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Abstract

The evolution of aerial vehicle technology necessitates robust trajec-
tory prediction models. These models are crucial for maintaining safe
airspace and enabling autonomous operations. Automatic dependent surveil-
lance–broadcast (ADS-B) is a surveillance system that enables aircraft to
receive data from navigation satellites and periodically broadcasts it, en-
abling it to be tracked. Moreover, using ADS-B data for more general aerial
vehicles has become a popular trend because it can provide real-time high-
resolution aircraft state information and share this information with other
vehicles in real-time for the aviation safety ecosystem.

In this project, we delve into ADS-B-based trajectory prediction for
both aircraft and drone motion trajectories with the overarching goal of im-
proving prediction accuracy. We initially implement several model-based
Kalman filters—including interactive multiple models (IMM)—to assess the
accuracy of aircraft trajectory predictions across different model structures.
The results reveal that the IMM filter outperforms the single model predic-
tions in terms of root mean square error (RMSE).

Furthermore, we implement the Gaussian process (GP) with a slid-
ing window scheme to predict online drone trajectories. Recognizing the
high computational complexity of the GP, we also introduce a low-rank
approximation method, structured kernel interpolation (SKI) GP, aiming
to conserve computational resources. Finally, we compare the prediction
performances of the IMM filter, classical GP, and SKI GP on real drone
trajectories. The results highlight that the classical GP method enhanced
prediction accuracy, achieving an RMSE of less than 1.7m, which is 50%
lower compared to the model-based IMM filter. Additionally, the SKI GP
realizes a 25% reduction in computation time compared to the classical GP,
despite a slight compromise in prediction accuracy.
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Abstract

The evolution of aerial vehicle technology necessitates robust trajectory prediction models.
These models are crucial for maintaining safe airspace and enabling autonomous operations.
Automatic dependent surveillance–broadcast (ADS-B) is a surveillance system that enables
aircraft to receive data from navigation satellites and periodically broadcasts it, enabling it to
be tracked. Moreover, using ADS-B data for more general aerial vehicles has become a popular
trend because it can provide real-time high-resolution aircraft state information and share this
information with other vehicles in real-time for the aviation safety ecosystem.

In this project, we delve into ADS-B-based trajectory prediction for both aircraft and drone
motion trajectories with the overarching goal of improving prediction accuracy. We initially im-
plement several model-based Kalman filters—including interactive multiple models (IMM)—to
assess the accuracy of aircraft trajectory predictions across different model structures. The
results reveal that the IMM filter outperforms the single model predictions in terms of root
mean square error (RMSE).

Furthermore, we implement the Gaussian process (GP) with a sliding window scheme to
predict online drone trajectories. Recognizing the high computational complexity of the GP,
we also introduce a low-rank approximation method, structured kernel interpolation (SKI) GP,
aiming to conserve computational resources. Finally, we compare the prediction performances
of the IMM filter, classical GP, and SKI GP on real drone trajectories. The results highlight
that the classical GP method enhanced prediction accuracy, achieving an RMSE of less than
1.7m, which is 50% lower compared to the model-based IMM filter. Additionally, the SKI GP
realizes a 25% reduction in computation time compared to the classical GP, despite a slight
compromise in prediction accuracy.
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Introduction 1
1.1 Motivation

As the skies grow more populated with a diverse range of aerial vehicles, ensuring their safe and
efficient operation becomes paramount. Aerial vehicles can be broadly classified into manned
and unmanned categories. Manned aerial vehicles include commercial airplanes, which are
pivotal for global transportation, connecting distant parts of the world by ferrying passengers
and cargo. On the other hand, unmanned aerial vehicles (UAVs) such as drones have found
applications in numerous fields such as photography, agriculture, surveillance, and increasingly,
cargo delivery. Central to this challenge is the need for accurate trajectory prediction. There
are many model-based and data-driven methods have been applied to tackle trajectory pre-
diction. In terms of the trajectory data acquiring, there are several traditional technologies
such as primary or secondary surveillance radars [37], but they have several limitations such as
high operational cost, limited coverage, and low accuracy of tracking [66, 65]. The automatic
dependent surveillance-broadcast (ADS-B) emerges as a revolutionary aviation technology that
provides a robust foundation for addressing this need [23]. Initially designed for tracking air-
craft by broadcasting their satellite-determined positions, ADS-B has evolved into a key part
of advanced aerial navigation systems. By utilizing the high-resolution data provided by ADS-
B broadcasts, sophisticated trajectory prediction algorithms can forecast the future paths of
aerial vehicles with high precision. Such predictions not only enhance air traffic management
capabilities but also foster safer coexistence in shared airspaces, be it among commercial jets,
private aircraft, or the burgeoning fleet of UAVs. This paper delves into the mechanics and
applications of ADS-B-based trajectory prediction for modern-day aerial vehicles, underlining
its significance in the evolving dynamics of global aviation.

ADS-B plays a vital role in air traffic control, collision avoidance systems, and weather track-
ing. Figure 1.1 is from the FlightRadar24 website, which uses ADS-B for real-time tracking
and historical data presentation of aircraft, allowing both air traffic controllers and the general
public to access information about flights. Most aircraft are equipped with ADS-B Out, broad-
casting essential parameters such as position, velocity, and heading. A global network of over
40,000 ADS-B receivers collects this data, offering enhanced precision and reliability compared
to conventional radar systems. This technology provides additional safety benefits, including
collision prevention, air traffic optimization, and increased situational awareness for both pilots
and air traffic management personnel [13].

1.2 Trajectory prediction on aircraft

The growth of the global economy has led to a surge in demand for air transport. With
predictions indicating a 4.4% annual growth in worldwide air transportation over the next
two decades, and China’s air traffic volume expected to rise by 3.5 times [47], the aviation
industry faces significant challenges. The current system of fixed airspace sectors and routes
has several problems such as structural solidification, cascading failures, and limited capacity.
This system hinders air traffic optimization and is not aligned with future trajectory and
performance-based airspace operation trends. To address the growing air traffic demands,
complex systems, and varied operational settings, many nations and entities are embarking on

1



Figure 1.1: Aircraft tracking with ADS-B message on Flightradar

projects to modernize air traffic systems [44]. Whether the current sector-based approach or
the anticipated trajectory-based method is considered, accurately predicting an aircraft’s future
path is vital. Precise trajectory predictions support decision-making tools like sequencing of
arrivals and departures, conflict identification, understanding of airspace situations, and flight
flow management, enhancing the predictability and safety of air traffic. For instance, the
federal aviation administration (FAA) in the United States has heavily invested in "The Next-
Generation of Aerial Transportation" initiative, aiming to enhance the safety and reliability of
air travel over the recent decades [20]. Essential safety measures encompass air traffic control
protocols, defining secure flight paths, and mechanisms for avoiding collisions. These measures
outline the conditions under which planes can operate, and by doing so, diminish the risk of in-
flight accidents. In this context, aircraft trajectory prediction emerges as a pivotal instrument
to ensure safer skies.

One of the applications of aircraft prediction is air traffic management (ATM). It encom-
passes the entirety of services, infrastructure, and procedures designed to ensure the safe and
efficient movement of aircraft throughout the skies and on the ground at airports. ATM over-
sees the safe, efficient, and orderly coordination of aircraft movements both in the sky and
at airports. As Figure 1.2 shows the structure of ATM, it includes key components: air traf-
fic services (ATS), air traffic flow management (ATFM), and airspace management (ASM)
to maintain safety, facilitate smooth and predictable flight operations, reduce environmental
impact, and optimize the use of airspace and ground facilities.

ATM is intricately linked with trajectory prediction, as accurately forecasting an aircraft’s
future path is fundamental to ensuring safety and efficiency in flight operations. Trajectory pre-
diction provides air traffic controllers with foresight into an aircraft’s position, enabling timely
decisions to maintain safe distances between planes, optimize flight routes for fuel efficiency,
reduce potential airspace congestion, and ensure punctual departures and arrivals. Essentially,
trajectory prediction is central to the effective operation of the vast airborne system managed
by ATM.

2



Figure 1.2: Air Traffic Management structure [51]

1.3 Trajectory prediction on UAV

Transitioning from traditional aviation, the rise of UAVs brings a new dimension to trajectory
prediction on various applications [46, 24]. UAVs, commonly known as drones, operate in dif-
ferent altitudes and environments than commercial aircraft and often in closer proximity to
obstacles and urban landscapes. Accurate trajectory prediction for UAVs is crucial to prevent
collisions, especially in congested or uncharted areas. Additionally, with the potential integra-
tion of UAVs into broader airspace systems, their trajectories need to be seamlessly coordinated
with other aircraft. The principles from traditional aircraft trajectory prediction in air traffic
control(ATC) can be adapted and refined for UAVs, ensuring that as skies become more pop-
ulated with diverse aerial vehicles, safety and efficiency remain paramount. The integration of
UAVs into the U.S. National Airspace System (NAS) will introduce levels of complexity that
will require holistic assessments of safety and risk mitigation [43].

However, it could also be challenging to acquire the position information for the UAVs.
One of the competitive approaches is ADS-B technology, which offers significant benefits for
the future ATC [17]. ADS-B technology allows aircraft to determine their position via satellite
navigation and periodically broadcast it, enabling them to be tracked. By implementing ADS-B
technology into UAVs, we can obtain real-time information such as position, velocity, and intent
data. This information significantly enhances trajectory prediction accuracy and operational
safety, particularly in airspace where multiple drones or other aircraft are present. Thus, the
integration of ADS-B technology into UAVs can play a pivotal role in managing the rapidly
growing drone traffic, paving the way for a safer and more efficient utilization of our shared
airspace.

Trajectory prediction helps UAVs plan their route, reducing the risk of collisions and improv-
ing navigation. This is particularly crucial for collision avoidance systems in UAVs. Based on
the "Sense, Detect, and Avoid (SDA)" concept from the study [34], as illustrated in Figure 1.3
with two UAV collision avoidance scenarios, trajectory prediction is vital in the detection phase.
It helps predict the UAV’s most possible position in the near future, working alongside onboard
sensors to plan safe movements and make avoidance movements if necessary. Furthermore, it
aids in ensuring smooth UAV operations in busy areas, avoiding unplanned interactions with
other drones, buildings, or obstacles.
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Figure 1.3: Sense-Detect-Avoidance definition [22]

1.4 Objectives

In this thesis, we investigate the trajectory prediction methods for aerial vehicles both for
aircraft and drone trajectories. We evaluate the trajectory prediction by exploiting ADS-B
trajectory information. Based on the different motion characteristics, we take the different
model-based and data-driven methods to predict the trajectories. The objectives can sum-
marised as follows:

• Propose the interactive multiple models (IMM) filter to predict the ADS-B aircraft trajec-
tories for higher prediction accuracy to compare with other single model Kalman filters.

