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SUMMARY

Interconnected electric power systems constitute an important cornerstone of modern
developed societies. The economic efficiency of high power transfers from energy rich
locations to major load hubs comes at a price of increased power network complexity,
higher operational uncertainty, and more complex power system dynamics. The ongo-
ing trends of energy liberalization, growing energy demand, and bulk grid integration
of renewable generation additionally increase the complexity and uncertainty levels of
modern and future power systems. Enhanced monitoring combined with more adaptive
control and protection are often seen as the key components to cope with the described
challenges and to enable the transition to a sustainable power system of the future. The
advent of synchronized measurement technology (SMT) based on phasor measurement
units (PMUs) has stimulated the development of control and protection strategies oper-
ating on a set of geographically dispersed power system elements in a coordinated man-
ner. However, the vast size of a modern interconnected power grid precludes controlling
and operating it as a single object. Subdividing a power grid into a number of internally
coherent control areas is often seen as a means to cope with its inherent complexity and
to enable more efficient adaptive control structures.

This thesis focuses on discovering the power system structure to facilitate the defini-
tion of control areas for wide-area monitoring, protection and control (WAMPAC) appli-
cations. Graph partitioning is seen as a well-developed discipline whose potential is not
fully recognized in the power system domain. The research starts by critically reviewing
the existing graph partitioning algorithms for their suitability for area identification in
power networks. Several auxiliary algorithms are proposed to fix the identified deficien-
cies of standard graph partitioning approaches and to improve their outcomes. Next, a
framework is proposed to choose the number and structure of control areas by modeling
a power system as a suitable similarity graph. This research direction concludes in de-
vising a new zoning algorithm for secondary voltage control (SVC) and a new grouping
algorithm for generator slow coherency. To confirm the slow coherency findings, some
improvements to nonlinear power system model reduction are proposed. Another re-
search direction consists in partitioning power networks with respect to node grouping
constraints. These constraints arise in some wide-area monitoring, protection and con-
trol (WAMPAC) applications, with generator coherency grouping constraints for inten-
tional controlled islanding (ICI) being a notable example. A new constrained graph par-
titioning algorithm is proposed that aims to minimize the number of unsatisfied node
grouping constraints and favorably compares with the state-of-the-art alternatives. This
algorithm is further used as an initialization heuristic for an intentional controlled is-
landing (ICI) approach based on mixed-integer linear programming (MILP). Besides the
applications in WAMPAC that motivated this thesis, the developed contributions could
be useful for other power system grouping problems, including reduction or large data-
sets and decomposition of large optimization problems.
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SAMENVATTING

Onderling verbonden elektrische energiesystemen vormen een belangrijke hoeksteen
van moderne ontwikkelde samenlevingen. Voor de economische efficiëntie van de over-
dracht van hoog vermogen van energierijke locaties naar belangrijke belastingsknoop-
punten dient een prijs betaald te worden in de vorm van verhoogde complexiteit van
het energienetwerk, grotere operationele onzekerheid en complexere dynamiek van het
energiesysteem. De voortgaande tendens van energieliberalisering, groeiende vraag
naar energie en de integratie van hernieuwbare energie-opwekking in het bulknetwerk
verhogen bovendien de complexiteit en niveaus van onzekerheid van moderne en toe-
komstige energiesystemen. Verbeterde monitoring in combinatie met adaptieve con-
trole en beveiliging worden vaak gezien als de sleutelcomponenten om de beschre-
ven uitdagingen aan te gaan en de transitie naar een duurzaam energiesysteem van
de toekomst mogelijk te maken. De opkomst van gesynchroniseerde meettechnologie
(synchronized measurement technology, SMT) op basis van fasevector-meeteenheden
(phasor measurement units, PMU’s) heeft de ontwikkeling van controle- en beveiligings-
strategieën gestimuleerd die werken op basis van een stel geografisch verspreide ele-
menten van energiesystemen op gecoördineerde wijze. De enorme omvang van een
modern, onderling verbonden stroomnetwerk sluit echter uit dat dit als een enkel ob-
ject kan worden bestuurd en bediend. Het onderverdelen van een stroomnetwerk in een
aantal intern coherente besturingsgebieden wordt vaak gezien als een middel om om te
kunnen gaan met de inherente complexiteit ervan en om efficiëntere adaptieve bestu-
ringsstructuren mogelijk te maken.

Dit proefschrift concentreert zich op het ontdekken van de structuur van het ener-
giesysteem om de vaststelling te vergemakkelijken van besturingsgebieden voor breed-
gebied toezicht, beveiliging en regeling (wide-area measurement, protection, and con-
trol, WAMPAC)-toepassingen. De partitie van grafen wordt gezien als een goed ont-
wikkeld vakgebied waarvan het potentieel niet volledig wordt onderkend binnen het
domein van energiesystemen. Het onderzoek begint met het kritisch beoordelen van
de bestaande algoritmen voor partitie van grafen op hun geschiktheid voor identifica-
tie van een deelgebied in energienetwerken. Er worden verschillende hulpalgoritmen
voorgesteld om de geïdentificeerde tekortkomingen van standaardbenaderingen voor
partities van grafen te herstellen en de resultaten daarvan te verbeteren. Vervolgens
wordt een raamwerk voorgesteld om het aantal en de structuur van besturingsgebie-
den te kiezen door een energiesysteem te modelleren als een geschikt similariteitsgraaf.
Deze onderzoeksrichting eindigt met het ontwikkelen van een nieuw indelingsalgoritme
voor secundaire spanningsregeling (secondary voltage control, SVC) en een nieuw groe-
peringsalgoritme voor trage coherentie van generatoren. Om de bevindingen van de
trage coherentie te bevestigen, worden enkele verbeteringen voor de reductie van het
model van niet-lineaire energiesystemen voorgesteld. Een andere onderzoeksrichting
bestaat uit het partitioneren van energienetwerken met betrekking tot beperkingen in de
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groepering van knooppunten. Deze beperkingen doen zich voor in sommige WAMPAC-
toepassingen, waarbij beperkingen voor de groepering van generatorcoherentie voor ge-
controleerde netwerkscheiding een opmerkelijk voorbeeld zijn. Er wordt een nieuw al-
goritme voor beperkte partitie van grafen voorgesteld dat tot doel heeft het aantal niet
tot tevredenheid stemmende beperkingen voor de groepering van knooppunten te mi-
nimaliseren, een algoritme dat gunstig afsteekt bij de meer geavanceerde alternatieven.
Dit algoritme wordt verder gebruikt als een initialisatie-heuristiek voor gecontroleerde
netwerkscheiding op basis van gemengd geheeltallige lineaire programmering. Naast de
toepassingen in WAMPAC die de motivatie vormden voor deze thesis, kunnen de ontwik-
kelde bijdragen nuttig zijn voor andere problemen met de groepering van energiesyste-
men, waaronder reductie of grote datasets en ontleding van grote optimalisatieproble-
men.



1
INTRODUCTION

1.1. BACKGROUND AND MOTIVATION

The electric power system is often cited as the largest and most complex machine ever
devised by man [1]. Although this statement is very impressive, the present level of devel-
opment was achieved through overcoming many engineering and socioeconomic chal-
lenges that were pervasive during all of history of the electric power industry. This was
the process that allowed the power system to progress from the early power plants sup-
plying local customers to a sophisticated network of many thousands of nodes linked by
high-voltage transmission lines and spanning whole continents.

Despite the achieved high security and efficiency, the modern-day power systems
are undergoing another massive transformation that is largely dictated by the demand
for sustainable energy supply. It is envisioned that the increasing complexity and faster
power system dynamics arising through this transition will be contained by the new en-
hanced monitoring combined with the adaptive control and protection [2]. The ground-
work for this has been laid by the large progresses in computing, digital signal process-
ing (DSP), information and communications technology (ICT) [3, 4] during the recent
decades. Nevertheless, the control and protection methods that could fully take advan-
tage of the current level of ICT still remain an active research field.

Out of many open questions related to the online control of future power grids, this
thesis focuses on the idea of power network partitioning into zones, clusters or areas
that is common to a large number of existing and prospective applications in power sys-
tem operations, control and protection. The great potential of partitioning is due to the
clustered structure of bulk electric power grids, which are typically composed of smaller
sub-grids with varying degrees of mutual interaction. And while most of the existing
applications define their control areas based on the historic asset ownership, the con-
sideration of the actual state and physical properties of the network is becoming more
important and sometimes inevitable as power systems move towards faster dynamics
and greater operational uncertainty.

1
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2 1. INTRODUCTION

1.1.1. MODERN RISKS TO POWER SYSTEM SECURITY

The two recent challenges that have deeply impacted the well-established operational
principles of the late XX century are the deregulation of the electricity industry [5, 6]
and the need for massive integration of renewable energy sources into existing power
grids [7, 8]. The transition to the market-based operation of electric power systems
has led to an increase in cross-border trading, as electricity imports are often cheaper
than the domestic generation. Consequently, the inter-area tie lines initially designed
for greater frequency stability become increasingly used for heavy power transfers often
leading to the lowering of safety margins. A classic example of the dangers associated
with the intensive inter-regional energy trade is the Italian blackout of 2003 that was ini-
tiated by a cascading tripping of the highly loaded transmission lines between Italy and
Switzerland [9]. The cost-reduction objective of the market-based power system opera-
tion is also leading to more frequent long-distance power transfers from cheaper energy
sources leading to increased grid congestion [10]. In general, the whole paradigm shift
of separating the vertically integrated electric companies into generation, transmission
and distribution utilities coupled through the market has profound consequences for
the whole areas of power system planning, operation and security.

However, the ongoing transition towards sustainable energy may cause even more
significant changes to the electric power grids. The most widely available and promis-
ing renewable generation technologies are the switch mode converter interfaced pho-
tovoltaics (PV) and wind energy (WE) systems. Due to their low or zero inertia, power
electronics based generators adversely affect the power system frequency dynamics by
increasing the rate of change of frequency (ROCOF) and decreasing the lowest frequency
value (NADIR) following a major power imbalance. The weather-dependent power out-
put of PV and WE systems increases the uncertainties in power system planning and
operation [11], which may also contribute to the higher likelihood of power system out-
ages, cascading events and large blackouts.

The introduction of a large number of bulk renewable power plants inevitably leads
to the demand for new transmission capacity [12], including the building of new high
voltage DC (HVDC) and medium voltage DC (MVDC) lines. Building new interconnec-
tions is also seen an important measure to cope with the intermittent nature of the
renewable energy sources. For example, the European North Seas Countries Offshore
Grid Initiative (NSCOGI) proposes an entire new offshore energy grid in the North Sea
to transfer the energy from the offshore wind farms and to enable more possibilities for
power exchange between the participating countries [13]. In addition, new transmission
lines can be built to balance the market energy prices over different areas [14].

Therefore, both the liberalization of the electricity industry and increasing grid pen-
etration of renewables tend to make the system structure more coupled and complex,
which often prompts enhancements to system control and protection. For example, the
increasing meshing of the French power grid has required the coordination of the sec-
ondary voltage control between the neighboring control zones to circumvent the grow-
ing zone coupling [15]. And the Northeast blackout of 2003 in the USA has shown that
the conventional out-of-step protection relays may become prone to maloperation in
highly interconnected power networks [16].
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The higher frequency of wide-area system disturbances and blackouts is another in-
dicator associated with the growing complexity and unpredictability of modern and fu-
ture electric power grids. Indeed, the past two decades have seen an unusually large
number of such events. To illustrate this, some notable power outages since 2003 are
listed in Table 1.1 [17, 18, 19, 20, 21, 22] (many lesser blackouts are not included).

Date Location Population affected
14 Aug 2003 Northeast USA and Eastern Canada 50 million
02 Sep 2003 Southern Peninsular Malaysia 10 million
23 Sep 2003 Southern Sweden and Eastern Denmark 4 million
28 Sep 2003 Italy 55 million
12 Jul 2004 Greece 5 million

25 May 2005 Moscow Region, Russia 5 million
18 Aug 2005 Java and Bali, Indonesia 100 million
24 Sep 2006 Pakistan 140 million
04 Nov 2006 Europe (UCTE power system) 15 million
26 Apr 2007 Colombia 41 million
10 Nov 2009 Brazil and Paraguay 85 million
14 Mar 2010 Chile 15 million
04 Feb 2011 Brazil 40 million
08 Sep 2011 California and Arizona, USA 8 million
24 Sep 2011 Chile 9 million
14 Jan 2012 Marmara Region, Turkey 20 million

30 – 31 Jul 2012 India 620 million
01 Nov 2014 Bangladesh 150 million
26 Jan 2015 Pakistan 140 million
31 Mar 2015 Turkey 70 million

Table 1.1: Notable large-scale power outages

The recent large blackouts often highlighted the existing inadequacies in monitoring,
control and protection of the time-evolving power systems. Multiple expert groups that
investigated the outages agree on the following technological innovations to improve the
power system resiliency and minimize the risks of blackouts [17, 23, 24]:

• Real-time wide-area power grid monitoring and control

• Coordinated emergency controls

• Use and enhancement of system integrity protection schemes (SIPS), special pro-
tection systems (SPS), and remedial action schemes (RAS)

• Online dynamic security assessment

• Improved reactive power management

• Adaptive relaying

• Use of flexible AC transmission systems (FACTS) devices and HVDC
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This conclusion may serve as a confirmation of the great role of advanced control
and protection algorithms in future power systems.

1.1.2. SMT AND WAMPAC
Possibly the most well-recognized technological platform for the real-time power grid
monitoring is the phasor measurement unit (PMU) based synchronized measurement
technology (SMT) [3, 25]. The PMU devices are able to estimate the phasors of voltage
and current sinusoidal waveforms at synchronous time intervals enforced by the clock
signal from satellite navigation systems (e.g., GPS). The standard PMU reporting rates
are specified in the IEEE Standard C37.118.2-2011 both for 50 Hz and 60 Hz systems,
which are given in Table 1.2.

System frequency 50 Hz 60 Hz
Reporting rates, Hz 10 25 50 10 12 15 20 30 60

Table 1.2: Standard PMU reporting rates

The standard report rates represent a minimum, and higher PMU rates (e.g., twice
the system frequency) can be used instead [26], which may be advantageous for many
real-time applications. However, even the minimum report rates given in Table 1.2 are
much higher than the typical update rates of the conventional supervisory control and
data acquisition (SCADA) systems, which normally require about 5–30 seconds for an
update of the system state estimate [27].

The PMU measurements can be transmitted to higher-level entities called phasor
data concentrators (PDCs) and super PDCs, where the measurements from different grid
locations are time-aligned to yield the wide-area snapshots of electrical variables with a
high update rate. The PDCs and super PDCs typically host a data storage and a number
of applications. Some examples of the known PMU applications include [3, 25, 28]:

• Real-time power system monitoring

• Oscillation detection and monitoring

• Phasor-based state estimation

• Real-time estimation of system model parameters

• System model validation

• Real-time congestion management

• Identification potential malfunction of devices in the grid

The value of a deployed SMT platform is often assessed by the number and qual-
ity of control room applications utilizing the data provided by the PMUs [29]. In this
regard, a lot of progress has already been achieved in applications related to power sys-
tem monitoring, static analysis and data management (e.g., PMU-based state estima-
tion, post-event analysis, oscillation monitoring etc), which are commonly understood
to belong to the family of wide-area monitoring systems (WAMS) applications. A higher
class of SMT-enabled platforms is called wide-area monitoring and control (WAMC)
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or WAMPAC systems. Some notable examples of WAMPAC applications have been de-
scribed in [17]:

• Wide-area controls to maintain voltage profiles and reactive power reserves

• Wide-area oscillation damping control

• Wide-area control of phase shifting transformers and FACTS devices

• Controlled network separation including generation and load shedding to main-
tain system frequency and stability

• Intelligent load-shedding to maintain voltage profile and system stability

The area of WAMPAC applications is less mature compared to WAMS and largely
constitutes an active research topic [17]. According to [29], Bonneville Power Admin-
istration, which was among the early adapters of the SMT technology, set the following
goal in mid-2000s:

It is time to move forward from wide-area monitoring to wide-area controls.

The most recent reviews of the current state of the art of the WAMS and WAMPAC
technologies (e.g., [28]) demonstrate the large progress achieved by some utilities over
the past two decades. However, the goal of transitioning from WAMS to WAMPAC still
remains very actual, and multiple envisioned WAMPAC applications still require more
research effort to be implemented.

1.1.3. AREA-BASED PROTECTION AND CONTROL
Due to the practical infeasibility of controlling a large synchronous AC power grid as
one whole, many existing and prospective power system control and protection func-
tions use the concept of zones or areas in some form. According to Cotilla-Sanchez et.
al. [30, 31], the existing applications in power system planning and operations that re-
quire the definition of zones or areas include operational security analysis, resource ade-
quacy assessment, zonal pricing, zone-based voltage control schemes, automatic gener-
ation control (AGC), area control error (ACE) calculations, reserves scheduling, and load
deliverability assessment.

With the advent of the WAMS and WAMPAC, the notion of areas may gain even more
significance, as the whole concept of WAMPAC implies the coordinated control and pro-
tection over network zones or areas. It is also anticipated that the control areas involved
in the WAMPAC applications should increasingly consider the physical properties of the
power grid in order to address the adaptive and dynamic nature of the WAMPAC control
objectives. This is in contrast to the majority of existing applications, which tend to de-
fine the control areas based on the historic asset ownership. To provide an overview, sev-
eral examples of existing and novel applications requiring the definition of areas based
on physical principles are summarized below.

Generator slow coherency identification deals with the task of partitioning the power
system into groups of weakly coupled generators [32]. The underlying theory is
based on the modal decomposition of the linearized electromechanical model of
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power system [33, 34]. The small oscillatory eigenvalues of this model correspond
to the slow interarea modes of the system, and their corresponding eigenvectors
describe the respective rotor angle mode shapes. With this information, it is pos-
sible to identify the network areas with a low dynamic coupling and to perform
model reduction by using specialized coherency identification and area aggrega-
tion algorithms [34, 35].

Online dynamic security assessment (DSA) is concerned with determining the ability
of a power system to maintain stability and operational limits without load inter-
ruption under a large set of probable contingencies. The online variety of DSA
assesses security at regular time intervals (typically once in several minutes) us-
ing the most recent information about the power system state obtained from the
SCADA [36]. The accurate stability assessment usually requires computationally
demanding time-domain simulations, which is in contradiction with the real-time
nature of online DSA. The solution often lies in the reduction of the full-scale
power system model into the (unreduced) study area of interest and an external
equivalent representing the rest of the system (i.e., the external system). To obtain
a high-fidelity reduced model, the study area and the external system should be
defined in a way that minimizes the dynamic and power flow coupling between
them [37]. Moreover, the external equivalent should preserve the dominant low-
frequency dynamics of the external system. These requirements motivate the use
of the generator slow coherency identification methods in combination with spe-
cialized power flow preserving equivalencing techniques in online DSA [38].

Online voltage security assessment (VSA) is a subcategory of online DSA [36] that is
additionally characterized by the computation of critical voltage control areas
(VCAs), which are also known as voltage collapse areas. VCAs represent the sub-
areas of the study area which can be prone to the loss of voltage stability under
certain contingencies. The computation of such VCAs is performed by the Q-V
modal analysis [1, 36]. After the VCAs are computed, a reactive reserve require-
ment to prevent the possible instability is computed for each of them.

Area-based PMU placement is largely associated with the idea of monitoring power
system dynamics through a reduced set of measurements. The goal is to partition a
large-scale power network into a set of areas with coherent dynamics and to select
in each area a medoid bus as the bus most representative for the dynamics of its
area [39]. As the resulting areas should be dynamically coherent, the notion of gen-
erator slow coherency plays an important role in this application. To avoid the lim-
itations associated with the classical model-based coherency approaches [32, 34],
many authors prefer to cluster generator signals obtained from PMUs to obtain the
areas [39, 40]. The selection of monitoring buses based on cohesive network areas
may also be promising for a number of wide-area protection approaches based on
the online computation of bus vulnerability indices (e.g., [41]).

Intentional controlled islanding (ICI) is an adaptive, corrective measure that aims
to limit the spread of disturbances across the grid by separating it into self-
sustainable islands [42]. The generator coherency requirement is important
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because non-coherent generators may loose synchronism after separation [35,
43]. Thus, generator coherency algorithms are often considered as an important
pre-step of ICI. A more complete description of ICI and requirements to identified
islands is given in Section 2.2.2.

Parallel power system restoration (PPSR) aims to restore a collapsed power system in
parallel, thus accelerating the overall restoration process [44]. This is achieved
by separating the blackout-affected area into a number of sections. The sections
formed following a blackout should consider the most recent information about
the status of generating units, the assignment of generating units into cranking
groups, the status of lines and circuit breakers, and the predicted load levels [45].
Each cranking group should include at least one blackstart unit that should pro-
vide the cranking power to the remaining generating units (non-blackstart units)
in the group. After the defined sections are reenergized in parallel, they are resyn-
chronized to restore the normal network operation.

Zone-based secondary voltage control (SVC) is the second level of hierarchical
wide-area voltage control analogous in its purpose to load-frequency control
(LFC) within AGC. With zone-based secondary voltage control (SVC), a large
power system area (e.g., a national or provincial power grid) is subdivided into a
number of voltage control zones (VCZs) featuring cohesive voltage profiles [46,
47]. Each VCZ is controlled by regulating the voltage of specially selected pilot
nodes to their reference. A more complete description of SVC and its role in
hierarchical voltage control is given in Section 2.2.1.

Wide-area voltage protection (V-WAP) can be implemented on top of the control zone
structure of SVC [41]. If hierarchical zone-based voltage control is implemented,
the closeness of controlling generators of a VCZ to their reactive power limits can
be used as a risk indicator for voltage instability [41]. This observation only re-
mains valid if the tertiary voltage control (TVC) is active to lower the SVC voltage
setpoints up to an acceptable minimum when the increased system stress makes
it difficult to maintain the economically optimal voltage profile [48].

The above applications provide a non-exhaustive set of examples of the usefulness
of adaptive area definition in the context of power systems. Some of them will be given
more attention in the subsequent sections of this thesis.

1.1.4. AREA IDENTIFICATION IN POWER NETWORKS
As it may become clear from the overview given in the previous section, the types of ar-
eas required by various applications can be quite different. For example, online VSA is
specifically looking for particular areas that may experience a voltage collapse, and it is
not needed to partition the whole power system to estimate these areas. On the con-
trary, the SVC structure is usually required to cover all high voltage (HV) buses, which
is achieved by partitioning of the power system into a number of VCZ. And many ap-
plications dealing with electromechanical dynamics (e.g., DSA, ICI) require extra node
grouping constraints that assign certain coherent generators to a specific area or island
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[43]. These node grouping constraints also appear in PPSR, as generator cranking groups
should not be split between multiple sections [45].

For the majority of listed applications, some form of clustering method is commonly
used to identify the required areas. In the case of model-based generator slow coherency
estimation, the slow eigensubspace of the electromechanical system model is clustered
with the specialized [33, 34] or general-purpose [49] algorithms. In addition, many clus-
tering methods have been proposed to estimate the generator coherency or coherent
network areas from measured signals (e.g., from PMU data) [39, 40, 50]. Zone definition
for wide-area voltage control shows a long history of utilization of clustering algorithms,
possibly starting from the paper of Lagonotte et. al. on electrical distances [46]. Other
well-known approaches include the clustering of voltage sensitivity matrix in [47, 51]
and the so-called Var control space (VCS) method [52]. If node grouping constraints are
present, constrained clustering or constrained graph partitioning algorithms are com-
monly employed. For example, Ding et. al. used a constrained spectral clustering al-
gorithm to partition power networks for ICI under the consideration of generator co-
herency constraints [43, 53]. This line of work was extended to be applied to PPSR under
the consideration of generator cranking groups constraints in [54]. Some other refer-
ences utilizing constrained clustering or constrained graph partitioning in the context
of ICI and PPSR include [45, 55, 56, 57, 58, 59, 60, 61].

Another important approach for adaptive area identification is mathematical opti-
mization, including mixed-integer programming (MIP) and its subclass mixed-integer
linear programming (MILP). The recent big advances in solver technology have made
it feasible to solve the exact formulations of multiple discrete optimization problems in
power system such as unit commitment (UC) or transmission expansion planning (TEP)
[62, 63, 64]. Many area identification problems can be formulated as discrete graph par-
titioning problems subject to a number of constraints (e.g., minimal area size, area con-
nectedness etc). However, this approach has certain limitations, as the objective func-
tion and constraints should be linear to enable feasible solution times on realistically-
sized networks (i.e., a MILP formulation is desirable). However, even if a MILP area iden-
tification model has been devised, the computation time is likely to grow very fast with
the network size due to the NP-complete nature of discrete graph partitioning problems
[65, 66]. To confirm this observation, a comparison of the exact MILP-based network
partitioning with a basic spectral clustering algorithm can be found in [67].

When the desired optimization objective or its constraints take a complex nonlin-
ear form, metaheuristic optimization techniques may show good results [30]. While this
type of optimization is suitable for the most general type of problems, it also lacks mul-
tiple features that characterize the success of MILP (e.g., access to the linear relaxation,
various strong results in polyhedral theory, optimality gap computation etc). Therefore,
it often takes a considerable time for metaheuristics to find an optimum, and the global
optimality of the result is not guaranteed. Nevertheless, a well-designed metaheuristic
may be more efficient than MILP at finding good, but suboptimal solutions.

1.2. RESEARCH CHALLENGES AND PROBLEM DEFINITION
The present research is motivated by the increasing risks to the electric power infrastruc-
ture due to the increased uncertainties and faster dynamics of future power systems. The
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main focus is on the clustering-based area identification algorithms for the existing and
prospective WAMPAC applications. This seemingly broad scope can be explained by the
inherent links between many WAMPAC applications in terms of area definition.

In other words, the problem of identifying control areas is at the core of mul-
tiple important power system applications, and many of them pose similar
requirements to their areas. Therefore, it is promising to emphasize the rele-
vant similarities instead of studying each application in isolation.

For example, it has been discussed in Sections 1.1.3–1.1.4 that multiple WAMC ap-
plications require internally cohesive areas that are well decoupled from each other, and
some other WAMPAC applications add node grouping constraints to this requirement.

1.2.1. CLUSTERING TERMINOLOGY
Before delving into the peculiarities of clustering-based area identification in power sys-
tems, it is useful to clarify some terminology that has been used intuitively so far.

Cluster denotes a group of objects that are closely related (or similar) among themselves
and weakly related (or dissimilar) to other objects that do not belong to the group.

Clustering denotes a general procedure of finding clusters in a set of objects.

Partitioning is a clustering procedure that assigns each object to a single cluster (i.e.,
partitions the dataset). By the definition, the partitions may not overlap.

Partition (or block) is a cluster obtained as the result of partitioning.

Graph clustering is a clustering procedure defined on a network (also called graph), in
which network nodes are the clustered objects.

Graph partitioning is a graph clustering procedure, in which every network node has
to be assigned to a single partition (i.e., the partitions may not overlap).

Constrained clustering is a clustering procedure that forms clusters based on the pro-
vided similarities between objects and a set of constraints fixing the relationships
between certain pairs or groups of objects.

Constrained graph partitioning is defined for this thesis in a narrow sense of partition-
ing a network with respect to node grouping constraints (additional constraints
may or may not be present).

Unconstrained graph partitioning is defined for this thesis as a graph partitioning pro-
cedure that does not include node grouping constraints (other constraints such as
cluster size constraints may or may not be present).

Connected component is a subset of nodes in a graph that are connected to each other
by paths and are not connected to any node outside of the subset.

Connectedness is the property of a network cluster, such as area, zone, or island, to
consist of a single connected component.

Area is an internally connected part of an electric power network. Areas are typically
well-connected internally and loosely coupled with the rest of the network, which
makes them conceptually similar to clusters.
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Zone is the same as area, but smaller in size. Large network areas can be partitioned
into smaller zones for the purposes of monitoring and control.

Island is an area electrically separated from the rest of the grid or planned to be sepa-
rated in case of an emergency condition.

The introduced definitions have a large degree of overlap, as it is common across
many research disciplines [66, 68]. For example, many algorithms of essentially parti-
tioning nature such as k-means are commonly referenced as clustering algorithms. The
exact meaning of constrained graph partitioning varies across different technical do-
mains. For this thesis, the definition of constrained graph partitioning is closest to the
typical problem setting of constrained spectral clustering [57, 69], and unconstrained
graph partitioning is defined to complement the constrained one. Some of the defini-
tions above are specifically given for similarity-based clustering in which a strong rela-
tionship between a pair of objects is expressed by a large number. However, analogous
definitions can easily be given for the dissimilarity-based clustering, in which relation-
ships between objects are given in terms of distances [70].

Given the above definitions and observations, the terms cluster, partition, and area
are used interchangeably with the basic meaning of partition whenever this meaning is
clear from the context. The same logic applies to the terms graph clustering and graph
partitioning, with the term partitioning being exclusively used in relation to networks.
Additionally, the terms network and graph are used synonymously.

1.2.2. RESEARCH CHALLENGES
Although the clustering-based area identification is well-established and tends to per-
form much faster than the optimization-based alternatives (especially on large datasets),
it often shows the following drawbacks:

1. Many clustering algorithms fail to identify the correct clusters for certain input
datasets due to intrinsic biases caused by their heuristic or approximate nature.
In fact, it is well-known that the popular k-means or k-medoids methods tend to
return convex-shaped clusters of rather balanced sizes [71], while some variations
of agglomerative hierarchical clustering (AHC) are vulnerable to outliers [72].

2. Clustering algorithms are inherently inflexible, as they usually do not allow a sig-
nificant modification of the underlying objective function and constraints. For
example, introducing a minimum cluster size condition proves to be very hard for
the vast majority of clustering algorithms, although this becomes a trivial task with
mathematical optimization.

3. Clustering algorithms typically aim to approximately solve some important NP-
hard problems [66, 73, 74, 75]. Therefore, the clustering outcome is not guaranteed
to provide an optimal or even feasible solution to the initial hard problem. On the
other hand, clustering algorithms are usually guaranteed to run in a foreseeable
short amount of time (i.e., the polynomial time complexity).

The above limitations explain the high degree of specialization among clustering al-
gorithms and thus the absence of a universal clustering algorithm suitable for any type
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of application. These limitations may also be at odds with some of the common power
system requirements to control areas [30, 43, 76]:

1. Area cohesiveness (high intra-area connectivity)

2. Area separation (low inter-area connectivity)

3. Balanced area sizes (no very small areas)

4. Area connectedness

5. Fulfillment of node grouping constraints

Many popular general-purpose clustering algorithms (e.g., k-means or AHC) tend to
perform suboptimally w.r.t. the above requirements. For example, the area cohesiveness
and separation criteria often suffer from the intrinsic biases of the mainstream algo-
rithms, which do not well agree with the specific goals of power system area identifica-
tion. The inexactness of clustering algorithms (the third clustering limitation) also exac-
erbates this problem. The difficulty of ensuring balanced cluster sizes was mentioned in
the discussion of the second clustering limitation.

The area connectedness requires any node to have a connection to any other node
in its area going solely through the nodes of that area. The fulfillment of this condi-
tion requires to respect the interconnection structure of the power network, which is not
included into the majority of standard clustering algorithms, including k-means, AHC,
gaussian mixtures, spectral clustering etc [71]. Finally, the fulfillment of node grouping
constraints, when combined with the area connectedness requirement, requires from a
clustering algorithm not only to find areas as connected components in the power net-
work, but also to include the prescribed nodes into each such connected component.
This problem is clearly NP-hard and may have no feasible solutions for some configura-
tions of node grouping constraints, as it can be linked to the Steiner tree packing prob-
lem [77, 78].

1.2.3. RESEARCH QUESTIONS
The research questions of this thesis aim to tackle the following higher-level objective
from different angles:

To reconcile the inherent limitations of clustering with the power system re-
quirements to area identification, while introducing novelty when beneficial.

To achieve this objective, the following research questions are formulated:

I. What are the implications of high area cohesiveness and separation on the effi-
ciency of WAMPAC applications and how can they be assessed?

II. How to achieve a greater control over the clustering results (e.g., to avoid very small
areas), while not compromising the computational efficiency?

III. How to ensure area connectivity when applying clustering algorithms to identify
areas in power networks?

IV. How to achieve a high degree of satisfaction of node grouping constraints by using
constrained clustering algorithms while ensuring area connectivity?
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V. How to determine an optimal number of areas for various power system analysis
and WAMPAC applications?

VI. How to enhance clustering algorithms to satisfy a larger number of power-system
related constraints in a timely manner?

As it can be seen, the research questions revolve around achieving the maximal re-
sults by using computationally-efficient clustering algorithms to identify power system
areas (in their various forms). This is justified by the online character of many emerg-
ing power system applications (e.g., ICI, adaptive SVC) requiring fast solution times that
may be unattainable with solely classical optimization methods or metaheuristics.

1.3. RESEARCH APPROACH
From many types of clustering algorithms, this thesis specifically focuses on graph clus-
tering and graph partitioning. The reason for this is twofold: electric power networks
can be naturally mapped to graphs, and many seemingly non-graph data (e.g., power
flow sensitivities) can be seamlessly represented through graphs.

Among many graph partitioning algorithms, spectral clustering based ap-
proaches [74, 79] play the major role in this thesis. This is due to their fundamental
mathematical nature and multiple extensions into clustering of labeled data [57, 69, 80].
To realize this conclusion, an extensive literature survey into different graph partitioning
methods has been done. An important outcome of the literature survey is the selection
of quality metrics that well agree with the general requirements to power system control
areas listed in Section 1.2.2.

The considered power system applications can be subdivided according to the pres-
ence or absence of node grouping constraints. These constraints are not required for
generator slow coherency analysis and SVC, which are the first two applications consid-
ered in this thesis. The node grouping constraints are required for ICI in the form of
coherent generator groups and for PPSR in the form of generator cranking groups (cf.
Section 1.1.3). The cranking groups of PPSR can be handled in a similar fashion to the
coherent generator groups of ICI [45, 54], which is the main reason not to consider PPSR
in this thesis. Due to many types of power system constraints in ICI, this application is
additionally modeled as a MILP, whereby the constrained graph partitioning serves as
an initialization heuristic to reduce the solution time. An additional topic is the use of
graph pre-processing and post-processing algorithms to improve the clustering results.
The pre-processing and post-processing are largely independent from the core method
that partitions the graph and can be applied to improve the performance of many clus-
tering methods.

The studied data consists solely of static graph-theoretic models, and no power sys-
tem transients had to be processed. For this reason, the MATPOWER toolbox running in
MATLAB [81, 82] is the de-facto main research tool. MATPOWER contains open-source
codes for power flow and optimal power flow (OPF), which are useful to retrieve the rele-
vant static data, as well as a number of test models including large-scale networks. How-
ever, MATPOWER alone is not enough for all required tasks, so a number of intercon-
nections have been established to facilitate the data exchange between the specialized
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Figure 1.1: Software interconnections and dataflows

software tools. The following list describes the functionality of each software, while Fig-
ure 1.1 illustrates the dataflows.

1. MATLAB [82] is the most used software. The MATPOWER toolbox and its uses were
described above. The Power System Toolbox (PST) [83] is another external MAT-
POWER package, which is relevant due to its collection of generator coherency al-
gorithms and related modeling scripts. The efficient matrix computations in MAT-
LAB are the reason to implement the majority of proposed methods in its scripting
language. MATLAB also provides built-in interfaces with Python (since MATLAB
release 8.4), Java, Microsoft Excel, and the operating system.

2. DIgSILENT PowerFactory [84] is a specialized power system software that has
mainly been used for time-domain RMS simulations. It also contains a number
of additional power system models and a number of useful functionalities (e.g.,
contingency analysis). PowerFactory provides a built-in interface with Python.

3. Python [85] is mainly used as an interface environment. Python itself serves as the
link between MATLAB and PowerFactory. The Python package igraph is used to
connect MATLAB with the graph visualization tools Gephi and GraphViz.

4. Microsoft Excel is a popular spreadsheet software that has mostly been used for
importing data (e.g., generator dynamic data tables from [86]).

5. GAMS [87] is an optimization modeling language and software containing links to
several state-of-the-art optimization solvers (e.g., IBM® CPLEX®) that is used to
model and solve ICI through MILP. GAMS provides an interface with MATLAB.

6. Graph visualization tools Gephi [88] and GraphViz [89] are used to enable high-
quality visualizations of medium and large-scale graphs.

7. Operation system command-line interface (CLI) is used to call the executable files
of various graph partitioning tools (e.g., METIS [90], hMETIS [91], KaHIP [92]).

The described software interconnections allow to combine graph partitioning ap-
proaches of different nature to improve the quality and decrease the time of power sys-
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tem area identification, to evaluate both static and dynamic performance of the obtained
areas, and to visualize the results.

1.4. THESIS OUTLINE
The organization of the thesis is illustrated in Figure 1.2. The remainder of this section
explains the contents of each chapter in more detail.

Ch 1: Introduction

Ch 2: Background and 
literature review 

Ch 3: Pre-processing and 
post-processing algorithms

Ch 4: Unconstrained 

spectral partitioning
and number of clusters

Ch 5: Applications to SVC 

and slow coherency

Ch 6: Constrained spectral 

partitioning and ICI

Ch 7: Conclusions and 

recommendations

Figure 1.2: Thesis organization

Chapter 1 provides the background and motivation for this work. It explains the re-
search challenges, the essential clustering terminology and the research approach.

Chapter 2 starts from an overview of the selected WAMPAC applications that are im-
portant for this thesis. It then continues with a literature review on graph partitioning,
which is aimed to justify the focus on spectral approaches to partitioning. Next, the
chapter provides an introduction into the theory of spectral graph partitioning and gen-
erator slow coherency, which are essential for the rest of the thesis. Chapter 2 also intro-
duces the partitioning quality metrics relevant for this thesis.

Chapter 3 is dedicated to pre-processing and post-processing approaches that tackle
the inherent flaws of graph partitioning. The proposed pre-processing solution is a
graph outlier detection method that should help to avoid very small clusters. The first
post-processing method aims to tackle the problem disconnected partitions that is very
common to graph partitioning, while the second one aims to refine the partitioning with
an efficient local search algorithm. Chapter 3 also describes some graph reduction tech-
niques especially relevant for constrained graph partitioning.

Chapter 4 describes an efficient clustering algorithm suitable for various power sys-
tem clustering tasks that do not include node grouping constraints. The proposed algo-
rithm is based on ideas from spectral clustering, and its is able to estimate the optimal
number of clusters, to ensure the area connectedness requirement, and to promote suf-
ficiently large clusters.
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Chapter 5 applies the ideas and algorithms detailed in Chapter 4 to two relevant ap-
plications that require power system subdivision into zones or areas. The initial frame-
work in Chapter 4 is shown to produce good results for the task of adaptive zone division
(AZD) for SVC. Subsequently, a modified grouping approach is proposed to improve the
efficiency of power system slow coherency identification through spectral clustering.

Chapter 6 addresses constrained graph partitioning. The problem of finding trees
spanning all the nodes of each constrained node group, which is also known as packing
Steiner trees [77], is at the core of the chapter. A novel heuristic method is proposed to
solve this problem in polynomial-time. After a comparison with some existing state-of-
the-art alternatives, this constrained graph partitioning method is applied to find good
initial solutions for a more accurate MILP-based ICI formulation.

Chapter 7 concludes this PhD research, and provides an outlook on possible research
extensions and future work.





