
Adaptive Fuzzy
Logic Control
Applied to Socially
Assistive Drones
A Case Study
Tomás Ascensão

Fa
cu
lty

of
Ae

ro
sp
ac
e
En

gi
ne
er
in
g

Adaptive Fuzzy Logic Control Applied
to Socially Assistive Drones

A Case Study
by

Tomás Ascensão
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Monday November 1, 2021 at 14:30 AM.

Student number: 5126312
Project duration: September 3, 2020 – November 1, 2021
Thesis committee: Dr. ir. M.M. van Paassen, TU Delft, chair

Dr. A. Jamshidnejad, TU Delft, supervisor
Dr. A.A. Nunez Vicencio , TU Delft, external examiner

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
The following thesis marks the end of a two­year chapter of my life, filled with both professional and
personal growth. Needless to say, I could not have made it this far on my own and thus I would like to
express my gratitude to those who supported me along my journey to become a full­fledged aerospace
engineer (for now...).

Firstly, I would like to thank Dr. Anahita Jamshidnejad for her guidance over the last year. Your
constructive feedback and meticulous eye to detail and have proven to be second to none and have
greatly shaped the quality of the outcome of this research. I would also like to thank my friends from
Delft, with whom I gladly shared the last two years and from whom I learned so much throughout this
period. In particular, and as promised, I would like to express my gratitude to my housemates. This
past year would not have been nearly as enjoyable without your daily presence, which never failed to
liven up my mood, even in the middle of a global pandemic. Thank you to all my friends and family in
Portugal for your continuous and relentless support. Last but most certainly not least, I would like to
thank my mother, to whom I owe everything that I have achieved thus far.

Tomás Ascensão
Delft, September 2021

iii

Contents

List of Figures vii

List of Tables ix

List of Acronyms xi

Nomenclature xiii

I Scientific Article 1

II Literature Survey 39

1 Introduction 41
1.1 Motivation . 41
1.2 Project Objective . 42

2 Socially Assistive Robots 45
2.1 Introducing Socially Assistive Robots . 45
2.2 Main Characteristics Required in SARs . 45

2.2.1 Appearance . 46
2.2.2 Adaptability . 47
2.2.3 Simplicity . 47
2.2.4 Responsiveness . 48
2.2.5 Autonomy . 48

2.3 SAR Examples . 48
2.3.1 Mascot SAR: Charlie . 48
2.3.2 Animal SAR: Paro the Seal Robot . 49
2.3.3 Humanoid SAR: NAO . 50

2.4 Drones: Origin, Applications and Investment Boom . 51
2.5 Drones as Socially Assistive Robots . 53

2.5.1 Appearance . 53
2.5.2 Adaptability . 54
2.5.3 Simplicity . 54
2.5.4 Autonomy . 54
2.5.5 Responsiveness . 54

2.6 Drone’s Social Applications . 55
2.6.1 Drones for Live Streaming of Visuals for People with Limited Mobility. 55

2.7 Final remarks . 56

3 State of the Art Control Methods 57
3.1 Introduction to control systems . 57
3.2 Fuzzy Logic Controllers . 58

3.2.1 Mamdani Controller . 60
3.2.2 Takagi­Sugeno Controller . 60
3.2.3 Advantages of FLC . 61

3.3 Adaptive Controllers . 62
3.3.1 Gain Scheduling . 62
3.3.2 Model Reference Adaptive Systems. 63
3.3.3 Self­tuning Controller . 63
3.3.4 Advantages of Adaptive Control . 64

v

vi Contents

3.4 Fuzzy Logic Adaptive Controllers . 64
3.5 Reinforcement Learning . 65

3.5.1 Markov Decision Processes . 66
3.5.2 Discounted Return . 66
3.5.3 Policy and Value Function . 67
3.5.4 Temporal Difference Learning . 69
3.5.5 Q­learning. 69

3.6 Artificial Neural Networks . 70
3.6.1 Artificial Neural Network Training: Gradient Descent Approaches 72

3.7 Deep Reinforcement Learning . 73
3.7.1 Actor­Critic Methods . 74

3.8 Examples of State of the Art Controllers . 75
3.8.1 Position Control of a Quadcopter Using Adaptive TS Controller 75
3.8.2 UAV RL­based Pursuit Evasion Game Controller. 76
3.8.3 Autonomous Vehicle Control Using Fuzzy Controllers Adapted using Reinforce­

ment Learning . 78

4 Controller Design for a SAD 81
4.1 Drone Traits Influenced by the Controller . 81
4.2 Achieving Autonomy: Fuzzy Logic Controllers for SADs 81
4.3 Achieving Adaptability: Adaptive Control for SADs . 82
4.4 Controller Inputs and Outputs: Using ANN for Image Processing 83
4.5 Conclusions. 83

5 Preliminary Results 85
5.1 Experimental Setup & Software . 85
5.2 Controller Inputs and Outputs . 85
5.3 SAD Game Modes . 85

5.3.1 Stand By Game Mode . 86
5.3.2 Pursuit Game Mode . 86
5.3.3 Mimic Game Mode . 87

5.4 Limitations . 87
5.5 Future work . 88

6 Closing Remarks and Future Work 89

Appendices 91

A Appendix A: Yearly Drone Market Investments 93

B Appendix B: Experimental Results 1 95

C Appendix C: Experimental Results 2 99

D Appendix D: Experimental Results 3 101

Bibliography 103

List of Figures

1.1 Autism and Developmental Disabilities Monitoring (ADDM) Network estimates for overall
ASD prevalence in US over time . 41

2.1 SAR classification scale . 46
2.2 Charlie, a mascot­type SAR . 49
2.3 Paro, an animal­type SAR . 49
2.4 Humanoid Robot NAO . 51
2.5 NAO robot sitting next to a child . 51
2.6 Hewitt­Sperry automatic airplane . 52
2.7 Civilian Drones Worldwide . 52
2.8 Parrot Bebop 2: perspective view . 53
2.9 Parrot Bebop 2: top view . 53
2.10 Oculus Rift sensor setup . 55

3.1 Block diagram of a standard controller in an ideal system 57
3.2 Block diagram of a standard controller in a real system 58
3.3 Common membership function shapes . 59
3.4 Fuzzy controller implementation in the control loop . 60
3.5 Illustration COG (a) and MOM (b) defuzzification methods 61
3.6 Block diagram illustrating the Gain Schedule adaptive method 62
3.7 Block diagram illustrating a Model Reference Adaptive System 64
3.8 Block diagram illustrating the Self­Tuning Controller approach 64
3.9 Agent­environment interaction in an MDP . 66
3.10 Feedforward ANN with four input units, two output units and two hidden layers 71
3.11 Graph: Sigmoid activation function . 71
3.12 Graph: ReLU activation function . 71
3.13 Actor­Critic learning scheme . 74

5.1 Control Algorithm Scheme . 86
5.2 Stand By game mode before centering: the drone is trying to find the human user’s

facebox by rotating around a fixed axis . 86
5.3 Stand By game mode after centering: the drone is directly facing the human user and

keeps its position and heading until the user (or equivalently the user’s facebox) starts
to move . 86

5.4 Pursuit game mode initial positions of the drone and the human user 87
5.5 Pursuit game mode when the moving human user is reached by the drone 87
5.6 Mimic mode initial positions . 88
5.7 Mimic mode after drone movement . 88

A.1 Yearly drone marked investment between 2008 and 2019 93

B.1 Block Diagram Representing Control Scheme used by E.Yazid in [41] 95
B.2 Results obtained by E. Yazid when tracing a sinusoidal reference on the x­axis 95
B.3 Drone response for varying step function in x­direction in time window 0­30 s [41] 96
B.4 Drone response for varying step function in x­direction in time window 0­3 s [41] 96
B.5 Drone response for varying step function in x­direction in time window 13­17 s [41] . . . 96
B.6 Initial and final fuzzy sets of 𝑒 and Δ𝑒 for sine function in x­axis (a) GA­FLC with mutation

rate = 0.1 (b) GA­FLC with mutation rate = 0.4 (c) PSO­FLC (d) ABC­FLC [41]. 97

vii

viii List of Figures

B.7 Three­dimensional control surface of FLC for sine function in x­direction (a) initial (b)
GA­FLC with mutation rate = 0.1 (c) GA­FLC with mutation rate = 0.4 (d) PSO­FLC (e)
ABC­FLC [41]. 98

C.1 Control architecture of the pursuer quadcopter in [6] . 99
C.2 Architecture of Learining used in [6] . 99
C.3 Simulation results relative to the first scenario presented by E.Camci 100
C.4 Simulation results relative to the second scenario presented by E.Camci 100

D.1 Architecture of the controller proposed by X.Dai et al. in [10] 101
D.2 Architecture of the QEN used by X.Dai et al. in [10] . 101
D.3 Simulation results of the proposed controller: velocity response of the controller before

and after learning takes place . 102
D.4 Simulation results of the proposed controller: evolution of spacing deviation 102

List of Tables

1.1 Listing the Research Questions . 43
1.2 Listing the Project Objectives . 43

3.1 Listing of main advantages and disadvantages associated with Fuzzy Logic Control . . 62

ix

List of Acronyms
ABC Artificial Bee Colony.

ANN Artificial Neural Networks.

ASD Autism Spectrum Disorder.

COG Center of Gravity.

DMT Dance Movement Therapy.

DRL Deep Reinforcement Learning.

FIS Fuzzy Inference System.

FLAC Fuzzy Logic Adaptive Controller.

FLC Fuzzy Logic Controller.

GA Genetic Algorithms.

GUI Graphical User Interface.

IPU Image Processing Unit.

KBC Knowledge Based Controller.

MIMO Multiple Input Multiple Output.

ML Machine Learning.

MOM Mean of Maxima.

MRAS Model Reference Adaptive System.

PSO Particle Swarm Optimization.

QEN Q Estimator Network.

RL Reinforcement Learning.

SAD Socially Assistive Drone.

SAR Socially Assistive Robot.

SIR Social Interactive Robotics.

STC Self Tuning Controller.

TD Temporal Difference.

TS Takagi­Sugeno.

TSK Takag­Sugeno­Kang.

UAV Unmanned Aerial Vehicle.

VR Virtual Reality.

xi

Nomenclature
𝛼 Learning rate

𝑥̇ Time derivative of 𝑥
𝑄̂(𝑠, 𝑎) Estimate of the action­value function
𝑉̂(𝑠) Estimate of the state­value function

𝜆 Discount factor

𝔼[...] Expected value operator

ℝ Real number set

ℛ Fuzzy Rule Set

𝜇𝐴(𝑥) Membership referent to fuzzy set A

∇ Gradient operator

𝜋(𝑠) Policy function

𝜋∗(𝑠) Optimal Policy

𝜎 Standard deviation

𝑤⃗ Weight vector

𝑥⃗ State vector

𝐴 Set of actions

𝑎 Action

𝑐 Mean

𝑒 Error

𝐺 Cumulative Reward

𝑄∗(𝑠, 𝑎) Optimal action­value function
𝑄𝜋(𝑠, 𝑎) Action­value function
𝑅 Fuzzy Rule

𝑟(𝑠, 𝑎) Reward Function

𝑟𝑡 Reward at time step 𝑡
𝑆 Set of states

𝑇 Final time step

𝑡 Time

𝑢 Control input

𝑉∗(𝑠) Optimal state­value function

𝑉𝜋(𝑠) State­value function

𝑥ref Reference for 𝑥

xiii

I
Scientific Article

1

Noname manuscript No.
(will be inserted by the editor)

Socially Assistive Drones Performing Dance Movement
Therapy
An Adaptive Fuzzy-Logic-Based Control Approach

Tomás Ascensão · Anahita
Jamshidnejad

the date of receipt and acceptance should be inserted later

Abstract
With the number of diagnosed cases rising every year, Autism Spectrum Disorder (ASD) is in need of novel
therapeutic approaches to counteract the social and motor impairments inflicted by it. In this research, one of

such therapeutic approaches, movement therapy (in particular Dance Movement Therapy (DMT)), is combined
with the concept of Socially Assistive Robots (SARs) to assess the viability of employing a new type of SAR.
This SAR consists in the first ever Socially Assistive Drone (SAD): a quadrotor drone of reduced size conceived

for maintaining human-drone interaction during therapeutic sessions meant for children diagnosed with ASD.
The main focus of this paper consists in developing an adaptive control system based on Fuzzy Logic Control
due to its inherent advantages such as intuitiveness or the ease with which expert knowledge can be introduced
into control systems. In total, four different behavioural modes are developed for the SAD, together with

an adaptive algorithm which influences both a set of adjustable parameters associated with each mode and
the likelihood of it being selected based on the user specific preferences. The four behavioural modes and
their respective adaptive algorithms are tested on 10 participants in 30-minute sessions. The variations in the

adaptive parameters and the likelihood of each mode being selected for each individual are registered and reveal
that the SAD is able to adapt its behaviour to each participant based on their respective levels of engagement.

Keywords Adaptive Control · Fuzzy Logic Control · Socially Assistive Robots · Drone · Autism Spectrum
Disorder · Dance Movement Therapy

Nomenclature

ēep average episodic engagement
p̄ep average episodic performance
∆xhand hand distance to vertical center line

∆xuser user distance to vertical center line
∆yhand hand distance to horizontal center line
ρGMi
SAD ith game mode lateral output

ζGMi
SAD ith game mode vertical output
hdefSAD default altitude
hSAD SAD altitude

huser user height
υstandbySAD yaw rate output of the standby controller
r̃t register containing anomalies
σ standard deviation

τc centered threshold
τm motion threshold
tf time of failure

C̃ anomaly coefficient
x̃t x coordinate of register with anomaly
ỹt y coordinate of register with anomaly
ẋchestuser user chest horizontal velocity

ẋwrist
user user wrist horizontal velocity

ẏchestuser user chest vertical velocity
ẏwrist
user user wrist vertical velocity
ximage number of pixels in horizontal direction

xuser user horizontal position
yimage number of pixels in vertical direction

ζstandbySAD vertical output of the standby controller

πstandby
SAD pitch rate output of the standby controller
A area
a slope

b y-intercept
K gain
Ntrial number of trials
r position register

ti time instant in the ith measurement
Tp episodic average pause time
tw wait time

w personalization weight
x horizontal coordinate in captured image
xuser user horizontal position

y vertical coordinate in captured image
yuser user vertical position

2

1 Introduction

Autism Spectrum Disorder (ASD) refers to a range
of complex neuro-developmental conditions that re-

sult in difficulties in social interactions and verbal and
non-verbal communication. The prevalence of ASD is
around 1.7% (2.7% of boys and 0.67% of girls are af-

fected by ASD). According to Ricks et al. [1], almost
all people with ASD exhibit some level of language
impairment, with a large percentage of them being

completely non-verbal. Moreover, according to Kopp
et al. [2], 80% - 90% of people with ASD are affected
by an impaired development of motor skills1. Several
studies (see, e.g., [3; 4; 5; 6; 7]) show that the severity

of motor skill impairments in people with ASD is di-
rectly correlated with the severity of their social and
communication impairments.

In recent years, with the increased number of diag-

nosed cases, ASD has become a core topic of research
in various related disciplines. Although there is cur-
rently no cure for ASD, people with ASD can improve

their symptoms and quality of life via early, long-term
therapeutic interventions. Movement therapy, or more
specifically Dance Movement Therapy (DMT), has
gained lots of interest among researchers since its ad-

vent in the 1970s [8], as it can significantly contribute
to the improvement of motor skills and well-being of
both verbal and non-verbal children with ASD, who

may not benefit significantly from other therapeutic
interventions [9]. DMT for ASD therapy includes mir-
roring (i.e., matching, reflecting, or echoing) the move-
ments of the therapist by the client (with the aim of

improving empathetic expressions) and encouraging
the client to initiate more spontaneous movements
and mirroring them by the therapist (with the aim

of improving the connection with and the exploration
of the environment in clients).

The main challenges for implementing DMT for
people with ASD include (1) the need for personaliz-

ing the DMT plans based on the stage of ASD and
specific needs of every client, (2) making the inter-
vention available - with any desired frequency - and
engaging in long term for all clients, and (3) keeping

the corresponding costs low, so that the intervention
is affordable for a larger group of people. Therefore,
seeking alternative approaches to provide personal-

ized, affordable DMT for all clients.

Socially Assistive Robots (SARs), introduced by
Ricks et al. [1], are assistive (i.e., they provide aid or
support for humans, in rehabilitation, education, mo-

bility, etc.) and socially interactive (i.e., they main-
tain social interactions with humans) robots. Several
researches (see, e.g., [10; 11; 12; 13; 14; 15]) have
shown that therapeutic interventions via SARs for

people with ASD can significantly improve the im-

1 Motor skills include abilities - learned by humans - that
can result in predetermined movement outcomes with max-
imum certainties.

Fig. 1 Different SARs used for ASD therapy in literature
(from left-hand side: Paro [16], Nao [17], and Charlie [18])

pact and therapeutic outcome of these interventions.
Correspondingly, various SARs have been developed

or adapted for use in ASD therapy sessions. Exam-
ples include the seal robot Paro [16], the humanoid
robot NAO [17], and the mascot Charlie [18] shown

in Figure 1.

In order to achieve optimal therapeutic perfor-
mance and outcome via SARs, these robots should

possess the following key characteristics:

1. Desirable appearance: Although humanoid robots
may generally have the highest acceptance by hu-
mans, for people (especially children) with ASD,
the use of humanoid robots may hinder the ef-

fectiveness of interactions. This is mainly because
people with ASD tend to experience discomfort
around humans (and similarly around robots that

resemble humans) and thus avoid interacting with
them [1]. Briefly speaking, the less complex and
expressive the appearance of a robot, the more de-

sirable the robot for ASD therapeutic applications.
2. Adaptivity: For effective interactions with hu-

mans, SARs should adapt their behaviour and de-
cisions according to the environmental and behav-

ioral changes of the client. The adaptivity of SARs
can positively affect their acceptance by humans,
and can encourage humans to interact with them

in longer terms [19].
3. User-friendliness: Therapists, clinicians, and care-

givers should be able to operate or re-program
SARs easily and without need for in-depth techni-

cal knowledge. User-friendliness is mainly impor-
tant for the user interface (e.g., a GUI) of a SAR,
i.e., the interface should be simple and intuitive in

providing the desired commands and in entering
or accessing data of therapy sessions.

4. Responsiveness: Since people with ASD may ex-

hibit unpredictable patterns of behavior and inter-
action or may tend to withdraw from the interac-
tions from time to time [20], it is important for a
SAR to be responsive to the immediate changes a

therapist or caregiver may provide (to improve the
interactions) during a therapy session. Note that
while adaptivity is related to the autonomous per-

formance of SARs, responsiveness is related to the

3

robot’s performance with regards to the external
control inputs that it receives.

5. Autonomy: Some levels of autonomy is required
for SARs in order to continue performing indepen-
dently without constant supervision of therapists

or caregivers. This is particularly important, since
it allows therapists or caregivers to focus on other
therapeutic aspects that are not necessarily ad-
dressed by the SAR or to contribute to several

parallel therapy sessions.

Considering the five characteristics mentioned above,
drones are highly suitable candidates for assisting in
therapeutic interventions for ASD. However, drones
have never been used in systematic therapeutic inter-

ventions for ASD and more generally as SARs. High
mobility and manoeuvrability and the three degrees
of freedom of drones, which are fundamental for per-

forming DMT, as well as their simple non-humanoid
appearance, which makes people with ASD more com-
fortable and interested in getting involved in interac-

tions with drones2, makes them promising candidates
for ASD therapy. Therefore, in this paper we intro-
duce a new concept, socially assistive drones or briefly
SADs, and we develop the first ASD used for per-

forming personalized DMT in live interactions with
humans.

Adaptivity, user-friendliness, responsiveness, and

autonomy of a SAD are mainly related to the ap-
proaches that will be developed to steer SADs. More
specifically, adaptivity and autonomy can be provided

by proper development of the SAD’s control system,
while user-friendliness and responsiveness are linked
to both the control system and the user interface of a
SAD. The main focus of this paper is on the develop-

ment of the control system of a SAD, where adaptive
fuzzy-logic-based approaches are considered.

Fuzzy-logic-based controllers or FL controllers were

first introduced by Mamdani [21] (based on the con-
cept of fuzzy sets [22]) and were later on extended
by Takagi and Sugeno [23]. FL controllers make de-
cisions using a fuzzy inference system and according

to a rule base that consists of rules, which are for-
mulated as if-then statements that include linguistic
terms. The input and output of an FL controller are

fuzzy values. Therefore, a fuzzifier and a defuzzifier
are used to transform the crisp values into fuzzy ones
and vice versa, since sensors and actuators of the con-

trolled system usually perform according to crisp val-
ues. FL controllers have the following advantages: FL
controllers are usually model-free, which makes suit-
able in cases where no model of the controlled sys-

2 Children with ASD may feel intimidated by the
humanoid appearance of robots [1]. In contrast, the experi-
ences of drone summer camps in US for children with ASD
have shown that drones are very appealing to these children
(see, for instance, https://wisconsinlife.org/story/group-
works-with-autistic-children-to-build-fly-small-drones/ and
https://trajectorymagazine.com/tatts-cultivating-social-
and-employment-skills-with-drones/).

tem is available. Moreover, FL controllers perform
based on decision making approaches that are very

close to decision making approaches of humans. When
building up the rule base of an FL controller, hu-
man expert knowledge (expressed via linguistic terms)

can directly be incorporated within the controller. In
Takagi-Sugeno-Kang (TSK) FL controllers [23], al-
though the antecedent of the rules include fuzzy sets,
their consequent directly produces crisp values based

on an affine combination of the inputs. In this pa-
per, TSK-based FL controllers are used for developing
the controllers of the SAD, since the TSK approach

is computationally efficient, is easy to be tuned, and
cab easily be made adaptive.

2 Main Contributions & Structure of the
Paper

In this paper we develop, implement, and assess an
adaptive fuzzy-logic-based control system for a first
ever socially assistive drone or SAD, introduced to
perform DMT sessions for people with ASD. In ad-

dition to the key characteristics of adaptivity, user-
friendliness, responsiveness, and autonomy, the devel-
oped control system provides excellent potentials for

personalization of the SAD, which is a crucial require-
ment in ASD therapies. In particular, the main con-
tributions of this paper include:

1. An analysis on the first experiments ever conducted

on a SAD interacting with human subjects
2. An assessment of the performance of the controller

developed, particularly in terms of adaptivity

3. An evaluation of the viability of SAD development
under the present testing conditions, including the
control algorithm employed and ANN-based IPU
usage in real-time

In particular, the control system and its underly-
ing algorithms are discussed in detail, together with
a brief overview of the IPU used. Lastly, the Socially

Assistive Drone developed is tested on 10 test subjects
and the obtained results such as overall performance,
and adaptivity algorithm performance are presented
and discussed.

The rest of the paper is organized as it follows:
Section 3 addresses the proposed methodologies in de-
tail. This includes a description of the Human-SAD

interaction requirements and the data capturing pro-
cedure, in particular, the two artificial neural networks
comprised in the image processing unit. Furthermore,

this section addresses the data analysis module, along
with its inherent motion processing algorithm and the
therapeutic scenarios developed, referred to as game
modes, followed by the implemented adaptivity and

personalization algorithms. Subsequently, Section 4
refers to the particular case study presented and, as
such, addresses the equipment used, as well as the ex-

perimental setup and conditions available. Moreover,

4

Control
Module

Control Input Interaction
User

Response

Perceived

Response

Motion
Analysis ANN1 & ANN2

Image Processing Unit (IPU)
Data Collection

(Camera)

Fig. 2 Schematic representation of the human-SAD inter-
action procedures

it entails the case-specific implementation of all the

components introduced in the previous sections, in-
cluding the image processing unit, the motion pro-
cessing algorithm, all the game modes developed and
the adaptivity and personalization modules. Section

5 presents and discusses the results obtained in the
experimental procedure conducted. This is followed
by a discussion of limitations faced and possible top-

ics for future work, in Section 6. Lastly, in Section 7,
the main conclusions obtained from the experimental
procedure are presented.

3 Proposed Research Methodologies

In this section, we explain data analysis and control
approaches developed for the SAD, which together

build up the decision making module that steers the
SAD to perform DMT plans autonomously and in a
personalized way in live interactive sessions with hu-

mans.

3.1 Human-SAD Interactions

In order for the SAD to autonomously perform sys-

tematic DMT plans and to maintain the interactions
with human users in long term, the SAD needs to
successfully accomplish the following tasks:

1. To gather relevant data from users and to process
them and generate information that is reliable and

comprehensive for the assessments and analyses.
2. To analyze the generated information - according

to the assessment criteria and purposes of the in-

teractions - and to make assessments and percep-
tions.

3. To inject the results of the assessments and per-
ceptions into the SAD’s control system (i.e., the

decision-making module of the SAD), which gen-
erates control inputs that steer the SAD’s actions
according to the aims of the interactions.

Figure 2 illustrates the three steps indicated above. In
the next sections, we provide details on these steps.

3.2 Data Capturing via SAD’s Camera

From now on, we mean a quadcopter equipped with

a camera whenever we refer to a SAD. The camera

Fig. 3 Output of ANN 1: Parameters regarding the face-
box that surrounds the user’s face, including the coordinates
of the top left corner of the face-box (xb, yb), its width w,
and height h

enables the SAD to record live video footage of its
surroundings during DMT sessions. We assume that

at most one human at a time is present in the frame of
view of the SAD. A fixed time interval, referred to as
the wait time, is considered for the SAD. During the

wait time the SAD remains in the same position and
records all the relevant positions of the user (details
are given in Sections 3.2.1 and 3.2.2).

In order for the SAD to identify the presence of a

user within the recorded video footage and to follow
and evaluate the movements of the user, two artificial
neural networks (ANNs) and a motion processing al-

gorithm are developed, which together form the image
processing unit (IPU) and run on a remote computer
and process the corresponding images in real time (See
Figure 2). In this section we discuss the details of the

two ANNs that are used in the data analysis module
of the SAD.

3.2.1 ANN 1: Face Detection Module

The first ANN, referred to as ANN 1, provides infor-
mation for the SAD to identify the face of a human

within the captured images by sketching a rectangle
(called the face-box) that delimits the user’s face (see
Figure 3). More specifically, the output of ANN 1 in-

cludes the following values: (1) coordinates (xb, yb) of
the upper left corner of the face-box, (2) the width,
w, of the face-box, and (3) the height, h, of the face-

box. These values are all given in pixels. Note that
the largest blue rectangle in Figure 3 shows the SAD’s
frame of view.

3.2.2 ANN 2: Body/Joint Detection Module

The second ANN, referred to as ANN 2, is developed

by Openpose Python [24; 25], a real-time detection
library that detects body, hand, face, and foot key-
points of a user in a single image. ANN 2 is responsible
for identifying the joint positions of a user that has

been detected. Overall, a total of 18 joint positions
(see Figure 4) can be identified by ANN 2. Similarly
to ANN 1, each pair of coordinates for these joints is

expressed in pixels within the picture reference frame.

5

Fig. 4 Output of ANN 2: Coordinates of the 18 joints of
the user’s body illustrated in the right-hand side plot

Remark 1 In addition to the coordinates and values

generated by ANN 1 and ANN 2, the observation time
associated with each of these values is also stored on
the remote computer. This information will later on be

used by the SAD to estimate the speed of the user’s
movements, which is crucial both for assessment of
the interactions and for determination of the speed
and frequency of the various DMT plans that will be

proposed by the SAD.

3.3 Data Analysis Module

The outputs of the ANNs are injected as input into
the motion processing algorithm of the SAD, which

uses these inputs to (1) estimate the current position
of the user, (2) evaluate the level of engagement and
performance of the user according to the DMT plan,

and (3) capture the movements that are initiated by
the user in case the SAD is expected to follow or mir-
ror these movements

Next, we explain the motion processing algorithm

in detail.

3.3.1 Motion Processing Algorithm

The information regarding every captured measure-
ment captured by either of the ANNs is skimmed to
contain three values: (1) ti, the time instant (in sec-

ond) when the ith measurement was captured, (2) xti ,
the horizontal coordinate (in pixels) of the relevant
joint for the ith measurement, and (3) yti , the ver-

tical coordinate (in pixels) of the relevant joint for
the ith measurement. For the sake of simplicity of the
notations we use rti = (xti , yti). The available data

is then registered into five categories of motions: mo-
tion to the left, motion to the right, motion upwards,
motion downwards, and pause. To identify these mo-
tions, every two consecutive coordinates rti and rti+1

are considered:

Fig. 5 Motion processing algorithm generating some mo-
tion categories (specified by Motion 1, Motion 2, and Mo-
tion 3)

1. In case the two coordinates are (almost) overlap-

ping, i.e., |rti − rti+1 | < τm, with τm a motion
threshold, then the coordinates rti and rti+1

be-
long to the category “pause”.

2. In case the distance between the two consecutive
coordinates is larger than or equal to the motion
threshold, i.e., |rti − rti+1

| ≥ τm, then a motion

is detected. The motion is horizontal when |yti −
yti+1

| < γ|xti − xti+1
|, and is vertical when |xti −

xti+1
| < γ|yti − yti+1

|, with 0 < γ < 1 a ratio that

can be identified per person3.
3. To specify the heading of the motion, i.e., left

or right for horizontal motions and downwards or
upwards for vertical motions, the sign of, respec-

tively, xti − xti+1 and yti − yti+1 is considered. A
positive sign indicates a motion to the right or
downwards, while a negative sign indicates a mo-

tion to the left or upwards.

Figure 5 illustrates the motion categorization for a

sample of 10 captured coordinates. Finally, consider-
ing the coordinates and registered time instants, a
speed (in pixels per second) is associated to every
identified motion category.

Fault tolerance for motion processing algorithm:
For the motion processing algorithm to possess an ac-

ceptable level of fault tolerance, it should cope with
(1) missing data, i.e., when the user and/or the rel-
evant joints are not identified by the IPU, as well as
with (2) erroneous data, i.e., when the position of the

user and/or the corresponding joints have been cap-
tured, but involve (non-negligible) errors. A missing
coordinate or erroneous coordinate may disturb the

3 In reality, it is very unlikely for a user to move consis-
tently in exactly either a horizontal or a vertical direction.
For instance, a user who aims to move horizontally may still
make some small vertical movements inadvertently. The ra-
tio γ has been considered in analysis of the user’s motions to
determine whether or not these secondary motions should
be considered by the SAD.

6

Fig. 6 Missing data: Uniform movement during the time
interval when data has not been captured

performance of the motion processing algorithm, and
thus should be replaced by a plausible option.

A missing coordinate may occur because the IPU

fails to capture any coordinates or because the user
leaves the frame of view of the SAD. In case the num-
ber of consecutive missing coordinates is small (e.g.,
not larger than 2), the chance that the user has left

the frame of image and suddenly has returned is negli-
gible. Alternatively, in case the number of consecutive
missing coordinates is considerable (e.g., larger than

2), the chance that the user has left the frame of the
image is high.

Missing coordinates due to IPU failure: The first

time instant that corresponds to a missing coordi-
nate is called the time of failure and is denoted by
tf. The most recent and the first next time instants
with respect to tf when a reliable measurement has

been captured are specified by tbf and taf . The coor-
dinates corresponding to time instants tbf and taf are
represented by rtbf and rtaf . In case the coordinates

rtbf and rtaf imply the same category of the motion as

the most recent time interval
[
tbf −∆t, tbf

]
(with ∆t

the fixed time step for capturing a measurement by

the IPU), and the speed for moving from coordinate
rtbf to coordinate rtaf within time interval

[
tbf , t

a
f

]
com-

pared to the speed of the captured movement within
time interval

[
tbf −∆t, tbf

]
indicates a uniform motion

(see Figure 6), then the motion processing algorithm
ignores the missing intermediate points (as they are
assumed to be positioned uniformly between rtbf and

rtaf).

In case based on the coordinates rtbf −∆t and rtbf ,
and rtbf and rtaf the direction of the motion has re-

mained the same within time intervals
[
tbf −∆t, tbf

]
and

[
tbf , t

a
f

]
, while the speed of movement has changed

(see Figure 7), then n intermediate coordinates, with
n = (taf − tbf)/∆t− 1, between the coordinates rtbf and

rtaf are specified by the motion processing algorithm,

Fig. 7 Missing data: Movement in the same direction with
a varying speed during the time interval when data has not
been captured

such that the magnitude of the speed corresponding
to these intermediate time intervals evolves according
to a fixed rate and the SAD’s position for time step

taf reaches the position captured for this time step by
the IPU. More specifically, the rate of changes of the
speed is given by:

∆v =
2
(
|rtaf − rtbf | − |rtbf − rtbf −∆t|

)
n(n+ 1)∆t

(1)

When according to the motion processing algo-
rithm, the direction of the captured motion has changed

between tbf and taf (see Figure 8), the intersection of
the piece of line that connects the points correspond-
ing to rtbf −∆t and rtbf with the piece of line that con-

nects the points corresponding to rtaf and rtaf +∆t will
be considered as the point where the direction of the
motion has changed. In case based on the most re-
cent and the most posterior time intervals from the

time interval when no data has been captured, the
speed of the motion has also changed the path deter-
mined by the motion processing algorithm from time

instant tbf to time instant taf will be divided into n
intermediate coordinates, such that the magnitude of
the speed corresponding to these intermediate time in-

tervals evolves according to a fixed rate as explained
before (in this case the SAD will change the direction
of the motion according to the determined turning
point, but the magnitude of the speed will follow the

approach that has been explained earlier on).

Missing coordinates due to the user leaving the

SAD’s frame of view: When the coordinates corre-
sponding to the position of the user has not been
registered for a large number of time steps, the mo-

tion processing algorithm assumes that the user has
left the frame of view of the SAD. Correspondingly,
the algorithm considers the last registered coordinates(
xLuser, y

L
user

)
of the user before they leave the SAD’s

frame of view and determines the distance dLi of this
position with respect to the eight border points bi with
i ∈ {1, . . . , 8} (see Figure 9 and 10) of the SAD’s frame

of view.

7

Fig. 8 Missing data: Direction of movement has changed
during the time interval when data has not been captured

Fig. 9 Missing data due to the user leaving the SAD’s frame
of view: A case where no new position has been registered
for the user

In case there is no later registered coordinates for
the user (see Figure 9), the algorithm considers the
border point that is the closest to the point

(
xLuser, y

L
user

)
in order to fill in the missing coordinates. However,
when there is a new registered position

(
xRuser, y

R
user

)
for the user, the motion processing algorithm consid-

ers this point as the return position of the user (see
Figure 10). Correspondingly, the distances dRi of this
return position with respect to the eight border points
as well as the distances dO,R

j and dO,L
k between the po-

sitions corresponding to
(
xO,j,kuser , y

O,j,k
user

)
are computed,

where j, k ∈ {1, . . . , 8}. Note that
(
xO,j,kuser , y

O,j,k
user

)
cor-

responds to the intersection point of the lines that
pass through the point corresponding to

(
xLuser, y

L
user

)
and the border point bj , and the point corresponding

to
(
xRuser, y

R
user

)
and the border point bk. Finally, the

coordinates of the two border points bj and bk, for
which dLj + dO,L

j + dRk + dO,R
k is the smallest are used

to fill in the missing registrations (in Figure 10, e.g.,

bj = b2 and bk = b4).

Erroneous data: An erroneous is identified by ab-

normal deviations from a specific motion pattern. Math-
ematically speaking, an error corresponds to a regis-

Fig. 10 Missing data due to the user leaving the SAD’s
frame of view: A case where the user has left the SAD’s
frame of view, and later on a new position has been regis-
tered for the user

tered position r̃t that satisfies both of the following

conditions:

min
{
||r̃t − rt−∆t||, ||r̃t − rt+∆t||

}
> τm (2)

max
{
||r̃t − rt−∆t||, ||r̃t − rt+∆t||

}
>

C̃||rt+∆t − rt−∆t|| (3)

where C̃ > 1 is called the anomaly coefficient and
τm is the motion threshold defined in Section 3.3.1.
In order to detect erroneous data, the motion pro-
cessing algorithm should first assure that a motion

across the registered positions rt−∆t, r̃t, and rt+∆t has
been detected, which is taken care of via condition (2).
Condition (3) defines a limit on the deviation from a

given motion pattern for every registered position. Er-
roneous data at time instant t is identified whenever
the distance between the associated registered posi-

tion r̃t, and either of the previous, i.e., rt−∆t, or fol-
lowing, i.e., rt+∆t, registered positions is larger than
C̃ times the distance between the previous and the
following registered positions.