• Propose the Gaussian process regression-based method with sliding window strategy to
predict the ADS-B type drone trajectories for higher prediction accuracy compared with
the IMM model-based method.

• Extend the GP with the low-rank approximation for low complexity and fast computation.

• Compare and analyze the trajectory prediction methods’ performance on drone trajectory.

1.5 Outline

The thesis structure is structured as follows:

• In Chapter 2, some background knowledge is introduced including about ADS-B system,
trajectory prediction methods, and dataset usage.

• In Chapter 3, we exploit the IMM filter along with other single model Kalman filters as
compared to predict raw ADS-B message aircraft trajectory. We design the models for
each model to describe different motions.

• In Chapter 4, we propose the Gaussian process regression with a sliding window to predict
the ADS-B type drone trajectory. Furthermore, we implemented the low-rank approxi-
mation structured kernel interpolation on GP for the computational resources concern.

4



Finally, we compare the GP-based prediction method with the IMM filter on drone tra-
jectory.

• In Chapter 5 we conclude the thesis, summarise the conclusion, and the following future
work are discussed.
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Literature Review 2
2.1 Automatic Dependent Surveillance-Broadcast (ADS–B)

Automatic dependent surveillance-broadcast (ADS-B) is a surveillance technology broadly used
in air traffic control (ATC) scenarios. Using Mode-S transponders, aircraft periodically trans-
mit ADS-B messages that contain critical navigational data such as ground and air position,
velocity, call sign, operational status, and more. ADS-B allows ATC ground stations to contin-
uously monitor aircraft even in areas beyond the reach of conventional radars. This is achieved
through ground or space-based ADS-B receivers that can significantly expand coverage. Seen
as a crucial element of the future air transport system, the use of ADS-B has been made
compulsory by both EUCONTROL [12] in Europe and the FAA [55] in the U.S. since 2020.

Before ADS-B was introduced, ATC applications were heavily dependent on primary surveil-
lance radar (PSR) and secondary surveillance radar (SSR). PSR provides the aircraft’s radial
distance and azimuth relative to the radar’s location, while SSR gives information about the
aircraft’s altitude and identity. However, the inherent limitations of PSR and SSR technology
have restricted further advancements in accuracy and coverage. As a result, ADS-B has been
adopted to augment the situational awareness of ATC operators and pilots.
In terms of the trajectory estimation aspect, we will briefly introduce the ADS-B decoding
message for position and velocity and its transmission rate for different types of messages.

2.1.1 Airbone Position Decoding

A standard airborne position message typically includes the aircraft’s longitude, latitude, and
altitude. Accurately decoding this airborne position is a crucial step for predicting the target’s
future trajectory. The challenge arises with the longitude and latitude components, which are
encoded in the compact position reporting (CPR) format. There are two primary methods
for decoding this: globally unambiguous position decoding and locally unambiguous position
decoding.

The globally unambiguous position decoding method requires a pair of "odd" and "even"
messages to compute a globally correct position [54], and this process does not necessitate
any prior information. Conversely, locally unambiguous position decoding requires a known
reference position in close proximity to the decoded position, for instance, within a radius of
180 nautical miles. The main advantage of the latter approach is its ability to decode a position
from each individual message.

2.1.2 Airborne Velocity Decoding

The airborne velocity message conveys velocity split into East-West, North-South, and verti-
cal directions. This division provides a granular understanding of an aircraft’s movement in
three-dimensional space, which is crucial for precise trajectory prediction. Incorporating tar-
get velocity into these calculations offers additional information, which can be beneficial the
prediction accuracy. Additionally, within the realm of civil aviation, it is common practice to
compute a track angle, irrespective of altitude changes.

7



2.1.3 ADS-B messages transmission rate

The transmission rates of ADS-B messages differ depending on their type. The frequency of
updates also changes based on the aircraft’s status, such as whether it’s airborne or grounded,
and if it’s stationary or in motion when on the ground. Figure 2.1 outlines the transmission
rate of these distinct messages. It’s noteworthy that the transmission rate for airborne position
and velocity is set to 2Hz, which is regarded as the standard for updating the status of target
motion. Notably, since this transmission is commonly from the aircraft’s broadcast, for small
UAVs this is considered to be a relatively low update rate for position and velocity.

Figure 2.1: ADS-B message transmission rates (ADS-B version 2) [54]

2.2 Trajectory prediction methods

For the four-dimension trajectory prediction (longitude, latitude, altitude, time), use historical
data to predict the future position information. According to the form of the prediction results,
the trajectory prediction can also be divided into two other categories [27] :

• Deterministic prediction: This is considered as the nominal method and generally directly
outputs the predicted four-dimensional trajectory information [41]. A deterministic model
would provide a single, specific output for a given input The nominal method cannot
perfectly describe the uncertainty of the aircraft’s future behavior.

• Probabilistic prediction: On the other hand, probabilistic prediction models understand
that the future is uncertain and represent this uncertainty as a probability distribution
over possible outcomes. Probabilistic models are generally more robust to the inherent
unpredictability of real-world systems and can provide a measure of the uncertainty or
confidence in their predictions (Bayesian network, Gaussian Process [16])

Trajectory prediction methods for aerial vehicles can be also categorized into two types:
model-based methods and data-driven methods. Model-based methods leverage mathematical
and physical principles to simulate the behavior of aerial vehicles, taking into account factors
like wind speed, vehicle dynamics, control input, and others. These models offer a high degree of
interpretability, allowing for efficient and accurate prediction under known conditions. On the
other hand, data-driven methods rely on historical flight data and machine learning techniques
to forecast the trajectory. They’re particularly useful in handling complex scenarios where
traditional models may fail, as they can capture nonlinear relationships and consider a wide
range of variables. These techniques have grown in popularity with the rise of AI and can be
more flexible, but their accuracy can be significantly affected by the quality and volume of the
data. In the Figure 2.2 is a brief overview to illustrate some common methods for model-based
methods and data-driven methods.
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Figure 2.2: An overview of tracking methods for trajectory prediction

2.2.1 Model-based methods

The most commonly used model-based methods are related to the Kalman filter. These model-
based methods need to construct the state transition matrix in the state equation through
the equation of motion and study the relationship between position, historical position, speed,
acceleration, angle, and other states at each time point in the future. According to different
assumptions about whether the aircraft has a single flight mode or multiple modes in the
prediction process, this type of method is divided into single-model methods and multi-model
methods.

For the single model, the Kalman filter (KF) algorithm, particle filter algorithm, and hidden
Markov model(HMM) and their improved algorithm are all applied in the trajectory prediction
problem. KF [25] offers an iterative, optimal solution for linear target dynamics and measure-
ment models. For nonlinear models, several filters have been introduced, including the extended
KF [53], and the unscented KF [56]. In terms of multiple model models, it includes multi-model
KF or the IMM filter [6]. Notably, the IMM filter is recognized as one of the most cost-efficient
nonlinear filters [35]. Each of these approaches is reliant on an underlying target dynamics
model. They select a model that aligns most closely with the average target trajectory and use
model noise to account for any variations. These filters can merge data from various sensors,
resulting in an enhanced and more dependable estimation of the target state. However, when it
comes to handling highly maneuverable targets such as drones, these methods might encounter
a larger noise variance.

Specifically, the EKF has been utilized to combine data from optical flow, IMU, and GPS
for accurate online predictions for UAVs [40]. Additionally, dynamic state estimation based on
the EKF has been proposed for trajectory planning for UAV clusters [60]. The Kalman filter
has been employed using lidar data to detect small UAVs [19]. Moreover, the KF, EKF, and
Particle Filter have been used for the ADS-B aircraft trajectory prediction as the same aircraft
data set in our project [64].

Table 2.1: Model-based trajectory prediction method

Single-model method KF:[25, 53, 56],EKF:[40],Particle filter:[32],HMM:[31]

Multi-model method Multi-model KF:[48]
Interactive multiple model:[6, 3]
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2.2.2 Data-driven methods

Contrasting the model-based filters, various machine learning techniques, like regression mod-
els, neural networks, and random forest techniques provide alternative solutions. Table 2.2
provides a summary of some examples using different data-driven trajectory prediction meth-
ods. These techniques don’t depend on kinetic equations but seek to learn patterns from
historical positional and kinetic data to predict a target future location. These techniques have
the advantage of learning complex data patterns without requiring explicit models. In terms of
the regression model, a Gaussian Process-based trajectory prediction framework has been used
with a change-point detection technique to note sudden changes [62]. Moreover, GP-based tar-
get tracking and smoother are developed [1] with online learning and parameter learning. For
the neural network, the most commonly used methods include long short-term memory neural
networks (LSTMs), convolutional neural networks (CNNs), depth neural networks (DNNs),
and combinations for different networks. RNN has been proposed to predict UAV trajectories
in 5G networks [61]. The LSTM network as one type of neural network method is well-suited
for capturing long-term dependencies in sequences and has been successfully utilized in various
time series prediction tasks. As a result, it has become the most commonly employed neu-
ral network for trajectory prediction. It has been used for flight trajectory prediction within
ADS-B information [49].

Traditionally, trajectory prediction is modeled using deterministic prediction models which
do not explicitly capture the sources of uncertainty that affect the prediction accuracy [7]. Some
deep-learning-based prediction methods (CNN, LSTM) may predict the positions of UAVs at
future moments accurately. However, uncertainty quantification is a fundamental problem.
Those methods offer single trajectory predictions without the capability to express the uncer-
tainties associated with those predictions. Modeling uncertainty in predictive analytics involves
quantifying the uncertainty associated with input parameters in a predictive model and how it
impacts the uncertainty in the predictions for the target variable. To achieve this, uncertainty
quantification methods, such as Monte Carlo simulations, are utilized to express performance
parameters as probability density functions (PDF). These PDFs represent the likelihood of dif-
ferent outcomes for the target variable based on varying input conditions. By propagating input
uncertainties through deterministic models, the joint effect of stochastic factors on the predic-
tions of the target variable is identified [45]. Moreover, Gaussian process regression is another
good way to quantify the uncertainty in the trajectory prediction aspect. As a non-parametric
Bayesian probabilistic prediction method, it can explicitly provide both mean prediction and
associated measures of uncertainty due to the underlying probabilistic nature of the model [16].
Besides, the LSTM is more applicable for large data sets and may overfit in small data sets.
On the contrary, GP is typically very effective as it can capture complex relationships with
a relatively small number of points Also it becomes computationally expensive when dealing
with a large amount of data due to its model complexity.