2
REVIEW OF AREA DEFINITION AND

GRAPH PARTITIONING

2.1. INTRODUCTION
The goal of this chapter is to introduce the relevant theoretical background and power
system applications. It starts with a more detailed description of SVC and ICI, high-
lighting the role of control areas and islands. Next, a classification of graph partitioning
algorithms provides brief insights into the properties and advantages of the most com-
mon types of graph partitioning approaches, including the power system use cases. Af-
ter introducing the adopted mathematical notation, the chapter explains the essentials
of spectral clustering, which plays the key role in this thesis. A separate section is dedi-
cated to the basics of model-based generator slow coherency approaches. Based on the
criteria to power system areas listed in Section 1.2.2, a number of metrics is introduced
to assess the quality of power network partitioning.

2.2. OVERVIEW OF SELECTED POWER SYSTEM APPLICATIONS
This section introduces the power system applications related to area-based control and
protection that have motivated this research and are relevant for the case studies that
illustrate the proposed methods.

2.2.1. SECONDARY VOLTAGE CONTROL
Secondary voltage control (SVC) is a part of the hierarchical voltage control that is im-
plemented in several power grids around the globe (e.g., France, Italy, Romania, South
African Republic, Republic of Korea, China) as a means to achieve a more robust voltage
profile, reduce losses, increase power transfer capacity, increase reactive power reserves
and voltage stability margins [51, 93]. Similarly to hierarchical AGC, a common hierar-
chical voltage control architecture typically consists of the primary, secondary and ter-
tiary levels, as shown in Figure 2.1.
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Figure 2.1: Hierarchical voltage control structure (adapted from [94]). Pilot buses are encircled in orange.

Primary voltage control (PVC) is the local voltage control that is implemented in any
power system by the means of generator automatic voltage regulators (AVRs), on load tap
changers (OLTCs), shunt reactors and capacitors, FACTS devices etc. The goal of PVC is
to automatically respond to the voltage disturbances to maintain the voltage at the lo-
cal busbar. The typical timeframe of PVC is in the order of a few seconds [15, 51]. PVC
can be sufficient to ensure power quality and security when the power system load does
not significantly change and there are no sudden large disturbances. However, as the
system loading grows, many locally controlled reactive power resources may hit their
reactive power limits and stop providing voltage support. Additionally, voltage regula-
tion at power plants alone may not be enough to preserve the high voltage profile for the
whole power system when the load shows a significant rapid increase. These simple ob-
servations illustrate some of the pitfalls of having only local voltage regulation without
higher level coordination between the reactive power providers.

SVC resolves many issues of PVC by coordinating the control of several reactive
power resources over electrically coherent voltage control zones (VCZs) [46, 47]. Typi-
cally, a large power system area such as a national or provincial power grid is subdivided
into a number of VCZs featuring cohesive voltage profiles. Inside of each VCZ, a pilot
bus is selected to control the zone’s voltage. The pilot bus is typically an EHV bus whose
voltage well represents the voltage of other zone’s buses and is well controllable by the
generators inside the zone. SVC maintains the voltage profile of its VCZ by adjusting the
voltage setpoints of SVC control generators to counteract voltage deviations inside the
zone by regulating the zone’s pilot bus voltage to its reference value. If the neighbouring
VCZ are not well decoupled, the inter-zone interactions can be handled (at least to some
extent) by the control law. By its nature, SVC is a fully automatic feedback control system
with the typical dominant time constant of several tens of seconds [15, 47]. The selection
of pilot buses and associated control generators plays the crucial role in the SVC perfor-
mance (and by this, in the overall performance of hierarchical voltage control). Clearly,
not every combination of pilot buses is equally efficient. A good pilot bus selection en-
sures a significantly more robust system voltage profile compared to the case when only
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PVC is active. Typically, both the optimal number and locations of pilot buses need to be
determined, which represents a difficult combinatorial problem. So far, the two classes
of methods are commonly used to tackle the pilot bus selection problem:

• The identification of VCZ followed by the selection of pilot buses inside of each
VCZ using heuristics or direct enumeration [46, 47, 52].

• The use of greedy heuristic algorithms to select the initial set of pilot buses fol-
lowed by local or global search algorithms to improve upon the initial selection
[95, 96].

The first class of methods is adopted for this thesis. It has the advantage of not only
guiding the search of pilot buses, but also highlighting their "areas of influence" (i.e., the
VCZs). If the underlying VCZ identification algorithm is precise, a greater control over
pilot bus selection can be achieved. At the same time, the use of greedy heuristic algo-
rithms may suffer from local optima, and the subsequent direct use of search algorithms
may result in only limited improvement.

SVC often receives the reference values of pilot bus voltages from a higher-level op-
timization program, which is based on a grid-wide OPF with the objective to minimize
losses, increase reactive power margins, or maintain power system security under a set
of contingencies. Such OPF computation acts as a short-term forecasting and is not a
part of closed-loop control [51]. Some power systems (e.g., Italy) additionally imple-
ment TVC as the third level of hierarchical closed-loop voltage control. The goal of TVC
is to update the SVC setpoints through a real-time grid-wide optimization based on the
real-time values of pilot bus voltages and their forecasted values by the OPF [51]. The
dominant time constant of TVC is in the order of several minutes [51].

2.2.2. INTENTIONAL CONTROLLED ISLANDING
Intentional controlled islanding is a novel emergency control technique, the purpose of
which is to mitigate wide-area instabilities by intelligently separating the power network
into a set of self-sustainable islands. This emergency control action can be used to iso-
late different kinds of adverse scenarios in power systems, e.g. loss of synchronism, cas-
cading trips, voltage collapse or undamped oscillations. As compared to the traditional
SIPS, such as out-of-step protection, ICI is an adaptive real-time emergency control al-
gorithm that aims to consider multiple objectives when separating the network. During
the last decades, it has gained an increased attention due to the recent severe blackouts
all over the world (cf. Section 1.1.1). Given its nature (i.e., the last resort for blackout
prevention), ICI must be adopted as quickly as possible. A typical sequence of events
leading to the execution of ICI and the ICI-related actions are shown in Figure 2.2.

In Figure 2.2, the upper timeline illustrates the typical development of a power sys-
tem blackout. The common reliability guidelines state that the power system should nor-
mally be operated with N-1 redundancy (i.e., a failure of any single component should
not lead to the violation of the system operating limits for the normal condition). There-
fore, a typical blackout starts from an initiating event that is followed by a sequence of
outages (steady-state progression), during which some remedial actions (RAs) may be
taken. Typical RAs are transmission switching, reactor switching, generator re-dispatch,
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Figure 2.2: Typical sequence of events leading to ICI (adapted from [59]). The upper timeline shows the events
in the absence of ICI. The lower timeline shows the events if ICI is successfully implemented.

or load shedding, and these actions can be event-driven (e.g., fast load shedding in re-
sponse to a failure of a critical line). If RAs do not stop the outages, one of the outages
will constitute the triggering event for the loss of stability (e.g., uncontrolled separation
or voltage collapse), which is followed by a complete or partial blackout.

To avoid the blackout scenario, the ICI program should continuously monitor the
power system to determine the necessity of islanding and to plan islanding. Once it
becomes clear that the system has become unstable, the most recent islanding solution
should be implemented to isolate the faulted area and prevent the contagion of the rest
of the network. This reasoning gives rise to the following two key questions of ICI [19]:

• When to island? That is, how to reliably detect instability and to choose the proper
moment to separate the network to ensure transient stability during islanding.

• Where to island? That is, which transmission lines to open to form islands that are
steady-state stable, satisfy the system operating limits for the emergency condition
and require a minimum amount of load shedding.

From the above two questions, the first one is the problem of ICI timing, which is
more related to power system dynamic stability and online DSA. The second question
is the problem of ICI switching that is relevant for this thesis, as it represents a network
partitioning problem with multiple power system related constraints. The important
constraints associated with the second ICI question are listed below:

1. Island connectedness. Each island should represent a connected network area.

2. Generator coherency. The separated islands close to the unstable area should in-
clude generators with coherent rotor angle dynamics as the means to promote
their transient stability and synchronization [35, 43, 55, 58].

3. Blackstart unit availability. Each formed island should include at least one black-
start power source to restore the island if it collapses.
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4. Transmission line availability. Not every power network branch can be opened
to form islands, but only transmission lines with synchro-check relays that would
enable the resynchronization of islands [59]. In particular, transformer branches
cannot be opened for emergency control actions.

5. Load-generation balance. The maximal generation capacity of an island should
closely match the island’s load.

6. Equipment operational limits. Following the ICI, power system elements inside of
the islands should be able to operate for an extended period of time.

7. Static voltage stability. Each formed island should have a feasible AC load flow
solution with a sufficient voltage stability margin.

8. Frequency stability. Each formed island should possess a sufficient inertia to pre-
vent the rapid frequency decline following the separation.

From the above requirements, the first four can be stated in terms of MILP con-
straints, which together represent a constrained graph partitioning problem. The gener-
ator coherency requirement can be cast as a node grouping constraint once the coherent
generator groups to be included into each island are known. The blackstart unit avail-
ability requirement is similar, as it demands certain blackstart units to be assigned to
a certain island. The transmission line availability requirement actually simplifies the
problem, as it allows to reduce the power network branches that cannot be open. The
last four requirements are based on the power flow and swing equations and represent
the power system specific limitations on the graph partitioning problem. Thus, the ques-
tion "Where to island?" can be formulated as a constrained graph partitioning problem
subject to physical power system constraints.

2.3. OVERVIEW OF GRAPH PARTITIONING METHODS
The introductory overviews in Chapter 1 and Section 2.2 should explain the meaning
of area identification to power systems and the role of graph partitioning in power sys-
tem area identification. The goal of this section is to provide a helicopter view on graph
clustering and partitioning.

Data clustering using graph models is a popular approach in many technical do-
mains. A great variety of specialized graph clustering algorithms is used in such disci-
plines as data mining, pattern recognition, complex network analysis, and bioinformat-
ics (e.g., some of the notable references are [68, 97, 98, 99, 100, 101, 102]). Due to this
large variety, it seems prudent to focus on the groups of methods, and largely dismiss
the algorithms that are hard to assign to a particular group. In Figure 2.3, a possible clas-
sification of graph clustering algorithms is proposed, which is mainly based on [66], [103]
and [104]. The classification in Figure 2.3 aims to categorize the main working principles
of various clustering algorithms into eight classes, and for certain classes the represen-
tative class members are given in the third level of the classification hierarchy (shown in
a darker blue color). A concrete graph clustering algorithm can combine several work-
ing principles (e.g., many multilevel partitioners make use of spectral methods and local
search [90, 92]), so the representative algorithms in Figure 2.3 are assigned based on what
is perceived as their main working principle.
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Multilevel graph partitioning is a successful graph partitioning framework that gen-
erally consists of coarsening and refinement phases. The coarsening phase corresponds
to a series of reductions of the initial graph aiming to achieve a small graph that still
largely characterizes the initial cluster structure. At the coarsest level, the graph is par-
titioned with a simple algorithm like spectral recursive bisection [105]. During the re-
finement phase, the coarsening process is reversed. The partitioning is mapped from
coarser levels to finer ones and then refined by using graph cut improvement algorithms
(e.g., Fiduccia-Mattheyses [106]). In the context of electric power networks, the multi-
level partitioning software METIS has been applied to the ICI problem in [58, 107].

Hierarchical graph clustering aggregates multiple algorithms based on bottom-
up merging (e.g., the Louvain method [100]) or top-down splitting (e.g., the Girvan–
Newman algorithm [101]) of network clusters. The bottom-up (or agglomerative) variety
usually starts with every node belonging to a separate cluster and proceeds by combin-
ing together the most similar clusters until all nodes are combined into one cluster. The
top-down variety usually starts with the input graph assigned to a single cluster, which is
then sequentially subdivided until each node becomes a separate cluster. The both va-
rieties may terminate early if some predefined criteria are met. Hierarchical clustering
approaches are quite common to electric power systems, with the use cases including
control zone definition [46] and structural analysis of power grids [76].

Tree-based graph clustering can be seen as a variety of hierarchical graph clustering,
with the notable difference that it operates on a tree representing the input graph. This
tree can be a minimum spanning tree (MST) as in MST-based clustering [99] or a min-
imum cut tree [102]. There exist both top-down and bottom-up varieties of tree-based
graph clustering.

Flow-based graph clustering uses the theory of network flows [108] to cluster or par-
tition the graph. Given a set of terminal nodes in the graph, an approximate method
to separate each terminal node from all others that utilizes network flows through the
max-flow/min-cut theorem was proposed in [109]. The theory of network flows and
max-flow/min-cut theorem are also highly valuable if terminal nodes are not present,
and especially in situations when graph bi-partitioning is required [110].

Local search is a group of algorithms that accept an initial crude graph partition and
try to improve it with respect to some objective function and constraints by performing
incremental node swaps between the graph parts. Local search algorithms were among
the earliest proposed approaches to partition a graph (e.g., the Kernighan–Lin heuristic
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[111]), and they play an important role in solving practical graph partitioning problems
that arise in microchip design and scientific computations.

MILP is the discrete optimization framework that offers a natural way to exactly state
the majority of relevant graph partitioning problems (including the power system related
ones). With a few exceptions (e.g., a totally unimodular constraint matrix), exact MILP
problem formulations are NP-hard to solve. This implies long solution times on larger
problem instances and general lack of guarantee to find a solution within a prescribed
time limit. Coincidentally, the exact optimal area structure is often not essential, and
not all issues related to area identification can be easily formulated as MILP (e.g., the
optimum number of areas). The combination of these factors limits the relevancy of
MILP in many practical area identification studies, although MILP was applied to ICI
[112, 113], PPSR [114] as well as to many planning and scheduling problems for which
the solution time is not critical [11, 62, 64].

Metaheuristic optimization algorithms represent a diverse group of methods that are
exploring the search space of an optimization problem using efficient heuristic rules to
obtain good or near-optimal solutions. The optimization problem at hand can be very
general (i.e., highly nonlinear, non-convex, mixed-integer etc). Metaheuristic optimiza-
tion is typically much slower than proper clustering algorithms (i.e., hierarchical, spec-
tral etc), but it may still be faster than MILP at finding good feasible solutions. Meta-
heuristic algorithms are often applied to power systems, including flexible definition of
control areas [30], partitioning for parallel processing [115], and ICI [116].

Spectral graph clustering is a family of methods based on spectral graph theory [73].
Spectral clustering algorithms are among the most well-established methods for graph
clustering and partitioning, which is due to their long history [105], strong mathemat-
ical foundation [73, 74], and numerous extensions, including different objective func-
tions and clustering with node label information [57, 69]. Spectral clustering algorithms
rely on calculating first several eigenvectors of certain graph matrices, which is an effi-
cient computation implemented in several high-performance computing libraries (e.g.,
ARPAC). In the context of power systems, spectral clustering has been applied to clus-
tering of contingencies [117], clustering of load profiles [118, 119], structural analysis of
power networks [76], AZD for SVC [J1, 94], PPSR [45], ICI [43, 61], grid partitioning for
parallel processing [120], power network reduction [37, 67].

To conclude this section, it is worth to mention that a number of specialized power
system clustering methods can be considered as graph clustering. For example, Chow
[35, 121] proposed a tolerance-based coherency grouping algorithm based on generator
distance matrix, and Corsi [47, 51] proposed a tolerance-based algorithm for VCZ iden-
tification based on voltage sensitivity matrix. The outcomes of the both algorithms vary
depending on the selected values of tolerance parameters (larger tolerances correspond
to looser clusterings), which may become evident after looking at the algorithm descrip-
tions in [35, 47, 51, 121]. More importantly, both the distance matrix in [35, 121] and
the sensitivity matrix in [51] can been seen as the adjacency matrices of weighted undi-
rected full graphs of generator distances or voltage sensitivities. The discussed methods
are of practical importance, as the ERPI’s DYNRED program includes the grouping algo-
rithm [121], and the VCZ division of the Italian SVC implementation is computed with
the zoning algorithm [51].
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2.4. MATHEMATICAL NOTATION
Prior to exploring the relevant theoretical background, it is useful to introduce the math-
ematical notation used throughout the thesis.
Matrix and Vector Notation. In this thesis, matrices are typeset in bold uppercase font
(e.g., A), vectors are typeset in bold italic font (e.g., V or δ), and scalar variables are type-
set in italic font (e.g., X or x). Sizes of matrices are denoted by subscripts (e.g., An×k

for a matrix with n rows and k columns) or introduced when the matrix is defined (e.g.,
A ∈ Rn×k ). A matrix element is discriminated by its row and column indices written in
the subscript (e.g., ai j ). To denote an all-ones matrix, 1 is used, and an all-zeros matrix
is denoted by 0. The identity matrix of size k is denoted as Ik. A diagonal matrix formed
from a vector argument is denoted as diag(·). A block diagonal matrix formed from a
list of matrices is denoted as blkdiag(·). A column vector consisting of subsequent el-
ements on the main diagonal of a square matrix is denoted as Diag(·). To avoid an ex-
cessive stacking of matrix indices, an alternative matrix indexing is occasionally used
in the algorithm pseudocodes (e.g., A[i , j ] equals to ai j ). Submatrices are occasionally
used in pseudocodes, where they are denoted by using the same bracket notation (e.g.,
A[1, . . . ,n;1, . . . ,3] is the submatrix formed by the first n rows and three columns of A).
Graph Notation. An undirected graph is denoted as G = (V ,E). Its node set V is denoted
as V = {v1, . . . , vn} and the edge set is denoted as E ⊂V ×V . The graph G may have node
weights µ(v) ∈ R+ for each v ∈ V . The node weights generally express the "importance"
of a node, with larger weights meaning higher importance. The graph G may also have
edge weights W (e) ∈ R+ for each e ∈ E , and they can express either distance or similar-
ity between the edges’ endnodes. The symmetric adjacency matrix of G containing the
edge weights is given by W = [Wi j ] (W ∈ Rn×n), and the rectangular unweighted inci-
dence matrix associated with G is given by C = [ci j ] (C ∈ Rn×m). The numeric indices of
the rows and columns of the adjacency matrix W are derived from the node subscripts
in the set V . A set of nodes that should be kept together in a separate connected cluster
(i.e., a node grouping constraint) is denoted as T , as such nodes are often called termi-
nal nodes in the literature [77, 108, 109]. Constrained graph partitioning problems are
specified by defining a set {T1, . . . ,Tk } of node grouping constraints, and possibly some
other constraints.

From this point and further on, the terms bus and node as well as branch and
edge can be used interchangeably to refer to the analogous concepts in the
power network and its graph representation.

Partitioning Notation. Following Luxburg [74], 1C defines the indicator vector of
the nodes belonging to the cluster or graph connected component C. That is, 1C =
[ f1, . . . , fn]T and fi = 1 if node i belongs to C and fi = 0 otherwise. For a graph partitioned
into k blocks, it is possible to define a partition indicator matrix as a concatenation of
blocks’ indicator vectors: [1C1 , . . . ,1Ck ]. Partition indicator matrices are marked with a
tilde (e.g., Ã).
Other Notation. Sets are typeset in uppercase calligraphic font (e.g., E). Final solutions
of optimization algorithms are marked with an asterisk (e.g., R∗). The standard big-O
notation is used to describe the time complexity of algorithms.
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2.5. SPECTRAL CLUSTERING
As it has already been revealed in Section 1.3, spectral clustering based approaches play
the key role for the developments of this thesis, which warrants including a separate sec-
tion about their essentials. Spectral clustering is a family of methods based on comput-
ing special eigenvalue problems involving graph matrices. This section is first going to
describe its basic setting based on [74, 122, 123]. The two spectral clustering algorithms
that are going to be used for benchmarking and computational experiments are detailed
in the second part of this section.

2.5.1. THEORETICAL BACKGROUND
Spectral clustering is a similarity-based clustering framework; that is, the graph edge
weights should correspond to a quantity representing the closeness or similarity be-
tween a pair of nodes (e.g., a power flow or a series admittance). Assuming that the ad-
jacency matrix W of the input graph G is a similarity matrix, let us define the (weighted)
degree of node vi ∈V :

Di =
n∑

j=1
Wi j (2.1)

For similarity graphs, the weighted node degree (2.1) can be interpreted as the weight of
node vi , as well-connected nodes of similarity graphs have high weighted degrees. The
degree matrix is defined from (2.1) as:

D = diag(D1, . . . ,Dn) (2.2)

Next, the sum of weights of the edges running between two sets of nodes A and B is
introduced as [124]:

links(A,B) = ∑
i∈A, j∈B

Wi j (2.3)

In particular, the sum of node degrees of cluster C can be expressed in terms of (2.3) as
links(C,V), which is denoted as cluster volume [74]:

vol(C) = ∑
i∈C

Di (2.4)

The sum of edge weights of the edges bordering cluster C can be expressed in terms of
(2.3) as links(C,V \C), which is denoted as cluster cut [74]:

cut(C) = ∑
i∈C, j∈V\C

Wi j (2.5)

Based on the above definitions, the following matrices are defined [74]:

L = D−W (2.6a)

Lrw = D−1L (2.6b)

Ln = D− 1
2 LD− 1

2 (2.6c)
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where D− 1
2 = diag

(
1p
D1

, . . . , 1p
Dn

)
. Matrix (2.6a) is called graph Laplacian. It has a

great theoretic significance, but it is rarely used in this thesis. The other two matrices
(2.6b)–(2.6c) are called random walk normalized Laplacian and symmetric normalized
Laplacian respectively. Their eigenvalues and eigenvectors share the following impor-
tant properties [74, 76]:

1. The eigenvalues of Lrw are real and satisfy the inequality 0 ≤ νi ≤ 2, i = 1, . . . ,n;

2. 0 is an eigenvalue of Lrw, and its multiplicity is equal to the number of connected
components of G ; the eigenspace of 0 is spanned by the k indicator vectors of con-
nected components 1C j , where C1, . . . ,Ck represent the k connected components
of G ;

3. Lrw and Ln have the same eigenvalues. The corresponding eigenvectors relate as

U = D
1
2 V , where V is the eigenvector of Lrw and U is the eigenvector of Ln both

corresponding to the same eigenvalue.

The proofs of these properties can be found in [73, 74], and they can be in part deduced
by noticing that Lrw and Ln are similar matrices.

The matrices (2.6b)–(2.6c) are important for clustering due to the existing possibil-
ity to express the important Ncut criterion through them. Although finding a minimum
cut separating the graph in two parts can be achieved in the O(|E ||V |+ |V |2 log |V |) time
[125], the resulting partitions are often very unbalanced up to the point that the smaller
partition may consist of a single node. Additionally, graph minimum cuts may be not
robust with respect to edge weights perturbations; that is, a small change of the graph
edge weights may lead to a significant change of the minimum graph cut. These issues
prevent the direct use of the exact minimum graph cut algorithms for the clustering pur-
poses. The balanced graph cuts [66, 126] circumvent the drawbacks of minimum graph
cuts by balancing the cluster cut (2.5) by the cluster size, which in case of the Ncut crite-
rion is given by the cluster volume (2.4):

Ncut(C1, . . . ,Ck ) = 1

k

k∑
j=1

cut(C j )

vol(C j )
(2.7)

Thus, minimizing the Ncut criterion aims at finding graph clusters that are well-
separated (i.e., low cluster cuts), while not too small (i.e., cluster volumes are large
enough to not cancel out the low cluster cut values). Unfortunately, minimizing bal-
anced cluster cuts is an NP-complete problem even for k = 2 on planar graphs [74, 127].
In such situations it is common to search for approximations of the original problem
that can be solved fast by neglecting some difficult constraints of the original problem.
To start looking for approximations, the Ncut minimization problem is first expressed in
the matrix form [122, 123]:

minimize Ncut(X̃) = 1

k

k∑
j=1

X̃ T
j LX̃ j

X̃ T
j DX̃ j

(2.8a)

subject to: X̃ ∈ {0,1}n×k , X̃1k×1 = 1n×1 (2.8b)
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where X̃ = [X̃1, . . . , X̃k ] is the partition indicator matrix of clusters C1, . . . ,Ck that should
lead to the optimal Ncut value, and X̃ j are the indicator vectors of the individual clusters
that need to be found. The nominator of (2.8a) is cut(C j ) written in the matrix form,
and the denominator of (2.8a) is vol(C j ) written in the matrix form, with j = 1, . . . ,k.
The first constraint of (2.8b) is requiring each indicator vector to take discrete values,
and the second constraint is forcing the indicator vectors to be orthogonal and mutually
exclusive.

The authors of [122] perform the change of variables in (2.8) by introducing a scaled
partition matrix Ṽ:

Ṽ = X̃(X̃T DX̃)−
1
2 (2.9)

The matrix Ṽ scales the binary indicator columns of X̃ by the inverse square root
volumes of partitions [122], which is consistent with the form of Ncut indicator vectors
given in [74]. Next, the original constraints of (2.8) are relaxed and the change of variables
is performed, which reduces problem (2.8) to a trace minimization problem [122, 123]:

minimize NcutSR(V) = 1

k
tr

(
VT LV

)
(2.10a)

subject to: VT DV = Ik (2.10b)

or equivalently, through another change of variables V = D− 1
2 U:

minimize NcutSR(U) = 1

k
tr

(
UT LnU

)
(2.11a)

subject to: UT U = Ik (2.11b)

where tr(·) is the matrix trace, the SR addition to the objective name stands for Spec-
tral Relaxation, tildes above the variables are removed due to the neglected discreteness
constraints (2.8b), and constraints (2.10b), (2.11b) come naturally through algebraic re-
duction.

The relaxed Ncut minimization problem (2.11) can be directly solved using the
Rayleigh-Ritz theorem and its extensions (see the Appendix of [123] for the proofs).
Namely, an optimal solution to (2.11) is given by the matrix formed by the first k eigen-
vectors of Ln, and the optimal solution value is given by the sum of the first k eigenvalues
of Ln [122]:

NcutSR∗ = 1

k

k∑
j=1

ν j (2.12a)

U∗ = [U1, . . . ,Uk ] (2.12b)

where ν1 ≤ . . . ≤ νn are the eigenvalues of Ln ordered nondecreasingly, and U1, . . . ,Un

are the corresponding eigenvectors.
According to the Rayleigh-Ritz theorem, the NcutSR problem stated as (2.10) has the

eigenvectors of Lrw as its optimal solution V∗ (the optimal objective values of (2.10) and
(2.11) are the same, as the eigenvalues of Lrw and Ln are equal). However, it is more com-
putationally efficient to compute eigenvectors of symmetric matrices. Thus, the eigen-
vectors of the symmetric normalized Laplacian Ln, which are related to the eigenvectors
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of Lrw by the abovementioned properties of graph Laplacian matrices, are more benefi-
cial to compute.

The presented derivation of the spectral relaxation of the Ncut criterion (2.7) uses the
matrices Lrw and Ln, which are common across the literature. However, it is also possible
to use the random walk transition matrix (2.13a) and the normalized adjacency matrix
(2.13b) for the same purpose (see [122]).

P = D−1W (2.13a)

Wn = D− 1
2 WD− 1

2 (2.13b)

The random walk transition matrix P relates to the random walk normalized Lapla-
cian as Lrw = I−P, and the normalized adjacency matrix Wn is linked with the normal-
ized symmetric Laplacian Ln as Ln = I−Wn. These relationships imply that the smallest
eigenvalues of Ln and Lrw correspond to the largest eigenvalues of Wn and P. That is,
the eigenvalues 0 ≤ νi ≤ 2 of Ln and Lrw correspond to the eigenvalues 1 ≤λi ≤−1 of Wn

and P for i = 1, . . . ,n. For the shown correspondence in the eigenvalues, P has the same
eigenvectors as Lrw, and Wn has the same eigenvectors as Ln.

As the eigenvectors of Ln and Wn are equivalent, they can be obtained more effi-
ciently by computing the eigendecomposition of the real symmetric normalized adja-
cency matrix Wn (2.13b). The computation of eigenvectors of Wn is more efficient due
to the properties of the state-of-the-art numerical algorithms: computing first k largest
eigenpairs of a sparse matrix with iterative eigensolvers (e.g., the Lanczos method [128])
has better numerical properties than computing first k smallest eigenpairs. Thus, the
matrix Wn is mostly going to be used for the computation of eigenvectors for spectral
clustering (except the topics related to Section 5.3). The normalized adjacency matrix
has the following properties:

1. The eigenvalues of Wn are real and satisfy the inequality −1 ≤λi ≤ 1, i = 1, . . . ,n;

2. 1 is an eigenvalue of Wn, and its multiplicity is equal to the number of connected

components of G ; the eigenspace of 1 is spanned by the k column vectors D
1
2 1C j ,

where C1, . . . ,Ck represent the k connected components of G .

As it can been seen, the eigenvalue properties of the matrix Wn are very similar to those
of the matrices Lrw and Ln, which is due to their close relatedness.

The first k smallest eigenvectors of Ln or the first k largest eigenvectors of Wn can
be combined into the matrix U ∈ Rn×k , see (2.12b). The rows of U can be seen as the
coordinates of the nodes of the original power network in Rk . This representation of the
nodes of the original network by the points in the Euclidean space formed by the first k
eigenvector coordinates is often called spectral embedding of the network in Rk [74, 76].

The second property of Wn provides an additional view on the use of its largest eigen-
vectors for clustering purposes (i.e., in addition to the Ncut approximation view). If G
has k connected components, the rows of U will lie along the axes of the canonical coor-
dinate system in Rk (see the second property of Wn), and the k connected components
will be easily retrievable from U. The multiple connected components of G can also be
considered as perfectly separated clusters. According to matrix perturbation theory [74],
the addition of some low-weight edges between the k perfectly separated clusters only
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slightly perturbs the k largest eigenvectors from their ideal values. Thus, an observa-
tion can be made [74, 79, 129] that the more the first k eigenvectors resemble the ideal
structure corresponding to fully separated clusters, the more closely those eigenvectors
represent the dominant clustering structure of G .

2.5.2. SPECTRAL CLUSTERING ALGORITHMS

The most common final step of spectral clustering is to assign each row of an eigenvector
matrix (e.g., U) to a fixed cluster. This procedure is commonly referred to as discretiza-
tion, and its result can be thought of as a conversion of real-valued eigenvector matrix
into a discrete matrix X̃ ∈ {0,1}n×k with the property X̃1k×1 = 1n×1 (cf. (2.8)).

In practice, the rows of the eigenvector matrix U are often normalized to have length
one [74, 79]. Therefore, it is convenient to introduce the matrix X ∈Rn×k that is obtained
from U by normalizing the rows of U to have length one.

Xi j =Ui j /(
∑k

j=1 U 2
i j )1/2 (2.14)

The procedure (2.14) is equivalent to projecting the point coordinates in Rk defined
by the rows of matrix U onto the unit hypersphere centered at the origin of the same
k-dimensional Euclidean space. These projected node coordinates are often referred to
as normalized spectral embedding. The normalized spectral embedding was introduced
and popularized by Ng et al. in [79]. The relevant features of the method [79] are sum-
marized in Algorithm 2.1.

Algorithm 2.1 Spectral clustering according to Ng, Jordan, and Weiss

Input: Matrix Wn, number of clusters k
1: [U1, . . . ,Uk ] ← the first k eigenvectors of Wn in decreasing order of their eigenvalues.
2: U ← [U1, . . . ,Uk ]
3: Form the matrix Xn×k from U by normalizing the rows of U as (2.14).
4: Consider the n rows of X as the n points in Rk and cluster them into k clusters using

k-means or any other algorithm that attempts to minimize cluster distortion.
5: Finally, assign the original node vi to cluster C j if and only if row i of the matrix X was

assigned to cluster j by the clustering algorithm at the previous step.
Output: Clusters C1, . . . ,Ck

Spectral clustering with Algorithm 2.1 is often referred to as the spectral clustering
algorithm of Ng, Jordan, and Weiss (NJW) by the names of its authors, and it can also be
seen as an eigenvector discretization procedure. Despite its popularity, the NJW cluster-
ing algorithm has an important drawback of not accounting for the graph interconnec-
tion structure that is encoded in the matrix W or Wn. As the result, it is possible to obtain
disconnected network clusters consisting of several graph connected components.

Assuming that Wn is readily available, the time complexity of Algorithm 2.1 is domi-
nated by the iterative eigensolver routines for sparse matrices that have a complex con-
vergence behavior depending on multiple factors [70], but tend to show a subquadratic
run time in the size of of the input matrix n.
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One way to resolve the cluster connectedness issue is to define the distances between
the nodes not as Euclidean distances in spectral embedding, but as shortest path dis-
tances [130] in the graph G equipped with new edge weights that are equal to the Eu-
clidean distance in spectral embedding between the end nodes of each edge. The input
graph G equipped with the new set of edge weights derived from distances in spectral
embedding is further referred to spectrally embedded graph. If the spectral embedding is
normalized as (2.14) to lie on the unit hypersphere, spherical distances are more appro-
priate and can be used instead of the Euclidean ones [76]. However, it was noticed that
using the spherical distances instead of Euclidean ones usually has a negligible influence
on the partitioning results.

By using the shortest path distances in the spectrally embedded graph, both the
closeness of graph nodes in spectral embedding and the graph interconnection struc-
ture are taken into account. However, with distances between graph nodes as an input,
the popular centroid-based clustering algorithms like k-means cannot be used to cluster
the spectral embedding. The solution proposed in [76] is to use the agglomerative hier-
archical clustering (AHC) that can take a distance matrix between the data objects as its
input. Providing only the distance matrix is possible with some of the linkage criteria of
AHC, such as single linkage (SLINK), complete linkage (CLINK) or average linkage (UP-
GMA), which are described in many books on data science (e.g., [71]). The ability of the
method [76] to ensure cluster connectedness warrants its use as a benchmark algorithm,
the main ideas of which are summarized in Algorithm 2.2, which is further referred to as
hierarchical spectral clustering (HSC).

Algorithm 2.2 Hierarchical spectral clustering

Input: Graph G = (V ,E), matrix Wn, number of clusters k
1: [U1, . . . ,Uk ] ← the first k eigenvectors of Wn in decreasing order of their eigenvalues.
2: U ← [U1, . . . ,Uk ]
3: Form the matrix Xn×k from U by normalizing the rows of U as (2.14).

4: for all e = (i , j ) ∈ E do Wsp (e) =
√∑k

l=1(Xi l −X j l )2 end for
5: DM ← Shortest paths distance matrix of G with respect to Wsp .
6: Perform AHC on DM. Assign the graph node vi to cluster C j if and only if vi was

assigned to cluster j by AHC on the graph distance matrix DM .
Output: Clusters C1, . . . ,Ck

In Algorithm 2.2, the number of clusters k is assumed as an input, and the number
of eigenvectors is assumed to be equal to the number of clusters. Although computing
eigengaps as in [76] has connections to determining the optimal number of clusters (see
[74]), it has been empirically observed that once k is decided, best clusterings are ob-
tained from applying Algorithm 2.2 on the spectral embedding computed from first k
eigenvectors of Wn. The reason for this observation can be related to the interpretation
of spectral embedding discussed in more detail in Chapter 4.

The run time of Algorithm 2.2 is dominated by the computation of the distance ma-
trix DM in O(|E ||V |+ |V |2 log |V |) and AHC, whose time complexity can be O(n2log n) to
O(n3) depending on the implementation, where n is the number of clustered objects.
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2.6. GENERATOR SLOW COHERENCY
Generator coherency is defined as the property of a group of synchronous generators to
maintain an approximately constant rotor angle difference after a disturbance [35, 131].
In other words, coherent generators react similarly when a disturbance occurs, or swing
together following a disturbance. The coherent swings of large groups of generators at
low oscillation frequencies are the manifestation of slow coherency; that is, of generator
coherency with respect to the slow inter-area modes of power system [1, 34]. Thus, the
identification of slow coherent generator groups helps to reveal the structure of large-
scale power grids in terms of rotor angle dynamics.

In what follows, the term generator coherency is going to be used with the
meaning of generator slow coherency, as this is the only type of dynamic co-
herency relevant for this thesis. The terms coherent generator group and co-
herent group are both assumed to refer to a slow coherent generator group.

The major reason for this review of generator coherency is due to its role in ICI [43,
55, 113]. Namely, assigning non-coherent generators to the same island is likely to result
in rotor angle instability for this island after the network separation. Generators forming
a slow coherent group have a relatively strong dynamic coupling between each other,
which ameliorates generator synchrony [35, 83]. Therefore, it is reasonable to utilize
slow coherency identification approaches to find generators which should be grouped
together for the purpose of ICI. In graph partitioning terms, generator coherency pro-
vides the essential node grouping constraints to ICI.

The known generator coherency identification methods can be broadly classified
into model-based [33, 34, 121] and signal-based approaches [50, 132]. The signal-based
approaches estimate generator coherency based on the measured signals of generator
terminal voltage angles, frequencies or rotor angles. They typically require little to no
knowledge about the power system structure and parameters, but may be less robust due
to the limited input data and inherent difficulties associated with processing of online
measurements. The model-based approaches are based on calculation of right eigen-
vectors of the electromechanical model of power system (see Equation (2.18)) which cor-
respond to its dominant slow modes. These methods will be used in the thesis, as obtain-
ing valid coherent generator groups for the sole purpose of modeling the ICI constraints
is simpler and more reliable with the model-based coherency approaches. However, it
should be noted that significant changes in the power system operating condition, such
as topology changes or large load steps, may cause weakly coherent generators to change
their groups [50, 133]. Therefore, online generator coherency tracking is more preferable
for real implementations of ICI in physical power systems.

The well-known electromechanical power system model, which is foundational to
the model-based coherency identification methods [33, 121], can be derived with the
following assumptions [86]:

• The mechanical power input of synchronous generators is constant.

• Generator mechanical damping and asynchronous power are negligible.

• Synchronous generators can be represented in the network by the constant-emf-
behind-the-transient-reactance model.
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• The generator rotor angle coincides with the angle of the emf behind the transient
reactance.

• Loads can be represented by constant impedances.

Given the assumptions above, the electric power network can be represented as
shown in Figure 2.4. The network in Figure 2.4 can be reduced to contain only the in-
ternal generator buses (i.e., the nodes behind the transient reactances x ′

d ) by using the
procedure called Kron reduction [86]. The main idea of this procedure is to eliminate
the nodal equations of the original network that have zero current injections. As only the
generator internal buses’ nodal equations have non-zero current injections, the voltages
of the remaining network nodes can be represented as a linear combination of the inter-
nal generator voltages by exploiting the fact that the left-hand sides of the network equa-
tions for the non-generator nodes are zero. The reduced network obtained through Kron
reduction contains the equivalent admittances between every pair of internal generator
nodes (i.e., the reduced network represents a full graph). Its schematic representation is
shown in Figure 2.5.

The reduced electromechanical model can be described by (2.15), see [34, 86]:

δ̇i =ω0(ωi −1), i = 1, . . . , g (2.15a)

2Hi ω̇i =Pm,i −
g∑

j=1
j 6=i

E
′
i E

′
j Bi j sin(δi −δ j )−

g∑
j=1
j 6=i

E
′
i E

′
j Gi j cos(δi −δ j )

−E
′
i r 2

i i −ξi (ωi −1), i = 1, . . . , g (2.15b)

where δi is the rotor angle of generator i in radians,ωi is the rotor speed of generator i in
per unit, Hi is the inertia constant of generator i in seconds, ξi is the damping coefficient
of generator i in per unit, Pm,i is the mechanical power of generator i in per unit, E

′
is

the constant voltage behind the transient reactance in per unit, Gi j and Bi j are the real
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and imaginary components of the (i , j ) entry of the admittance matrix of the reduced
network (see Figure 2.5) in per unit and ω0 is the nominal system frequency in rads−1.