Figure 11 shows two examples with absence and
presence of erroneous data. In this figure, satisfaction

of condition (2) means that d23 (which is assumed
to be smaller than d12) is larger than τm, meaning
that rt2 falls outside of the illustrated circular areas

of radius τm. The left-hand side plot shows a case
where condition (3) (supposing that C̃ = 2) does not
hold for the registered position rt2 , i.e., d12 (which is

supposed to be larger than d23) is not larger than 2d13.
Therefore, there is no erroneous data detected for time
instant t2. However, in the right-hand side plot, d12,
for example, is larger than 2d13, which according to

(3) implies erroneous data for rt2 .

Whenever erroneous data is identified, the corre-

sponding registered position should be corrected. Sup-
pose that we have either of the following cases:

|xt+∆t − xt−∆t| < 2τm (4)

|yt+∆t − yt−∆t| < 2τm (5)

8

Fig. 11 No erroneous data for rt2 (left-hand side picture). Erroneous data detected for rt2 (right-hand side picture)

Then the registered position that is prone to error is

ignored and the SAD considers rt−∆t and rt+∆t as
two consecutive registered positions.
In case (4) does not hold, while the following condition

holds (see the sub-area in between the dashed vertical
lines in the right-hand side plot in Figure 11):

min
{
xt−∆t, xt+∆t

}
+ τm < x̃t <

max
{
xt−∆t, xt+∆t

}
− τm, (6)

only the y-coordinate of r̃t should be corrected, i.e.:

xt = x̃t (7)

yt = 0.5
(
yt−∆t + yt+∆t

)
(8)

If (4) does not hold, while the following condition
holds (see the sub-area in between the dashed hori-
zontal lines in the right-hand side plot in Figure 11):

min
{
yt−∆t, yt+∆t

}
+ τm < ỹt <

max
{
yt−∆t, yt+∆t

}
− τm, (9)

only the x-coordinate of r̃t is corrected. We have:

xt = 0.5
(
xt−∆t + xt+∆t

)
(10)

yt = ỹt (11)

3.4 SAD’s Control System: DMT Game Modes

The main goal of the SAD is to sustain effective in-
teractions according to systematic DMT plans with
a user in long term (e.g., during a DMT session of

30 min for this research). For a systematic autonomous
planning of DMT, we have considered a number of
therapeutic scenarios, which we refer to as “game modes”.

The proposed game modes generally fall within one of
the following two categories:

1. Passive game modes: These game modes mainly
aim at promoting empathetic illustrations. The SAD
mirrors the movements of the user (i.e., the SAD

takes a passive role in the DMT interactions).

2. Active game modes: These game modes mainly

aim at enhancing the connection of the user with
their environment, thus the user is expected to fol-
low the harmonic movements that are initiated by
the SAD (i.e., the SAD takes an active role in the

DMT interactions).

In passive game modes the wait time is given to the
SAD to capture the motions of the user, which the
SAD will afterwards mirror, while in active game modes

the wait time is considered after the SAD performs a
specific DMT movement and should assess the reac-
tions or responses of the user.

Overall, four game modes in both active and pas-

sive categories are proposed in this research, which
will be discussed in detail in the upcoming sections.
The SAD has a modular control system, which in-

cludes one controller per game mode Moreover, a standby
controller is required in practice for the SAD in or-
der to support all the active and passive game modes.

In the next section, the standby controller will be ex-
plained.

Remark 2 In order to control the SAD, in our case

studies (see Section 4.1) the interface PyParrot4 for
Python has been used. With this library, in order to
control the speed of the drone (i.e., both the displace-

ment and the time the drone needs in order to im-
plement the displacement), five variables can be con-
trolled: duration of the displacement (in seconds), ver-

tical speed of the drone (in m/s), roll, pitch, and yaw
displacements of the drone (in deg), all given as a
percentage ranging in [−100, 100] of their maximum
allowed values, with the signs determining the direc-

tion of the corresponding displacement. See Figure 12
for the definition of the roll, pitch, and yaw angles,
noting that the axes have been defined such that they

are consistent with the definition of the x axis and y
axis given earlier on for the SAD’s frame of view. In
the next sections, the controllers that steer the mo-
tions of the SAD in the x and z directions (see Fig-

ure 12), generate, respectively, the roll angle and pitch

4 https://pyparrot.readthedocs.io/

9

Fig. 12 Reference frame of the SAD with the x-axis point-
ing to the right, y-axis pointing downwards, and z-axis
pointing forwards, and the pitch θ, yaw ψ, and roll φ angles
being defined accordingly

angle as a percentage of their maximum allowed val-
ues. Moreover, Appendix A represents the dynamics
of the quadcopter, which formulates the relationships

between the lateral and angular displacements of the
SAD.

3.4.1 Standby Controller

The standby controller acts as a support module in
initializing and sustaining the DMT game modes. The

standby controller meets four main objectives:

1. Finding the user in the environment, when the IPU
has not been able to locate a user yet

2. Positioning the user in the center of the images
captured by the SAD (i.e., in the center of the
SAD’s frame of view)

3. Maintaining an appropriate, safe distance between
the SAD and the user according to a proper dis-
tance estimator algorithm

4. Sustaining the altitude of the SAD, such that it

fits the corresponding game mode

(1) Finding the user: In case neither of the two ANNs
detects a user, the standby controller steers the SAD
to rotate with a high yaw rate (e.g., 50% of the max-

imum allowed yaw displacement within a given time
interval, which the SAD takes to execute the corre-
sponding rotation) towards the position that the user

has lastly been identified during the current session.
In case there is no information about the recent posi-
tion of the user, the SAD will by default turn to either
right or left and will analyze the images captured via

the IPU to detect the user. In case the existence of
the user cannot be identified via this data, the SAD
executes another turn and continues this procedure

until the user is detected.

le center right

MD

 ()

Fig. 13 Membership functions corresponding to fuzzy sets
“left”, “center”, and “right” used by the standby controller
to position the user in the frame of view of the SAD

(2) Centering the user in the SAD’s frame of view:
After a user’s position is identified - either as the

original input to the standby controller or after the
standby controller assists the SAD to locate the user
- the standby controller should position the user in

the center of the SAD’s frame of view according to
a pre-specified threshold τc. The SAD considers the
user to be in the center of its frame of view, whenever
the following condition is satisfied:

1− 10−2 · τc
2

ximage ≤ xuser ≤
1 + 10−2 · τc

2
ximage

(12)

where ximage is the maximum number of pixels in the
horizontal direction on the captured images, and xuser
is the user’s detected position in pixels, considering
the user’s chest position given by ANN 2, and in case
this coordinate is not available, considering the cen-
troid of the user’s face-box provided by ANN 1. More

specifically, the standby controller identifies the rela-
tive position of the user within the frame of view of
the SAD using fuzzy sets “left”, “center”, and “right”

with their corresponding membership functions. One
example for such membership functions that satisfies
(12) is illustrated in Figure 13. The parameter τc is

generally personalized per user.

The output υstandbySAD of the standby controller in
this case is a percentage of the maximum yaw dis-
placement of the SAD within a given fixed time, which

the SAD uses to execute the rotation, and is deter-
mined by a TSK-based FL controller approach, which
includes the following rules:

R1: If xuser is left, then υstandbySAD = a1xuser − b1
R2: If xuser is right, then υstandbySAD = a2xuser − b2
R3: If xuser is center, then υstandbySAD = a3xuser − b3

(13)

where the terms “left”, “right”, and “center” (more

accurately referring to the relative horizontal posi-
tion of the chest point or face-box centroid of the
user w.r.t. the center of the SAD’s frame of view)

will mathematically be represented by fuzzy sets and
their corresponding fuzzy membership function (see,
e.g., Figure 13), and parameters a1, b1, a2, b2, a3, b3
will be identified per user according to (12). Figure 14

illustrates the SAD interacting with a user before and

10

after the standby controller positions the user in the
center of the SAD’s frame of view.

(3) Maintaining appropriate distance with the user:
Sustaining effective interactions with the user for long
periods of time is essential for the SAD to achieve

satisfactory therapeutic outcomes via DMT. In order
to achieve this goal, an adequate distance to the user
must be maintained at all times. On the one hand,

the SAD should avoid getting too close to the user,
since a too small distance raises safety concerns and
might intimidate the user, thus negatively impacting
the therapeutic interactions. On the other hand, if the

distance of the SAD to the user becomes too large,
there is a risk that the attention of the user to the SAD
is lost and hence, the engagement of the user in the

therapeutic interactions decreases. Consequently, the
control system of the SAD should constantly receive
the detected relative distance of the SAD and the user

and adjust it whenever needed.
In case the SAD is not equipped with any sensor

that directly measures the longitudinal or lateral dis-
tances of the drone to a target (in this case the user),

the distance to the user must be estimated by the SAD
based on the values gathered and analyzed by the IPU
and using a distance estimator algorithm. In order to

check whether the relative distance is too small, the
values provided by ANN 1 are used. More specifically,
based on the width w and height h of the latest face-
box (see Figure 3), the area Afacebox of the face-box in

squared pixels is computed. This area is then divided
by the total image area, Aimage, in squared pixels to
determine the face-box ratio.

For two reasons ANN 1 has been used to specify
whether the drone is (too) close to the user: (1) the
face-box can properly be detected only if the user and

the drone are close enough, while for a too close dis-
tance ANN 2 may fail to detect the entire body of the
user; (2) unlike ANN 2, which requires the detection
of the chest and the waistline to make reliable esti-

mates, ANN 1 works as soon as the face of the user is
present in the SAD’s frame of view.

Whenever the magnitude of the face-box ratio ex-

ceeds a certain threshold, τd,1, the distance of the SAD
to the user is considered to be too small. We have:

If
Afacebox

Aimage
> τd,1, SAD is close to the user (14)

where the value of τd,1 can be identified corresponding
to the relative distance between the SAD and the user
that feels safe for this particular user. More specifi-

cally, the standby controller considers a fuzzy set and
its corresponding membership function for the con-
cept of “close” (see, e.g., Figure 15, which shows a

membership function for the term “far” defined ac-
cording to (14)). Generally speaking, the parameter
τd,1 is personalized per user.

To assess whether the SAD is too far from the

user, the values provided by ANN 2 are used, since in

larger distances the estimates provided by ANN 1 may
become unreliable. Out of the 18 joints illustrated in

Figure 4, the coordinates the joints 1, 8, and 11 corre-
sponding to the chest and the right and left edges of
the user’s waistline are considered. Note that joint 1

is the reference joint, i.e., all other joints are detected
with respect to joint 1. Therefore, whenever the SAD
has information available from ANN 2, the data re-
garding joint 1 is certainly available. Moreover, while

the legs and arms of the human (i.e., the correspond-
ing joints 2-13) are possible to move out of the frame
of view of the drone, there is a high chance that the

data regarding joints 8 and 11 is available whenever
the user is not too close to the SAD. Finally, the joints
corresponding to the user’s face (i.e., joints 0 and 14-
17) are more prone to being swayed and are hence less

reliable, especially, when the user moves their neck too
frequently.

Once the three coordinates for joints 1, 8, and 11

are known, the vertical distance δ1,11 between joints 1
and 11, and the vertical distance δ1,8 between joints 1
and 8 (see Figure 16) are computed in pixels and are

divided by the overall vertical length hmax of the im-
age. We call the resulting values are called the upper
body ratios. The closer the user to the SAD, the larger
the values of the upper body ratios. More specifically,

whenever the maximum of the two values estimated
for the upper body ratio is less than a certain thresh-
old τd,2, then the distance of the SAD to the user is

considered too large. We have:

If max

{
δ1,8
hmax

,
δ1,11
hmax

}
< τd,2,

SAD is far from the user (15)

where the threshold τd,2 is identified based on the rela-
tive distance between the SAD and the user, for which
the IPU can still perform satisfactorily, while the user
remains attentive to the SAD and hence involved in

the DMT interactions (τd,2 can thus be identified as a
personalization parameter in the human-SAD interac-
tions). More specifically, the standby controller con-

siders a fuzzy set and its corresponding membership
function for the concept of “far” per user. Figure 17
shows one example with the membership function be-

ing defined according to (15).

Remark 3 For the upper body ratio of the user, both
δ1,8 and δ1,11 are considered in order to increase the

reliability of the estimations. Suppose that one of the
two waistline joints is not correctly identified by ANN 2.
Since both estimations of the upper body ratio are

available, by considering the maximum of the two -
see (15) - a more robust evaluation of the relative dis-
tance of the SAD and the user can be provided.

Remark 4 The measurements corresponding to the chest
position are significantly more reliable than those cor-
responding to the waistline corners, because the chest

position is the reference point of ANN 2.

11

Fig. 14 Performance of the standby controller in centering the user in the SAD’s frame of view: In the left-hand side
picture, the user is not yet centered. In the right-hand side picture, the standby controller steers the SAD to follow a
TSK-based FL controller in order to center the user according to condition (12)

close

MD

Face-box ra�o

Fig. 15 Membership function corresponding to fuzzy set
“close” used by the standby controller to estimate the dis-
tance of the user with respect to the SAD

Fig. 16 Illustration of the vertical distances δ1,8 and δ1,11,
which are used by the SAD to determine whether its relative
distance to the user has become too large

far

MD

upper body ra�o

Fig. 17 Membership function corresponding to fuzzy set
“far” used by the standby controller to estimate the distance
of the user with respect to the SAD

In order to maintain an appropriate and safe dis-

tance for interactions with the user, the distance esti-
mator algorithm described above provides an input for
the standby controller: “close” (i.e., (14) holds), “far”
(i.e., (15) holds), “appropriate and safe” (when nei-

ther (14) nor (15) holds). Then a TSK-based FL con-
troller approach according to the following rule base is
used to maintain the appropriate or safe distance by

determining the SAD’s pitch displacement as a per-
centage πstandby

SAD of its maximum allowed value:

R4: If distance is close, then πstandby
SAD = a4A+ b4

R5: If distance is far,

then πstandby
SAD = a5 max{δ1,8, δ1,11}+ b5

(16)

where the terms “close” and “far” will mathematically
be represented by fuzzy sets and their corresponding

fuzzy membership functions and parameters a4, b4,
a5, b5 will be identified per user and according to (14)
and (15).

(4) Sustaining the SAD’s altitude: Finally, in order to
regularly sustain the altitude of the SAD, two thresh-
olds τh and τl are defined in order to detect whether
the SAD’s altitude is too high or too low. When the

SAD maintains an altitude that is too high or too
low, two issues may occur. First, the user may not ac-
curately capture all the movements of the SAD and

the corresponding coordinates, which negatively im-
pacts the interactions with and the the engagement
of the user. Second, the IPU may fail to capture the

movements and the corresponding coordinates of the
user correctly, which negatively impacts the analysis
and decision making of the SAD likewise many quad-
copters. Parrot Bebop 2, the drone that is used as

the SAD in this research, is equipped with an altitude
measurement sensor that will be used in two cases dur-
ing the DMT sessions: (1) whenever the SAD accom-

plishes a game mode and transitions to a new game

12

Fig. 18 Ratios of the upper part of the body, i.e., above the
shoulders (almost 0.15 of the user’s height), which is used
to adjust the default altitude of the SAD

Fig. 19 Illustration of the default altitude and the “too
low” and “too high” altitude thresholds for the SAD inter-
acting with a user of height 133.5 cm

mode; (2) just after the SAD is done executing a ver-
tical movement.

To quantify the concepts of “too high” and “too
low” for every user, the user’s height huser should be

taken into account. Generally speaking, we consider
the thresholds τh = αhhuser and τl = αlhuser in cm,
with αh > 1 and 0 < αl < 1 being personaliza-

tion parameters that are identified per user. At the
beginning of every game mode or after executing a
vertical movement, for an optimal performance the
standby controller considers a default altitude, hdefSAD,

for the SAD, where this default value corresponds to
the user’s shoulder level (see Figure 18). For instance,
for an average height of 133.5 cm for a 9 year old child,

considering the standard ratio of 1.2 to 8 for the upper

high

MD

Al tude

low default

Fig. 20 Membership functions corresponding to fuzzy sets
“low”, “default”, and “high” used by the standby controller
to assess the altitude of the SAD

part of the body (above the shoulders) to the entire
body length, the SAD should maintain the default al-
titude of hdefSAD = huser − 20, with all the magnitudes

in cm (see Figure 19).
To maintain the SAD’s altitude, the standby con-

troller should first determine the status of the SAD’s

altitude hSAD according to the following fuzzy rules:

If hSAD > τh, SAD’s altitude is too high (17)

If hSAD < τl, SAD’s altitude is too low (18)

If hSAD ≈ hdefSAD, SAD’s altitude is default (19)

with the terms “high”, “default”, and “low” math-
ematically being represented by fuzzy sets and their
corresponding fuzzy membership functions (for instance,

see Figure 20), where, in general, τh, τl and ≈ hdefSAD

(to be read as “approximately the default altitude”)
are identified per user. A TSK-based FL controller

is then used according to the following rule base to
maintain the proper altitude for the SAD by adjust-
ing its vertical displacement as a percentage ζstandbySAD

of its maximum allowed value:

R6: If altitude is low,

then ζstandbySAD = a6hSAD + b6
R7: If altitude is default,

then ζstandbySAD = a7hSAD + b7
R8: If altitude is high,

then ζstandbySAD = a8hSAD + b8
(20)

where the parameters a6, b6, a7, b7, a8, b8 will be
identified per user.

3.4.2 Passive Game Mode 1: Mirror the User

In passive game modes the SAD mainly responds - via

mirroring - to the user’s movements. The main goal
of passive game modes for the SAD is to accurately
replicate all the relevant motions of the user that have

been captured during the wait time. These movements
include vertical motions, horizontal motions, and their
combinations resulting in generally diagonal motions.
The motions captured by the IPU are analyzed using

the motion processing algorithm (see Section 3.3.1).
The SAD then mirrors the motions of the user’s chest
position. In game mode 1, in order to start the in-

teraction the SAD may emit a speech signal via the

13

speakers of the remote computer to invite the user to
move (e.g., with a piece of music).

Every identified motion category is characterized
by three quantities: (1) the time interval (in seconds)
associated to the movement, (2) the average vertical

speed (in pixels per second) of the movement, and (3)
the average horizontal speed (in pixels per second)
of the movement. These quantities are the inputs to
the corresponding controller for game mode 1, which

should steer the SAD to mimic the same motion cate-
gories. Moreover, three quantities are output from the
controller: (1) the mimicking time, (2) the vertical dis-

placement of the SAD, and (3) the roll displacement
of the SAD, such that it results in a desired horizontal
displacement.

Remark 5 Diagonal motions may be identified and
mimicked by the SAD according to the conditions that

are represented in item 2 of Section 3.3.1. Otherwise,
the average speed corresponding to the direction (ei-
ther horizontal or vertical) that is absent in the par-

ticular movement is set to zero.

The mimicking time of the SAD is set equal to
the time interval associated to the identified motion
category. The vertical and horizontal displacements of

the drone are considered to be a scaled version of the
movement captured from the user. Note that since the
data captured by the IPU is in pixels. The correspond-
ing TSK-based FL controller generates the SAD’s dis-

placements in cm according to the data registered in
pixels.

For the horizontal movements of the SAD in game

mode 1, the following TSK-based FL controller de-
termines the percentage ρGM1

SAD of the maximum roll
displacement (in deg) of the SAD, which should be

executed by the SAD for a given fixed time:

R9: If ẋchestuser is small,
then ρGM1

SAD = a9ẋ
chest
user + b9

R10: If ẋchestuser is medium,
then ρGM1

SAD = a10ẋ
chest
user + b10

R11: If ẋchestuser is large,
then ρGM1

SAD = a11ẋ
chest
user + b11

(21)

with ẋchestuser the average horizontal speed of the user’s
chest in pixels/s. The terms “small”, “medium”, and
“large” will mathematically be represented by fuzzy

sets and their corresponding fuzzy membership func-
tions, and the parameters a9, b9, a10, b10, a11, and b11
will be identified per user.

Generally speaking, for the vertical displacement
of the SAD one may use a rule base formulated simi-
larly as (21). However, in practice the range of vertical
movements of the body compared to the range of hor-

izontal movements is small. Therefore, the rule base
(21) in this case reduces to a proportional control re-
lationship that determines a percentage ζGM1

SAD of the

maximum allowed vertical speed (in m/s) of the SAD:

ζGM1
SAD = KGM1ẏchestuser (22)

with ẏchestuser representing the average vertical speed of
the user’s chest in pixels/s and KGM1 a tuning pa-

rameter.

Once all the motion categories identified by the
SAD have been mimicked, the SAD centers the user

within its frame of view using the standby controller
(see Section 3.4.1) and waits to capture any new mo-
tions. In a personalized DMT plan, the number of

sequences the SAD allocates to game mode 1 is user-
specific, which is identified by the SAD in the course
of long-term interactions with the user and according
to the assessment of the performance and engagement

of the user in the corresponding game mode. For in-
stance, if a user does not engage in the interactions
with the SAD for a specific number of consecutive

sequences, the SAD initiates a new game mode. Fig-
ures 21 and 22 illustrate two motion mimicking se-
quences, where the SAD follows the user who moves

to the, respectively, right and left from the SAD’s per-
spective.

3.4.3 Passive Game Mode 2: Mirror the User’s Hand

In game mode 2 the SAD mirrors the movements asso-

ciated to the user’s hands. Similarly to game mode 1,
the standby controller initially positions the user in
the centre of the SAD’s frame of view, maintains a

safe and engaging distance from the user, and sus-
tains the SAD’s altitude. The SAD encourages the
user by emitting the speech “waiting for your hand
motion!” and waits for the user to initiate the game

by moving their hands. Then during the wait time,
which is user-specific, the SAD captures and analyzes
all the movements of the user’s hands. There are two

main differences in game mode 2 compared to game
mode 1:

1. The positions rti that are recorded and analyzed
by the IPU correspond to the wrist positions pro-
vided by ANN2 (see joints 4 and 7 in Figure 4).
The controller corresponding to game mode 2 first

decides which hand to follow by estimating the
total distance (in pixels) that is travelled by each
wrist during the wait time. The hand that has been

more active (i.e., the total travelled path in pixels
of the corresponding wrist within the wait time
has been larger) is selected.

2. Compared to the chest point, capturing the wrist
positions is more prone to failures or errors for
the IPU. More specifically, the pace of the hand
movements may be according to frequencies that

are higher than the frequency of capturing data
by the IPU in real-time applications. Such hand
movements, therefore, are not captured and per-

ceived correctly by the IPU and result in missing
or erroneous data. Therefore, the fault tolerance
algorithm explained in Section 3.3.1, may more fre-
quently be called by the controller in game mode 2.

14

Fig. 21 Passive game mode 1: The user is originally standing in front of the SAD (the standby controller has centered the
user’s face-box in the SAD’s frame of view); the user moves to the left from the perspective of the SAR (see the left-hand
side picture), and the SAD mimics the same motion (see the right-hand side picture)

Fig. 22 Passive game mode 1: The user is originally standing in front of the SAD (the standby controller has centered the
user’s face-box in the SAD’s frame of view); the user moves to the right from the perspective of the SAR (see the left-hand
side picture), and the SAD mimics the same motion (see the right-hand side picture)

The TSK-based FL controller corresponding to game

mode 2 performs according to the following rule base
for the horizontal movements of the SAD:

R12: If ẋwrist
user is small,

then ρGM2
SAD = a12ẋ

wrist
user + b12

R13: If ẋwrist
user is medium,

then ρGM2
SAD = a13ẋ

wrist
user + b13

R14: If ẋwrist
user is large,

then ρGM2
SAD = a14ẋ

wrist
user + b14

(23)

with ẋwrist
user the average horizontal speed of the user’s

(more active) wrist in pixels/s, and ρGM2
SAD the percent-

age of the maximum roll displacement (in deg) of the

SAD computed by the controller for game mode 2.
The terms “small”, “medium”, and “large” will math-
ematically be represented by fuzzy sets and their cor-
responding fuzzy membership functions, and the pa-

rameters a12, b12, a13, b13, a14, and b14 will be identi-
fied per user.

For the vertical displacements of the SAD, a pro-
portional control relationship provides a percentage
ζGM2
SAD of the maximum allowed vertical speed (in m/s)

of the SAD to steer it according to passive game mode 2:

ζGM2
SAD = KGM2ẏwrist

user (24)

where ẏwrist
user is the average vertical speed of the user’s

wrist in pixels/s for the active hand.

Figures 23-26 illustrate experiments performed in
the Cyber Zoo, where the controller corresponding to
game mode 2 steers the SAD to mimic the motions of

the user’s right hand.

Remark 6 In game mode 1, the parameters of the cor-

responding TSK-based FL controller can be tuned
such that the SAD mimics the movements of the user’s
body accurately (i.e., with scale 1). In game mode 2,

however, the parameters corresponding to the TSK-
based FL controller may be tuned such that the re-
sulting movements of the SAD are scaled (with a fac-

tor usually larger than 1) compared to the movements
of the user’s hand. This is mainly to stress the move-
ments of the user in game mode 2 (for a more engaging
interaction).

3.4.4 Active Game Mode 3: Mimic the SAD with
Body Motions

Game modes 3 and 4 are active, meaning that the
SAD interacts with the user by initiating movements

that the user should mimic. After centering the user

15

Fig. 23 Passive game mode 2: The user initiates a horizon-
tal movement with the right hand

Fig. 24 Passive game mode Mode 2: The SAD mimics (a
scaled version of) the user’s hand motion

in the frame of view of the SAD and maintaining an
adequate distance between the SAD and the user us-

ing the standby controller, the SAD emits a sound,
e.g., “Follow me with your body” (for game mode 3)
or “Follow me with your hand” (for game mode 4),
via the speakers of the remote computer to inform

the user about initiating a movement.

In active game mode 3, the SAD’s motions consist
of pure horizontal motions (i.e., ample sliding to the

left or right), pure vertical motions, or a simultane-
ous combination of the two, which results in diago-
nal motions. The range of these movements should be

personalized per user. The direction of the motions is
initially selected in a random way. After executing a
movement, the SAD pauses according to the wait time
to give the user the chance to follow the SAD’s move-

ment. Afterwards, using the motion processing algo-
rithm, the SAD analyzes and assesses the user’s data
that is captured via the IPU, and attributes a perfor-

mance score to the analyzed movement of the user,
which implies how well the motion of the SAD has
been mimicked by the user. In order to further stimu-
late the interactions with the user, the TSK-based FL

controller corresponding to game mode 3 responds to
higher performance scores with a larger displacement
magnitude. Gradually, the frequency, category, dura-

tion, direction, and speed of the SAD’s movements are

Fig. 25 Passive game mode 2: The user initiates a diagonal
motion with the left hand

Fig. 26 Passive game mode 2: The SAD mimics (a scaled
version of) the diagonal motion of the user’s hand

adapted according to the responses received from the
user and the performance scores attributed.

The input to the TSK-based FL controller of game
mode 3 is the horizontal distance ∆xuser in pixels be-
tween the last registered position xuser of the user and

the center of the SAD’s frame of view. The output
ρGM3
SAD of the TSK-based FL controller of game mode 3

is a percentage of the maximum allowed roll displace-

ment of the SAD. This controller consists of the fol-
lowing rule base for the horizontal movements of the
SAD:

R15: If ∆xuser is negligible,
then ρGM3

SAD = a15∆xuser + b15
R16: If ∆xuser is significant,

then ρGM3
SAD = a16∆xuser + b16

(25)

16

where the terms “negligible” and “significant” should
mathematically be represented by fuzzy membership

functions and parameters a15, b15, a16, and b16 should
be tuned according to the preferences and responses
of every user.

A proportional control policy, similar to the previ-
ous game modes, may also be considered to steer the
vertical movements of the SAD. Figures 27-29 illus-
trate a sequence of movements corresponding to game

mode 3 for the SAD and a user in the Cyber Zoo. In
Figures 27 the SAD has centered the user’s image in
its frame of view and has maintained a proper distance

with the user via the standby controller. In Figure 28,
the SAD moves to the left-hand side of the user, and
waits for the user to mimic this motion. In Figure 29

the user moves in the same direction while the SAD
captures the user’s motion and evaluates it to give it
a performance score.

3.4.5 Active Game Mode 4: Mimic the SAD with
Hand Motions

In game mode 4 the SAD expects the user to follow
its movements by hand. The TSK-based FL controller
corresponding to game mode 4 for generating the hori-

zontal movements of the SAD consists of the following
rule base:

R17: If ∆xhand is negligible,
then ρGM4

SAD = a17∆xhand + b17
R18: If ∆xhand is significant,

then ρGM4
SAD = a18∆xhand + b18

(26)

where the terms “negligible” and “significant” will be
represented by fuzzy membership functions and pa-
rameters a17, b17, a18, and b18 will be tuned. Note

that ∆xhand is the horizontal distance between the
wrist of the user and the center of the SAD’s frame
of view. Whenever data regarding both hands of the

user is available, the hand that is closer to the center
of the SAD’s frame of view will be considered.

For the vertical movements of the SAD, a propor-
tional controller given below is used:

ζGM4
SAD = min

{
KGM4 · 1

∆yhand
, ζmax

SAD

}
(27)

where ζGM4
SAD is a percentage of the maximum vertical

speed (in m/s) of the SAD, ζmax
SAD further limits the

maximum vertical displacements of the SAD during
game mode 4 (note that since hands are expected to
mirror more abrupt sequences of motions of the SAD,
the scale of these motions - in both horizontal and ver-

tical directions - have been scaled down), and ∆yhand
is the vertical distance between the user’s hand and
the center of the drone’s frame of view. Also note that

a larger value for ∆yhand corresponds to a worse per-
formance for the user, and in response to that the SAD
makes a smaller displacement. Therefore, 27 provides
an inverse relationship between ∆yhand and the cor-

responding output of the controller.

Fig. 27 Active game mode 3: The SAD uses the standby
controller to center the user’s image in its frame of view
and to maintain a proper distance with the user, and emits
a sound “follow me with your body” to initiate the active
game mode

Fig. 28 Active game mode 3: The SAD moves to the left-
hand side of the user and pauses

Fig. 29 Active game mode 3: While the user is mimicking
the SAD, the SAD captures the user’s movements via its
IPU and assesses the user’s performance

Figures 30-32 illustrate a sequence of interactions
between the SAD and a user according to active game

mode 4, where the user mimics the SAD’s movements
by their hand.

3.5 Adaptivity and Personalization of the SAD

As discussed before, adaptivity and personalization
are important characteristics that are essential for the
SAD’s control system. In this section we explain in de-

tail how adaptivity and personalization are incorpo-

17

Fig. 30 Active game mode 4: The SAD uses the standby
controller to center the user’s image in its frame of view
and to maintain a proper distance with the user, and emits
a sound “follow me with your hand” to initiate the active
game mode

Fig. 31 Active game mode 4: The SAD moves to the left-
hand side of the user and waits for the user’s left hand to
mirror this motion

Fig. 32 Active game mode 4: The SAD moves to the right-
hand side of the user and waits for the user’s right hand to
mirror this motion

rated into the SAD’s controllers of passive and active
game modes based on metrics such as the user’s per-
formance and engagement level.

Adaptivity refers to the possibility of updating the
parameters that identify a DMT plan (e.g., the wait
time of the SAD) or parameters of the controllers

of the SAD according to the general conditions of
users and the DMT sessions. Personalization refers
to the procedure of tuning such parameters or select-
ing the order, frequency, and duration of various game

modes, in a user-specific way. While parameters that

are personalized via interactions with a user may re-
main constant for that user after being identified, pa-

rameters that are adaptive may vary more frequently.
It is mainly a decision of the designer to specify a
tuning parameter as one of these two categories. Note

that some of the adaptive parameters may be a func-
tion of personalization parameters (e.g., if the SAD’s
wait time is considered as an adaptive parameter that
may vary in the course of one DMT session, its up-

per or lower values are still determined based on the
preference of every specific user).

We first discuss the adaptivity of the controllers.
Different adaptivity modules were developed for pas-
sive and active game modes, based on two main met-
rics, i.e., the performance and engagement of the user.

The performance of the user is evaluated based on how
well the user has accomplished a particular task (i.e.,
initiating or mirroring) corresponding to a specific

game mode, while engagement is based on whether or
not a user is attempting to interact with the SAD. A
high performance implies a high level of engagement,

while the opposite is not necessarily true.

On the one hand, the adaptivity policies that are
developed lead the controller to act more leniently to-

wards a user, who exhibits a low performance but
a high engagement. On the other hand, for a high
performance (which also implies a high engagement),

the developed adaptivity approaches steer the game
modes to become more challenging for the user.

3.5.1 Adaptivity for Passive Game modes

For passive game modes a trial is defined as the follow-
ing sequence: the SAD pausing for the user according

to the wait time to move, the SAD processing the cap-
tured movements, the SAD mimicking the analyzed
movements. Moreover, an episode is the total number
of trials in one continuous game mode.

Both the performance and level of engagement in
passive game modes are quantified via the number of

inactive trials. An inactive trial is one, for which no
significant (according to a specific threshold, e.g., a
multiple of τm) motions have been detected during
the wait time, which implies a performance and a low

engagement. A good performance is associated with
low numbers of inactive trials.

Passive game modes involve two adaptive param-
eters: the wait time tw per trial and the number Ntrial

of trials per episode (i.e., the number of chances the
SAD gives to a user in one episode to perform a motion

according to a particular game mode), where these
adaptive parameters are updated at the end of each
episode. The wait time is adjusted according to a met-

ric called the episodic average pause time, Tp, which
is the average time from when the user finishes the
action, which the SAD should mimic, until the end of

the current wait time.

18

In practice, there is a desired time interval
[
T l
p, T

u
p

]
,

to which Tp should belong. In case Tp > T u
p , the

wait time is decreased according to (28), and in case
Tp < T l

p the wait time is increased according to (29).
We have:

tw ← max
{
tw − (Tp − T u

p), tlw
}

(28)

tw ← min
{
tw + (T l

p − Tp), tuw
}

(29)

where tlw and tuw are the lower and upper values con-

sidered for the wait time in a passive game mode. Note
that T l

p, T u
p , tlw, and tuw are personalization parameters

(i.e., they are user-specific).

The number Ntrial of trials per episode for a pas-

sive game mode is updated according to the number
of inactive trials. In particular, whenever the number
of inactive trials is equal to or larger than a threshold

Nin, then Ntrial is reduced by 1. Alternatively, when-
ever the number of inactive trials is smaller than Nin,
then the user is considered to be fully engaged in the
game mode, and Ntrial is increased by 1. Moreover, to

prevent too many repetitions or significant avoidance
of a game mode (which may not encourage the user
to move outside of their comfort zone), a lower N l

trial

and an upper Nu
trial value for Ntrial may be considered,

which can be fixed for all users or can be user-specific.

3.5.2 Adaptivity for Active Game modes

The main goal of the adaptive module in active game
modes is to ensure that, on the one hand, the motions

performed by the SAD challenge the user and result in
an increased engagement level and, on the other, these
motions are always feasible for the user to mimic, and
do not increase the risk of crashes that endanger the

user or damage the SAD.

For an active game mode, a trial is defined as the
following sequence: the SAD initiating a motion, the
SAD pausing according to the wait time for the user to

follow the motion, the SAD re-centering the user in its
frame of view using the standby controller. After each
trial, the performance and engagement of the user for

that trial are evaluated. The total number of trials in
one game mode is called an episode.

At the end of every episode, the adaptive param-
eters may be updated, based on the average episodic
performance p̄ep of the user (i.e., the mean value of

the performance scores corresponding to all the trials
in that episode) and the average episodic engagement
ēep of the user. Note that in active game modes, a

good performance for the user is identified whenever
the user’s final position during the wait time (i.e., the
chest position in active game mode 3 and the wrist

position in active game mode 4) is close enough (i.e.,
is less than a threshold τc introduced in Section 3.4.1)
to the center of the SAD’s frame of view. Similarly,
the engagement level may be quantified according to

the performance score. More specifically, whenever the

performance score is considered as high (according to
τc), the engagement level is also high. Otherwise, the

engagement level receives a low score, unless - despite
a poor performance score - the user exhibits noticeable
activity or large movements (i.e., displacements with
an amplitude larger than a multiple of τm introduced

in Section 3.3.1).

Remark 7 Whenever the average episodic engagement
ēep is larger than a specific value (e.g., 0.5) the adap-
tivity procedure is triggered. Otherwise, the person-

alization module (explained in Section 3.6) decides to
skip that game mode due to the excessive lack of in-
terest of the user.