Table 2.2: Data-driven trajectory prediction method

Regression Model: Linear Regression:[18, 26]
Gaussian Process Regression:[16, 62, 1]

Neural Network: LSTM:[63, 49]
RNN:[61]
CNN+LSTM:[33]
Bayesian neural network:[38]

Other methods: Random forest with clustering:[29]
Neural Networks with clustering:[57]
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2.3 Data set

To evaluate the trajectory prediction method on aerial vehicles, we access the different ADS-
B type trajectory data sets, which could be categorized into aircraft trajectory and drone
trajectory. The aircraft trajectory is transmitted as the ADS-B message with around 500 data
samples. In terms of the drone trajectory, it includes 23 seconds of motion with a 400Hz
sampling rate. To simulate the ADS-B transmission rate, we down sample it to 2Hz which
includes 53 samples as a relatively small data set.

2.3.1 Aircraft data sets

To test the trajectory prediction performance on aircraft, We work with two realistic ADS-
B data sets. The first data set is called TrajAir [39] contributed by the Air Lab from the
robotics institute at Carnegie Mellon University. The data set is collected at the Pittsburgh-
Butler Regional Airport. The other data set is collected by the faculty of aerospace engineering
at TU Delft [21], which we call the TUD data set.

Figure 2.3: TrajAir data set: The left image displays a section of analyzed aircraft flight paths,
while the right image depicts the standard traffic pattern and the labeling system used for aircraft

runways. [39]

The data set includes detailed information about the status of an aircraft, such as times-
tamps, geographic coordinates, velocity measurements, track angles, altitudes, and vertical
rates at regular intervals. Notably, the data does not capture the alternate transmission be-
havior of ADS-B. Figure 2.3 visualizes the trajectories of a group of aircraft during landing
or takeoff, revealing distinct traffic patterns known as "lobes" around the airport. The right
portion of the figure specifically highlights the "Left Traffic" patterns characterized by rect-
angular shapes and left turns relative to the direction of landing or takeoff. Additionally, the
trajectories are color-coded to indicate lower altitudes with lighter shades [39].

2.3.2 Drone data set

In order to verify the effectiveness of the proposed method on the drone data set, a real-world
drone trajectory has been used [14]. The drone trajectory is from a trajectory optimization
research sponsored by the Swiss National Science Foundation (SNSF). The drone is flown in an
in-door motion capture system with 2.5 laps of flying on an intended trajectory. The experiment
setup is around 20m×20m to cover the motion of the drone. Within the on-board and off-board
sensor equipment on the drone, the information on position, linear velocity and acceleration,
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rotation velocity, and acceleration has been collected along 3D dimensions. In this section, we
only focus on the position information Px, Py, Pz as needed for trajectory planning. Figure 2.4a
is the real setup of the indoor motion system for the quadcopter trajectory and Figure 2.4b is
the planar trajectory in the simulation. The sampling rate for the position update is 400Hz, in
order to simulate the ADS-B-based transmission for the drone trajectory prediction. We down
sample the data set to 2Hz which corresponds to the standard protocol for the position update
rate.

(a) 3D trajectory (b) planar trajectory

Figure 2.4: Trajectories of drone

2.3.3 Prediction Evaluation

In our cases, the exact ground truth is not available for the above open-source trajectory data
set. Therefore we will take the original trajectory data set as a reference(ground truth) to
compare with the predicted trajectory. It represents a measure of discrepancy to evaluate how
well the predicted model is performing relative to actual data.

2.4 Summary

In this chapter, we introduce the preliminary of ADS-B based trajectory prediction related to
this project. The main content are as follows:

• Introduce the ADS-B message decoding protocol and transmission rate.

• Categorize the trajectory prediction method for aerial vehicles. Compare the specific
methods of model-based and data-driven methods.

• Illustrate the trajectory sources including aircraft and drone data sets for evaluation.
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Model-based Filters on Aircraft
Motion Trajectory 3
Accurately tracking the position and movement of dynamic objects like aircraft, vehicles, and
drones is an issue that demands attention. In the context of aircraft motion, Commercial
airplanes usually maintain designated speed, heading, and altitude during en route flying, we
assume it as a linear Gaussian state space mode. Hence, the traditional model-based filters
like the Kalman filter [25] could be the optimal filter to tackle the problems. However, this can
result in errors since the aircraft motion always include multiple dynamics model, such as in the
case of an aircraft that switches from flying in a straight line to performing a maneuver turn.
In such cases, the Kalman filter may not be able to accurately estimate the object’s trajectory,
leading to potentially dangerous situations.

The interacting multiple model (IMM) filter [35] then could be an improved filter to address
this problem. In essence, the IMM filter is a combination of several Kalman filters, each
representing a different mode of the system. It enables the use of multiple models simultaneously
and smoothly switches between them based on the current behavior of the object. For example,
an aircraft that is flying straight may be best tracked with a constant velocity or constant
acceleration model, while an aircraft that is performing a maneuver may be better tracked with
a constant turn model. The IMM filter switches between these models as needed, resulting in
more precise trajectory estimation and better tracking performance, especially when the object
being tracked experiences relatively large changes in speed or direction. It has been widely used
in tracking applications such as radar [5] or sonar tracking [2] as well as robotics or navigation
involved in dealing with uncertain or changing environments.

3.1 Problem Formulation

Given a sequence of ADS-B measurements of an aircraft’s position over time, the goal is to pre-
dict the future trajectory of the aircraft with high accuracy, while accounting for uncertainties
and possible changes in the aircraft’s motion patterns. The prediction also takes into account
the flight dynamics and constraints of the aircraft, such as its maximum speed, altitude, and
turn rate.

The ADS-B measurements provide information about the aircraft’s position, velocity, alti-
tude, and heading, as well as other metadata such as the flight identification number and the
aircraft type. However, the measurements may be noisy or incomplete, and there may be gaps
in the data due to loss of signal or other factors.

To address these challenges, an IMM filter can be used, which combines multiple models to
represent different possible motion patterns of the aircraft and dynamically switches between
them based on the available measurements and the estimated probabilities of each model. Each
model is characterized by a set of parameters that describe the aircraft’s motion, such as speed,
altitude, heading, and turn rate, and the filter estimates these parameters over time to predict
the future trajectory. To simplify the problem, We took three motion models on IMM filter
and the state space model of each is explained in the next section.
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3.2 Kalman filter

Before introducing the IMM filter, the task of trajectory prediction can be considered as a
state estimation problem. The most commonly used model-based method for it is the Kalman
filter. It requires the algorithm to retrieve signals of interest from noisy data and construct a
reasonable (regarding target dynamics) trajectory from available data. Here is the diagram of
the Kalman filter in Figure 3.1, it shows the Kalman filter is a recursive algorithm including
the predict and update steps to estimate the state and covariance.

Figure 3.1: kalman filter diagram

Here we use the x̂k|k−1 to denote the predicted state at the k−th step while x̂k|k denotes the
corrected state estimate at the k−th step. Similar notations are used also for uncertainty for
the estimated state Pk|k−1 and Pk|k. The F and H are denoted the state transition matrix and
observation matrix. Also, the Q and R are denoted as process and noise measurement noise
covariance. The matrix Kk is the Kalman gain computed at the k−th step.

Within the initial estimate, for the prediction step, it predicts the state estimate and co-
variance for the next step as the input for the update step. The equations for this step are as
follows:

x̂k|k−1 = Fx̂k−1|k−1 (3.1)

Pk|k−1 = FPk−1|k−1F
T +Q (3.2)

and for the update step, the filter incorporates the latest measurement to correct the predicted
state estimate. This step comprises the following equations:

Kk = Pk|k−1H
T
(
HPk|k−1H

T +R
)−1 (3.3)

x̂k|k = x̂k|k−1 +Kk

(
zk −Hx̂k|k−1

)
(3.4)

Pk|k = (I−KkH)Pk|k−1 (3.5)

3.3 State Space model

The State Space Model is a crucial part of applying the Kalman filter on trajectory prediction
since is to provides a mathematical representation of the aircraft’s motion that can be used to
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make predictions and estimate uncertainties. By modeling the aircraft’s motion as a set of state
variables that evolve over time, the filter can use the available measurements to estimate the
values of these variables and make predictions about the future trajectory of the aircraft. Based
on the aircraft dynamics and trajectory characteristics, we consider and build three models of
movement which will be further used as the motion model in the IMM filter:

• Constant Velocity model (CV)

• Constant Acceleration model (CA)

• Constant Turn model (CT)

The general discrete-time state representation of a linear system is given in the following equa-
tion:

xk+1 = Fxk +wk (3.6)

where xk is the state estimate, F is a state transition matrix from time k to k + 1, and wk is
system process noise assumed to be Gaussian-distributed zero mean and white.
The observation equation follows as

zk = Hxk + vk (3.7)

where zk is the measurement vector, H is the matrix relating the state to observation quantities,
and vk is observation noise assumed to be Gaussian-distributed zero mean and having zero
cross-correlation with the process noise wk. The observation matrix is used to map the state
vector to the measurement vector.

Based on the assumption of process noise and observation noise it can be presented as follows
where the Q and R are process and noise measurement noise covariance as KF :

p(w) ∼ N (0,Q)

p(v) ∼ N (0,R)
(3.8)

Each model could has a different state estimate x and state transition matrix F which would
be elaborated in the following context [30].

3.3.1 Constant Velocity model

The state vector for the constant velocity model is defined as x =
[
x ẋ ẍ y ẏ ÿ ω

]T
x, ẋ, ẍ include the position velocity and acceleration for the x dimension, and y, ẏ, ÿ include
the position velocity and acceleration for the y dimension. The ω is the turn rate in the xy
dimension. To align with other models, for the constant acceleration and constant turn model,
the state vectors are the same.

The state transition matrix for the CV model is defined for a linear equation as:

Fcv =



1 ∆t 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 ∆t 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


, (3.9)

The observation vector z for each model is described the position and velocity for 2D
information:

z =
[
x ẋ y ẏ

]⊤ (3.10)
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Since the measurements only include the position and velocity for 2D, whereas the observation
matrix for the three models is the same :

H =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0

 (3.11)

3.3.2 Constant Acceleration model

The constant acceleration kalman filter extends the state vector to include acceleration,the
transition matrix Fca as follows

Fca =



1 ∆t 1
2
∆t2 0 0 0 0

0 1 ∆t 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 ∆t 1

2
∆t2 0

0 0 0 0 1 ∆t 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


(3.12)

3.3.3 Constant Turn model

The state transition matrix for the constant turn model is to perform a constant speed turn
maneuver along the trajectory by state vectors velocity and acceleration. Besides, the CT
model is considered with a known constant turning rate ω in this case. The transition matrix
Fct as follows

Fct =



1 sinω∆t
ω

0 0 −1−cosω∆t
ω

0 0
0 cosω∆t 0 0 − sinω∆t 0 0
0 0 1 0 0 0 0
0 1−cosω∆t

ω
0 1 sinω∆t

ω
0 0

0 sinω∆t 0 0 cosω∆t 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


(3.13)

3.3.4 Observation noise covariance

Since we assume the observation noise as zero-mean Gaussian with covariance R. In terms of
the observation noise covariance R, it reflects the noise in the measurements obtained from the
system. V arx, V ary and V arvx, V arvy denotes the variance for the 2D dimension position and
velocity respectively. The correlation between Covxy and CovV xy has been taken into account.

