl

Figure 8: Anisotropic Filtering - SSIM

The results of the parameters tests are presented in the Figure
8. From the figure it can be deducted that the optimal values
of the parameters are the following:

e k=10.08
e v=0.03
¢ O iterations

» Temporal-spatial ratio = 1.0

Wavelet Filtering

Wavelet Filtering - SSIM
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Figure 9: Wavelet Filtering - SSIM

The results of the parameters tests are presented in the Figure
9. From the figure it can be deducted that the optimal values
of the parameters are the following:

* Hard thresholding
* Haar (square) wavelet

* Temporal-spatial ratio = 1.0

Total Variation Minimization

Total Variancy

Figure 10: TV Minimization - SSIM

The results of the parameters tests are presented in the Figure
10. From the figure it can be deducted that the optimal values
of the parameters are the following:

* A =10.008

» Temporal-spatial ratio = 1.0



5.2 Results of the Experiments

Numerical results

SSIM | tSNR | Worst tSNR
No Filter 0.30 | 11.07 8.75
Gaussian Filter 0.33 | 23.38 23.32
Bilateral Filter 0.33 | 23.49 19.41
Anisotropic Filter | 0.30 | 25.30 25.04
Wavelet Filter 0.32 | 14.05 13.52
TV Minimization | 0.29 | 50.65 49.24

Table 3: Evaluation results

Table 3 shows the results of the three evaluation metrics, the
mean value of the structural similarity index in the synthetic
dataset, the mean temporal approximation value of the signal-
to-noise ratio in the real dataset, and the worst-case 25th per-
centile tSNR value in the same dataset.

Example denoised frames

Figure 11: Noisy frame

Figure 12: Gaussian Filter

Figure 13: Bilateral Filter

Figure 14: Anisotropic Filter

Figure 15: Wavelet Filter

Figure 16: Total Variation Minimization

Figures 12 13 14 15 16 show the resulting frames for all the
denoising methods tested. All figures show a fragment of the
same (10th) frame of the 00_02 video from HPC2 dataset.
The noisy frames is depicted on 11.

5.3 Discussion

For the preferred hyperparameters, the optimal parameters se-
lected are seemingly the ones that do not interfere with the
video structure, such as, for example, hard thresholding in
wavelet filtering or small o, in the Gaussian filter, which pre-
serves the edges in spatial dimensions. It makes sense as the
parameters are tuned according to the structural similarity in-
dex. Stronger spatial sigma could blur the edges, which may
be penalized by SSIM. At the same time, larger temporal de-
viation, blurring image over time, is preferred by the tuning
algorithm, as the structure of a neuron does not change dras-
tically across the frames.

Relatively subtle denoising is seemingly preferred by the
tuning algorithm (x = 0.08 in anisotropc filtering, A = 0.008
in tv-minimization). Stronger spatial denoising negatively
impacts the structure of the image.

Because of that, almost no improvement in SSIM is ob-
served after denoising, which shows that denoising with the
presented method inherently impacts the structure in the neg-
ative way.

As for the tSNR measures, it is visible that the noise is
being removed indeed. There is no significant variance of the
results, which means that the noise is being removed equally
well from most of the video regions. Particularly satisfying
values are noted for total variation minimization. The method
is particularly good at removing high frequency noise, which
is usually present in voltage imaging videos.

The denoised videos do provide a clearer overview of the
action potentials happening in the neurons. The resulting
videos show that anisotropic filtering and total variation min-
imization are particularly fit for removing the extensive noise
from these scans.

In conclusion, denoising the videos does not result in a par-
ticular improvement in the structural similarity. There ex-
ists a trade-off between removing the noise and preserving
the structure, particularly in Gaussian filtering, bilateral fil-
tering, and total variation minimization. From the methods



tested, total variation minimization performs particularly well
in removing excessive noise. Visualizations suggest that this
method, and also anisotropic filtering, are particularly suit-
able for making the videos more readable for researchers.

6 Responsible Research

The section serves as an overview of the ethical aspects of
this study, as well as reproducibility of the methods used in
the study.

6.1 Data availability

The research aims to use widely available data in order
to provide maximum reproducibility for the experiments.
The datasets are available online under The Creative Com-
mons Attribution license (HPC2), and BSD 3-Clause License
(CellMincer data). The open access of the data allows for the
experiments described to be as reproducible as possible.

6.2 Experiment reproducibility

The research aims at maximum reproducibility of the exper-
iments. The experimental setup of this study consists of de-
noising and evaluation metrics that are widely known in the
field of image processing and well documented in the liter-
ature. Their implementations can be found in common im-
age processing libraries. Similarly, evaluation metrics are de-
scribed in the medical image processing literature. The for-
mulas are precisely outlined in this paper. All improvements
to the denoising methods and the specific means of their ap-
plication, as well as the parameters chosen, have been well
documented in this paper. The experiments do not require ex-
tensive computational power. The availability of the datasets,
denoising methods, and evaluation metrics, as well as the
proper description of the experiments, make the research re-
producible and open.