For the active game modes, the parameters that

specify the membership functions corresponding to
the terms “negligible” and “significant” in (25) and
(26) are considered as adaptive parameters. For in-

stance, if Gaussian membership functions are used,
the standard deviations σneg and σsig will be updated
according to the following relationships:

σneg ← max
{
σneg −∆σ, σl

}
(30)

σsig ← min
{
σsig +∆σ, σu

}
(31)

with σl and σu lower and upper values for the stan-
dard deviations that may be personalized per user. In

general, when the average episodic performance p̄ep is
high, the adaptive module tends to make the game
mode more challenging for the user by providing a

more strict definition for the terms “negligible” and
“significant”, which is realized by decreasing σneg and
increasing σsig. We define:

∆σ = ασp̄ep + βσ (32)

where ασ and βσ are personalized (or are determined
as fixed values) based on real-life DMT interactions.

Moreover, the parameters a17, a18, b17, and b18 in

in (25) and (26) are considered as adaptive parameters
for active game modes, and will be updated according
to the following relationships:

ai ← min

{
max

{
λaai, a

l
i

}
, aui

}
(33)

bi ← min

{
max

{
λbbi, b

l
i

}
, bui

}
(34)

with i = 15, 16, 17, 18 and:

λa = αap̄ep + βa, where |αa| < 1, |βa| < 1 (35)

λb = αbp̄ep + βb, where |αb| < 1, |βb| < 1 (36)

Note that the upper and lower values aui , bui , ali, and
bli are determined such that unsafe movements of the
SAD are prevented. Moreover, the personalization pa-

rameters αa, βa, αb, and βb are determined in such a
way that the slopes of the output of the corresponding
controllers provide larger movement amplitudes in the

upcoming trials, whenever the user’s average episodic

19

Passive Game
Mode 1

Active Game
Mode 3

Active Game
Mode 4

Passive Game
Mode 2

Master Controller

Performance & Engagement

Update Game Mode Weights

Save User Data

Select Next Mode

Adaptive Module

Engagement

Fig. 33 Controller interaction scheme

performance is high, and otherwise reduce the ampli-
tude of the next movements.

For active game mode 4, where vertical movements

are also incorporated into the movements of the SAD,
the parameter KGM4 in (27) is also considered as an
adaptive parameter that will be updated according to
the following relationship:

KGM4 ← min

{
max

{
λGM4 ·KGM4,K l

}
,Ku

}
(37)

with

λGM4 = αGM4p̄ep + βGM4 (38)

and with Ku, K l, αGM4, and βGM4 personalization
parameters.

Similarly to passive game modes, in active game
modes the wait time tw is considered as an adaptive
parameter that will be updated based on the following
relationship:

tw ← min

{
max

{
tw + αwp̄ep + βw, t

l
w

}
, tuw

}
(39)

with αw, βw, tlw, and tuw personalization parameters.

Finally, the parameter τc is considered as an adap-
tive parameter for active game modes and will be up-

dated according to the following equation:

τc ← min

{
max

{
τc − αcp̄ep + βc, τ

l
c

}
, τuc

}
(40)

where αc, βc > 0 and αc > βc. Whenever a user ex-
hibits a high average episodic performance, τc varies

such that the control system of the SAD becomes more
strict in scoring the user’s performance.

3.6 Personalization via a Master Controller

The personalization module of the SAD is represented
via a master controller (see Figure 33). Considering
episodes consisting of a fixed number of trials, at the

end of every episode, the master controller should de-
cide which game mode to be executed (note that a
game mode may be selected several times consecu-

tively). Therefore, a non-zero weight wi is assigned
to each game mode i such that

∑4
i=1 wi = 1. The

weight wi corresponds to the chance of game mode i

to be selected by the master controller at the end of
an episode.

At the end of every episode, the weights will be

updated such that a game mode that has proven to be
highly engaging for the user receives a higher weight.
The following relationship is used to update the values

of the weights for i = 1, 2, 3, 4 and j ∈ {1, 2, 3, 4}/{i}:

wi ← min

{
max

{
wi + (−1)`∆w,wmin

}
, 1

}
(41)

wj ← min

{
max

{
wj − (−1)`

∆w

3
, wmin

}
, 1

}
(42)

where ` = 0 for ēep above a given threshold, and 1
otherwise. Moreover, ∆w is a design parameter and

wmin is a minimum value considered for the weight
of each game mode, where usually wmin > 0 in or-
der to prevent a specific game mode to be completely
excluded from the DMT plans.

At the beginning of the next episode, the master
controller selects a game mode based on the weight

values. In order to avoid repeating the same game
mode continuously, after a certain number of episodes,
the master controller selects one of the remaining three

game modes according to their weight values.

In addition to updating and storing the weights
corresponding to various game modes, the master con-

troller also stores and makes use of the personal infor-
mation of the users that affect the decisions of the
SAD, e.g., their height. Moreover, the master con-

troller stores a brief report from every DMT session
per user, including their average episodic performance
values, the number of inactive trials, the profiles for

the weights of various game modes, and the level of
engagement of the users for each game mode.

4 Case Study

In this section, we introduce the setup and main facil-
ities that have been used in the experiments for DMT
via the proposed SAD and we explain the experiments

that have been executed.

20

Fig. 34 Top view of a Parrot Bebop 2 drone

4.1 Drone Used as a SAD

A Parrot Bebop 2 drone5 illustrated in Figure 34 was
used as the SAD in all the experiments. Parrot Be-

bop 2 is a small quadcopter, with the dimensions 382 mm
(frontal length) × 328 mm (side width) × 89 mm
(height), weighing 500 g and equipped with a 2700 mAh

battery. This battery power enables the drone to per-
form DMT for continuous periods of time of up to
10 min. Moreover, two additional fully charged bat-
teries with the same capacity were used to replace the

SAD’s battery whenever it ran out of charge. This
way we ran sessions of up to 30 min per user. Par-
rot Bebop 2 has a 14 MP camera, which is capable

of recording 1080 p video at 30 fps, as well as the
drone’s own WiFi network, which enables the drone
to connect to other devices, e.g., laptops or smart-

phones. Overall, the trade-off between the size and
and the battery power, safe propellers, high quality
of the camera, and the simple appealing appearance
of the drone makes Parrot Bebop 2 suitable for this

research and in general as a SAD.

4.2 Experimental Setup

All the simulated DMT sessions with the SAD and one

person at a time as the user have been conducted at
the Cyber Zoo6 of the Delft University of Technology.
Cyber Zoo is a research and test laboratory in the
Faculty of Aerospace Engineering that embeds a 10 m

× 10 m synthetic turf surrounded by safety nets for
protecting both participants and robots during the
experiments. Furthermore, the experimental facilities

at the Cyber Zoo are equipped with twelve high-tech
cameras, which in our research were used to record
and analyse the SAD’s behaviour during the simulated
DMT sessions.

The computations corresponding to the online data

analysis and online decision making of the SAD are

5 https://support.parrot.com/pt/en/support/products/parrot-
bebop-2
6 https://tudelftroboticsinstitute.nl/labs/cyber-zoo

performed off-board on a remote computer that is
connected to the SAD via its WiFi network. A main

reason, in addition to saving more battery power for
a longer performance of the SAD, is that running
the computations off-board allows to significantly in-

crease the computational power that is available for
real-time image processing and decision making of the
SAD. Furthermore, using a remote computer for off-
board processing and computations, allows for using a

high-level, interpreted programming language such as
Python for developing and implementing the SAD’s
control system. In particular, the Pyfuzzylite library

[26] is used in this research. Moreover, using Python
simplifies the interface that will be used by, e.g., ther-
apists or caregivers, to control the SAD, as one can

use either the official Olympe library [27] of Parrot
or alternative libraries that are based on this library,
such as Pyparrot library [28] (which was used in this
research).

Additionally, the SAD may interact with the user
(or with therapists and caregivers) via speech. The
sound of the remote computer system in such cases
can be used in order to enable the SAD to quickly

communicate with humans, e.g., to prompt or to en-
courage the user to move. Any sound that is emitted
in the code is transmitted using either the built-in

speaker of the remote computer or via a headset that
can be worn by the user. Finally, the SAD should con-
tinuously use an Image Processing Unit (IPU) online,

which will also run on the remote computer system.

4.3 Parameters

The maximum number of horizontal and vertical pix-
els in the images captured by the SAD are 856 and

480, respectively. The maximum yaw rate of the SAD
is 80 deg/s and its maximum vertical speed is 1 m/s.
The time allocated to each movement of the SAD

is 1 s and the maximum allowed roll and pitch dis-
placements during this time are 20 deg, which provide
safety by preventing the SAD from moving too fast.

In order to assess and score the performance of the

user in active game modes 3 and 4, three performance
scores, 0, 0.5, and 1 were used. The user receives a
score 1 whenever the final position (of the body or the

hand) of the user is considered to be centred in the
frame of view of the SAD, that is the chest position
(or, alternatively, the face-box centroid) of the user
is in the proximity of x = 428 pixels. Note that the

concepts of close and hence, centered depend on τc
(see (12)) and are user specific. A score of 0.5 is given
to the user whenever the user has moved in the right

direction, although the last captured position after the
wait time may not be perfectly (with regard to the
tolerance τc) centered. In case neither of the above

cases occurs, the user receives a score of 0.

21

4.4 Participants

In total, 10 participants took part in the experiments.

For every participant, 3 sets of experiments composed
of sessions lasting for 8-12 min were considered. The
reason for selecting 3 sets of experiments was to cover
more environmental and personal variations correspond-

ing to each participant in order to make sure that both
the personalization and adaptation modules were as-
sessed properly. Moreover, in every subsequent exper-

iment, the users became more familiar (and mainly
more comfortable) with the setup of the sessions and
the SAD itself. The age and height of participants

varied between, respectively, 21 years and 24 years
and 155 cm and 185 cm. Before the experiments, par-
ticipants were informed about the nature of the four
game modes and about that the SAD’s behaviour was

adaptive with respect to their preferences. Partici-
pants were also informed that they were not obliged
to continuously interact with the SAD during the ses-

sions.

Initially all the four game modes were executed
during interactions with the participants, so that they
get acquainted with all the game modes. Moreover,

the SAD executed adaptation and personalization at
this stage for each user. Afterwards, the SAD contin-
ued the session by autonomously selecting the game
modes in accordance to the user’s probability profile

explained in Section 3.6. In case unwanted errors (e.g.,
an IPU crash) occurred during an experiment, that
experiment was discarded from the results.

4.5 Implementing the IPU

In order to train the ANNs, the COCO dataset7 has

been used. Before implementing the motion process-
ing algorithm and the SAD’s controller in real-life ex-
periments, since they receive the output of the IPU

as input, the real-time performance of the IPU based
on the frequency of image processing (defined as the
inverse of the time elapsed to analyze two consecutive
images) was evaluated.

Figure 35 illustrates the frequency of the SAD’s
camera (i.e., the reciprocal of the time required by
the camera to capture two consecutive images) for 100
sample images, which shows an average frequency of

almost 38 Hz. Moreover, the frequency of capturing
the images is always above 20 Hz.

The frequency of the IPU consisting of ANN 1 is
illustrated in Figure 36. As a result of incorporating

ANN 1 in the IPU, the average frequency of the image
processing procedure has significantly dropped to less
than one-third (almost 11 Hz).

By incorporating only ANN 2 within the IPU, the

average frequency of the image processing (see Fig-
ure 37) has dropped to almost 2.5 Hz. The significant

7 https://cocodataset.org/

discrepancy between the average frequency of the im-
age processing for ANN 1 and ANN 2 is mainly be-

cause ANN 2 provides more detailed information re-
garding the user’s position by estimating the accurate
position of 18 joints. The importance of this detailed

and accurate information for the performance of the
SAD and for sustaining a purposeful interaction with
the user makes this trade-off between the computation
time and accuracy of the IPU’s output acceptable.

Finally, by incorporating both ANN 1 and ANN 2
in the IPU, the frequency of the image processing (see

Figure 38) becomes almost 2 Hz, i.e., slightly less than
that of the IPU with only ANN 2. Moreover, Figure 38
shows that the image processing frequency often takes
values between 1.5 Hz and 2 Hz. Therefore, we have

decided to develop the motion processing algorithm
and the SAD’s controller such that they perform prop-
erly for frequencies between 1.5 Hz and 2 Hz (i.e., a

time interval of 0.5 s to 0.7 s between two IPU esti-
mations).

4.6 Implementing the Motion Processing Algorithm

In this section, we provide further information about

the implementation and values used for the parame-
ters that are involved in the motion processing algo-
rithm explained in Section 3.3.1.

The value of the motion threshold τm was consid-
ered to be 1% of the overall horizontal length in pixels
of the SAD’s frame of view, which implies that τm ≈
9 pixels. Moreover, the ratio γ for specifying pure hor-
izontal or vertical motions was set to 0.2, i.e., when
|∆yti | < 0.2|∆xti |, the user’s motion is solely horizon-

tal and when |∆yti | ≥ 0.2|∆xti | the secondary verti-
cal motions of the user should be considered by the
SAD. Similarly, when |∆xti | < 0.2|∆yti |, the user’s

motion is solely vertical and otherwise, when |∆xti | ≥
0.2|∆yti | the secondary horizontal motions of the user
should be considered by the SAD (with ∆xti = xti −
xti+1 and ∆yti = yti − yti+1).

In the implementation of the motion processing al-
gorithm, whenever at least three consecutive registers

of the IPU contain invalid information, the fault tol-
erance algorithm was activated. Assuming an average
image processing frequency of 2 Hz (see Figure 38),

this implies that the user has not been detected (cor-
rectly) for at least 1.5 s. Finally, the anomaly coeffi-
cient C̃ > 1 in (3) was set to 2.

4.7 Implementing the Standby Controller

In this section, we provide details on the implementa-
tion and tuned parameters of the standby controller
explained in Section 3.4.1. Note that the displace-

ments asked by the standby controller are executed
within 0.1 sec by the SAD.

22

Fig. 35 Frequency of capturing pictures by the Parrot Be-
bop 2 camera

Fig. 36 Real-time performance of the IPU including ANN 1

Fig. 37 Real-time performance of the IPU including ANN 2

Fig. 38 Real-time performance of the IPU including both
ANN 1 and ANN 2

Fig. 39 Membership functions for the terms “left”, “cen-
ter”, and “right” used by the standby controller in the case
studies to center the user’s image in the SAD’s frame of
view

Fig. 40 Standby controller centering the user’s image in the
SAD’s frame of view: Input-output mapping (in average) for
participants in the case study

1. Finding the user: In our case studies in order to de-
tect and position a user, the standby controller al-

lows the SAD to follow a yaw rate equal to 50% of
the maximum allowed yaw rate, which is 40 deg/s.

2. Centering the user in the SAD’s frame of view:

In the case studies, the threshold τc in (12) was
set to 15 (i.e., whenever xuser corresponds to the
center of the captured image ±15%, the user’s im-
age is considered to be at the center of the SAD’s

frame of view). For the rules given by (13), the
membership functions (membership functions) for
the terms “left”, “center”, and “right” used in

the case study are illustrated in Figure 39. These
membership functions consist of three Gaussian
functions, which are mathematically identified by

their mean and standard deviation. Gaussian func-
tions are preferred here over alternative options
(e.g., triangular or trapezoidal functions) for both
their smoothness and concise mathematical nota-

tions (i.e., the number of parameters that should

23

be tuned or personalized is reduced). These char-
acteristics improve the adaptivity and computa-

tional efficiency of the SAD’s controller in real-
time applications. The mean and standard devia-
tion of the Gaussian membership functions were

selected such that these membership functions are
equally spaced in the horizontal range of the im-
age and cover all the possible input values for xuser
(see Figure 39). Finally, the parameters a1, a2, a3
(all in 1/pixels), b1, b2, b3 in (13) were tuned to
a1 = 0.140, a2 = 0.105, a3 = 0.140, b1 = 30,
b2 = 45, b3 = 90.

Figure 40 shows the input-output mapping of the
resulting controller corresponding to (13) for all
possible values in the input domain. Figure 40 can
be explained based on the influence zone of each

membership function (note that the dash-double-
dotted orange, dashed red, and dash-dotted green
curves in Figure 40 are properly tuned outputs

corresponding to, respectively, rules R1, R2, and
R3 in (13)). The slopes for these curves are mul-
tiples of the slope of the line that connects points

(0,−30) and (856, 30) (see the dotted black line
in Figure 40). While the outputs corresponding to
rules R1 and R3 are double of the slope of the dot-
ted line and pass through the edge points (0,−30)

and (856, 30), respectively, the output correspond-
ing to rule R2 has a slope 1.5 times of that of
the dotted line, and passes through (428, 0), which

guarantees that whenever the user is perfectly cen-
tered in the SAD’s frame of view, the output of the
standby controller is 0. For xuser ∈ [0, 100] (where
the dominant membership function is the one cor-

responding to “left”), the output of the standby
controller (see the solid blue curve in Figure 40)
shows the closest behavior to that of the member-

ship function of “left”, whereas the outputs associ-
ated with the terms “center” and “right” are more
prominent when xuser ∈ [350, 450] and xuser ∈
[750, 856], respectively. When xuser is outside of
these intervals, none of the rules is considered to
be specifically prominent, meaning that more than
one of the rules is involved in generating the out-

put of the standby controller.
Note that whenever the input variable xuser reaches
its minimum or maximum values the output of the

standby controller is equal to −30% and 30% of
the maximum yaw rate, respectively, which corre-
sponds to the minimum overshoot when the SAD

attempts to center the user’s image. Moreover, when-
ever xuser is considered to be close to the center
of the image, the variations in the output of the
standby controller provide a trade-off between a

smooth (not too sharp) motion and a reasonable
speed (not less than 10% of the maximum yaw
rate).

3. Maintaining appropriate distance with the user: To
maintain the distance of the SAD with users, the

value of the threshold τd,1 in (14) was set to 0.04
(i.e., whenever the area of the user’s face-box occu-
pies more than 4% of the total area of the captured

image, the SAD is too close to the user). This value
corresponds to a relative distance of almost 0.5 m
between the SAD and the user, which was consid-

ered safe and convenient according to the majority
of the participants in the case studies.
The threshold τd,2 in (15) was set to 0.2, i.e., when-
ever the upper body ratio in the captured image

is inferior to 20% of the overall vertical pixels, the
SAD is considered to be too far from the user. This
value 0.2 corresponds to a relative distance of al-

most 3 m between the SAD and the user. Since for
larger distances, the usual motions of the user - es-
pecially the hand movements - become less ample

for the SAD.
4. Sustaining the SAD’s altitude: As it was discussed

in Section 3.4.1, a default altitude of hdefSAD = huser−
20 (with all the magnitudes in cm) was considered

for the SAD in the case studies. Moreover, for es-
timating the values of the thresholds τh and τl, we
considered αh ≈ 1.375 and αl ≈ 0.375, which re-

sult in τh = huser + 50 and τl = 50 (the values for
the thresholds are given in cm).
Since in our case studies, the variations in the ver-

tical movement by the participants was limited, in-
stead of considering the rules represented in (20),
a simpler procedure was followed: After estimat-
ing the difference ∆hSAD between the latest alti-

tude hSAD registered by the SAD’s sensors and the
default altitude hdefSAD, the standby controller ex-
ecutes a vertical speed of 1 m/s for ∆hSAD time

units to position the SAD according to the default
altitude.

4.8 Implementing the FL controller of Passive Game

Mode 1

In order to implement the TSK-based FL controller
corresponding to (21), the terms “small”, “medium”,

and “large” for the average horizontal speed of the
user’s chest should mathematically be represented by
fuzzy membership functions, and parameters a9, a10,
a11, b9, b10, and b11 should be tuned.

The corresponding fuzzy membership functions are
illustrated in Figure 41. Note that the horizontal speed
of the user’s chest has been limited to a maximum of

100 pixels/s, which is determined based on several ex-
periments performed in the Cyber Zoo with human
participants. The mean values (0, 50, and 100 pix-

els/s) of the Gaussian membership functions were se-
lected such that the resulting membership functions
are equally spaced across the domain of the horizon-
tal speed of the user’s chest. Moreover, the standard

deviation of the Gaussian membership functions were
set to 20 pixels/s, since this value allows any real-
ization within the speed domain to correspond to a

24

Fig. 41 Fuzzy membership functions for the terms “small”,
“medium”, and “large” used in passive game mode 1

Fig. 42 TSK-based FL controller steering the SAD to im-
plement passive game mode 1: Input-output mapping for
horizontal body movements of participants

substantially high membership degree with regard to
at least one of the membership functions. Moreover,
the tuning parameters in (21) were set to a9 = −0.08,
a10 = −0.16, a11 = −0.08 (all in s/pixels), b9 = 0,

b10 = −4, and b11 = 0.

The resulting TSK-based FL controller for pas-
sive game mode 1 yields the input-output mapping

that is illustrated in Figure 42 for the range of the
input. In general, whenever the speed of the user’s
chest has more significant membership degrees corre-
sponding to the sets “small” and “big” (see the dash-

dotted green and dotted green curves in Figure 41)
the output (see the solid blue curve in Figure 42) of
the FL controller mainly approximates the behavior

of a proportional controller with the gain 0.08 s/pixels
(see the dash-dotted green curve in Figure 42), which
ensures that the SAD never exhibits unsafe speed val-

ues. The rate of changes of the output of the con-
troller, however, is in general slightly smaller than
those of the dash-dotted green curve. The reason is
to undermine the effect of unintentional movements of

the user’s body,which were observed in real-life experi-

Fig. 43 TSK-based FL controller steering the SAD to im-
plement passive game mode 2: Input-output mapping for
horizontal hand movements of participants (in average) in
the case study

ments. Additionally, whenever the speed of the user’s
chest has higher membership degrees corresponding
to the set “medium” (see the dashed orange curve in

Figure 41), the output of the FL controller resembles
the behavior of a proportional controller with a slope
of 0.16 s/pixels (see the dashed orange curve in Fig-
ure 42).

For the proportional controller given by(22), the
maximum vertical speed of the SAD and the max-
imum vertical speed of the user’s chest are, respec-

tively, is 1 m/s and 100 pixels/s, which correspond to
a maximum value of 50% for ζGM1

SAD . Note that the
maximum vertical speed of the SAD has been se-
lected based safety considerations for real-life experi-

ments. Finally, the value of KGM1 in (22) is tuned to
0.5 s/pixels.

4.9 Implementing the FL controller of Passive Game
Mode 2

To implement the TSK-based FL controller of game
mode 2 given by (23), the terms “small”, “medium”,
and “large” for the average horizontal speed of the

user’s wrist were defined via the same fuzzy member-
ship functions given in Figure 41. since the horizontal
displacements of the user’s chest are more significant
than those associated with the user’s hands, the con-

troller corresponding to game mode 2 has been tuned
such that the SAD mimics a scaled version of the hand
motions of the user. This way the SAD can stimulate a

more engaging and entertaining interaction with the
user. Consequently, the parameters of the controller
given by (23)) were tuned to a12 = 0.2, a13 = 0.4,

a14 = 0.2 (all in s/pixels), b12 = 0, b13 = −10, and
b14 = 0.

The resulting TSK-based FL controller for passive
game mode 2 yields the input-output mapping that

is shown in Figure 43. Comparing Figures 42 and 43,

25

Fig. 44 Membership functions for the terms “negligible”
and “significant” defined for active game modes 3 and 4

Fig. 45 TSK-based FL controller steering the SAD to im-
plement active game mode 3: Input-output mapping for hor-
izontal movements of the SAD

the corresponding roll rates of the SAD generated by
the controller corresponding to passive game mode 2
are larger than those corresponding to the controller of
passive game mode 1, which is due to the scaling factor

considered for the SAD in mimicking the motions of
the user’s hands. For the proportional controller given
by (24), the gain KGM2 was tuned to 0.5 s/pixels.

4.10 Implementing the FL controller of Active Game

Mode 3

The fuzzy membership functions defined for the terms
“negligible” and “significant” in (25) are illustrated

in Figure 44. Gaussian membership functions have
been considered with standard deviations of 150 pix-
els. Compared to passive game modes where the user

initiates the movements, in active game modes extra
effort is needed to assure that the user remains en-
gaged and follows the DMT plans. Therefore, the stan-
dard deviations of the membership functions for “neg-

ligible” and “significant” are considered adaptive: For

instance, when a user constantly experiences difficul-
ties in positioning themselves in the center (according

to the membership function defined for “negligible”)
of the SAD’s frame of view and hence, receives low
performance scores, the criteria for accepting ∆xuser
as negligible should become more lenient via increas-

ing the standard deviation of the membership func-
tion for “negligible” and decreasing the standard de-
viation of the membership function for “significant”.

The corresponding adaptive algorithm is further dis-
cussed in Section 3.5. The tuned values for the con-
sequent parameters of (25) include a15 = −0.029 and

a16 = −0.117 (both in 1/pixels) and b15 = 30 and
b16 = 55. These values guarantee that the distance
travelled by the SAD in active game mode 3 is always
safe and feasible (i.e., not larger than 3 m, which cor-

responds to a roll displacement percentage of 30%)
and never becomes too small for the user to follow
(i.e., not less than 0.5 m, which corresponds to a roll

displacement percentage of 3%).

The resulting input-output mapping of the TSK-

based FL controller is represented in Figure 45 for
the range of ∆xuser. Two distinct influence zones are
distinguished, each corresponding to one of the two

membership functions “negligible” and “significant”.
For ∆xuser ≤ 150 pixels, the membership function
corresponding to “negligible” (see the corresponding
output in Figure 45 represented by the dashed orange

curve) plays the major role in the output of the con-
troller. For∆xuser ≥ 250 pixels, however, the member-
ship function corresponding to “significant” is dom-

inant (see the corresponding output represented by
the dash-dotted green curve in Figure 45). Moreover,
whenever ∆xuser is roughly centered, the output of

the controller does not deviate significantly from 30%
of the maximum roll displacement, which guarantees
safety. This is reflected in the relatively smaller slope
of the dashed orange curve in Figure 45. However,

whenever ∆xuser becomes more significant (which im-
plies a worse performances for the user), the output
of the controller varies more abruptly (see the solid

blue curve in Figure 45) towards the minimum role
displacement equal to 5% of the maximum roll dis-
placement.

Remark 8 Similarly to the standard deviations for the
membership functions, the parameters a15, b15, a16,

and b16 may also be adapted in order to provide higher
levels of personalization and to improve the user’s en-
gagement level. Changing these parameters indicates

changing the scale of the SAD’s movements, which
corresponds to the movements being experienced as
more or less challenging/difficult by users (see Sec-
tion 3.5 for more details).

26

Fig. 46 TSK-based FL controller steering the SAD to im-
plement active game mode 4: Input-output mapping for hor-
izontal movements of the SAD

Fig. 47 Proportional controller steering the SAD to imple-
ment active game mode 4: Input-output mapping for verti-
cal movements of the SAD

4.11 Implementing the FL controller of Active Game
Mode 4

For active game mode 4, the same membership func-
tions for the terms “negligible” and “significant” as
those for game mode 3 were used (see Figure 44).

Due to the larger vertical mobility of the hands com-
pared to the chest, the proportional controller given
by(27) was considered. The resulting tuned param-

eters are a17 = −0.012 and a18 = −0.047 (both in
1/pixels) and b17 = 15 and b18 = 25. Moreover, we set
KGM4 = 4.5 pixels. For safety reasons, ζmax

SAD = 25%

was considered.

The resulting TSK-based FL controller for the hor-

izontal movements of the SAD yields the input-output
mapping given in Figure 46. Moreover, Figure 47 rep-
resents the input-output mapping of the proportional
controller that steers the vertical movements of the

SAD for game mode 4.

4.12 Implementing the Adaptivity and
Personalization Modules

The values of the parameters that were used in the
adaptivity modules for passive game modes in our ex-
periments include: T l

p = 0.5 and T u
p = 1.5 for both

passive game modes, tlw = 4 and tuw = 10 and N l
trial =

2 and Nu
trial = 4 for passive game mode 1, tlw = 4 and

tuw = 8 and N l
trial = 3 and Nu

trial = 8 for passive game

mode 2.
The parameters used for active game modes in-

clude: σl = 10, σu = 400, ασ = 100, βσ = −50,
al15 = −0.06, au15 = −0.0024, al16 = −0.235, au16 =

−0.0094, al17 = −0.145, au17 = −0.0058, al18 = −0.585,
au18 = −0.0234, bl15 = bl16 = 20 and bu15 = bu16 = 80,
bl17 = bl18 = 15 and bu17 = bu18 = 50. Moreover, we have

αa = −0.4, βa = 0.8, αb = 0.4, βb = 0.8.
For KGM4 in the proportional controller of active

game mode 4, the following parameters were used:

αGM4 = 0.04, βGM4 = 0.08, K l = 0.1, and Ku = 1.
For the wait time in (39) we have: αw = −2 and

βw = 1, tlw = 4 and tuw = 10 for active game mode 3,
and tlw = 2 and tuw = 6 for active game mode 4.

Finally, for updating the parameter τc in (40), we
have αc = 100, βc = 50, τ lc = 50, and τuc = 150.

For the personalization module, the values ∆w =

0.06 and wmin = 0.05 we considered.

5 Results and Discussion

Table 1 presents the default values considered for the
personalization and adaptive parameters. Tables 2-
4 represent the results corresponding to the 3 ex-
periments executed with 10 participants. Particularly,

these results include the maximum, minimum, aver-
age values, and average change (in percentage) with
respect to the default values of the personalization

(weights) and adaptive parameters for the four game
modes after being tuned.

Regarding the weights, the average change with re-

spect to the default values has reached values as high
as 61.6% and 52.8% (for passive game mode 1 in the
second and third experiments, respectively). Gener-
ally speaking, the rate of changes in the weights dur-

ing the first experiment (i.e., almost the first 10 min
of interactions) is less than the rate of changes in the
subsequent experiments, with the largest changes oc-

curring in the second experiment (for passive game
mode 1) and in the third experiment (for passive game
mode 2). This is in line with the fact that participants

became more familiar and comfortable with the SAD
and the setup of the experiments, and thus engaged
more actively in the DMT plans. Moreover, the fact
that these higher variations are observed in passive

game modes (i.e., when users are expected to initiate
the movement plans) is in line with the hypothesis
that users felt more at ease after the first experiment

to investigate more adventurous plans. Therefore, the

27

effect of the personalization module is expected to be-
come more significant by adjusting the weights in the

subsequent experiments, which was indeed the case.
Moreover, according to these results the highest val-
ues of the tuned weights correspond to passive game

mode 1. This matches the fact that all participants of
these experiments were young and healthy people who
found game mode 1 - which, in addition to demanding
an active and initiative role from participants, requires

the most physical activity amongst all the four game
modes - the most joyful and engaging game mode.

One important remark to consider, however, is re-
garding the current simple approach for estimating
the engagement level of the participants, which may

by nature result in a bias in favor of passive game
mode 1. Thus it will be interesting to develop a more
detailed and comprehensive algorithm for estimation
of the user’s engagement in the future. Furthermore,

the results (see particularly the minimum values of the
tuned weights in Tables 2 and 3) show that the per-
sonalization algorithm may have converged too fast to

the preferred game modes and has given other game
modes very little chance to engage the user (see, e.g.,
the minimum values of the weights in Table 3, which
show that within 20 min (or less) of interaction with

the user, there is at least one participant per game
mode for whom the weight of that particular game
mode has reached the minimum weight). More specif-

ically, for 80% of the participants the weight corre-
sponding to at least one game mode has reached less
than 0.1 and for 60% of them the weight has already

reached the minimum value of 0.05 within the first
20 min. Thus, in order to avoid the convergence of
the personalization algorithm prematurely and to give
all game modes enough chances to engage a user, ad-

justments in the weight tuning algorithm are recom-
mended. For instance, either ∆w in (41) and (42)
should be reduced significantly, or (41) and (42) should

be reformulated.

Regarding the adaptivity module, we first discuss
the results for passive game modes 1 and 2. From Ta-

bles 2-4 the wait time tw has evolved continuously
during the experiments. Given the high diversity of
the tuned values corresponding to different partic-

ipants in different experiments, tw has successfully
been adapted for each user in the course of different
experimental conditions. Furthermore, passive game

mode 1 corresponds to higher values of tw compared
to passive game mode 2, which can be explained based
on the fact that whole body movements are slower and
hence need a larger wait time than hand movements.

For the number Ntrial of trials within one episode, con-
sidering the high engagement of the participants in the
two passive game modes, we expect Ntrial to increase.

The results shown in Tables 2-4 confirm this, where by
the end of the third experiment Ntrial has reached an
average value of 3.8 for passive game mode 1 (where

for 80% of the participants, Ntrial has reached its up-

Fig. 48 Variations generated by the adaptivity module in
the membership functions corresponding to active game
mode 3

per bound, i.e., 4) and an average value of 4.8 for pas-

sive game mode 2 (where for 90% of the participants,
Ntrial has reached its upper bound, i.e., 5).

Regarding the performance of the adaptivity mod-

ule for active game modes, we first discuss the vari-
ations in the membership functions for “negligible”
and “significant” (or more specifically in σneg and
σsig). Figures 48 and 49 illustrate the correspond-

ing Gaussian membership functions used initially (see
the dashed curves), as well as the Gaussian member-
ship functions corresponding to the minimum (see the

dash-dotted curves), the maximum (see the dotted
curves), and the average (see the solid curves) val-
ues of σneg and σsig after being tuned by the end of

the third experiment for active game modes 3 and 4.

For active game mode 3, the maximum values for
the standard deviations for “negligible” and “signifi-
cant” are, respectively, 383.3 and 266.7 (also see the

results in Table 4), which correspond to an increase of,
respectively, 155% and 78% with respect to their de-
fault values (i.e., 150 and 150). The minimum values

of σneg and σsig for active game mode 3 are, respec-
tively, 10.0 and 33.3, corresponding to a decrease of
93.3% and 77.8% from their default values. Finally,

for the average values of σneg and σsig for active game
mode 3, the tuned values are 119.7 and 201.7. Given
the discussions in Section 3.5.2, a good performance
observed from users is associated to a decrease in the

standard deviation for the term “negligible” and an
increase in the standard deviation for the term “sig-
nificant”. Taking into account that the proposed DMT

plans in the experiments were not complicated for the
participants and thus the majority exhibited a good
performance, we expect to see the described effect in
σneg and σsig, which is confirmed by the average of

the tuned values of these parameters.

For active game mode 4, similarly to active game
mode 3, the adaptivity module has performed excel-

lently. The high diversity in the maximum, minimum,

28

Fig. 49 Variations generated by the adaptivity module in
the membership functions corresponding to active game
mode 4

and average values of σneg and σsig after being tuned
for various participants shows that these values have
been estimated according to the variations in the ex-

periments and users. In particular, for active game
mode 4, the minimum values of the tuned parame-
ters σneg and σsig show, respectively, a 40% and a

93% decrease with respect to their default values (150
and 150). Moreover, the maximum tuned values are
93% and 40% larger than the default values for, re-
spectively, σneg and σsig. The main difference com-

pared to active game mode 3, however, is that the
average value σneg has increased 22.7% to 184 while
the average value of σsig has decreased 19.3% to 121,

which corresponds to a performance worse than that
observed in active game mode 3.

Next, we discuss the changes made by the adaptiv-
ity module to the input-output mappings of the con-
trollers corresponding to active game modes 3 and 4,

where the default mappings and the average mappings
after the parameters of the controllers were tuned
are illustrated in Figures 50 and 51. Moreover, Fig-

ure 52 shows the input-output mapping corresponding
to the vertical controller of active game mode 4 before
and after tuning the controller. On average, for active
game mode 3, the adaptivity module yielded an en-

tirely different input-output mapping, whereas for ac-
tive game mode 4 the resulting input-output mapping
showed a similar (but fine-tuned) behavior as the orig-

inal input-output mapping. As a result of tuning the
parameters of the controller for active game mode 3, a
poor mimicking receives a higher reward, which corre-

sponds to displacements with a larger amplitude (see
the solid orange curve in Figure 51). The reason is
that this game mode is too easy for nearly all partic-
ipants, and thus their performance is almost always

perceived as good by the adaptivity module, result-
ing in a fast convergence to the thresholds considered
for the tuning parameters. Additionally, Table 4 shows

that 9 out of the 10 participants managed to minimize

the parameter τc to its lowest bound 50. We expect
to observe different results for the input-output map-

ping of active game mode 3 with a different group of
participants with motor skill impairments or ASD.