R =


Varx Covxy 0 0
Covxy Vary 0 0
0 0 Varvx CovV xy

0 0 CovV xy Varvy

 (3.14)

3.3.5 Process noise covariance

Similar to the observation noise, with the process noise covariance Q. It includes the state
vector of position velocity and acceleration for x and y dimensions. It represents the expected
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uncertainty or noise in the prediction model, it affects how much the filter will rely on the
measurements over time. Tuning these matrices properly is vital for the performance of the
Kalman filter in estimating the states accurately and reliably. Therefore an estimated matrix
Q is essential to obtain reliable results. We assume the case in which variance in acceleration
σ2
a causes a variance in velocity and position, and the state variables are dependent based on [4].

Given the position update equation in discrete time:

xk+1 = xk + vk∆t+
1

2
ak∆t2 (3.15)

The variance of V ar(x), V ar(v) the covariance Cov(v, x) is derivated based

V ar(x) = σ2
x = E

(
x2
)
−E(x)2 = E

((
1

2
a∆t2

)2
)
−
(
1

2
E(a)∆t2

)2

=
∆t4

4

(
E
(
a2
)
− E(a)2

)
=

∆t4

4
σ2
ax

(3.16)

V ar(v) = σ2
v = E

(
v2
)
− E (v)2 = E

(
(a∆t)2

)
− (E(a)∆t)2 = ∆t2

(
E
(
a2
)
− E(a)2

)
= ∆t2σ2

ax

(3.17)

Cov(v, x) = E(xv)−E(x)E(v) = E

(
1

2
a2∆t3

)
−
(
1

2
E(a)2∆t3

)
=

∆t3

2

(
E
(
a2
)
− E(a)2

)
=

∆t3

2
σ2
ax

(3.18)
The Y dimension has a similar assumption. Thus, the process noise covariance matrix Q is
structured within the information of two-dimensional acceleration variance σ2

ax and σ2
ay and

sampling interval ∆t

Q =



∆t4

4
· σ2

ax 0 ∆t3

2
· σ2

ax 0 ∆t2

2
· σ2

ax 0

0 ∆t4

4
· σ2

ay 0 ∆t3

2
· σ2

ay 0 ∆t2

2
· σ2

ay
∆t3

2
· σ2

ax 0 ∆t2 · σ2
ax 0 ∆t · σ2

ax 0

0 ∆t3

2
· σ2

ay 0 ∆t2 · σ2
ay 0 ∆t · σ2

ay
∆t2

2
· σ2

ax 0 ∆t · σ2
ax 0 σ2

ax 0

0 ∆t2

2
· σ2

ay 0 ∆t · σ2
ay 0 σ2

ay


(3.19)

With notice, it’s difficult to find the optimal values for the process noise covariance matrix Q,
but defining a reasonable value for the Q is crucial to balance the fusion between predicted
states and measurement values.

3.4 IMM Filter

The IMM filter is an advanced filter as a combination of multiple Kalman filters with different
state space models as we defined above. The algorithm operates as follows it includes several
important steps:

The Algorithm 1 shows the complete step of the IMM filter. It includes the mixing step
for estimating the prior state and covariance, the filtering step for updating the posterior state
and covariance, the model probability update step for updating the likelihood function for each
model, and the estimate combination step for the final estimation. The details explanation is
as follows.
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Algorithm 1 Interacting Multiple Model (IMM) Algorithm
1: Initialization
2: Initialize the model set {F(m),H(m),Q(m),R(m)}Mm=1 for M models
3: Initialize model probabilities µ

(m)
0

4: Initialize state estimates x̂
(m)
0 and covariances P

(m)
0 for each model

5: for k = 1 to N do
6: Mixing
7: for m = 1 to M do
8: µ

(m)
k|k−1 =

∑M
j=1 pjmµ

(j)
k−1

9: µ
(j|m)
k−1 =

pjmµ
(j)
k−1

µ
(m)
k|k−1

10: x̂
(m)
k−1|k−1 =

∑M
j=1 µ

(j|m)
k−1 x̂

(j)
k−1|k−1

11: P
(m)
k−1|k−1 =

∑M
j=1 µ

(j|m)
k−1

(
P

(j)
k−1|k−1 + (x̂

(j)
k−1|k−1 − x̂

(m)
k−1|k−1)(x̂

(j)
k−1|k−1 − x̂

(m)
k−1|k−1)

T
)

12: end for
13: Filtering
14: for m = 1 to M do
15: Prediction: x̂

(m)
k|k−1 = F(m)x̂

(m)
k−1|k−1

16: P
(m)
k|k−1 = F(m)P

(m)
k−1|k−1(F

(m))T +Q(m)

17: Update: K
(m)
k = P

(m)
k|k−1(H

(m))T ((H(m)P
(m)
k|k−1(H

(m))T +R(m))−1

18: x̂
(m)
k|k = x̂

(m)
k|k−1 +K(m)(zk −H(m)x̂

(m)
k|k−1)

19: P
(m)
k|k = (I−K(m)H(m))P

(m)
k|k−1

20: end for
21: Model Probability Update
22: for m = 1 to M do
23: Likelihood L(m)

k = N (zk − ẑ
(m)
k|k−1; 0, S

(m)
k ) ▷ Gaussian likelihood function

24: µ
(m)
k =

L(m)
k µ

(m)
k|k−1∑M

j=1 L
(j)
k µ

(j)
k|k−1

25: end for
26: Estimate Combination
27: x̂k|k =

∑M
m=1 µ

(m)
k x̂

(m)
k|k

28: Pk|k =
∑M

m=1 µ
(m)
k

(
P

(m)
k + (x̂

(m)
k|k − x̂k|k)(x̂

(m)
k|k − x̂k|k)

T
)

29: end for

To begin with, the mixing phase computes mixed conditions for each motion filter based
on mixing probabilities µ

(j|m)
k−1 using Baye’s theorem. The m, j ∈ M where M denotes the total

models. It illustrates the mixing probability of the model j corrected at time k − 1, given
the model m will be valid at time k. This mixing allows information to be shared among the
models.

x̂
(m)
k−1|k−1 =

M∑
j=1

µ
(j|m)
k−1 x̂

(j)
k−1|k−1 (3.20)

P
(m)
k−1|k−1 =

M∑
j=1

µ
(j|m)
k−1

(
P

(j)
k−1|k−1 + (x̂

(j)
k−1|k−1 − x̂

(m)
k−1|k−1)(x̂

(j)
k−1|k−1 − x̂

(m)
k−1|k−1)

T
)

(3.21)

Afterward, the filtering phase involves running a Kalman filter for each model prediction and
update. These Kalman filters operate in parallel, each producing its own state estimate and
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covariance.
x̂
(m)
k|k−1 = F(m)x̂

(m)
k−1|k−1 (3.22)

x̂
(m)
k|k = x̂

(m)
k|k−1 +K

(m)
k (zk −H(m)x̂

(m)
k|k−1) (3.23)

Thus for each model, the model probability update phase computes the likelihood of the ob-
served measurements based on the Gaussian function, the model probabilities are then updated
according to a normalized likelihood measure.

µ
(m)
k =

L(m)
k µ

(m)
k|k−1∑M

j=1 L
(j)
k µ

(j)
k|k−1

(3.24)

whereas L(m)
k is the likelihood of model m at time k .It evaluates the Gaussian probability

density function at the residual between the estimate and actual measurement with mean 0
and covariance S

(m)
k .

L(m)
k = N (zk − ẑ

(m)
k|k−1; 0,S

(m)
k ) (3.25)

The final step involves combining the state estimates and covariances of all M models at time k
based on the updated model probabilities to compute the overall estimate x̂k|k and covariance
Pk|k.

x̂k|k =
M∑

m=1

µ
(m)
k x̂

(m)
k|k (3.26)

Pk|k =
M∑

m=1

µ
(m)
k

(
P

(m)
k + (x̂

(m)
k|k − x̂k|k)(x̂

(m)
k|k − x̂k|k)

T
)

(3.27)

The flow chart of IMM filter is shown as Figure 3.2: It briefly illustrates the IMM filter in
our case with three models: CV, CA, and CT.

Figure 3.2: IMM Filter flow chart
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3.5 Performance Analysis

In order to test the IMM filter along with other kalman filter prediction performances, we first
test it on the simulation dataset which combines with motion following the predefined model
motion. The Gaussian noise has been added to test the filter’s robustness. As Figure 3.3 shows,
the simulation trajectory is generated following three constant motion models(CV, CT, CA) as
different parts of the trajectory.

Figure 3.3: Simulation trajectory

Besides, the real-world aircraft trajectory dataset has been used Figure 3.4 to further investi-
gate the IMM performance. To ensure simplicity and obtain reasonable results, we selected two
representative flight scenarios from each dataset. These scenarios are referred to as "trajectory
1" and "trajectory 2." We use the notation Xdata to represent the new set of trajectories.

• Trajectory 1: This scene contains the trajectory of a jetliner, which flew in a linear
motion for a certain period of time and then executed a lazy turn. The aircraft maintained
its cruising speed and altitude during this period. The trajectory of the aircraft is shown
in Figure 3.4a.

• Trajectory 2: It includes the landing trajectory of a GA aircraft. The aircraft made
sharper turns and frequently changed its velocity. Compared to Scene 1, this trajectory
exhibits more abrupt changes in states. This is depicted in Figure 3.4b.

20



(a) Aircraft trajectory 1 (b) Aircraft trajectory 2

Figure 3.4: Two flight trajectories. Trajectories 1 is from the TUD data set and Trajectories 2 is
from the TrajAir data set.

3.5.1 Root mean square error

Root mean square error (RMSE) is used to quantify the difference between the estimated
positions (given by the filter models) and the actual positions The specific RMSE equation in
the context of 2D trajectory is calculated as follows:

RMSE =

√√√√ 1

N

N∑
i=1

((x̂i − xi)2 + (ŷi − yi)2) (3.28)

Where N is the total number of data points or samples, x̂i and ŷi are the estimated trajec-
tories, xi and yi are the observation trajectories.

3.5.2 Model probability

Model probabilities indicate the likelihood that each model is the correct one for the current
behavior of the target, based on the match between the estimations made by each model and
the actual observations.