The coherency behaviour of generators can be more easily understood from the lin-
earized electromechanical model. Equations (2.15) can be linearized about an equilib-
rium δi = δi ,0 and ωi = 1, where δi ,0 is the equilibrium rotor angle of generator i . The
equilibrium rotor angles of all generators can be obtained in a convenient fashion by cal-
culating the power flow solution for the original electromechanical model in Figure 2.5
for the loading condition of interest. The resulting linearized model derived from (2.15)
is described by (2.16), see [33, 34]:

∆δ̇i =ω0∆ωi , i = 1, . . . , g (2.16a)

2Hi∆ω̇i =
g∑

j=1
Ki j∆δ j −ξi∆ωi , i = 1, . . . , g (2.16b)

where ∆δi = δi −δi ,0, ∆ωi = ωi −1 are the small perturbations of the rotor angles and
speeds around their equilibrium values and Ki j is according to (2.17):

Ki j = E
′
i E

′
j

(
Bi j cos(δi ,0 −δ j ,0)−Gi j sin(δi ,0 −δ j ,0)

)
, j 6= i (2.17a)

Ki i =−
g∑

j=1
j 6=i

Ki j (2.17b)

Equations (2.16a)–(2.16b) can be written in the matrix form as (2.18).

∆δ̇1

∆δ̇2

. . .
∆δ̇g

∆ω̇1

∆ω̇2

. . .
∆ω̇g


=



0

ω0 0 · · · 0
0 ω0 · · · 0
...

...
. . .

...
0 0 · · · ω0

1

2
H−1K −1

2
H−1Ξ





∆δ1

∆δ2

. . .
∆δg

∆ω1

∆ω2

. . .
∆ωg


(2.18)

where

H = diag(H1, H2, . . . , Hg )

Ξ= diag(ξ1,ξ2, . . . ,ξg )

K = [Ki j ]

By expressing ∆ωi = ∆δ̇i

ω0
and neglecting damping it is possible to reduce (2.18)

to (2.19), which is the common form of the power system electromechanical model used
for slow coherency analysis [33, 34]. The motivation to represent synchronous gener-
ators by simplified second order models and to neglect the damping is based on the
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observation that the coherent generator groups do not depend significantly on the level
of detail used in modelling the generating units [33, 55].

∆δ̈= 1

2
H−1ω0K∆δ (2.19)

The properties of the linearized dynamic models (2.18)–(2.19) can be analyzed by
studying the eigenvalues and eigenvectors of their state matrices. In particular, the stan-
dard small-signal stability analysis [1, 134] can be performed for the model described
by (2.18) in order to extract mode shapes corresponding to the electromechanical state
variables ∆δ and ∆ω. It should be noted that Equation (2.19) fully describes the prop-
erties of the complete state-space model (2.18), given that the damping is neglected
in (2.18). In particular, if λi is an eigenvalue of the state matrix of (2.19), then ±

√
λi are

the eigenvalues of the state matrix of (2.18) with all damping constants set to zero [34].
Thus, the eigenvalues of the state matrix of (2.19) correspond to the oscillatory and ape-
riodic modes of (2.18).

The next important question is the estimation of the number of slow inter-area
modes, whose corresponding eigenvectors are used for the identification of coherent
generator groups. If the number of slow modes is not given, it is common to use the
eigengap heuristic to determine the point of separation between slow and fast electrome-
chanical modes:

χi =
| Im(λ j )|
| Im(λ j+1)| , j = 2, . . . , g −1, i = 1, . . . , g −2 (2.20)

where λ j is the j th real eigenvalue of the state matrix of Equation (2.19), and all λ j have
been sorted in the increasing order of their magnitudes. Given such ordering of eigen-
values, their counting starts at 2, because the state matrix of (2.19) has a zero eigenvalue
that does not correspond to an oscillatory mode, while only the eigengaps between the
oscillatory modes are of interest. From (2.20), the number of slowest electromechanical
modes to be considered for generator grouping can be expressed as follows:

k = argmin
i

χi +1 (2.21)

where the increment of one in (2.21) can be related to the zero eigenvalue of the state
matrix in (2.19) [34]. From the algebraic perspective, the minimal number of slowest
modes to separate the network is two, whereby the minimal value of argmini χi is one.

Assuming the number of slow modes is given as k, the first k eigenvectors of the
state matrix of (2.19) are combined into the eigenvector matrix V. The constant eigen-
vector corresponding to the smallest zero eigenvalue is usually included into V [33, 34,
35, 121]. Thus, the k columns of V represent the rotor angle mode shapes of the k slowest
electromechanical modes, while the g rows of V represent the coordinates of the g mod-
eled generators in the Rk Euclidean space. This arrangement is similar to the previously
described spectral embedding (see Section 2.5); it is a very common machine learning
model in general (i.e., g objects described by k feature vectors). Several grouping algo-
rithms have been developed specifically for this model, including slow coherency group-
ing [33, 34], tight coherency grouping [35, 121] and some others.
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2.7. CLUSTERING QUALITY METRICS
Many clustering algorithms used for power systems do not evaluate any clustering-
specific quality metrics. Instead, clustering is accessed by observing the resulting power
system performance (e.g., SVC performance with [47, 51], or accuracy of generator co-
herency with [34, 121]). Although this principle is clearly valid and practical, it is often
hard to devise a clustering algorithm that could directly optimize the power system per-
formance, especially if the general-purpose optimization frameworks such as MILP or
metaheuristics are not an option (e.g., due to time limitations). Thus, it may be useful
to introduce some intermediate quality criteria that well correlate with power system
performance, but can be conveniently optimized by the means of clustering algorithms.
This way of reasoning was explicitly applied in [30], where the authors defined a number
of clustering quality metrics indirectly related to power system performance and com-
bined them into a single objective function to be optimized by a genetic algorithm.

In general, a good clustering is the one that demonstrates a high intra-cluster con-
nectivity (cluster cohesiveness) and low inter-cluster connectivity (cluster separation),
which has also been mentioned in Section 1.2.2. In graph partitioning terms, separation
of the cluster C is straightforwardly expressed as cluster cut cut(C) (2.5). Then the overall
separation of a partitioning solution can be expressed as (2.22):

Cut(C1, . . . ,Ck ) = 1

2

k∑
j=1

cut(C j ) (2.22)

where the 1
2 factor is introduced to compensate for the double inclusion of every edge

running between a pair of blocks. For the similarity-based clustering and partitioning
that are mostly studied in this thesis, a low Cut value clearly means that the edges run-
ning between the partitions separate highly dissimilar objects.

In practice, cluster cut (2.5) may not characterize the cluster separation well enough.
For example, if the total weight of edges inside of the cluster C (i.e., links(C,C) (2.3)) is
of roughly the same value as cut(C), the cluster cannot be considered well-separated,
even if its cut is small in the absolute terms. Thus, an additional metric called cluster
expansion ratio (or expansion) is introduced to highlight the expected contrast between
the cluster boundary and cluster contents:

φ(C) = cut(C)

vol(C)
(2.23)

Minimizing the cluster expansion (2.23) promotes a high sum of internal connec-
tions (high volume) combined with a low sum of external connections (low cut), which
are the desirable properties of a good power network partitioning according to [30] (see
also Section 1.2.2). The value of φ(C) can take values from zero to one, with smaller val-
ues corresponding to better clusters. In addition, the previously introduced Ncut met-
ric (2.7) can be actually understood as the arithmetic mean of cluster expansion ratios,
which implies that normalized spectral clustering described in Section 2.5 is directed
towards the minimization of cluster expansion ratios.
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The overall partitioning quality can be accessed by the maximal expansion ratio over
all clusters [76]:

φmax (C1, . . . ,Ck ) = max
1≤ j≤k

φ(C j ) (2.24)

Asking for a small maximal expansion ratio is reasonable from the power system
point of view, because it is usually desirable in practice to avoid any loose clusters. A
low value of (2.24) implies that all clusters are well separated from each other in terms
of the similarity relationships determined by the graph adjacency matrix W. Thus, (2.23)
and (2.24) evaluate the solution in terms of the defined power system model itself. At
the same time, (2.24) allows for an efficient optimization via the normalized spectral
clustering, while certain more complex objective functions can only be optimized via
metaheuristic approaches (e.g., [30]).

Alternatively, the Ncut criterion (2.7) is useful to evaluate the overall partitioning
quality, as it has the meaning of average expansion ratio over all clusters. The Ncut crite-
rion can be especially useful to compare different clusterings with the same φmax value.

According to the partitioning quality criteria introduced in Section 1.2.2, a good par-
titioning should also contain no disconnected or too small clusters. To account for the
latter requirement, the minimal cluster cardinality (as percentage of the average cluster
cardinality) is introduced as a quality indicator:

ε(C1, . . . ,Ck ) = min1≤ j≤k (|C j |)
n/k

·100 (2.25)

Cluster sizes are treated separately from the partitioning quality measures (2.24) and
(2.7). While (2.24) and (2.7) should be ideally as low as possible, (2.25) is only meant to
be higher than a certain predefined minimal cluster size.

For the case of constrained network partitioning, the number of constraints violated
by a clustering algorithm becomes an important issue. The most difficult type of con-
straints considered in this thesis are the node grouping constraints. As it was mentioned
in Section 1.2.2, these constraints is related to the packing Steiner trees problem, which
may even be unsatisfiable for certain combinations of the input data and constraints. To
access the satisfaction of node grouping constraints, the number of misplaced terminal
nodes is introduced by (2.26) as the number of terminal nodes not grouped into the same
connected partition with the larger part of their node group. Cluster connectedness is
assumed here, otherwise satisfying the node grouping constraints would become trivial.

η(C1, . . . ,Ck ) =
k∑

j=1
|T j \C j | (2.26)

where {T1, . . . ,Tk } is the set of node grouping constraints, and C j is the connected net-
work cluster containing the largest number of terminal nodes of T j .

Combined together, metrics (2.23), (2.24), (2.7), (2.25), and (2.26) enable a reliable
evaluation of cluster separation, cluster size, and node grouping constraints satisfac-
tion, which are some of the power system clustering requirements listed in Section 1.2.2.
The cluster connectedness requirement does not need a continuous metric, as it is a
yes-no requirement. The cluster cohesiveness requirement is not explicitly optimized,
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as it is seen as complementary to cluster separation. In other words, for each number
of clusters k, the set of k maximally separated clusters is requested. If the found k clus-
ters are well separated, but some are not cohesive, the incohesive clusters are likely to
feature some internal splits or bottlenecks. An incohesive cluster can be separated into
a set of cohesive ones along its internal splitting boundaries, often at the expense of the
overall cluster separation. Thus, the problem of balancing cluster cohesion vs. cluster
separation is related to the problem of determining the optimal number of clusters.

2.8. CONCLUSIONS
This chapter laid the groundwork for the rest of the thesis. The introductory survey about
SVC and ICI introduced the reader to the two main researched WAMPAC applications.
The overview of graph clustering should help putting the work into perspective by de-
scribing the main classes of existing graph clustering techniques.

The remaining sections of the chapter described the important theoretic concepts.
This description started by defining the mathematical notation for the thesis. Conse-
quently, the links between normalized graph cuts and graph spectral embedding were
revealed, thus providing an insight into computing several lowest eigenvectors of graph
Laplacian matrices. In addition, several different spectral clustering formulations were
presented and analyzed in terms of their computational efficiency. This was followed by
a brief overview of generator slow coherency, including the terms and definitions, math-
ematical formulation, selection of the number of slow modes and similarity to spectral
embedding. The final section of the chapter explained the chosen clustering quality met-
rics and the rationale behind them.





3
PRE- AND POST-PROCESSING FOR

GRAPH PARTITIONING

3.1. INTRODUCTION
From the overview of clustering in Section 1.2, it is clear that graph partitioning is a com-
plex yet important problem with many inherent trade-offs. Because of this, auxiliary al-
gorithms are often used in practice to enhance the quality and flexibility of graph parti-
tioning. For example, the obtained clustering can often be further improved by applying
local search techniques as clustering post-processing [92, 135, 136]. In many situations,
modifying the graph prior to its partitioning (i.e., pre-processing the graph) may help to
improve the results or achieve specific clustering objectives [58, 59, 107, 137].

The focus of the chapter is on several prevalent shortcomings of popular graph par-
titioning algorithms that are often neglected in application-oriented studies. Although
these shortcomings are of practical importance, they are not unique to power systems,
so it is beneficial to discuss them separately from power system applications based on
graph partitioning. By focusing on the issues characteristic to generic graph partitioning
approaches, this chapter also serves as a gradual introduction into partitioning of power
networks1.

In this chapter, the shortcomings of graph partitioning are resolved by the use of aux-
iliary pre- and post-processing algorithms, which is a well-established approach in the
graph partitioning community [66, 90]. The chapter describes two algorithms for graph
partitioning post-processing: one to ensure cluster connectedness by systematically re-
moving excessive minor connected components and the other to improve the cluster
separation by small local changes of the partitioning cutset. For graph pre-processing,
the chapter covers basic manipulations with graphs, such as edge weight modification
and graph reductions. It also describes an algorithm for graph outlier detection that can
be used to handle the detected outliers in advance.

1The material of this chapter is based on [C2, C3, C1].
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Figure 3.1: Generic graph partitioning framework

The overall representation of the graph partitioning framework relevant for this the-
sis is shown in Figure 3.1. Each of the elements of this framework except of the parti-
tioning algorithm block is optional. In other words, each of the proposed pre-processing
and post-processing algorithms can be used separately from the others to improve the
specific performance aspects of various graph partitioning algorithms. The estimation
of number of clusters is not considered in this chapter, but in Chapter 4.

The rest of the chapter is organized as follows. Section 3.2 discusses the graph mod-
els used in this chapter and explains the setup of the computational experiments. Sec-
tion 3.3 describes the algorithm to ensure graph cluster connectivity and the graph cut
improvement algorithm based on label propagation [138]. Section 3.4 explains graph
modifications to ensure node grouping (must-link) constraints at the clustering stage
and details the algorithm to detect weakly connected outliers in networks. Section 3.5
finalizes the chapter by summarizing it and drawing the conclusions.

3.2. STUDY FRAMEWORK
This section is going to describe the common aspects of the studies in Sections 3.3 and
3.4 such as the involved types of graphs and the computational setup.

3.2.1. RELEVANT GRAPHS TYPES
Depending on the goal, different properties of an electric power network can be repre-
sented through various graph models. For example, full graphs of synchronizing torque
coefficients are used to model generator slow coherency, and bipartite graphs of volt-
age sensitivities are used for the SVC modeling purposes (see Chapter 5). The examples
and studies in this chapter revolve around three types of graphs: topology graphs, series
branch admittance graphs and active power flow graphs.

Topology graphs represent the network connectivity. Their set of nodes V represents
the network buses, set of edges E represents the network branches (e.g., transmission
lines or transformers). The edges are undirected with (i , j ) ∈ E if and only if ( j , i ) ∈ E , and
their weights are given by Wi j = 1,∀(i , j ) ∈ E .

Series branch admittance graphs share the same sets of nodes and edges with topol-

ogy graphs. Their edge weights are given by Wi j = 1
/(√

R2
i j +X 2

i j

)
,∀(i , j ) ∈ E , where

Ri j is the series branch resistance and Xi j is the series branch reactance. For brevity,
these graphs are going to be referred to as branch admittance graphs. As HV power net-
works usually have a low R/X ratio, the edge weights of branch admittance graphs of
such networks are given by Wi j = 1/Xi j ,∀(i , j ) ∈ E . Admittance graphs have been used
in a number of power system studies (e.g., [30, 31, 37, 67, 76, 120]) to characterize the
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structure of transmission power networks and define zones for control or model reduc-
tion purposes. The use cases of branch admittance graphs are usually motivated by the
need to identify strongly electrically interconnected groups of buses.

Active power flow graphs share the same sets of nodes and edges with topology
graphs. Their edge weights are given by Wi j =

(|Pi j |+ |P j i |
)

/2,∀(i , j ) ∈ E , where Pi j is
the active power flow from node i to j . Active power flow graphs have been actively used
for ICI [43, 57, 58, 61, 139]. Due to the low R/X ratio, the transmission losses are low in
HV power networks, which results in |Pi j | ≈ |P j i |.

As this thesis is solely concerned with HV transmission networks, the assumptions
on edge weights related to this type of networks are valid for all the studies.

3.2.2. COMPUTATIONAL SETUP

As it can be seen, branch admittance graphs and active power flow graphs reflect both
the discrete interconnection structure of a power network and its certain physical prop-
erties. Branch admittance graphs are more suitable for benchmarking of several algo-
rithms on the same dataset, as the power network branch data actually defines the net-
work and serves as an input to the power flow. Partitioning of multi-area power networks
w.r.t. branch admittances often results in intuitively pleasing clusters that largely coin-
cide with the nominal network areas.

However, a large number of test cases is often needed to validate the performance
of an algorithm. The branch admittance graphs can only provide one dataset per power
network to be partitioned into k clusters. By contrast, there can be infinitely many dif-
ferent active power flow graphs of a single power network representing various load and
generation profiles. This is the main reason why active power flow graphs are mainly
used in the computational experiments of this chapter. To generate a large number of
test cases, many random power flows are generated for each tested number of clusters
of each test network. To generate the random power flows, the power demand of each
load was modeled as a uniformly distributed random variable with the range of ±50% of
the nominal power.

While smaller power networks are convenient for the illustration purposes, algorithm
testing is better performed on large-scale power networks. This allows to check the al-
gorithm scalability as the input size grows and to reveal a larger variety of outcomes that
mostly occur in large graphs. Therefore, the random power flows for algorithm testing
are solved on the large-scale test power networks from the MATPOWER toolbox [81, 140]
(e.g., case300, case1354pegase, case2383wp, case2869pegase).

3.3. GRAPH POST-PROCESSING

To motivate the need for graph partitioning post-processing, consider an example of
partitioning the branch admittance graph of the IEEE 68 bus test network [141] into 7
blocks using Algorithm 2.1 with k-medoids used in place of k-means to cluster the nor-
malized spectral embedding. The resulting partitioning shown in Figure 3.2 has been
obtained using the official MATLAB implementation of k-medoids with 20 restarts and
robust centroid initialization with the k-means++ algorithm [142].
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Figure 3.2: Clustering of the IEEE 68 bus test system (branch admittance graph) into 7 parts using Algorithm 2.1
with k-medoids.

From Figure 3.2 it can be immediately seen that the yellow cluster is not connected
because running k-medoids on spectral embedding produced by Algorithm 2.1 does not
enforce cluster connectivity. That is, algorithms for clustering point cloud data such as
k-means or k-medoids aim to simply group the closest points in spectral embedding re-
gardless of the corresponding graph nodes being connected. The k-medoids algorithm is
conceptually similar to k-means, but instead of taking the mean value of data points in a
cluster as the cluster center, k-medoids chooses the most centrally located data point in a
cluster (i.e., the cluster medoid) as the cluster center. Compared to k-means, k-medoids
has a higher computational complexity, but it is considered to be more robust to noise
and outliers, which motivates its use in spectral clustering of power networks [43, 137].

Clustering spectral embedding with k-means or k-medoids may often lead to fully
connected graph clusters, as spectral clustering aims to place strongly interconnected
nodes close to each other in the spectral embedding. However, situations similar to Fig-
ure 3.2 are not uncommon, and their occurrence is more probable with the growth of the
network size and the number of clusters. The appearance of disconnected clusters may
also depend on the type of spectral embedding (e.g., (2.10), (2.11), (2.14)) and the nu-
merical accuracy of computing eigenvectors (cf. the numerical advantages of using the
matrix Wn). The problem of cluster non-connectedness is not only restricted to Algo-
rithm 2.1 and those similar to it, but it is a problem common to many graph partitioning
algorithms (e.g., multilevel algorithms such as METIS or KaHIP [90, 92]).

In addition to the presence of non-connected clusters, several clusters in Figure 3.2
are not as well separated as they could. For example, assigning nodes 37 and 52 to the
yellow cluster would produce a lower admittance cut between the yellow and cyan clus-
ters. Thus, it is also beneficial to run graph cut improvement algorithms to increase the
separation of clusters obtained after graph partitioning.

3.3.1. ENSURING CLUSTER CONNECTEDNESS
As it may be seen in Figure 3.2, the cluster non-connectedness issue is characterized by
one or more clusters consisting of multiple graph connected components. Among the



3.3. GRAPH POST-PROCESSING

3

43

connected components belonging to the same cluster, the largest one is referred to as the
major connected component, and the remaining ones are referred to as minor connected
components. The major connected component typically contains the vast majority of
the cluster’s nodes, although it is also possible to obtain minor connected components
that are comparable in size with the corresponding major connected component.

To obtain a set of connected clusters, the minor connected components are reas-
signed to their neighboring major connected components. This process can be imple-
mented in a number of ways, so the following requirements are introduced to guide the
algorithm.

1. The reassignment of minor connected components should serve the purpose of
improvement the overall clustering quality metric.

2. An assignment of a large group of nodes to a major connected component in one
step should be avoided to reduce the risk of large suboptimal reassignments.

In addition to the above requirements, it is also possible to introduce a number of
other useful objectives (e.g., to use the removal of minor connected components to bal-
ance cluster sizes). However, managing multiple and often conflicting objectives is not a
straightforward task. Therefore, it is decided to focus only on optimizing the clustering
quality. The proposed algorithm for the removal of minor connected components is a
greedy heuristic inspired by the C code of a similar algorithm in METIS v5.1.0 [90] that is
summarized as Algorithm 3.1.

Algorithm 3.1 Removal of minor connected components

Input: Graph G = (V ,E), matrix W, clusters C1, . . . ,Ck

1: Γ1, . . . ,Γp ← connected components of G induced by C1, . . . ,Ck .
2: if p = k then return Γ1, . . . ,Γk end if
3: Reorder Γ1, . . . ,Γp in the decreasing order of their number of nodes.
4: Define Γ1, . . . ,Γk as the major connected components.
5: Define Γk+1, . . . ,Γp as the minor connected components.
6: Γk+1, . . . ,Γq ← subdivide Γk+1, . . . ,Γp that are larger than 10% of the size of Γk .
7: for i ← 1, . . . , q −k do
8: Γ j ← the minor connected component with the highest total connection weight

to a single major connected component.
9: Sequentially add Γ j to all adjacent major connected components.

10: Finally implement the assignment of Γ j that reduces φmax (or Ncut for equal
changes of φmax ) the most.

11: end for
Output: Γ1, . . . ,Γk // Major connected components after assigning to them all minor ones

In step 6 of Algorithm 3.1, the number of minor connected components is increased
if some of them are comparable in size with the smallest major connected component.
Such large minor connected components are recursively bi-partitioned into smaller
ones until there are no minor connected components exceeding the predefined size
threshold. This size threshold is set to 10% of the number of nodes in the smallest major
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Figure 3.3: Total number of nodes in minor connected components after partitioning of random power flow
graphs of the 4 power networks from MATPOWER with 300, 1354, 2383, and 2869 nodes using Algorithm 2.1

connected component; it can also be set lower than 10%, up to deciding on each node
individually, but this would increase the total number of iterations of Algorithm 3.1. The
used bi-partitioning algorithm is recursive bisection of the minor connected component
by the second eigenvector of its Laplacian matrix (2.6a), also known as Fiedler vector
[105]. Recursive bisection using graph min-cut algorithms [125] could be appropriate as
well. In Algorithm 3.1, the maximal expansion ratio over all clusters (2.24) is chosen as
the minimization metric with the goal to produce an improved partitioning in which no
single cluster is significantly worse than the others. Often the current minor connected
component has no connection to the least balanced partition, which explains the mini-
mization of the total normalized cut (2.7) chosen as the secondary objective.

To highlight the use cases of Algorithm 3.1, 700 randomly generated active power
flow graphs of the 4 large-scale networks from MATPOWER (case300, case1354pegase,
case2383wp, case2869pegase) have been partitioned into 2,. . . ,8 clusters using Algorithm
2.1 with k-medoids (20 restarts and k-means++ initialization). Each number of clusters
has received 100 randomly generated power flow cases that were generated as described
in Section 3.2.2. From Figure 3.3, it can be seen that the proposed Algorithm 3.1 needs
to reassign only a small fraction of network nodes, while the larger part becomes initially
assigned to the major connected components.

3.3.2. GRAPH CUT IMPROVEMENT

The great strength of spectral graph partitioning methods lies in their ability to extract
the global graph connectivity from the first k eigenvectors of graph Laplacian matrices.
However, finding clusters that reflect the global picture of the graph structure still often
results in suboptimal clusterings, in which the boundary nodes of some clusters could
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be moved to the neighboring clusters to increase the cluster separation (measured as
(2.5) or (2.7)). The property of spectral clustering and many other graph partitioning
algorithms to compute suboptimal clusterings is well-known, and a common remedy
for this issue is to apply a heuristic improvement algorithm to the obtained partitioning
solution.

A label propagation based greedy local search as described in [138] is a simple and
time-efficient algorithm that can be used to refine the solution obtained by spectral clus-
tering. Given the initial partitioning boundary, the algorithm reassigns the boundary
nodes to different clusters if it reduces the total graph cut and proceeds until no more
improvement can be found. The idea of this graph cut improvement algorithm is shown
as Algorithm 3.2.

Algorithm 3.2 Label propagation based graph cut improvement

Input: Graph G = (V ,E), matrix W, clusters C1, . . . ,Ck , iteration limit tmax

1: for j ← 1, . . . ,k do
2: C0

j ← C j // Initialize cluster node sets at step 0 as C0
1 , . . . ,C0

k
3: end for
4: for t ← 1, . . . , tmax do
5: for vi ∈V do
6: j∗ ← argmax j links(vi ,C j ) // (2.3)

7: C t
j∗ ← C t−1

j∗ ∪ {vi }

8: end for
9: if C t

1, . . . ,C t
k = C t−1

1 , . . . ,C t−1
k then break end if

10: end for
Output: C t

1, . . . ,C t
k // Final clusters after all node swaps

The used version of the label propagation algorithm [143] is based on the KaHIP mul-
tilevel graph partitioning library [92], which was compiled in a dedicated way to produce
a stand-alone executable for the label propagation based graph cut improvement. It is
common for multilevel graph partitioners to ensure that no single cluster is too big, so
the used implementation of Algorithm 3.2 will normally try to balance cluster sizes by
avoiding too large clusters. When partitioning power networks, it is rather common to
balance cluster sizes by avoiding too small clusters. The source code of KaHIP could be
modified to change the native cluster size balance constraint to the power system spe-
cific one, but it was decided not to implement this feature and to completely relax the
built-in cluster size constraint instead.

As it can be seen, Algorithm 3.2 focuses on improving the cluster separation by min-
imizing the graph cut through maximizing the internal connectedness of each cluster.
Because the sum of all edge weights is fixed, maximizing the sum of intra-cluster edge
weights is equivalent to minimizing the sum of inter-cluster edge weights [67, 122]. Re-
fining the graph cut often simultaneously reduces the normalized cut (2.7) and maximal
expansion ratio (2.24), except the situations when minimizing the graph cut too much
reduces the volume of some clusters. In addition, minimizing the active power flow cut
is relevant for ICI [43, 57]. Therefore, local search algorithms for graph cut improvement
(e.g., Algorithm 3.2) can be seen as a versatile tool to refine various power network areas.



3

46 3. PRE- AND POST-PROCESSING FOR GRAPH PARTITIONING

541

58

2

62 3

25 8 29 9

3110

32

11

36

12

1713

4114

4215

18

16

43

4950

2627 28

37

53

30

61

38

33

3435

45

52
46

44

39

40 48

51

47

55

56

57

66

60

59 63

6564

67

22

4

20

5

6

19

23

7

21

24

68

55.25

40.00

50.00

116.28 43.10 64.10

38.46

76.92

133.33

222.22

303.03

666.67

16.67

666.67

16.67333.33

36.23

8.7634.72

30.96 16.00

68.03

66.23

21.10

112.36

57.80

24.33

61.35 3.12

53.48

34.72

135.14

102.04

109.29

68.03

101.0122.52

90.09

63.69

135.14
57.14

121.95

36.50

35.21

909.0913.70
11.92

24.33

11.90 45.45

45.25

95.24

53.19

74.63

66.23

75.19

46.95

384.62

78.12

77.52

27.55

89.29

108.70

217.39

121.95 232.56

232.56

99.01

22.99

22.99

106.38

46.08

70.42

72.46

55.56

69.93

104.17 36.7671.43

74.07

28.57

169.49

51.28

Figure 3.4: Results of applying the clustering connectedness Algorithm 3.1 and the graph cut improvement
Algorithm 3.2 to the partitioning in Figure 3.2. The node colors illustrate the outcome of Algorithm 3.1, and the
dashed contours show the clusters’ boundaries after the subsequent run of Algorithm 3.2.

An illustration of the effect of the greedy local search Algorithm 3.2 on the area sep-
aration is shown in Figure 3.4. As it can be seen, Algorithm 3.2 changes the cluster as-
signments of a small fraction of the network nodes (namely, nodes 40, 49, and 55 change
their clusters). These small changes are well-justified, and their impact is noticeable too:
the total admittance cut drops from 498.64 p.u. to 428.39 p.u., the normalized cut (2.7)
drops from 0.0644 to 0.0554, and the maximal expansion ratio (2.24), which corresponds
to the yellow partition, drops from 0.1593 to 0.1360.

To further illustrate the effects of the label propagation based graph cut improve-
ment on the partitioning quality, Algorithms 3.1 and 3.2 are applied to the same set of
random power flow scenarios that was used in Section 3.3.1. At first, the possible minor
connected components are removed by Algorithm 3.1, and then the resulting partition-
ing is improved with Algorithm 3.2. The results of the graph cut improvement stage are
shown in Figures 3.5, 3.6, 3.7. To clearer show the impact of Algorithm 3.2, the order
of test cases in Figures 3.5, 3.6, 3.7 is adjusted in the increasing order of the given pa-
rameter (i.e., φmax , Ncut, or ε) before Algorithm 3.2. This creates a clearly recognizable
monotonically increasing sequence of the baseline results, which otherwise would be
non-monotonic and highly scattered due to the high randomness of the power flow gen-
eration process.

As it can be seen from Figures 3.5, 3.6, 3.7, the graph cut minimization with Algo-
rithm 3.2 also decreases the Ncut and φmax metrics in the majority of cases, and the
improvement is often very significant. Moreover, despite of not including any cluster
size constraints, the minimal cluster size tends to vary little due to Algorithm 3.2. It has
been observed that Algorithm 3.2 typically reassigns only a small fraction of nodes to
different clusters. Here it is worth to recall that the constraints on the minimal cluster
size could be seamlessly added to Algorithm 3.2, which would further improve its cluster
size balancing properties (this step was skipped to save the implementation effort and
to show the worst-case scenario when no cluster size constraints are present).
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Figure 3.5: Maximal expansion among clusters after partitioning of random power flow graphs of the 4 power
networks from MATPOWER with 300, 1354, 2383, and 2869 nodes using Algorithm 2.1 and running Algorithm
3.1 (blue), with the subsequent graph cut improvement using Algorithm 3.2 (green).

3.3.3. COMPUTATIONAL TIME OF POST-PROCESSING STEPS
To give an idea about the computational burden of Algorithms 3.1 and 3.2, the run times
of various clustering steps measured by the timeit() routine of MATLAB are summarized
in Table 3.1. In the table header, TSpC l is the time of Algorithm 2.1 with the k-medoids
clustering, Tconn is the time of the cluster connectedness Algorithm 3.1, Nmcc is the
number of reassigned nodes in minor connected components, TLP is the time of the
graph cut improvement Algorithm 3.2. For each entry, the number of clusters was taken
from 7 to 8 in order to obtain a more conservative timing estimate. The results were ob-
tained on MATLAB R2017a (64-bit) on a PC with an Intel® Xeon® E5 3.70 GHz CPU on a
single core using a Linux virtual machine with 2 Gb of RAM.

n TSpC l , [ms] Nmcc Tconn , [ms] TLP , [ms]
300 150 6 34 50
1354 2300 71 470 105
2383 7100 5 52 350
2869 10500 8 64 410

Table 3.1: Computational time of post-processing steps

The results clearly show that the proposed improvements have a reasonable compu-
tational cost and scale well with the increasing number of buses. It should be noted that
the time TSpC l is dominated by the k-medoids algorithm. Using k-means instead would
decrease the computational time significantly, at some expense in robustness to out-
liers. The run time of the connectedness heuristic mostly depends on the actual number
of buses belonging to minor connected components and the actual composition of these
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Figure 3.6: Normalized cut after partitioning of random power flow graphs of the 4 power networks from MAT-
POWER with 300, 1354, 2383, and 2869 nodes using Algorithm 2.1 and running Algorithm 3.1 (blue), with the
subsequent graph cut improvement using Algorithm 3.2 (green).

components and thus can vary significantly. The run time of Algorithm 3.1 could also be
lower if it was implemented in a high-performance programming language instead of
the used prototyped implementation in MATLAB. The run time of the label propagation
based graph cut improvement is consistently low due to its efficient implementation in
the C++ language provided by the KaHIP graph partitioning library [92, 138]. The asymp-
totic time complexity of the label propagation algorithm is proportional to the number
of graph edges m, but hard to prove mathematically [143] due to uncertainty about the
total number of required iterations.

3.4. GRAPH PRE-PROCESSING
Graph pre-processing is a popular approach in many domains to improve the speed and
quality of graph clustering algorithms. For example, graph edge weight modification can
be used if the edge weights lie in a narrow range of values (e.g., Pearson correlation coef-
ficients [68]) or vary too greatly (logarithmic or square root transformations may be used
in this case). Many graph-based algorithms are more efficient on sparse graphs with the
number of edges being much lower that the square of the number of nodes [68, 144].
In addition, sparse graphs require less storage space and are easier to visualize. These
advantages motivate graph sparsification as another graph pre-processing tool. Other
relevant graph pre-processing tasks include search for hub and outlier nodes [145, 146],
symmetrization of directed graphs [147], specialized graph transformations to improve
clustering (e.g., b-matchings [148]), graph coarsening [90] etc.

The relevance of each pre-processing task varies a lot depending on the target appli-
cation. In the case of electric power networks, graph sparsity is often inherently present,
as the number of transmission links is kept low due to their high construction costs.
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Figure 3.7: Relative minimal cluster size after partitioning of random power flow graphs of the 4 power net-
works from MATPOWER with 300, 1354, 2383, and 2869 nodes using Algorithm 2.1 and running Algorithm 3.1
(blue), with the subsequent graph cut improvement using Algorithm 3.2 (green).

The edge weights are typically meaningful physical parameters (e.g., power flows, ad-
mittances, impedances, sensitivities etc.), which are kept in their original form without
applying edge weight transformations.

This section focuses on the two tasks that were important for the developments of
this thesis and occurred consistently in the studies. The first part of the section intro-
duces the use of graph reductions to enforce various power system specific node group-
ing constraints at the clustering stage. The second part of the section sheds light on
the quick detection of connectivity outliers in similarity graphs of large-scale power net-
works. The problem of outliers manifests itself in Figure 3.7, which highlights the insuf-
ficiency of the robustness properties of k-medoids to fully prevent very small clusters.
Namely, Figure 3.7 demonstrates that a number of clusterings has very low minimal clus-
ter sizes. The proposed outlier detection algorithm can be used for graph pre-processing
as well as a stand-alone analytic method.

3.4.1. GRAPH REDUCTIONS FOR CONSTRAINED GRAPH PARTITIONING
By adopting the traditional machine learning terminology, the node grouping con-
straints introduced in Section 1.1.4 can be characterized in terms of must-link and
cannot-link constraints. Must-link implies that the nodes must be in the same partition,
and cannot-link implies the nodes cannot be in the same partition.

From the power system perspective, the constrained graph partitioning require-
ments relevant for this thesis have been listed in Section 2.2.2 as constraints 1–4. The
generator coherency node grouping constraint includes both must-link (each coherent
group must belong to a single partition) and cannot-link (different coherent groups can-
not be in the same partition) constraints. The transmission line availability constraint
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can be viewed as a must-link constraint for the terminals of the constrained network
branch. The blackstart unit availability constraint is similar to the generator coherency
constraint but confined to generators with blackstart capability.

Must-link constraints stemming from the transmission line availability constraints
are uniquely defined (i.e., a strictly defined subset of edges EML ⊂ E that cannot be dis-
connected). In contrast, must-link constraints stemming from the generator coherency
constraints can often be satisfied in a number of ways, as the generator coherency re-
quirement only specifies the sets of nodes to be kept together (i.e., a node grouping con-
straint), without specifying the exact edges to interconnect each group of nodes.

A convenient way to satisfy the transmission line availability constraints is through
contraction of must-link edges [58, 149]. Once an edge is contracted to a single node,
it cannot be disconnected, and the both edge terminals are guaranteed to belong to the
same partition. Due to their exact definition, transmission line availability constraints
can be ensured independently and prior to the general node grouping constraints such
as generator coherency constraints. However, the consistency of constraints should be
verified first: there should be no must-link edge connecting two generator nodes belong-
ing to different coherent generator groups.

In [150], the authors proposed an efficient method that can be used to aggregate the
must-link constraints stemming from an exact set of edges EML , which is summarized
here as Algorithm 3.3.

Algorithm 3.3 Encoding of branch unavailability constraints through graph reduction

Input: Graph G = (V ,E ,µ,W ), set of unavailable edges EML .
1: Create a simple unweighted graph G ML = (V ,EML) including all unavailable edges.
2: ΓML

1 , . . .ΓML
r ← connected components of G ML larger than one node.

3: for j ← 1, . . . ,r do
4: Merge the nodes of G belonging to ΓML

j into node p. Node p inherits the group of

any nodes in ΓML
j that are subject to general node grouping constraints.

5: µ(p) ←∑
vi∈ΓML

j
µ(vi )

6: Add an edge epq between the merged nodes vi ∈ ΓML
j and any other node vq in G

if there are edges between vi ∈ ΓML
j and vq . Set W (epq ) ←∑

vi∈ΓML
j

Wi q .

7: E ← E \
{

ei j |vi ∈ ΓML
j or v j ∈ ΓML

j

}
8: V ←V \ΓML

j .

9: end for
Output: Reduced graph G ′ = (V ,E ,µ,W ).

In Algorithm 3.3, the graph node weights depend on the application. For normalized
spectral clustering, the node weights are set to the weighted node degrees (see Section
2.5.1). Setting the degree of the aggregate node to the sum of degrees of the merged
nodes at line 5 of Algorithm 3.3 ensures the equivalence of all normalized cuts that do
not include the unavailable branches in the initial and reduced graphs, with the proof
being given in [150]. In other words, partitioning of the reduced graph G ′ always satisfies
the branch unavailability constraints, and the resulting normalized cuts (2.7) (or regular
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Figure 3.8: Graph reduction process of the active power flow graph of the IEEE 39 bus test case. The edge
weights represent the active power flows in MW. The generator groups are indicated with cyan and red node
colors. In addition to all transformers, lines (1,39) and (9,39) are constrained as unavailable branches and
colored in red.

graph cuts (2.22), or any other graph cuts based on cut and volume) preserve their value
when mapped back to the original graph G .

The main idea of Algorithm 3.3 lies in merging groups of nodes that are found as
connected components of graph G ML . These connected components are linked by un-
available edges, which may be contracted to produce a reduced graph that is guaranteed
to be connected. General node grouping constraints can also be enforced through node
collapse, but the set of edges that should be contracted is not given in this case. As it
has been discussed in Section 1.2.2, selecting the k sets of edges to connect the k groups
of terminal nodes is an NP-complete problem known as the Steiner tree packing prob-
lem [77]. This Steiner problem has been approximated through constructing k minimal
spanning trees with subsequent tree trimming to obtain k Steiner trees [108] connecting
each group of terminal nodes (e.g., see [58, 149]). Once the edges connecting each group
of terminal nodes have been obtained, they can be contracted using the for-loop of Al-
gorithm 3.3, thus ensuring the must-link condition on the node grouping constraints.