Active game mode 4, on the contrary, was not con-
sidered to be overly simplistic for the participants.
The values obtained for τc (see Table 4) after all 3 sets

of experiments remained close to the default value of
100. Moreover, for none of the users the tuned value
of τc reached its minimum value of 50 in active game

mode 4. These results are consistent with the findings
regarding the tuned membership functions for “neg-
ligible” and “significant” discussed earlier in this sec-
tion. Similarly, the distribution of the tuned values of

tw for active game mode 3 (see Table 4) imply that,
for the selected participants, this game mode was not
very challenging, where the average value of tw was

around 4 s and 5 s, with 80% of the participants be-
ing able to minimize the value of tw to the lower bound
(i.e., 4 s) for this parameter. For active game mode 4,

however, a much wider range of values were observed
for tw after being tuned.

6 Limitations and Topics for Future Work

Given the relative homogeneity among the partici-
pants (in terms of motor ability and that none of
the participants had been diagnosed with ASD), in-

creasing the number and potentially the variety of the
participants to provide a more representative sample
is expected to increase the fidelity of the results. In

particular, real-life experiments with volunteer par-
ticipants who have been diagnosed with ASD is one
of the next research steps.

Furthermore, the fact that the IPU performs at
a frequency of 2 Hz may pose restrictions for DMT.

Such scenarios require the SAD to move according
to the frequency of a melody, which may exceed the
2 Hz limit. In the experiments that were performed in

the Cyber Zoo, this frequency limit was particularly
restrictive for passive game mode 2, since participants
had to be instructed to avoid moving their hands too

fast not to exceed the 2 Hz limit.

Currently, the IPU is not able to detect physical
barriers, such as walls, which may restrain the move-
ments of the SAD due to safety considerations, espe-
cially when the SAD flies in smaller indoor spaces.

Moreover, currently it is assumed that only one per-
son is present in the images captured by the SAD.
This, however, can create problems when other peo-

ple (e.g., a therapist or caregiver) are present in the
DMT session. Moreover, based on an analysis of the
results of the experiments, developing a more sophis-

ticated system for quantifying the engagement level
of participants in various game modes can potentially
improve the personalization of the SAD’s control sys-
tem.

29

Fig. 50 Input-output (default and average) mappings for
the horizontal motion controller corresponding to active
game mode 3

Fig. 51 Input-output (default and average) mappings for
the horizontal motion controller corresponding to active
game mode 4

Fig. 52 Input-output (default and average) mappings for
the vertical motion controller corresponding to active game
mode 4

In the future, SADs are expected to be used in real
DMT sessions for real-time interactions with people

with ASD. Therefore, the IPU needs to be improved
in the sense of both computational efficiency and de-
tection of physical barriers. Moreover, a music analy-

sis module should be developed and used by the SAD
in order to analyze a music piece in real time and de-
cide accordingly about the speed and frequency of the
SAD’s movements. Finally, a custom-made drone that

further meets the requirements (regarding attractive-
ness of the appearance and safety) of DMT will be
designed and developed to further improve the out-

come of DMT sessions via SADs.

7 Conclusion

This study presents a first step towards the develop-
ment of a fully functional SAD capable of perform-

ing DMT, a project that has never previously been
attempted. Overall, the four game modes developed
were successfully tested on a sample of 10 participants.
In addition, the drone showcased the ability do adapt

to each user it interacted with, both in terms of se-
lecting the adequate game modes and adapting both
the membership functions and the consequent terms

of the FL controllers used, which rendered each user’s
experience unique. Thus, the control algorithms devel-
oped are considered to have yielded an adaptive and

personalized SAD.

Although the control algorithm developed is con-
sidered successful in what concerns its adaptivity rel-
ative to the sample of participants selected, the homo-

geneity within the participants considered (in partic-
ular, the fact that no participant considered did not
present any motor deficiency or were diagnosed with
ASD) prevents making a generalizing claim regard-

ing the efficacy of the game modes developed and the
adaptive algorithm in therapy sessions aimed at social
and cognitive rehabilitation of children with ASD.

Nonetheless, this study marked the first theoret-

ical conception of a novel type of SAR: a Socially
Assistive Drone, along with the first documentation
of experimental test runs of the first SAD on human

participants. Although not yet tested on children with
ASD, the obtained results open the way for further
research on control algorithms enabling SADs to per-
form DMT in real time, while identifying some of the

major challenges and limitations which must be ad-
dressed in subsequent research. All things considered,
this study represents a step forward towards the final

goal of hindering the severe social and motor impair-
ments often found in children suffering from ASD.

8 Acknowledgements

This research has been supported by the NWO - Open

Mind project “Drones Interacting with Children with

30

Autism via Dance Movement Therapy” (18071), which
has been financed by the Netherlands Organisation for

Scientific Research (NWO). We would like to espe-
cially thank Dr. R. Van der Hallen, Clinical Psychol-
ogist at the Erasmus University Rotterdam, for pro-

viding extensive input on therapeutic effects of dance
movement therapy for children with autism and as-
sessment of the expected therapeutic outcomes. More-
over, we thank Dr. A. Sokolowska for training the

artificial neural networks. Finally, we thank Dr. R.
Samaritter for informative meetings and discussions
about dance movement therapy.

P
a
rt

ic
ip

a
n
ts

W
ei

gh
ts

A
d

a
p

ti
ve

P
ar

a
m

et
er

s

G
M

1
G

M
2

G
M

3
G

M
4

G
M

1
G

M
2

G
M

3
G

M
4

t w
N

tr
ia
l

t w
N

tr
ia
l

τ c
t w

a
1
5

a
1
6

b 1
5

b 1
6

σ
n
e
g

σ
si
g

τ c
t w

a
1
7

a
1
8

b 1
7

b 1
8

σ
n
e
g

σ
si
g

K
G
M

4

D
ef

au
lt

p
ar

ti
ci

p
a
n
t

0.
25

0.
2
5

0
.2

5
0.

25
6
.0

0
3

5
.0

0
3

6
4

3.
0

-0
.1

1
7
0

-0
.0

2
9
2

5
5
.0

3
0
.0

1
5
0.

0
1
50

.0
10

0
3.

0
-0

.0
46

7
-0

.0
11

7
25

.0
1
5.

0
1
50

15
0

0
.7

50

T
a
b
le

1
D

ef
a
u

lt
v
a
lu

es
o
f

th
e

a
d

a
p

ti
v
e

a
n

d
p

er
so

n
a
li

za
ti

o
n

p
a
ra

m
et

er
s

P
ar

ti
ci

p
an

ts

W
ei

gh
ts

A
d
ap

ti
ve

P
ar

am
et

er
s

G
M

1
G

M
2

G
M

3
G

M
4

G
M

1
G

M
2

G
M

3
G

M
4

t w
N

tr
ia
l

t w
N

tr
ia
l

τ c
t w

a
1
5

a
1
6

b 1
5

b 1
6

σ
n
e
g

σ
si
g

τ c
t w

a
1
7

a
1
8

b 1
7

b 1
8

σ
n
e
g

σ
si
g

K
G
M

4

P
a
rt

ic
ip

an
t

1
0.

17
0
.4

1
0
.2

5
0
.1

7
6.

5
0

4
6.

3
6

5
50

5.
0

-0
.0

74
8

-0
.0

18
7

79
.2

43
.2

50
.0

25
0
.0

7
0

2
.4

-0
.0

4
11

-0
.0

1
0
3

2
8
.0

1
6
.8

1
20

1
8
0

0
.8

40
P

a
rt

ic
ip

an
t

2
0.

47
0
.1

1
0
.1

7
0
.2

5
6.

5
0

4
6.

5
0

4
50

6.
0

-0
.0

93
5

-0
.0

23
4

66
.0

36
.0

10
0
.0

2
00

.0
6
0

2
.2

-0
.0

3
89

-0
.0

0
9
7

2
8
.8

1
7
.3

1
10

1
9
0

0
.8

64

P
a
rt

ic
ip

an
t

3
0.

31
0
.1

5
0
.3

1
0
.2

3
6.

4
9

4
4.

8
3

4
50

4.
3

-0
.0

64
8

-0
.0

16
2

80
.0

49
.0

16
.7

28
3
.3

1
00

3.
0

-0
.0

46
7

-0
.0

1
17

2
5.

0
1
5.

0
15

0
15

0
0
.7

4
9

P
a
rt

ic
ip

an
t

4
0.

33
0
.3

3
0
.2

5
0
.0

9
6.

0
4

4
5.

0
6

5
50

5.
0

-0
.0

74
8

-0
.0

18
7

79
.2

43
.2

50
.0

25
0
.0

1
40

3.
8

-0
.0

53
8

-0
.0

1
35

2
0.

8
1
2.

5
19

0
11

0
0
.6

2
4

P
a
rt

ic
ip

an
t

5
0.

47
0
.0

7
0
.2

3
0
.2

3
6.

8
6

4
5.

0
0

3
50

6.
0

-0
.0

93
5

-0
.0

23
4

66
.0

36
.0

10
0
.0

2
00

.0
1
30

3.
6

-0
.0

52
3

-0
.0

1
31

2
2.

0
1
3.

2
18

0
12

0
0
.6

6
0

P
a
rt

ic
ip

an
t

6
0.

31
0
.2

3
0
.2

3
0
.2

3
6.

7
8

4
6.

0
0

5
50

5.
0

-0
.0

74
8

-0
.0

18
7

79
.2

43
.2

50
.0

25
0
.0

7
5

2
.5

-0
.0

4
11

-0
.0

1
0
3

2
7
.0

1
6
.2

1
25

1
7
5

0
.8

10
P

a
rt

ic
ip

an
t

7
0.

37
0
.2

1
0
.2

1
0
.2

1
5.

7
1

4
4.

2
8

5
50

5.
3

-0
.0

80
6

-0
.0

20
2

74
.5

40
.6

66
.7

23
3
.3

1
05

3.
1

-0
.0

47
1

-0
.0

1
18

2
4.

2
1
4.

5
15

5
14

5
0
.7

2
6

P
a
rt

ic
ip

an
t

8
0.

29
0
.0

5
0
.2

9
0
.3

7
6.

1
8

4
5.

0
0

3
50

5.
7

-0
.0

87
2

-0
.0

21
8

70
.4

38
.4

83
.3

21
6
.7

9
0

2
.8

-0
.0

4
45

-0
.0

1
1
1

2
5
.8

1
5
.5

1
40

1
6
0

0
.7

74
P

a
rt

ic
ip

an
t

9
0.

05
0
.1

3
0
.4

5
0
.3

7
6.

2
8

4
5.

2
8

5
50

4.
0

-0
.0

38
7

-0
.0

09
7

78
.0

50
.0

10
.0

40
0
.0

1
50

4.
4

-0
.0

60
1

-0
.0

1
50

1
8.

3
1
1.

0
22

0
80

0.
55

0

P
ar

ti
ci

p
an

t
10

0.
05

0
.3

1
0
.2

5
0
.3

9
5.

1
1

3
4.

8
7

5
50

5.
7

-0
.0

87
7

-0
.0

21
9

70
.6

38
.5

83
.3

21
6
.7

1
20

3.
4

-0
.0

50
5

-0
.0

1
26

2
3.

0
1
3.

8
17

0
13

0
0
.6

9
0

M
ax

0.
4
7

0.
4
1

0
.4

5
0
.3

9
6.

8
6

4
6.

5
0

5
50

6.
0

-0
.0

38
7

-0
.0

09
7

80
.0

50
.0

10
0
.0

4
00

.0
1
50

4.
4

-0
.0

38
9

-0
.0

0
97

2
8.

8
1
7.

3
22

0
19

0
0
.8

6
4

M
in

0.
0
5

0.
05

0
.1

7
0
.0

9
5.

1
1

3
4.

2
8

3
50

4.
0

-0
.0

93
5

-0
.0

23
4

66
.0

36
.0

10
.0

20
0
.0

6
0

2
.2

-0
.0

6
01

-0
.0

1
5
0

1
8
.3

1
1
.0

1
10

8
0

0
.5

50

A
ve

ra
ge

0.
28

0
.2

0
0
.2

6
0
.2

5
6.

2
4

4
5.

3
2

4
50

5.
2

-0
.0

77
0

-0
.0

19
3

74
.3

41
.8

61
.0

25
0
.0

1
04

3.
1

-0
.0

47
6

-0
.0

1
19

2
4.

3
1
4.

6
15

6
14

4
0
.7

2
9

A
ve

ra
ge

ch
an

ge
(%

)
12

.8
0

-2
0.

0
0

5
.6

0
1
.6

0
4.

0
8

30
6.

3
4

4
6
.7

-2
2.

1
73

.3
3

-3
4.

1
-3

4.
1

35
.1

39
.4

-5
9.

3
6
6
.7

4
.0

0
4.

00
1.

88
1
.8

8
-2

.8
5

-2
.8

4
4
.0

-4
.0

-2
.8

5

T
a
b
le

2
A

d
a
p

ti
v
e

p
a
ra

m
et

er
s

tu
n

ed
in

ex
p

er
im

en
t

1
(t

w
is

g
iv

en
in

se
co

n
d

s)

P
ar

ti
ci

p
an

ts

W
ei

gh
ts

A
d

ap
ti

ve
P

a
ra

m
et

er
s

G
M

1
G

M
2

G
M

3
G

M
4

G
M

1
G

M
2

G
M

3
G

M
4

t w
N

tr
ia
l

t w
N

tr
ia
l

τ c
t w

a
1
5

a
1
6

b 1
5

b 1
6

σ
n
e
g

σ
si
g

τ c
t w

a
1
7

a
1
8

b 1
7

b 1
8

σ
n
e
g

σ
si
g

K
G
M

4

P
a
rt

ic
ip

an
t

1
0.

5
5

0.
1
5

0.
15

0.
1
5

6
.5

0
4

6.
45

5
6
6.

7
5.

3
-0

.0
7
98

-0
.0

1
9
9

73
.9

40
.3

26
6.

7
3
3.

3
7
0

2.
4

-0
.0

41
1

-0
.0

1
03

2
8
.0

16
.8

1
2
0

18
0

0.
84

0
P

a
rt

ic
ip

an
t

2
0.

6
3

0.
0
5

0.
11

0.
2
1

6
.8

2
4

5.
67

5
5
0.

0
5.

3
-0

.0
8
14

-0
.0

2
0
4

75
.1

41
.0

16
6.

7
1
33

.3
1
20

3
.4

-0
.0

4
85

-0
.0

12
1

2
2.

1
1
3.

3
25

0
50

0.
66

4
P

ar
ti

ci
p

a
n
t

3
0.

49
0.

09
0.

2
5

0
.1

7
6
.9

7
4

4.
83

5
5
0.

0
4.

0
-0

.0
5
18

-0
.0

1
3
0

80
.0

50
.0

23
3.

3
6
6.

7
5
0

2.
0

-0
.0

37
3

-0
.0

0
93

3
0
.0

18
.0

1
0
0

20
0

0.
89

9

P
a
rt

ic
ip

an
t

4
0.

6
5

0.
2
5

0.
05

0.
0
5

6
.8

7
4

5.
76

5
5
0.

0
4.

3
-0

.0
6
38

-0
.0

1
6
0

80
.0

48
.4

21
6.

7
8
3.

3
1
40

3
.8

-0
.0

5
38

-0
.0

13
5

2
0.

8
1
2.

5
19

0
1
10

0
.6

24
P

ar
ti

ci
p

a
n
t

5
0.

41
0.

05
0.

2
3

0
.3

1
7
.6

9
4

5.
00

3
5
0.

0
4.

0
-0

.0
5
18

-0
.0

1
3
0

80
.0

50
.0

66
.7

23
3.

3
1
00

3
.0

-0
.0

4
44

-0
.0

11
1

2
3.

8
1
4.

3
90

2
10

0
.7

14
P

ar
ti

ci
p

a
n
t

6
0.

67
0.

11
0.

1
1

0
.1

1
6
.0

1
4

6.
00

5
5
0.

0
5.

0
-0

.0
7
48

-0
.0

1
8
7

79
.2

43
.2

50
.0

25
0.

0
7
5

2.
5

-0
.0

41
1

-0
.0

1
03

2
7
.0

16
.2

1
2
5

17
5

0.
81

0
P

a
rt

ic
ip

an
t

7
0.

6
9

0.
0
5

0.
17

0.
0
9

5
.4

5
4

4.
28

5
5
0.

0
4.

0
-0

.0
5
16

-0
.0

1
2
9

80
.0

50
.0

66
.7

23
3.

3
1
10

3
.2

-0
.0

4
34

-0
.0

10
9

2
6.

2
1
5.

7
12

5
1
75

0
.7

85

P
ar

ti
ci

p
a
n
t

8
0.

25
0.

07
0.

2
9

0
.3

9
6
.3

3
4

5.
00

5
5
0.

0
4.

0
-0

.0
5
58

-0
.0

1
4
0

80
.0

50
.0

11
6.

7
1
83

.3
8
0

2.
6

-0
.0

41
4

-0
.0

1
04

2
6
.2

15
.7

1
5
0

15
0

0.
78

5
P

a
rt

ic
ip

an
t

9
0.

0
5

0.
0
5

0.
59

0.
3
1

6
.2

8
4

5.
78

5
5
0.

0
4.

0
-0

.0
1
87

-0
.0

0
4
7

80
.0

50
.0

11
6.

7
2
93

.3
1
20

3
.8

-0
.0

4
30

-0
.0

10
7

2
1.

4
1
2.

8
70

2
80

0
.6

42
P

a
rt

ic
ip

an
t

1
0

0
.0

5
0
.3

9
0.

1
7

0
.3

9
5
.1

1
3

5.
07

5
5
0.

0
4.

0
-0

.0
6
06

-0
.0

1
5
1

80
.0

50
.0

13
3.

3
1
66

.7
9
0

2.
8

-0
.0

43
7

-0
.0

1
09

2
5
.4

15
.3

1
0
0

20
0

0.
76

3

M
ax

0.
6
9

0
.5

5
0.

59
0
.3

9
7
.6

9
4

6.
45

5
6
6.

7
5.

3
-0

.0
1
87

-0
.0

0
4
7

80
.0

50
.0

26
6.

7
2
93

.3
1
40

3
.8

-0
.0

3
73

-0
.0

09
3

3
0.

0
1
8.

0
25

0
2
80

0
.8

99
M

in
0
.0

5
0
.0

5
0.

05
0.

0
5

5
.1

1
3

4.
28

3
5
0.

0
4.

0
-0

.0
8
14

-0
.0

2
0
4

73
.9

40
.3

50
.0

3
3.

3
5
0

2.
0

-0
.0

53
8

-0
.0

1
35

2
0
.8

12
.5

70
50

0.
62

4
A

ve
ra

ge
0.

40
0.

17
0
.2

1
0
.2

2
6
.4

0
4

5.
38

5
5
1.

7
4.

4
-0

.0
5
90

-0
.0

1
4
8

78
.8

47
.3

14
3.

3
1
67

.7
9
6

3.
0

-0
.0

43
8

-0
.0

1
09

2
5
.1

15
.1

1
3
2

17
3

0.
75

3
A

ve
ra

ge
ch

a
n

g
e

(%
)

6
1.

60
-3

3
.6

0
-1

5.
20

-1
2
.8

0
6
.7

0
3
0

7.
66

6
0

-1
9.

5
46

.6
7

-4
9
.5

-4
9.

5
43

.3
5
7
.6

-4
.4

11
.8

-4
.5

0
-1

.6
7

-6
.3

1
-6

.3
1

0
.3

4
0.

34
-1

2.
0

15
.3

0.
34

0

T
a
b
le

3
A

d
a
p

ti
v
e

p
a
ra

m
et

er
s

tu
n

ed
in

ex
p

er
im

en
t

2
(t

w
is

g
iv

en
in

se
co

n
d

s)

P
ar

ti
ci

p
a
n
ts

W
ei

gh
ts

A
d
ap

ti
ve

P
ar

a
m

et
er

s

G
M

1
G

M
2

G
M

3
G

M
4

G
M

1
G

M
2

G
M

3
G

M
4

t w
N

tr
ia
l

t w
N

tr
ia
l

τ c
t w

a
1
5

a
1
6

b 1
5

b 1
6

σ
n
e
g

σ
si
g

τ c
t w

a
1
7

a
1
8

b 1
7

b 1
8

σ
n
e
g

σ
si
g

K
G
M

4

P
a
rt

ic
ip

a
n
t

1
0
.1

3
0
.7

7
0
.0

5
0
.0

5
6.

8
4

4
6.

2
8

5
6
6.

7
5.

3
-0

.0
79

8
-0

.0
19

9
73

.9
4
0.

3
26

6
.7

33
.3

7
0

2.
4

-0
.0

41
1

-0
.0

10
3

28
.0

1
6.

8
1
2
0

18
0

0.
8
4
0

P
a
rt

ic
ip

a
n
t

2
0.

5
5

0.
17

0
.0

9
0.

19
6.

9
8

4
6.

6
7

5
5
0.

0
4.

0
-0

.0
52

1
-0

.0
13

0
80

.0
5
0.

0
16

6
.7

1
3
3.

3
1
0
0

3
.0

-0
.0

44
4

-0
.0

1
1
1

23
.8

14
.3

2
90

1
0

0.
7
1
3

P
a
rt

ic
ip

an
t

3
0.

55
0
.0

5
0.

23
0
.1

7
6.

9
6

4
4.

7
8

5
5
0.

0
4.

0
-0

.0
26

5
-0

.0
06

6
80

.0
5
0.

0
10

.0
3
83

.3
1
0
0

3
.0

-0
.0

44
9

-0
.0

1
1
2

24
.1

14
.5

2
50

5
0

0.
7
2
4

P
a
rt

ic
ip

an
t

4
0.

27
0
.5

3
0.

15
0
.0

5
8.

3
7

3
5.

5
0

5
5
0.

0
4.

0
-0

.0
59

5
-0

.0
14

9
80

.0
5
0.

0
66

.7
2
33

.3
1
5
0

4
.6

-0
.0

62
7

-0
.0

1
5
7

17
.6

10
.5

2
10

9
0

0.
5
2
7

P
a
rt

ic
ip

an
t

5
0.

47
0
.0

5
0.

29
0
.1

9
8.

1
9

4
5.

0
0

3
5
0.

0
4.

0
-0

.0
41

9
-0

.0
41

9
80

.0
5
0.

0
18

3
.3

1
1
6.

7
1
0
0

3
.0

-0
.0

44
4

-0
.0

1
1
1

23
.8

14
.3

9
0

2
1
0

0
.7

1
4

P
a
rt

ic
ip

an
t

6
0.

75
0
.1

5
0.

05
0
.0

5
6.

4
9

4
5.

5
6

5
5
0.

0
4.

3
-0

.0
64

8
-0

.0
16

2
80

.0
4
9.

0
21

6
.7

83
.3

7
5

2.
5

-0
.0

41
1

-0
.0

10
3

27
.0

1
6.

2
1
2
5

17
5

0.
8
1
0

P
a
rt

ic
ip

a
n
t

7
0.

8
3

0.
05

0
.0

7
0.

05
6.

2
5

4
4.

2
8

5
5
0.

0
4.

0
-0

.0
33

0
-0

.0
08

3
80

.0
5
0.

0
13

3
.3

1
6
6.

7
1
2
0

3
.4

-0
.0

45
1

-0
.0

1
1
3

25
.1

15
.1

1
85

11
5

0.
7
5
4

P
a
rt

ic
ip

an
t

8
0.

17
0
.0

9
0.

33
0
.4

1
5.

9
2

4
5.

0
8

5
5
0.

0
4.

0
-0

.0
24

7
-0

.0
06

2
80

.0
5
0.

0
10

.0
3
00

.0
8
0

2.
6

-0
.0

39
2

-0
.0

09
8

24
.8

1
4.

9
1
5
0

15
0

0.
7
4
3

P
a
rt

ic
ip

a
n
t

9
0.

0
5

0.
05

0
.5

3
0.

37
6.

4
4

4
6.

2
8

5
5
0.

0
4.

0
-0

.0
18

7
-0

.0
04

7
80

.0
5
0.

0
11

0
.0

3
0
0.

0
7
0

2.
8

-0
.0

33
6

-0
.0

08
4

25
.0

1
5.

0
2
3
0

12
0

0.
7
5
1

P
ar

ti
ci

p
a
n
t

1
0

0
.0

5
0
.4

9
0
.2

1
0
.2

5
5.

1
1

3
5.

0
2

5
5
0.

0
4.

0
-0

.0
33

8
-0

.0
08

4
80

.0
5
0.

0
33

.3
2
66

.7
8
0

2.
6

-0
.0

41
9

-0
.0

10
5

26
.5

1
5.

9
1
9
0

11
0

0.
7
9
4

M
a
x

0
.8

3
0
.7

7
0.

53
0
.4

1
8.

3
7

4
6.

6
7

5
6
6.

7
5.

3
-0

.0
18

7
-0

.0
04

7
80

.0
5
0.

0
26

6
.7

3
8
3.

3
1
5
0

4
.6

-0
.0

33
6

-0
.0

0
8
4

28
.0

16
.8

2
90

21
0

0.
8
4
0

M
in

0.
05

0
.0

5
0.

05
0
.0

5
5.

1
1

3
4.

2
8

3
5
0.

0
4.

0
-0

.0
80

0
-0

.0
4

7
3
.9

0
4
0
.3

0
1
0
.0

0
3
3.

3
0

7
0
.0

0
2
.4

0
-0

.0
6

-0
.0

2
1
7.

6
0

1
0
.5

0
9
0
.0

0
1
0.

0
0

0
.5

3

A
ve

ra
g
e

0.
3
8

0
.2

4
0
.2

0
0.

18
6.

7
5

3
.8

5.
4
4

4
.8

5
1.

7
4.

2
-0

.0
44

0
-0

.0
10

0
79

.4
4
8.

9
11

9
.7

2
0
1.

7
9
4
.5

0
2
.9

9
-0

.0
4
4

-0
.0

1
2
4
.5

7
14

.7
4

18
4
.0

0
1
2
1
.0

0
0
.7

4
A

ve
ra

g
e

ch
an

ge
(%

)
5
2
.8

0
-4

.0
0

-2
0.

00
-2

8
.8

0
1
2
.6

0
26

.7
0

8.
8
6

6
0

-1
9
.5

0
3
8.

8
9

-6
2
.8

0
-5

2
.0

0
4
4.

3
0

6
3.

1
0

-2
0
.2

0
3
4
.4

0
-5

.5
0

-0
.3

3
-6

.1
5

-6
.1

5
-1

.7
3

-1
.7

3
22

.7
0

-1
9
.3

0
-1

.7
3

T
a
b
le

4
A

d
a
p

ti
v
e

p
a
ra

m
et

er
s

tu
n

ed
in

ex
p

er
im

en
t

3
(t

w
is

g
iv

en
in

se
co

n
d

s)

33

Appendices

34

A Quadcopter Dynamics

In this appendix, approximate relationships are derived between the roll angle φ and the pitch angle angle θ, and the
corresponding lateral displacement ∆X and longitudinal displacement ∆Z. The derived approximate relationships are
considered to be accurate enough for the purposes of this paper.

In order to distinguish the inertial and body reference frames, the uppercase notation XY Z is used when referring to
the inertial reference frame, whereas lowercase xyz refers to the body reference frame.

In the game modes developed for the SAD detailed in the main paper, the control input selected either modifies the
pitch angle θ or the roll angle φ, never both simultaneously. This enables addressing the rigid body dynamics of the drone by
analysing the rotations around the X and Z axis independently and thus highly simplifies the problem at hand, particularly
when compared to alternative approaches which consider coupled dynamics and rotation matrices [29], which are considered
to leave the scope of this research.

The SAD’s force diagrams for generic lateral and longitudinal motions are represented in Figures 53 and 54, respectively.

Fig. 53 Force diagram for lateral motion to the right Fig. 54 Force diagram for longitudinal motion forward

where ~VX represents lateral velocity, ~VZ refers to longitudinal velocity, ~FD the drag force, ~FAer the aerodynamic force
resulting from the propellers and ~W the quad-copter’s weight. The intensity of the previous forces is denoted as FD, FAer

and W , whereas the total velocity module in the inertial frame is represented as V . In addition, θg and φg are hereby
defined as generic pitch and roll angles, respectively.

As described in [29] the drag equation from fluid dynamics defines the frictional force ~FD as:

FD =
1

2
ρCdAV

2 (43)

where A represents reference area, Cd the drag coefficient and ρ the air density.
From the previous equation, it follows that the drag force increases as the drone gains speed in either the lateral or

longitudinal dimensions. Consequently, for a given generic roll (in case of a lateral motion) or pitch (in case of longitudinal
motion) angles, a horizontal state of equilibrium will be achieved between the horizontal component of ~FAer and ~FD in the
direction of motion (X and Z respectively) as the drone’s velocity increases. When considering the vertical direction, given
that the motions being analysed are strictly contained within a horizontal plane, the drone always remains in equilibrium.

By analysing the sum of forces in the vertical and horizontal directions in the inertial reference frame after equilibrium
is achieved for a lateral motion, we get:

{∑ ~FY = 0∑ ~FX = 0
(44)

in the vertical direction, we obtain:

FAer cos(φg) = W ⇔ FAer =
W

| cos(φg)|
(45)

Which can be replaced in the second equation, yielding:

FAer| sin(φg)| = FD ⇔W | tan(φg)| =
CDAρ(V inf

X)2

2
⇔ V inf

X =

√
2W

CdxAρ

√
| tan(φg)| (46)

where V inf
X denotes the lateral speed at equilibrium or terminal lateral speed and Cdx is the drag coefficient in the X

direction.
When applying the same procedure considering a longitudinal motion, we obtain:

35

V inf
Z =

√
2W

CdZAρ

√
| tan(θg)| (47)

with V inf
X denoting the terminal longitudinal speed and Cdx representing the drag coefficient in the Z direction.

Furthermore, given that all the values in the previous equation except φg and θg are constant, they can be grouped in
two aerodynamic constants denoted as KaerX and KaerZ , defined as:

KaerX =

√
2W

CdXAρ
(48)

KaerZ =

√
2W

CdZAρ
(49)

Consequently, the terminal speeds can be written as:

V inf
X = KaerX

√
| tan(φg)| (50)

V inf
Z = KaerZ

√
| tan(θg)| (51)

Since the reference angles in nearly all situations mentioned in the main article are relatively small, i.e., do not exceed
10 degrees, the small angle approximation, in other words, the first degree Taylor series expansion expressed in 52 can be
used on the tangent function, yielding the final expression to obtain the terminal speeds V inf

X and V inf
Z from generic pitch

and roll angles:

tan(x) ≈ x (52)

V inf
X = KaerX

√
|φg | (53)

V inf
Z = KaerZ

√
|θg | (54)

As a final consideration, it should be noted that there are two main assumptions which underlie the use of the previous
formulas for approximating the lateral and longitudinal displacement associated with a given roll or pitch angle.

The first of the two consists in the assumption that the control inputs are followed nearly instantly. This is considered
to be a good approximation due to two reasons: Firstly, as was previously mentioned, due to the fact that in all the game
modes developed both the roll and the pitch angles typically never exceed 10 degrees (i.e., the maximum output does not
reach 50%), making them particularly small angles and, secondly, due to the magnitude of the maximum pitch and roll
rates. These are set to 200 degrees/s, which means that attaining the previously mentioned small angles is expected to take
less than 0.1 seconds, even if the maximum rates are never reached.

The second assumption underling the previous expressions consists in considering that the lateral and longitudinal
equilibria are quickly (quasi-instantaneously) reached once the drone achieves the reference roll or pitch angles. Once more,
this second assumption is based on the fact that only small angles are used as reference. This, in turn, dictates that the
drag force to needed to attain horizontal equilibrium is significantly reduced (as the aerodynamic force in the direction
of motion is extremely small) and thus can be quickly achieved, for low lateral and longitudinal velocities. This second
assumption is fundamental for being able to link a given pitch/roll angle to a fixed longitudinal/lateral speed, according to
the expressions presented for V inf

X and V inf
Z .

Overall, according to classic control theory, the previous two assumptions dictate that the transient response before
achieving steady state is quite fast for small reference roll and pitch angles, thus allowing to correspond angles directly to
constant speeds (instead of accelerations) during a manoeuvre. Consequently, the lateral and longitudinal displacements of
a given manoeuvre can be written according to:

∆X = V inf
X tm ⇔ ∆X = KaerX

√
|φg |tm (55)

∆Z = V inf
Z tm ⇔ ∆Z = KaerZ

√
|θg |tm (56)

where tm is the manoeuvre duration, in seconds.

36

References

1. D. J. Ricks and M. B. Colton, “Trends and consid-
erations in robot-assisted autism therapy,” in 2010

IEEE international conference on robotics and automa-

tion, pp. 4354–4359, 2010.
2. S. Kopp, E. Beckung, and C. Gillberg, “Developmen-

tal coordination disorder and other motor control prob-
lems in girls with autism spectrum disorder and/or
attention-deficit/hyperactivity disorder,” Research in

developmental disabilities, vol. 31, no. 2, pp. 350–361,
2010.

3. H. Dadgar, J. A. Rad, Z. Soleymani, A. Khorammi,
J. McCleery, and S. Maroufizadeh, “The relationship
between motor, imitation, and early social communica-
tion skills in children with autism,” Iranian journal of

psychiatry, vol. 12, no. 4, p. 236, 2017.
4. M. Dziuk, J. G. Larson, A. Apostu, E. Mahone,

M. Denckla, and S. Mostofsky, “Dyspraxia in autism:
association with motor, social, and communicative
deficits,” Developmental Medicine & Child Neurology,
vol. 49, no. 10, pp. 734–739, 2007.

5. S. Goldman, C. Wang, M. W. Salgado, P. E. Greene,
M. Kim, and I. Rapin, “Motor stereotypies in children
with autism and other developmental disorders,” De-

velopmental Medicine & Child Neurology, vol. 51, no. 1,
pp. 30–38, 2009.

6. T. Higashionna, R. Iwanaga, A. Tokunaga, A. Nakai,
K. Tanaka, H. Nakane, and G. Tanaka, “Relationship
between motor coordination, cognitive abilities, and
academic achievement in japanese children with neu-
rodevelopmental disorders,” Hong Kong Journal of Oc-
cupational Therapy, vol. 30, no. 1, pp. 49–55, 2017.

7. A. Cummins, J. P. Piek, and M. J. Dyck, “Motor co-
ordination, empathy, and social behaviour in school-
aged children,” Developmental Medicine & Child Neurol-

ogy, vol. 47, no. 7, pp. 437–442, 2005.
8. M. Martin, “Moving on the spectrum:

Dance/movement therapy as a potential early in-
tervention tool for children with autism spectrum
disorders,” The Arts in Psychotherapy, vol. 41, no. 5,
pp. 545–553, 2014.

9. H. Takahashi, K. Matsushima, and T. Kato, “The effec-
tiveness of dance/movement therapy interventions for
autism spectrum disorder: A systematic review,” Amer-

ican Journal of Dance Therapy, vol. 41, no. 1, pp. 55–74,
2019.

10. T. Fong, I. Nourbakhsh, and K. Dautenhahn, “A survey
of socially interactive robots,” Robotics and autonomous

systems, vol. 42, no. 3-4, pp. 143–166, 2003.
11. B. Scassellati, H. Admoni, and M. Matarić, “Robots

for use in autism research,” Annual review of biomedical

engineering, vol. 14, pp. 275–294, 2012.
12. A. Taheri, M. Alemi, A. Meghdari, H. PourEtemad, and

N. M. Basiri, “Social robots as assistants for autism
therapy in iran: Research in progress,” in 2014 Sec-

ond RSI/ISM International Conference on Robotics and
Mechatronics (ICRoM), pp. 760–766, IEEE, 2014.

13. J.-J. Cabibihan, H. Javed, M. Ang, and S. M. Alju-
nied, “Why robots? a survey on the roles and ben-
efits of social robots in the therapy of children with
autism,” International journal of social robotics, vol. 5,
no. 4, pp. 593–618, 2013.

14. J. Kajopoulos, A. H. Y. Wong, A. W. C. Yuen,
T. A. Dung, T. Y. Kee, and A. Wykowska, “Robot-
assisted training of joint attention skills in children di-
agnosed with autism,” in International conference on so-

cial robotics, pp. 296–305, Springer, 2015.
15. L. I. Ismail, T. Verhoeven, J. Dambre, and F. Wyffels,

“Leveraging robotics research for children with autism:
a review,” International Journal of Social Robotics,
vol. 11, no. 3, pp. 389–410, 2019.