µ1 + µ2 + . . .+ µi = 1 (3.29)

Where µi is the model probability for model i, the model probabilities should add up to 1.
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3.5.3 Simulation data set results

(a) Simulation trajectory RMSE

(b) Simulation trajectory model probability

Figure 3.5: Simulation trajectory

The results depicted in Figure 3.5 display the RMSE over time on simulation trajectory for
both the IMM filter and the constant velocity (CV) model over time, as well as the model prob-
ability over time. It is evident that the IMM model accurately recognizes the motion model
across different trajectory segments. As observed from the model probability figure, the IMM
can swiftly switch to the corresponding model based on the current motion dynamics. Fur-
thermore, because it operates accurately under the correct motion model, the IMM maintains
a substantially lower RMSE throughout the duration compared to the CV filter. In contrast,
the CV filter only exhibits precise predictions during segments of constant velocity motion,
resulting in a larger RMSE during other trajectory motion segments.
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3.5.4 Real data set results

(a) Trajectory scene 1 (b) Model Probability

(c) Trajectory Velocity Estimation for
x-axis position

(d) Trajectory Velocity Estimation for
y-axis position

Figure 3.6: Evaluation results for Trajectory 1

The results Figure 3.6 shows the estimation of the first real trajectory, model probability update
for three models, and corresponding velocity estimation. In terms of trajectory prediction, we
evaluated the IMM filter along with three single filters: CV, CA, and CT filters. It can
be stated that the IMM filter outperforms the other three filters. From the analysis of the
model probability, we observed that the three models change frequently while the aircraft is
in motion, while the constant velocity model remains dominant. Additionally, based on the
velocity estimation for both the x and y positions, we found that the IMM filter tracks the
velocity better than any of the other three models at both positions. Overall, the results
clearly demonstrate that the IMM filter provides superior performance compared to the single
filters in terms of trajectory estimation and velocity tracking.
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(a) Trajectory scene 2 (b) Model Probability

(c) Trajectory Velocity Estimation for x
position

(d) Trajectory Velocity Estimation for y
position

Figure 3.7: Evaluation results for Trajectory 2

The results of the second trajectory, as shown in Figure 3.7, further reinforce the superior
performance of the IMM filter compared to the other single filters in terms of both trajectory es-
timation and velocity tracking. Analyzing the model probability, we observed that the constant
velocity motion is initially dominant and eventually transitions to a turn model. This obser-
vation aligns with the intuitive understanding of the motion pattern exhibited by trajectory
2.

The figures referenced above, Figure 3.8 and Table 3.1, provide a detailed analysis of the
RMSE for each data point, as well as the overall RMSE for two trajectories. These are an-
alyzed in comparison with the four filters we previously discussed. Given that the trajectory
measurements are in kilometers, significant differences can become apparent if the motion de-
viates from the intended trajectory. This is illustrated by the constant turn model, which
struggles to accurately estimate the motion, resulting in a notable RMSE discrepancy with the
true trajectory.
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(a) Trajectory 1 RMSE for each data (b) Trajectory 2 RMSE for each data

Figure 3.8: RMSE for each data sample

Table 3.1: Comparison of overall RMSE for trajectories by IMM, CV, CA, and CT filters (in kilometers)

RMSE (km) IMM CV CA CT
Trajectory 1 0.074 5.356 1.214 11.200
Trajectory 2 0.022 1.396 0.382 2.081

Overall, the analysis validates the performance of the IMM filter, as it is capable of accu-
rately capturing the motion for both trajectories and providing reasonable estimations. This
robust performance underscores the IMM filter’s ability to adapt to varying motion dynamics
and provides strong evidence for its suitability in trajectory-tracking applications.

3.6 Summary

In this chapter, model-based trajectory prediction methods have been implemented for the
aircraft trajectory dataset. The main contribution can be summarised as follows:

• Define the state space models, the observation, and the noise covariance matrix of the
interactive multiple models (IMM) filter.

• Implement the IMM filter to evaluate the trajectory prediction performance both on the
simulation and real aircraft data set compared with three single Kalman filter constant
velocity (CV), constant acceleration (CA), and constant turn (CV) models.

• Based on the prediction results, it show that the IMM filter exhibits superior prediction
accuracy compared to the CV, CA, and CT filters. This indicates that the IMM filter
excels in handling trajectories characterized by complex and varying motion patterns than
the single model Kalman filter.
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Gaussian Process on Drone
Motion Trajectory 4
In chapter 3, we explore the trajectory prediction of aircraft motion. However, the limited
degrees of freedom in aircraft restrict their maneuverability. For instance, they can’t move
instantaneously in any direction within their available degrees of freedom without first changing
their orientation. Nevertheless, predicting UAVs’ motion is also essential. One prime example of
UAVs’ motion is the trajectory of drones. With their increasing prevalence, accurate trajectory
prediction becomes crucial for collision avoidance.

Moreover, within the context of air traffic control, predicting the trajectory of UAVs using
the ADS-B transmission protocol enables seamless communication integration with manned
aerial vehicles. Integrating UAVs into shared airspace ensures that they operate within es-
tablished regulatory frameworks, fostering broader acceptance and trust in UAV operations.
Therefore, in this chapter, we address trajectory tracking for drone motion.

To predict the drone trajectory, we first found that it’s challenging to implement the model-
based filter to accurately predict the trajectory of its high maneuver characteristic. Since
the model mismatch could lead to potential large cumulative error. Thus, we investigate a
data-driven method– Gaussian process regression (GP) to predict the future position of drone
trajectory based on the past data set.

As we discussed beforehand, another important advantage of GP is it can explicitly quantify
the uncertainty in the trajectory prediction aspect. The main sources of uncertainty come from
drone environment factors, human intervention, and other unknown types. In the context of
safety planning, the uncertainty on the prediction of future positions of drones is relevant for
the detection of abnormal behavior of drones and for assessing collision risk in advance.

4.1 Problem Formulation

Suppose we have a trajectory training data set D = {(xi, fi) , i = 1, 2 . . . n} where xi denotes
a multidimensional input vector and fi denotes a scalar output corresponding to xi, the ith

element in x and n denotes the sample size of the trajectory dataset. fi values are assumed to
be sample values of a non-linear and noisy process:

fi = f (xi) (4.1)

Gaussian process Regression is a non-parametric regression method that finds a distribution
over the possible function f(x) that is consistent with the observed data D [42]. A GP model
is fully described by its mean function m(x) and covariance function k (x,x′) as shown below:

f ∼ N (m(x), k (x,x′)) (4.2)

The shape and smoothness of f are determined by the covariance function, as it controls the
correlation between all pairs of output values.

The goal of the GP is to predict the value of the function f at any input x∗. By definition
[42], we have: [

f
f (x∗)

]
∼ N

(
0,

[
K KT

∗
K∗ K∗∗

])
(4.3)
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where covariance sub-matrices, K,KT
∗ , K∗, K∗∗, are calculated from Equation 4.4 to Equa-

tion 4.6 [42] and the mean function is assumed to be 0 i.e. m(x) = 0.

K =

 k (x1,x1) · · · k (x1,xn)
... . . . ...

k (xn,x1) · · · k (xn,xn)

 (4.4)

K∗ =
[
k (x∗,x1) k (x∗,x2) . . . k (x∗,xn)

]
, (4.5)

K∗∗ = k (x∗,x∗) , (4.6)

where k (x,x′) denotes the covariance between two inpts vector x and x′. The covariance value
is determined by the kernel function discussed below.

The prerequisite for GP is that the kernel functions need to be a positive-definite function.
There are several kernel functions used in the literature as covariance functions. In [10] an
overview of popular kernel functions for GP is provided. We choose the squared exponential
(SE) function because it offers the smoothness in regression models which aligns well with
trajectory modeling.

k (x,x′) = σ2
f exp

(
−1

2

(x− x′) (x− x′)T

σ2
l

))
(4.7)

In Equation 4.7, σl is the characteristic length scale, and σf determines the standard deviation
of the output. The parameters, σl and σf are called hyperparameters and form a set values
θ = {σl, σf} [8]

The learning process of GP consists of tuning the values of θ to maximize the posterior
probability of µ(f | x; θ), This is done by maximization of the log marginal likelihood with
respect to hyperparameters in θ.

θ∗ = argmax
θ

log µ(f | x; θ) (4.8)

The conditional probability distribution of f (x∗) given the observed data, D, has a multivariate
normal distribution and is defined as:

f (x∗) | f ∼ N
(
K∗K

−1f,K∗∗ −K∗K
−1KT

∗
)

(4.9)

where K,K∗and K∗∗ are define from Equation 4.4 to Equation 4.6. The best estimation of
f (x∗) is the mean E [f (x∗)] and the uncertainty of prediction is captured in the covariance
Cov [f (x∗)] which are determined as follows:

E [f (x∗) | f ] = K∗K
−1f, (4.10)

σ2 (x∗, D) = Cov [f (x∗) | f ] = K∗∗ −K∗K
−1KT

∗ (4.11)

In conclusion, the GP could be beneficial for regressing highly maneuverable trajectories, such
as drone trajectories. These trajectories often exhibit rapid changes in direction and velocity,
resulting in correlations between different dimensions of position. The GP is well-suited to
capture these correlations, enabling the sharing of information across dimensions and leading
to improved accuracy in trajectory estimation.
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Figure 4.1: An example of one-dimensional GPR using zero mean and squared exponential covariance
function [15]

4.2 Online trajectory prediction

There are two types of trajectory prediction methods: online learning and batch learning. In
online learning, the model updates its predictions based on new incoming data points. In
contrast, batch learning, also known as offline learning, is trained using the entire dataset at
once. The motivation for using online learning, specifically in the context of drone trajectory
prediction, is as follows:

Firstly, drone trajectory prediction often requires real-time predictions to be effective, es-
pecially for tasks like collision avoidance or path planning. Online learning can provide more
timely predictions as the model can be updated as soon as new data becomes available.

Secondly, training a model using batch learning on a large dataset can be computationally
expensive and time-consuming. If the drone’s trajectory data is continuously recorded, this
dataset can quickly become very large. Online learning, on the other hand, can be more
computationally efficient as it only needs to process the new data as it arrives.

Moreover, in some cases, only the recent past is relevant for predicting the immediate fu-
ture trajectory of the drone. Older data points might not contribute much to the prediction
accuracy and can even be misleading if the drone’s dynamics or the environment have signif-
icantly changed. Therefore, online learning allows the model to adapt to the most up-to-date
information and make more accurate predictions.