The steps of the graph reduction process described above are shown in Figure 3.8
on the example of the active power flow graph of the IEEE 39 bus test network. In Fig-
ure 3.8a, the unavailable branches are shown in red, and the nodes belonging to the
two generator groups are colored in cyan and red. The unavailable branches include all
transformer branches as well as lines (1,39) and (9,39), which are constrained in a delib-
erate manner to prevent possible solutions disconnecting the generator at bus 39. The
generator groups in Figure 3.8a are not meant to represent the generator coherency, but
rather chosen freely as an example. In Figure 3.8b, the connected components formed
by the unavailable branches (e.g., {19, 20, 33, 34}) are collapsed to single nodes. In the
resulting reduced network, two Steiner trees connecting the nodes of the two generator
groups are highlighted. These trees can be collapsed in an analogous way to the con-
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nected components formed by the unavailable branches to form the final reduced graph
shown in Figure 3.8c. Once each generator group is collapsed to a node, the cannot-link
coherency constraints can be ensured by assigning the remaining nodes (i.e., {3, 4, 5, 18,
24, 28} in Figure 3.8c) to the nearest generator group node. This process was illustrated
in [C1] using graph distances induced by spectral embedding.

In practice, it is recommendable to perform the contraction of unavailable branches
whenever the considered application benefits from it, as it allows to reduce the problem
size and the number of constraints. The tree collapse procedure for general node group-
ing constraints is not uniquely defined, and its multiple possible solutions may vary a
lot in their quality. In addition, tree construction is a sequential process; by construct-
ing the current group tree, it is possible to discard all possible configurations of the next
group tree. Thus, the sequential tree construction process [58, 149] may require mul-
tiple restarts to vary the order of construction of the group trees. Nevertheless, these
drawbacks can be acceptable for an offline planning environment.

3.4.2. GRAPH OUTLIER MINING

Outliers represent a common problem in clustering of many types of data. The presence
of outliers may lead the clustering algorithm to a highly unbalanced solution, or to lead
the algorithm away from the optimal clustering [151]. These phenomena were demon-
strated for the partitioning of electric power networks in [137]. In particular, spectral
clustering is known to be sensitive to outliers [152]. This problem can be tackled by
applying a robust clustering algorithm to cluster the spectral embedding [137] or by re-
moving the outliers in advance [151]. The first option limits the set of methods to pro-
duce the final partitioning, and severe outliers may still be able to impair the partitioning
result. For example, using Algorithm 2.1 with k-medoids could not prevent several very
unbalanced partitionings in Figure 3.7. Thus, it is strongly recommended to filter out the
severe outliers before applying spectral clustering [152]. Besides robust clustering, many
applications (e.g., event detection, network anomaly detection) are directly formulated
as outlier detection problems [153, E4].

Compared to outlier detection in Euclidean point cloud data, there are noticeably
less methods to find outliers in graphs [154]. The majority of existing graph outlier detec-
tion methods focuses either on community outliers [145, 146] (i.e., residual nodes loosely
coupled to the identified network communities), or on identifying anomalous elements
in graph matrices via matrix factorization techniques [155]. These methods are not tai-
lored to find outlier clusters (i.e., loosely connected groups of two or more nodes). Addi-
tionally, many state-of-the-art outlier detection methods have a higher time complexity
than spectral clustering [155, 156], which may result in a computational bottleneck.

The above considerations motivate the graph outlier mining algorithm in this sec-
tion. The spectral embedding of the analyzed similarity graph lies at the basis of the
algorithm, which explains its scalability that is comparable to the scalability of Algo-
rithm 2.1. The proposed algorithm detects outlier clusters by analyzing the minimum
spanning tree (MST) of the spectrally embedded graph, which was introduced in Sec-
tion 2.5.2. Such MST was previously used in [157] for the clustering purposes. However,
an output of graph clustering may not reveal all of the outliers as they may mask each
other. That is, some outliers may look similar to the normal data in the presence of a
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Figure 3.9: Graph outlier masking

substantially more severe outlier [151, 154]. For this reason, the proposed spectral min-
imum spanning tree (SpMST) based outlier mining searches the entire graph for loosely
connected nodes and clusters below certain size to return a collection of such nodes and
clusters together with their severity ranking.

An example of outlier masking is shown in Figure 3.9 that represents a randomly gen-
erated active power flow graph of the IEEE 39 bus test system from MATPOWER [81] and
its row-normalized spectral embedding using the two largest eigenvectors of the ma-
trix Wn. In Figure 3.9a, the node groups {20, 34} and {23, 24, 36} have a relatively weak
connection to the rest of the network. However, in the spectral embedding in Figure
3.9b, only the cluster {20, 34} manifests itself as an outlier, and the cluster {23, 24, 36}
is masked by its presence. Thus, running an outlier detection algorithm for Euclidean
point clouds (e.g., [156]) would not necessarily detect the cluster {23, 24, 36}, as it would
become more visible only after the removal of the cluster {20, 34}. As the network scale
increases, situations similar to Figure 3.9 become more common.

OUTLIER RANKING

It is often not practical to draw an exact border between normal data and outliers. For
this reason, many outlier detection methods operate by assigning outlier scores to the
data instead of directly labeling outliers. With the outlier scores available, it is possible
to remove outliers starting from the most severe ones up to a user-defined threshold.

The found outlier clusters are ranked according to their expansion ratios (2.23), with
the weakly-connected clusters having a low value of this parameter. Meila and Shi
[158] introduced the probabilistic interpretation of cluster expansion: φ(C) describes the
probability of the random walk defined by the transition probability matrix P (2.13a) of



3

54 3. PRE- AND POST-PROCESSING FOR GRAPH PARTITIONING

2

1

3

25

30 4

14

8

5

7611

31 9

39

10

32

12

1316 15

17

19

21

18 27

2033 34

22

23

35

2436

26 37

28 29 38

0.01

0.01

0.0

0.0 0.02

0.0

0.0

0.0

0.00.0

0.0

0.01

0.01

0.01

0.0

0.01

0.02

0.01

0.01

0.02

0.03

0.0

0.01 0.08

1.450.0 0.0

0.02

0.02

0.0

0.00.0

0.010.03 0.0

0.01

0.01 0.01

0.01

0.01

0.0

0.0 0.02

0.0

0.0

0.0

0.00.0

0.0

0.01

0.01

0.01

0.0

0.01

0.02

0.01

0.01

0.02

0.03

0.0

0.01 0.08

1.450.0 0.0

0.02

0.02

0.0

0.00.0

0.010.03 0.0

0.01

0.01 0.01

Figure 3.10: SpMST of the spectrally embedded graph obtained from the spectral embedding in Figure 3.9b,
rooted at node 1.

the Markov chain associated with the graph G to leave cluster C in one step starting from
the random walk stationary distribution, if the current walk state is in C.

It is problematic to extend (2.23) to a single node cluster, as the corresponding score
value will be one even if the node is very weakly connected to the rest of the network.
This is consistent with the probabilistic interpretation, since, starting at any node, ran-
dom walk leaves it on the next step with the probability one. From the random walk
perspective, a single node outlier in a weighted undirected graph can be understood as a
node that is unlikely to be visited from its neighbors. The corresponding score for node
vi can be introduced as

pmax (vi ) = max
{ j |pi j 6=0}

p j i = max
{ j |Wi j 6=0}

Wi j

D j
(3.1)

where pi j are the elements of the transition probability matrix P (2.13a). Score (3.1)
can be efficiently evaluated for every graph node, and it attains a low value for single
graph nodes that are weakly connected to any of their neighbors.

SPMST CONSTRUCTION

A SpMST can be initially constructed by a standard algorithm, such as Prim or Kruskal
[159]. After the SpMST has been obtained, some preparations should be made to effi-
ciently examine it [160].

First, one graph node is selected as the tree root, and the tree is traversed from the
root with the breadth-first search (BFS) algorithm [159]. The BFS algorithm is normally
capable of returning the predecessor vector, the n entries of which contain the indices of
parent nodes for each node. For example, the fifth and ninth entries of the predecessor
vector of the SpMST shown in Figure 3.10 should both contain the number 8. The pre-
decessor vector is used to orient the SpMST edges from parent nodes to their successors.
That is, if the SpMST edges are stored as 2-tuples, the first tuple entry should be the in-
dex of the parent (or from) node. Secondly, the standard BFS algorithm was modified to
additionally return the direct children of each node. By its principle, the BFS algorithm
starting at the top of the tree hierarchy will not leave the current node before visiting
all of its children. Therefore, additionally returning a key-value map from each node to
the list of its direct children is straightforward with BFS. Next, another map is created
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Algorithm 3.4 Obtain descendants of each SpMST node

Input: Map from nodes to their direct children child, tree root node r oot .
Output: Map from nodes to all their descendants desc.

1: for i ← 1, . . . ,n do
2: desc{i } ← {vi } // Initialization

3: end for
4: desc← GETDESC(r oot , desc,child)
5: return desc

6: function GETDESC(node, desc, child)
7: if child[node] =; then return
8: else
9: for k ← child{node} do

10: desc← GETDESC(k, desc,child)
11: desc{node} ← desc{node}∪desc{k}
12: end for
13: end if
14: end function

to store all the descendant nodes of each node in the tree. This key-value map can be
created effectively by recursion as shown in Algorithm 3.4. With this map, it is easy to get
the number of nodes below each node (including the node itself) as an extra vector of n
elements.

OUTLIER MINING WITH FUNDAMENTAL CUTSETS

Since any spanning tree (including MST) contains the minimal number of edges to inter-
connect the nodes of the graph, removing an edge from it creates two connected com-
ponents. The set of edges that is needed to produce the same connected components
in the initial graph is called fundamental cutset. Since any spanning tree interconnects
the n graph nodes with n−1 edges, a spanning tree defines n−1 fundamental cutsets in
the graph [108]. A classical spanning tree clustering algorithm (e.g., [99, 157, 161]) would
disconnect the k −1 longest edges of the MST to produce k clusters, thus using the k −1
fundamental cutsets induced by those MST edges. Since the goal of this section is not
to partition the graph into k clusters, but to detect loosely connected subgraphs below
certain size, all n−1 fundamental cutsets of the SpMST are going to be examined, which
is formulated as the graph outlier mining Algorithm 3.5.

The SpMST is provided to Algorithm 3.5 as a priority queue containing the directed
edges included into SpMST in the decreasing order of their lengths. Due to the availabil-
ity of precomputed descendant nodes for any node, the cardinalities of connected com-
ponents of each fundamental cut can be found in constant time. Then the algorithm
simply checks if one of the components satisfies the cluster size criterion and, if it does,
the algorithm further computes its outlier score. As the sought clusters are small, the set
difference operation will only be computed a few times to return the limited number of
valid outlier candidates containing the SpMST root node. Components that are smaller
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than the predefined cardinality CCmax and posses a low enough outlier score are saved
as outlier clusters.

Algorithm 3.5 Outlier mining with fundamental cutsets

Input: Priority queue SpMST, set V , nodes descendants map desc, number of de-
scendants of each node nd , matrix W, matrix D, limit on cluster cardinality CCmax,
limit on outlier score φmax.

1: S ←; // Set of outlier clusters

2: for k ← 1, . . . ,n −1 do
3: ( fk , tk ) ← SpMST.pop() // Pop current longest SpMST edge

4: if (nd [tk ] <CCmax) or (n −nd [tk ] <CCmax) then
5: if nd [tk ] <CCmax then
6: C← desc{tk } // cluster nodes

7: CC ← nd [tk ] // cluster cardinality

8: else
9: C←V \ desc{tk }

10: CC ← n −nd [tk ]
11: end if
12: vol(C ) ←∑

vi∈C Di // (2.4)

13: φLB ← W[ fk , tk ]/vol(C) // Lower bound on φ

14: if φLB <φmax then
15: if φ(C) <φmax then S ←S∪C // score φ(C) is also stored

16: end if
17: end if
18: end if
19: end for

Output: S , outlier scores.

OUTLIER MINING WITH SINGLE-LINK CLUSTERING

Outlier mining with fundamental cutsets is based on divisive clustering of MST, as each
iteration of Algorithm 3.5 divides the SpMST into two parts and evaluates them. How-
ever, some clusters with relatively high scores (2.23) can only be discovered by removing
more than one long edge in the SpMST. This may also depend on the number of used
eigenvectors (e.g., a cluster may become detectable with Algorithm 3.5 if more eigen-
vectors of Wn are considered). Nevertheless, introducing an additional bottom up (or
agglomerative) clustering mechanism makes the outlier mining more robust in general.

Agglomerative outlier mining uses the known analogy between single-link hierarchi-
cal clustering and the Kruskal algorithm for MST [161]. The Kruskal algorithm is a classi-
cal MST algorithm that runs in O(|E | log |E |) time by using the union-find data structure
(as given in [159]). The relevant ideas of the Kruskal algorithm are included into the ag-
glomerative outlier mining Algorithm 3.6 to provide a clear and complete presentation.

As Algorithm 3.6 operates on the already constructed MST without any loops, it does
not need to check if the two nodes are already in the same connected component. In-
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stead, the cardinality of the resulting connected component is checked, and if a too large
component results from adding the next edge, this edge is skipped.

Algorithm 3.6 Outlier mining with single-link clustering

Input: Priority queue SpMST, matrix W, matrix D, limit on cluster cardinality CCmax,
limit on outlier score φmax.

1: S ←; // Set of outlier clusters

2: for i ← 1, . . . ,n do
3: comp{i } ← {vi } // each node is in its own component

4: CC [i ] ← 1 // each component has cardinality one

5: end for
6: pr ed ← 1, . . . ,n // each component is its own parent

7: for k ← 1, . . . ,n −1 do
8: ( fk , tk ) ← SpMST.pop() // Pop current shortest SpMST edge

9: c1 ← GETROOT( fk , pr ed ) // component id of node fk
10: c2 ← GETROOT(tk , pr ed ) // component id of node tk
11: if CC [c1]+CC [c2] <CCmax then
12: if CC [c1] <CC [c2] then
13: pr ed [c1] ← c2 // Set c2 as parent of c1

14: CC [c2] ←CC [c2]+CC [c1] // update cardinalities

15: comp{c2} ← comp{c2}∪comp{c1}
16: comp{c1} ←;
17: C← comp{c2} // the component to test

18: else
19: Repeats the operations in the true branch, but with c1 being the parent of c2.
20: end if
21: if φ(C) <φmax then S ←S∪C // score φ(C) is also stored

22: end if
23: end if
24: end for

Output: S , outlier scores.

25: function GETROOT(node, pr ed ) // Get component’s id

26: while node 6= pr ed [node] do
27: node ← pr ed [node]
28: end while
29: return node
30: end function

As in the original Kruskal algorithm, the sorting order of the SpMST priority queue
containing the SpMST edges is in the increasing order of the SpMST edge lengths. Thus,
the union-find data structure, which is minimally represented by the component pre-
decessor vector pr ed , component size vector CC , and the GETROOT function, is only
used to keep track of the connected components resulting due to sequential addition
of the SpMST edges between the nodes. The additional variable comp is used to keep
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track of the current nodes in each connected component. It is shown in Algorithm 3.6 as
a map from the component’s index to the component’s nodes, but this may be not the
most efficient data structure. Finally, Algorithm 3.6 evaluates the outlier score of each
newly obtained connected component and saves the component if the score is below
the threshold.

Algorithm 3.7 Resolve cluster intersections

Input: Cluster outlier scores φ (2.23), map to nodes of each cluster clu, cluster car-
dinalities CC , initial number of clusters k.

1: Reorder the clusters clu and their sizes CC in the increasing order of the cluster out-
lier scores φ.
// Transform the node indices of each cluster into the cluster indicator row vectors combined

into the matrix Tk×n .

2: for i ← 1, . . . ,k, j ← 1, . . . ,n do
3: if j ∈ clu{i } then ti j = 1
4: end if
5: end for
6: Set the status of each cluster indicator row of T to true.
7: cur r ent ← 1 // current row index

8: while status of some row of T is true do
9: Find clusters with indicator rows containing any, but not all ones in the non-zero

columns of the current row. These clusters partially intersect with the current one.
10: Find clusters with indicator rows containing all ones in the non-zero columns of

the current row and having the same entry in CC as the current cluster. These
clusters are the duplicates of the current one.

11: Mark clusters discovered with the above two statements for the deletion. Set the
corresponding rows of T to zero and the status of these rows to false.

12: Set the current row of T to zero and its status to false.
13: cur r ent ← index of the topmost indicator row with the true status.
14: end while

Output: S as clusters in clu not marked for deletion, outlier scores (2.23) and (3.1).

AGGREGATION OF OUTLIER MINING RESULTS

It is common in large-scale networks to detect several outlier clusters that overlap with
each other, and especially if the limits on outlier score (2.23) and outlier size were set
rather large. While this situation occurs naturally (e.g., the same tightly clustered core
group of nodes can be isolated with several cutsets of varying quality), it is often desir-
able to meaningfully resolve the cluster intersections. Thus Algorithm 3.7 is proposed,
which aims to remove clusters that partially overlap with a cluster having a lower score
(2.23). This is done because combining two non-fully overlapping clusters would induce
a new cluster, the properties of which (e.g., the cardinality) are hard to control. However,
Algorithm 3.7 would keep a less severe outlier cluster if it fully includes a more severe
one, as the union of such clusters will still result in a valid cluster, with the smaller clus-
ter being automatically integrated into the larger one. This integration step can be done
by retrieving the edges running inside of each of the relevant clusters and using this set of
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edges to find the subgraphs induced by these edges (e.g., with a connected components
algorithm).

The two steps (Algorithm 3.5 and Algorithm 3.6) of the outlier mining process usually
detect many identical clusters. Thus, Algorithm 3.7 is especially relevant in the context
of combining the results of multiple outlier detection techniques.

OUTLIER MINING SUMMARY

After introducing Algorithms 3.4, 3.5, 3.6, 3.7, the proposed outlier mining process can
be summarized as follows:

1. Select k as the dimension of spectral embedding and find the first k eigenvectors
of the matrix Wn.

2. Normalize the rows of the eigenvector matrix according to (2.14) and construct the
embedded graph using the sets V and E of the original graph G and the spherical
distances between the points in the spectral embedding [76].

3. Construct the SpMST as described in Algorithm 3.4.

4. Use Algorithms 3.5 and 3.6 to detect the outlier cluster candidates.

5. Evaluate score (3.1) for every graph node to get the ranking of loosely connected
single graph nodes. Mark a fraction of nodes with lowest outlier scores (3.1) as
outliers.

6. Aggregate the identified outlier clusters and outlier nodes using Algorithm 3.7.

7. Process the obtained clusters and graph nodes as required by the application.

The first and last steps of the above list still require some clarification. Selecting a
larger value of k is important if the method is needed to be more sensitive (i.e., to dis-
cover less severe outlier clusters). For detecting severest outliers, setting of k to 3 or
4 should be enough in the most cases. However, it will be shown in Section 3.4.3 that
choosing higher values of k usually does not necessarily increase the processing time a
lot. In what about the last step, the pre-processing of graph partitioning implies remov-
ing graph outliers in advance to prevent their separation by a spectral graph partitioning
algorithm. This can be achieved by merging each outlier cluster into a single node as
shown in Algorithm 3.3, but without updating the node weight of the aggregate node to
the sum of node weights of the merged nodes. If the node weight is not updated, spec-
tral clustering avoids to separate a single node, as this strongly increases the Ncut value
(2.7). To further avoid the separation of single node outliers (including the newly formed
merged nodes), they are merged with a neighbor node to which they have the strongest
connection. The results in Section 3.4.3 demonstrate that this approach is quite efficient.
In general, the processing of the returned outliers can vary depending on the application.
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Figure 3.11: Occurrences of clusters below 10% of the average cluster size for the partitioning of randomly gen-
erated power flow graphs with an outlier-sensitive Algorithm 2.2, with (blue) and without (gray) pre-processing
of potential small clusters.

3.4.3. OUTLIER MINING EVALUATION

To test the detection performance of the proposed graph outlier mining process in Sec-
tion 3.4.2, it is applied as a pre-processing step for the partitioning of randomly gener-
ated active power flow graphs of the four networks from the MATPOWER toolbox [81,
162] ranging from 300 to 2869 nodes. The random power flow graphs are generated
as explained in Section 3.2.2. The larger test networks case1354pegase, case2383wp,
and case2869pegase are partitioned into k = 2, . . . ,12 clusters, while the smaller network
case300 is partitioned into k = 2, . . . ,8 clusters. Each number of clusters is tested on 150
unique randomly generated power flows. In addition, the computational performance
of the proposed graph outlier mining is tested on the MATPOWER networks containing
up to 13659 nodes.

The baseline clustering algorithm is HSC, which has been introduced in Section 2.5.2
as Algorithm 2.2. The used AHC linkage criterion is the average linkage. Using HSC was
shown to produce high-quality clusters, while ensuring each cluster to be a connected
subgraph [76]. However, hierarchical clustering is generally known to be sensitive to
outliers if the number of clusters is given as an input [152], which is further confirmed
by the test results in this section.

In this case study, the goal is to prevent the occurrences of clusters that are smaller
than 10% of the average cluster size (i.e., with less than round(0.1n/k) nodes) by apply-
ing outlier mining as graph pre-processing prior to graph partitioning. To achieve this
goal, it is necessary to increase the outlier cluster threshold φmax as the number of clus-
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ters is increased. Bi-partitioning the network aims to select the two most pronounced
clusters. However, the clusters that are not distinct enough for the bi-partitioning may
become important if a larger number of clusters is requested, which explains the need to
increase φmax for the growing k. A heuristic expression φmax = 0.02log2 k is used for the
cluster outlier score threshold. For the case2383wp test network, reduction of too many
clusters has caused the network to become over-constrained, which resulted in frequent
small clusters with high values of score (2.23) (the values of 0.1–0.5 or larger reflect poor
clusters). For this reason, the value of φmax for the case2383wp test network is constra-
ined not to exceed 0.03. For the case2869pegase network, the value of φmax is set not to
exceed 0.02 because it was acceptable not to raise it any higher for k = 2, . . . ,12. For the
single node outliers, the top 7% of candidates are kept instead of trying to guess a good
absolute threshold for pmax (3.1). The number of eigenvectors to build the spectrally
embedded graph for SpMST is chosen to be equal to the requested number of clusters k
because of the requirement to detect quite subtle small clusters for the higher values of
k.

As Figure 3.11 shows, the described pre-processing causes the HSC method to much
less frequently return clusters below 10% of the average cluster size. While there still are
a few occurrences of clusters below the specified size threshold, those could be avoided
by adjusting the φmax value specifically for these test cases. Thus, it can be concluded
that the proposed graph outlier detection method is able to reliably estimate the outlier
clusters for a given graph (otherwise those clusters would be returned by the graph parti-
tioning method). To provide more insight, the proposed graph outlier mining method is
also used as a pre-processing for the NJW spectral clustering implemented as Algorithm
2.1. The aggregated results for the HSC and NJW methods are given in Table 3.12, with
the † superscript denoting the versions of the methods with outlier pre-processing.

Test network HSC HSC † N JW N JW †

case300 253 0 13 0
case1354pegase 755 3 116 0
case2383wp 668 1 10 1
case2869pegase 231 2 1 0

Table 3.2: Total numbers of partitioning test cases with small cluster occurrences

To test the computational performance of the proposed graph outlier mining
method, it is executed on the six MATPOWER networks ranging from 300 to 13659 nodes.
For each network, the number of eigenvectors is varied from three to eight, while the up-
per cluster size limit is set to round(0.1n/k) and the threshold of score (2.23) is set to
0.03. For this case study, the algorithm is run on the active power flow graphs obtained
from the nominal loading profile of each network. All results were obtained on MATLAB
R2017a (64-bit) on a PC with an Intel® Xeon® E5 3.70 GHz CPU and 16 Gb of RAM using
a single core.

Surprisingly, choosing a low value for the number of eigenvectors k may result in
longer running times. This can be explained by the complex convergence mechanisms of
eigenvalue solvers for sparse matrices (e.g., of the Lanczos algorithm [70]). Nevertheless,
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Figure 3.12: Execution time of the SpMST-based graph outlier mining method for the varying number of net-
work nodes and dimension of spectral embedding

the execution times in Figure 3.12 justify the practicality of the proposed graph outlier
detection method at least for the networks of several thousands of nodes.

The main computational requirement of the SpMST graph outlier detection method
is in computing several largest eigenvalues and eigenvectors of the matrix Wn. This pro-
cedure is reported to be tractable for sparse graphs of at least tens of thousands of nodes
[152]. In practice, computing the eigenvectors took around 50–70% of the total execution
time for each network using the highly optimized eigenvalue solver available in MATLAB.
Such disproportion in the computation time can also be explained by the efficient algo-
rithmic design of the SpMST-based outlier mining described in Section 3.4.2. The dis-
parity between the eigenvector computation time and the SpMST processing time could
be even larger if the latter component were also implemented in a high-performance
compiled language instead of the MATLAB-based implementation.

3.5. CONCLUSIONS
This chapter considered some of the practical drawbacks of the mainstream graph parti-
tioning methods and advocated the use of auxiliary pre- and post-processing algorithms
as a possible solution. Subsequently, graph partitioning was represented as a three stage
process including the pre-processing, partitioning and post-processing steps, which was
illustrated in Figure 3.1.

The developments of this chapter were aiming at the three major objectives. First,
the discussion about the inherent drawbacks of graph partitioning allowed to provide a
deeper illustration of the graph partitioning problem that is central to this thesis. Sec-
ond, discussing cluster connectivity and graph reductions and providing the solutions
to these problems in the form of Algorithms 3.1 and 3.3 is important for the next chap-
ters. Third, the case studies with Algorithms 3.2, 3.5 and 3.6 demonstrated the ways to
improve the performance of graph partitioning methods focused on maximizing graph
cluster separation. In particular, it has been shown that using the label propagation
based graph cut improvement very often allowed to substantially improve the results
of the NJW spectral graph partitioning without a significant effect on the cluster size
balancing. The improvement could be less pronounced if a more sophisticated parti-
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tioning algorithm was used instead of NJW, but the fast execution time and full indepen-
dence from the chosen graph partitioning method justify the use of Algorithm 3.2 (or its
enhanced variation) even in such cases. The use of graph outlier mining from Section
3.4 as partitioning pre-preprocessing was shown to substantially improve the clustering
balance of outlier sensitive graph partitioning algorithms. The ability to detect loosely
connected nodes and small clusters below certain size can potentially be helpful for ap-
plications other then balanced partitioning of power networks, although this possibility
was not further developed inside the scope of this thesis.

To summarize, the use of auxiliary pre- and post-processing algorithms was shown
to be an efficient approach to achieve an improved performance and higher flexibility of
graph partitioning. The studies in this chapter also contributed to research questions I,
II, and III that were stated in Section 1.2.3.





4
ORTHOGONAL STRUCTURE OF

SPECTRAL EMBEDDING

4.1. INTRODUCTION
The main motivation of this chapter is the problem of choosing the proper number of
zones or areas for power system partitioning, which has been stated as a research ques-
tion in Section 1.2.3. In the power system literature, a significant number of papers have
raised this problem as well. For example, Lagonotte et al. suggest to choose the number
of VCZs by using the variation of slope of the relative diameter of VCZs versus the num-
ber zones, with hierarchical clustering being used for grouping [46]. In [52], the number
of VCZs is chosen based on the maximal average inter-cluster distance, which is defined
from hierarchical clustering. Another line of work [30, 31, 163] does not explicitly tackle
the selection of the number of clusters, but acknowledges it as a relevant issue. This same
issue is also relevant for many generator coherency algorithms [50, 121, 164]. Addition-
ally, there are multiple power system applications outside of the scope of this thesis that
depend on the proper selection of the number of clusters (e.g., contingency clustering
[117]). Therefore, the above glimpse on the existing literature is only meant to introduce
the topic, but not to fully cover it1.

As it can be seen, the existing techniques to select the number of clusters often rely
on the results of AHC (e.g., inter-cluster distances). However, the AHC results are not
unique, as AHC utilizes various linkage criteria (e.g., single-link, complete-link etc.), and
the resulting clusters as well as the corresponding intra- or inter-cluster distances can
vary a lot depending on the chosen linkage criterion. Another popular approach to se-
lect the number of clusters is based on computing spectral eigengaps [34, 76, 94]. The
early uses of this approach included the selection of slow electromechanical modes for
generator slow coherency [34] (see (2.20)), and it gained more popularity as spectral clus-
tering began to be more widely applied to power system problems. The spectral eigen-
gap heuristic is based on the second property of the graph matrices used for spectral

1The material of this chapter is based on [J1]
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clustering (see Section 2.5). That is, having k eigenvalues that are close to 0 (if L, Lrw, or
Ln are used) or 1 (if P or Wn are used) indicates that the graph representing the clustered
data is almost disconnected into k parts (i.e., k highly distinct clusters are present). Un-
fortunately, the occurrences of distinct large eigengaps (or relative eigengaps as in [76,
94]) are rare in many practical situations [129].

This chapter details an alternative approach to the selection of the number of clus-
ters that is based on the alignment of the row-normalized spectral embedding (2.14)
with the standard basis of the Rk Euclidean space. The advantage of this method lies
in its independence from the internal mechanics of any clustering algorithm, which is a
drawback of the popular heuristics based on AHC distances or the silhouette heuristic
[71, 164, 165]. Instead, the analysis is performed on the row-normalized spectral em-
bedding, which can be considered as inherent to a given weighted undirected graph.
Unlike the spectral eigengap heuristic, the proposed method to evaluate the number
of clusters directly relates to the expected clustering quality. To strengthen this point,
a new graph partitioning algorithm is introduced that relies on the axes-aligned row-
normalized spectral embedding to produce partitionings of high quality.

The rest of the chapter is organized as follows. Section 4.2 introduces the core ideas
from [122, 129] which form the basis for the developed methods. Section 4.3 introduces
the robust algorithm for spectral embedding alignment and justifies its correctness by
comparing it with an alternative idea based on gradient descent (GD) minimization. Sec-
tion 4.4 details the novel graph partitioning algorithm that further validates the value
of axes-aligned spectral embeddings by showing their role in producing high quality
graph partitionings. The high-quality of partitionings obtained with the new algorithm
is demonstrated in Section 4.5 by performing comparisons with three other well-known
methods: NJW, HSC, and Graclus [124]. Finally, Section 4.6 concludes the chapter.

4.2. ORTHOGONAL INVARIANCE OF SPECTRAL CLUSTERING
As it has been shown in Section 2.5, the optimal solution of the continuous spectral re-
laxation of the NP-complete normalized cut problem (2.8) is given by the lowest k eigen-
vectors of the matrix Lrw or the highest k eigenvectors of the matrix P (see Equations
(2.10) and (2.11)). In their seminal work, Yu and Shi [122] emphasized that this optimal
solution is invariant with respect to orthogonal linear transformations (i.e., rotations and
reflections) applied to the initial eigenvector matrix V (2.10) or to its row-scaled version
U (2.11). That is, the continuous optima of (2.11) form a subspace characterized as

{UR : RT R = Ik } (4.1)

where Un×k are the eigenvectors of Wn and R ∈ Rk×k is an arbitrary orthogonal matrix.
In (4.1), the eigenvectors of Wn are used instead of the eigenvectors of P as in [122], as
these eigenvectors can be computed more efficiently (see Section 2.5.1).

The invariance of continuous optima of (2.10) and (2.11) with respect to orthogo-
nal linear transformations implies the possibility to select continuous optima from sub-
space (4.1) that facilitate the discretization of the eigenvector matrices V and U by re-
vealing more information contained in them. To further facilitate the discretization of
eigenvector matrices, the authors of [122] propose to normalize the rows of U to unit
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length according to (2.14) and to seek the discrete solution X̃ by applying orthogonal lin-
ear transformations to the matrix X. In the discrete indicator matrix X̃, each row repre-
sents a unit vector aligned with one of the canonical coordinate axes. Therefore, the row
normalization step in [79, 122] brings the eigenvector matrices U or V closer to discrete
solutions X̃ (the row normalization of both U and V results in the same matrix X).

Furthermore, the authors of [122] propose an algorithm to find an orthogonal trans-
formation R∗ that would facilitate the discovery of a good discrete solution X̃ from the
initial row-normalized optimal solution of the continuous relaxation X. The discretiza-
tion algorithm is stated as the optimization problem:

minimize Q(X̃,R) = ‖X̃−XR‖F (4.2)

subject to X̃ ∈ {0,1}n×k , X̃1k×1 = 1n×1,

RT R = Ik

where ‖·‖F is the matrix Frobenius norm: ‖A‖F =
√∑n

i=1

∑k
j=1 |Ai j |2. Objective (4.2) can

be considered as a measure of closeness of the orthogonally transformed matrix XR to
its discretized version X̃. Although the row-normalized matrix X is no longer a feasible
solution to either (2.10) or (2.11) and not an eigenvector matrix in general, using it in
(4.2) produces very good results in practice [123].

The formulation in (4.2) is in two unknowns: the discrete solution X̃ and the orthog-
onal matrix R that brings X closest to X̃. As there is no direct method to solve (4.2) simul-
taneously for both X and R, an iterative procedure was proposed in [122].

If R is given in (4.2), X̃ is determined by non-maximum suppression on Z = XR, that
is by setting the maximum entry of each row of Z to 1 and the remaining entries to zero,
which is described by (4.3):

X̃i j =
{

1, if j = argmaxl∈{1,...,k} Zi ,l

0, otherwise
(4.3)

If X̃ is given in (4.2), R is determined by a singular value decomposition (SVD) of X̃XT :

X̃T X = QΣYT

R = QYT
(4.4)

where Σ = diag(σ1, . . . ,σk ) is the diagonal matrix of singular values of X̃T X and Q, Y are
the matrices of the left and right singular vectors respectively.

The iterative approach in [122] to solve the problem in (4.2) consists of alternating the
steps of optimal alignment (4.4) and non-maximum suppression (4.3) that rapidly con-
verge to an initialization-dependent local optimum of the problem in (4.2). The proofs
of optimality of (4.3) and (4.4) can be found in [122]. Noteworthy, the problem and the
method in (4.4) to compute the orthogonal transformation R that most closely aligns X
to X̃ is known as the orthogonal Procrustes problem [166].

By analyzing the cost function in (4.2), it is possible to notice that it has the goal of
maximizing one entry per matrix row, while minimizing the remaining entries, by apply-
ing a single orthogonal transformation R on the input matrix X. Geometrically this corre-
sponds to the alignment of the initial spectral embedding with the axes of the canonical
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coordinate system. A cost function that reflects the degree of alignment of a spectral
embedding with the canonical coordinate system is further called alignment cost.

4.3. EIGENVECTOR ALIGNMENT AND NUMBER OF CLUSTERS

4.3.1. EIGENVECTOR BASED SELECTION OF NUMBER OF CLUSTERS
The concept of alignment cost was used by Zelnik-Manor [129] to select the number
of eigenvectors that most closely resembles the ideal result of spectral clustering. The
authors in [129] used the cost function in (4.5) that was formulated in terms of unnor-
malized eigenvectors U:

minimize J (R) = 1

n

n∑
i=1

k∑
j=1

[UR]2
i j

M 2
i

(4.5)

subject to RT R = Ik

where Mi = max j [UR]i j . The cost in (4.5) was minimized by optimizing the orthogonal
matrix R with GD (see Appendix B). For this minimization, the orthogonal matrix R was
restricted to be a rotation matrix. The best feasible minimum for the cost J is equal to
one, and it is achieved when rotation R∗ recovers a discrete matrix from U. According to
Section 2.5, this case corresponds to the best possible outcome of spectral clustering, as
every node is perfectly assigned to one of the k clusters. This observation can be used to
select the number of eigenvectors k that, after applying the orthogonal transformation
R∗, leaves the lowest ambiguity in the cluster assignment of the graph nodes.

Given the predefined feasible range of cluster numbers k = kmin, . . . ,kmax, the
method [129] first computes the full set of eigenvectors Un×kmax . The optimization starts
by computing the alignment for the first kmin eigenvectors and then proceeds by adding
one by one the remaining columns from U to the previously aligned eigenvectors. The
initialization from the previous alignment commonly speeds up the optimization and
provides an initial upper bound on the alignment cost.

Alignment costs (4.5) can be minimized for the row-normalized matrix U as well (and
in general for any matrix M ∈ Rn×k ). However, in this case it is not possible to simply
add the next column to the previously aligned ones due to an additional condition that
the Euclidean norm of each row should be equal to one. However, it is possible to use
the previously computed transformations to initialize the next set of row-normalized
eigenvector columns as follows:

R0
k×k =

[
R0

k−1×k−1R∗
k−1×k−1 0

0 1

]
(4.6)

where R0
k×k is the initializing orthogonal transformation for Xk×k and R∗

k−1×k−1 is the
best estimated orthogonal matrix for Xk−1×k−1. Thus, the initializing transformation
(4.6) is computed by accumulating the solutions from the previously considered clus-
ter numbers.

In what follows, the minimization of alignment costs (4.2) and (4.5) is going to be
considered only for the row-normalized eigenvector matrices X, as this choice has shown
superior results in practice.
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4.3.2. ROBUST ORTHOGONAL INITIALIZATION
By comparing the alignment costs in (4.2) and (4.5), it is possible to notice that they are
both non-linear non-convex optimization problems aiming to align the rows of matri-
ces X and U with the canonical coordinate system. Under the premise of an efficient
optimization strategy, the global minima of (4.2) and (4.5) should be close to each other.
However, the results of minimizing (4.2) and (4.5) by the algorithms proposed in [122,
129] may differ quite a lot in practice, as the local optima achieved by these methods
(see also Sections 4.2, 4.3.1 and Appendix B) are dependent on the initial orientation of
the spectral embedding.

To avoid the poor local optima, it is desirable to start the alignment cost minimiza-
tion from a good initial point. The authors in [122] used the problem-specific initializa-
tion approach from [79], which is a fast greedy algorithm to find a set of k nearly orthog-
onal rows in a matrix. The clustering initialization algorithm from [79] is extended here
to handle the two important issues:

1. Starting the initialization [79] only once may not lead to a good result. Situations
are possible, when the set of nearly orthogonal initialization points lies close to a
poor local optimum. Therefore, it is desirable to develop a systematic strategy for
multiple initializations.

2. The rows found by the initialization [79] are generally not perfectly orthogonal to
each other, thus the transformation matrix formed by those rows is not strictly
orthogonal.

The above issues may have only a small impact when the data is well-separated (as
in the test studies in [79]). In this case, the likelihood to find a set of k nearly orthog-
onal points close to the global optimum significantly increases. If the graph has many
nodes (e.g., the large image graphs in [122]), the second issue also becomes less com-
mon. However, power networks do not generally possess the just discussed properties.

The proposed Algorithm 4.1 uses at most imax restarts to robustify the initialization.
The restart strategy selects the first vector of the next k-dimensional basis formed from
the rows of X as the row of X that has the minimal cumulative cosine similarity to the first
vectors of the previously selected bases. As the rows of X are normalized by (2.14), cosine
similarity is equivalent to the dot product. Rows that are more similar to any previously
selected first basis row than the threshold τ are constrained not to become the first row
vector in a new k-dimensional basis.

The retrieved k rows of X (combined into the matrix B in Algorithm 4.1) may not form
an orthonormal basis. For a set of linearly independent vectors, the closest orthonormal
basis is given by the SVD-based Loewdin orthogonalization:

B = QΣYT

R = QYT
(4.7)

The Loewdin orthogonalization (4.7) is used to transform the retrieved k rows of X
stored in the columns of B to a proper orthogonal transformation. Finally, Algorithm 4.1
evaluates the alignment cost associated with each obtained set of k rows of X and returns
the best encountered aligning transformation. In addition, all discovered sets of k rows
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Figure 4.1: Selection of starting points by the
initialization algorithm for spectral embed-
ding alignment. The 3-spectral embedding
is computed for the admittance graph in Fig-
ure 4.3. The circles represent start points, and
the numbers represent their selection order.