16. P. Marti, M. Bacigalupo, L. Giusti, C. Mennecozzi, and
T. Shibata, “Socially assistive robotics in the treat-
ment of behavioural and psychological symptoms of
dementia,” in The First IEEE/RAS-EMBS International

Conference on Biomedical Robotics and Biomechatronics,

2006. BioRob 2006., (Pisa, Italy), pp. 483–488, 2006.
17. S. Shamsuddin, H. Yussof, L. Ismail, F. A. Hanapiah,

S. Mohamed, H. A. Piah, and N. I. Zahari, “Initial re-
sponse of autistic children in human-robot interaction
therapy with humanoid robot NAO,” in 2012 IEEE 8th

International Colloquium on Signal Processing and its Ap-
plications, pp. 188–193, 2012.

18. L. Boccanfuso and J. M. O’Kane, “Charlie: An adaptive
robot design with hand and face tracking for use in
autism therapy,” International journal of social robotics,
vol. 3, no. 4, pp. 337–347, 2011.

19. C. Moro, G. Nejat, and A. Mihailidis, “Learning and
personalizing socially assistive robot behaviors to aid
with activities of daily living,” ACM Transactions on

Human-Robot Interaction (THRI), vol. 7, no. 2, pp. 1–
25, 2018.

20. N. Giullian, D. Ricks, A. Atherton, M. Colton,
M. Goodrich, and B. Brinton, “Detailed requirements
for robots in autism therapy,” in 2010 IEEE Interna-

tional Conference on Systems, Man and Cybernetics, (Is-
tambul, Turkey), pp. 2595–2602, 2010.

21. E. H. Mamdani, “Advances in the linguistic synthesis of
fuzzy controllers,” International Journal of Man-Machine
Studies, vol. 8, no. 6, pp. 669–678, 1976.

22. L. A. Zadeh, “Information and control,” Fuzzy sets,
vol. 8, no. 3, pp. 338–353, 1965.

23. T. Takagi and M. Sugeno, “Fuzzy identification of sys-
tems and its applications to modeling and control,”
IEEE Transactions on Systems, Man, and Cybernetics,
vol. 15, no. 1, pp. 116–132, 1985.

24. Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and
Y. A. Sheikh, “Openpose: Realtime multi-person 2d
pose estimation using part affinity fields,” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence,
2019.

25. T. Simon, H. Joo, I. Matthews, and Y. Sheikh, “Hand
keypoint detection in single images using multiview
bootstrapping,” in CVPR, 2017.

26. J. Rada-Vilela, “The fuzzylite libraries for fuzzy logic
control,” 2018.

27. P. Developers, “Olympe,” 2016. Last Time Accessed:
06-06-2021.

28. A. McGovern, “Pyparrot,” 2017. Last Time Accessed:
27-02-2021.

29. D. Gheorghiţă, I. Vı̂ntu, L. Mirea, and C. Brăescu,
“Quadcopter control system,” in 2015 19th International
Conference on System Theory, Control and Computing

(ICSTCC), pp. 421–426, IEEE, 2015.

II
Literature Survey1

1Literature Survey was assessed as part of the AE4020 Literature Study course

39

1
Introduction

1.1. Motivation
In recent years, Autism Spectrum Disorder, commonly referred to by its initials, ASD, has increasingly
gathered the interest of the scientific community, with the amount of diagnosed cases and subsequent
related research increasing over the same period of time [22]. In fact, the World Health Organization
estimates that this condition affects one in every one hundred sixty children on a global scale, with
its prevalence growing by the year [27][12]. This estimate, however, is naturally tied to the amount
invested in means to diagnose the disease, with highly developed countries such as the United States
reaching a much more worrying number of 1.85%, that is, one in every fifty four children as depicted in
Figure 1.1 [19].

Figure 1.1: Autism and Developmental Disabilities Monitoring (ADDM) Network estimates for overall ASD prevalence
in US over time [19]

One of the most fundamental aspects about how ASD is that this condition is far from a uniform
disease with a constant set of identical impairments. Instead, the impairment level can be considered
volatile, depending on the considered patient. Nonetheless, some conditions are present in all degrees
of the spectrum. It is the case of impairments such as deficient social interactions, poor communication
skills and abnormal play patterns. In fact, the word autism finds its roots in the Greek word ”autos”
meaning self, referring to the sense of an isolated self, removed from social interactions. Consequently,
children with severe autism may exhibit all of the previously mentioned symptoms and appear to live

41

42 1. Introduction

in their own world, whereas higher­functioning children on the autism spectrum exhibit mild forms of
these attributes and can achieve a certain level of sociability. [30]

In light of the previous statements, it is by no means an overstatement to consider ASD a condition
with a considerable negative social impact, due to both its associated impairments and its frequency
of diagnosis.

From an economic point of view, the scenario does not look much brighter, as the impacts asso­
ciated with ASD are also far from negligible, with recent findings reporting several concerning values
worldwide. In the United States, values such as a 56% disparity in salaries between mothers of chil­
dren with ASD and mothers whose children have no health limitations were found, corresponding to a
USD 14755 difference per year on average [7]. Additionally, the same report concludes that children
suffering from ASD are 9% less likely to have both parents working, which is responsible for a 28%
decrease in family earnings. In the United Kingdom, a similar scenario occurs, as the lifetime cost,
after discounting, for someone with ASD and intellectual disability is estimated to reach £1.23 million,
and, for someone with ASD without intellectual disability, a value of £0.80 million is estimated [18].
Furthermore, the costs of supporting children with ASD were estimated to reach £2.7 billion a year,
whereas the same number relative to adults reaches the astounding value of £25 billion each year.
Lastly, in Ireland it is estimated that, on average, the annual cost related to private autism spectrum
disorder services, lost income and informal care per child for families reaches €28,464.89 which more
than doubles the annual state expenditure per child on ASD related to health, social and educational
resources of €14,192 [33].

In order to address the social and economic consequences related to ASD, therapeutic approaches
have mostly been regarded as the best available tool, especially when applied as early as the con­
dition is diagnosed, which can happen as soon as when a child is three years old [30]. In fact, early
intervention has been shown to greatly increase the long­term benefits of clinical therapy in children
with autism and consequently, there is a focus on diagnosing autism at earlier stages in development,
which could lead to higher functionality later in life. [30].

Within the available therapy methods for autism, Dance Movement Therapy (DMT) has spiked the
interests of many researchers since it was first introduced, in the 1970s. According to H. Takahashi et
al. [38] DMT can be defined as ”a psychotherapeutic healing tool premised on the theory that the body
and mind are connected. Bodily movements such as dancing are therapeutic because they promote
mental and physical health, and have been found to improve self­esteem, quality of life, well­being,
coping skills, and feelings of joy. DMT also supports the development of physical strength, as well as
social and communication skills”. In their paper, the authors review the usage of DMT over the past
years, emphasizing that mirroring interventions in particular have helped to enhance the social skills of
participants with ASD in a wide range of ages and intellectual capabilities. Furthermore, these findings
are coherent with previous research, which also indicated (although not in such a systematic way)
that DMT interventions can be utilized to address this developmental connection in infants and young
children with, or at high risk for, ASD [22].

Nevertheless, current therapy methods, including DMT, face several challenges, most of these
related to the need of a high degree of personalization and how to respond to appropriately adapt to
each child’s individual needs. This fact led to the creation and development of the concept of socially
assistive robots (SARs) as an additional therapeutic tool, which will be thoroughly explained in Chapter
2.

1.2. Project Objective
Taking all that was mentioned in Section 1.1 into account, the aim of the research conducted consists
on developing and implementing novel approaches for implementing personalized DMT to prevent or
diminish communication impairments associated to ASD. These approaches rely on the concept of
socially assistive robots, more specifically Socially Assistive Drones (SADs). In particular, we will focus
on developing the decision making system, which influences the drone’s behaviour, i.e. the drone’s
control module, with the ultimate goal being finding the best approach for a decision­making module
that is both adaptive and effective.

In this sense, the project is closely linked to the concept of socially assistive robots meant to be used
in ASD therapy. The implementations and development will involve a Parrot Bebop 2 drone, which is
introduced in Chapter 2 (Figure 2.8 and Figure 2.9).

1.2. Project Objective 43

In order to reach the proposed goal, research is conducted to address a predefined set of research
questions, which are listed below in Table 1.1.

Research Questions

• What is a socially assistive robot?

• Which traits or characteristics are linked to a good therapeutic performance for ASD?

• What kinds of socially assistive robots have been developed so far?

• Can/Have drones be/been used as socially assistive robots?

• Which of the mentioned traits are mainly influenced by the decision module/control system of SARs?

• Which control strategy or algorithm can better achieve the desired characteristics?

• Can several control strategies be combined in order to achieve a better trade-off?

• Which control approaches can provide decisions that eventually satisfy the desired performance criteria?

Table 1.1: Listing the Research Questions

The previously enumerated research questions have been subsequently used to implement a project
plan, showcased in Table 1.2

Consequently, the following sections will be structured in a way to first answer the research ques­
tions and follow the stipulated research plan.

In this sense, Chapter 2 discusses socially assistive robots, that is, aside from introducing this
concept, this chapter explores the scope of socially assistive robots that have been developed up to this
point, as well as the main traits related to a successful implementation in therapy sessions. Naturally,
the applications and main advantages and disadvantages related to drone usage in specific are also
mentioned.

Then, Chapter 3 focuses on the decision module analysis by introducing several technical concepts
related to control theory, such as fuzzy logic control, adaptive control, deep reinforcement learning.

The subsequent Chapter 4, on the other hand, focuses on the pragmatic side of the techniques
described in depth in Chapter 3. In other words, it will consider the pros and cons of each of the
previously presented approaches, analysing these according to the performance needed for application
into therapeutic drones.

The preliminary results obtained thus far are presented in Chapter 5, together with a description
of the experimental setup, software used and procedure. Furthermore, the limitations and problems
identified are disclosed, along with future experimental work.

Lastly, Chapter 6 briefly summarizes the main conclusions attained in the research process and

Project Objectives

Step 1: Gather information by answering all the research questions;

Step 2: Develop a new controller based on fuzzy logic;

Step 3: Implement the beta version of developed controller in python;

Step 4: Test the beta version via real-life experiments simulated for predefined scenarios;

Step 5: Improve controller based on step 4 results by adding an adaptive module based on reinforcement learning;

Step 6: Test the final version via real-life experiments simulated for predefined scenarios.

Table 1.2: Listing the Project Objectives

44 1. Introduction

mentions future work which will be conducted at a later stage of the project.

2
Socially Assistive Robots

The following section focuses on defining the concept of socially assistive robots, together with describ­
ing the main benefits related to their implementation in therapeutic applications. Furthermore, several
examples from recent literature related to the development of SARs meant to be used in a variety of
medical conditions, in particular ASD, are analysed and discussed in detail. Lastly, the case study of
using a Parrot Bebop drone as a SAR is presented together with its inherent benefits and drawbacks.

2.1. Introducing Socially Assistive Robots

Socially assistive robots, or SARs in short, are a relatively new concept. In fact, the field of socially
assistive robotics was first defined in 2005 by David Feil­Seifer et al. [13] as the intersection of Assistive
Robotics and Socially Interactive Robotics (SIR).

With that said, an assistive robot is defined as a robot that gives aid or support to a human user. Con­
sequently, research into assistive robotics includes rehabilitation robots, wheelchair robots and other
mobility aides, companion robots, manipulator arms for the physically disabled, and educational robots
[13]. Furthermore, these robots are intended for use in a range of environments including schools,
hospitals, and homes. In contrast, SIRs were first described by Fong in [14] as those whose main
task is some form of social interaction. According to the author, the previous term was introduced to
distinguish social interaction from teleoperation in human robot interaction.

Taking the previous two concepts into account, it is considered that socially assistive robots share
with assistive robots the goal to provide assistance to human users, but it specifies that the assistance
is through social interaction. Because of the emphasis on social interaction, SARs have a similar focus
to SIRs. Regarding SIRs, the robot’s goal is to develop close and effective interactions with the human
for the sake of interaction itself. In contrast, when a SAR is concerned, the robot’s goal is to create
close and effective interaction with a human user for the purpose of giving assistance and achieving
measurable progress in fields such as convalescence, rehabilitation or learning. [13][25]

Ever since its introduction in the scientific community, the concept of SARs has matured and ex­
panded, with several examples of SARs having been successfully developed for therapeutic applica­
tions related to a wide range of medical conditions, as will be described later on, in Section 2.3.

2.2. Main Characteristics Required in SARs

The recent growth in research related to SARs has led researchers to develop a wide variety of robots,
each presenting its own set of traits adapted to the therapeutic application being considered. Out of this
set of traits, elegantly described in several articles [15] [30], five were considered crucial for a successful
therapeutic outcome associated with ASD: appearance, adaptability, simplicity, responsiveness and,
lastly, autonomy. Due to their high impact in developing and adequate SAR, which remains the final
goal of the thesis project, these concepts are introduced and described below.

45

46 2. Socially Assistive Robots

2.2.1. Appearance
The first trait mentioned is perhaps the most straightforward one: when designing a SAR for a specific
purpose, its design is paramount. Consequently, depending on which condition the therapy is meant
to address, a significant amount of designs have been used on SARs through the years.

To illustrate the previous point, in Trends and Considerations in Robot­Assisted Autism Theory,
Daniel Ricks et al. in [30] proposed a scale to compare robot types used in autism therapy research.
This scale includes five different classes: Android, Mascot, Mechanical, Animal and Non­Humanoid
Mobile Robot, with each one of them being described in Figure 2.1.

Figure 2.1: SAR classification scale proposed by Daniel Ricks et al. [30]

In the previous scale, the criteria used to distinguish classes is none other than appearance. In this
sense, SARs who look similar to a human figure are placed in the categories closer to the humanoid
end of the spectrum, such as Android or Mascot, whereas those that present few human features can
be found closer to the non­humanoid classes such as Non­Humanoid Mobile Robots, where drones,
for instance, would be inserted.

In what concerns autism spectrum disorder, this condition is by no means an exception to the im­
portance of design. Taking this condition’s idiosyncrasies into account, from a theoretic point of view,
both Humanoid and Non­Humanoids SARs can be effective, although the design approaches tend to
be linked to different goals.

Giving a humanoid form to socially assistive robots is a strategy usually used when striving for
generalization, that is, for children to be able to replicate behavioural patterns learned in therapy ses­
sions in different contexts, for instance, at school, when interacting with their peers. Overall, humanoid
designs are considered particularly well­suited for imitation and emotion recognition activities. Nev­
ertheless, there is no agreement on a design that is significantly better than others, although some
general guidelines on robot designs have been proposed [30].

2.2. Main Characteristics Required in SARs 47

One of such guidelines infers that there is a delicate balance relative to how realistic a SAR’s design
should be. This principle is motivated by the fact that children diagnosed with autism tend to avoid social
interaction with humans. Hence, whenever children with ASD see a robot with a human form, they often
become withdrawn and avoid interactions. Robots in the forms of animals, cars and toys often do not
trigger these same reactions, which can make them more engaging than robots with a humanoid form
[30].

Furthermore, Robins et al. in [32] and [31], performed studies to evaluate the importance of the
robot’s appearance for children with autism, by evaluating the interactions between these children and
several types of humanoid robots, which even included a human disguised a robot. This study revealed
that robots that interact with children with autism should avoid the details and complexity of a human’s
appearance while still holding to the humanoid form.

On the one hand, in contrast to their humanoid counterpart, non­humanoid SARs are not affected
by the problem of looking too much like a human, meaning children generally find it easier to interact
with this kind of SAR design in a broader range of engaging activities since they will not feel intimidated
by the robot’s appearance. In this sense, it is thought that conceiving a simple­looking SAR can lead to
an increase in the chance of a child with ASD to be engaged in the proposed activity, possibly yielding
better results [30].

On the other hand, when using non­humanoid SARs, generalization (which is usually the main
therapeutic goal) can be significantly reduced, as the amount of mimicking activities, such as hand
gesture mimicking or head position mimicking, and ”human­to­human” interactions are inadvertently
reduced. This, however, does not necessarily constitute a problem. In reality, when the expected
therapeutic outcome consists mainly in increasing a child’s maximum concentration period (which is
the case for this project), the use of non­humanoid robots may actually be the most efficient method
due to the previously mentioned simplicity factor, as will be elaborated in Section 2.5.1

2.2.2. Adaptability
The second trait considered is adaptability, that is, the SAR’s ability to adapt its behaviours in a per­
sonalized way according to each user. This trait has been stated in [25] to positively affect the robot
acceptance, as well as increasing the robot use over time.

In fact, research has shown that challenging behaviors, such as distress or apathy in persons with
cognitive impairments, occur more often in care settings that lack person­centered care. The main
reason is that in person­centered care assistance is adapted to the individual’s personality, along with
his/her physical, psychological, and social needs [25].

After all, as stated in Chapter 1, there are several levels of ASD and the symptoms can vary sub­
stantially depending on the individual. Furthermore, regarding the likelihood of socially assistive robots
being used in the long term, the fact that a patient’s physical and mental needs might change over time
supports the claim that the capacity of a SAR to adapt to each specific individual is just as important as
its overall appearance since, in the end, even a perfectly shaped robot could not be considered particu­
larly useful when it can be used only for a short time or limited number of therapy sessions for a limited
number of people. Additionally, studies such as in [16] have shown that technologies which provide
user­personalized experience tend to positively affect patient’s attitude towards the technology at hand.
This, in turn, influences the frequency of using the technology as well. Once again, this fact advocates
that adaptability holds significant importance in promoting a positive and sustained use of technology,
leading to higher levels of engagement during the assistive activities. Nevertheless, most robots in de­
velopment today do not present a truly personalized experience, by considering each user’s individual
needs. Instead, their behaviour tends to be generalized across groups of people [25]. In this sense,
it can be concluded that aside from choosing the right appearance, incorporating adaptability into any
developed prototype not only holds paramount importance but can also be considered an innovative
approach.

2.2.3. Simplicity
As described in [15], socially assistive robots must be easy to operate, taking into account that most
clinicians are far from experts when it comes to coding. Hence, simplicity is fundamental for any in­
terface presented to the user, which can either be the clinician or, depending on the type of therapy
session in question, the patient. To put it briefly: the simpler the interface (e.g., a Graphical User

48 2. Socially Assistive Robots

Interface or GUI) that is presented to the therapist, either to introduce commands or to access data
registered by the robot, the better.

2.2.4. Responsiveness
Responsiveness can be defined as the therapist’s ability to change the robot’s behaviour during a
therapy session. This trait is particularly relevant when dealing with people suffering from ASD, as
these people will often not exhibit predictable patterns of interaction, may lose interest in the robot for
periods of time or may persevere with interactions with the robot that are not therapeutically productive
[15]. In such cases, it is fundamental for the therapist to be able to intervene with the highest degree
of flexibility possible, with flexibility quantifying the range of possible actions the therapist might take,
together with the speed at which any adjustments are implemented into the SAR’s behavioural patterns.

2.2.5. Autonomy
The last characteristic that is crucial for therapeutic application of SARs is autonomy, or, in other words,
the robot’s ability to successfully perform independently from the therapist, (i.e. without continuously
receiving new instructions on what its next action should be). A risk of a non­autonomous robot is that
it prevents the therapist from paying enough attention to a patient or other therapeutic aspects that
are not necessarily addressed by the SAR, during a therapy session, which may occur due to the high
workload needed to keep the robot performing effectively.

Consequently, SARs must be programmed in such a way that all their programs or activities can
be executed appropriately in a fully autonomous way, even when there is no feedback provided by the
therapist (which is the most likely scenario since, as was just mentioned, the main focus of the therapist
lies in analysing the patient’s behaviour rather than actively correcting the robot’s behaviour).

In light of the previous statements, a conflict inherent to the definitions of simplicity, autonomy and
responsiveness may rise: on the one hand, ideally, the SAR would behave as an autonomous system
requiring little to no attention from the therapists so that they can focus on the patient’s response, whilst,
on the other hand, the need for simplicity and responsiveness implies that therapists may need to alter
the SAR’s behaviour and the SAR should respond to these alterations as quickly as possible and in
a comprehensive way (conflict between the concepts of autonomy and responsiveness). Moreover,
the higher the degree of responsiveness, the higher the complexity of the subsequent system (conflict
between the concepts of responsiveness and simplicity). Additionally, improving the autonomy of the
system may increase its complexity (conflict between the concepts of autonomy and simplicity). There­
fore, it can be concluded that there should be a trade­off between autonomy, simplicity and flexibility,
depending on the considered therapeutic application.

2.3. SAR Examples

After considering all the previously mentioned theoretical aspects regarding the development of SARs,
several concrete examples, regarding the use of SARs in therapeutic applications provided in literature
will be discussed next

2.3.1. Mascot SAR: Charlie
The first example presented consists in Charlie, a socially assistive robot designed for interaction with
children with ASD created by L. Boccanfuso et al. [5] and illustrated in Figure 2.2. Design­wise, accord­
ing to the classes represented in Figure 2.1, this robot fits into the mascot class due to its cartoonish
appearance. Additionally, a particularly simple appearance has been chosen for Charlie in order to
engage the attention of children with ASD and to facilitate social interaction. This SAR was designed to
conduct therapy sessions for children suffering from ASD, meaning it presents similar goals as pursued
by this MSc project. The therapeutic method used, however, is slightly different from DMT, introduced
in Chapter 1. Instead of attempting to get the child to move along with it, the robot focuses entirely on
prompting the child’s imitation skills, which, much alike DMT, have been linked to yield positive ther­
apeutic results for children with ASD (in fact, the therapeutic measures performed by Charlie can be
seen as simply a kind of movement therapy).

2.3. SAR Examples 49

Figure 2.2: Charlie, a mascot-type SAR [5] Figure 2.3: Paro, an animal-type SAR [21]

In order to recognize and properly interact with children, Charlie is equipped with a camera. Addi­
tionally, an image processing module consisting on face and palm classifiers are implemented to the
robot. With a fully functional Image Processing Unit (IPU), Charlie is able to properly register the child’s
movements and, by using the its IPU, decide whether the child is imitating the robot correctly, and react
to the child accordingly.

Charlie’s decision making system (or control module), enabled two fairly simple game modes: a
single player mode named ”Imitate Me, Imitate You” and a multiplayer mode named ”Pass the pose”.
In both modes, the child has the opportunity to interact passively with the robot, by imitating a move
initiated by Charlie, or actively, where the robot waits for the child to make a move and subsequently
imitates it.

Overall, taking into account the effective interactions between Charlie and the children who par­
ticipated in L. Boccanfuso’s study in [5], it is has been concluded that Charlie is a good example on
how a simple­looking robot with fairly straightforward games can attract the attention of children with
ASD, leading them to want to interact with it. Furthermore, [5] also addresses the importance of an
accurate IPU. More specifically, the image processing regarding the hand and face movements are
crucial for both the control module to work properly and for accurate registration of the data associated
to the child’s movements during a therapy session, which will be necessary for post­therapy analy­
sis. The same fact holds for this thesis research project, where visual processing will hold paramount
importance towards the end result.

Lastly, in light of the desired traits mentioned in Section 2.2, one particular drawback stands out:
the fact that Charlie is not a truly adaptable robot. In fact, Charlie follows the exact same game pattern
regardless of the child with whom it is currently interacting. After having stressed the importance of a
personalized therapy session, it is believed that, when implementing a control module on the developed
SAR, the robot should be able to adapt its behaviour to the child it interacts with during the therapy
session.

2.3.2. Animal SAR: Paro the Seal Robot
Shibata et al. [35] used a baby harp seal as a model to design Paro, an animal SAR, which is illustrated
in Figure 2.3. Paro has been designed in such a way that it is simultaneously appealing to users and
can stimulate and sustain interaction. If classified according to the scale proposed by Daniel Ricks [30],
regarding its appearance, Paro is an animal SAR.

Additionally, the robot is equipped with sensors acting as its four primary senses: sight (by using a
light sensor), hearing (in the sense of determining the direction of the determination of sound source),
balance, and tactile. The inclusion of these senses, whose readings influence the amplitude of the
robots movements, guarantees Paro’s responsiveness to the user, particularly in case of sudden stim­
ulation. For instance, after a sudden loud sound, Paro pays attention and looks in the direction of the
sound, illustrated by Paro turning its head towards the source of the loud sound.

Aside from the previously mentioned reactive behavior, Paro also exhibits a proactive behaviour
using a system that is composed of two layers: a Behaviour­Planning layer and a Behaviour­Generation
layer. The Behaviour­Planning layer consists on a state transitioning network based on the the robot’s
internal states, with each state being associated with a particular emotion that has been quantified

50 2. Socially Assistive Robots

numerically. Furthermore, each state decays in time and is directly influenced by external interactions
with a patient.

The behaviour­planning layer sends basic behavioural patterns (several poses and movements)
to the behaviour­generation layer, depending on Paro’s current state values. This second layer is
subsequently responsible for generating control references for each actuator to perform the determined
behaviour, with the control reference depending on magnitude of the internal states and their variation,
creating an enormous number of emerging seemingly life­like behaviours. Naturally, this makes Paro’s
movements unpredictable, which increases the level of authenticity in the interactions. In addition, the
behaviour generation layer is also responsible for adjusting the relative priority of reactive behaviours
relative to proactive behaviours based on the magnitude of the internal states.

The interactions between the twomentioned layers already result in some degree of personalization,
as different actions conducted by distinct patients will influence Paro’s internal states (computed in the
behaviour planning layer) in different ways, leading it to present distinct reactions. This, however,
is not all. In order to keep traces of the previous interactions and to exhibit a coherent behaviour,
Paro has a function of Reinforcement Learning (RL). RL will be described in detail in Chapter 3. It
presents a positive value on preferred stimulation such as stroking and, in contrast, has negative value
on undesired stimulation, such as beating. Consequently, in a gradual manner, Paro can be tuned to
perform only preferred behaviours [21].

Unlike the previous example, the present socially assistive robot was not used in ASD therapy but
instead in treating patients suffering from dementia. Even though the two conditions are fundamentally
different, one trait of the SAR developed was particularly enticing: its ability to present a personal­
ized behaviour for each of its users. In other words, the robot was significantly adaptive. It should
additionally be noted that this was mainly achieved through the use of RL.

In light of the positive results obtained in [21], mainly due to Paro’s adaptive behaviour, together
with the high versatility and adaptability related to the use of RL algorithms, which could just as easily
be applied for ASD therapy, it is considered that RL­based approach could be a positive feature for this
MSc thesis project and should thus be considered.

2.3.3. Humanoid SAR: NAO
The final example considered in the current section consists in NAO, a humanoid robot illustrated in
Figure 2.4. Design­wise, according to the scale presented in [30], NAO is considered to be a Mascot
SAR, mostly due to its humanoid and cartoonish appearance. One possible drawback associated to
this design choice consists on children tending to focus too much on the mechanical components of
the robot, rather than focusing on the interactions with it.

In terms of dimensions and hardware, NAO is rather small, measuring only 0.57 m, and light and
weighting 4.5 Kg. Its size relative to a child is showcased in Figure 2.5. Furthermore, much like the
previous two examples, NAO relies on a set of sensors (including two camera, accelerometers and
gyroscopes) to be able to perceive the environment around it, in particular, the children with whom it
interacts. In terms of mobility, it is a fairly complex robot, possessing 11 degrees of freedom (DOF) for
its lower limbs and another 14 DOF for its upper parts.

In their research, Shamsuddin et al. in [34] presented the development of a pilot experiment protocol
where children with ASD were to be exposed to the humanoid robot NAO, where the aim would be
triggering the children’s interest in the robot during the therapy sessions. In the protocol presented,
the robot is controlled in manual mode while a variety of modules (or games) are executed by NAO to
entice reaction and interaction from the ASD children. These modules are defined before the therapy
session using a built­in graphical user interface, with the actual therapy involving switching between the
developed module set, in such a way that each child experiences each module only once. Additionally,
as the robot is executing the activity modules, the initial response and behavior of the child with ASD
is recorded. The recordings are then analyzed in a post­processing stage after the experiment.

According to Shamsuddin in [34], three people are needed during a therapy session: a manual op­
erator, an occupational therapist and a psychologist. In the proposed experimental set­up, the manual
operator works in a different room from the one where the therapy session takes place, and is conse­
quently not visible to the children, the occupational therapist or the psychologist. The manual operator
is thus responsible for three tasks: monitoring the video stream from the available external cameras
(three were recommended) placed in the room where the therapy session is taking place; monitoring

2.4. Drones: Origin, Applications and Investment Boom 51

the video stream from NAO’s own vision system; and, lastly, manually controlling the robot.
Although the premise of testing NAO as a SAR is regarded as highly relevant for the scope of this

MSc project, the experimental procedure is considered to fall short of the expectations due to several
factors.

First and foremost, the need for three people to be actively involved in a therapeutic sessions was
perceived as excessive, especially the manual operator. Taking into account the previously mentioned
desired traits for a SAR, this usage of NAO is not considered to be sufficiently autonomous. Instead,
the robot should be able to choose the most appropriate action by itself, following its decision making
system, without any need to be continuously controlled by a human.

Secondly, the experimental setup proposed lacks personalization, as each one of the modules (or
games) presented follows the exact same guidelines regardless of a child’s preferences. The main dif­
ferences occur in case the child becomes restless and uncooperative, which according to Shamsuddin,
should result in terminating the current interaction and either moving on to the next game or finishing
the experimental activity. Therefore, in light of the desired characteristics described in Section 2.2, the
proposed usage of the robot lacks adaptability.

Although lacking adaptability and autonomy, the fact that NAO presents a GUI is seen in a pos­
itive light. In reality, by using this built­in functionality, therapists are given more control over NAO’s
behaviour when interacting with the child, which allows them, for instance, to set up personalized se­
quences of motions which could act as dance choreographies, and consequently increase the respon­
siveness. This stresses the importance of implementing a simple GUI meant to be used by the therapist
as a way to increase responsiveness.

Figure 2.4: Humanoid Robot NAO [39] Figure 2.5: NAO robot sitting next to a child [34]

2.4. Drones: Origin, Applications and Investment Boom

Over the last 20 years, Unmanned Aerial Vehicle (UAV) have radically increased their presence in
the daily lives of people worldwide, particularly in developed countries. From their usually frowned
upon wide range of military employments, to its generally acclaimed health related ones (e.g. recently
being used to transport medical kits and Covid­19 tests between hospitals in the UK 1), the number
of applications of this seemingly new technology only seems to increase. This leads one to wonder:
should therapeutic applications be considered as the next field to be revolutionized by relying on drone
usage?

Although usually considered as state of the art due to the extensive media coverage it has been
exposed to, strictly speaking, the concept of unmanned aerial vehicles is not properly new. In reality,
the first drone, an aircraft named Hewitt­Sperry Automatic Airplane depicted in Figure 2.6, can be dated
back to 1917, that is, during the first world war [8].

1Source: The Guardian, article by Aaron Walawalkar, October 2020 https://www.theguardian.com/technology/2020/oct/17/nhs-
drones-deliver-coronavirus-kit-between-hospitals-essex

52 2. Socially Assistive Robots

Figure 2.6: Hewitt-Sperry automatic airplane, 1917 2

Just as many other technologies, such as the global positioning system (GPS) or even the internet,
initially, drones were used exclusively for military applications. Nevertheless, nowadays, the scenario
is completely different, as drones are generally small, relatively inexpensive and easily available. The
previous claim is further grounded by the graphs depicted in Figure 2.7.

Figure 2.7: Civilian Drones Worldwide 3

By carefully analysing the data presented in Figure 2.7, two main factors are made clear. Firstly,
in light of the values presented in the graph on the left, there is an overall growth tendency for both
personal and commercial drones (both considered owned by civilians). In fact, these are expected to
reach a combined number of over 5 million units by the end of 2020. This is considered particularly
impressive when taking into account that the same value, in 2015, fell short of the 2 million unit mark.
Furthermore, the associated revenues are also expected to increase substantially, reaching 11 billion
dollars in 2020, which, once again, presents a gigantic increase when compared to the 3.3 billion
estimated in 2015.

Secondly and most importantly, by taking a look at the graph on the right, it can be clearly visu­
alized that the increase in demand has been corresponded by a steep increase in disclosed funding.
Considering the data presented, it can be seen that the value of disclosed funding went from little over
USD 20 million in 2012 to USD 450 million in 2016, with estimates suggesting that this value will only

2Source: http://blogs.mentor.com/jvandomelen/blog/tag/hewitt-sperry-automatic-airplane/
3Source: The Economist Technology Quarterly June 10th 2017

2.5. Drones as Socially Assistive Robots 53

increase in the near future. This increase has naturally resulted in a continuous increase in the number
of deals, also depicted on the right graph in Figure 2.7.

Furthermore, in their report published in 2016: ”Drones: reporting for work”4, the American bank
Goldman Sachs goes as far as to predict that a total of USD 100bn is likely to be spent on both military
and civilian drones between 2016 and 2020. This report equally states that the commercial segment
would be the fastest­growing, notably in construction (accounting for USD 11.2bn), agriculture (USD
5.9bn), insurance (USD 1.4bn) and infrastructure inspection (USD 1.1bn). It should additionally be
noted that the latest data available as of March 2020 regarding yearly drone market investments in the
US can be found in the Appendices, in Figure A.1.

2.5. Drones as Socially Assistive Robots
In light of the previously mentioned yearly increase in investment in drone related research, the num­
ber of drone applications has continually grown over the past few years. Knowing this while having
mentioned the main characteristics required in a SAR in Section 2.2, it is now possible to address the
question presented at the start of the current section, regarding drone effectiveness as SARs.

Firstly, it is crucial to mention that, to the best of my knowledge, drones have never been used as
SARs, particularly in what concerns therapy related to children diagnosed with ASD. The considerations
presented below will thus take into account which of the desired traits mentioned in Section 2.2 hold
the most importance for the case in point.

Furthermore, the considerations presented below will mainly concern the use of a Parrot’s Bebop 2
drone (depicted in Figure 2.8 and Figure 2.9), although they are considered equally valid for any drone
with similar characteristics. In terms of specifications, the drone is relatively small (382mm [frontal
length] x 328 mm [side width] x 89 mm [height]) and light, weighting around 500 grams.

Figure 2.8: Parrot Bebop 2: perspective view Figure 2.9: Parrot Bebop 2: top view

2.5.1. Appearance
Bearing in mind the previous thoughts on the importance of appearance for SARs (Section 2.2.1), it is
considered that, according to Figure 2.1, small­sized drones such as the Parrot Bebop 2 are inserted
into the in the Non­Humanoid Mobile Robots category. Consequently, one of the major drawbacks
associated with its therapeutic use consists on generalization of the behaviour learned in therapy being
harder to achieve. In other words, it might be hard for any child involved in this sort of therapy to be
able to replicate the social behaviour acquired in a therapy session.

In order to address this problem, one key aspect which must be considered consists in the main
goal associated with the therapy sessions. If the main aim consists in the child being able to replicate
specific interaction patterns learned with the help of a SAR (i.e. achieve behavioural generalization),
then a Humanoid Robot would be a more indicate choice. However, in case the main therapeutic goal is
4Full report available at https://www.goldmansachs.com/insights/technology-driving-innovation/drones/

54 2. Socially Assistive Robots

more comprehensive, (e.g. as increasing a patient’s concentration period) then Non­Humanoid Mobile
Robots take the lead over their humanoid counterparts. In fact, as stated in Section 2.2.1, a child with
ASD will tend to be able to focus on a robot which does not resemble a human for longer periods of
time, due to its not intimidating and enticing mechanical appearance.

In this sense, it can be concluded that, with the intent of increasing a child’s attention span, a non­
humanoid design, particularly a drone similar to the Bebop 2 model, would be an adequate choice.

2.5.2. Adaptability
After having stressed the benefits of developing an adaptive system as a means to attain a fully per­
sonalized experience, it is considered that a drone should be able to fully satisfy the required level of
adaptability.

Nonetheless, it should be stated that the main factor responsible for guaranteeing adaptability is
none other than the decision­making module. This module, or controller, acts as the drone’s brain
and will be discussed in detail in the following Chapter 3, together with several strategies to increase
adaptability, such as RL or adaptive control.

In light of this, even if the controller mostly decides SAR adaptability, the fact that a small­sized drone
is being used should not be totally undermined, as it carries some considerable advantages. Since the
drone will be conceived to implement DMT, its inherent high mobility relative to other non­aerial robots
should enable it to perform both simple choreographies or fairly more complex ones, depending on
the user at hand. Naturally, this property presents itself as a good premise for the development of an
adaptive controller.