4.2.1 Gaussian process with sliding window

Given the dataset D, described as ADS-B type includes 3D trajectory position. where D =
[x1, y1, z1] , [x2, y2, z2] , . . . , [xn, yn, zn], n denotes the total sample numbers. The problem is to
use the observed data to predict the position of the target for the following time steps
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Figure 4.2: Slide window scheme

More specifically, the online application of GP faces the significant hurdle of computational
complexity, which grows at a cubic rate proportional to the number of training points. For
evolving systems, this can lead to rapidly escalating computational costs. A possible solution
is using a sliding window approach to manage computational demands. The sliding window
scheme for trajectory prediction is shown as Figure 4.2, it can be observed that pi denotes the
index for the ith 3D position, denotes as pi ∈ {xi, yi, zi}. Within n total samples, the k and s
represent the window length and step size respectively.
For the first iteration, the first k data sample was taken as the training set to

Ptrain1 = [p1,p2, . . . ,pk] =

x1 x2 . . . xk

y1 y2 . . . yk
z1 z2 . . . zk

 (4.12)

The GP model assumes that position matrix P for each dimension d ∈ x, y, z, ttrain denotes the
time stamps for the training set. The data follows the Gaussian distribution for each training
iteration:

Pd(ttrain) ∼ N (md(ttrain), kd (ttrain, t
′
train)) , d ∈ {x, y, z} (4.13)

where md(ttrain) is a mean function, kd(ttrain, ttrain′) is a kernel function and train the GP model
and then predict the next following s steps position

Ptest1 = [pk+1,pk+2, . . . ,pk+s] =

xk+1 xk+2 . . . xk+s

yk+1 yk+2 . . . yk+s

zk+1 zk+2 . . . zk+s

 (4.14)

For each dimension d ∈ x, y, z, the predictive distribution in the test set Pd(ttest) is a Gaussian
distribution for each testing iteration:

Pd(ttest) | ttrain, t ∼ N (Pd(ttest), var [(Pd(ttest))]) , d ∈ {x, y, z} (4.15)
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where Pd(ttest) is the predictive mean and var(Pd(ttest)) is the predictive variance, given by the
formulas for the posterior of a Gaussian process.

As for the sliding window scheme, for the next following iteration, the next training set
Ptrain2 will take the next s new data from pk+1 to pk+s and discard the old data from p1 to
ps to keep the window length fixed as K, and then the next testing set Ptest2 will predict the
trajectory position from pk+s+1 to pk+2s. Since it is a recursive algorithm to take the newest k
data samples to predict the following s future position. If we assume there are m iterations, then
the observed data is the combination of the overall training sets and the predicted trajectory
is the combination of the overall testing sets

Pobserve = [Ptrain1 ,Ptrain2 , . . . ,Ptrainm ] = [p1,p2, . . . ,pn−s] (4.16)

Ppredict = [Ptest1 ,Ptest2 , . . . ,Ptestm ] = [pk+1,pk+2, . . . ,pn] (4.17)

which denotes that the predicted trajectory Ppredict records the consistent position from the
end of the first test data pk+1 until the last dataset samples pn.

Algorithm 2 Online GP with Sliding Window for 3D Trajectory Prediction
1: Inputs: n total samples, window length k, step size s, positions P = {p1,p2, . . . ,pn} where

pi ∈ R3, timestamps T = {t1, t2, . . . , tn}.
2: Outputs: Predicted positions Ppredict = {pk+1,pk+2, . . . ,pn} where pi ∈ R3.
3: for i = 1 to n− k with step s do
4: // Form the current training set
5: Form training set Ptrain = {pj}i+k−1

j=i ,Ttrain = {tj}i+k−1
j=i .

6: // Train a GP model on the training set
7: Define GP with RBF kernel for 3D data.
8: Optimize model hyperparameters (length scale, kernel variance)
9: Train GP model f on Ptrain , Ttrain .

10: // Predict the future 3D position
11: Predict and store future positions Ppredict = {f(tm)}i+k+s−1

m=i+k ,Ttest = {tm}i+k+s−1
m=i+k

12: end for

Algorithm 2 presents the pseudocode for online GP using a sliding window approach to
predict trajectories. In each iteration, the training set comprises the time indices Ttrain as
inputs and the 3D positions Ptrain as outputs. The GP model is trained with these data, and
its hyperparameters are optimized by maximizing the marginal likelihood. For the test set,
future time indices are used as inputs to predict future 3D positions. After each prediction, the
predicted positions are accumulated in a sequence throughout the loop, forming the predicted
trajectory, denoted as Ppredict.

4.3 Simulation

Based on posterior distributions of GP models from Equation 4.10 and Equation 4.11, both
prediction uncertainty and accuracy can be studied. The mean of the predictive distribution
is considered the most probable prediction and thus used to compute the accuracy metrics
with the ground truth data. The accuracy of the predictions is measured by RMSE for each
dimension:

RMSE(x) =

√√√√ 1

N

N∑
i=1

(x̂i − xi)
2 (4.18)
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Where N is the total number of data points or samples, x̂i is the estimated sample, xi is the ob-
servation sample, whereas for the y and z dimensions the equation is similar with Equation 4.18
Given the predicted vector v̂ = [x̂, ŷ, ẑ] and the true vector v = [x, y, z], the RMSE in vector
form for the 3D position is:

RMSE(v) =

√√√√ 1

N

N∑
i=1

∥v̂i − vi∥2 (4.19)

where v̂i and vi are the predicted and reference vectors for the i-th sample, respectively,
and N is the number of samples. The notation ∥·∥ denotes the Euclidean norm.

The uncertainty is quantified by computing the standard deviation(σ square root of the vari-
ances from Equation 4.11 of the samples prediction, indicating the ambiguity of the predicted
position. Instead of using the sliding window scheme, we investigate trajectory prediction using
the growing window scheme, as illustrated in Figure 4.3. In the growing window approach, the
window size expands by s steps with each iteration, rather than discarding the earliest data
points. This leads to higher computational complexity compared to the sliding window scheme.

Figure 4.3: Growing window scheme
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Figure 4.4: RMSE for slide and grow

Figure 4.4 shows the RMSE between the proposed sliding window strategy with a fixed
window length k of 15 and a growing window with each iteration within the step size ranging
from 1 to 5. We discovered that antiquated data fail to contribute relevant information for
accurate predictions and may even introduce irrelevant information. This could lead to a larger
RMSE when compared to the sliding window, particularly as the step size increases.

Furthermore, when examining computational complexity, the sliding window’s complexity
is approximately O((N/s) · k3) with the fixed window length k, while the growing window’s
complexity is approximately O((N/s) ·m3), where growing window length m = k + i and
i = 1, 2, 3 . . .. Thus, the computational complexity of the growing window is significantly
higher, especially when handling larger datasets. This factor warrants considering the sliding
window strategy as a preferable option when computational efficiency is a concern.

4.3.1 Simulation Results

For the parameter selection of the window length, a careful balance must be struck. If the
window is too small, the model might not be able to accurately capture the dynamic char-
acteristics of the drone’s movement. Besides, considering the dataset availability and motion
characteristics, we choose window length k = 15.

To motivate the step size related to the real-world project, since the max speed of drones
ranges between 20-30 m/s, with top-tier models capable of reaching speeds up to 40 m/s [11]. In
the context of collision avoidance consideration, these high-end drones feature obstacle detection
systems with a range of approximately 15-30 meters e.g DJI Mavic Air 2S is able to detect the
obstacle 28m away. To effectively utilize these systems for collision prevention, it becomes
practical to predict the drone’s trajectory between 0.5 to 2 seconds in advance. Accordingly, in
our experiment, we examine time steps ranging from 0.5 to 2.5 seconds, incrementing each step
by 0.5 seconds, to evaluate the performance of trajectory prediction. Through this approach, we
aim to align our prediction capabilities with the operational characteristics of obstacle detection
systems, thereby evaluating the effectiveness of collision avoidance mechanisms.

In terms of the results for the trajectory prediction with different step sizes, Table 4.1 is the
table results of test trajectory RMSE for different step sizes in three dimensions. we observe
the smaller step size could obtain better prediction results but lead to more computations, so
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it is a trade-off between accuracy and computational efficiency. However, due to its highly
maneuver character, we found that prediction RMSE is relatively high, especially after a 2-
second look-ahead may indicate it’s challenging to predict the trajectory sufficiently for a long
time look-ahead time. Table 4.2 is the mean uncertainty for the trajectory prediction for the
different step sizes. It denotes a similar trend observing the increasing uncertainty with the
step size increase.

Table 4.1: RMSE comparison for different step size prediction in 3D

Step Size
RMSE(m) 1 2 3 4 5
X(m) 0.973 1.486 2.086 2.234 2.512
Y(m) 1.189 1.718 2.218 2.553 2.794
Z(m) 0.712 1.512 1.812 1.945 2.186
Overall(m) 1.693 2.855 3.503 3.888 4.342

Table 4.2: Mean uncertainty for different step size prediction in 3D

Step Size
Mean uncertainty(m) 1 2 3 4 5
X(m) 0.988 1.125 1.743 2.134 2.343
Y(m) 1.002 1.237 1.564 1.962 2.285
Z(m) 0.678 0.885 0.993 1.142 1.348

Figure 4.5a and Figure 4.5b are box plots that show the visualization prediction results with
a step size s of 1 and a window length k of 15 regarding the median value and spread of RMSE
and uncertainty for the given case over time. From the plots, we observe that the median value
of RMSE for the x is around 0.8 meters, while the RMSE median for the y and z dimensions is
lower at approximately 0.6 meters. However, the maximum RMSE and upper quartile indicate
the y-dimension RMSE range is larger than the other two dimensions. In terms of uncertainty,
the x dimension exhibits an average of around 0.9 meters and y shows a higher median value
of 1.05 meters and a wider spread. The z dimension has a small variance range with a median
value of 0.75, indicating that the position prediction in the z dimension is more confident which
is due to the motion changing in the z dimension being relatively small compared with the other
two dimensions. According to the trajectory characteristics, the results adequately reflect the
motion trajectory for all three dimensions.

Figure 4.6 presents the outcomes of the GP online learning case with the same parameter
as Figure 4.5a and Figure 4.5b. It shows the comparison between the mean predict trajectory
(blue curve) and ADS-B type reference (red curve), and the shaded region around the mean
prediction is the uncertainty region(95% confidence interval) From these results, it is noticeable
that the online prediction effectively reflects the dynamic changes in motion across all three
dimensions. Comparisons with the ground truth values show a reasonable alignment between
the predicted and actual values, underscoring the predictive capability of this method. However,
certain limitations are apparent. The predicted trajectory does not smoothly trace the target
motion, especially when the direction of motion alters. This leads to a trajectory estimate that is
both sharp and rough, consequently lowering the accuracy of the prediction. This shortcoming
can be attributed to the data sampling rate of 2Hz. The 0.5-second interval between two
measurements proves insufficient to accurately capture the drone’s motion, resulting in a coarse
trajectory prediction.