Algorithm 4.1 Robust orthogonal initialization

Input: Row-normalized matrix X, iteration
limit imax, threshold τ

1: S ← {1, . . . ,n} // Rows of X eligible to start a basis

2: s ← 0n×1 // Cumulative cosine similarity

3: for i ← 1, . . . , imax do
4: if S =; then break end if
5: r1 ← argminl∈S s[l ] // Index of start row

6: B[1, . . . ,k;1] ← X[r1;1 . . . ,k]T

7: c ← XB[1, . . . ,k;1]
8: S ←S \ {l | c[l ] > τ}
9: s = s +c

10: c = abs(c) // Element-wise absolute value

11: for j = 2 to k do
12: r j ← argminc
13: B[1, . . . ,k; j ] ← X[r j ;1 . . . ,k]T

14: c = c +abs(XB[1, . . . ,k; j ])
15: end for
16: R ← loewdin(B) // (4.7)

17: Q ←Evaluate (4.2) with X̃ obtained from
XR with (4.3).

18: Save Q and B obtained at each iteration.
19: end for
20: Q∗ ← The lowest Q
21: R∗ ← R that leads to Q∗

Output: Lowest alignment cost Q∗, best or-
thogonal transformation R∗

are saved to subsequently provide multiple initializations for the algorithms to minimize
the alignment costs (4.2) or (4.5).

A sample run of the restart strategy is illustrated in Figure 4.1. The first starting point
is selected at random far from the three dense orthogonal clusters. However, the second
starting point is selected in the top dense cluster, and all the following starting points are
selected in the dense orthogonal clusters. In other words, the proposed restart strategy
selects points representative for the orthogonal structure of spectral embedding. The
similarity threshold parameter τ serves as a "step size" that prevents the subsequent
starting points from being too close.

Although the proposed Algorithm 4.1 is based on the clustering initialization
method [79], the added extensions make it a robust (i.e., not prone to poor local optima)
method to minimize the alignment cost. The returned orthogonal transformation often
needs only little improvement by the minimization methods from Sections 4.2, 4.3.1.
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Figure 4.2: Aligned 3-spectral embedding for the par-
titioning study shown in Figure 4.3. The different col-
ors and marker shapes represent the result of the NJW
algorithm; the dashed lines show the grouping ob-
tained by the partitioning algorithm from Section 4.4.
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Figure 4.3: Branch admittances of the IEEE 39 bus test
network, and spectral clustering into three parts with
the NJW algorithm and the partitioning algorithm
from Section 4.4. The areas found by the NJW algo-
rithm are colored differently, and the boundaries of
the areas found by the proposed partitioning method
are shown with dashed lines.

4.3.3. ALIGNMENT COST MINIMIZATION SUMMARY

Based on the information given in Sections 4.2, 4.3.1, and 4.3.2, a combined spectral
embedding alignment algorithm can be formulated that consists of the following three
steps:

1. Initialization from previously aligned spectral embeddings.

2. Robust orthogonal initialization.

3. Final alignment cost minimization.

The overall philosophy of the proposed three-step algorithm is to apply several ef-
ficient methods to sequentially bound the alignment cost and reach a near-global op-
timum. At first, the alignment cost is reduced by applying the previous orthogonal
transformations (accumulated in a matrix as illustrated by (4.6)) to the next set of row-
normalized columns of U. This step is mainly included due to its very low computa-
tional cost and ability to produce a quick initial bound of the optimization objective.
The second step was described in Section 4.3.2. The third step is the iterative minimiza-
tion of (4.2) or (4.5) from multiple starting positions. The multiple restart strategy of
Section 4.3.2 supplies initializations of varying quality to the third step, resulting in the
overall high-quality optimum.

As a graphic illustration of the algorithm’s possible outcome, Figure 4.2 shows the
aligned 3-spectral embedding from which the partitioning result in Figure 4.3 has been
obtained. Another illustration was already given above in Figure 4.4.
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Figure 4.4: Minimized alignment costs (4.2) and (4.5) for branch admittance graphs of the two networks from
MATPOWER with all transformer phase shifts set to zero.

4.3.4. SELECTION OF ALIGNMENT COST

The spectral embedding alignment procedure of Section 4.3.3 can be used to robustly
obtain near global minima of both (4.2) and (4.5). To illustrate this, the results of apply-
ing this procedure to the branch admittance graphs of the two large scale MATPOWER
networks (case1354pegase and case2869pegase) are shown in Figure 4.4. As it can be seen,
the minimization of alignment costs (4.2) and (4.5) discovers a very similar pattern.

The GD-based minimization of (4.5) uses Givens angles as optimization variables,
which is explained in more detail in Appendix B. The number of Givens angles for k
eigenvectors is equal to k(k −1)/2; i.e. the solution space grows quadratically with the
increase of k. Therefore, the computation time of the gradient-based eigenvector align-
ment (4.5) showed to be noticeably higher, especially as the number of eigenvectors in-
creased. Another issue with the gradient-based minimization is the necessity to prop-
erly choose the learning rate parameter. Thus, the minimization of objective (4.2) will be
used in the following to discover the orthogonal structure of spectral k-embeddings.

The cost functions in (4.2) and (4.5) are largely motivated by the corresponding algo-
rithms for their minimization. While (4.2) or (4.5) can be conveniently used to estimate
the proximity of spectral embedding to the canonical coordinate axes, their numerical
values cannot be easily related when comparing the alignment results for different in-
put graphs (e.g., see the numerical values in Figure 4.4). To circumvent this issue, a new
alignment cost metric is proposed:

C = 1

n
trace

(
X̃T X∗)

(4.8)
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Figure 4.5: Cluster core estimation from the axes-aligned spectral embedding in Figure 4.2 using Algorithm 4.2.
Each column of X∗ was sorted in descending order, and the starting size of cluster core was set at 2.

where X∗ = XR∗ is the final aligned spectral embedding obtained through the best align-
ing orthogonal transformation R∗ and X̃ is obtained from X∗ through non-maximum
suppression (4.3).

The metric (4.8) is introduced solely for the evaluation and comparison purposes,
while the actual spectral embedding alignment is obtained through the same methods
that were discussed in the previous sections. Noteworthy, the metric (4.8) attains high
values if the alignment of X is good, with the highest value being equal to 1. Therefore,
the metric (4.8) has the meaning of alignment quality as opposed to alignment cost.

4.4. EIGENVECTOR ALIGNMENT AND GRAPH PARTITIONING
Apart from providing good indicators to select the number of clusters, the axes-aligned
spectral embedding can also be a valuable input to partition the network. By looking
at Figure 4.2, it is possible to see that some buses reside in dense cluster cores, while
others (e.g. 1, 17, 18, 39) have their cluster membership less certain. If the computed
aligning orthogonal transformation is denoted as R∗ and X ∈ Rn×k is a row-normalized
matrix of eigenvectors of Wn, the axes-aligned normalized spectral embedding XR∗ can
be referred to as X∗. With aligned X∗, a cluster core becomes numerically recognizable
as the corresponding entries of some column of X∗ will be close to one. And because the
Euclidean norm of each row equals to one, the entries of the remaining columns in the
same row will be close to zero.

The cluster core estimation process is formulated as Algorithm 4.2. First, the
columns of X∗ are sorted individually to reveal which of their rows have a large mag-
nitude. Then the cluster core is initiated with the original row indices of the first nmi n

entries of the sorted column of X∗, where nmi n is obtained from the cluster size require-
ment (2.25). The next nodes are added to the core in the decreasing order of the corre-
sponding column entries until the predefined threshold β is reached. To consider each
column of X∗ independently, this threshold value should be above

p
2/2. The value

p
2/2

ensures that no two (or more) columns of X∗ can simultaneously assign the same row to
their clusters. The initial value of β has been set to

p
3/2 for all the results in this chap-
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Algorithm 4.2 Cluster cores from axes-aligned spectral embedding

Input: Aligned normalized spectral embedding X∗
n×k , matrix W, threshold β, mini-

mal number of nodes per cluster nmi n

1: CC←; // cluster cores

2: for j = 1 to k do
3: X ← X∗[1, . . . ,n; j ] // j th column of X∗
4: or d ← Descending order of entries in X
5: if max(X )−0.1 <β then
6: βx ← max(max(X )−0.1,

p
2/2) // If current X is not well-aligned, use lower β

7: else
8: βx ←β

9: end if
10: cor e ← or d [1, . . . ,nmi n]
11: phi [1, . . . ,nmi n] ←φ(W,cor e) // (2.23), (4.9)

12: i ← nmi n +1
13: while X [or d [i ]] ≥βx do
14: cor e ← or d [1, . . . , i ]
15: phi [i ] ←φ(W,cor e) // (2.23)

16: i ← i +1
17: end while
18: i∗ ← argmin phi
19: CC← CC∪ {cor e[1, . . . , i∗]}
20: end for

Output: CC // The k cluster cores

ter, which guarantees the other column entries for the same node not to exceed 0.5. The
expansion ratio of the cluster core is updated after adding each next node, and the fi-
nal cluster core is selected as the set of nodes with the smallest achieved expansion. In
the majority of cases, the minimal expansion ratio corresponds to a cluster core having
a single connected component. If there are multiple connected components, the next
smallest expansion with the index higher than nmi n is accepted, and the connectivity is
checked for the corresponding group of nodes. In the worst case, the largest connected
component can be taken as the core. However, such situations are not common in prac-
tice and mostly occur when the alignment of normalized spectral embedding is poor. An
example of the cluster core estimation approach is shown in Figure 4.5 for the partition-
ing of the admittance graph of the IEEE 39 test network (see Figure 4.3).

The expansion ratio in Algorithm 4.2 can be updated efficiently by using an alterna-
tive formula:

φ(C) = vol(C)− links(C,C)

vol(C)
(4.9)

In (4.9), the cluster volume C can be updated by adding the pre-computed degree
of the new cluster node (2.1) to the cluster volume value at the previous iteration. The
weight of internal cluster edges links(C,C) can be updated by adding the double weight
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Figure 4.6: Use of minimum s-t cuts for cluster core improvement and final recursive bisection

of the edges linking the new cluster node with the cluster nodes at the previous itera-
tion (i.e., 2

∑
i∈C Wi j ). Implementing these steps makes it possible to compute the many

expansion ratio values in Algorithm 4.2 with a minimal computational overhead.
After all cluster cores have been estimated, they are improved one-by-one in the de-

creasing order of their expansion ratios:

1. Rerun the cluster core estimation Algorithm 4.2 with the threshold β only slightly
above of

p
2/2.

2. Merge each cluster core to a single core node and find the minimum isolating s-t
cut from the current core node to the remaining core nodes. A new fictitious sink
node should be created and connected to the remaining core nodes with edges of
an infinitely large weight. Then the isolating cut is computed as the minimum s-t
cut between the current core node and the fictitious sink node [109]. Increase the
current cluster core by the nodes that reside on its side of the cut.

The final improvement is chosen as one that reduces the expansion ratio most. The
goal of this procedure is to decrease the objective (2.24) by greedily attempting to reduce
the expansion ratios of the least fit cluster cores. The use of minimum s-t cuts (i.e., solu-
tions to the max-flow/min-cut problem [108]) is motivated by their ability to rapidly find
the globally optimal cut between two nodes (or two sets of nodes) in the graph. The clas-
sical drawback of minimum graph cuts to return highly unequally-sized bisections [74]
is circumvented here by looking for the minimum cut that separates a whole cluster core
(merged into a node) from the remaining core nodes. An example of use of minimum s-t
cuts for cluster core improvement is shown in Figure 4.6a.

After the refinement stage, the updated cluster cores are once again collapsed into
single nodes. The reduced network should consist of k core nodes and all the remaining
nodes that were not assigned to the cluster cores, and it is partitioned via recursive bi-
section. At every step of recursive bisection, candidate minimum s-t cuts [108] are com-
puted between an arbitrary core node and the remaining ones, and the lowest of these
cuts is retained. This process iterates until all core nodes become separated from each
other with all the remaining nodes being assigned to a cluster. The resulting partitioning
is guaranteed to be connected, as cluster cores were constrained to be connected, and
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minimal s-t cuts always separate the input graph into two connected parts. For exam-
ple, Figure 4.6b shows the two candidate minimum s-t cuts with cluster core C3 being
the source and cluster cores C1 and C2 being the two targets. As the value of cut C3-C2 is
lower, it is retained, and the final partitioning is obtained by computing the s-t cut C3-C1
in the residual network resulting after the removal of node C2, as shown in Figure 4.6c.

4.5. EVALUATION OF GRAPH PARTITIONING ALGORITHM
To evaluate the proposed graph partitioning method, it is tested on the branch admit-
tance graphs of the two networks from the MATPOWER toolbox [81, 140] for which the
alignment cost plots are presented in Figure 4.4. No modifications (e.g., reduction of leaf
nodes [30, 94]) have been performed on the networks, except fixing the control angles of
the few available phase shifting transformers at zero degrees to preserve the symmetry
of the graph adjacency matrix. However, a phase shifting transformer with a non-zero
phase shift can be represented in DC power flow by an equivalent (symmetric) admit-
tance (see [167]), thus potentially allowing an extension of spectral graph partitioning to
power networks with phase shifting transformers.

The partitioning algorithm in Section 4.4 is compared with the NJW and HSC al-
gorithms from Section 2.5.2, and with the multilevel kernel k-means software Gra-
clus [124]. The chosen hierarchical clustering linkage criterion of the HSC method is
average linkage, as it was producing consistently better results. As Graclus and the NJW
algorithm do not generally guarantee connected partitions, Algorithm 3.1 is used to en-
sure the cluster connectedness in these two cases. To provide a fair comparison, Algo-
rithm 3.2 is not used to additionally refine the results of any of the four tested methods.
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Figure 4.7: Comparison of maximal expansion ratio and normalized cut for partitioning of the branch admit-
tance graphs of the two test networks from the MATPOWER toolbox
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Figure 4.8: Partitioning of the branch admittance graphs of the two test networks from the MATPOWER toolbox
with the minimal cluster size constraint of 20% of the average cluster size

The maximal expansion ratio (2.24) as well as normalized cut (2.7) are normally in-
creasing in magnitude with the growing number of clusters. To compare the partitioning
performance for different numbers of clusters on the same scale, it is decided to show
the ratios of the results of the three test methods to the result of the algorithm in Section
4.4 (denoted by the † superscript). In addition, the logarithmic y-axis is often used to
make the data on the plots more separable.

For the purpose of comparison, the minimal cluster size is initially set to d0.03n/ke,
with k = 2, . . . ,38 being the requested number of clusters. This small value is chosen to
enable a fair comparison between the algorithms, as neither of NJW, Graclus, and HSC
allows the specification of the minimal cluster size. The maximal number of clusters
kmax is set to a relatively high value of 38 to demonstrate that the proposed partitioning
method generally shows a good performance both for few and many clusters.

For the case of unconstrained cluster sizes, Figure 4.7 demonstrates that the parti-
tioning algorithm based on the orthogonal structure of spectral embedding outperforms
the HSC method [76] in the majority of the cases, and often by a large margin. At the
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Figure 4.9: Total partitioning time of the four tested algorithms

same time, the HSC method with average linkage can be considered as an efficient par-
titioning algorithm, as it usually performs noticeably better than Graclus and NJW.

Figure 4.8 demonstrates the test results for the case when all clusters are required
to be not smaller than 20% of the average cluster size n/k. The information provided
by the aligned spectral embedding about the approximate locations and sizes of both
small and large clusters in the network allows to neglect the columns of X∗ describing
presumably small clusters. As the result, the cluster size constraint is satisfied in all cases
(see Figures 4.8e–4.8f). Satisfying the cluster size constraint has the associated cost in
terms of partitioning quality: the HSC method now shows better φmax and N cut more
often, as it only aims to find compact clusters without imposing additional constraints
on their size, as seen from Figures 4.8e–4.8f.

The computational time of the four algorithms for the largest tested number of clus-
ters is shown in Figure 4.9. These results were obtained on MATLAB R2017a (64-bit) on
a PC with an Intel® Xeon® E5 3.70 GHz CPU (single core computation) using a Linux
virtual machine with 2 Gb of RAM. The use of the virtual machine running under Linix
was due to the need to run Graclus. The computational time of the partitioning method
from Section 4.4 includes the eigenvector computation time, spectral embedding align-
ment time, time to estimate and refine cluster cores and time of final recursive bisection.
As it can be seen, the run time of the proposed partitioning method is slower than the
HSC run time for the smaller 1354 bus test network, but this relationship improves as the
network size increases. The non-monotonic increase of the computational time of the
three eigenvector-based clustering methods (see Figure 4.9b) can be attributed to the
complex convergence mechanisms of eigenvalue solvers for sparse matrices, as it has
already been mentioned in Section 3.4.3.

4.6. CONCLUSIONS
This chapter has proposed an efficient methodology to select a good number of clusters
when partitioning electric power networks, which constitutes research question V (see
Section 1.2.3). Unlike several previous ideas [46, 52, 164, 165], the proposed method,
which combines and extends the ideas from [122] and [129], does not depend on the
internal mechanics of any particular clustering algorithm. Instead, it aims to explore
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the structure of the graph spectral embedding, which can be considered as an inherent
property of the studied graph. To this end, an optimal orthogonal transformation is esti-
mated in a robust way to align the k-dimensional spectral embedding with the canonical
coordinate system. The proposed method for the estimation of the number of clusters
has been tested with the two alignment cost functions from [122] and [129] to reveal the
nearly identical shape of the both objectives for the varying number of clusters. Addi-
tionally, a new quality function has been proposed to measure the average deviation of
the spectral embedding from the canonical coordinate system.

To further justify the effectiveness of the proposed spectral embedding alignment
scheme, an efficient k-way spectral partitioning algorithm has been proposed that uses
the axes-aligned spectral embedding to find a set of k well-separated network clusters.
This algorithm often achieves good results even if the spectral embedding does not show
a distinct orthogonal structure, which may be explained by the great value of the global
information about the locations of good clusters in the network that is contained in the
axes-aligned spectral embedding. The possibility to approximately estimate cluster sizes
allows to introduce a constraint on the minimal number of nodes per cluster, which rep-
resents a convenient way to avoid small clusters. Thus, the proposed k-way partitioning
algorithm contributes to research questions I, II, while being able to ensure cluster con-
nectedness (research question III). The described findings have been confirmed by the
test results on partitioning of branch admittance graphs of the two large-scale power
networks.

The results of this chapter mainly focus on the formulation of the new methods and
their comparative testing using branch admittance graphs that are readily available from
the network power flow data. As the next chapter will demonstrate, the methodology
formulated in this chapter can potentially be used for a broad range of power system
applications. For the practical applications of the proposed clustering methodology, it is
important to remember about the clustering granularity issue [168]: for many datasets
multiple "good" clusterings are possible depending on the cluster sizes that are looked
for (i.e., the clustering resolution). Therefore, the highest spectral embedding alignment
quality may be not the only criterion to select the final clustering structure. Instead, it
may be better to select a different local maximum on the alignment quality plot if the
corresponding clustering better satisfies the criteria imposed by the application at hand.





5
PARTITIONING FOR SVC AND

GENERATOR SLOW COHERENCY

5.1. INTRODUCTION
This chapter focuses on the application of the methodology formulated in Chapter 4 to
the two relevant power system problems: network zone division for SVC and identifica-
tion of coherent groups of generators. The fundamentals of both of these applications
have been discussed in Sections 2.2.1 and 2.6 respectively1.

Regarding SVC, a zoning model is introduced that reformulates the earlier proposed
VCS method [52] as a graph partitioning problem. The reformulation allows to apply
the methods introduced in Chapter 4 to resolve some of the fundamental issues associ-
ated with SVC (most notably, the selection of the optimal number of pilot buses). This
is achieved through evaluating the possible SVC zone divisions that show a high spec-
tral embedding alignment quality and selecting the ones that result in a robust voltage
regulation while using a moderate amount of pilot buses. Subsequently, the proposed
SVC zoning methodology is verified by the two case studies involving the IEEE 39 bus
test system and the IEEE 68 bus test system.

Similarly to SVC, the proposed generator slow coherency methodology is based on
the spectral clustering framework introduced in Chapter 4. It is shown that when the
eigenvectors of the electromechanical state matrix in (2.19) are mass-normalized (see
[169, 170]), the orthogonal structure described in Chapter 4 emerges. The topic is con-
cluded by the case studies on the NPCC 48 machine system.

This chapter is subdivided into two parts. First, Section 5.2 introduces and validates
the new SVC zoning model. Second, Section 5.3 explores the links between generator
slow coherency and the spectral clustering framework of Chapter 4 to propose and verify
a new approach to generator coherency grouping. Section 5.4 aims to summarize the
chapter, draw conclusions and provide an outlook.

1The material of this chapter is based on [J1] and [J3].
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5.2. NETWORK ZONE DIVISION FOR SVC
As it has been detailed in Section 2.2.1, defining the SVC structure through electric power
system division into VCZs has a significant practical merit, which justifies the use of this
approach in multiple practical power systems [46, 47, 52, 93, 171].

Typically, power flow voltage sensitivities are involved into the VCZ definition, as
these sensitivities precisely reflect the voltage relationships in the network. For example,

inverted power flow sensitivity matrices of the form
[
∂Q
∂V

]−1
have been used to define the

SVC structure of the French and Italian power systems [46, 47].
The VCS method, which has been used for SVC in China [52], uses a different voltage

sensitivity S′
i j =

∂VL,i
∂QG , j

, where VL,i is the voltage of the i load bus and QG , j is the reactive

power output of the j control generator. In the original VCS method, the sensitivities S′
i j

are used to calculate the coordinates xi j of the i load bus in the g -dimensional Euclidean
space:

xi j =− log(|S′
i j |), i = 1, . . . ,n, j = 1, . . . , g (5.1)

where g represents the number of control generators. After each bus receives its g -
dimensional coordinate, the buses are clustered using AHC with the average inter-
cluster distance serving as guidance to select the number of VCZs [52, 94]. In what fol-
lows, an alternative formulation of the VCS method is detailed, with the above descrip-
tion serving as an introduction and reference.

5.2.1. ZONING MODEL

The voltage sensitivities that are used for SVC zoning can be derived from the power flow
Jacobian matrix containing the partial derivatives of active and reactive powers w.r.t. the
voltage magnitudes and angles. The required expression can be written as:

∆Q = B∆V (5.2)

where∆V is the vector of small bus voltage magnitude changes,∆Q is the vector of small
changes in bus reactive power injections, and B is the sensitivity matrix relating the two
quantities.

In HV transmission power networks, reactive power injections have the major influ-
ence on bus voltages. Therefore, the matrix B is often modeled by the fast decoupled
load flow (FLDF) matrix B" [172], which is equal to the negative nodal susceptance ma-
trix. The accuracy of this simplified approach diminishes as the network becomes more
heavily loaded. A more precise estimate of the matrix B is obtained by computing it
from the power flow Jacobian corresponding to the actual operating condition by ne-
glecting the effect of active power changes on voltage magnitudes. Setting the active
power changes to zero allows to reduce the power flow Jacobian to a n×n matrix relating
bus voltage magnitudes and reactive power injections. This matrix will be used for the
sensitivity calculations in this chapter, and its derivation is illustrated in [1, Chapter 14],
[95] and many other references. To compute voltage sensitivities between generator and
load buses, the matrix B is expressed in the partitioned form:
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[
∆QG

∆QL

]
=

[
BGG BGL

BLG BLL

][
∆VG

∆VL

]
(5.3)

where ∆VG and ∆VL are vectors of voltage magnitude changes at generator and load
buses respectively, ∆QG and ∆QL are vectors of changes of reactive power injections at
generator and load buses respectively, and BGG, BGL, BLG, BLL are the corresponding
submatrices of B. In the partitioned equation (5.3), the generator buses are assumed to
coincide with PV and slack buses (i.e., the voltage-controlled buses), and the load buses
are assumed to coincide with PQ buses.

To accommodate the VCS method to the spectral clustering methodology of Chapter
4, the relationships between control generators and load buses described by the sensi-
tivities S′

i j are presented in the form of the bipartite graph with the symmetric adjacency

matrix SQ as follows:

SQ =
[

0 [S′
i j ]

[S′
i j ]T 0

]
(5.4)

According to the references utilising the VCS method [173, 174, 175], the VCS sensi-
tivities S′

i j in the matrix SQ can be computed through the following steps:

1. Check the reactive power injections at generator buses. If the reactive power out-
put of a generator is close to its upper limit, set its bus as a PQ node.

2. Set the j control generator as a PQ node. That is, the corresponding bus status in
(5.3) changes from generator bus to load bus for a single iteration.

3. Invert the augmented matrix BLL corresponding to the original PQ buses and the
extra PQ bus of the j control generator.

4. From B−1
LL , extract the column vector corresponding to the bus of the j control

generator, and in this vector keep only the entries corresponding to the original
PQ buses. Insert this vector as the j column of the matrix [S′

i j ].

5. Repeat steps 1–4 for the remaining control generators.

In the above process, it is possible to substitute step 3 by slightly increasing the reac-
tive power output of the j control generator and re-running the AC power flow. Then the
sensitivities of load voltages to reactive power injections of the j control generator can
be approximated through quotients of load bus voltage deviations by the reactive power
increment of the j control generator.

The sensitivity of load voltages to generator voltage control can alternatively be

stated as Si j = ∂VL,i
∂VG , j

, where VG , j is the terminal voltage of the j control generator. It

can expressed from the second set of equations in (5.3):

∆VL = B−1
LL∆QL −B−1

LL BLG∆VG (5.5)

From (5.5), the SVC sensitivity between generator and load voltages is given by:
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S =−B−1
LL BLG (5.6)

and the corresponding bipartite graph is described by the symmetric adjacency matrix
SV as follows:

SV =
[

0 [Si j ]
[Si j ]T 0

]
(5.7)

The matrices
[

S′
i j

]
and

[
Si j

]
are related. Namely, the columns of

[
S′

i j

]
are the scaled

versions of the columns of
[
Si j

]
and vice versa. Using the matrix SV instead of the matrix

SQ has the advantage of more regular graph weights: the sensitivities
∂VL,i
∂VG , j

are effectively

voltage attenuations [46] belonging to the range [0,1]. The sensitivities
∂VL,i
∂VG , j

have also

been used in several SVC control laws (e.g., [15, 96]). Therefore, the matrix SV is chosen
to be used in the subsequent SVC studies. However, both matrices have been observed
to give very similar SVC zoning results.

5.2.2. PERFORMANCE EVALUATION

The main goal of SVC is to maintain the voltage at the load buses by controlling the vol-
tage of the pilot buses to their reference values computed by a higher-level optimiza-
tion program. The regulation of pilot bus voltages is achieved by updating the terminal
voltage set points of generators participating in SVC. The secondary objective typically
included into SVC is to maximize reactive power reserves by balancing the reactive load-
ing levels of control generators. The reactive loading level is understood as the ratio of
reactive power output to the generator reactive power limit.

Across the SVC literature, it is common to evaluate the first SVC objective as the met-
ric of SVC performance. Accordingly, the root mean square error (RMSE) of the load bus
voltages is accepted as SVC performance metric:

VRMSE =
√

1

|L|
∑
i∈L

(Vi −Vi ,0)2 (5.8)

where L is the set of load buses, Vi is the voltage magnitude at bus i after voltage con-
trol has converged, Vi ,0 is the pre-disturbance reference voltage magnitude at bus i , and
VRMSE is the voltage RMSE. Performance metrics similar to (5.8) were used in [96, 176,
177], while mean absolute error (MAE) of the load bus voltages was used in [178]. The
minimization of the RMSE metric in (5.8) by SVC stronger penalizes high voltage devia-
tions.

The degree to which the generator reactive loading levels are balanced is often tuned
inside the SVC control algorithm (e.g., [15, 96, 179]). A higher emphasis on balancing of
reactive loading levels may lead to larger steady-state errors in pilot bus voltages. There-
fore, the desired degree of trade-off between the pilot bus voltage regulation and the
balancing of generator reactive loading levels should be incorporated into the SVC algo-
rithm (e.g., based on offline studies [15]).
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The following two types of voltage errors are introduced for individual system buses
to visualize the SVC performance:

∆Vi ,ad = |Vi ,ad −Vi ,0| (5.9a)

∆Vi ,ac = |Vi ,ac −Vi ,0| (5.9b)

where ∆Vi ,ad is the absolute voltage deviation at bus i after PVC converges following a
disturbance, and ∆Vi ,ac is the same voltage deviation after SVC has subsequently con-
verged.

5.2.3. PILOT BUS SELECTION
The used pilot bus selection methodology is similar to the line of work [95, 96], but now
the number of pilot buses is chosen from the spectral embedding alignment quality
plots. That is, the VCZ configurations featuring high values of the quality function in
(4.8) are explored, and each time one pilot bus per zone is selected.

The initial pilot bus selection can be obtained by selecting in each zone the bus with
the highest short circuit power [51, 171], the most central bus in terms of electric distance
[46], or by using some other heuristics. At the next step, the initial pilot bus selection is
improved by changing the pilot buses one at a time and observing the resulting SVC per-
formance. This is similar to the global search method [96], but unlike [96] the pilot bus
changes are constrained to their respective control zones, which significantly reduces
the search space.

In [96], a specialized power flow algorithm was introduced to quickly and accurately
access the SVC performance for multiple operating scenarios and pilot bus configura-
tions. Instead of reproducing this algorithm, the SVC performance is accessed by run-
ning the actual coordinated secondary voltage control (CSVC) algorithm proposed in
[96] (see Appendix C). As in [52, 96], the SVC performance is evaluated for a single sce-
nario of a positive increase of the reactive power demand of all loads by 25% (more sce-
narios could be added in practical studies). To ensure the convergence of all pilot bus
voltages close to their reference values, the balancing term between the two CSVC ob-
jectives has been lowered by the factor of 10 for all case studies, while the other control
parameters are as in [96].

5.2.4. CASE STUDIES
This section illustrates the pilot bus selection process using the SVC zoning model of
Section 5.2.1 together with the partitioning methodology of Chapter 4 on the example
of the IEEE 39 bus test system (the network data is from [180]) and the IEEE 68 bus test
system (the network data is from [141]).

IEEE 39 BUS TEST SYSTEM

Test System: The IEEE 39 bus test system [180] consists of 29 load buses and ten gener-
ator buses, with the equivalent generator at bus 39 representing the interconnection to
an external power system. The generators at buses 30–38 are assumed to participate in
SVC, while the equivalent generator is assumed to only maintain the voltage at its termi-
nal bus 39. The one line diagram of this test system together with the SVC zoning results
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Figure 5.1: Results of AZD of the IEEE 39 bus system with the spectral VCS method

(see below) is shown in Figure 5.1. The model of the IEEE 39 bus test system was taken
from MATPOWER, and a few minor differences with the data in [180] were subsequently
corrected.

Base Case: To better reflect the bi-objective nature of CSVC, the nominal operating
condition of the IEEE 39 bus test system is obtained by running the MATPOWER AC OPF
with the generation costs favoring the equal reactive loading levels of all control genera-
tors. This step is also necessary to respect the reactive power limits of each generator (as
they are given in MATPOWER v6.0b1) after applying load disturbances to the network.

Adaptive Pilot Bus Selection: The benefits of adaptive pilot bus selection are illus-
trated by simulating the CSVC strategy [96] with various sets of pilot buses for the two
topological states of the IEEE 39 bus test network:

1. All elements are in service.

2. Line 6–11 is switched off.

For each of the two operating conditions, the adjacency matrix is constructed both
as (5.7) and (5.4), and the alignment quality (4.8) is computed for the number of VCZs
ranging from 2 to 10. The results of this process are shown in Figure 5.2 with the optimal
number of zones being five for the first topological state and six for the second one. Ad-
ditionally, it can be noted that the use of both SV and SQ has resulted in a similar shape
of the alignment quality curve.

The two resulting zone divisions are shown in Figure 5.1. As it can be seen, the
disconnection of line 6–11 suggests the splitting of the initial Zone 5 into Zone 5A and
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Figure 5.2: Alignment quality (4.8) for the spectral VCS method applied to the IEEE 39 bus test system

Zone 5B. Although the zone border remains the same, the decrease of internal connect-
edness of Zone 5 effectively leads to its splitting into two clusters, which is well reflected
on the alignment quality plot of Figure 5.2. Using the pilot bus selection process of Sec-
tion 5.2.3, the best found set of pilot buses for the first topological state is {3, 28, 16, 20,
5}, and for the second state it is {3, 28, 16, 20, 5, 12}.

PERFORMANCE EVALUATION

The 25% positive increase of the reactive power demand of all loads results in the to-
tal system reactive load increase from 1408.9 MVar to 1807.2 MVar. For this test event,
the voltage RMSE (5.8) is summarized in the first three columns of Table 5.1 for the two
topological states mentioned above and their corresponding sets of pilots buses. The
voltage control performance in the absence of SVC (i.e., with no pilot buses) is also pro-
vided as a reference. As it can be seen, the CSVC performance is similar with the two sets
of pilot buses for the nominal network topology, but once line 6–11 is switched off, the
additional pilot bus 12 starts to create a noticeable difference in the system-wide perfor-
mance indicator (5.8). The bus-by-bus voltage differences are shown in Figure 5.3a.

As a reference for comparison, the CSVC algorithm [96] is simulated with the sets
of pilot buses originally mentioned in [52] for the same test event of 25% reactive load
increase. The results of this case study are also given in Table 5.1 (the last two columns).
To comply with the study in [52], the equivalent generator at bus 39 is added to the set
of control generators. However, it has been established with the results in Table 5.1 that
fixing the voltage at bus 39 instead of choosing a nearby pilot bus yields lower voltage
deviations. The results in Table 5.1 demonstrate that the pilot buses obtained with the

State
Pilots

None
{3, 28, 16,

20, 5}
{3, 28, 16,
20, 5, 12}

{1, 3, 6,
24, 28}

{1, 3, 5,
12, 24, 28}

Topology 1 0.0129 p.u. 0.00292 p.u. 0.00292 p.u. 0.00494 p.u. 0.00510 p.u.

Topology 2 0.0164 p.u. 0.00594 p.u. 0.00378 p.u. 0.00664 p.u. 0.00537 p.u.

Table 5.1: Voltage RMSE under AZD for the IEEE 39 bus test system
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Figure 5.4: Results of AZD of the IEEE 68 bus system with the spectral VCS method

proposed methods show a markedly lower voltage RMSE. The bus-by-bus voltage error
comparison is shown in Figure 5.3b.

As it can be noticed, the results in the last two columns of Table 5.1 basically describe
the situation with no pilot bus in Zone 4. The addition of bus 20 has resulted in the fol-
lowing performance improvements: the selection {1, 3, 6, 20, 24, 28} for the Topology 1
has dropped the objective (5.8) to 0.00332 p.u., and the selection {1, 3, 5, 12, 20, 24, 28}
has resulted in the voltage RMS error of 0.00393 p.u. for the Topology 2. These obser-
vations further confirm the ability of the clustering framework in Chapter 4 to infer a
good number and location of control zones from the global view of voltage sensitivity
relationships between generator and load buses.

IEEE 68 BUS TEST SYSTEM

Test System: The IEEE 68 bus test system [141] consists of 52 load buses and 16 gen-
erator buses, with the three equivalent generator buses 14, 15, 16 representing the inter-
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Figure 5.5: Alignment quality (4.8) for the spectral VCS method applied to the IEEE 68 bus test system

connections to external power systems. All the 16 available generators are assumed to
participate in SVC. The one line diagram of this test system together with the SVC zoning
results (see below) is shown in Figure 5.4. On this diagram, the nominal power system
areas are marked with black dashed lines. The NETS area represents the New England
test system (i.e., a copy of the IEEE 39 bus test system shown on Figure 5.1 without bus
39), while the NYPS area represents the New York power system and areas 3–5 are the
equivalent models of the three other neighboring areas.

Base Case: The nominal power flow scenario of the IEEE 68 bus test system does not
result in large violations of generator reactive power limits after applying the 25% reac-
tive load disturbance. This is because the exact generator output power limits are not
given in [141], which allows to assume some big numbers instead. Therefore, running
the AC OPF to align the pre-disturbance generator reactive power loading levels is un-
necessary.

Adaptive Pilot Bus Selection: The pilot buses are selected for the base case scenario
similarly to the procedure in Section 5.2.4. The corresponding alignment quality plots
are shown in Figure 5.5 for both SV and SQ used as adjacency matrices.

On the both plots of Figure 5.5, the dominant number of VCZs appears to be three.
These zones appear to be the NETS area, area 4, and the NYPS area combined with areas
3 and 5. The voltage variations in area 4 do not propagate further into the system because
of the voltage-controlled generators in areas 3 and 5, which explains the formation of a
distinct area 4 cluster. Thus, the three zones clustering is meaningful, but it is not very
useful for SVC due to the excessive zone sizes. The clustering quality index (4.8) remains
relatively high for the 5-zone clustering, which identifies each nominal area in Figure 5.4
as a separate cluster. However, the 5-zone clustering also cannot be accepted because
of the excessive sizes of the NETS and NYPS areas. Therefore, the next best number of
clusters (i.e., 10 both in Figure 5.5a and 5.5b) is evaluated, and the corresponding zoning
results with the matrix SV are highlighted in Figure 5.4 by using colors. For this VCZ
division, the ten pilot buses have been estimated as {18, 20, 21, 28, 32, 35, 41, 42, 54, 60}.



5

90 5. PARTITIONING FOR SVC AND GENERATOR SLOW COHERENCY

State
Pilots

None
{18, 32, 35, 42, 41,
28, 20, 21, 54, 60}

Base case 0.0106 p.u. 0.00393 p.u.

Table 5.2: Voltage RMSE under AZD for the IEEE 68 bus test system
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Performance evaluation: The 25% positive increase of the reactive power demand of
all loads results in the total reactive load increase from 1971.8 MVar to 2654.9 MVar. The
resulting voltage RMSE (5.8) for this event is summarized in Table 5.2 both for the case of
CSVC not active and CSVC enabled and acting on set of pilot buses selected above. The
bus-by-bus voltage error comparison is shown in Figure 5.6.

5.3. GENERATOR SLOW COHERENCY IDENTIFICATION

5.3.1. ANALOGY BETWEEN SLOW COHERENCY AND SPECTRAL CLUSTERING
To apply the ideas from Chapter 4 to the identification of groups of coherent generators,
it is first necessary to reveal the close links between generator slow coherency and spec-
tral clustering. Consider again the state matrix in (2.19) that describes the electrome-
chanical mode shapes of a power system:

M−1K,
1

2
H−1ω0K (5.10)

where Mi = 2Hi
ω0

is the scaled inertia constant of machine i and M = diag(M1, . . . , Mg ) is
the diagonal matrix of scaled machine inertias.