2.5.3. Simplicity
In order to ensure that the program developed for interacting with the drone is simple to use for the
therapist, it should be assumed that therapist working with the SAD is not comfortable with or even used
to using any traditional programming interface. Consequently, a user friendly graphical user interface
should be used instead of a fairly complicated one.

This trait, unlike the previous two, is not directly influenced by the use of a drone instead of the
traditional SAR, since, in general, autonomous SARs should present an intuitive interface.

2.5.4. Autonomy
When developing a Socially Assistive Drone, guaranteeing a high level of autonomy stands as a priority.
Ideally, once the drone is active and is given the start command by the therapist, it should be able to
interact in a fully autonomous (and even intelligent) way with the patient, while registering all relevant
data for posterior analysis.

Achieving the desired level of autonomy, once again, heavily relies on the control system imple­
mented into the drone. The controller is responsible for determining the drone’s optimal reaction to
external stimulus, such as camera images, at all times. In this sense, the implementation approach is
not conceptually different from that present in other autonomous robots.

Nonetheless, using a drone instead of any other form of SAR comes with a disadvantage. Although
its small size enables highmobility, it also implies that the built­in batterymust be small, which constrains
therapy session length into a maximum of 20 minutes.

2.5.5. Responsiveness
In what concerns responsiveness, unlike autonomy, making sure that the therapist controls the drone
in a flexible and recurrent way will not be one of the main priorities when developing the SAD con­
troller. Instead, as was previously mentioned, the main goal is to ensure that the drone works in an
autonomous, intelligent and personalized way, enabling therapists to focus on children’s interactions
with the drone, rather than on operating it.

With that said, therapists should be given a minimum level of flexibility to influence the drone’s
behaviour. Hence, even when considering highly autonomous drones, basic interactive options should
be present in case a GUI is developed for the SAD.

2.6. Drone’s Social Applications 55

2.6. Drone’s Social Applications
Although, to the best of my knowledge, drones have never been used as socially assistive robots, the
increasing interest and investment on these vehicles has lead to drones being employed in a wide
range of recreational purposes. Some of these applications are considered to be getting significantly
closer to the concept of SAR, which stands as another positive indicator for the potential drones hold
in this field.

2.6.1. Drones for Live Streaming of Visuals for People with Limited Mobility

To illustrate the previous point, in 2016, E. Mangina et al. [20] developed software enabling live stream­
ing of video footage captured by drones meant for people with limited mobility. According to the authors,
the aim of the project consisted in using drones and virtual reality as surrogates to provide access to vi­
sual information to ”differently­abled” people. Furthermore, in this case, drones are chosen as the ideal
streaming platform because these are considered to offer a number of unique affordances to mobile
technology research for community empowerment. This is essentially due to drones being relatively
inexpensive, easy to operate and to fit with alternative interfaces for people of all abilities, and being
readily available. Moreover, the fact that drones can carry a payload of light, inexpensive, and off­the­
shelf sensors is also seen in a positive light as the data collected from these can be used to support a
wide range of research efforts.

Regarding the reason why live streaming visuals is thought to be beneficial, in particular, for people
with limited mobility, it is considered that, when taking advantage of the camera’s high point of view,
the viewers get a particularly good impression of most of the sites presented. In turn, this enables
them to notice certain details which would not be easily perceived even during a ”real experience” over
the same landscape. According to Mangina et al. in [20], over longer periods of time, this experiment
promises to ”facilitate people with limited mobility to have access to live streaming of visuals and thus
to experience the sense of empowerment and inclusion that live engagement in physical activity can
inspire and support”.

Overall, the developed system proposes to integrate Virtual Reality (VR) with a low­cost, unmanned,
semi­autonomous quad­rotor. This quad­rotor, together with a VR headset, showcased in Figure 2.10,
allows for first­person vision and manipulation using the Robot Operating System. Consequently, the
system enables the user to move the quad rotor remotely using natural head movements, which are
then tracked by the VR headset and translated into six degrees of freedom commands. These com­
mands are subsequently sent to the drone, giving a person with limited mobility full control over the
drone’s actions.

Figure 2.10: Oculus Rift Sensor Setup [20]

56 2. Socially Assistive Robots

Considering the project description so far, it must be stated that although this research does strive
to provide the participant with a greater sense of empowerment, belonging, and achievement, it cannot
be said that this use of drones helps the patient when it comes to rehabilitation. For this reason, the
current employment of drones is not compatible with the definition of SAR. Nonetheless, this research is
regarded as an important example showcasing the possibilities associated with drone use, particularly
cheap and easily available quad rotors, for counteracting specific personal impairments, such as limited
mobility.

2.7. Final remarks

In conclusion, during the previous chapter, the concept of socially assisted robots was thoroughly anal­
ysed, along with several examples that have been developed so far. Additionally, the main required
characteristics for a successful therapeutic implementation were examined. Lastly, drones were intro­
duced as potential SARs, taking into account all the aforementioned key traits required: appearance,
adaptability, simplicity, responsiveness and autonomy.

Considering all this, it can now be safely stated that drones hold great potential as SARs. Nonethe­
less, as was hinted throughout the section, a successful implementation of drones in a therapeutic
context heavily relies on the SAD’s decision­making module, responsible for ensuring that traits such
as adaptability and autonomy. For this reason, developing the optimal decision­making module is crit­
ical. Thus, the following chapter will address the drone’s decision making module. In particular, it will
explore the available types of controller available, considering their main advantages advantages and
disadvantages given the project scope.

3
State of the Art Control Methods

The current chapter focuses on the decision­making module of the drone, which will henceforth be
referred to as the drone’s control system, or simply the drone’s controller. In this sense, this chapter
addresses the technical and mathematical properties related to several kinds of controllers by intro­
ducing control theory concepts such as adaptive control, fuzzy logic control, reinforcement learning
and artificial neural networks. Furthermore, examples of drone controllers using these methods, often
combining two or more, are presented and discussed.

Nonetheless, before addressing the previous concepts, a brief overview of control system theory is
provided.

3.1. Introduction to control systems

According to K. Ogata in [26], a control system can be defined as a procedure to control, that is,
continually manage a set of specified variables within a given process. The controlled set of variables,
(which are designated as controlled variables) quantifies the property which the control system attempts
to control. Furthermore, the control input is defined as the quantity or condition that is introduced by
the controller so as to affect the value of the controlled variable which is often the output of the system.
Hence, control means measuring the value of the controlled variable and applying a control input to the
system to correct or limit deviation of the measured value from a desired value.

In this sense, a controller can be interpreted as an input­output mapping which receives the error
between the current measured state variable, 𝑥, and the current state reference 𝑥ref, 𝑒 = 𝑥ref − 𝑥, its
time derivative 𝑑𝑒

𝑑𝑡 = 𝑒̇ or the time integral, ∫𝑡𝑡0 𝑒(𝑡) 𝑑𝑡. A typical feedback control loop is represented
below, in Figure 3.1.

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑆𝑦𝑠𝑡𝑒𝑚
⃗𝑥ref 𝑒 𝑢⃗ 𝑥⃗
−

Figure 3.1: Block diagram of a standard controller in an ideal system

It should be noted that, in the previous diagram, the state 𝑥 is represented as an 𝑛­dimensional
vector, 𝑥⃗, with each element representing one of the 𝑛 states that the controller aims to track. Similarly
to 𝑥⃗, 𝑒 is represented as an 𝑛­dimensional vector, whereas 𝑒̇ and ∫ 𝑒 𝑑𝑡 are usually computed within
the controller block, using numerical methods, only when needed, and are thus not illustrated.

Concerning the control input, represented as 𝑢⃗ in Figure 3.1, this value represents the signal sent
from the controller to the actuator which directly influences future states within the system block.

57

58 3. State of the Art Control Methods

When modelling a controller for real hardware implementation, two additional factors need to be
taken into consideration. Firstly, the fact that the actuators are not perfect must be taken into account.
This means that, in a real scenario, the control input is not immediately implemented to the actuator.
Instead, there’s a transition period between a previous actuator position and the latest control input,
which can vary significantly depending on the actuator considered. For this reason, an actuator model
which implements the distinction between the desired actuator deflection and control input, 𝑢⃗ref, and
the real actuator deflection or variation, 𝑢⃗a, is necessary.

The second point to take into account when considering implementation on real hardware is the
sensors present in the system or process for which the controller is developed. In an ideal scenario,
where the implemented sensors are perfect, the measured state would equal the real state. However,
this is not a realistic approach, especially when it comes to drones, which, in exchange for a high
availability at relatively low costs, tend to employ poor sensors with high variances in measurements.
Thus, in reality, there is a discrepancy between the real state 𝑥⃗ and a measured state ⃗𝑥𝑚, which highly
relies on the quality of the sensors implemented. Consequently, a sensor block should be placed into
the diagram.

It should additionally be noted that sensor blocks are often accompanied by estimator blocks. These
are responsible for correcting inaccurate state measurements taken by the sensors by taking into ac­
count their variance and bias. An example of an estimator often found in literature is the Kalman filter,
thoroughly described by R. Mehra in [24]. Although it should be stressed that estimators play an im­
portant role in developing a control system by influencing the control loop, throughout the following
section these are considered to be associated with the sensors block, as estimation techniques are not
considered to belong in the project scope, presented in Chapter 1.

In light of the previous two factors, a second block diagram, presented in Figure 3.2, depicts a more
accurate representation of the control loop, now including both the actuator and the sensor blocks.

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝐴𝑐𝑡𝑢𝑎𝑡𝑜𝑟 𝑆𝑦𝑠𝑡𝑒𝑚

𝑆𝑒𝑛𝑠𝑜𝑟𝑠

⃗𝑥ref 𝑒 ⃗𝑢ref 𝑢a 𝑥⃗
−

⃗𝑥m

Figure 3.2: Block diagram of a standard controller in a real system

Out of the four blocks represented above, the research conducted in the following sections focuses
entirely on the controller block, as the remaining three are tied to the hardware present on the robot
(in this case, the drone) for which the controller is designed and are thus immutable. State­of­the­art
control approaches include using artificial neural networks, reinforcement learning based agents or
fuzzy logic systems. The following section addresses the latter.

3.2. Fuzzy Logic Controllers

The first control method described consists in Fuzzy Logic Controllers (FLCs), whose base theory was
first introduced in 1965 by Zadeh [11]. The main idea explored thought the use of fuzzy logic is that of
uncertainty, represented through the use of fuzzy sets. A fuzzy set 𝐴 on a domain 𝑋 is defined by the
membership function 𝜇𝐴(𝑥), which is a mapping from the Universe 𝑋 into the unit interval:

𝜇𝐴(𝑥) ∶ 𝑋 ⟶ [0, 1] (3.1)

The value of the membership function for a certain object 𝑥 is referred to as the membership degree
and it represents to which degree object 𝑥 belongs to fuzzy set 𝐴. Fuzzy sets are thus an extremely
useful tool to quantify linguistic terms such as ”hot”, ”cold” or ”warm”, for instance, when referring to a
variable like temperature, or ”far”, ”near” and ”adequate” when referring to target distance. Variables

3.2. Fuzzy Logic Controllers 59

like the previously mentioned two, which are associated with fuzzy sets, are referred to as linguistic
variables [42].

As for the membership functions, although these can follow any given analytical expression, some
particular shapes are frequently found in literature, with the most common ones being triangular mem­
bership functions, trapezoidal membership functions, bell­shaped (including Gaussian) membership
functions and, lastly, singleton membership functions. These four examples are illustrated below, in
Figure 3.3.

Figure 3.3: Common membership function shapes [28]

By finding a mathematical representation of linguistic terms, abstract concepts become quantifiable.
This fact, in turn, enables defining linguistic rules, represented as 𝑅, according to an implication pattern
following ”if­then” rules described below, for a generic rule 𝑅𝑖:

𝑅𝑖 ∶ If 𝑥 𝑖𝑠 𝐴𝑖 then 𝑦 𝑖𝑠 𝐵𝑖 𝑖 = 1, 2, ... 𝐾 (3.2)

where 𝑥 is the input or antecedent linguistic variable, 𝐴𝑖 is the antecedent linguistic term represented
by a fuzzy set, 𝑦 is referred to as the consequent (output) linguistic variable and 𝐵𝑖 is the consequent
linguistic term represented by a fuzzy set. In a similar way, the first part of the implication ”if 𝑥 is 𝐴𝑖”
is referred to as the antecedent, whereas the latter half, ”then 𝑦 is 𝐵𝑖” is known as the consequent. It
should additionally be considered that in the previous expression aside from 𝐴𝑖 and 𝐵𝑖 both the input
and output 𝑥 and 𝑦 should also be interpreted as fuzzy sets. This comes from the fact that a real number
(also referred to as crisp value) is a special case of a fuzzy set (singleton set) [42].

The rule format presented in (3.2) can be further developed by taking into account several inputs
through the use of connectives such as ”and” or ”or”, resulting in:

𝑅𝑖 ∶ If 𝑥1 𝑖𝑠 𝐴𝑖1 and 𝑥2 𝑖𝑠 𝐴𝑖2 ... and 𝑥𝑝 𝑖𝑠 𝐴𝑖𝑝 then 𝑦 𝑖𝑠 𝐵𝑖 𝑖 = 1, 2, ... 𝐾 (3.3)

𝑅𝑖 ∶ If 𝑥1 𝑖𝑠 𝐴𝑖1 or 𝑥2 𝑖𝑠 𝐴𝑖2 ... or 𝑥𝑝 𝑖𝑠 𝐴𝑖𝑝 then 𝑦 𝑖𝑠 𝐵𝑖 𝑖 = 1, 2, ... 𝐾 (3.4)

where these connectives are implemented through the use of t­norms (e.g. the minimum function)
for the connective ”and” and s­conorms (e.g. the maximum function) regarding the ”or” connective. It
should additionally be taken into account that even though (3.3) and (3.4) exclusively use either ”and”
or ”or”, these two connectors can be combined in the same rule, 𝑅𝑖.

The ability to mathematically define if­then rules is the essence of any FLC, a type of Knowledge
Based Controller (KBC) which can be reduced to a set or rules identical to the ones presented above,
in (3.3) and (3.4), along with their inherent antecedent and consequent fuzzy sets and membership
functions.

Regarding the output computational process associated with an FLC, it consists on using the math­
ematical concept of implication. Although there are several implication algorithms available, such as
the Lukasiewicz implication, the Kleene­Diene implication or the Larson (product) implication, the one
that is most typically used in literature is the Mamdani (or minimum) implication, where the membership
degree of each rule 𝑅, defined as 𝜇𝑅, follows:

60 3. State of the Art Control Methods

𝜇𝑅(𝑥, 𝑦) = 𝐼(𝜇𝐴(𝑥), 𝜇𝐵(𝑦)) (3.5)

with the Mamdani (also referred to as minimum) implication being defined as:

𝐼(𝜇𝐴(𝑥), 𝜇𝐵(𝑦)) = 𝑚𝑖𝑛(𝜇𝐴(𝑥), 𝜇𝐵(𝑦)) (3.6)

The previous Equations (3.5) and (3.6) form the basis for the max­min inference, also known as the
Mamdani inference, an algorithm to compute the output fuzzy set 𝐵′ given an input fuzzy set 𝐴′ and a
Rule Base ℛ [17].

3.2.1. Mamdani Controller
The Mamdani controller is the main example of fuzzy controller that is explored in the current research,
together with Takagi­Sugeno controller. This controller is illustrated in the form of a block diagram in
Figure 3.4,

Figure 3.4: Fuzzy controller implementation in the control loop [28]

As it was previously mentioned, by using the aforementioned concept of implications (in particular,
the max­min inference) on fixed set of rules defined a priori, it is possible to attain an output fuzzy set
𝐵′ from an input fuzzy set 𝐴′. Nonetheless, when the controller is implemented into the control loop,
its inputs, represented in Figure 3.4 as the error, its temporal derivative and its time integral (obtained
through a dynamic pre­filter) are crisp values instead of fuzzy sets. To address this issue, a preliminary
Fuzzification procedure must be met, where the crisp values are turned into fuzzy sets. This is usually
done by interpreting the crisp value as a singleton fuzzy set. Nevertheless, other methods, such as
using a triangular shaped membership function centered around the crisp value with a specified width
value, can also be used.

After the inputs have been successfully fuzzified on the fuzzifier block, a knowledge based inference
(e.g. the previously discussed mamdani inference) is used to generate an output fuzzy set 𝐵′ from the
existing rule set 𝑅 and the fuzzified input 𝐴′. Once 𝐵′ is obtained, it needs to be transformed back into
a crisp value since the control input 𝑢 must also be a crisp value. In order to achieve this, a process of
defuzzification, represented by the defuzzifier block is implemented. Similarly to fuzzification, there are
several defuzzification processes, with the ones more frequently used being Mean of Maxima (MOM)
and Center of Gravity (COG), represented in Figure 3.5 to obtain the defuzzified value and control input
𝑦′ [17].

Following the defuzzication process, the controller output is then sent to the system’s actuators.

3.2.2. Takagi­Sugeno Controller
The Takagi­Sugeno (TS) controller (often referred to as Takag­Sugeno­Kang (TSK)) was first introduced
in 1985 by T. Takagi and M. Sugeno in [37] and it works very similarly to the Mandami controller. The

3.2. Fuzzy Logic Controllers 61

Figure 3.5: Illustration COG (a) and MOM (b) defuzzification methods [28]

main difference consists on how the fuzzy rule consequents are defined. Instead of using a linguistic
term to describe the output, 𝑦, it is defined by an analytical expression based on the inputs, f𝑖(𝑥).
Consequently, a generic rule 𝑅𝑖 is defined as:

𝑅𝑖 ∶ If 𝑥 𝑖𝑠 𝐴𝑖 then 𝑦𝑖 = f𝑖(𝑥) 𝑖 = 1, 2, ... 𝐾 (3.7)
where f𝑖(𝑥) is typically either a constant (Zero Order TS controller) or a linear combination of the inputs
(First Order TS controller).

The output of a controller with 𝐾 rules is computed by taking the average of all outputs 𝑦 weighted
by each rule’s membership degrees, according to:

𝑦 =
∑𝐾𝑖=1 𝜇𝑅𝑖𝑦𝑖
∑𝐾𝑖=1 𝜇𝑅𝑖

(3.8)

The previous consequent format enables a more precise definition of the output computational pro­
cess, f𝑖(𝑥), when compared to the standardmamdani controller. This property can be particularly useful
when the desired expressions for f𝑖(𝑥) are known for each linguistic term expressed in the antecedent.
In other words, it is convenient when the controller’s desired behaviour for each input interval is well
known, resulting in a more accurate control over the process. Furthermore, the TS controller, unlike
the more general mamdani controller, does not need to go through a defuzzification process, as the
output 𝑦 is already a crisp value instead of a fuzzy set. Overall, this controller format is less intuitive in
comparison with its generic mamdani variant but, on the other hand, it enables users to implement on
the controller more detailed knowledge regarding the process, though f𝑖(𝑥).

3.2.3. Advantages of FLC
Through the implementation of fuzzy rules in a fuzzy logic controller, expert apriori knowledge can
be implemented into the system. This property is responsible for the humanlike behaviour of any
KBC, since humans controllers, unlike the standard automatic controllers such as PIDs, do not require
mathematical models nor exact trajectories to control any given process. Instead, controllers tend to
follow a fixed set of rules learned either through hands­on experience or through extensive study on
the matter at hand. Consequently, this ability to resemble human decision making often makes KBCs
(including FLCs) the most suitable control method when replacing a human operator. Nonetheless,
the fact that FLCs tend function similarly to a human operator implies that, in certain scenarios, their
performance may not be as exact as that exhibited by a controller with access to a perfect mathematical
model of the system.

Furthermore, these controllers are more intuitive than the traditional control approach, whose per­
formance highly relies on tuning gain values that usually do not hold any meaning with respect to the
process at hand.

In addition to being simpler and more humanlike, FLCs do not require the process’ mathematical
model, which is often difficult to obtain, depending on the process’ inherent complexity. Alternatively,
by defining simple knowledge based rules dictating how the controller should act in each situation de­
scribed by user­defined linguistic terms, a satisfactory performance can be easily obtained. Nonethe­
less, it should also be stated some a priori knowledge is in fact needed, meaning that FLCs might not
be the most suitable approach for an unknown process.

62 3. State of the Art Control Methods

Lastly, the fact that these controllers are not associated with a mathematical model makes them
more effective when dealing with time variant non­linear processes. In such cases, by definition, the
processes’ model changes in time, preventing a classical PID controller from working. This property is
considered to be one of the most valuable properties associated with the use of an FLC.

The previous considerations over the advantages and disadvantages of using FLCs are summarized
below, in Table 3.1.

Advantages of FLCs Disadvantages of FLCs

• Easy to implement knowledge into the system

• Exhibits humanlike behaviour

• Intuitive fuzzy rule approach

• No mathematical model needed

• Efficiently dealing with nonlinearities

• A priori system knowledge needed for fuzzy rules

• Not adequate for high precision tasks

Table 3.1: Listing of main advantages and disadvantages associated with Fuzzy Logic Control

3.3. Adaptive Controllers

Not all processes can be sufficiently well­controlled using controllers with a fixed set of parameters,
where most FLCs and PID controllers are included. In order to address this issue, a different type
of approach was developed. In an adaptive controller, its inherent parameters are tuned online, that
is, while interacting with the process, in order maintain the required performance despite unforeseen
changes in the external conditions [1]. As Astrom mentions in his paper ”Theory and Application of
Adaptive Control” [2], the concept of adaptive control is not particularly new, as it was first introduced
in the 1950s. Since then, several optimization algorithms for adaptive controllers were developed, in
other words, algorithms devised to continuously change the controller parameters (e.g. the propor­
tional, derivative or integral gains in case of a PID controller). In particular, gain scheduling, model
reference adaptive systems and, lastly, self­tuning controllers are thoroughly described in the previ­
ously mentioned article and are be briefly addressed next.

3.3.1. Gain Scheduling
The first of the three adaptive control schemes presented by Astrom in [2] is the gain scheduling ap­
proach. This method relied on the premise that in certain cases it is possible to find auxiliary variables
which correlate well with the changes in the process’ dynamics, i.e. with variations in the process’s
parameters. After identifying such variables, it becomes possible to reduce the effects caused by pa­
rameter variations by changing the parameters of the controller (which is referred to as regulator in
[2]) as functions of the auxiliary variables. The name gain scheduling refers to the fact that this adap­
tive approach was originally used to change the gain of the controller implemented. Furthermore, this
adaptive method is depicted in the form of a block diagram in Figure 3.6

Figure 3.6: Block diagram illustrating the Gain Schedule adaptive method

3.3. Adaptive Controllers 63

In the previous block diagram, 𝑢c represents the system reference, 𝑢 the control input, and 𝑦 the
process output.

Although gain scheduling presents an effective adaptive method, its main drawback consists in
finding suitable scheduling variables. As mentioned by Astrom in [2], this search process is not always
simple and it heavily relies on the physics of the considered system.

3.3.2. Model Reference Adaptive Systems
The second adaptive approach described by Astrom in [2] consists in Model Reference Adaptive Sys­
tem (MRAS) and is shown in Figure 3.7. In this case, the diagram involves developing a process model
which computes how the process output should ideally respond to a given input 𝑢. This ideal output
is represented as 𝑦𝑀. Additionally, it should be noticed that the reference model is part of the control
system. Consequently, the controller can be thought of as consisting of two loops: the inner and outer
loops. Concerning the inner loop, it is an ordinary control loop composed of the process and the con­
troller. The parameters of the controller are adjusted by the outer loop, in such a way that the error 𝑒,
between the model output, 𝑦m, and the process output, 𝑦, becomes small. The outer loop is thus also
a regulator loop.

Regarding the controller’s parameter adjustment mechanism, which is responsible for maintaining
system stability while bringing the error, 𝑒, to 0, the so­called ’MIT­rule’, presented in (3.9) was used.

𝑑𝜃
𝑑𝑡 = 𝑐𝑒∇𝜃𝑒 (3.9)

In (3.9), the components of the vector 𝜃 denote the adjustable controller parameters, that is, the
values which are continuously adjusted by the outer control loop. Furthermore, the components of the
vector ∇𝜃𝑒 are the sensitivity derivatives (i.e. gradient) of the error with respect to the set adjustable
parameters 𝜃. The sensitivity derivatives can be generated as outputs of a linear system driven by
process inputs and outputs. Lastly, 𝑐 is a parameter which determines the adaptation rate.

Themain assumption behind this algorithm consist in supposing that the parameters 𝜃 changemuch
slower than the remaining system variables. Additionally, it is expected that in order to minimize the
squared error, 𝑒2, the controller’s parameters should change in the direction of negative gradient of 𝑒2.
Thus, (3.9) can be rewritten as:

𝜃(𝑡) = −𝑐∫
𝑡

𝑡0
𝑒(𝑠)∇𝜃𝑒(𝑠)𝑑𝑠 (3.10)

The previous equation (3.10) shows that the adjustment mechanism can be thought of as composed
of three parts: a linear filter for computing the sensitivity derivatives from process inputs and outputs
(∇𝜃𝑒), a multiplier and an integrator.

The MRAS adaptive control system is known for delivering good performance as long as the adap­
tation rate, 𝑐, is small, as stated in [2]. The allowable magnitude for 𝑐 differs in each case, depending on
the magnitude of the reference signal. Therefore, it is not possible to give fixed limits which guarantee
system stability, meaning that the MIT­rule can thus give an unstable closed­loop system. It should
additionally be noted that just as is the case with gain tuning, in order to use MRAS effectively, a signif­
icant amount of information on the system must be known. This knowledge is represented in the block
diagram in Figure 3.7 within the model block, which must output fairly accurate results in order for the
adaptive algorithm to work.

3.3.3. Self­tuning Controller
A third adaptive control approach is mentioned by Astrom in [2]. This method is known as the self­
tuning regulator (or Self­Tuning Controller, STC) and is represented as the block diagram in Figure
3.8. Just as is the case with the MRAS, this approach can be thought of as being composed of two
loops: an inner loop and an outer loop. The inner loop consists of the process and an ordinary linear
feedback controller. The parameters of the controller are adjusted by the outer loop, which is composed
of a recursive parameter estimator and a design regulator. Additionally, in order to obtain realistic
estimates, stochastic perturbation signals are often used within the parameter estimator block. This
function, however, is not shown in Figure 3.8 in order to maintain simplicity.

64 3. State of the Art Control Methods

Furthermore, it should be noted that the block named ”regulator design” represents an on­line so­
lution to a design problem for a system with known parameters that have been previously estimated
by the parameter estimator block. Naturally, in order to design the contents of this block, the desired
values of the controller’s parameters need to be stipulated (either throughmathematical models or func­
tions, or through the use of fuzzy logic) for each set of process parameters that are estimated. This
implies that, similarly to the gain scheduling and MRAS methods, the STC approach also assumes that
the process that is being controlled is fairly well­known.

Concerning the recursive parameter estimator block, many different estimation schemes have been
used, such as stochastic approximation, least squares, extended and generalized least squares, in­
strumental variables, extended Kalman filtering, etc.

Due to not imposing any restrictions on the methods used in both the parameter estimation phase
and the controller design phase, this method is regarded as a highly flexible method. Additionally, it is
considered fairly easy to understand, allows designing a personalized approach for each case and can
be smoothly implemented into a microprocessor.

Regarding the relation between the STC and the MRAS, it is considered that these two approaches
focus on developing different kinds of control systems for different kinds of processes. Whereas the
MRAS was originally obtained by considering a deterministic servo problem, the STC considers a
stochastic regulation problem. Nonetheless, by comparing the schemes depicted in Figure 3.7 and
Figure 3.8 it is clear that these two approaches are closely related. Both systems present two feed­
back loops, with the inner loop being a standard feedback loop containing simply the process and the
controller. Additionally, in both methods, the controller presents adjustable parameters which are set by
the outer loop, with the adjustments being based on the feedback from the process’ inputs and outputs.
Overall, both require significant knowledge regarding the process at hand. However, even if the two
approaches are similar, the STC approach is considered to be more adequate due to its higher degree
of flexibility (no fixed algorithm) and ability to incorporate noise into the process, which is considered
to be more realistic.

Figure 3.7: Block Diagram illustrating a Model Refer-
ence Adaptive System

Figure 3.8: Block Diagram Illustrating the Self-Tuning
Controller approach [2]

3.3.4. Advantages of Adaptive Control
By using an adaptive control approach, the scope of scenarios where controller performance is ade­
quate increases. This increase is justified by the fact that the controller continuously adapts its param­
eters in order to match the changes in the process. Consequently, if there are significant disparities in
the process parameters in time caused by varying external conditions (i.e. according to the traditional
control theory, the poles of the system move), the controller remains tuned. Naturally, this leads to
maintaining an adequate performance in a broader range of situations.

3.4. Fuzzy Logic Adaptive Controllers
So far, the main benefits of both fuzzy logic control and adaptive control have been discussed. In order
to integrate the advantages of using an adaptive controller to those associated with an FLC, the two
controller concepts can be combined. Merging these two concepts results in a KBC centered on fuzzy
rules and fuzzy logic (thus an FLC) that is additionally able to update (or adapt) its fuzzy rule­base
while being used (thus an adaptive controller). The resulting controller is referred to as a Fuzzy Logic
Adaptive Controller (FLAC). This controller incorporates an adaptive controller’s increased performance

3.5. Reinforcement Learning 65

while retaining FLC’s simplicity and ease in implementing knowledge into the system, without the need
for an accurate process model.

In the previous Section 3.3, a PID with adjustable proportional, derivative and integral gains was
mentioned as an example of an adaptive controller. This classical type of controller is mainly charac­
terized by the previous three gains, meaning that identifying the parameters which are continuously
adjusted is rather simple. However, when dealing with an FLC, characterized by a set of linguistic
terms, membership functions and rules, selecting the variables (or values) which are continually tuned
is not as straightforward. This problem is particularly significant when considering FLCs with a high
number of inputs and rules, which implies the existence of hundreds of membership functions. In such
cases, due to each membership function being defined by at least two parameters (Figure 3.3), the
number of adjustable variables could reach several thousands, even when considering a static number
of rules. In case the number of rules is allowed to vary, along with the number and type of connectives
(such as the ”and” or ”or”), the number of adjustable parameters only further increases.

Taking into account the number of adjustable parameters in the controller, two distinct scenarios
regarding FLACs are described. Firstly, a simpler case is considered, where the fuzzy rule set is small,
resulting in a small number of linguistic terms and input variables, together with a reduced and fixed
set of rules, ℛ. Additionally, it is assumed that there is a mathematical model of the process available
and the process itself is sufficiently well­known. In this situation, the number of adjustable parameters,
consisting on membership function parameters (e.g. standard deviation in case of a gaussian mem­
bership function), is significantly reduced. Due to this reduced number of adjustable parameters, an
adaptive strategy similar to the ones presented in Section 3.3 is expected to yield good results. This
can happen due to two reasons: either there is a good correlation between the set of adjustable param­
eters and some of the system variables, which would justify using a gain scheduling approach; or, as
an alternative, in case the process is sufficiently well­known and the mathematical model is accurate
enough, both the MRAS and STC are expected to yield good results. Overall, in this scenario, it is
considered that the previous approach would result in a fairly effective controller, although potentially
lacking in case high precision outputs are required.

The second situation considered for FLAC implementation concerns a more complex system (or
process) where no mathematical model is available. Additionally, in this scenario, a controller with
higher precision is required. As was previously mentioned, the adaptive approaches explored so far
require a priori knowledge regarding the process at hand, either through the existence of a model or
through the existence of known correlations between process variables and adjustable parameters.
Consequently, when little is known about the system, implementing adaptive approaches such as gain
scheduling, MRAS or STC stops being a viable approach. Moreover, the requirement of increased
precision in a fuzzy controller leads to an increased complexity when developing the fuzzy rule­sets.
This, in turn, results in an increasing set of adjustable controller parameters, subsequently increasing
the overall controller complexity.

In order to implement an FLAC in the second scenario, new types of adaptive algorithms must be
considered. Ideally, these alternative adaptive state of the art techniques would be able to interactively
learn from the external unknown environment, as well as be capable of accurately tuning a wider range
of adjustable controller parameters. Therefore, in the following sections, three algorithms that allow
interactively learning from either the external environment or available data are introduced. These are
Artificial Neural Networks (ANNs), Reinforcement Learning (RL) and Deep Reinforcement Learning
(DRL).

3.5. Reinforcement Learning

As defined by Sutton and Barto in ”Reinforcement Learning: An Introduction” [36], Reinforcement learn­
ing consists in ”learning what to do ­ how to map situations to actions ­ so as to maximize a numerical
reward signal. The learner is not told which actions to take, but instead must discover which actions
yield the most reward by trying them. In the most interesting and challenging cases, actions may affect
not only the immediate reward but also the next situation and, through that, all subsequent rewards.”

66 3. State of the Art Control Methods

3.5.1. Markov Decision Processes
Markov decision processes (MDPs) are regarded as a straightforward framing of the problem of learning
from interactions to achieve a pre­defined goal. In an MDP the learner (i.e. decision maker) is called
the agent; the external conditions with which the agent interacts, including everything outside the agent,
are referred to as the environment. Due to the nature of these two concepts, they interact continually,
with the agent selecting an action, 𝑎, and the environment responding to these actions by presenting
a new situation to the agent, represented as a state, 𝑠. It should be pointed out that, in order to be
consistent with the notation used by most of the scientific community, in an RL context, the state will be
represented as 𝑠, whereas in a more comprehensive control related scenario (as was done so far), the
state vector is represented as 𝑥⃗. Additionally, the environment is responsible for rewarding the agent.
A reward, 𝑟 ∈ ℝ, is a numerical value that the agent seeks to maximize over time through its choice of
actions. These interactions are summarized in Figure 3.9.

Figure 3.9: Agent-environment interaction in an MDP

In a Markov Decision Process, the interactions between the agent and the environment rely on
discrete time steps, 𝑡. At each time step, the agent receives a representation of the environment’s
state, 𝑠𝑡 ∈ 𝑆, and takes that information into account to select an action, 𝑎𝑡 ∈ 𝐴(𝑠). Subsequently, in
the following time step, the agent receives a numerical reward 𝑟𝑡+1 ∈ ℝ and reaches an updated state
𝑠𝑡+1.

By definition, in a finite MDP, the sets of states, actions, and rewards (𝑆, 𝐴, and 𝑅) all have a
finite number of elements. Consequently, the random variables 𝑟𝑡 and 𝑠𝑡 have well defined discrete
probability distributions dependent only on the preceding state and action. This property is summarized
in (3.11) and (3.12) [36].

𝑝(𝑠′, 𝑟|𝑠, 𝑎) ∶= Pr{𝑠𝑡 = 𝑠′, 𝑟𝑡 = 𝑟|𝑠𝑡−1 = 𝑠, 𝑎𝑡−1 = 𝑎} (3.11)

∑
𝑠′∈𝑆

∑
𝑟∈𝑅

𝑝(𝑠′, 𝑟|𝑠, 𝑎) = 1, for all 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴(𝑠) (3.12)

where 𝑠′ ∈ 𝑆 represents any given state which can be achieved from the current state 𝑠 ∈ 𝑆.
In an MDP, the probabilities given by 𝑝 completely characterize the environment’s dynamics. That

is, the probability of each possible value for 𝑠𝑡 and 𝑟𝑡 depends only on the immediately preceding state
and action, 𝑠𝑡−1 and 𝑎𝑡−1, and, given them, not at all on earlier states and actions. This is best viewed
as a restriction not on the decision process, but on the state. The state must include information about
all aspects of the past agent­environment interaction that make a difference for the future. If it does,
then the state is said to have the Markov property [36].

3.5.2. Discounted Return
In RL, the agent’s goal is to maximize the total amount of reward it receives. This means maximizing
not immediate reward, but the expected value of the cumulative reward in the long run. In the simplest
case, this return is the sum of the rewards:

𝐺𝑡 = 𝑟𝑡+1 + 𝑟𝑡+2 + 𝑟𝑡+3 + ... + 𝑟𝑇 (3.13)

with 𝑇 denoting the final time step.

3.5. Reinforcement Learning 67

This approach is particularly useful when considering applications in which there is a natural notion
of final time step, that is, when the agent­environment interaction breaks naturally into subsequences,
named episodes. Consequently, each episode ends in a terminal state, followed by a reset to a standard
starting state or to a sample from a standard distribution of starting states. Tasks with episodes of this
kind are called episodic tasks. [36].