34



(a) RMSE quantification for three dimensions
(b) Uncertainty quantification for three

dimensions

Figure 4.5: Box plots for three dimensions

(a) Online prediction for x dimension (b) Online prediction for y dimension

(c) Online prediction for z dimension (d) Online prediction for xy planar

Figure 4.6: Evaluation results for online prediction for one step prediction
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4.4 Low-rank approximation Gaussian process

In the drone’s dynamic environment, the ability to quickly predict trajectories in real-time is
a critical factor in ensuring safe and efficient operations. Utilizing GP can provide powerful
tools for generating predictive models based on existing data. However, as the volume of data
increases, the computational complexity of standard GP regression can become prohibitively
high with the computation complexity O(n3) and memory storage O(n2), leading to delays
in trajectory predictions and, consequently, potential safety risks and inefficiencies in drone
operations.

In GP regression, the complexity of predictions is largely influenced by the inversion of the
covariance (kernel) matrix, a process that is computationally intensive, scaling cubically with
the number of data points. Low-rank approximations emerge as a powerful tool in mitigat-
ing this computational burden by approximating the full-rank kernel matrix with a matrix of
lower rank, therefore simplifying the inversion process to a problem with reduced dimensions.
Inducing methods serve as integral strategies in the facilitation of low-rank approximations in
GP regression. These methods construct a reduced-rank representation of the kernel matrix
by judiciously selecting a subset of data points, referred to as inducing points, to represent the
entire data set, thereby trading off a degree of approximation accuracy for reduction in com-
putational complexity. Through this selection process, they effectively distill the essence of the
data into a compact, representative set, and generate an approximation of the kernel matrix
that retains its critical structure and information but at a reduced computational cost. Con-
sequently, inducing methods are considered to be a part of low-rank approximation techniques
as they inherit the principle of reducing the rank of the kernel matrix to achieve computational
efficiency while preserving the predictive power of the GP model as much as possible.

4.4.1 Inducing method

In terms of inducing points, there are several methods by replacing the exact k(x, z) to k̃(x, z)
for fast computation. The most common inducing method such as the prominent subset of
regressors (SoR) [50] and fully independent training conditional(FITC) [52] using the following
approximate kernels

k̃SoR(x, z) = Kx,UK
−1
U,UKU,z (4.20)

k̃FITC(x, z) = k̃SoR + δxz

(
k(x, z)− k̃SoR

)
(4.21)

Given a collection of m inducing points, denoted as U = [ui]
m
i=1, the covariance matrices Kx,U ,

K−1
U,U , and KU,z are derived from the original kernel function k(x, z). These matrices have

dimensions n × m, m × m, and m × n respectively. The SOR method results in an n × n
covariance matrix, denoted KSoR, which is of rank no greater than m. This indicates that SoR
corresponds to a Gaussian process with a finite basis, making it degenerate. On the other hand,
the FITC approach incorporates a diagonal correction, leading to a full rank covariance matrix,
KFITC. Due to this property, FITC often offers a more accurate approximation and is generally
favored for practical applications. It’s worth noting that the original kernel function, k(x, z),
is characterized by parameters θ. Thus, when using an inducing point method, kernel learning
typically involves optimizing the SoR or FITC marginal likelihoods in relation to θ.

Besides the above two methods, a new unifying framework for inducing points method
called structured kernel interpolation (SKI) [58] has been proposed. It not only improves the
scalability and accuracy of fast kernel methods but also naturally combines the advantages of
inducing point and structure exploiting approaches.
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4.4.2 Fast structure exploiting inference

Moreover, fast Structure-Exploiting Inference has been widely used within GP where certain
structured properties of the covariance (or kernel) matrix are exploited to accelerate compu-
tations. The most common method includes Toeplotz and Krnoecker methods exploit the
existing structure of the GP covariance matrix K to scale up inference and learning without
approximations. Cooperating with the inducing methods can further reduce the computational
complexity and storage limitation. In our case, we are dealing with the 3D dimension position
separately with GP for prediction. Therefore, the covariance matrix would exhibit a Toeplitz
structure due to the properties of the stationary kernel (RBF) with respect to 1D input data.

4.4.3 Toeplitz method

Given N training instances on a regularly spaced 1D input grid, a stationary kernel k will give
rise to a Toeplitz covariance matrix K, meaning that every diagonal of K is the same (note
also K is a covariance matrix, so is symmetric as well as Toeplitz)

K =


k0 k1 . . . kN−2 kN−1

k1 k0 . . . kN3 kN−2
...

... . . . ...
...

kN−2 kN−3 . . . k0 k1
kN−1 kN−2 . . . k1 k0

 (4.22)

Where ki represents the elements generated from a kernel function applied to the respective
indices of input data.

The Toeplitz matrix K can be embed into a 2(N + 1) × 2(N + 1) circulant matrix C [59]
defined as:

C =



k0 k1 . . . kN−2 kN−1 kN−2 kN−3 . . . k2 k1
k1 k0 . . . kN−3 kN−2 kN−1 kN−2 . . . k3 k2
...

... . . . ...
...

...
... . . . ...

...
kN−2 kN−3 . . . k0 k1 k2 k3 . . . kN−2 kN−1

kN−1 kN−2 . . . k1 k0 k1 k2 . . . kN−3 kN−2

kN−2 kN−1 . . . k2 k1 k0 k1 . . . kN−4 kN−3

kN−3 kN−2 . . . k3 k2 k1 k0 . . . kN−3 kN−2
...

... . . . ...
...

...
... . . . ...

...
k2 k3 . . . kN−2 kN−3 kN−4 kN−3 . . . k0 k1
k1 k2 . . . kN−1 kN−2 kN−3 kN−2 . . . k1 k0


(4.23)

The benefit of this embedding is that circulant matrices have a special property that can be
diagonalized by the Fourier matrix. This means we can solve the linear system using the fast
Fourier transform(FFT) to achieve a faster in O(n log n) computations and O(n) memory.

4.4.4 Structured Kernel Interpolation

Structured Kernel Interpolation(SKI) as one inducing points method for fast computational
through kernel interpolation has been widely implemented on large datasets [9, 36]. Unlike the
SOR method Equation 4.20 to approximate the n×m matrix KX,U of cross covariances for the
kernel evaluated at the training and inducing inputs X and U , it can be interpolated on the
m ×m covariance matrix KU,U . By doing so we could replace the K−1

U,U as a computationally
expensive task by KU,U . For example, if we wish to estimate k (xi,uj), for input point xi and
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inducing point uj, we can start by finding the two inducing points ua and ub which most closely
bound xi.ua ≤ xi ≤ ub (D = 1 in our case and a Toeplitz KU,U from a regular grid U). We can
then form k̃ (xi,uj) = wik (ua,uj)+(1− wi) k (ub,uj), with linear interpolation weights wi and
(1− wi), which represent the relative distances from xi to points ua and ub. More generally,
we form

KX,U ≈ WKU,U , (4.24)

where W is an n×m matrix of interpolation weights that can be extremely sparse.
Substituting our expression for K̄X,U Equation 4.24 into the SoR approximation for KX,X ,

we find:
KX,X

SoR
≈ KX,UK

−1
U,UKU,X

Eq.(4.24)
≈ WKU,UK

−1
U,UKU,UW

⊤

= WKU,UW
⊤ = KSKI.

(4.25)

In the SKI example scheme depicted in Figure 4.7, we utilize a sparse matrix W to facilitate
an efficient approximation of the exact GP inference. In this method, only a subset of entries
in the matrix are non-zero, thereby creating a sparse representation that significantly reduces
computational demands. This is achieved by multiplying the sparse matrix W with the Toeplitz
matrix KU,U of size m×m to approximate the GP inference with a lower rank. As a consequence,
the computation complexity of SKI GP is approximately about O(n + m logm) [58] which is
less compared with classical GP with O(n3) complexity.

Figure 4.7: Structured Kernel Interpolation

Finally, we notice that all inducing methods are within the unified conceptual framework
of SKI. When we consider a GP with a zero mean and devoid of noise, the predictive mean f̄∗
can be expressed in a linear fashion in two distinct manners. Firstly, it can be represented as
a wX (x∗) = K−1

SKIKX,x∗ weighted aggregation of the observations denoted by y. Secondly, it
manifests as a weighted summation of the cross-covariances between training and test inputs,
denoted by KX,x∗ , where the weights are encapsulated in the vector α = K−1

SKIy. Therefore,
the equation for the predictive mean can be succinctly written as:

f̄∗ = y⊤wX (x∗) = α⊤KX,x∗ .

4.5 Comparison Results

Here are some simulation parameters for the Gaussian process prediction of the drone data
set listed below. According to the implementation standard of the ADS-B system, the drone
position sampling rate is 2Hz including 3D position samples. In terms of window length,
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considering the data set availability and motion characteristics, we choose a window length equal
to 15. Because if the window is too small, the model can not be able to accurately capture the
drone’s movement dynamic. To optimize the hyperparameter of the GP kernel(length scale,
variance), we implement maximum likelihood estimation with a stochastic gradient descent
algorithm to achieve it. Finally, we implement the Monte carlo simulation with 60 runs.

Table 4.3: Key simulation parameter for Gaussian process

Simulation Parameter value
Total trajectory position samples 53
Position sampling rate (Hz) 2
Window length number 15
Prediction step size(second) 0.5
Number of Monte Carlo runs 60
hyperparameter optimization iteration 50

Besides the classical GP, we also explore the low-rank approximation prediction performance
on GP. We implement SKI GP based on the sliding window Gaussian process as shown before.

The key parameter in the SKI is the inducing points, these points are used to construct an
approximation of the full covariance matrix in order to make inference and learning more com-
putationally efficient. To balance the computational complexity and prediction performance,
we explore the results with different inducing points set up as Figure 4.8a and Figure 4.8b.
Contrasting with the classical GP, incorporating inducing points through SKI indeed reduces
computational time. However, this comes at the expense of prediction accuracy, reflected in a
higher RMSE. Moreover, there is an evident trend: as the number of inducing points decreases,
the computational time benefits become more pronounced, but this is accompanied by a rise in
prediction RMSE. Additionally, it’s worth noting that our implementation was on a relatively
small dataset. Thus, the reductions in computational time observed with SKI might not appear
as pronounced as they would when applied to larger datasets.

(a) RMSE vs Number of Inducing Points
(b) Computational Time vs Number of Inducing

Points

Moreover, the method outlined above predicts the trajectory using a 2Hz sampling rate.
To investigate the predictive performance in more detail, we extended our approach to facili-
tate predictions at a higher resolution, specifically a 400Hz sampling rate through trajectory
interpolation. This adjustment aligns with the original data’s sampling rate.