In (5.10), the entries of the synchronizing torque coefficients matrix K are computed
according to (2.17). In (2.17), the conductances Gi j are typically much smaller than the
susceptances Bi j for high-voltage transmission networks. If the terms with Gi j are ne-
glected and there are no phase shifters, the matrix K becomes symmetric and identical to
the negated graph Laplacian matrix defined in (2.6a). If the terms Gi j are not neglected,
their contributions still remain small for the most of practical power networks (e.g., see
[34, Chap. 4]), which still keeps K close to the negated graph Laplacian (2.6a).
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At the same time, the inertia matrix M plays a similar role in (5.10) as the degree
matrix D in (2.6b). As it has been mentioned in Section 2.5, the weighted node degrees
on the diagonal of the matrix D can be interpreted as weights of the respective graph
nodes. Similarly, the inertia matrix M can be seen as the node weights matrix for the
graph describing the relationships between generators through synchronizing torque
coefficients. The whole process of deriving the spectral relaxation of the Ncut problem
summarized in equations (2.8) to (2.12) can be repeated with the matrix M used instead
of the matrix D. For example, the resulting generic normalized cut is similar to (2.8):

minimize NcutM(X̃) = 1

k

k∑
j=1

X̃ T
j

(−KS
)

X̃ j

X̃ T
j MX̃ j

(5.11a)

subject to: X̃ ∈ {0,1}g×k , X̃1k×1 = 1g×1 (5.11b)

where X̃ = [X̃1, . . . , X̃k ] is the partition indicator matrix of generator groups C1, . . . ,Ck , X̃ j

are the indicator vectors of the individual groups, and KS is a symmetric version of the
synchronizing torque coefficients matrix K. The optimized quantity in (5.11) is called
generic normalized cut due to the generic node weights in the matrix M being present
in the denominator instead of the degree matrix D as in (2.8). The symmetry of the ma-
trix K is necessary for the clean derivation of the spectral relaxation in (5.11) through
(2.8)–(2.12) and for the evaluation of the NcutM criterion (5.11). The matrix KS can be
defined by neglecting the conductances Gi j in the Kron-reduced admittance matrix in
(2.17) (this matrix is specifically referred to as KB), or by symmetrizing the original matrix
K with a matrix symmetrization method. Coincidentally, if the real and imaginary parts
of the Kron-reduced admittance matrix in (2.17) are both symmetric, which is valid for
power networks without phase shifters, symmetrizing K by averaging the elements above
and below the main diagonal as K S

i j = (Ki j +K j i )/2 and then adjusting the diagonal ele-

ments as K S
i i =−∑g

j=1, j 6=i K S
i j will result in KS = KB.

Analogously to (2.23), it is possible to introduce the generic expansion ratio (or
generic expansion) of a single generator group C as the contribution of this group to the
overall generic normalized cut (5.11):

φM (C) =
X̃ T
C KS X̃C

X̃ T
C MX̃C

=
∑

i∈C, j∈G\C K S
i j∑

i∈C Mi
(5.12)

where X̃C is the binary indicator vector of the generator group C.
From Section 2.5 and the references therein, the spectral relaxation of (5.11) ex-

pressed with the eigenvectors of M−1KS is given by:

minimize NcutSR
M (V) = 1

k
tr

(
VT

(
−KS

)
V
)

(5.13a)

subject to : VT MV = Ik (5.13b)

and a relaxation analogous to (2.11) can be devised by using the closest to zero eigen-
pairs of the symmetric matrix M−1/2KSM−1/2 that is similar to M−1KS. In (5.13), con-
straint (5.13b) states that the eigenvectors of M−1KS should be M-orthogonal to repre-
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Figure 5.7: Electromechanical model data of the IEEE 9 bus system as given in [34] (100 MVA base power)

sent the optimal solution to the relaxation (5.13) of (5.11). Systems of differential equa-
tions of the form (2.19) are common in theory of mechanical vibrations [181], where the
matrix M is the mass matrix, matrix KS is the (symmetrical) stiffness matrix, and the
M-orthogonal eigenvectors V are known as mass-normalized mode shapes. The eigen-
vectors of M−1KS can be mass-normalized to satisfy (5.13b) as follows:

Z j =
V j

V T
j MV j

, j = 1, . . . , g (5.14)

where V j is the j eigenvector of M−1KS (arbitrarily scaled), and Z j is the corresponding
mass-normalized eigenvector.

For the classic slow coherency grouping algorithm proposed in [34, Chapter 5], [33,
182], the scaling of eigenvectors was not elaborated except mentioning that, once group
reference machines are selected, the grouping does not depend on the eigenvector scal-
ing. For another well-known tolerance-based generator coherency algorithm [35, 121],
it was recommended to normalize each eigenvector of M−1KS to length one, which is
similar to the popular feature scaling approach in machine learning.

To illustrate the advantage of using mass-normalized electromechanical eigenvec-
tors, consider the slow coherency grouping of the generators of the IEEE 9 bus test sys-
tem from [34, Chap. 4] shown in Figure 5.7. The unit-length normalized and mass-
normalized eigenvectors of the matrix M−1K corresponding its three eigenvalues {0,
-75.54, -179.15} are listed below:

V =
0.57735 0.31499 −0.04004

0.57735 −0.82430 −0.29591
0.57735 −0.47043 0.95438

 Z =
2.3882 1.5940 −0.3008

2.3882 −4.1715 −2.2230
2.3882 −2.3807 7.1697

 (5.15)

where the eigenvector columns in V are unit-length normalized, and the eigenvector
columns in Z are mass-normalized. As the next step, the eigenvector alignment algo-
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Figure 5.8: Aligned eigenvectors of the electromechanical model of the IEEE 9 bus system

rithm from Section 4.3.3 is tested on the both eigenvector matrices in (5.15). The results
of aligning the first two and three columns of V and Z are shown in Figure 5.8.

Figure 5.8 demonstrates the excellent alignment of the mass-normalized electrome-
chanical eigenvectors with the canonical coordinate axes. This is despite the fact that the
eigenvectors in (5.15) are computed for the original non-symmetric matrix K. The spec-
tral embedding alignment algorithm from Chapter 4 is used at this stage to compute
from (5.15) the orthogonally-transformed spectral embeddings in Figure 5.8. Finally,
scaling eigenvectors to the unit length may be well-justified for the tolerance-based co-
herency algorithm [121], as this algorithm does not rely on the orthogonal structure of
eigenvectors and the overall clustering structure is well-preserved with unity-length nor-
malized eigenvectors. However, the additional information in the orthogonal structure
of electromechanical eigenvectors may provide some new possibilities for the design of
generator coherency identification algorithms.

5.3.2. SLOW COHERENCY GROUPING ALGORITHM

The demonstrated results on the alignment of mass-normalized electromechanical
eigenvectors to the canonical coordinate system motivate the development of a new
generator coherency identification algorithm. The proposed algorithm combines the
ideas about Laplacian eigenvector alignment from Chapter 4 with the classic ideas about
generator coherency from [33, 34, 182]. Similarly to the k-way partitioning algorithm of
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Section 4.4, the developed coherency algorithm includes the alignment cost minimiza-
tion stage and the minimization of normalized cut.

ALIGNMENT COST MINIMIZATION FOR GENERATOR COHERENCY

The eigenvector alignment cost minimization stage allows to select sets of slowest eigen-
vectors of the matrix M−1K that are most representative at describing the electrome-
chanical areas of a power network. The basic procedure is as in Section 4.3: compute the
kmax slowest eigenvectors of M−1K and incrementally align the first k of these eigenvec-
tors with the canonical coordinate system for k running from 2 to kmax. However, there
are some differences compared to Chapter 4 that are described below.

First, using the slow eigenvectors of M−1K tends to produce good results despite the
matrix K usually being non-symmetric. However, it may be advised to test the spectrum
of the original M−1K against the spectrum of its counterpart involving a symmetric ver-
sion of K to check how close is the matrix K to being symmetric (e.g., see [34, Chap. 4]).

Second, if scaled generator inertias are used as graph node weights, using an analog
of the matrix Wn (2.13b) to speed up the computation of eigenvalues will not work, as the
eigenvectors of Wn match those of Ln (2.6b) and Lrw (2.6c) only if the diagonal matrix of
graph node weights is the degree matrix D (2.2).2

Finally, the row normalization procedure (2.14) is not applied to the mass-
normalized eigenvector matrix Z ∈ Rg×k that is used to identify the coherent areas.
According to [33, 182], it is beneficial to choose generators with large and linearly-
independent rows in the electromechanical eigenvector matrix as reference generators of
the coherent areas. Thus, normalizing the length of each row of Z to one would exclude
some information that is valuable for the generator coherency analysis. In addition,
normalizing the rows of Z to length one results in columns of the resulting matrix X no
longer being valid eigenvectors of M−1K.

As the rows of Z are not normalized to unit length, the alignment quality metrics in
(4.2) and (4.8) are not directly applicable. Therefore, the cost in (4.5) is used to assess
the alignment of the orthogonally transformed matrix Z with the canonical coordinate
system. Although it is possible to directly rotate the original eigenvectors in Z towards
the canonical coordinate system by using the GD-based algorithm of Section 4.3.1 and
Appendix B, the actual performance of this approach has been observed to be inferior
compared to the techniques from Sections 4.3.1–4.3.3 that involve the row normaliza-
tion of Z as in (2.14). That is, the row-normalized spectral embedding X ∈Rg×k is aligned
with the standard basis by using the techniques from Sections 4.3.1–4.3.3, and the com-
puted orthogonal transformation R∗ is applied to the initial eigenvectors in Z ∈ Rg×k .
The GD-based algorithm to minimize (4.5) is used afterwards to refine the alignment.

GRAPH PARTITIONING FOR GENERATOR COHERENCY

Similarly to the classic slow coherency approach [33, 34, 182], the proposed genera-
tor grouping algorithm through normalized cut minimization seeks to find k generator

2Section 2.5 describes how the eigenvalues of Wn = I−Ln are shifted by 1 from those of −Ln with the cor-
responding eigenvectors being equal. This correspondence between the eigenpairs is only valid if the two
matrices differ by a scalar multiple of the identity matrix – the property that is lost if the matrix M is used in
(2.6b), (2.6c), (2.13a), (2.13b) instead of the degree matrix D.



5.3. GENERATOR SLOW COHERENCY IDENTIFICATION

5

95

Algorithm 5.1 Estimation of Generator Group Cores

Input: Aligned spectral embedding Z∗
g×k , matrix KS, matrix M

1: β←p
2/2 // Set the eigenvector threshold β to the lowest value

2: Reorder the columns of Z∗ in the descending order of the maximum absolute ele-
ments of each column.

3: X∗ ← diag(Diag(Z∗Z∗T ))−
1
2 Z∗ // Row-normalized spectral embedding corresponding to Z∗

4: for j = 1 to k do
5: Z ← Z∗[1, . . . , g ; j ] // j th column of Z∗
6: X ← X∗[1, . . . , g ; j ] // j th column of X∗
7: or d ← Descending order of entries in Z
8: l ← 0
9: for i ← 1, . . . , g do

10: if X [or d [i ]] >β then
11: l ← l +1
12: cor e[l ] ← or d [i ]
13: phi [l ] ←φM (KS,M,cor e) // (5.12), (5.16)

14: end if
15: end for
16: l∗ ← argmin phi
17: CC j ←

{
cor e[1, . . . , l∗]

}
18: Z∗[CC j ;1, . . . ,k] = 0
19: X∗[CC j ;1, . . . ,k] = 0
20: end for

Output: Generator group cores CC1, . . . ,CCk

groups for a given matrix Z∗ containing the slowest k mass-normalized aligned eigen-
vectors of M−1K as its columns. The methodology to estimate generator group cores
from aligned electromechanical mode shapes is summarized as Algorithm 5.1, and it is
based on Section 4.4 with some modifications (cf. Algorithm 4.2).

New generators are added to a group core in the descending order of magnitudes of
the corresponding column of Z∗ instead of X∗

g×k . In this way, the largest rows of Z∗ that

best indicate the reference machine of the current generator group [33, 182] are always
considered first. However, without row normalization, the entries’ magnitudes in the
columns of Z∗ may vary considerably (e.g., see Figure 5.8d), which makes it difficult to
set a fixed lower threshold for considering each column of Z∗ independently. To solve
this problem, the columns of the row-normalized matrix X∗ are used in combination
with a fixed threshold value β similarly to Algorithm 4.2, except that the order of entries
in the current column of X∗ is determined by the descending order of magnitudes of
the corresponding column of Z∗. To illustrate the interplay of the columns of Z∗ and X∗,
Figure 5.9 shows the generator grouping process for the NPCC 48 machine power system
[34, 35] into three areas by using the three slowest eigenvectors of (5.10) (axes-aligned
and mass-normalized). A copy of the geographical diagram of the NPCC 48 machine
power system is shown in Section 5.3.5.



5

96 5. PARTITIONING FOR SVC AND GENERATOR SLOW COHERENCY

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
5
15
25
35
45
55

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
0.9

0.95

1
5 8 6 7 3 4 2 9 1 1112

36
34

15131618 21

35

172022
14101923

33

26

31
292830

25

27

24

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
0.2

0.4

0.6
5 8 6 7 3 4

2 9 1
11

12

36
34

15

13

1618

21

35

17

2022

14

10

19

23
33

26
31

29

28

30

25

27
24

M

(a)

1 2 3 4 5 6 7

4

6

1 2 3 4 5 6 7
0.8

0.9

1
39 42 38 40 37

41

32

1 2 3 4 5 6 7
0.2

0.3

0.4 39

42
38 40 37 41 32

M

(b)

1 2 3 4 5 6
0
5
10
15
20
25

1 2 3 4 5 6
0.9

0.95

1 44

48

46

43
45

47

1 2 3 4 5 6
0.2

0.25

0.3 44

48 46 43

45

47

M

(c)

Figure 5.9: Estimation of three slowly coherent generator groups of the NPCC 48 machine test system [34]
by using Algorithm 5.1. Each column of Z∗ is sorted in descending order that defines the ordering of the
corresponding columns of X∗. The generic expansion φM is computed using the symmetric matrix KB.

Another issue that arises due to possible considerable differences in magnitudes of
entries of various columns of Z∗ is the possibility to have the same row of Z∗ hosting mul-
tiple column maxima. In such situations, the same generator can be assigned to multiple
groups unless some special measures are taken. For this reason, lines 2 and 18–19 are in-
cluded into Algorithm 5.1. The permutation of the columns of Z∗ at line 2 establishes the
priority order for the columns of Z∗ so that the prospective generator groups featuring
largest entries in their respective columns are considered first. Additionally, lines 18–19
ensure that no row of Z∗ is selected more than once during the grouping process.

Unlike in Algorithm 4.2, it is suggested to set the threshold β to the lowest reliable
value of 0.707 when clustering the columns in Z∗. Moreover, it was observed that set-
ting β to values somewhat lower than 0.707 may sometimes improve the NcutM values
and slow coherency results (in terms of the criteria discussed in Section 5.3.3) when the
eigenvector alignment cost is relatively high. As β is set to the lowest reliable value, the
gains achievable by the cluster core refinement described in Section 4.4 diminish. Con-
sequently, the cluster core refinement stage is absent in Algorithm 5.1, which also sim-
plifies the algorithm. Finally, the minimum cluster size requirement looses its meaning
in the slow coherency context (i.e., if a single large equivalent generator constitutes a
separate group, it must be treated as such).

An execution of Algorithm 5.1 may not classify every machine to a group core. The
remaining machines that do not belong to any group core form a set R. These machines
are similar to loosely coherent machines from literature [34, 35]. Because the involved
matrices K or KB correspond to a complete graph, the remaining machines can be di-
rectly assigned in any order to any group. Below we propose a greedy algorithm to ac-
complish this that usually produces similar or better results as the min-cut based recur-
sive bisection in Section 4.4:

1. Evaluate the generic expansions (5.12) of each of the machine group cores
CC1, . . . ,CCk obtained from Algorithm 5.1 as φM (CC1), . . . ,φM (CCk ).
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2. Attempt to move each remaining machine j ∈R to every group core and evaluate
the signed differences in generic expansions ∆φM (CCl ∪ j ) =φM (CCl )−φM (CCl ∪
j ), l = 1, . . . ,k, j ∈R resulting from these moves.

3. Identify the largest signed difference ∆φM (CCl∗ ∪ j∗), where CCl∗ and j∗ are re-
spectively the group core and the remaining machine involved in the move.

4. Perform the updates: φM (CCl∗) ←φM (CCl∗∪ j∗), CCl∗ ← CCl∗∪ j∗, R←R\ j∗.

5. Repeat steps 2, 3, 4 until all remaining machines are assigned to a group core.

In the above algorithm, the incremental updates of group cores expansions at step 2
can be implemented efficiently by using the formula for φM analogous to (4.9):

φM (C) = vol(C)− links(C,C)∑
i∈C Mi

(5.16)

where vol(C) and links(C,C) are based on (2.1), (2.4) and (2.3) with the underlying adja-
cency matrix being WS = KS −diag(Diag(KS)). To compute the change of φM (C) due to
moving a single machine to or from the group C, the quantities vol(C), links(C,C) and
the sum

∑
i∈C Mi need to be updated accordingly. Updating vol(C) and

∑
i∈C Mi involves

a simple addition or subtraction, as the weighted degrees di can be precomputed for a
given WS and the scaled machine inertias Mi belong to the problem definition in (5.10).
Updating links(C,C) involves adding or subtracting the term 2

∑
i∈C W S

i j , where j is the

machine moved to or from C. The above update scheme is also used in Algorithm 5.1 at
line 13.

The mass-normalized eigenvectors in Z represent an optimal solution to a continu-
ous relaxation (5.13) of the NP-complete problem in (5.11). This implies a possibility of
suboptimal groupings by Algorithm 5.1, especially if the alignment cost in (4.5) is high.
The greedy machine assignments described above may also lead the solution away from
the global optimum of (5.11). Because of these complications, the obtained solutions
may noticeably benefit from graph cut refinement [C2]. The following algorithm sim-
ilar to greedy assignment algorithm described above has been successfully applied to
improve the NcutM values:

1. Evaluate the generic expansions (5.12) of the input machine groups C1, . . . ,Ck as
φM (C1), . . . ,φM (Ck ).

2. Attempt to move each machine j ∈G from its own group C f to every other group Ct

unless C f is a group containing a single machine. Evaluate the signed differences
∆φM (Ct ∪ j ) = φM (Ct )−φM (Ct ∪ j ) and ∆φM (C f \ j ) = φM (C f )−φM (C f \ j ) for j ∈
G, (C f 3 j )∧ (|C f | > 1), Ct ∈ {C1, . . . ,Ck } \C f .

3. Identify the largest signed difference ∆φM (Ct∗, j∗) = ∆φM (Ct∗ ∪ j∗)+∆φM (C f ∗ \
j∗), where Ct∗ and j∗ are respectively the receiving group and the machine to be
moved from the sending group C f ∗.

4. If ∆φM (Ct∗, j∗) > 0, perform the updates: φM (Ct∗) ← φM (Ct∗ ∪ j∗), φM (C f ∗) ←
φM (C f ∗ \ j∗), Ct∗ ← Ct∗∪ j∗, C f ∗ ← C f ∗ \ j∗.

5. Repeat steps 2, 3, 4 until ∆φM (Ct∗, j∗) ≤ 0.
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The above algorithm also exploits the possibility to move any machine to any group
and achieves a high efficiency by using the update scheme based on (5.16) at step 2. The
full potential of the Ncut refinement algorithm can be realized by running it multiple
times with different initial machine groupings. Meaningful initial machine groupings
can be generated based on the output results of Algorithm 5.1 (i.e., the machine group
cores and the set of remaining machines R). In Section 5.3.5, the initial machine group-
ings were obtained in the following three ways:

• A run of Algorithm 5.1 followed by the greedy assignment of the remaining ma-
chines.

• A run of Algorithm 5.1 followed by a random group assignment of the remaining
machines. In Section 5.3.5, 15 random initializations of this type were used.

• Rounding of the aligned matrix Z∗. Each machine’s group is defined by the column
index of the maximum value of the row of Z∗ corresponding to that machine.

If the Ncut refinement algorithm is not applied, the last two grouping types usually
do not produce good results, so their value is entirely in providing meaningful starting
points to the Ncut refinement process.

5.3.3. EVALUATION OF GENERATOR COHERENCY RESULTS
According to multiple references (e.g., [33, 34, 35, 121, 182]), it is possible to access the
accuracy of a slow coherency generator grouping through the following approaches:

1. By comparing the slow eigenvalues of the original model (2.19) with the eigenval-
ues of a reduced linear model based on the slow coherency generator grouping.

2. By comparing the time domain disturbance responses of the original and reduced
nonlinear model obtained from the slow coherency generator grouping.

For the first approach, the linear inertial aggregate model that is briefly described in
Appendix D is going to be used. The eigenvalue approximation accuracy by the inertial
aggregate model can be improved through adding the first-order correction terms, which
results in the slow coherency aggregate model [34, 35]. However, the goal of the grouping
evaluation procedure is not to obtain a low error in slow eigenvalues, but to see which
machine grouping results in lower eigenvalue errors regardless of the used aggregation
method. That is, the slow coherency aggregate model is able to improve errors in slow
electromechanical eigenvalues, but not the grouping itself, and an inaccurate grouping
will still produce higher eigenvalue errors as compared to a more accurate one. There-
fore, using only the inertial aggregate model is sufficient for comparing errors in the first
k slow eigenvalues between various machine groupings.

To evaluate the generator grouping accuracy with the first approach, the mean per-
centage eigenvalue error is used as the total metric:

δλ= 1

k

k∑
i=1

|λa,i −λ f ,i |
|λ f ,i |

·100 (5.17)

where λ f ,i is the i slowest eigenvalue of the full electromechanical model (2.19) and λa,i

is the eigenvalue of the reduced electromechanical model closest to λ f ,i . Additionally,
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for certain generator groupings it is possible to separately consider each slow eigenvalue
of the original and reduced electromechanical models.

To evaluate the generator grouping accuracy with the second approach, the non-
linear model reduction should be used (see [35, 183]). Unlike the linear inertial aggre-
gate model described in Appendix D, nonlinear model reduction produces power system
models that consist of separate power system elements such as generators, loads and
transmission lines, which enables their use in standard time-domain simulation pro-
grams (e.g., for DSA). According to [35, 183], the inertial and slow coherency aggregations
show comparable results in the context of nonlinear model reduction for time-domain
simulations, with the inertial aggregation algorithm being simpler and more intuitive.
Therefore, reduced nonlinear power system models are produced by the inertial aggre-
gation algorithm [183] that is available in PST as function i_agg().

The comparison of disturbance responses between the reduced and full power sys-
tem models also follows the lines of [35, 183]. First, synchronous machines are grouped
based on slow coherency. For a given grouping, one or multiple coherent groups cor-
responding to a study area of interest are selected. While the study area is retained as
it is, the remaining coherent groups are reduced to single equivalent generators by us-
ing the nonlinear generator aggregation algorithm of choice. Finally, some disturbances
are simulated in the study area both with the full and reduced system models, and the
resulting responses are compared. The deviation of reduced-model signals from the ref-
erence provided by the simulation of the full model can be quantified by RMSE or MAE
integrals over a time period T [183]. However, in many cases a simple visual inspection
of time responses is enough to recognize the more successful machine grouping.

5.3.4. IMPROVED INERTIAL GENERATOR AGGREGATION ALGORITHM

An important step of the nonlinear model reduction that was briefly discussed in Section
5.3.3 is the generator aggregation process that consists in replacing a group of coherent
generators by a single equivalent machine through a special algorithm. A known draw-
back of generator aggregation is the stiffening effect that manifests itself in the increased
electromechanical mode frequencies of the reduced model compared to the original
one. An important motivation behind the inertial generator aggregation algorithm men-
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Figure 5.10: Improved inertial generator aggregation algorithm
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Algorithm 5.2 Improved Inertial Generator Aggregation

Input: Power system model, coherent groups C1, . . . ,Ck .
1: for l = 1 to k do

2: x̂ ′
d ,eq ← 20

(∑
i∈Cl

1/x ′
d ,i

)−1

3: x ← Range of numbers from 10−6 to x̂ ′
d ,eq .

4: for i = 1 to |x| do
5: Aggregate group Cl with the basic method [183].
6: x ′

d ,eq ← x[i ]

7: Compute the slow modes and store errors (5.17).
8: end for
9: Choose x ′

d ,eq for Cl as x[i ] yielding smallest error (5.17).

10: end for
Output: Reduced power system model

tioned in Section 5.3.3 is the reduction of the stiffening effect, which is achieved by aggre-
gating the coherent generators at their internal nodes instead of the more conventional
terminal bus aggregation. Merging together the internal generator nodes of each coher-
ent group as shown in [183] and linearizing the resulting reduced system produces the
same model as the linear inertial aggregate model (see Appendix D). As it will become
clear from Section 5.3.5, the linear inertial aggregate model still results in considerable
eigenvalue errors (5.17), which implies that the achieved mitigation of the stiffening ef-
fect is incomplete.

As the persisting stiffening effect of the inertial aggregation algorithm may often lead
to unsatisfactory nonlinear reduced models, a simple yet effective improvement is pro-
posed. In Figure 5.10, the initial and final stages of the inertial aggregation algorithm
are illustrated for two generators represented by their classical models. Going from Fig-
ure 5.10a to Figure 5.10b involves aggregation of nodes 1′ and 2′ into node eq using
the Zhukov bus aggregation method [184]. This includes adding ideal transformers and
phase shifters in series with reactances x ′

d ,1 and x ′
d ,2 to preserve the initial power flow.

The dynamic parameters of the equivalent generator are derived from the sum of swing
equations of generators belonging to a coherent group C by assuming their incremental
speeds and rotor angles to be the same (the coherency condition):

Heq = ∑
i∈C

Hi , Deq = ∑
i∈C

Di (5.18)

where Heq and Deq are the equivalent inertia and damping constants.

In the original inertial aggregation algorithm [183], the effective reactance behind
bus eq is zero (i.e., x ′

d ,eq = 0), which strictly corresponds to the aggregation of gener-

ator internal buses. However, we have noticed that it is possible to decrease the elec-
tromechanical frequencies of the reduced model by increasing the reactance x ′

d ,eq from

a value close to zero to some meaningful upper limit x̂ ′
d ,eq . The improved inertial ag-

gregation algorithm is summarized as Algorithm 5.2. In Algorithm 5.2, x̂ ′
d ,eq is set to 20
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Figure 5.11: Geographical diagram of the NPCC 48 machine test system (a copy from [34]). The 6-area group-
ings are by the algorithm of Section 5.3.2 (shown in grey) and the classic slow coherency grouping algorithm
from [33, 34] (shown by red dashed lines). M−1K serves as the electromechanical model.

times x ′
d ,eq of the Podmore algorithm, which is chosen empirically for studies on the

NPCC 48-machine test system.
Algorithm 5.2 preserves the advantages of the baseline approach [183] such as con-

ceptual simplicity and possibility to independently aggregate each generator group. As
shown in Section 5.3.5, Algorithm 5.2 is significantly more accurate, thus trading execu-
tion speed for accuracy. However, if execution speed is highly important, Algorithm 5.2
allows for massive parallelization. Clearly, both basic inertial aggregation and Algorithm
5.2 are only valid for generators represented by the classical model. However, represent-
ing external remote generators by the simplified 2nd order model is well-accepted and
often used in practice (e.g., in the DYNRED software [185]).

5.3.5. GENERATOR COHERENCY CASE STUDIES

The generator slow coherency methodology in Section 5.3.2 has been evaluated on the
two test systems whose electromechanical models are available in PST [83]. At first, the
evaluation approach is illustrated in detail on the NPCC 48 machine test system, and
then some parts of it are repeated on the IEEE 145 bus test system to show the impor-
tance of considering the row magnitudes in Z.

NPCC 48 MACHINE TEST SYSTEM

The NPCC 48 machine test system [186] contains 140 buses, 48 of which are buses with
synchronous machines. It represents the parts of the electric power grid in the North-
eastern U.S. and Southeast Canada. A geographical diagram of this system (a copy from
[34]) is shown in Figure 5.11, with the dots representing the locations of the synchronous
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Figure 5.12: Variation of alignment cost (4.5) for the mass-normalized electromechanical eigenvectors of the
NPCC 48 machine test system

machines. The NPCC 48 machine test system has been frequently used in generator co-
herency studies [34, 35, 121, 182, 183]. Its electromechanical model data is available in
PST [83], and the matrix M−1K of this system can be found in [34, Appendix A]. The
smaller 39 bus New England test system (see Figure 5.1) is partly included into the PST
model of the NPCC 48 machine system, in which it corresponds to machines 1–8.

First, the alignment cost minimization method described in Section 5.3.2 is applied
to the first 2, . . . ,18 mass-normalized electromechanical eigenvectors of the NPCC 48
machine system, with the result being shown in Figure 5.12. In Figure 5.12, the minimal
alignment cost is shown both for the eigenvectors of the original matrix M−1K in which
K is non-symmetric and the eigenvectors of M−1KB in which KB is symmetric because its
construction only considers susceptances in the Kron-reduced admittance matrix. The
inclusion of results with KB aims to show the ideal outcome of the spectral clustering
based coherency algorithm, which ideally requires a symmetric similarity matrix. Note-
worthy, one of the local minima of the alignment cost curve in Figure 5.12 corresponds
to grouping the machines into 9 areas – the choice that was previously advocated in [34,
35, 182]. Other minima correspond to 3, 6 and 15–17 areas.

Considering too many eigenvectors may not be meaningful, as faster eigenvectors of
M−1K increasingly characterize local electromechanical modes, while the applications
of coherency analysis (e.g., dynamic model reduction or ICI) typically prioritize slow
inter-area oscillation modes. Coincidentally, choosing too few electromechanical eigen-
vectors may not be sufficient to convey enough details about the network structure. For
example, the first and second largest eigenvalue gaps (2.20) of the IEEE 68 bus test system
suggest respectively a two and three area grouping, but instead the number of generator
groups is generally chosen to be 5 (see the nominal areas in Figure 5.4), which corre-
sponds to a local minimum of the eigengap curve (e.g., see [34, Chapter 8]). In general,
selecting a good number of machine groups may depend on the application and require
some specific knowledge of the analyzed power system [187]. As previously mentioned,
only the machine grouping using the slowest electromechanical eigenvectors (i.e., slow
coherency grouping) is considered, with other grouping frameworks (e.g, the synchrony-
based grouping [188]) being omitted to adhere to the initially defined scope.

To demonstrate the effectiveness of the algorithm in Section 5.3.2, its results are com-
pared with those of the classic slow coherency grouping algorithm [33, 34]. These algo-
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Figure 5.13: Mean eigenvalue errors of inertial aggregate models based on groupings of the NPCC 48 machine
system produced by four slow coherency grouping algorithms and associated generic normalized cuts

rithms are directly comparable, as they both can return the specified number of groups
k by using the k slowest electromechanical eigenvectors. In addition, the results by the
algorithm in Section 4.4 are included to illustrate the benefits of the approach in Sec-
tion 5.3.2 to slow coherency identification. To achieve better results on problem (5.11),
the algorithm in Section 4.4 accepts electromechanical eigenvectors as input, minimizes
generic expansions (5.12) and uses the eigenvector threshold value of β = p

2/2. The
mean percentage eigenvalue errors (5.17) resulting from applying the tested grouping
algorithms to the NPCC 48 machine system for k = 2, . . . ,18 are shown in Figure 5.13.

The upper plots in Figure 5.13 show that the algorithms based on alignment of spec-
tral embedding with the canonical axes perform equally or better than the classic group-
ing algorithm (the dash-dot green curve) in all test cases. For the current case study, the
algorithm from Section 4.4 (the dashed blue curve) is able to produce nearly the same re-
sults as the grouping algorithm consisting of Algorithm 5.1 and the greedy assignment of
remaining machines (the solid red curve). The three algorithms mentioned so far have a
peak in their eigenvalue error curves at k = 4, which also corresponds to the maximum of
alignment cost in Figure 5.12. This high alignment cost value implies that the four slow-
est electromechanical eigenvectors provide a limited amount of information to mini-
mize the NcutM criterion. Therefore, the Ncut refinement algorithm becomes beneficial
to find lower NcutM values using the initial information contained in the eigenvectors.
For k = 4, the complete Ncut minimization approach of Section 5.3.2 (the solid black
curve) is able to noticeably improve the machine grouping in terms of metric (5.12).

For k = 9, the classic grouping algorithm and the algorithm in Section 5.3.2 show
nearly the same results, except machine 42 being grouped by the algorithm in Section



5

104 5. PARTITIONING FOR SVC AND GENERATOR SLOW COHERENCY

Full Model Classic algorithm [33, 34] Algorithm in Section 5.3.2
Frequency, [Hz] Frequency, [Hz] δλ, [%] Frequency, [Hz] δλ, [%]

0.2697 0.2994 10.98 0.2851 5.703
0.3813 0.4619 21.15 0.4344 13.93
0.4876 0.5706 17.03 0.5360 9.925
0.5329 0.7174 34.60 0.6781 27.25
0.7069 0.8403 19.03 0.7945 12.55

Table 5.3: Approximation of slow modes by inertial aggregate models for the two six-area groupings

5.3.2 together with machines {32, 37, 38, 40, 41} instead of machine 39 (machine 39 thus
becomes a single-machine group). The mentioned nine area grouping of the NPCC 48
machine test system can be found in multiple references (e.g., in [34, 35, 182, 183]). How-
ever, for the grouping based on the six slowest electromechanical modes (i.e., another lo-
cal minimum in Figure 5.12), the results obtained from the two discussed algorithms dif-
fer substantially, which is reflected in the higher eigenvalue error returned by the classic
grouping algorithm. The frequencies of the 6 slowest modes (excluding the 0 Hz mode)
are given in Table 5.3 for the full electromechanical model M−1K and the corresponding
inertial aggregate electromechanical models obtained from the both six area groupings.
The actual areas returned by the both algorithms are shown in Figure 5.11, from which
it can be seen that the proposed algorithm has returned more compact areas in terms of
machines’ geographic coordinates.

To conclude this case study, the obtained two six area groupings are evaluated by
comparing the disturbance responses of the two corresponding nonlinear reduced mod-
els obtained with the inertial aggregation algorithm [35, 183] and its improved version in
Algorithm 5.2. The study setup is assumed to be the same as in [35, 183]: for the both
groupings the study area is chosen to be the area containing machines 1–8, and the ma-
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Figure 5.14: Time response of machines 1 and 4 for the Medway disturbance
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chines in the remaining five areas are replaced by the five inertial aggregate generators,
while the study area is retained in full detail. The simulated event is the Medway distur-
bance consisting in a 6-cycle short circuit at the Medway bus (bus 7 in the datanp48.m
file of PST), which is cleared by removing the line from Medway to the Sherman Road
bus (bus 6 in the datanp48.m file of PST). For this event, the time responses of machines
1 and 4 are shown in Figure 5.14.

In Figure 5.14, the upper plots in each subfigure show the outcomes of Algorithm
5.2, while the lower plot shows the outcomes of the original inertial aggregation method
[35, 183]; the red graphs are based on the areas obtained with our grouping algorithm,
while the green graphs are based on the areas returned by the classic grouping algorithm,
and the blue graphs show the response of the unreduced system. As it can be seen, the
six area grouping produced by the proposed grouping algorithm results in a noticeably
smaller difference in the simulated rotor angle curves between the original and reduced
models. If Algorithm 5.2 is used for generator aggregation, these curves practically coin-
cide. This result comes as no surprise when looking at the underlying machine groups
for the two reduced models in Figure 5.11, as the proposed grouping algorithm has re-
turned more geographically compact electromechanical areas. Besides the Medway dis-
turbance, several other disturbances have been simulated in the chosen study areas, and
the conclusions drawn from Figure 5.14 remained valid for all of them.

IEEE 145 BUS TEST SYSTEM

The IEEE 145 bus 50 machine test system is another test power system, the electrome-
chanical model of which is available in PST. Unfortunately, no single line diagram or
geographical diagram of this network could be found in open sources to provide a more
complete description. Using this system as an example, the impact of the differences
between the approaches in Section 5.3.2 and 4.4 is demonstrated more explicitly than in
the previous case study on the NPCC 48 machines test system.

The comparison of eigenvalue approximation accuracy by different machine group-
ing methods is repeated for the IEEE 145 bus test system, with the corresponding results
being presented in Figure 5.15a. By looking at Figure 5.15, a significant eigenvalue ap-
proximation error due to using the partitioning algorithm from Section 4.4 can be easily
noticed for k = 2. However, the same error is not present for the analogous test case in
Figure 5.15b. The machine grouping for k = 2 resulting in the low eigenvalue errors of re-
spectively 6% and 2% is the same for the both models M−1K and M−1KB, and it consists
in classifying machine 43 at bus 137 into a separate group. For the model M−1KB, ma-
chine 43 is very well separated in spectral embedding from the other machines, which
results in the correct grouping by the algorithm in Section 4.4 despite normalizing each
row of Z to unity length. However, when the slowest two eigenvectors of M−1K are used
instead of those of M−1KB, the resulting spectral embedding exhibits a more disperse
structure. Machine 43 still remains separated from the rest due to the high magnitude
of the row of Z corresponding to it. However, if the rows of Z are normalized to length
one as the algorithm in Section 4.4 requires, considering only the angular separation of
machine 43 from the rest becomes not enough to identify it as a separate group. As the
result, Figure 5.15a shows a substantial eigenvalue error by the algorithm in Section 4.4
for k = 2, and Figure 5.15c reveals that this error is linked to a very high relative NcutM

value of 4.15. Although the algorithm in Section 4.4 still performs relatively well in many
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Figure 5.15: Mean eigenvalue errors of inertial aggregate models based on groupings of the IEEE 145 bus test
system produced by four algorithms and associated generic normalized cuts.

test cases based on the IEEE 145 bus test system, its results become noticeably worse
compared to the coherency grouping algorithm proposed in this chapter. The reason
lies in the ability of the method in Section 5.3.2 to use both the angular and radial sepa-
ration of the rows of Z.

5.4. CONCLUSIONS

This chapter considered the two prominent power system applications that involve de-
composition of a power system into control zones or areas. The application of the clus-
tering framework in Chapter 4 (including its modifications) was shown to result in no-
ticeable accuracy improvements in identifying both the VCZs for SVC and the slow co-
herent machine groups, thus contributing to research question I (see Section 1.2.3).

Regarding the task of VCZ definition for SVC, the VCS zoning method previously pro-
posed in [52, 173] was adapted to be used together with the framework in Chapter 4,
thus avoiding the drawbacks inherent in VCZ methods based on hierarchical clustering
[46, 52, 173]. The test results on the IEEE 39 bus test system have demonstrated that
the proposed spectral VCS method is able to better reveal the relevant generator voltage
domains, which allowed to significantly facilitate the SVC pilot bus selection ensuring a
robust voltage profile across the whole power network. Although this chapter only in-
cludes the VCZ results based on the VCS concept, some other SVC zoning methods from
literature can be seamlessly adapted for their use with the framework in Chapter 4 as
well. For example, the framework in Chapter 4 can be directly used with voltage sensi-
tivity matrices from [46] and [47, 51, 93]. Various voltage sensitivity matrices may entail
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somewhat different requirements to pilot buses. For example, the VCS sensitivity matri-
ces (5.4) and (5.7) empathize the pilot bus controllability by the VCS control generators,
while the voltage sensitivity matrix used for SVC zoning in [47, 51, 93] rather empathizes
the observability of voltage disturbances by the pilot buses.

The second part of this chapter dealed with the slow coherency problem that is
relevant for power system dynamic model reduction, DSA, and the design of certain
WAMPAC solutions (e.g., ICI) [35, 55]. The classic slow coherency problem was shown
to be closely related to a generic normalized cut minimization problem [189] through
spectral relaxation. Considering this, the previously introduced metrics of cluster expan-
sion (2.23) and normalized cut (2.7) receive an additional meaning for power systems.
The connection between slow coherency and normalized cuts prompted the discovery
of the role of mass-normalized electromechanical eigenvectors in revealing the orthog-
onal structure inherent in the slow coherency grouping problem. To solve the problem
in (5.11) more effectively, a new problem-specific grouping algorithm was developed in
Section 5.3.2. This algorithm was shown to consistently produce more accurate machine
groupings than other comparable methods including the classic algorithm in [33, 34]
and the initial algorithm in Section 4.4.