In contrast, it is also possible that the agent­environment interaction does not break naturally into
identifiable episodes, but goes on continually without limit. For instance, this would be the natural way
to formulate an on­going process­control task. These types of interactions are called continuing tasks.
In such cases, the return formulation (3.13) is problematic for continuing tasks because the final time
step would be 𝑇 = ∞, meaning the return could itself be infinite. To address this issue, the additional
concept of discounting is often used. In this approach, the agent tries to select actions so that the sum
of the discounted rewards it receives over the future is maximized. Consequently, the agent chooses
its action to maximize the expected discounted return [36]:

𝐺𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + ... =
∞

∑
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1 (3.14)

where 𝛾 represents the discount rate, with 0 ≤ 𝛾 ≤ 1.
The discount rate determines the present value of future rewards: a reward received 𝑘 steps in the

future is only worth 𝛾𝑘−1 times what it would be worth if it were received immediately. It should be noted
that, if 𝛾 < 1, the sum described in (3.14) presents a finite value as long as the reward sequence 𝑟𝐾 is
bounded. The magnitude of the discount rate is thus related to how farsighted the agent is. If 𝛾 = 0,
the agent is only concerned with maximizing the immediate rewards, whereas when 𝛾 approaches 1,
the return objective takes future rewards into account more strongly.

It should additionally be noted that from (3.14), it follows that returns in successive time steps are
related to each other according to:

𝐺𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + ... = 𝑟𝑡+1 + 𝛾𝐺𝑡+1 (3.15)

3.5.3. Policy and Value Function
A vast majority of reinforcement learning algorithms involves estimating value functions, that is, func­
tions of states (or of state­action pairs) responsible for estimating ”how good” it is for the agent to be
in a given state. Consequently, the value function relies on the expected return. Due to the expected
rewards depending on the agent’s actions, value functions are defined with respect to particular ways
of acting, called policies.

As defined by Sutton and Barto in [36], formally, a policy is a mapping from states to probabilities of
selecting each possible action. If the agent is following policy 𝜋 at time 𝑡, then 𝜋(𝑎|𝑠) is the probability
that 𝑎𝑡 = 𝑎 if 𝑠𝑡 = 𝑠.

The value function of a state 𝑠 under a policy 𝜋, denoted 𝑉𝜋(𝑠), is the expected return when starting
in s and following 𝜋 thereafter. For MDPs, this results in:

𝑉𝜋(𝑠) = 𝔼𝜋[𝐺𝑡|𝑠𝑡 = 𝑠] = 𝔼𝜋 [
∞

∑
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1| 𝑠𝑡 = 𝑠] , for all 𝑠 ∈ 𝑆 (3.16)

where 𝔼𝜋 represents the expected value of a random variable (in this case the expected reward) given
that the agent follows a policy 𝜋, and 𝑡 is any time step.

Similarly, the value of taking action 𝑎 in state 𝑠 under a policy 𝜋, denoted as 𝑄𝜋(𝑠, 𝑎), is defined as
the expected return starting from s, taking the action a, and thereafter following policy 𝜋:

𝑄𝜋(𝑠, 𝑎) = 𝔼𝜋[𝐺𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] = 𝔼𝜋 [
∞

∑
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1| 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (3.17)

where 𝑄𝜋 is called the action­value function for policy 𝜋.
The value functions 𝑉𝜋 and 𝑄𝜋 can be numerically evaluated from experience. Although there are

several methods of conducting the estimations (Monte Carlo methods, temporal difference methods,

68 3. State of the Art Control Methods

dynamic programming) the following Section 3.5.5 focuses on the temporal difference approach, par­
ticularly the Q­learning algorithm.

For finite MDPs, it is possible to define the concept of optimal policy, denoted as 𝜋∗, referring to a
policy that is better or equal than all other policies, 𝜋 w.r.t. the value function. A policy 𝜋 is considered
better or equal than another policy 𝜋′ if and only if 𝑉𝜋 ≥ 𝑉𝜋′ for all 𝑠 ∈ 𝑆. Although an optimal policy
is usually referred to as a single policy, it should be noted that there can be more than one. All the
optimal policies share the same realized value for the state­value function (denoted as optimal state­
value) and the same optimal realized values for the action­value function. The optimal state­value and
action value mappings (or functions in a continuous scenario) are respectively defined as:

𝑉∗(𝑠) =max
𝜋
𝑉𝜋(𝑠) for all 𝑠 ∈ 𝑆 (3.18)

𝑄∗(𝑠, 𝑎) =max
𝜋
𝑄𝜋(𝑠, 𝑎) for all 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴 (3.19)

Regarding the optimal action­value function, it represents the expected return for taking an action a
in state s and thereafter following the optimal policy. Taking in to account 3.16 and 3.17 and Bellman’s
principle of optimality [36], it can be written in terms of 𝑉∗ as:

𝑄∗(𝑠, 𝑎) = 𝔼[𝑟𝑡+1 + 𝛾𝑉∗(𝑠𝑡+1)|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (3.20)

In order to obtain 𝑉∗, the Bellman equation must be solved. This equation expresses a relationship
between the value of a state and the values of its successor states. In fact, it states that the value of
the start state must equal the (discounted) value of the expected next state, plus the reward expected
along the way. For the value function of a generic policy 𝜋, 𝑉𝜋, this equation is written as:

𝑉𝜋 =∑
𝑎
𝜋(𝑎|𝑠)∑

𝑠′
∑
𝑟
𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑉𝜋(𝑠′)], for all 𝑠 ∈ 𝑆 (3.21)

When concerning the optimal value function, 𝑉∗, the Bellman equation is referred to as the Bellman
optimality equation. Intuitively, this equation expresses the fact that the value of a state under an optimal
policy must equal the expected return for the best action from that state:

𝑉∗(𝑠) =max
𝑎
∑
𝑠′ ,𝑟
𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑉∗(𝑠′)] (3.22)

where, in this case, the double sum presented in (3.21) was condensed into a single sum for simplicity.
Similarly, the Bellman optimality equation for 𝑄∗ is defined as:

𝑄∗(𝑠, 𝑎) =∑
𝑠′ ,𝑟
𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾max

𝑎′
𝑄∗(𝑠′, 𝑎′)] (3.23)

As proven by Sutton and Barto in [36], for finite MDPs, the Bellman optimality equation for 𝑉∗ (3.22)
has a unique solution independent of the policy. Consequently, if the dynamics 𝑝 of the environment
are known, then, in principle, one can solve this system of equations for 𝑉∗. Furthermore, a similar set
of equations can be solved in order to obtain 𝑄∗. Once 𝑉∗ is known, the optimal policy can be found:
for each state 𝑠, there will be one or more actions at which the maximum is obtained in the Bellman
optimality equation. Any policy that assigns nonzero probability only to these actions is an optimal
policy.

Explicitly solving the Bellman optimality equation provides one route to finding an optimal policy, and
thus to solving the reinforcement learning problem. However, this solution is rarely useful. This is due to
this method relying on three assumptions that are rarely true: firstly, it assumes that we accurately know
the dynamics of the environment; secondly it takes for granted that we have enough computational
resources to complete the computation of the solution (which, depending on the dimension of the state­
space, may take years on state­of­the­art computers); and, lastly, it assumes the Markov property.

In order to address this issue, several methods of approximately finding a solution to the Bellman
optimality equation were created, with one of the most widely used being Q­learning.

3.5. Reinforcement Learning 69

3.5.4. Temporal Difference Learning
Temporal Difference (TD) methods focus on using experience to solve the prediction problem, in other
words, to estimate the state value function of a policy 𝜋, 𝑉𝜋(𝑠). The available estimate for 𝑉𝜋 is denoted
as 𝑉̂. The simplest TD method consists in updating the value function for an arbitrary state at time t,
𝑉̂(𝑠𝑡), according to:

𝑉̂(𝑠𝑡) ⟵ 𝑉̂(𝑠𝑡) + 𝛼 [𝑟𝑡+1 + 𝛾𝑉̂(𝑠𝑡+1) − 𝑉̂(𝑠𝑡)] (3.24)

where parameter 𝛼 is called learning rate, with 𝛼 ∈]0, 1]
From (3.24) it follows that each 𝑉̂(𝑠) is immediately updated at time step 𝑡 + 1, using the observed

reward 𝑟𝑡+1 and the estimate 𝑉̂(𝑠𝑡+1), which are weighted by the learning rate 𝛼 and the discount rate
𝛾. The TD method described by (3.24) can also be referred to as TD(0) method. Furthermore, because
TD(0) bases its update in part on an existing estimate, it is called a bootstrapping method.

Additionally, the amount added to a previously existing state­value 𝑉̂(𝑠𝑡) during updates is referred
to as the TD error, being defined as:

Δ𝑡 = 𝑟𝑡+1 + 𝛾𝑉̂(𝑠𝑡+1) − 𝑉̂(𝑠𝑡) (3.25)

In other words, Δ𝑡 is the error in 𝑉̂(𝑆), available at time 𝑡 + 1.
TD learning methods are seen as a combination of dynamic programmingmethods andMonte Carlo

methods, merging the main advantages of both. Consequently, TD methods are particularly prominent
in RL. The main advantages associated with using TD algorithms consist, firstly, in TD methods being
able to update estimates based in part on other learned estimates, without waiting for a final outcome.
This enables them to be implemented in an online, fully incremental fashion, with online meaning that
the agent learns by interacting with the process, as opposed to an offline learning approaches where
data is collected in advance. Secondly, like Monte Carlo methods, TD methods can learn directly from
raw experience without a model of the environment’s dynamics [36].

Regarding the soundness of the bootstraping concept, in other words, whether it can be mathemat­
ically assured that learning one guess from the next, without waiting for an actual outcome, guarantees
convergence to the correct answer, the answer yes. In fact, is has been proven that for any fixed pol­
icy 𝜋, TD(0) converges to 𝑉𝜋, in the mean for a constant step­size parameter (in this case, 𝛼) if it is
sufficiently small, and with probability 1 if the step­size parameter decreases according to the usual
stochastic approximation conditions expressed in 3.26 [36].

∞

∑
𝑛=1

𝛼𝑛(𝑎) = ∞ and
∞

∑
𝑛=1

𝛼2𝑛(𝑎) < ∞ (3.26)

where the first condition is required to guarantee that the steps are large enough to eventually overcome
any initial conditions or random fluctuations. The second condition guarantees that eventually the steps
become small enough to assure convergence.

Considering a case where an offline learning approach is taken, meaning there is only a finite
amount of experience available, a typical method consists in presenting the experience repeatedly
until the TD prediction algorithm converges upon an answer. This kind of approach, denoted as batch
updating, is compatible with the TD(0). In fact, under batch updating, TD(0) converges deterministically
to a single answer independent if the step­size parameter, 𝛼, as long as 𝛼 is chosen to be sufficiently
small. However it should be noted that the answer found by the TD(0) is not necessarily optimal, it all
depends on the amount and quality of the data presented [36].

3.5.5. Q­learning
Considering the use of TD prediction methods for the control problem at hand, several algorithms have
been developed, including SARSA and Q­learning. The current section addresses the latter.

In Q­learning (initially described by Watkins in [40]), the goal is to learn an action­value function
rather than a state­value function, according to:

𝑄̂(𝑠𝑡 , 𝑎𝑡) ⟵ 𝑄̂(𝑠𝑡 , 𝑎𝑡) + 𝛼 [𝑟𝑡+1 + 𝛾max
𝑎
𝑄̂(𝑠𝑡+1, 𝑎) − 𝑄̂(𝑠𝑡 , 𝑎𝑡)] (3.27)

70 3. State of the Art Control Methods

It should be noticed that, in Q­learning, the learned action­value function, 𝑄̂(𝑠𝑡 , 𝑎𝑡), directly ap­
proximates 𝑄∗, the optimal action­value function, regardless of the policy being followed. This trait is
responsible for Q­learning being considered an off­policy method. In contrast, methods where 𝑄𝜋(𝑠, 𝑎)
is estimated for the current behavior policy 𝜋 and for all states 𝑠 and actions 𝑎 are designated as
on­policy methods (e.g. SARSA).

The fact that the𝑄∗ can be obtained regardless of the policy being followed by the agent dramatically
simplifies the analysis of the algorithm, enabling early convergence proofs, as suggested by Sutton in
[36]. Furthermore, it should be taken into consideration that although the state­value function of the
policy the agent follows is not particularly relevant, this policy still has an effect in that it determines
which state­action pairs are visited and updated. In order for the algorithm to converge, it is necessary
for all state action pairs to be continually updated. The previous condition is considered a minimal
requirement in the sense that any method guaranteed to find optimal behavior in the general case
must require it.

Thus, one of the challenges inherent tomost reinforcement learning algorithms, includingQ­learning,
is the trade­off between exploration and exploitation. The dilemma is that neither exploration nor ex­
ploitation can be pursued exclusively without failing at the task. This means that the agent must try a
variety of actions and explore the state­action space (exploration), while progressively favor those that
appear to be best in order to ensure a fast convergence (exploitation). In short, if a policy explores too
much, it may take a significant amount of time and computational power to converge and if it explores
too little, the algorithm may not find the optimal answer.

Nonetheless, assuming that the agent sufficiently explores the environment and a variant of the
usual stochastic approximation conditions on the sequence of step­size parameters (expressed in
(3.26)), 𝑄̂ has been shown to converge with probability 1 to 𝑄∗. The Q­learning algorithm is summarized
below in a procedural form.

Algorithm 1: Q-learning for estimating 𝜋 ≈ 𝜋∗
Algorithm parameters: step size 𝛼 ∈ (0, 1], small 𝜖 > 0 ;
Initialize 𝑄̂(𝑠, 𝑎) for all 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴, arbitrarily except that 𝑄̂(terminal,.) = 0;
for each episode do

Initialize 𝑠0;
for each step of episode do

Choose 𝑎 from 𝐴 using policy derived from 𝑄 (e.g. 𝜖­greedy)
Take action 𝑎, observe 𝑟, 𝑠𝑡+1
𝑄̂(𝑠, 𝑎) ⟵ 𝑄̂(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾max

𝑎
𝑄̂(𝑠𝑡+1, 𝑎) − 𝑄̂(𝑠, 𝑎)]

𝑠 ⟵ 𝑠𝑡+1
if s is terminal then
break;

end
end

end

3.6. Artificial Neural Networks

Artificial neural networks are widely used for nonlinear function (or system) approximation. As defined
by A. Barto and R. Sutton in [36], an ANN is a network of interconnected units that have some of the
properties of neurons, the main components of nervous systems. Although having a long story, it was
only recently, with the recent advances in training deeply layered ANNs (deep learning) that this concept
became responsible for some of the most impressive abilities of Machine Learning (ML) systems, in
particular RL systems, discussed in Section 3.5.

In Figure 3.10, a generic feedforward ANN is represented. In this case, feedforward means that
there are no paths within the network by which a unit output can influence its own input. In contrast, if
an ANN has at least one loop in its connections, it is considered a recurrent rather than a feedforward
ANN. It can be seen that the represented ANN, exhibits four inputs, represented as 𝑥𝑖 , 𝑖 ∈ {1, 2, 3, 4}

3.6. Artificial Neural Networks 71

Figure 3.10: Feedforward ANN with four input units, two output units and two hidden layers [36]

and two outputs, 𝑦𝑗 , 𝑗 ∈ {1, 2}. Furthermore, the illustrated network presents four layers: an input layer,
an output layer and two hidden layers, with a hidden layer being defined as any layer between the input
and the output layers. A real value weight, 𝑤, is associated with each link, represented in the figure as
an arrow, with its value corresponding to the efficacy of a synaptic connection in a real neural network.

The unit circles represented in Figure 3.10 are semi­linear units, meaning that they compute the
weighted sum of their respective inputs and subsequently apply a nonlinear function to the resulting
value. This function is named the activation function, and produces the unit’s output, or activation.
Furthermore, it is also common in ANN for each unit to add a specific bias, 𝑏, to the result of the weighted
sum before computing its respective output through the activation function. Similarly to weights, biases
also represent adjustable real values. A variety of different activation functions can be used, however,
these are typically either S­shaped functions, such as the sigmoid function, defined as 𝑓(𝑥) = (1 +
𝑒−𝑥)−1, or the rectified linear unit (ReLU) function, defined as 𝑓(𝑥) = max{0, 𝑥}. These functions are
graphically illustrated in Figure 3.11 and Figure 3.12, respectively.

6 4 2 0 2 4 6
x

0.0

0.2

0.4

0.6

0.8

1.0

f(x
)

Sigmoid Activation Function

Figure 3.11: Graphical representation of the Sigmoid
activation function

6 4 2 0 2 4 6
x

0

1

2

3

4

5

6

f(x
)

ReLU Activation Function

Figure 3.12: Graphical representation of the ReLU ac-
tivation function

As referred by Barto in [36], the activation of each output unit of a feedforward ANN is thus ultimately
a nonlinear function of the activation patterns over the network’s input units. Furthermore, it should be
noticed that an ANN with no hidden layers can only represent a very small fraction of the possible
input­output functions. Nonetheless, in [9], Cybenko proved that an ANN with a single hidden layer
containing a large enough finite number of sigmoid units can approximate any continuous function on
a compact region of the network’s input space to any degree of accuracy. The previous property is
also valid for other nonlinear activation functions that satisfy mild conditions, with non­linearity being

72 3. State of the Art Control Methods

essential.
The so­called ”universal approximation” property of ANNs with one hidden layer does not guaran­

tee that restricting ANN to one hidden layer is the optimal approach. In fact, as described in [4], both
experience and theory show that approximating the complex functions needed for many artificial intel­
ligence tasks is made easier (and indeed may require) abstractions that are hierarchical compositions
of many layers of lower­level abstractions, that is, abstractions produced by deep architectures such
as ANNs with many hidden layers. The successive layers of a deep ANN can be interpreted as a way
to compute increasingly abstract representations of the network’s “raw” input, with each unit providing
a feature contributing to a hierarchical representation of the overall input­output function of the network
[36].

3.6.1. Artificial Neural Network Training: Gradient Descent Approaches
So far, ANNs have been presented as having great potential as tools to model nonlinear functions and
systems. Nonetheless, the issue of how an ANN is tuned to accurately represent a given system has
not been addressed, yet. Over the years, several algorithms have been developed to tune ANN, with
most of them relying on gradient descent approaches (similar to the MIT­rule in Section 3.3.2). The
general traits of this approach are now briefly introduced.

Firstly, it should be considered that training the hidden layers of an ANN can be interpreted as a
way to automatically create features appropriate for a given problem ”so that hierarchical representa­
tions can be produced without relying exclusively on hand­crafted features” [36]. In order to achieve
this degree of customization, the ANN’s parameters must be tuned to match given scenarios. These
parameters consist in the weights and biases of the ANN.

In gradient­descent methods, the weight vector is a column vector with a fixed number of real valued
components, 𝑑, 𝑤⃗ = (𝑤1, 𝑤2, ..., 𝑤𝑑)⊤, and the function that the network attempts to approximate is
differentiable with respect to 𝑤⃗ for all 𝑛 states (or inputs) 𝑥⃗ = (𝑥1, 𝑥2, ..., 𝑥𝑛)⊤. In order to introduce
the basic premise of deep reinforcement learning, described in detail in Section 3.7, let us assume
that the function outputed by the ANN is the value function of a certain policy 𝜋, 𝑉𝜋(𝑥⃗, 𝑤⃗). Through
the successive iterations of the gradient­descent method, 𝑤⃗ is updated at each of a series of discrete
time steps, 𝑡 = 0, 1, 2, ... in case of online learning. Alternatively, in case of offline learning, the iterative
process makes use of available training data.

From an offline learning perspective, firstly, a cost function represented by 𝐽 is defined, that is,
the function that the ANN attempts to minimize. Although there are several alternatives, the (mean)
squared error (MSE) is often used:

𝐽(𝑤⃗) = 1
2(𝑉𝜋𝑖(𝑥⃗) − 𝑉̂𝜋𝑖(𝑥⃗, 𝑤⃗))

2 (3.28)

where 𝑉̂𝜋𝑖(𝑥⃗, 𝑤⃗) is the estimate provided by the ANN for a piece of training data labeled with the target
value, 𝑉𝜋𝑖(𝑥⃗).

In order to minimize the error, the gradient of the cost function J with regard to the weight vector 𝑤⃗ is
computed for a certain training input. By definition, ∇𝐽(𝑤⃗) is a vector containing the partial derivatives
of J with respect to each weight 𝑤𝑖.

∇𝐽(𝑤⃗) = (𝜕𝐽(𝑤⃗)𝜕𝑤1
, 𝜕𝐽(𝑤⃗)𝜕𝑤2

, ... , 𝜕𝐽(𝑤⃗)𝜕𝑤𝑑
)
⊤

(3.29)

After computing ∇𝐽(𝑤⃗) by using the chain rule, the weights can be adjusted following (3.30). Nat­
urally, computing all the partial derivatives that constitute takes into account the ANN’s architecture
(e.g. number of hidden layers, number of neurons and connections between them) and properties
(e.g. activation funtions).

𝑤𝑘+1 = 𝑤𝑘 − 𝛼𝑛∇𝐽(𝑤𝑘) (3.30)

where 𝛼 is the algorithm’s learning rate or step size and 𝑘 ∈ ℕ represents the iteration number.
The weight update condition expressed in (3.30) is responsible for the method being referenced

as ”gradient descent”, since the overall increment in 𝑤𝑘 is proportional to the negative gradient of
the example’s squared error. This is, by definition, the direction in which the error falls most rapidly.

3.7. Deep Reinforcement Learning 73

Furthermore, it should be noted that in some variations of the gradient descent method may include
additional parameters used to decrease computational effort until convergence or increase the algo­
rithm’s stability. Such is the case of using momentum techniques (i.e. increasing step size in case the
weights continually change in the same direction) or RMSProp (i.e. decreasing the step size over time,
particularly when gradients are large).

When referring to offline learning, where a significant amount of data is available, a variant of the
gradient descent method is typically used. In order to take into account the content of the whole avail­
able dataset when computing the gradient ∇𝐽(𝑤⃗), instead of computing it sample­by­sample (using the
previous equations) an estimate of the gradient of the whole data set is computed. In such cases,
gradient descent methods are called “stochastic” as the gradient computation is done using a subset of
data which has been selected stochastically from the total available data. By only selecting a random
amount of data (called a batch) when computing an estimate for the gradient of the whole data set,
computational effort is reduced and convergence is accelerated.

In this last scenario, the batch error is defined as:

𝐽 = 1
𝐾

𝐾

∑
𝑖=0

1
2(𝑉𝜋𝑖(𝑥⃗) − 𝑉̂𝜋𝑖(𝑥⃗, 𝑤⃗))

2 (3.31)

with 𝐾 being the total amount of samples in a batch (also referred to as batch size).
Furthermore, for the stochastic gradient descent method, the batch gradient, used to update the

weights as expressed in (3.30) is given by the average of the 𝐾 gradients computed for each sample,
according to (3.29). This results in:

∇𝐽(𝑤⃗) = 1
𝐾

𝐾

∑
𝑖=0
∇𝐽(𝑤⃗)|𝑉𝜋𝑖 (3.32)

Lastly, it should be noted that although biases were not introduced in the previous equations, these
may be present in the ANN used. Nonetheless, in such cases, the procedure for tuning the ANN is
identical. In such occasions, the adjustable parameters vector, 𝑤⃗, should contain both the weights and
the biases inherent to the ANN architecture. Consequently this leads the gradients taking into account
the partial derivatives with respect to the biases in addition to the partial derivatives with respect to the
weights.

3.7. Deep Reinforcement Learning

In the previous Sections 3.5 and 3.6, the concepts of ANN and RL were introduced. Both of these
methods enable interactively learning from a given process. Concerning ANNs, these can model most
processes, even those that are highly non­linear, provided that a large enough data set containing la­
beled data is provided. Due to the need for large amounts of input­output labelled pairs as data, ANNs
are considered an example of supervised learning. RL­based algorithms learn by continuously inter­
acting with the external environment until a course of action (policy) which maximizes the discounted
expected reward is found.

In light of this, it can be seen that the scopes of RL and ANNs address different scopes of a given
problem. For instance, putting it in terms of a standard RL problem, an ANN is responsible for modelling
the environment, while RL is used to determine the best course of action in it.

The concepts of ANN and RL can be combined, resulting in deep reinforcement learning. Overall,
DRL is a more comprehensive concept that includes the implementation of ANNs as function estima­
tors (e.g. using an ANN to estimate the value function of a given policy, 𝑉𝜋). These estimators are
subsequently combined with a given RL algorithm similar to the ones mentioned in Section 3.5.5 to find
the optimal policy, 𝜋.

In addition to being a more comprehensive approach, DRL also presents itself as an answer to
some of the problems inherent to classical RL strategies, in particular, the need for discretizing the
state­action space. In Section 3.5, MDPs were introduced and associated with TD methods (e.g. Q­
learning). Consequently, the TD methods explored so far assume a finite and discretized state action

74 3. State of the Art Control Methods

space in order to operate. However, in most control problems, this assumption is not realistic, espe­
cially when considering complex control problems, where states and actions are continuous. Therefore,
in such cases, implementing algorithms as traditional Q­learning would require discretizing the prob­
lem, yielding enormous state­actions tables (also referred to as Q­tables) where the Q­values for each
individual discretized state­action pair are stored. Naturally, the high dimensionality (associated with
required precision or simply with a large number of states and actions) would make the process com­
putationally too expensive to fully explore the state action­space, meaning it would be impossible to
find the optimal policy, 𝜋∗.

Deep reinforcement learning addresses this issue by proposing RL algorithms which can be applied
to continuous state­action spaces, as is the case of the actor­critic method, which is explored in Section
3.7.1.

3.7.1. Actor­Critic Methods
Actor­critic RL methods have been introduced to deal with continuous state and continuous action
spaces. In actor­critic methods, the value function and the policy are separated. The value function is
represented by a unit called the critic, whereas the policy is represented by the actor unit. Usually both
of these units consist in ANNs. The role of the critic is to predict the outcome of a particular control
action in a given state of the process [36].

The control policy is represented separately from the critic and is adapted by comparing the reward
actually received to the one predicted by the critic. A block diagram of a classical actor­critic scheme,
which was first introduced by Barto et al. in [3], is depicted in Figure 3.13.

Figure 3.13: Actor-Critic learning scheme [28]

In addition to the external process, Figure 3.13 showcases three blocks which are the essence of
the actor­critic approach: the reward block, the critic and the actor.

Regarding the reward block, it is responsible for providing the reward function to the system for
each discrete time­step 𝑡, 𝑟𝑡. The reward function is also called the external reinforcement.

Concerning the critic module, its task is to predict the expected future reinforcement 𝑟 that the agent
will receive for being in the current state and following the current control policy, 𝜋. In other words, the
critic is trained to predict the future value function 𝑉𝜋(𝑠𝑡) for the current state 𝑠𝑡. This prediction is
then used to obtain a more informative signal, called the internal reinforcement, which is involved in
the adaptation of the critic and the actor, by changing in the current policy. Due to changes in the
behavioural policy followed by the agent, and the subsequent computation of the value function for
each policy attempted, this method is an on­policy algorithm [36].

Denoting as 𝑉̂𝜋(𝑠𝑡) the predictor of 𝑉𝜋(𝑠𝑡), the adaptation law for the critic can be simply derived by
writing 𝑉𝜋(𝑠𝑡) as follows:

𝑉𝜋(𝑠𝑡) =
∞

∑
𝑛=0

𝛾𝑛𝑟𝑡+𝑛+1 = 𝑟𝑡+1 + 𝛾𝑉(𝑠𝑡+1) (3.33)

In order to train the critic, the prediction error at discrete time step 𝑡, denoted as Δ𝑡 = 𝑉𝜋(𝑠𝑡)−𝑉̂𝜋(𝑠𝑡)
is computed. Although the true value function is unknown, it can be approximated by replacing 𝑉𝜋(𝑠𝑡)
in (3.33) by its predictor, 𝑉̂𝜋(𝑠𝑡), yielding the following estimate of the prediction error:

Δ𝑡 = 𝑉𝜋(𝑠𝑡) − 𝑉̂𝜋(𝑠𝑡) = 𝑟𝑡+1 + 𝛾𝑉̂𝜋(𝑠𝑡+1) − 𝑉̂𝜋(𝑠𝑡) (3.34)

3.8. Examples of State of the Art Controllers 75

Since Δ𝑡 is computed using two consecutive estimate values, the actor­critic method is considered
a temporal difference method. It should additionally noted that both predictions 𝑉̂𝜋(𝑠𝑡) and 𝑉̂𝜋(𝑠𝑡+1) are
known at time 𝑡 + 1, since 𝑉̂𝜋(𝑠𝑡+1) is a prediction obtained for the current process state.

After being computed, the temporal difference error, Δ𝑡, serves as the previously mentioned internal
reinforcement signal and is used to adapt the critic. Since the critic consists in an ANN, its prediction
𝑉̂𝜋(𝑠𝑡+1) can also be represented as 𝑉̂𝜋(𝑠𝑡+1, 𝜃𝑡), where 𝜃𝑡 represents a vector of adjustable parameters
(i.e. weights and biases). To update 𝜃𝑡, a gradient­descent learning rule (Section 3.6.1) is applied,
resulting in:

𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑐Δ𝑡
𝜕𝑉̂𝜋(𝑠𝑡 , 𝜃𝑡)
𝜕𝜃𝑡

(3.35)

where 𝛼𝑐 is the critic’s learning rate.
Moreover, it is worth noticing that the expression obtained in (3.35) is obtained from (3.30) when

considering a squared error (or cost) of 𝐽 = 1
2Δ

2
𝑡 . Directly applying the chain rule on the error’s derivative

with respect to a given adjustable parameter (𝜕𝐽𝜕𝜃𝑡 =
𝜕𝐽
𝜕Δ𝑡

𝜕Δ𝑡
𝑉̂𝜋

𝜕𝑉̂𝜋
𝜕𝜃𝑡

) results in the gradient vector being
multiplied not only by the learning rate but also by the prediction error, Δ𝑡. Consequently, the bigger
the prediction error, the bigger the correction applied to the adjustable parameters vector.

Regarding the actor module, it represents the policy 𝜋 being followed at a given time. This block
updates itself in accordance with the internal reinforcement provided by the critic. Consequently, while
the critic is trained to predict the future system’s performance (the value function), the actor (i.e., the
policy) can be adapted in order to establish an optimal mapping between the system states and the
control actions. This adaptation is done using the same Δ𝑡, as defined in (3.34).

The adaptation process can be summarized as follows: given a certain state 𝑠𝑡, the control action
𝑎𝜋𝑡 is calculated using the current policy 𝜋(𝑠𝑡). This action is not directly applied to the process, but it is
instead modified to obtain the effective action, 𝑎𝑡, by adding exploration 𝑎̃𝑡 to it. The exploration 𝑎̃𝑡 can,
for instance, be a random value from a normal distribution with a standard deviation of 𝜎, represented
as 𝑁(0, 𝜎). After the modified action 𝑎𝑡 is sent to the process block, the temporal difference Δ𝑡 is
computed, according to 3.34. If the actual performance is better than the predicted one, the actor is
adapted toward the modified control action 𝑎𝑡.

Once again, assuming the actor block as an ANN, the action taken by the agent at each time step
is given by:

𝑎𝑡 = 𝑎𝜋𝑡 + 𝑎̃𝑡 = 𝜋̂(𝑠𝑡 , 𝜑𝑡) + 𝑎̃𝑡 (3.36)

where 𝜑 is the vector of adjustable parameters of the ANN within the actor block. This vector is updated
according to:

𝜑𝑡+1 = 𝜑𝑡 + 𝛼𝑎Δ𝑡𝑎̃𝑡
𝜕𝜋̂(𝑠𝑡 , 𝜑𝑡)
𝜕𝜑𝑡

(3.37)

where 𝛼𝑎 is the actor’s learning rate.
It should be noted that this time, in order to speed up convergence, the gradient is multiplied by the

random action deviation 𝑎̃𝑡. Consequently, the bigger the deviation, the larger the correction applied
to the adjustable parameters.

3.8. Examples of State of the Art Controllers

The previous sections within Chapter 3 focused on discussing the theory behind state of the art con­
trollers. Henceforth, a more pragmatic approach is taken, by analysing several examples of controllers
based on the theory explored so far.

3.8.1. Position Control of a Quadcopter Using Adaptive TS Controller
In ”Position control of a quadcopter drone using evolutionary algorithms­based self­tuning for first­
order Takagi­Sugeno­Kang fuzzy logic autopilots”, Edward Yazid et al. [41] develop a controller for

76 3. State of the Art Control Methods

position control of a quadcopter drone. The quadcopter drone selected is a Multiple Input Multiple Out­
put (MIMO) system with highly non­linear rigid body dynamics and severe cross­couplings. The con­
troller developed is an adaptive TSK controller, as introduced in Section 3.2.2. Regarding the adaptive
mechanism three evolutionary algorithms are tested and compared, namely, Genetic Algorithms (GA),
Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC). The most relevant experimental
results obtained in this research are showcased in Appendix B. In particular, the control system’s block
diagram of the controller can be found in the in Figure B.1.

The controller presented in [41] receives as inputs the error at a given discrete time 𝑡, 𝑒(𝑡), and
the error derivation, defined as Δ⃗𝑒(𝑛) = 𝑥⃗ref(𝑡) − 𝑥⃗(𝑡 − 1), where 𝑥⃗ denotes a given state. Hence,
the controller behaves as a fuzzy logic PD controller. In total, there are three states, 𝑥⃗, tracking the
desired reference values, 𝑥⃗ref. The considered states are the drone’s inertial coordinates relative to
the drone’s initial position, denoted as (𝑥, 𝑦, 𝑧). Consequently, the controller receives as inputs three
(𝑒, Δ𝑒) pairings which are then processed by the fuzzy logic units.

Regarding the fuzzy logic units, three are present (one per state). Each unit gets as inputs two
values: 𝑒 and Δ𝑒, with respect to the reference considered. On all fuzzy logic units, three linguistic
terms (”Zero”, ”Positive, ”Negative”) are used to address the values of 𝑒 and Δ𝑒. Each linguistic term is
modeled using a Gaussian membership function, 𝐺(𝑐, 𝜎) characterized by two parameters: the mean,
denoted as 𝑐, and the standard deviation, 𝜎. Furthermore, the antecedent terms all include the con­
nective ”and” between the two inputs. Thus, a generic rule could be, for instance ”if 𝑒 is Positive and
Δ𝑒 is Negative, then 𝑦 = 𝑓(𝑒, Δ𝑒))”. As for the controller’s consequent terms, since the controller is a
first order TS, the output consists on a linear combination of the inputs, plus a bias. Consequently, in
a given rule 𝑘, the consequent term takes the form of 𝑦𝑘 = 𝑔1𝑘𝑒 + 𝑔1𝑘Δ𝑒 + 𝑏𝑘, where 𝑔𝑖𝑘 represent the
gains and 𝑏𝑘 the biases.

In what concerns adaptability, both the antecedent and the consequent terms are subject to changes.
Nonetheless, the number of rules in the fuzzy logic unit is fixed. Each rule contains a total of seven
adjustable parameters. Concerning the antecedent term, the adjustable parameters are the standard
deviations and expected values of the Gaussian membership functions for 𝑒 and Δ𝑒. As for the conse­
quent term of a given rule 𝑘 the adjustable parameters consist in the gains 𝑔𝑖𝑘 and the biases 𝑏𝑘.

In E. Yazid’s research, four evolutionary algorithms were used to tune the initial FLC (GA with two
mutation rates, PSO and ABC), resulting in four distinct FLCs. These controllers were subsequently
used to follow different kinds of reference functions, including multiple step functions and sinusoidal
functions. Figure B.2 showcases the tracking of a sinusoidal reference on the x­axis whereas Figure
B.3 shows the tracking of multiple steps. From the results presented, it can be seen that when tracking a
sinusoidal reference all the tested algorithms yielded a similar and satisfactory performance. However,
the tracking of a multiple step function shows that despite all final controllers being able to track the
reference signal, the controller tuned using ABC exhibits a better performance when compared to the
remaining approaches. This fact stresses that when testing evolutionary algorithms for TS controller
tuning, different algorithms should be tested, as the difference in performance may be significant. Fi­
nally, each algorithm’s final membership functions, together with a 3D­maping of the controller output
computation are showcased in Appendix B (Figures B.6 and B.7).