6.3 Data interpretation

The results of the study are reliable data. The experiments
have been carried out on several videos, some of which are
actual neurobiological scans. The others are the media from
an acclaimed synthesis tool, used in research for this type of
studies. The methods tested in this study have been evaluated
with reliable and established metrics used in medicine. The
results and conclusions of the experiments should therefore
be considered reliable and sensible.

6.4 Research limitations

The data obtained in the research do not indicate that the
methods described can be used directly in healthcare appli-
cations. The experiments have not been conducted on a hu-
man brain. The images in the HPC2 dataset show only a hip-
pocampus region of a mouse brain. If the methods described
in the study are to be used for medical purposes, they should
first be tested against another dataset, preferably containing
scans of a human brain.

6.5 Environmental impact

The research focuses on exploring the potential of using tra-
ditional methods in the field, instead of resource-consuming

deep learning methods. Adjusting these first methods to fit
the use case can be potentially very beneficial to the envi-
ronment. Using methods that allow one to use less computa-
tional power, such as the traditional techniques described in
this paper, allows one to greatly reduce the energy consump-
tion. Naturally, a smaller energy consumption leads to reduc-
ing carbon footprint, and as a result preserving the natural
resources of the environment. In conclusion, research con-
tributes positively to the sustainable use of natural resources
and sustainable means of neuroscientific research.

6.6 Potential misuse

A potential misuse of the methods described in this research
is strictly related to the ethical implications of voltage imag-
ing. This research is not focused on the potential use of the
microscopy technique, as it only outlines the improvements
on the side of image processing. There may exist negative
ethical implications of voltage imaging, but this research does
not contribute to the technique. Instead, it merely describes
and compares alternative ways to make the output videos
more readable.

7 Conclusions

This section serves as a summary of the paper. It once again
iterates over what has been done for the research and what
the results and conclusions are. Moreover, it indicates what
further steps should be taken in the research around denoising
voltage imaging videos.

7.1 Research Summary

The research outlined five common traditional denoising
methods: Gaussian filter, bilateral filter, anisotropic diffu-
sion, wavelet filter, and total variation minimization. The al-
gorithms chosen for the study are well-established standard
methods of different methodological categories. All of them
are used in biomedical and microscopy contexts. In addi-
tion, the paper presented the means to indicate whether a de-
noised voltage imaging video is useful for neuroscientific re-
search. It introduces the structural similarity index measure
and the temporal signal-to-noise ratio measure, both of which
are used in research for the evaluation of denoising biomedi-
cal data.

The experiments were conducted on several videos that
present actual scans of a brain. Other videos were synthe-
sized with an acclaimed tool used in research for the devel-
opment of the deep learning-based denoising method. The
results obtained in the research are reliable and relevant.

The main result of the experiments is that using the tra-
ditional methods usually carries a trade-off between remov-
ing the noise and preserving the structure of an image. The
methods, in particular, total variation minimization, remove
noise well, but do not show a particular improvement in
structural similarity. Total variation minimization, designed
to remove high-frequency noise present in voltage imaging
videos, and anisotropic filtering, specializing in preserving
the edges, both result in particularly readable output videos.
Despite a low SSIM, these two methods may nevertheless be
useful for neuroscientific research.



However, for more in-depth research, some better means to
denoise the videos would be needed, possibly the deep learn-
ing methods. This research enables a more extensive use of
the traditional and more energy-efficient method for some of
the applications in neuroscience, but deep learning methods
remain relevant.

7.2 Further Research

This research shows the capabilities and limitations of some
common traditional denoising methods and their performance
in denoising voltage imaging videos. For the use of the pre-
sented methods in a medical context, more research should
be conducted on their suitability, preferably on a human brain
scan. As mentioned, deep learning methods remain relevant
and for generating results more accurate in terms of structure
preservation, research on the use of such methods should be
conducted in future.
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A Use of Large Language Models in this
research

Through the research, LLMs have been used for multiple pur-
poses. This section outlines the use of them with example
prompts.

A.1 Paper production

To produce some parts of this paper, like LaTeX tables and
figures, ChatGPT by OpenAl has been used multiple times.
Example prompts that were given to the model:

e Create a 4 rows 2 columns table in LaTeX with one row
with no background, second one with red background,
the other with yellow, and one with green.

e How do I make a LaTeX figure appear in a specific place
in the text?

Moreover, Overleaf Al assistant has been utilized to check
the proper grammar of the text.

A.2 Code generation

To write the code, prompts like the following were given to
ChatGPT:

* [ have a four-dimensional ndarray which I want to rep-
resent using pyplot or seaborn. Provide a piece of code
for that.

During the development process, line completion using
GitHub Copilot was also used in some cases, in particular
when developing the denoising algorithms.

A.3 Concepts understanding

ChatGPT has been used to help the author better understand
voltage imaging, specifically in contrast to magnetic reso-
nance imaging. It has also been used to explain some of the
denoising methods, like TV minimization in detail.

A.4 Research

ChatGPT has been used in research to ensure that the base of
five denoising approaches is a proper representation of all the
methods available, that is, if they indeed cover multiple ways
of approaching the denoising problem.
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