This initiative necessitated adjustments in the testing indices for the GP, a modification
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readily achievable given the flexible nature of the GP. As illustrated in Figure 4.9, the one-step
trajectory prediction varies significantly between the two approaches for the GP method. Given
that the ADS-B data maintains a standard 2Hz position sampling rate, predictions at this rate
will forecast the position for the next single sample in the test set. In contrast, the 400Hz
prediction leverages trajectory interpolation to capture fine-grained details of the trajectory
within each step size, forecasting 200 samples for each step in the test set, thereby providing a
much richer picture of potential flight paths.

Figure 4.9: Gaussian process Prediction scheme for 2HZ and 400Hz

To achieve a 400Hz prediction with trajectory interpolation using the IMM filter with 2Hz
data, the process involves altering the filter’s prediction step to operate at a finer temporal
granularity. The pseudocode is shown as Algorithm3. Initially, the transition matrices are
configured to work with a time step of 0.5 seconds, corresponding to the 2Hz sampling rate. To
adapt this to a 400Hz sampling, the time step in the transition matrices is reduced to 0.0025
seconds, allowing for the generation of predictions at 200 finer intervals within each 0.5-second
step, thereby increasing the resolution to 400Hz. Most of the part of the code is the same as
the standard IMM filter. The mixing, model probability, and estimate combination are the
same as Algorithm1. However, in the prediction and update step, each prediction cycle now
encompasses 200 iterative prediction steps before the filter arrives at the next update step,
following which the cycle repeats for the next time step. We implement this method to take
advantage of the higher rate to furnish more detailed predictions between updates which could
potentially be more representative of the actual trajectory.
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Algorithm 3 Interacting Multiple Model (IMM) Algorithm with 400Hz Prediction
1: Initialization
2: Initialize the model set {F(m),H(m),Q(m),R(m)}Mm=1 for M models ∆t400Hz = 0.0025s
3: Initialize model probabilities µ

(m)
0

4: Initialize state estimates x̂
(m)
0 and covariances P

(m)
0 for each model

5: for k = 1 to N do
6: for i = 1 to 200 do
7: Mixing ▷ Same as Algorithm 1
8: High-Rate Prediction and Update Loop
9: Prediction using combined state estimate: x̂

(m)
k,i|k,i−1 = Fx̂k,i−1|k,i−1

10: if i%200 == 0 then
11: Update step with 2Hz measurement:
12: Update: Compute Kalman gain and update x̂k,i|k,i and Pk,i|k,i

13: Update estimate: x̂
(m)
k,i|k,i = x̂

(m)
k,i|k,i−1 +K

(m)
k,i (zk −H(m)x̂

(m)
k,i|k,i−1)

14: end if
15: Model Probability Update ▷ Same as Algorithm 1
16: Estimate Combination ▷ Same as Algorithm 1
17: Store prediction: Save x̂k,i|k,i−1 and x̂k,i|k,i (when available) to output trajectory
18: end for
19: end for

(a) 2Hz planar trajectory prediction comparison
(b) 400Hz planar trajectory prediction

comparison

Figure 4.10: Trajectory prediction xy planar

Table 4.4: Prediction Method Comparison for 2Hz

2Hz IMM Classical GP SKI GP(m=9)
RMSE(m) 3.127 1.678 1.993
Computational time(s) 2.68 39.23 32.31
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Table 4.5: Prediction Method Comparison for 400Hz

400Hz IMM Classical GP SKI GP(m=9)
RMSE(m) 3.013 1.282 1.671
Computational time(s) 6.14 40.12 33.21

The following Figure 4.10 shows the prediction of xy planar outcomes when compared with
the IMM method and the GP method on the drone dataset. We extend the IMM filter from
the 2D case in chapter 3 to the 3D case by including the state vector of z dimension (position,
velocity, acceleration). In terms of the analysis on the RMSE, the IMM filter struggles to
accurately track the drone’s trajectory. It is due to the three models (constant velocity, constant
acceleration, and constant turn) cannot capture the drone’s dynamics over the ADS-B position
transmission period (0.5 seconds). Unlike aircraft, drone motion is more maneuverable, which
poses a challenge for the IMM tracking method. In comparison, the Gaussian Process method
provides more accurate tracking than the IMM method.

Table 4.4 and Table 4.5 present prediction results for the ADS-B drone trajectory for 2Hz
and 400Hz resolution using three distinct methods: the IMM filter, Classical GP, and SKI GP
with an inducing point count of 9. The simulations were run on a laptop with the following
specifications: AMD Ryzen 7 4800H CPUs and 16GB DDR4, 3200 MHz of RAM. From these
results, we can infer the following:

• The IMM filter as a model-based method, generally requires less computational time
compared to the GP methods. This efficiency stems primarily from its Markov property,
where predictions are based solely on the current state, without being influenced by pre-
vious states in the sequence. However, the individual models used in IMM — namely,
the CV, CA, and CT models — being linear and implemented through a Kalman filter
framework, can not accurately represent the non-linear dynamics of a drone’s motion, es-
pecially at a relatively low sampling rate of 2Hz. This inability to precisely capture rapid
maneuvers or changes in the drone’s dynamics leads to a higher RMSE when compared
to GP methods, which have the flexibility to learn more complex patterns directly from
the data.

• Comparing the Classical GP and structured kernel interpolation (SKI) GP methods,
since the SKI employing the Toeplitz method reduces computational complexity to
O(n+m logm) compared to the O(n3) complexity inherent in the Classical GP. From our
results, it is apparent that the SKI GP’s low-rank approximation technique facilitates a
computational time saving of about 25% compared to the classical GP.
However, this computational efficiency comes with a trade-off in terms of trajectory pre-
diction accuracy. Utilizing fewer inducing points restricts the model’s flexibility, hindering
its ability to fully capture the variations in the data, which leads to somewhat flatter pre-
dictions along individual dimensions. Consequently, when we inspect the multi-dimension
trajectory synthesized from these predictions, we notice a slight shrinkage compared to
the trajectory derived from classical GP predictions, indicative of a marginal reduction in
trajectory prediction accuracy.

• In addition to the standard 2Hz trajectory predictions, we extended our analysis to ex-
plore the potentials of a finer 400Hz resolution through trajectory interpolation, directly
contrasting the outcomes with the original 400Hz trajectories generated through three
distinct methods. Thanks to the inherent flexibility of the GP. Using the GP method, we
noticed that the 400Hz predictions looked much smoother and closely followed the origi-
nal path, more so than when we used 2Hz predictions. This meant that the GP method
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was not just creating smoother paths but also more accurate ones, as shown by the lower
RMSE values we got.
Conversely, the predictions made using the IMM filter didn’t show the same level of
smoothness and detail. The issue here is that the IMM filter relies on predefined mod-
els that don’t fully capture the complex movements of a drone, it could more rely on the
constant velocity or constant acceleration model which shows more like a straight-line tra-
jectory. Therefore, despite using a higher resolution of 400Hz, the IMM method couldn’t
recreate the finer details of the drone’s actual path accurately.

4.6 Summary

In this chapter, Gaussian process regression has been implemented on the ADS-B type drone
motion trajectory to evaluate the prediction performance along with model-based prediction
methods. The main contribution can be summarised as follows:

• Propose a sliding window scheme on the GP method with tuned parameters for trajectory
prediction.

• Explore the low-rank approximation approach in the GP method for trajectory prediction,
utilizing structured kernel interpolation to save on computational resources.

• Propose trajectory interpolation for both GP and IMM methods, aiming to yield finer-grid
trajectories with more detailed information.

• Evaluate and compare the performance of trajectory predictions using the IMM filter,
classical GP, and SKI GP on real drone trajectories. The prediction results demonstrate
that GP significantly enhances prediction accuracy when compared to the IMM filter,
resulting in a 50% reduction in RMSE. Furthermore, the utilization of SKI GP yields a
25% reduction in computation time as compared to the classical GP method.
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Conclusion and Future Work 5
5.1 Conclusion

In this thesis, we explore both model-based and data-driven methods for trajectory predic-
tion based on ADS-B data. We implement these methods to analyze both aircraft and drone
trajectories to test their performance across different levels of maneuverability and motion tra-
jectories. The trajectory prediction performance is evaluated by the prediction accuracy and
computation time. The main contributions are as follows:

• We propose the Kalman model-based algorithm to predict the aircraft trajectory with
ADS-B position and velocity information. The interactive multiple models(IMM) have
been implemented within three defined model motions (constant velocity, constant ac-
celeration, and constant turn). The parameters eg. noise covariance has been estimated
based on the model assumption. From the results evaluated by simulation and real air-
craft dataset, the IMM filter obtained high accuracy on the aircraft trajectory compared
with other single-model Kalman filters.

• In terms of the data-driven method, we propose the Gaussian process (GP) to quantify
both accuracy and uncertainty. The sliding window scheme has been implemented on the
GP with tunes parameter for the online trajectory prediction. It could save computational
resources with updated data points in a fixed window length.

• We implement the structured kernel interpolation as the low-rank approximation ap-
proach in the GP method for trajectory prediction to further reduce the computational
complexity. We further investigate the influence of the parameter-inducing number on
computation time and accuracy.

• Finally, as a key contribution to our project, we assess and compare the efficiency of tra-
jectory predictions using the IMM filter, classical GP, and SKI GP on ADS-B type real
drone trajectories after data preprocessing. Besides, we also extend the predicted trajec-
tory with higher resolution with proposed trajectory interpolation methods. Our findings
indicate that the IMM filter, being model-based, operates with reduced computational
time but with a compromise in accuracy. On the other hand, the classical GP method
shows enhanced accuracy but demands greater computational resources. The SKI GP of-
fers a balance: it slightly compromises accuracy but reduces computational time compared
to the classical GP.

5.2 Future Work

Based on the thesis content, there are still some remaining works that could be further inves-
tigated.

Firstly, the ADS-B trajectory dataset we implemented is relatively small in size. This
limitation is particularly noteworthy for the GP method, as it is data-driven and could benefit
from a larger dataset. Additionally, the computational savings from low-rank approximation
would be more apparent with a larger training set. Moreover, in our thesis, we implemented
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the GP method on each dimension of information separately, as our investigation revealed
the limited correlation between the dimensions in this dataset. Future research could explore
the use of multi-output GP to consider the correlation between different dimensions on larger
datasets.

Secondly, in the context of low-rank approximation GP, we employ SKI to facilitate rapid
computation. However, several alternative methods, such as sparse spectrum Gaussian pro-
cesses (SSGP) [28] and sparse pseudo-input Gaussian processes (SPGP) [52], could also be
utilized for GP trajectory prediction. For instance, SSGP leverages Fourier features, which
can be advantageous for high-dimensional datasets, while SPGP allows for the explicit opti-
mization of inducing points. Consequently, comparing the performance of different low-rank
approximation methods on trajectory prediction problems could prove valuable.
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