Although the NcutM criterion in (5.11) was shown to be an efficient indicator of the
slow coherency grouping accuracy, the demonstrated relationship between the two is
neither linear nor monotonic. For some test cases, a moderate increase in eigenvalue
approximation errors (5.17) was observed after achieving a slight decrease of the NcutM

value after applying the NcutM refinement algorithm. However, achieving the lowest
possible NcutM values still appears to be a powerful heuristic to identify power system
areas based on slow coherency.





6
CONSTRAINED GRAPH

PARTITIONING AND ICI

6.1. INTRODUCTION
This chapter concerns Intentional Controlled Islanding (ICI), which is the second of the
two WAMPAC applications detailed in Section 2.21. In what follows, the static voltage
stability requirement will be ignored among the eight ICI objectives listed in Section
2.2.2. Neglecting this constraint allows to simplify the ICI power flow constraints from
transcendental nonlinear AC power flow equations to linear DC power flow equations.
This leads to conversion of the original mixed-integer nonlinear programming (MINLP)
problem into a MILP problem that can be solved more efficiently due to huge advances
in commercial MILP solvers over the past few decades. Neglecting the transcendental
nature of AC power flow equations implies the assumption of sufficient reactive power
reserves in each island to maintain a high voltage profile after system splitting (as shown
in [190], even this assumption may not always be enough). However, the main goal of us-
ing simplified ICI representation such as the direct current (DC) OPF MILP model or the
active power flow graph partitioning model is in improving the performance of resolving
the ICI constraints 1–6 and 8 of Section 2.2.2 that remain important building blocks of
more complex and accurate ICI models.

The major contribution of this chapter is a polynomial-time heuristic algorithm for
the NP-hard packing Steiner trees problem [77], which lies at the heart of ensuring the
generator coherency and island connectivity constraints. The proposed heuristic algo-
rithm substantially differs from the previously published approaches [57, 58, 59, 149], as
it attempts to connect the coherent generators one-by-one in a parallel and bottom-up
fashion, starting from generators that are closest to each other. The distances between
generators can be computed from constrained spectral embedding generated based on
the flexible constrained spectral clustering [191] (FCSC) method [191, 192] that was pre-

1The material of this chapter is partly based on [J2].
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viously used in the power system context in [60]. Compared to [60], the proposed algo-
rithm explicitly handles the connectivity of the resulting partitions.

Interconnecting coherent generators in each island and minimizing the power flow
disruption between islands can be considered as an efficient and effective ICI strategy,
and multiple heuristic approaches have been proposed to solve this problem in polyno-
mial time [43, 57, 58, 59, 149]. Similar problem formulations involving assignments of
certain terminal nodes to specific graph partitions also appear in other disciplines (e.g.,
machine learning [126, 191] and VLSI design [77, 91]). However, it is understandable
that network splitting solutions that only minimize power flow disruption, including the
polynomial-time algorithm proposed in this chapter, may not satisfy all the static ICI
constraints listed in Section 2.2.2. In other words, opening lightly loaded lines for system
splitting promotes small load-generation imbalances and small equipment overloads,
but it cannot guarantee them. Nevertheless, quickly finding a solution with a low MW
cut that satisfies the island connectivity and coherency grouping constraints may be a
good starting point for searching the global optimal solution of a more precise NP-hard
MILP (or MINLP) formulation.

The following section will describe the computation of constrained spectral embed-
dings using the FCSC algorithm [191]. Graph distances induced by such embeddings can
serve as an input to the polynomial-time heuristic for the packing Steiner trees problem
that is proposed in Section 6.3.1. Next, Section 6.4 shows the application of the algorithm
proposed in Section 6.3.1 as a method to speed up the MILP solvers by providing them
with good initial solutions. Finally, Section 6.5 summarizes this chapter.

6.2. FCSC-BASED CONSTRAINED SPECTRAL EMBEDDING
Unlike the variants of spectral clustering considered in Chapters 3–5, flexible constra-
ined spectral clustering [191] (FCSC) extends spectral clustering to incorporate node
grouping constraints into its formulation. Other methods with a similar background
include [69, 126, 193, 194], to name a few. The main reasons to choose FCSC over other
alternatives are the implicit generation of a geometric graph embedding and the intu-
itive extension to k-way clustering. The other advantages of FCSC include the simplicity
of implementation and the close relationship to the previously considered spectral clus-
tering formulations.

The overall FCSC method has been published in [191, 192]. Therefore, only a brief
summary of the algorithm is included here. The pairwise must-link and cannot-link
constraints introduced in Section 3.4.1 can be encoded into the constraint matrix Q ∈
{−1,0,1}n×n defined element-wise as follows:

[Q̃i j ] = [Q̃ j i ] =


+1, if ML(vi , v j )

−1, if CL(vi , v j )

0, if no ML or CL constraint between vi and v j

(6.1)

where ML(i , j ) and CL(i , j ) indicate the must-link and cannot-link constraints between
nodes vi and v j .

Assuming a two cluster partitioning, it can be described by a single cluster indicator
vector X̃ ∈ {−1,1}n , where x̃i = 1 if node vi belongs to cluster C1 and x̃ j = −1 if node v j
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belongs to cluster C2. Then the satisfaction of constraints encoded in the matrix Q can
be expressed as

X̃ T QX̃ =
n∑

i=1

n∑
j=1

x̃i x̃ j Qi j (6.2)

where the measure in (6.2) increases by one for each satisfied constraint and decreases
by one for each violated constraint in Q ∈ {−1,0,1}n×n .

The constraint matrix Q in (6.1) can also be relaxed as Q ∈Rn×n to express the degrees
of belief in individual pairwise constraints (i.e., −1 ≤ Qi j ≤ 1). For simplicity, only con-
straint matrices Q ∈ {−1,0,1}n×n are used in this chapter. Furthermore, the normalized
constraint matrix Qn and the scaled indicator vector Ũ are introduced to closely follow
the derivations in [191, 192] that are largely omitted here:

Qn = D− 1
2 QD− 1

2 (6.3)

Ũ = D
1
2 X̃ (6.4)

where D is the degree matrix (2.2).
With the above definitions, the FCSC optimization problem for two clusters is stated

in [191, 192] as follows:

minimize U T LnU (6.5a)

subject to: U ∈Rn , U T QnU ≥α, U T U = vol(G ), U 6= D
1
2 1n×1 (6.5b)

where U is the relaxed cluster indicator vector Ũ in (6.4), Ln is the symmetric normalized
Laplacian (2.6c) of the similarity graph G describing the power network structure (e.g.,
a branch admittance graph or an active power flow graph described in Section 3.2.1),
vol(G ) is the volume of the graph G (2.4), and α is a user-specified lower threshold on
how well the constraints in Q are satisfied (note that X̃ T QX̃ = Ũ T QnŨ ).

The problem in (6.5) is tackled in [191, 192] by applying the Karush-Kuhn-Tucker
(KKT) conditions. After several mathematical steps, it is determined in [191, 192] that
solutions of (6.5) can be found as the generalized eigenvectors of (6.6a) that satisfy the
conditions (6.6b), (6.6c), and (6.6d):

LnU =λ
(

Qn − α′

vol(G )

)
U (6.6a)

λ> 0 (6.6b)

U T QnU ≥α′ (6.6c)

U T U = vol(G ) (6.6d)

where α′ is the modified lower threshold on how well the constraints in Q are satisfied.
It is proven in [191, 192] that α′ <α always holds, which means that the desired value of
U T QnU =α>α′ (i.e., the algorithm’s bias towards satisfying the constraints in Q) can be
exceeded by specifying α′ in (6.6a).

Higher values ofα′ in (6.6) cause a higher bias towards satisfying the constraints in Q.
However, setting α′ too high may result in no feasible solutions satisfying the condition
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Figure 6.1: IEEE 39 bus test system. Group trees obtained with Algorithm 6.1 are shown in colors. The red
dashed lines denote the final cutset.

(6.6b) (i.e., all generalized eigenvalues of (6.6a) may become non-positive). According to
[191, 192], to ensure at least one feasible generalized eigenvector U of (6.6a), the follow-
ing condition on α′ should hold:

α′ < νmax vol(G ) (6.7)

where νmax is the largest eigenvalue of Qn.
In [192], the relaxation (6.6) is explicitly extended to the case when k > 2 by requiring

at least k −1 eigenpairs of the generalized eigenproblem in (6.6a) to satisfy (6.6b), (6.6c),
and (6.6d). To ensure the existence of k−1 feasible eigenpairs, the condition (6.7) should
be modified as follows:

α′ < νk−1 vol(G ) (6.8)

where νk−1 is the k −1-th largest eigenvalue of Qn.
No explicit derivation has been provided in [192] to justify the extension of (6.6) and

(6.7) for k = 2 to (6.6) and (6.8) for k > 2. In particular, the indicator vector representation
X̃ ∈ {−1,1}n that underpins (6.5) and its relaxation (6.6) is straightforward only for k = 2
(see also [74, 123, 127]). However, the following sections will demonstrate that extending
the initial FCSC algorithm in [191] according to (6.8) can produce spectral k-embeddings
that amplify the input constraints in Q. This outcome is sufficient to formulate constra-
ined graph partitioning algorithms that can use constrained graph embeddings (e.g., the
algorithm in Section 6.3.1). The derivation of geometric graph embeddings that opti-
mally represent the graph connectivity structure and the node grouping constraints is
outside the scope of this chapter.

To illustrate the generation of constrained graph embeddings by the FCSC algorithm
described in this section, consider the following example based on the IEEE 39 bus test
power system [180]. The single-line diagram of the IEEE 39 bus test power system cor-
responding to this case study is shown in Figure 6.1. The contents of Figure 6.1 imply
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Figure 6.2: Constrained graph embedding of the IEEE 39 bus system computed with FCSC for the generator
groups in Figure 6.1 and branch admittances as graph edge weights

the presence of three groups of terminal nodes: T1 = {39}, T2 = {30,31,32,37,38}, and
T3 = {33,34,35,36}. This experimental grouping was obtained by clustering the rows
of the eigenvector matrix composed of the second and third slowest electromechanical
eigenvectors with AHC using average linkage as explained in [J2]. The sets of terminal
nodes T1, T2, and T3 define the constraint matrix Q ∈ {−1,0,1}39×39, in which ones cor-
respond to bus pairs from the same group T and minus ones correspond to bus pairs
not in the same group T , T ∈ {T1,T2,T3}. The similarity graph, for which the normalized
Laplacian matrix Ln and the degree matrix D are computed, is assumed to be the branch
admittance graph (see Figure 4.3). The FCSC parameter α′ is set to 0.5(ν2 +ν3)vol(G ).
For this input data, the constrained graph embedding obtained with FCSC is presented
in Figure 6.2 after normalizing the generalized eigenvectors U computed from (6.6), (6.8)
to length one and applying the inverse of transformation (6.4) to the both eigenvectors.

6.3. CONSTRAINED GRAPH PARTITIONING
This section presents an algorithm for partitioning of weighted undirected graphs sub-
ject to node grouping constraints. Given k disjoint sets of terminal nodes T1, . . . ,Tk

that should be placed each into a separate graph partition, one way to satisfy the node
grouping constraints while ensuring island connectivity is to construct k disjoint trees
T1, . . . ,Tk in the graph G , each spanning its own set of terminal nodes. Such tree sub-
graphs each spanning only a subset of all graph nodes are known as Steiner trees. Thus,
the algorithm’s primary goal is to construct k disjoint Steiner trees for the k disjoint sets
of terminal nodes given as an input, which constitutes the packing Steiner trees problem
described in [77].

After the Steiner trees have been constructed, each of them can be merged into a
single node as described in Section 3.4.1, which ensures the connectedness of the node
sets T1, . . . ,Tk . The remaining task is to produce a contiguous partitioning of the reduced
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graph that separates the k merged nodes from each other while minimizing the total
graph cut (2.22), which was detailed e.g. in [C1] (in general, this problem is known as k-
way cut in literature). Finally, the partitioning of the reduced graph can often be notice-
ably improved by using various post-processing algorithms (e.g., the label propagation
based cut refinement algorithm in Section 3.3.2).

6.3.1. SEQUENTIAL TREE GROWING ALGORITHM
The proposed tree construction algorithm shares some conceptual similarity with the
AHC using single linkage [71], which has also been used in Section 3.4.2. It starts by
placing each terminal node as a separate subcluster belonging to its own prospective
partition, and at the end all initial subclusters should be connected through a series of
subcluster merges to form k disjoint Steiner trees. At any stage of the subcluster merg-
ing process, the union of subclusters of the same prospective partition is further referred
to as group cluster, and it becomes a group Steiner tree when all underlying subclusters
become connected. The two subclusters are merged by computing the shortest path
connecting them and including the intermediate path nodes as well as the nodes of the
two subclusters into the newly merged subcluster. Shortest paths can be computed on
various distance graphs whose interconnection structure coincides with the power net-
work topology (e.g., graphs based on FCSC embedding or branch impedance graphs).

start
path
node

end
path
node

path
total

length

group
cluster

id

start
subcluster

id

end
subcluster

id

{path
nodes}

Figure 6.3: Storing format for paths between subclusters

In the beginning, the shortest paths between all subclusters inside each group cluster
are computed, and each path is stored in the format shown in Figure 6.3. In Figure 6.3,
path total length is the sum of edge weights in the distance graph along the stored path
from the start path node and to the end path node; the group cluster id entry denotes
the index of the group cluster to which the start and end path nodes belong; the start
subcluster id and end subcluster id entries denote the indices of subclusters of the current
group cluster to which the start and end path nodes belong. Thus, every computed path
uses at least the first six entries of the path format in Figure 6.3. If the start path node and
the end path node are not directly connected, the intermediate nodes between them are
stored in the entries following the end subcluster id entry. After a path is computed and
stored in the format described above, it is put into a priority queue [159] with the path
total length being the priority index (a lower distance means a higher priority).

As it is not admissible for a path between the nodes of one group cluster to go through
the nodes of another group cluster, a binary edge status matrix Ẽm×k is created to keep
track of the edges that are adjacent to the nodes currently contained in each group clus-
ter. Before starting to compute paths for a group cluster, this matrix is used to disable the
edges adjacent to the nodes of the other group clusters, thus precluding the computed
paths to go through them. As power networks are by their nature sparse graphs with the
number of branches not being significantly higher than the number of buses, storing an
m ×k binary matrix is computationally feasible.
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Algorithm 6.1 Sequential Tree Growing

Input: Distance graph G = (V ,E ,W ), sets of terminal nodes (T1, . . . ,Tk )
1: W ← Adjacency matrix of G // W includes distances as edge weights

2: PQ1← Empty priority queue // Stores paths

3: PQ2← Empty priority queue // Stores paths to be reconsidered later

4: Ẽ ← Set Ẽi j to 1 for edges adjacent to the nodes in
⋃k

l=1Tl \T j , j = 1, . . . ,k
5: N ← 0n×k

6: Initialize k union-find structures to contain the nodes in each of the sets T1, . . . ,
Tk as initial subclusters. // union-find structure is detailed in Algorithm 3.6

7: Compute the initial paths between the subclusters of each group cluster. Use Ẽ to
constrain the paths in each group cluster to bypass the nodes in other group clusters.
Put the resulting paths into PQ1. Update N after computing each path.

8: while any of group clusters is disconnected do
9: if PQ1 is empty then

10: if PQ2 remains the same or PQ2 is empty then
11: Compute new paths by isolating the nodes with two or more nonzero en-

tries in N (in addition to ordinary path constraints using Ẽ) and add the
new paths to PQ1. If no new feasible paths could be found or no nodes with
two or more nonzero entries in N exist, break.

12: else
13: Copy PQ2 into PQ1. Re-initialize PQ2 to an empty priority queue.
14: end if
15: end if
16: Extract the smallest distance path out of PQ1.
17: if start subcluster id and end subcluster id are the same then
18: Decrement the entries of N corresponding to the path nodes and group cluster

of the current path by one.
19: continue
20: end if
21: path ← current path’s nodes including start path node and end path node.
22: if N[path;1, . . . ,k] has only one nonzero column then
23: Merge the two subclusters connected by the current path.
24: Compute new paths from the path nodes of the current path to the nodes of all

subclusters of the current group cluster except the nodes of the newly merged
subcluster. Ẽ is used to constrain the paths as in line 7. Update N after comput-
ing each new path. Put the new paths into PQ1.

25: Update Ẽ by indicating the edges adjacent to the path nodes of the current path.
26: else
27: Put the extracted path into PQ2.
28: end if
29: end while
30: If some group clusters still remain disconnected, greedily merge the minor subclus-

ters to the major ones, starting from the minor subclusters having the largest number
of terminal nodes.
Output: Steiner trees T1, . . . ,Tk .
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Additionally, an integer matrix Nn×k is created to store the number of paths that pass
through each of the n graph nodes for each of the k group clusters. After a path be-
tween some subclusters of group cluster j is computed, the entries of N in column j
and the rows corresponding to the path nodes are incremented by one, and the path is
added to PQ1. If a path extracted from PQ1 connects the two nodes that are already in the
same subcluster (i.e., a connection between the nodes has already been made through
another path), the entries of N in the rows corresponding to the path’s nodes and the
column corresponding to path’s group cluster are decremented by one, which means
that the path should be excluded from consideration for being superfluous. If all rows
of N corresponding to nodes of some path share the same single non-zero column, such
path does not contradict any computed paths connecting other group clusters, and it is
acceptable to merge the two subclusters. However, if some path node has two or more
non-zero entries in the matrix N, such node could be possibly required for the connec-
tivity of other group clusters, so the involved path is put into the second priority queue
PQ2 that serves to collect the paths to be reconsidered later.

The merging of subclusters and the identification of subcluster of each node is re-
alised with the union-find data structure (see [159] and Algorithm 3.6). For each group
cluster, a separate union-find structure is created that contains the terminal nodes of the
group as the initial subclusters. Given the above information, the tree construction al-
gorithm can be summarized as Algorithm 6.1. After the k group Steiner trees have been
constructed with Algorithm 6.1, they can be merged to k single nodes. These nodes can
be put each into a separate connected partition by the approaches described in the be-
ginning of this section.

6.3.2. EVALUATION OF CONSTRAINED GRAPH PARTITIONING

This section compares the proposed constrained partitioning method with the two state-
of-the-art alternative methods that are able to handle terminal nodes constraints. As the
proposed tree construction algorithm is mostly focused on assigning all terminal nodes
requested to be in the same group to a single connected partition, the only performance
metric is the number of misplaced terminal nodes (2.26).

The first benchmark algorithm hMetis [91] is a popular and highly efficient hyper-
graph partitioning algorithm. For each study case, it is run 25 times with the increas-
ing values of the partition imbalance parameter (a common and important parameter
for multilevel graph partitioning algorithms including hMetis), and the partitioning re-
sult with the lowest number of misplaced generators is retained. As the recursive bisec-
tion algorithm of hMetis was consistently more efficient in handling node grouping con-
straints, it was used in all studies. The second benchmark algorithm is based on the re-
cent research on tight continuous relaxations of the balanced k-cut problem (TCRBGC)
[126]. The online MATLAB code implementation of [126] provided by the authors was
used with ratio cut as the optimization criterion, and the number of initializations to
compute the final solution was set to 12 (the default value).

The benchmark power networks are taken from PST [83] and MATPOWER [81, 162].
While the power flow data is available in models from both PST and MATPOWER, only
models from PST include the dynamic generator data. However, MATPOWER contains
power flow data of several large-scale (over 1000 buses) power networks. These large-
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scale networks are adapted for the computation of generator groups by adding the refer-
ence dynamic data from [86] according to the generator maximum power output avail-
able from MATPOWER.

In the experiments of this section, the k generator groups are obtained by cluster-
ing the rows of the eigenvector matrix composed of the k slowest electromechanical
eigenvectors (excluding the first constant eigenvector) using average linkage AHC, with
k being the requested number of groups2. While this method is less accurate than the
dedicated slow coherency grouping algorithm of Section 5.3, it usually groups together
generators that are close to each other in the network. Thus, the resulting node group-
ing constraints are consistent in the majority of cases. As no clustering algorithm is ca-
pable of always returning the correct clustering, a small fraction of generator groupings
obtained by the described simple method can lead to unsatisfiable node grouping con-
straints. However, having generator groupings that are not straightforward (or some-
times even impossible) to fully interconnect is an advantage from the algorithm testing
point of view.

The proposed constrained network partitioning algorithm has been tested on several
power network models from PST and MATPOWER. In this section, the test results for the
following three networks are included:

• NPCC 48 machine test system from PST, which is a 48 machine 140 buses network
(see Section 5.3.5).

• case1354pegase test network from MATPOWER containing 1354 buses and 260
generators (see Chapters 3–4).

• case2869pegase test network from MATPOWER containing 2869 buses and 510
generators (see Chapters 3–4).

In the case of seven generator groups for the NPCC 48 machine test network, all three
methods result in three misplaced generators (Tables 6.1–6.3) because inconsistent node
grouping constraints are produced for that case. Similarly, the occasional inconsistent
node grouping constraints cause the appearance of a small number of misplaced gen-
erators for the nine groups in case2869pegase test network. However, in all tested situa-
tions, Algorithm 6.1 consistently results in less misplaced generators (up to 18 generator
groups have been tested for each network), while requiring less computational time than
the two other methods.

Algorithm
Nr. of groups

2 3 4 5 6 7 8 9 10 11 12

Sequential Tree Growing 0 0 0 0 0 3 0 0 0 0 0
hMetis 0 0 0 0 1 3 0 0 0 0 0
TCRBGC 0 0 0 0 0 3 0 0 1 0 0

Table 6.1: Number of misplaced generators for the NPCC 48 machine test system

2In [J2], it was decided to drop the first electromechanical eigenvector because by itself this constant vec-
tor does not help to differentiate the generators. This decision is advocated by synchrony-based generator
grouping [188], while slow coherency algorithms in [33, 34] and Section 5.3 normally preserve the slowest
eigenvector.
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Algorithm
Nr. of groups

2 3 4 5 6 7 8 9 10 11 12

Sequential Tree Growing 0 0 0 0 0 0 0 0 0 0 0
hMetis 2 0 0 1 0 7 0 0 0 11 17
TCRBGC 0 0 0 0 0 0 0 0 0 0 0

Table 6.2: Number of misplaced generators for the case1354pegase test system

Algorithm
Nr. of groups

2 3 4 5 6 7 8 9 10 11 12

Sequential Tree Growing 0 0 0 0 0 0 0 2 0 0 0
hMetis 0 0 11 1 1 1 1 5 4 6 3
TCRBGC 0 0 4 2 4 5 5 38 6 5 5

Table 6.3: Number of misplaced generators for the case2869pegase test system
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Figure 6.4: Running time of the proposed constrained graph partitioning algorithm

The higher running time of methods [91, 126] is largely caused by their multiple ini-
tializations (25 and 12, respectively) which are necessary to improve the quality of their
results. The higher number of misplaced generators with methods [91, 126] is partly
caused by the excessive number of connected components that can often occur as the
result of partitioning. While the minor connected components could be reconnected us-
ing various heuristics (e.g., Algorithm 3.1), such an end result would be a product of the
initial partitioning algorithm and a proper connectivity heuristic that should also respect
the node grouping constraints.

The computational performance of the proposed constrained partitioning method
is demonstrated in Figure 6.4. The results in Figure 6.4 are obtained for the MAT-
POWER test power networks case300 (based on the IEEE 300 bus test power system),
case1354pegase, case2383wp (based on the power grid of Poland), and case2869pegase,
each containing 300, 1354, 2383, and 2869 buses respectively. The running times have
been estimated with MATLAB R2017a (64-bit) on a PC with an Intel® Xeon® E5 3.70 GHz
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CPU and 16 Gb of RAM on a single core. The eigenvalue calculations at the core of FCSC
have been performed with an iterative sparse matrix solver (i.e., with the eigs function in
MATLAB), by requesting to find the first eigenvalues close to a very large real number (set
empirically). This approach has helped to avoid computing the full generalised eigende-
composition and significantly reduced the computation time for larger networks.

With respect to the timing results shown in Figure 6.4, it should be noted that the
current MATLAB implementation of the proposed algorithm has a significant amount
of possibilities for optimisation. In particular, the efficiency of implementation of the
priority queue data structure may have a very large influence in the running time of the
algorithm. The operations related to the currently used priority queue from the Java
programming language (using the MATLAB Java API) are responsible for about 30% of
the execution time of Algorithm 6.1 shown in Figure 6.4. However, this is a more than two
times reduction from the values given in [J2]. This speedup could be achieved by simply
changing the calling syntax of the Java priority queue object in MATLAB. Nevertheless,
using more efficient data structure implementations still remains an important task.

6.4. GOOD INITIAL SOLUTIONS FOR MILP-BASED ICI
MILP allows to precisely solve many of power system constraints inherent to ICI (e.g.,
see the constraints in Section 2.2.2) by formulating ICI as an NP-hard discrete optimiza-
tion problem. In this section, the basic familiarity with solving MILPs through branching
(e.g., branch-and-bound or branch-and-cut [195]) is taken for granted. The basic model
in (6.9) [112, 196, 197] is going to be used to demonstrate the impact of good initial solu-
tions produced by Algorithms 6.1 and 3.2 on solving MILP-based ICI.

The formulation in (6.9) is based on the DC OPF assumptions that neglect the net-
work voltage profile and reactive power, while allowing to approximate the active power
relationships with a set of linear equations. These equations become linear mixed-
integer if the branches in the network are allowed to be switched, as it can be seen in
(6.9g). The optimization objective (6.9a) of the formulation in (6.9) consists in mini-
mization of the total load shedding following the network splitting, where PLS,i is the
MW load shedding amount at bus vi . The network interconnection structure is mod-
eled by an undirected graph G = (V , E), where V is the set of graph nodes, E is the set of
undirected graph edges, T1, . . . ,Tk are the sets of terminal nodes to be grouped together
(e.g., k coherent generator groups), and r1, . . . ,rk are the k reference nodes belonging to
the corresponding terminal node sets T1, . . . ,Tk . Constraint (6.9b) ensures that every net-
work node should belong to one of k partitions. If node vi belongs to block l , the binary
node status variable xi ,l is set to one and otherwise to zero. The partitioning status of the
nodes belonging to a set of terminal nodes can be fixed in advance, which is expressed as
(6.9c). Constraints (6.9d) introduce extra binary variables zi , j ,l to represent the products
of binary node status variables xi ,l x j ,l , l = 1, . . . ,k by using the well-known McCormick
linearization technique. Constraint (6.9e) defines the edge status variables (yi , j = 0 if
edge

(
vi , v j

)
separates two islands, otherwise yi , j = 1).

minimize
∑

vi∈L
PLS,i (6.9a)
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subject to:
k∑

l=1
xi ,l = 1, ∀vi ∈V (6.9b)

xi ,l = 1, ∀vi ∈ Tl , l = 1, . . . ,k (6.9c)
zi , j ,l ≤ xi ,l , ∀(

vi , v j
) ∈ E , l = 1, . . . ,k

zi , j ,l ≤ x j ,l , ∀(
vi , v j

) ∈ E , l = 1, . . . ,k

zi , j ,l ≥ xi ,l +x j ,l −1, ∀(
vi , v j

) ∈ E , l = 1, . . . ,k

(6.9d)

yi , j =
k∑

l=1
zi , j ,l , ∀(

vi , v j
) ∈ E (6.9e)

∑
(
vi ,v j

)∈E Ti , j −
∑

(
v j ,vi

)∈E T j ,i =
∑
j∈V

x j ,l −1, vi = r1, . . . ,rk , l = 1, . . . ,k

∑
(
vi ,v j

)∈E Ti , j −
∑

(
v j ,vi

)∈E T j ,i =−1, vi ∈V \ {r1, . . . ,rk }

Ti , j ≤ |V |yi , j , ∀(
vi , v j

) ∈ E
Ti , j ≥−|V |yi , j , ∀(

vi , v j
) ∈ E

(6.9f)

Pi , j −Bi j
(
δi −δ j

)≤ Mi j
(
1− yi , j

)
, ∀(

vi , v j
) ∈ E

Pi , j −Bi j
(
δi −δ j

)≥−Mi j
(
1− yi , j

)
, ∀(

vi , v j
) ∈ E

Pi , j ≤ P max
i , j yi , j , ∀(

vi , v j
) ∈ E

Pi , j ≥−P max
i , j yi , j , ∀(

vi , v j
) ∈ E∑

(
vi ,v j

)∈E Pi , j −
∑

(
v j ,vi

)∈E P j ,i =
(
PG ,i −PGS,i

)− (
PL,i −PLS,i

)
, ∀vi ∈V

(6.9g)

Constraints (6.9b)–(6.9e) imply the partitioning status of each node (partitioning
constraints (6.9b)–(6.9c)), and the fact that network edges running between nodes be-
longing to different partitions should be switched off (switching constraints (6.9d)–
(6.9e)). However, the connectedness of graph partititions defined by (6.9b)–(6.9e) is not
ensured. To ensure the connectedness of the resulting islands, the artificial single com-
modity flow variables Ti , j are often used [112, 196, 197]. To this end, one node in the
l−th island is selected as a source node producing

∑
j∈V x j ,l −1 units of an artificial com-

modity (i.e., the artificial commodity production in an island equals the total number of
nodes in that island minus one). In (6.9f), the reference node of each group of terminal
nodes serves as the source node. The remaining nodes in each island are sinks, each con-
suming one artificial commodity unit, which is reflected in the second equation of (6.9f).
The third and forth equations in (6.9f) constrain artificial commodity flows not spread
across open network branches, thus confining the flows from each reference node to
its own island. If connectivity constraints (6.9f) can be satisfied, each island should be
connected [112, 196, 197].

Finally, constraints (6.9g) link the split network topology expressed by the edge status
variables yi , j to the DC OPF. The first two equations in (6.9g) represent the disjunctive
constraints to equate the active power flow Pi , j in edge

{
vi , v j

}
to the status of that edge
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encoded by yi , j . If yi , j = 1, the branch power flow is determined by the DC power flow
expression Bi j

(
δi −δ j

)
, where Bi j is the DC PF branch admittance, δi , and δ j are the DC

PF phase angles of nodes vi and v j . If yi , j = 0, Pi , j should be equal to zero due to (6.9g),
and the phase difference

(
δi −δ j

)
becomes unconstrained because of the large positive

bigM constants Mi j , which is a standard method of modeling logic through MILP [195].
As setting bigM constants to an unreasonably large value may lead to loose linear pro-
gramming (LP) relaxations of MILP models, it is decided to set Mi j = 2πBi j , which is
large enough for study purposes (DC PF equations are also unreliable for large values of∣∣δi −δ j

∣∣). The third and fourth constraints in (6.9g) are constraining the MW flow vari-
ables Pi , j to be zero if yi , j = 0 and not to exceed the line limits if yi , j = 1. The last equa-
tion in (6.9g) represents the active power balance for each node, where PG ,i and PL,i are
the MW generation and load levels at node vi before splitting, and PGS,i and PLS,i are the
generation reduction and load shedding amounts at node vi after splitting. The bounds
on PGS,i and PLS,i are implicit in (6.9g), and phase angles of reference buses r1, . . . ,rk in
each island are implicitly set to zero.

The formulation in (6.9) contains k|V | + (k + 1)|E | binary variables and 2|E | + 3|V |
continuous variables that are related to DC OPF and artificial commodity flows. The
total number of constraints (excluding constant bounds on variables) is equal to 3|V |+
(3k + 7)|E |, which results in the number of constraints and decision variables growing
linearly with the network size. Despite its compact size, the formulation in (6.9) may
take a lot of time to solve to optimality as the network size grows due to its weak LP
relaxation bounds as well as due to NP-hardness inherent to MILPs. However, it is often
possible to reduce the MILP solution times by providing an good initial integer solution
to the MILP solver, as it may help to improve the solver branching process by fathoming
numerous search tree nodes with their LP relaxation values worse that that provided by
the good initial integer solution.

In Table 6.4, the results of solving the MILP formulation in (6.9) are summarized.
The test networks are taken from MATPOWER [81] and PST [83]. For MATPOWER net-
works, the missing electromechanical data for slow coherency analysis is generated from
the standard generator data tables in [86], with the matching criterion being the closest
nominal power rating. Furthermore, the tested generator groupings are produced by the
combined slow coherency grouping algorithm in Section 5.3.2. For each test power net-
work, the solutions of (6.9) involving 2–6 coherent generator groups have been tested.
Testing the same group numbers for several very different power networks is only ac-
ceptable to evaluate the MILP solution performance, as the actual dominant electrome-
chanical structures of each power network are individual. Since not all tested networks
include information about branch power limits, the values of P max

i , j are uniformly set to

twice the value of the maximal steady-state branch MW flow in the unsplitted network.
The amount of load shedding PLS,i for every vi ∈L is assumed to be no less than zero and
no more than the MW power consumption PL,i prior to ICI. The changes in generation
PGS,i for every vi ∈G are assumed to be non-negative (i.e., no generation increases) and
not exceeding 80% of the MW generation PG ,i prior to ICI. The values of PG ,i and PL,i are
obtained from the AC power flow solution using the nominal network power flow data
(see Appendix A).
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The results in Table 6.4 were obtained by modeling (6.9) in the GAMS environment
(GAMS v.26.1.0) with CPLEX being set as the MILP solver, on a PC with an Intel® Xeon®

E5 3.70 GHz CPU and 16 Gb of RAM. The time limit to optimize (6.9) is set to 5 minutes,
and the optimality gap tolerance is set to 1 %. In Table 6.9, the three types of results are
contained:

1. Default CPLEX initialization with no initial solution provided to the solver, allow-
ing CPLEX to perform the default model preprocessesing steps and then start the
optimization from scratch.

2. Initialization from an initial solution satisfying constraints (6.9b)–(6.9f) that is ob-
tained by applying Algorithms 6.1 and 3.3 on the active power flow graphs of the
tested power networks. Algorithm 3.3 is used before Algorithm 6.1 to merge the un-
available branches and after Algorithm 6.1 to merge the resulting group trees. The
actual constrained partitioning is obtained from the reduced power flow graph as
described in Section 3.4.1 and [C1].

3. Initialization from an initial solution satisfying constraints (6.9b)–(6.9f) that is ob-
tained by applying Algorithms 6.1, 3.3, and 3.2 on the active power flow graphs of
the tested power networks. With this method, the solution obtained from the pre-
vious method using Algorithms 6.1, 3.3 is further improved by label propagation
based graph cut refinement described in [138] and Algorithm 3.2.

The relevant solution outcomes in Table 6.4 are the objective value of the best inte-
ger solution LS∗ in p.u., the MW cut value resulting from constrained graph partitioning
cut0 in p.u., the objective value of the initial integer solution obtained through constra-
ined graph partitioning LS0 in p.u., the time to solve (6.9) t in seconds, and the final
optimality gap Gap between the best feasible integer solution and the best LP relaxation
bound obtained by CPLEX. If an ICI test case could be solved to proven optimality within
the prescribed time limit, the value of t should reflect this, and the value of Gap should
be zero. In the opposite scenario, t should be equal to the prescribed time limit, and the
value of Gap should be greater than 1 %.
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Test network k
Default CPLEX

initialization
Initialization with

Algorithms 6.1 and 3.3
Initialization with

Algorithms 6.1, 3.3, and 3.2
LS∗ t , s Gap, % cut0 LS0 LS∗ t , s Gap, % cut0 LS0 LS∗ t , s Gap, %

IEEE 68 bus
test system,
n=68, m=86

2 0.0 0.3 0.0 10.45 8.11 0.0 0.2 0.0 1.96 0.0 0.0 0.1 0.0
3 0.0 0.3 0.0 3.57 1.14 0.0 0.4 0.0 3.56 1.14 0.0 0.4 0.0
4 0.0 0.2 0.0 9.12 6.88 0.0 0.9 0.0 4.63 2.44 0.0 1.2 0.0
5 1.5 0.6 0.0 19.5 13.9 1.5 0.4 0.0 4.73 2.79 1.5 0.6 0.0

NPCC 48
machine

test system,
n=140, m=233

2 0.0 0.4 0.0 17.85 0.17 0.0 0.4 0.0 5.88 0.0 0.0 0.1 0.0
3 0.07 300 100 26.47 1.91 0.07 300 100 14.51 3.59 0.07 300 100
4 8.52 300 100 41.63 30.93 8.52 300 100 20.05 8.52 8.52 300 100
5 7.61 300 79.6 20.15 10.16 7.61 68 0.7 18.9 7.61 7.61 108 0.7
6 10.07 300 84.6 33.72 27.7 10.07 300 20.4 21.44 27.7 10.07 300 40.3

IEEE 300 bus
test system,

n=300, m=411

2 0.0 189 0.0 31.48 11.34 0.0 59 0.0 5.23 4.35 0.0 165 0.0
3 0.0 17 0.0 12.91 6.40 0.0 282 0.0 6.29 2.67 0.0 48 0.0
4 1.37 300 100 28.44 16.86 0.0 222 0.0 16.18 9.04 0.0 77 0.0
5 0.42 300 100 30.80 18.19 0.0 120 0.0 16.34 10.05 1.82 300 100
6 2.14 300 100 32.01 13.36 0.02 300 100 18.11 10.05 5.76 300 100

Pegase 1354 bus
test system,

n=1354, m=1991

2 – 300 – 61.48 0.0 0.0 4.4 0.0 26.40 0.0 0.0 4.4 0.0
3 0.0 12 0.0 37.59 0.0 0.0 0.6 0.0 36.47 0.0 0.0 0.6 0.0
4 – 300 – 40.09 6.42 6.42 300 100 31.43 1.42 1.42 300 100
5 – 300 – 45.19 6.42 6.42 300 100 37.01 1.42 1.42 300 100
6 – 300 – 58.56 6.42 6.42 300 100 35.75 1.42 1.42 300 100

Table 6.4: Impact of initialization with Algorithms 6.1, 3.3, and 3.2 on solution of MILP-based ICI
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The results in Table 6.4 allow to draw a number of conclusions:

1. The label propagation based graph cut refinement in Algorithm 3.2 is often very
efficient at reducing constrained MW power flow cut values, which again confirms
the conclusions from Figures 3.5–3.6.

2. Lower MW power flow cuts mostly result in noticeably lower initial load shedding
solutions.

3. A low initial load shedding may still result in longer solution times. That is, low
MW power cuts often lead to good local optima of (6.9), but this factor alone is not
always enough to ensure a rapid convergence to the global optimum when tackling
(6.9) with sophisticated commercial MILP optimizers (e.g., CPLEX, Gurobi [87]).

4. Satisfying constraints (6.9b)–(6.9f) through constrained graph partitioning that
minimizes the MW power flow cut is not guaranteed to satisfy the DC OPF con-
straints (6.9g). For example, the initial feasible solution for the NPCC 48 machine
test system could only be obtained through the CPLEX heuristics that "repaired"
the provided initial solution.

5. Nevertheless, as the network size grows and the efficiency of MILP-based ICI de-
clines, the ability of Algorithm 6.1 to quickly find a good feasible solution becomes
more valuable. For example, it was not possible to find any feasible solution for the
Pegase 1354 bus test network for 2, 4, 5, and 6 islands without providing an initial
constrained partitioning solution.

To conclude this case study, some modeling and algorithmic limitations should be
mentioned. The ICI formulation in (6.9) exactly models the graph partitioning con-
straints (i.e., the node grouping constraints and island connectedness). The island power
balance constraints and branch power flow limits are modeled by the approximate linear
DC power flow relationships (6.9g), while voltage magnitudes and reactive powers are
completely neglected because of the nature of DC OPF equations (6.9g). The graph cut
refinement Algorithm 3.2 needs to be modified to fix the merged generator group trees
at their respective islands. For the experiments in Table 6.4, this change was not im-
plemented, but the merged nodes representing the group trees were never moved away
from their islands, possibly because of the large weight of all the edges in the reduced
graph that were connected to them.

6.5. CONCLUSIONS
This chapter considered the problem of graph partitioning subject to node grouping
constraints, which directly translates to coherent generator grouping constants of ICI
[55] and generator cranking groups constraints of PPSR [45, 54], but can also be in-
strumental to some other WAMPAC strategies. The major focus was on approximately
solving this NP-hard constrained graph partitioning problem in polynomial time, while
aiming at minimizing the number of misplaced terminal nodes, which is precisely the
subject of research question IV (see Section 1.2.3).
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The overall chapter structure was subdivided into three parts. The first part de-
scribed a transformation of power system similarities (e.g., branch admittances, power
flows, or various sensitivities) into distances that can also incorporate the node group-
ing constraints. This transformation is based on FCSC, which extends traditional spec-
tral clustering to minimize both the weighted edge cut between the partitions and the
number of violated pairwise grouping constraints (i.e., must-link and cannot-link con-
straints), with a special FCSC tuning parameter determining the relative importance of
each objective. Therefore, the geometric node coordinates returned by FCSC are biased
towards the fulfilment of input grouping constraints. As illustrated by Figure 6.2, this
bias can be made significant by appropriately setting the FCSC tuning parameter α′.

The FCSC algorithm can be used to redefine the edge weights of the power network
topology graph G based on the distances between the edges’ end nodes induced by the
FCSC graph embedding. The second part of this chapter concentrated on the newly
proposed sequential tree growing algorithm to approximately solve the NP-hard pack-
ing Steiner trees problem. This algorithm is aiming to find the k disjoint group trees,
each spanning the buses of a single terminal nodes’ group, and it includes the measures
to coordinate the assignment of buses to multiple trees. In particular, the newly com-
puted paths to interconnect a terminal nodes group are constrained not to pass through
the nodes that are already assigned to other group trees or through the nodes that are
possibly required to interconnect other group trees. Because of these measures, the pro-
posed sequential tree growing algorithm was shown to consistently outperform the two
state-of-the-art alternatives [126] and [91] in terms of satisfying the node grouping con-
straints while demonstrating an acceptable computational performance for power net-
works consisting of several thousands of nodes.

The final part investigated the use of the earlier proposed polynomial-time partition-
ing algorithm to provide initial solutions for MILP-based ICI. It was shown that lower
MW power flow cuts often result in lower initial values of total load shedding, but not
necessarily in shorter solution times. The active power flow cuts were decreased (often
significantly) from their initial values resulting from Algorithm 6.1 by applying the la-
bel propagation graph cut refinement in Algorithm 3.2, thus highlighting the practical
value of the post-processing algorithms in Chapter 3. It was also observed that the value
of good initial solutions found through polynomial-time constrained graph partitioning
increases as the network size grows and solving MILPs becomes more difficult (due to
more discrete variables, larger LP relaxation size etc.).

Although FCSC described in Section 6.2 is instrumental at converting power flow
similarities into distances, alternative graph distance metrics (e.g., based on branch
impedances or commute-time distances [30]) can be used with Algorithm 6.1 as well
depending on the studied application.





7
CONCLUSIONS AND

RECOMMENDATIONS

The main topic of this thesis is the discovery of power system structure resulting in par-
titioning of power networks into internally cohesive and well-separated areas. The re-
search methodology predominantly relies on graph theory, graph algorithms, and graph
partitioning, with spectral graph theory being the major theoretical framework.

From the power engineering perspective, this thesis considers clustering of static and
dynamic power system graphs. Static graphs are based on data derived from static power
system analysis, including branch admittance graphs, power flow graphs, and voltage
sensitivity graphs. Dynamic graphs reflect the power system dynamic properties, and
they arise in this thesis to model slow coherency.

From the algorithmic perspective, this thesis studies two types of graph partitioning
problems, which are termed as constrained and unconstrained graph partitioning. Con-
strained graph partitioning deals with partitioning a network subject to node grouping
constraints, and it has been shown to be related to the packing Steiner trees problem
in combinatorial optimization. The power system applications involving constrained
graph partitioning include ICI and PPSR. Unconstrained graph partitioning aims to par-
tition a network into a set of well-separated clusters without constraints or assumptions
on cluster assignment of any particular node. In this thesis, it is shown that AZD for
SVC and generator slow coherency can be successfully resolved through unconstrained
graph partitioning.

The final outcome of this thesis is a generic framework for constrained and uncon-
strained partitioning of power system graphs. The subsequent sections describe the
main research contributions of this framework, answer the research questions raised in
Section 1.2.3, and provide suggestions for future work.

7.1. RESEARCH CONTRIBUTIONS
This section aims to provide an overview of the research contributions of this thesis.
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7.1.1. DETERMINING THE OPTIMAL NUMBER OF CLUSTERS

Several applications in power system control and operations require the power system
to be subdivided into a number of zones or areas. Examples of such applications include
zonal pricing, DSA, SVC, PPSR, and controlled network separation. One important issue
arising in such applications is the choice of the number of areas to partition the network
[46, 94]. Many existing approaches to infer the number of areas depend on an underly-
ing clustering technique (e.g., [39, 46, 52, 173]), thus sharing its biases and drawbacks.
Another popular method to estimate the number of clusters is based on eigengaps in
graph spectra (e.g., [34, 76, 94, 117]), but it may be ambiguous if the studied graph does
not possess a distinct clustering structure [129].

In this thesis, a procedure to detect good choices for the number of clusters was pro-
posed that is not based on a clustering algorithm and more informative than the spectral
eigengap heuristic. This procedure is based on aligning the graph spectral embedding of
varying dimensionality with the canonical coordinate axes and choosing the number of
clusters as the dimension of the spectral embedding that allows for the best alignment.
The spectral embedding is as an inherent graph property that depends on the graph
interconnection structure and the strength of each connection. By including the coordi-
nates of every graph node, the aligned spectral embedding is directly related to the graph
clustering structure, while there is no such direct relationship for spectral eigengaps.

The initial algorithm for aligning spectral embeddings with the standard basis was
formulated in Chapter 4. In Chapter 5, this algorithm was extended to accommodate
for the specifics of the slow coherency grouping problem. The SVC AZD case studies in
Section 5.2.4 and the slow coherency case studies in Section 5.3 demonstrated that the
proposed approach to select the number of areas discovers area structures that are both
empirically and numerically meaningful.

7.1.2. GRAPH PARTITIONING USING ALIGNED SPECTRAL EMBEDDING

To further utilize the valuable information contained in aligned spectral embeddings,
an efficient k-way spectral partitioning algorithm was formulated in Chapter 4. This
algorithm separately considers each coordinate of the aligned spectral embedding to
estimate the k cluster cores around which the final partitions should be formed. One
possible approach to partition a network around the cluster cores was formulated in
Section 4.4. In Section 4.5, this approach was successfully tested on the branch ad-
mittance graphs of two large-scale power networks from MATPOWER. The test results
showed that the proposed graph k-way spectral partitioning algorithm outperformed
three other benchmark algorithms, and often by a large margin. In Chapter 5, the k-way
partitioning algorithm of Chapter 4 was additionally extended to accommodate for the
specifics of the slow coherency grouping problem.

7.1.3. GRAPH PARTITIONING BASED ON SEQUENTIAL TREE GROWING

Constrained graph partitioning with respect to node grouping constraints was another
important topic of this thesis. It was discussed in this thesis that the constrained graph
partitioning problem is NP-hard due to its close relation to the packing Steiner trees
problem. Due to the inherent computational hardness of computing the exact solution,
polynomial-time heuristic algorithms that could quickly provide a good feasible solu-
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tion are of special interest. As it is presently not possible to always attain feasibility when
tackling an NP-hard problem with a polynomial-time algorithm, it may be desirable to
at least minimize the infeasibility of the solution returned by the heuristic approach.
For the discussed constrained graph partitioning problem, the minimal infeasibility re-
quirement translates into the minimal number of violated node grouping constraints,
the metric that was introduced in Section 2.7.

A new constrained graph partitioning approach proposed in Chapter 6 was designed
along the above-mentioned ideas. It attempts to construct k Steiner trees, each spanning
its own group of terminal nodes. The tree construction process proceeds by connecting
one terminal node at a time; the connections with highest chances not to violate any
node grouping constraints receive the highest priority, while connections that are iden-
tified to potentially violate some node grouping constraints are shifted to the end of the
priority queue. The comparison with two state-of-the-art alternatives was performed in
Section 6.3.2, and the test results showed that the proposed algorithm consistently vio-
lates less node grouping constraints, and often by a large margin. As the next step, the
proposed sequential tree growing algorithm was used as the initialization heuristic for
a MILP-based ICI formulation. This case study largely confirmed the assumption that
constrained graph partitioning solutions with a low power flow disruption cause a lower
initial load shedding of MILP-based ICI.

7.1.4. PRE- AND POSTPROCESSING FOR GRAPH PARTITIONING

In Chapter 3, a number of auxiliary measures were introduced with the goal to resolve
some of the inherent graph partitioning drawbacks and to better adapt graph partition-
ing to power system specific problems. In particular, graph outlier detection and the
graph cluster connectedness heuristic largely serve the first goal, while graph cut refine-
ment and graph reductions largely serve the second goal.

The proposed graph cluster connectedness heuristic in Section 3.3.1 was inspired by
the well-known graph partitioning library METIS [90], and it was used throughout the
thesis to enforce connected graph partitions for various benchmark algorithms that do
not support this requirement. The proposed graph outlier detection algorithm in Section
3.4.2 was shown to prevent some existing graph partitioning algorithms from return-
ing very small clusters. Graph reductions were used previously in [58]. The approach
described in Section 3.4.1 differs from [58], but its major goal is the same (i.e., the en-
forcement of ICI-related node grouping constraints). Finally, the graph cut refinement
in Section 3.3.2 was adopted from [138], but its use to reduce the initial load shedding
value of MILP-based ICI can be considered as another contribution of this thesis.

7.1.5. NEW ALGORITHMS FOR SVC AZD AND SLOW COHERENCY

The clustering framework based on aligning spectral embeddings with the canonical
coordinate axes (Contributions 7.1.1 and 7.1.2) was successfully applied to devise new
techniques for SVC AZD division and slow coherency. In the case of AZD, the framework
introduced in Chapter 4 was successfully applied to identify the voltage control zones
for the IEEE 39 and 68 bus test power systems. The SVC case studies on those test power
systems showed a significant voltage error reduction compared both with the scenarios
with no SVC and the scenario with SVC controlling an alternative set of pilot buses.
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In Section 5.3.2, the analogy between power system slow coherency [34] and spectral
clustering was first highlighted. Although the classical slow coherency problem (5.10)
can be linked to spectral graph theory, it is different from the classical normalized spec-
tral clustering studied in Chapter 4. In particular, the eigenvalues of M−1K are not re-
stricted to [0,−2], the generic expansion (5.12) is not bounded in [0,1], and matrices K or
KB represent a complete graph. Thus, the previously introduced spectral clustering algo-
rithms of Chapter 4 were extended to accommodate some facts known from classic slow
coherency theory [33, 34]. The case studies of Section 5.3.5 showed that spectral cluster-
ing techniques from both Chapters 4 and 5 perform well for the slow coherency group-
ing task, especially when the matrix of synchronizing torque coefficients is assumed to
be symmetric. However, the extensions added in Chapter 5 resulted in a better perfor-
mance of the slow coherency grouping algorithm from Section 5.3.2 for a number of test
cases.

7.2. ANSWERS TO RESEARCH QUESTIONS

I. What are the implications of high area cohesiveness and separation on the
efficiency of WAMPAC applications and how can they be assessed?

This question expresses the main motivation to research the topics of graph clustering
and graph partitioning in the context of power systems. To answer it, a spectral cluster-
ing framework that is novel to electric power system research was proposed in Chapter
4 and extended in Chapter 5. In this thesis, area separation was mostly assessed through
normalized cuts (2.7), (5.11) and cluster expansion ratios (2.23), (5.12). Area cohesive-
ness was assessed indirectly by choosing area divisions featuring a high alignment cost
(4.2), (4.5). This approach to area cohesiveness was illustrated in the SVC AZD case study
of Section 5.2.4 involving the IEEE 39 bus test power system. In that case study, a line
trip caused a significant reduction of the internal connectivity of SVC Zone 5. As the
result, the spectral clustering alignment cost of the currently chosen VCS division signif-
icantly increased, signaling the decrease in internal cohesiveness of Zone 5 and the need
to choose a different number of zones corresponding to a lower alignment cost. Thus, it
appears that a low spectral clustering alignment cost achieves a trade-off between area
separation and area cohesiveness for a desired clustering resolution level (i.e., the de-
sired range of k). Choosing the number of VCZs for SVC based on local minima of spec-
tral clustering alignment cost was shown to result in high-quality voltage regulation in
Section 5.2.4. As SVC requires evaluating a set of pilot buses, but not VCZs as whole, as-
sessing the impact of low cluster expansions and normalized cuts on voltage regulation
quality was problematic. However, the slow coherency case studies in Section 5.3.5 have
demonstrated the positive impact of low expansion ratios and normalized cuts on gener-
ator slow coherency. Thus, pursuing high area cohesiveness and separation was shown
to have a positive influence on two area-based control applications; it is also likely to be
beneficial for some other existing and prospective WAMPAC applications.

II. How to achieve a greater control over the clustering results (e.g., to avoid
very small areas), while not compromising the computational efficiency?
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This question was motivated by the noticeable deficiencies of off-the-shelf graph parti-
tioning approaches when directly applied to problems in power systems. All techniques
proposed in this thesis were devised with this goal in mind. In Chapter 3, four auxil-
iary algorithms were developed to circumvent some of the drawbacks present in many
off-the-shelf graph partitioning algorithms. The summary of this work can be found in
Contribution 7.1.4. Some other aspects of this problem are discussed in the answers to
research questions III and VI.

III. How to ensure area connectivity when applying clustering algorithms to
identify areas in power networks?

This question was motivated by the common drawback of many off-the-shelf graph par-
titioning algorithms, which are prone to return disconnected graph clusters. In Chapter
3, a graph cluster connectedness heuristic was proposed that allowed to "repair" discon-
nected graph clusters, while optimizing some graph partitioning quality metric (maxi-
mal cluster expansion or normalized cut were assumed as such metric in Section 3.3.1).
In Chapter 4, area connectivity was ensured by deliberately enforcing the graph cluster
cores to be connected and then using minimum s-t cuts to finalize the partitioning. In
Chapter 6, a separate Steiner tree was constructed for each group of terminal nodes to
ensure the connectivity of these nodes – this principle was briefly mentioned in Section
3.4.1 before being extended in Chapter 6.

IV. How to achieve a high degree of satisfaction of node grouping constraints
by using constrained clustering algorithms while ensuring area connectivity?

This question was motivated by the important ICI requirement to only include coher-
ent generators into each island, while ensuring the connectedness of each island. The
proposed solution is based on the analogy between constrained graph partitioning with
respect to node grouping constraints and the packing Steiner trees problem in com-
binatorial optimization [77, 78]. The sequential tree growing algorithm was proposed
in Chapter 6 to solve this problem, while minimizing the number of unsatisfied node
grouping constraints. The brief summary of this algorithm was given in Contribution
7.1.3, with its full description and test results being available in Section 6.3.

V. How to determine an optimal number of areas for various power system
analysis and WAMPAC applications?

For WAMPAC applications requiring a complete partitioning of the power network into
a number of areas, an algorithm to determine good choices for the number of areas was
proposed in Chapter 4. The summary of this algorithm is provided in Contribution 7.1.1.
For this method to be applicable, the power system area identification problem should
be representable as a graph partitioning problem with an underlying similarity graph
model. Thus, a number of area identification problems (e.g., identification of critical
VCAs [36, 117]) cannot be directly tackled with the proposed solution due to their specific
nature. However, the proposed method to identify an optimal number of clusters can be
potentially applied to power system grouping problems that are not directly related to
area identification, but can be represented with similarity graphs (e.g., the contingency
clustering problem [117]).
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VI. How to enhance clustering algorithms to satisfy a larger number of power-
system related constraints in a timely manner?

This question further develops research question II by asking for the new methods to
adapt clustering algorithms to power system related problems. In this thesis, the follow-
ing constrained clustering issues were resolved:

• Several strategies to tackle the area connectivity issue were proposed (see the an-
swer to research question III).

• An efficient polynomial-time algorithm to resolve node grouping constraints was
proposed (see the answer to research question IV).

• Two approaches to avoid too small areas were proposed (the outlier mining algo-
rithm in Section 3.4.2 and the avoidance of too small cluster cores in Section 4.4).

• Encoding of node grouping constraints through graph reductions in Section 3.4.1.

7.3. RECOMMENDATIONS FOR FUTURE WORK

7.3.1. EXTENSION TO OTHER GROUPING PROBLEMS IN POWER SYSTEMS
In this thesis, a spectral clustering based grouping framework was proposed and applied
to AZD for SVC and generator slow coherency. These two applications are relevant for
area-based control and protection are require subdividing a power system into a number
of areas. Related applications include area-based online DSA [39, 40], area-based PMU
placement, damping of inter-area oscillations [35, 198], wide-area voltage protection (V-
WAP) etc. Certain applications in power system operations (e.g., [30, 163]) could also
benefit from the proposed clustering framework, especially in terms of estimating the
suitable number of clusters.

Additionally, there is a large number of use cases of power network partitioning and
general clustering of power system data that are not directly related to WAMPAC. For ex-
ample, the convergence characteristics of distributed optimization algorithms (e.g., al-
ternating current (AC) OPF [120]) could be improved by optimally partitioning the power
system into subsystems. Other possible use cases include contingency clustering [117],
search space reduction for large-scale optimization [13], reduction of large-scale sets of
real-time data collected by transmission system operators (TSOs) and others.

7.3.2. IMPACT OF WIND AND SOLAR GENERATION ON SLOW COHERENCY
The slow coherency grouping algorithm proposed in Chapter 5 was based on classic slow
coherency theory for synchronous machines. Although some substantial improvements
over the classic slow coherency algorithm were demonstrated, the used modeling frame-
work was still the same as in 1980s–1990s (i.e., accounting only for large conventional
synchronous generators). With the current trends for increasing the share of renew-
able wind and solar power plants, this classic framework to model rotor angle dynamics
needs to be updated to adequately represent the impact of renewable generation. It is
desirable for a new model to be conceptually similar to the classic one for the existing
methods to remain applicable.
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7.3.3. MEASUREMENT-BASED GENERATOR COHERENCY
A number of works has been published on clustering generator signals estimated by
PMUs [49, 50, 164]. Some of these methods form a similarity matrix from the signal data
and subsequently retrieve the generator groups from it by applying a clustering tech-
nique. Although this thesis did not tackle the problem of building a generator similarity
matrix from measurements, once such matrix is available, the clustering framework of
Chapter 4 could be used to analyze it and retrieve the generator groups.

7.3.4. INCLUSION OF AC POWER FLOW CONSIDERATIONS INTO ICI
In this thesis, the ICI problem was tackled in a simplified way by only considering gener-
ator coherency and active power flows (i.e., constrained graph partitioning minimizing
active power flow cuts and MILP-based DC OPF ICI). However, it is known that optimal
solutions obtained with a MILP-based DC OPF ICI model may be AC infeasible [113].
The AC infeasibility of network splitting solutions or significant violations of bus vol-
tage bounds may be due to a global reactive power imbalance in an island or due to
local reactive power mismatches. To alleviate the first problem, it is conceivable to ad-
just the constrained graph partitioning algorithms to minimize the reactive power flow
cut, possibly in combination with the MW power flow cut as it was done in [107]. Al-
though such measures may be useful for quickly finding good initial splitting solutions,
they may be insufficient to resolve certain peculiar situations (e.g., those involving local
imbalances of reactive power). Therefore, it is desirable to develop computationally ef-
ficient exact methods to solve power system splitting problems that include AC power
flow constraints.

7.3.5. WHEN TO ISLAND
This thesis was exclusively concerned with the problem "Where to island?", i.e. which
set of transmission lines to open for a stable and economical operation of the separated
power network. The equally important problem of "When to island?", i.e. when to acti-
vate ICI to prevent an imminent wide-area instability, remained completely out of scope
and could be considered as another future research topic.
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A
TEST POWER NETWORKS

This thesis makes use of multiple test power networks to provide appropriate and suf-
ficiently diverse test cases for the proposed algorithms and their applications. While it
could be reasonable to include the data for smaller test power networks (e.g., the IEEE
39 bus test system or the IEEE 68 bus test system), large-scale test power networks from
MATPOWER involve too much data to be included into a text document. The test power
networks that are relevant for this thesis are listed in Table A.1 together with the sources
of their data, but without including the data explicitly. Unless otherwise stated, the nom-
inal power network data contained in the references below is used in the case studies.

Test network Data source Use in the thesis
IEEE 39 bus test
power network

Appendix A in [180]
Sections 3.4.1, 3.4.2; Section 4.3.2;

Section 5.2.4; Section 6.2;
IEEE 68 bus test
power network

Appendix A in [141]
Section 3.3; Section 5.2.4;

Section 6.4;
NPCC 48 machine
test power network

file datanp48.mat in
Power System Toolbox [83]

Section 5.3.5; Sections 6.3.2, 6.4;

IEEE 145 bus test
power network

file data50m.m in
Power System Toolbox [83]

Section 5.3.5;

IEEE 300 bus test
power network

file case300.m
in MATPOWER [81]

Sections 6.3.2, 6.4;

PEGASE 1354 bus test
power network

file case1354pegase.m
in MATPOWER [81]

Section 3.4.2; Section 4.5;
Sections 6.3.2, 6.4;

PEGASE 2869 bus test
power network

file case2869pegase.m
in MATPOWER [81]

Section 3.4.2; Section 4.5;
Section 6.3.2;

Polish 2383 bus test
power network

file case2383wp.m
in MATPOWER [81]

Section 3.4.2; Section 4.5;

Table A.1: Data sources for used test power networks
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For the power network models from MATPOWER, only power flow data is available.
For studies involving dynamic generator data (e.g., to build the electromechanical power
system model), the missing dynamic data is generated from the standard generator data
tables in [86], with the matching criterion being the closest nominal power rating.



B
GRADIENT DESCENT BASED

EIGENVECTOR ALIGNMENT

To minimize the cost function in (4.5), the authors of [129] used a gradient descent
(GD) based optimization scheme in which the optimized orthogonal matrix R was rep-
resented as a series of Givens rotations [128], with Givens angles serving as the optimiza-
tion variables. The expression for R as the function of Givens angles can be written as:

R(θ1,2, . . . ,θk−1,k ) =
k−1∏
i=1

k∏
j=i+1

Gi,j(θi j ) (B.1)

where Gi,j(θi j ) is a counterclockwise rotation matrix by angle θi j in the plane spanned
by i and j coordinate axes. The angles θi j are the optimization variables in (4.5), and
θ = (θ1,2, . . . ,θk−1,k ) is their vector representation.

The classical update rule for the batch GD algorithm to minimize the cost function
in (4.5) is given as follows [71]:

θt = θt−1 −α∇J (θt−1) (B.2)

where θt is the argument vector at iteration t , ∇J (θt−1) is the cost function gradient at
θt−1, and α is the learning rate parameter. The argument vector θ is updated at every
iteration until the objective function plateaus at some value or the maximal number of
iterations is reached.

For many practical problems involving large and high-dimensional datasets, the up-
date rule in (B.2) results in a slow rate of convergence. To circumvent this issue, several
GD optimization variants are used by the machine learning community [199]. The ex-
periments in Chapter 4 are realized by using the GD variant known as Nesterov acceler-
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ated gradient [200] given by its description in [199]. Thus, the used GD update rule is as
follows:

pt = γpt−1 +α∇J (θt−1 −γpt−1) (B.3a)

θt = θt−1 −pt (B.3b)

where pt is the Nesterov momentum term at iteration t , and γ is the damping coef-
ficient. The momentum principle gives the GD algorithm (B.3) a cumulative memory
about the past steps, and its special form as given in Equation (B.3a) works according to
the predictor and corrector principle (more details can be found in [199, 201]). The for-
mulation in (B.3) has been compared to several other GD algorithms explained in [199],
and it has been selected due to the observed superior performance in minimizing cost
(4.5) (both in terms of run time and objective values) as well as the conceptual simplicity.

The last ingredient to optimize (4.5) using GD is the analytical expression for the
gradient of the objective function. While numerically estimated gradients can be used
instead, the optimization performance may suffer due to the assumptions involved. To
derive the analytical expression for (4.5), the notational conventions from [129] are go-
ing to be followed. First, the Givens rotation matrices are re-labeled as Gl(θl ) = Gi,j(θi j ),
where each pair (i , j ) indicating a Givens rotation angle becomes re-mapped to an inte-
ger l with l = 1, . . . ,K and K = k(k −1)/2. Next, the matrix defining the Givens rotation
involving the angles θa , . . . ,θb is denoted as R(a,b) = Ga(θa)Ga+1(θa+1) · · ·Gb(θb). Next,

define Z = UR and A(k) = ∂Z
∂θk

with A(k)
i j = ∂Zi j

∂θk
. Using the introduced matrix definitions,

it is possible to obtain A(k) = UR(1,k−1)R(k+1,K )
∂R(k,k)
∂θk

. With the above conventions, the
gradient ∇J (θ) can be derived element-wise:

∂J

∂θk
= 1

n

n∑
i=1

k∑
j=1

∂

∂θk

(
Z 2

i j
1

M 2
i

)

= 1

n

n∑
i=1

k∑
j=1

2
Zi j

M 2
i

∂Zi j

∂θk
−2

Z 2
i j

M 3
i

∂Mi

∂θk

to yield the following formula:

∂J

∂θk
= 2

n

n∑
i=1

k∑
j=1

Zi j A(k)
i j

M 2
i

−
Z 2

i j A(k)
i jmi

M 3
i

(B.4)

where jmi = argmax j Zi j (i.e., Mi = Zi jmi ).
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CSVC CONTROL LAW

This appendix contains a practical description of the CSVC control law proposed in [96]
that is used in Section 5.2 to evaluate various sets of pilot buses. The goal of the CSVC
control law [96] is to maintain the voltages at pilot buses close to the reference values
while simultaneously balancing the reactive loading levels of control generators, which
was expressed in [96] as a quadratic programming problem:

minimize∆VC

∥∥∥∥α∆VP −
[
∂VP

∂VC

]
∆VC

∥∥∥∥2

2
+β

∥∥∥∥(
diag(QC )

)−1
(
QC +

[
∂QC

∂VC

]
∆VC

)
−

(
diag(Q

�
C )

)−1
(

Q�
C +

[
∂QC

∂VC

]�
∆VC

)∥∥∥∥∥
2

2

subject to V C ≤VC +∆VC ≤V C

V PQ ≤VPQ +
[
∂VPQ

∂VC

]
∆VC ≤V PQ

Q
PV

≤QPV +
[
∂QPV

∂VC

]
∆VC ≤QPV (C.1)

Q
C
≤QC +

[
∂QC

∂VC

]
∆VC ≤QC

where underlining and overlining respectively denote lower and upper equipment lim-
its, ∆VC is the SVC control generator terminal voltage correction vector (optimization

variable vector), ∆VP is the vector of voltage deviations at pilot buses,
[
∂VP
∂VC

]
is the sen-

sitivity matrix relating ∆VC and ∆VP , ∆QC is the vector of control generator reactive

power outputs,
[
∂QC
∂VC

]
is the sensitivity matrix relating ∆VC and ∆QC , Q�

C is the vector

QC circularly shifted one row down,
[
∂QC
∂VC

]�
is the matrix

[
∂QC
∂VC

]
circularly shifted one

row down, VPQ is the vector of voltages at PQ buses not selected as pilot buses,
[
∂VPQ

∂VC

]
is

the sensitivity matrix relating∆VC and∆VPQ , QPV is the vector of reactive power outputs
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of non-controlling generators (fixed PV buses),
[
∂QPV
∂VC

]
is the sensitivity matrix relating

∆VC and ∆QPV , β is the balancing parameter between the two CSVC objectives, and α

is the weight parameter to compute the CSVC control action in a number of small steps
spread over time.

In the above description, the matrices
[
∂VP
∂VC

]
and

[
∂VPQ

∂VC

]
can be obtained from the

matrix S in (5.6) by taking the submatrices of S corresponding to the sensitivity of re-

spectively ∆VP and ∆VPQ to ∆VC . The matrices
[
∂QC
∂VC

]
and

[
∂QPV
∂VC

]
can be obtained as

the corresponding submatrices of the matrix
[
∂QG
∂VG

]
describing the relationships between

generator terminal voltages and reactive powers, which can be obtained from (5.3):[
∂QG

∂VG

]
= BGG −BGLB−1

LL BLG (C.2)

In (C.2), it is also assumed that ∆QL is equal to zero after the disturbance activating
the SVC response (the same assumption that was used to obtain (5.6) from (5.5)).

The optimization problem in (C.1) is solved at every SVC control step (e.g., every few
seconds [15]) to generate a progressive terminal voltage command for the control gener-
ators. The optimal solution of (C.1) can be obtained through multi-objective constrained
least squares by reformulating the objective of (C.1) as

minimize∆VC

∥∥∥∥∥∥∥


[
∂VP
∂VC

]
√
β

((
diag(QC )

)−1 [
∂QC
∂VC

]
−

(
diag(Q

�
C )

)−1 [
∂QC
∂VC

]�) ∆VC−

 α∆VP√
β

((
diag(Q

�
C )

)−1
Q�

C −
(
diag(QC )

)−1
QC

) ∥∥∥∥∥∥
2

2

(C.3)

with the four groups of constraints from (C.1) remaining unchanged. Once the objec-
tive of (C.1) is reformulated as (C.3), standard constrained least squares solvers (e.g., the
lsqlin() function in MATLAB) can be used to obtain the optimal trade-off solution for
a given value of the trade-off parameter β [202].

Finally, the values of parameters α and β used in Chapter 5 are 0.1 and 10−5 respec-
tively. Thus, the value of α is the same as in [96] and the value of β is ten times smaller
than in [96] to allow for a close convergence of all pilot bus voltages to their reference
values.



D
INERTIAL AGGREGATE

ELECTROMECHANICAL MODEL

This appendix contains a short derivation of the reduced electromechanical model that
is introduced in Section 5.3.3 and used in 5.3.5 to evaluate the accuracy of slow coher-
ent generator groupings. The contents follow references [34, 35], which contain the full
proofs and derivations of the included formulas.

The inertial and slow coherency aggregates of the model (2.19) can be obtained
through transforming the original electromechanical variables in (2.19) into the aggre-
gate variables of coherent areas and area difference variables. The aggregate variables y
represent the motion of the areas’ centers of inertia, and they can be obtained from the
original machine rotor angles through the following transformation:y1

...
yk

= TA [
∆δ1, . . . ,∆δ|C1|, . . . ,∆δg−|Ck |+1, . . . ,∆δg

]T (D.1)

where the transformation matrix TA can be defined element-wise as:

TA =
{

T A
i j =

M j∑
l∈Ci

Ml
if j ∈ Ci ,

T A
i j = 0 otherwise

(D.2)

(
i = 1, . . . ,k; j = 1, . . . , g

)
.

and C1, . . . ,Ck are the sets of machine indices of each of the k coherent areas.
In (D.1), notice that the machine angles appear in the order of their respective areas,

which is known as sequential ordering of the states [34, Chapter 4]. That is, the machines
are re-numbered so that the machines belonging to group C1 are numbered 1 through
|C1|, the machines belonging to group C2 are numbered |C1|+1 through |C1|+|C2| and so
on. The state ordering is crucial for the definition of the variable transformation matrices
in (D.4) and (D.5), which assume the sequential ordering of machine angles.
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In addition to k aggregate variables in y , g −k difference variables z are introduced.
To define difference variables, one machine is selected in each area as a reference ma-
chine. With the sequential ordering of machine states as in (D.1), assume the first ma-
chine of the each area as the area’s reference machine (this choice aims to simplify the
expression in (D.4)). Then the g −k difference variables can be expressed through the
following transformation: z1

...
zg−k

= TD [
∆δ1, . . . ,∆δ|C1|, . . . ,∆δg−|Ck |+1, . . . ,∆δg

]T (D.3)

where the transformation matrix TD is given by:

TD = blkdiag
([−1|C1|−1 I|C1|−1

]
,
[−1|C2|−1 I|C2|−1

]
, . . . ,

[−1|Ck |−1 I|Ck |−1
])

(D.4)

If a machine group C consists of a single machine (i.e., |C| −1 = 0), there will be no
difference variables corresponding to this group, and the column in the matrix TD cor-
responding to this group will be zero.

From (D.1) and (D.3), the complete variable transformation is given as:[
y
z

]
=

[
TA

TD

]
∆δ= T∆δ (D.5)

By applying the transformation T to (2.19), the following system emerges:[
ÿ
z̈

]
=

[
F11 F12

F21 F22

][
y
z

]
(D.6)

where, based on (D.5) and (5.10), F is given as:

F = TM−1KT−1 (D.7)

If the coherency grouping C1, . . . ,Ck underlying the transformation (D.5) is ideal, the
off-diagonal matrices F12 and F21 will be zero, and the spectrum of the original model
(2.19) will be perfectly captured by the subsystem F11 representing the aggregate dy-
namics of the k machine groups and the subsystem F22 representing the local dynamics
inside the groups. However, for the practical power systems, the perfect decoupling be-
tween the aggregate area variables y and the local difference variables z is not achievable
(i.e., F12 and F21 are not zero in practice). Therefore, in the case of slow coherency group-
ing, the spectrum of F11 will not perfectly match the k slowest eigenvalues of M−1K, but
the eigenvalue difference may be smaller or larger depending on the actual machine
grouping underlying the transformation (D.5). Furthermore, the following model

ÿ = F11 y (D.8)

is known in the literature [34, 35] as the inertial aggregate model. It has a clear physical
meaning, as it can be obtained from the original electromechanical model by linking the
internal nodes of machines in the same group by infinite admittances.



NOMENCLATURE

ACRONYMS

AC alternating current
ACE area control error
AGC automatic generation control
AHC agglomerative hierarchical clustering
AVR automatic voltage regulator
AZD adaptive zone division
BFS breadth-first search
CLI command-line interface
CSVC coordinated secondary voltage control
DC direct current
DSA dynamic security assessment
DSP digital signal processing
EHV extra high voltage
ERPI Electric Power Research Institute
FACTS flexible AC transmission systems
FCSC flexible constrained spectral clustering [191]
FLDF fast decoupled load flow
GD gradient descent
HSC hierarchical spectral clustering
HV high voltage
HVDC high voltage DC
ICI intentional controlled islanding
ICT information and communications technology
LFC load-frequency control
LP linear programming
MAE mean absolute error
MILP mixed-integer linear programming
MINLP mixed-integer nonlinear programming
MIP mixed-integer programming
MST minimum spanning tree
MVDC medium voltage DC
NADIR lowest system frequency value following a disturbance
NJW spectral clustering algorithm of Ng, Jordan, and Weiss
NPCC Northeast Power Coordinating Council
NSCOGI North Seas Countries Offshore Grid Initiative
OLTC on load tap changer
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146 VECTORS AND MATRICES

OPF optimal power flow
PDC phasor data concentrator
PF power flow
PMU phasor measurement unit
PPSR parallel power system restoration
PST Power System Toolbox
PV photovoltaics
PVC primary voltage control
RA remedial action
RAS remedial action scheme
RMS root mean square
RMSE root mean square error
ROCOF rate of change of frequency
SCADA supervisory control and data acquisition
SIPS system integrity protection scheme
SMT synchronized measurement technology
SpMST spectral minimum spanning tree
SPS special protection system
SVC secondary voltage control
SVD singular value decomposition
TEP transmission expansion planning
TSO transmission system operator
TVC tertiary voltage control
UC unit commitment
VCA voltage control area
VCS Var control space
VCZ voltage control zone
VSA voltage security assessment
V-WAP wide-area voltage protection
WAMC wide-area monitoring and control
WAMPAC wide-area monitoring, protection and control
WAMS wide-area monitoring system
WE wind energy

VECTORS AND MATRICES

C graph incidence matrix
L graph Laplacian
Lrw random walk normalized Laplacian
Ln symmetric normalized Laplacian
P random walk transition matrix
R orthogonal transformation matrix
W weighted graph adjacency matrix
Wn normalized weighted graph adjacency matrix
I identity matrix
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1 all-ones matrix
0 all-zeros matrix
1 cluster indicator vector
Q constraint matrix in FCSC
Qn normalized constraint matrix in FCSC
K matrix of synchronizing torque coefficients
KS symmetrized matrix of synchronizing torque coefficients
KB symmetric matrix of synchronizing torque coefficients obtained by ne-

glecting conductances in the Kron-reduced admittance matrix

SETS

C set of objects belonging to the same cluster or group
E set of graph edges
G set of machine nodes
L set of electric power load nodes
T set of terminal nodes forming a node grouping constraint
V set of all graph nodes

OTHER SYMBOLS

D weighted graph node degree
G graph (mathematical structure)
g number of synchronous machines
k number of clusters
m number of graph edges
n number of graph nodes
T tree graph (mathematical structure)
α constraint threshold in FCSC; GD learning rate
β lower column threshold in clustering algorithms based on aligned

spectral embeddings
ε minimal cluster size as percentage of the average cluster size
η number of misplaced terminal nodes
µ generic graph node weight
φ cluster expansion ratio
φmax maximal cluster expansion ratio over all clusters

PHYSICAL PARAMETERS

Bi j susceptance between nodes vi and v j

Gi j conductance between nodes vi and v j

Hi synchronous machine inertia of machine at node vi

Ki j synchronizing torque coefficient between synchronous machines i
and j



148 INDICES

PG ,i generated active power output at node vi

P max
i , j maximal active power flow limit between nodes vi and v j

Pm synchronous machine mechanical power
QG ,i generated reactive power output at node vi

V f synchronous machine excitation voltage
VG generator terminal voltage
VP pilot bus voltage
x ′

d synchronous machine transient reactance
ξ synchronous machine damping coefficient
δ synchronous machine rotor angle or bus voltage angle
ω0 nominal power system frequency
ω synchronous machine rotor speed
Mi synchronous machine scaled inertia of machine at node vi

OPTIMIZATION VARIABLES

PGS,i generation adjustment (increase or decrease) at node vi

Pi , j active power flow between nodes vi and v j

PLS,i load shedding amount at node vi

Ti , j artificial commodity flow between nodes vi and v j

xi ,l binary variable indicating the membership of node vi in cluster l
yi , j binary variable indicating the open or closed status of branch

(
vi , v j

)
zi , j ,l binary variable indicating whether both nodes vi and v j belong to

cluster l

INDICES

∗ Indicates an optimal value
r e f Indicates a reference value
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The vast size of a modern interconnected power grid precludes controlling and 
operating  it as a single object. Subdividing a power grid into a number of internally 
coherent areas allows to cope with its inherent complexity and to enable more efficient 
control structures. This thesis focuses on discovering the power system structure to 
facilitate the definition of control areas for wide-area monitoring, protection and 
control (WAMPAC) applications. Graph partitioning is a well-developed discipline whose 
potential is not fully recognized in the power system domain. Particularly, spectral 
graph partitioning methods are shown to be very promising. Their efficiency is first 
demonstrated by accurately selecting the number and extent of control zones for 
secondary voltage control (SVC). Furthermore, it is shown that grouping generators 
with similar slow rotor angle dynamics is closely related to spectral graph partitioning, 
and an enhanced slow coherency algorithm is proposed based on these findings. The 
final topic is constrained graph partitioning subject to node grouping constraints, 
which is related to intentional controlled islanding (ICI). As both solution time and  
accuracy are critical for ICI, a new polynomial-time heuristic algorithm is proposed 
that is more accurate than comparable state-of-the-art methods.  
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