Overall, the research in [41] suggests that adaptive FLCs, in particular, TS controllers, present a
precise tracking of a variety of reference functions, including both step functions and sinusoidal ones.
Furthermore, by analysing the changes in the FLC’s membership functions, depicted in Figure B.6, it
can be seen that in most cases, the membership functions move significantly from the initially defined
positions, while often overlapping with each other. Lastly, there does not appear to be any pattern
in the way the final membership functions are structured, such as a constant standard deviation or
spacing between membership functions. In fact, these two traits vary significantly for both 𝑒 and Δ𝑒,
depending on the evolutionary algorithm used. This can be interpreted as one advantage of using this
kind of optimization strategies, which enables finding non­intuitive (yet optimal) shapes for membership
functions that could not be reached using a knowledge­based approach alone.

3.8.2. UAV RL­based Pursuit Evasion Game Controller
The second example discussed is presented by E. Camci et at. in ’Game of Drones: UAV Pursuit­
Evasion Game With Type­2 Fuzzy Logic Controllers Tuned by Reinforcement Learning’ [6]. As sug­
gested by its name, the main goal of the simulations conducted consists on training a single pursuer

3.8. Examples of State of the Art Controllers 77

quadcopter (i.e. the controlled vehicle) to catch an evader quadcopter in the shortest possible time,
while the evader strives to escape from the pursuer. The two quadcopters are different from each other
in terms of their specifications such as mass, dimension or maximum speed. The main scenario of the
game is that the pursuer starts from origin while the evader starts at a reasonable distance from it.
Similarly to the first showcased example, all the relevant Figures are inserted in the Appendices, in
particular in Appendix C

The article introduces a model­free RL based algorithm control strategy which is implemented in a
simulated environment considering highly nonlinear quadcopter drones presenting coupled dynamics.
It is additionally assumed that the modeled drones have to operate under noisy conditions. The control
loop used can be found in Figure C.1. The controller chosen consists in a type­2 fuzzy logic TS con­
troller, which works in a similar way to the type­1 TS controller presented in Section 3.2.2, with the main
difference consisting in its membership values being defined as intervals. According to the authors,
type­2 FLCs are considered better­suited to deal with high levels of uncertainty in the interpretation of
input linguistic terms (e.g. when considering a significant amounts of noise) [6].

The controller’s inputs consisted on the error, 𝑒 and its time derivative 𝑒̇. The error is defined as
the distance between the pursuer’s current position and the target’s current position, expressed in (x,
y, z) coordinates using an inertial reference frame. Regarding the fuzzy membership functions used in
the antecedent term of the fuzzy logic unit, just as in the previously discussed article, these consisted
in Gaussian membership functions, 𝐺(𝑐, 𝜎). As for the consequent terms, the output function of every
rule was defined as a constant, i.e. for a given rule 𝑛, 𝑓𝑛 = 𝐶 with 𝐶 ∈ ℝ. Furthermore, the connective
”and” was present in all rules, regarding the two inputs (𝑥1, 𝑥2) = (𝑒, 𝑒̇). Consequently, a generic rule
𝑛 is given by:

Rule𝑛 ∶ IF 𝑥1 is 𝐴̃𝑛1 and 𝑥2 is 𝐴̃𝑛2 THEN 𝑓𝑛 = 𝐶𝑛
where 𝐴̃𝑛1 and 𝐴̃𝑛1 denote the type­2 fuzzy sets. Overall, three type­2 fuzzy set membership functions
were implemented per input, which resulted in a total of 9 rules.

In what concerns the adaptive algorithm chosen to tune the controller, it follows a variant of the actor­
critic approach presented in Section 3.7.1. Themain difference from the previously presented approach
consists in the estimator of the action­value function being an additional Fuzzy Inference System (FIS)
instead of an ANN. Nonetheless, the FIS is tuned using a gradient descent approach, as described
in Section 3.6.1, and exploration is considered by adding Gaussian noise to the default control action.
This approach was chosen to avoid the discrete representation of such a large continuous space, which
would be needed in case a classical RL approach, such as Q­learning, was used.

Furthermore, the reward function was defined as follows:

𝑟𝑡+1 =
𝐷𝑡 − 𝐷𝑡+1

(𝑉pursuer + 𝑉evader)𝑇
where 𝐷𝑡 is the distance between the two drones at time instant 𝑡 while 𝑇 is the sampling time.

From the reward function definition it can be seen that positive rewards result from decreasing the
distance between the pursuer and the evader (expressed in the numerator) in consecutive time steps
and by decreasing the overall distance travelled by both drones in one sampling interval (expressed in
the denominator).

In addition, it should be noted that only the consequent parts of the FIS and the type­2 TS­FLC are
tuned, meaning that the membership functions maintain their respective initial parameters throughout
the simulation process.

The drone controller was tested in several scenarios, with the two considered to be the most promi­
nent showcased in Figures C.3 and C.4. In both scenarios the pursuer was modelled to be faster than
the evader and started all the simulations at the origin. The values presented in the table referring to
the first scenario (Figure C.3) show that for all the simulated initial conditions (i.e. for all the evader’s
initial positions), the pursuer managed to successfully catch the evader in a short amount of time. Ad­
ditionally, it can be seen that the learning procedure significantly decreased the capture time for all the
considered initial conditions. In the second considered scenario, depicted in Figure C.4, the antecedent
membership functions were changed. Consequently, the second scenario aimed to test whether only
tuning the consequent terms is sufficient to guarantee an increase in performance, even if the member­
ship functions considered were not optimal. By looking at the results presented in the table referring to

78 3. State of the Art Control Methods

the second situation, although the pursuer finds the evader in all the cases considered, it is evident that
the tuning process did not significantly alter controller’s performance. In fact, in one of the presented
cases, the controller’s performance is even significantly hindered by the tuning process, which takes
23.15 seconds to reach the target instead of the initially obtained 14.84 seconds.

From the previous points two main conclusions are inferred. Firstly, it can be stated that adaptive
methods focusing solely on adjusting the consequent terms of FLC can produce significant changes in
controller performance, as was shown in the first considered scenario. Nonetheless, controller perfor­
mance also relies on the existing antecedent terms. In order to effectively boost performance by using
the adaptive mechanism, the antecedents must be adequately chosen. This implies one of two scenar­
ios: either there is enough knowledge available to accurately declare constant membership functions,
or, alternatively, these functions need to be adapted as well, as was the case in the previously anal­
ysed paper. Secondly, the results presented show that even when having a small number of rules in
a complex scenario, a satisfactory and comprehensive performance can be attained, with the pursuer
always being able to catch the evader, before and after the tuning process. Additionally, it should be
noted that positive results obtained in a scenario where a small number of rules is defined can be due to
the dynamics defined in the simulation environment used to adapt the controller. In case the dynamics
are not modelled as highly non­linear, then a controller with a small number of rules should be sufficient
to handle any non­linearity involved in the process. Nonetheless, in this particular example, the good
performances obtained conditions may also be due to the adaptiveness of the controller implemented.
This implies that an adaptive approach for a TS controller holds great potential to deal with severe
non­linearities and coupled dynamics and should be further considered.

3.8.3. Autonomous Vehicle Control Using Fuzzy Controllers Adapted using Re­
inforcement Learning

The third and final article discussed in the current Section is titled ’An Approach to Tune Fuzzy Con­
trollers Based on Reinforcement Learning for Autonomous Vehicle Control”, by X.Dai et al. [10]. The
architecture of the controller proposed in this research is comprised of a Q Estimator Network (QEN)
and a Takagi­Sugeno­type FIS. Consequently, as was the case in the previous described article, the
proposed controller follows an actor­critic approach. Furthermore, the performance of the proposed
design technique is tested by simulation studies of a vehicle longitudinal­control system. Just as in the
previous examples, all the relevant results obtained in this research are included in the Appendices, in
particular in Appendix C.

The controller proposed in [10] has two main tasks: estimate the optimal action­value function
𝑄∗(𝑥⃗, 𝑎) (critic) and compute the control output based on the estimated action value function (actor)
𝑄̂∗(𝑥⃗, 𝑎). Additional information concerning the controller’s block diagram can be found in the Appen­
dices section, Figure D.1.

In order to achieve the first task, an ANN is used, whereas the second one relies on an FIS (TS
controller). Concerning the QEN, a time­delay neural network (TDNN) structure is adopted. The TDNN
is a backpropagation neural network that uses a time­delayed sequence as its input vector. This allows
it to deal with input data that are presented over time. A schematic representation of the TDNN network
format can be found in Figure D.2. In terms of the algorithm used to tune the TDNN, a gradient descent
approach is implemented, explicitly expressed in (3.35).

Regarding the actor module, it consists on a TS controller where the consequent term is a linear
combination of the inputs, plus a bias. Furthermore, all the membership functions considered in the
antecedent term are Gaussian membership functions, 𝐺(𝑐, 𝜎), and the number of rules is fixed (in
the example provided, a total of nine were used). In the procedure proposed by X. Dai et al. [10],
a gradient­descent method is used to tune the actor, aiming to maximize the action value function
𝑄(𝑥⃗, 𝑢), with respect to the control input 𝑢 for the current state 𝑥⃗. The parameters tuned by the gradient
descent approach were both the antecedent’s membership functions (𝑐 and 𝜎) and the consequent’s
coefficients. In addition, it should be noted that the initial parameter values of the membership function
values were not set randomly: the user implements initial knowledge into the control system rule­
base, which is subsequently tuned by the RL approach. Exploration is taken into account by adding
a stochastic action modifier (i.e. adding Gaussian noise) immediately before the control input is sent
to the system. Moreover, the noise’s standard deviation, 𝜎𝑛, converges to zero gradually, meaning the
policy becomes greedy with time.

3.8. Examples of State of the Art Controllers 79

The proposed controller was applied for a vehicle longitudinal­control problem. This problem ad­
dresses the control of a vehicle tomaintain a safe distance between the controlled car and the preceding
cars. In the simulation presented, there are four input­state variables available in this system: the posi­
tion of the preceding car 𝑥𝑙, the velocity of the preceding car 𝑣𝑙, the position of the following car 𝑥𝑓, and
the velocity of the following car 𝑣𝑓. The proposed controller adopts reinforcement learning to tune the
fuzzy controller, so it is a model­free paradigm that is capable of learning the optimal strategy through
trial­and­error interactions with a dynamic environment. The input variables to the TS controller are the
spacing deviation Δ𝑥 = 𝑥𝑙 − 𝑥𝑓 and the relative speed 𝑣𝑟 = 𝑣𝑙 − 𝑣𝑓. The reward function was defined
as follows:

𝑟(𝑡) = {−
1
6 |Δ𝑥|, |Δ𝑥| ≤ 6

−1, |Δ𝑥| > 6, end of episode.
As for the QEN, its inputs consisted of the three most recent values of Δ𝑥, the three latest values of

𝑣𝑟 and, lastly, the control input, 𝑢. The obtained results are illustrated in Figure D.3 and D.4. Figure D.3
shows three velocity profiles: the ideal velocity profile (equal to the leading car’s velocity profile) and
the velocity profiles of the controlled car before and after learning takes place. Figure D.4 showcases
the evolution of the spacing deviation Δ𝑥 in time.

From the simulation results shown in Figure D.3, it can be seen that the controlled car is able to
nearly match the ideal velocity profile, after the learning process takes place. The two velocity profiles
are not identical due to two reasons: firstly due to the sudden velocity changes in the preceding car
(represented by the ideal velocity line) and, secondly, because of the small number of fuzzy rules used
in the simulation. Additionally, concerning the spacing deviation graph, the values of Δ𝑥 can be seen to
decease gradually. During the learning procedure, the maximum spacing deviation may be increased,
this is due to the implemented exploration strategy. Nonetheless, it can be seen that, as a whole, the
maximum spacing is decreased. Lastly, the final spacing deviation is not zero due to the small number
of fuzzy rules implemented.

Overall, the approach taken was considered to yield satisfactory results, as the RL tuning process
enabled the controller’s performance to increase significantly. Furthermore, it is considered that the
performance could be increased even further by increasing the number of rules present in the actor’s
fuzzy rule­base. Nevertheless, it should be taken into account that, according to the authors in [10],
it has been demonstrated that simply replacing the discrete lookup tables with function approximators
may be not robust and cause learning to fail, even in benign cases. Consequently, this method may not
be as reliable in more complex scenarios as it is in simpler problems. Lastly, the fact that all the articles
presented so far rely on using Gaussian membership functions for the antecedent terms’ membership
functions (mostly due to these only exhibiting two adjustable parameters per membership function) can
be seen as an indicator that adopting a similar strategy when developing an FLACmight lead to a better
performance after controller tuning and thus should be further considered.

4
Controller Design for a SAD

In the previous Chapter 2, the concept of SAD was introduced, together with the traits considered to be
fundamental for a successful therapeutic implementation. Subsequently, in Chapter 3, several state of
the art control methods were mentioned, along with experimental results associated with the proposed
methods. The current section will take into account the information provided in the previous two and
apply it to the scope of SADs. In other words, it will regard controller development for SADs.

4.1. Drone Traits Influenced by the Controller

Chapter 2 listed the five traits that hold the most importance when considering a SAR. These were:
appearance, simplicity, adaptability, responsiveness and autonomy. Nonetheless, not all of these are
influenced by the controller. For instance, appearance is completely dissociated from it. Regarding
responsiveness and simplicity, these traits are mainly influenced by the interface presented to the ther­
apist and not as much by the controller itself. In other words, as was mentioned in Chapter 3, the best
approach to create a responsive and simple SAD is to focus on developing an intuitive and compre­
hensive GUI. This would enable the therapist to implement changes in the SAD’s behavioural patterns
in a fast and simple manner, thus ensuring an appropriate level of responsiveness and simplicity.

However, the remaining two traits, adaptability and autonomy fully rely on the controller developed.
Unlike responsiveness and simplicity, the previous two traits are not directly related to the informa­
tion and interface provided to the therapist. Instead, these are solely linked to the SAD’s behaviour.
Concerning autonomy, it influences the SAR’s behaviour by ensuring that the control system performs
accurately without external intervention and, regarding adaptability, it is responsible for continually
adapting the performance in pursuit of a personalized approach for each patient.

Consequently, the following analysis will take into consideration which type of control strategy is the
most adequate to provide the required levels of adaptability and autonomy in the context of SADs.

4.2. Achieving Autonomy: Fuzzy Logic Controllers for SADs

When considering the therapeutic applications of an SAD, particularly the fact that it will be participating
in therapy sessions with children with ASD, several performance requirements for the implemented
controller come to mind. Firstly, since a DMT approach is easily gamified (that is, presented in the
format of an interactive game), an approach enabling the implementation of a priori knowledge into the
system (e.g. game rules) would be preferred. Additionally, due to the fact that DMT approaches are
based on human­interaction, coding the controller in such a way that the drone presents a humanlike
behaviour would also be beneficial. In this case, humanlike behaviour refers to the drone’s ability to
react in a similar way to a human, based on intuitive rules instead of mathematical models. Furthermore,
in order to ensure safety for all participants involved in a therapy session, high performance is needed.
This would ensure that the controller, and hence the SAD, would perform effectively in the widest range
of possible scenarios.

81

82 4. Controller Design for a SAD

In light of the listed features, and taking into account what was mentioned in Section 3.2.3, it is
considered that an FLC is the indicate choice for the task. When compared to the traditional approach,
the fact that FLCs do not require any mathematical model for the external process stands out as a
key asset of this type of controller. Due to the constant interactions with humans, whose behaviour
can hardly be modeled or predicted, setting a simple yet comprehensive rule base to determine the
controller’s output seems like the most adequate choice to provide the desired levels of autonomy.

4.3. Achieving Adaptability: Adaptive Control for SADs
In Chapter 2, the main benefits of presenting a high degree of adaptability in a SAR were discussed.
These included increasing the interest displayed by patients when interacting with SARs and the num­
ber of therapy sessions in which these could be useful for the patient. In practice, a high level of
adaptability is achieved through a personalized approach. In other words, it is achieved by making
sure that the SAR behaves differently with each patient and presents the ability to continually adapt its
behaviour to cover each patient’s individual needs. It is considered that the same principles hold when
concerning an SAD.

In terms of controller development, and taking into account what was mentioned in Section 3.3,
the conclusion is evident: an adaptive approach must be taken. From all the alternatives discussed in
Chapter 3, I will focus primarily on those referred to in Section 3.8 due to two factors. Firstly, all the
examples described in Section 3.8 address the issue of tuning an FLC, which, given all that was stated
up to this point, has already been established as the most convincing approach to take. Secondly,
these approaches all rely on state of the art control methods, such as ANN and RL. Consequently, it
is considered that developing a controller based on these methods should lead to better final results
in terms of controller performance. In addition, using state of the art methods is also considered to
increase the inherent value of this research project in terms of contributions to the current body of
knowledge.

Still concerning the three research papers presented in Section 3.8, two different approaches for
tuning FLCs were presented. In the first article an evolutionary approach was taken, whereas in the fol­
lowing two the tuning process consisted in using an RL­based approach. It is considered that the latter
approach is better suited for the specific case of tuning a controller for an SAD. This statement is based
on a significant drawback associated with genetic algorithms: the need for developing a cost function
responsible for quantifying how well a controller with a given set of adjustable parameters performs. In
the case­study presented by E.Yazid et al. [41], controller performance was measured based on how
well the controller could track a set of references including steps and sinusoidal functions. Nonethe­
less, when considering an SAD, controller performance is not as easy to quantify since the main goal
of the SAD is not to accurately follow references, but instead to interact as much as possible with a
given patient. Finding a function or an alternative method which would be able to quickly quantify the
controller’s performance based on a current set of adjustable parameters is not intuitive. Consequently,
using an evolutionary approach, which continually relies on the existence of such a function or method
to compute the optimal set of controller adjustable parameters, does not stand as a feasible answer to
the problem.

On the other hand, the RL­based approaches detailed in Sections 3.8.2 and 3.8.3 seem significantly
more intuitive. By means of defining an appropriate reward function and by being able to develop a
simulation environment, it should be possible to tune the FLC in such a way that it is able to perform
DMT while, for instance, always keeping a safe distance from the patient (e.g. attributing positive
rewards when the SAD’s distance to the human user is adequate). In this scenario, the main challenge
will be choosing the adequate reward function.

Lastly, one additional detail is considered. Between the algorithms presented in Sections 3.8.2 and
Section 3.8.3, there are two main differences. Firstly, in the research conducted by E. Camci et at.in [6],
only the consequent term of the TS­controller was adaptively tuned, whereas in the procedure followed
by the X. Dai et al.[10], both the consequent coefficients and the antecedent membership functions were
adaptively tuned. Between these two approaches, the second one seems the best fit for an SAD, as
it is more comprehensive and, consequently, should be able to adapt the controller further, achieving
a higher degree of personalization. Additionally, by being able to change the membership functions
defined a priori by the programmer, the second approach also reduces the subjectivity associated
with each rule (and, in particular, with each linguistic term used) to some extent. The second main

4.4. Controller Inputs and Outputs: Using ANN for Image Processing 83

difference between the two approaches is the fact that the first one uses a type­2 fuzzy logic controller.
This approach is followed in order to better deal with high levels of noise in the input. In case of the
SAD, the input is not expected to be noisy enough to justify the increase of complexity associated with
type­2 fuzzy logic systems. Therefore, a type­1 FLC will be used.

With the purpose justifying the previous assumption that the input will not include significant noise,
the inputs and outputs of the controller will now be described.

4.4. Controller Inputs and Outputs: Using ANN for Image Process­
ing

In order to perform DMT, the SAD needs to regularly check the human user’s position, emotional
status, and status of interaction with the SAD. More specifically, the SAD needs to analyse how well
the patients are mimicking the movements suggested to them. In addition, it needs to figure out which
new movements to propose to the human user in case of active interaction or, alternatively, which
of the human user’s moves to mimic in case of passive interaction. This implies that the SAD must
integrate an IPU. The development and implementation of the IPU is considered to be out of the scope
of the present thesis project. Therefore, for future reference, it is assumed that the controller inputs are
generated by the IPU, i.e. that information such as proximity to the patient or the position of its limbs is
available and accessible to the controller at any time, serving as its inputs. Due to the camera quality
of the Parrot bebop drone and the efficiency of state of the art image processing algorithms, the inputs
are not expected to be noisy, which further grounds the choice of a type­1 FLC.

Regarding its outputs, the controller for the SAD will control the drone by directly setting reference
pitch and roll angles as well as the yaw rate. Further details regarding the controller outputs will be
presented in the following Chapter 5.

4.5. Conclusions

In conclusion, considering all the previous discussions, the ideal controller for an SAD meant for usage
in autism therapy sessions is thought to be a type­1 FLC tuned by DRL algorithms. This controller archi­
tecture is chosen due to it being the architecture which guarantees the highest levels of personalization
to each patient’s individual needs (high adaptability), while simultaneously providing a comprehensive
(and thus autonomous) way to conduct DMT. In order to achieve this, in an initial phase, a simple FLC
will be tested relying solely on the face detection feature provided by the IPU. During this first phase,
simple interaction patterns will be tested. In a secondary phase, new inputs such as the position of
the human’s limbs will be additionally considered in order to implement new, more complex, interaction
patterns. Lastly, an adaptive module will be implemented and the final controller’s performance will
be tested and compared to that of the initial stages. The following Chapter 5 thoroughly describes the
implementation of the first phase, along with some of the limitations and problems faced in the early
stages of controller development.

5
Preliminary Results

The present Chapter describes the procedure conducted so far regarding the design of the controller
and implementation of the developed controller for an SAD.

5.1. Experimental Setup & Software

During the first stage of the experimental procedure, a simple non­adaptive FLC was implemented on
a Parrot Bebop 2 drone. This controller was developed in Python 3.6 and sent instructions to the drone
via wi­fi by making use of the Pyparrot library (based on Parrot’s official software, Olympe) [23]. The
FIS was implemented using the PyFuzzyLite library [29]. All tests were conducted at the Cyberzoo
drone testing facilities at TU Delft’s faculty of aerospace engineering. Furthermore, all human­drone
interactions presented assume that only one person (the author) is interacting with the drone. Cases
involving multiple human users are disregarded. In addition, drone motions were restricted to the (𝑥, 𝑦)
plane and a small control sampling time of 0.05 seconds was used between introducing different control
inputs to the SAD.

5.2. Controller Inputs and Outputs

The controller receives as inputs the output of a pre­implemented IPU. This IPU consists in an ANN
responsible for identifying and locating human faces in real time video footage, with its output being the
coordinates (in pixels) of rectangles containing the faces of any human appearing on the image. The
IPU’s output will henceforth be referred to as the facebox value or controller input. As for the controller’s
output, it consists in the desired pitch and roll angles and the desired yaw rate of the drone. Due to the
fact that the actuators are not directly controlled, the controller developed is an outer­loop controller.

5.3. SAD Game Modes

In order to test the drone’s performance in multiple types of scenarios involving human interaction,
three Mamdani controllers were developed. Furthermore, to ensure a smooth transition between the
controllers, a navigational algorithm was created. Each controller was associated with a specific task,
referred to as gamemode. Subsequently, three gamemodes were tested: Stand by, Pursuit and Mimic.
Figure 5.1 summarizes the interactions between the three game modes.

85

86 5. Preliminary Results

Figure 5.1: Control Algorithm Scheme

5.3.1. Stand By Game Mode
The so­called Stand By mode has as its main function to find the human user. In order to achieve
this, the drone only changes its yaw angle, ideally remaining in the same position while rotating. User
detection is conducted by continually checking the facebox input value. Once a human user is detected,
the drone ensures that the user’s facebox is centered within the captured images of the drone by
continually checking the location of the facebox’s centroid (tolerance was set to 20% of the image
length, in pixels). Once the human user (or, equivalently, the user’s facebox) is centered on the image
captured by the drone, the control algorithm updates the current game mode from Stand By to either
Pursuit or Mimic. Figures 5.2 and 5.3 showcase the Stand By game mode before and after centering
takes place.

Figure 5.2: Stand By game mode before centering: the
drone is trying to find the human user’s facebox by
rotating around a fixed axis

Figure 5.3: Stand By game mode after centering: the
drone is directly facing the human user and keeps its
position and heading until the user (or equivalently the
user’s facebox) starts to move

5.3.2. Pursuit Game Mode
The second game mode was designed to simulate a game of catch between the drone and the human
user. In other words, it attempts to significantly reduce the distance between the two, while maintaining
a safe distance from the human user, as well as maintaining the user’s face centered in the image.
In order to do so, pitch and roll are controlled by the FLC. In this second mode, the yaw rate is no
longer controlled as whenever this mode is active, the user has already been identified within the
image captured by the drone and consequently, controlling pitch and roll is enough to center the user’s
face in the image. The distance between the drone and target (i.e. the human) is estimated from

5.4. Limitations 87

the area of the facebox: the bigger the area, the closer the human user. The controller thus tries to
achieve a facebox ratio (defined as the facebox area divided by the total amount of pixels present in
an image) that ensures that the human user is close enough to the drone and yet not too close to
raise any safety issues. Furthermore, again to ensure safety, the maximum pitch and roll angles were
significantly limited. By restricting themaximum pitch and roll angles, the drone’s maximum velocity (i.e.
both its longitudinal and lateral components) is reduced, guaranteeing that the drone never approaches
the human with excessive velocity. After achieving a satisfactory facebox ratio (less than or equal to
4%), which was heuristically tuned, the first stage of the Pursuit game mode is considered finished.
Subsequently, the drone waits a certain amount of time and a second (and final) trial identical to the
first one begins. If at any point in time the human user is no longer detected by the IPU, the drone
reverts to Stand By mode and attempts to once again locate the human user.

Figures 5.4 and 5.5 present a scenario before pursuit starts and once it is completed, with the human
user being allowed to move throughout the process.

Figure 5.4: Pursuit game mode initial positions of the drone
and the human user Figure 5.5: Pursuit game mode when the moving hu-

man user is reached by the drone

5.3.3. Mimic Game Mode
The third and last game mode developed is aimed at motivating the human user to move according to
the drone’s movements. The movements consist on slight motions either to the left or to the right. After
the drone finishes a motion, it remains in the final position for a certain amount of time (i.e. 5 seconds
in the performed experiments), waiting for the human user to mimic its movement. After this time has
passed, the performance of the human user is assessed and the result is stored. User performance
is assessed by the drone using a performance metric which can take three values: 0 in case the
user does not follow the drone at all (and consequently no facebox is detected); 0.5 in case the user
completes the motion, but is not aligned with the drone (i.e. the facebox’s centroid is not centered in the
image captured by the drone given a tolerance threshold which, in case of the performed experiments,
is 15%); and, lastly, 1 in case the user accurately moves along with the drone (i.e. the facebox is
considered centered at the end of the time interval). After performance assessment, the drone repeats
the procedure two additional times and lands at the end. The FLC’s rule base is implemented in such
a way that the amplitude of the movements performed by the drone increases with the human user’s
precision in mimicking the movements, in other words, the more centered the facebox centroid after
each motion, the bigger the amplitude of the following motion.

Figures 5.6 and 5.7 showcase the drone’s position before and after a standard move to the sides
takes place.

5.4. Limitations

From the experimental procedure conducted, one main limitation was identified: the input considered
was only accurate when the human user was within a two meter radius from the drone. In case the
user was located beyond this threshold, the drone proved to be unable to recognize the user’s facebox

88 5. Preliminary Results

Figure 5.6: Mimic mode initial positions Figure 5.7: Mimic mode after drone movement

and, thus, it could not interact with the user. Additionally, the current controller inputs do not enable
identifying any physical barrier which might obstruct the drone’s movements. Once again, this fact
raises safety issues regarding usage in indoor locations.

5.5. Future work

The next steps to be implemented will focus, on the one hand, in addressing some of the limitations
faced, and, on the other, in implementing additional functionalities aiming to improve the drone­user
interaction. In particular, the ANN used for user recognition will be enhanced in such a way that will
enable recognition of some of the user’s joints. Consequently, the joint coordinates within the image, in
pixels, will be provided to the controller as an additional input. This will allow to overcome the 2 meter
radius liability explained before.

Furthermore, so far, within the Mimic Game Mode, the drone must always start the interaction in
hope that the human user mimics it, leading him/her to always play a passive role. In the next stage,
a new Game Mode will be devised, where the drone will be the one taking the passive role, waiting
for the human user to move and responding by mimicking his/her movements with a similar speed and
amplitude.

Lastly, an adaptive module will be implemented into the existing FLCs. This module is expected to
yield an increase in personalization. To complement its implementation, a new TS controller architec­
ture will be adopted instead of the current Mamdani architecture. The adaptive module will take into
account parameters such as the user’s performance in order to adapt the FIS and, consequently, the
drone’s movements.

6
Closing Remarks and Future Work

The research conducted up to this point has concerned a variety of topics. Firstly, the condition of
autism spectrum disorder or ASD was introduced in a comprehensive way: from its idiosyncrasies
to its socioeconomic impact. This provided context, purpose and motivation for the problem being
addressed by this master thesis project: developing a controller fit for a novel, SAR­based therapeutic
approach meant to hinder the impacts of ASD in those affected by the condition.

Subsequently, further research revealed the benefits of using dance movement therapy or DMT as
an answer to the problem. The idea of associating DMT to the concept of SAR was considered as
one of the main contributions of this project and an in­depth analysis of several SAR models reaffirmed
the potential inherent to the DMT­SAR approach. The scenario of using drones as SARs, i.e. SADs,
was then examined. Although its usage is linked to some drawbacks, these are considered to be
outweighed by the potential benefits, such as their increased mobility and captivating appearance.
Nonetheless, in part due to this increased mobility, implementing an adequate control system which
guarantees key features such as autonomy, adaptability or responsiveness is crucial. As such, several
control algorithms were thoroughly described, with an analysis being conducted on the ones which are
considered the best fit for implementation in this project.

In light of this, two main points stand. First and foremost, it is believed that the problem addressed
by this research is now known in a comprehensive and detailed way. As a result, the key features
which must be incorporated in the developed controller have been clearly identified. Secondly, taking
into account all the prototypes and technical analyses considered in Chapter 2 and Chapter 3, it is
considered that the selected approaches present high chances of being successfully integrated into
therapeutic sessions.

Regarding future work, our main focus will be on developing an adequate controller for an SAD,
which is able to promote and sustain interactions with humans based on structured DMT plans. As
was addressed in Chapter 5, in the first stages of development, standard FLCs were implemented
to a Parrot Bebop 2 drone. This allowed identifying a few limitations which will be addressed in a
later phase of this MSc thesis project, including the short range needed for user detection or the lack
of a personalized behaviour. With the aim of addressing the latter, in future project stages, an RL­
based adaptive module will be developed and implemented into the existing version of the controller.
Additionally, a new set of controller inputs including human joint positions will be implemented. This will
enable to increase the range of detection and, simultaneously, to develop new interaction schemes,
where the user will take an active role. In the final research phase, the adaptive version of the controller
will be implemented and tested on real hardware.

89

Appendices

91

A
Appendix A: Yearly Drone Market

Investments

$4,433 billion US has been

invested into the drone

industry since 2008.

DRONE INDUSTRY INSIGHTS

12th of March 2020

©
 2

0
2
0
 a

ll
ri
g
h
ts

 r
e
s
e
rv

e
d
 |

 D
R

O
N

E
 I
N

D
U

S
T

R
Y

 I
N

S
IG

H
T

S
 |

 H
a
m

b
u
rg

,
G

e
rm

a
n
y

|
w

w
w

.d
ro

n
e
ii.

c
o
m

source: DRONEII.com

YEARLY DRONE MARKET INVESTMENTS 2008-2019

30 29 32
61 42

121

318

557

675
642

719

1205

0 2 14 31

80

178

454
490

604

679

830

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Total investment value in US $M

Total VC value in US $M

Figure A.1: Yearly drone marked investment between 2008 and 2019. Source: Droneii.com

93

B
Appendix B: Experimental Results 1

Figure B.1: Block Diagram Representing Control Scheme used by E.Yazid in [41]

Figure B.2: Results obtained in [41] when tracing a sinusoidal reference on the x-axis

95

96 B. Appendix B: Experimental Results 1

Figure B.3: Drone response for varying step function in x-direction in time window 0-30 s [41]

Figure B.4: Drone response for varying step function
in x-direction in time window 0-3 s [41]

Figure B.5: Drone response for varying step function
in x-direction in time window 13-17 s [41]

97

Figure B.6: Initial and final fuzzy sets of 𝑒 and Δ𝑒 for sine function in x-axis (a) GA-FLC with mutation rate = 0.1 (b)
GA-FLC with mutation rate = 0.4 (c) PSO-FLC (d) ABC-FLC [41].

98 B. Appendix B: Experimental Results 1

Figure B.7: Three-dimensional control surface of FLC for sine function in x-direction (a) initial (b) GA-FLC with mutation
rate = 0.1 (c) GA-FLC with mutation rate = 0.4 (d) PSO-FLC (e) ABC-FLC [41].

C
Appendix C: Experimental Results 2

Figure C.1: Control architecture of the pursuer quadcopter in [6]

Figure C.2: Architecture of Learining used in [6]

99

100 C. Appendix C: Experimental Results 2

Figure C.3: Simulation results relative to the first sce-
nario presented in [6]

Figure C.4: Simulation results relative to the second
scenario presented in [6]

D
Appendix D: Experimental Results 3

Figure D.1: Architecture of the controller proposed by X.Dai et al. in [10]

Figure D.2: Architecture of the QEN used by X.Dai et al. in [10]

101

102 D. Appendix D: Experimental Results 3

Figure D.3: Simulation results of the proposed controller: velocity response of the controller before and after learning
takes place [10]

Figure D.4: Simulation results of the proposed controller: evolution of spacing deviation [10]

Bibliography

[1] Karl J Åström and Björn Wittenmark. Adaptive control. Courier Corporation, 2013.

[2] Karl Johan Åström. Theory and applications of adaptive control: a survey. Automatica, 19(5):
471–486, 1983.

[3] Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive elements that
can solve difficult learning control problems. IEEE transactions on Systems, Man, andCybernetics,
(5):834–846, 1983.

[4] Yoshua Bengio. Learning deep architectures for AI. Now Publishers Inc, 2009.

[5] Laura Boccanfuso and Jason M O’Kane. Charlie: An adaptive robot design with hand and face
tracking for use in autism therapy. International journal of social robotics, 3(4):337–347, 2011.

[6] Efe Camci and Erdal Kayacan. Game of drones: UAV pursuit­evasion game with type­2 fuzzy
logic controllers tuned by reinforcement learning. In 2016 IEEE International Conference on Fuzzy
Systems (FUZZ­IEEE), pages 618–625, Vancouver, Canada, 2016.

[7] Zuleyha Cidav, Steven C Marcus, and David S Mandell. Implications of childhood autism for
parental employment and earnings. Pediatrics, 129(4):617–623, 2012.

[8] Bart Custers. Drones here, there and everywhere: introduction and overview. In The Future of
Drone Use, pages 3–20. Springer, 2016.

[9] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of con­
trol, signals and systems, 2(4):303–314, 1989.

[10] Xiaohui Dai, Chi­Kwong Li, and Ahmad B Rad. An approach to tune fuzzy controllers based on
reinforcement learning for autonomous vehicle control. IEEE Transactions on Intelligent Trans­
portation Systems, 6(3):285–293, 2005.

[11] Didier J Dubois, Henri Prade, and Ronald R Yager. Readings in fuzzy sets for intelligent systems.
Morgan Kaufmann, 2014.

[12] Mayada Elsabbagh, Gauri Divan, Yun­Joo Koh, Young Shin Kim, Shuaib Kauchali, Carlos Marcín,
Cecilia Montiel­Nava, Vikram Patel, Cristiane S Paula, Chongying Wang, et al. Global prevalence
of autism and other pervasive developmental disorders. Autism research, 5(3):160–179, 2012.

[13] David Feil­Seifer and Maja J Mataric. Defining socially assistive robotics. In 9th International
Conference on Rehabilitation Robotics. ICORR 2005., pages 465–468, Chicago, IL, US, 2005.

[14] Terrence Fong, Illah Nourbakhsh, and Kerstin Dautenhahn. A survey of socially interactive robots.
Robotics and autonomous systems, 42(3­4):143–166, 2003.

[15] Nicole Giullian, Daniel Ricks, Alan Atherton, Mark Colton, Michael Goodrich, and Bonnie Brinton.
Detailed requirements for robots in autism therapy. In 2010 IEEE International Conference on
Systems, Man and Cybernetics, pages 2595–2602, Istambul, Turkey, 2010.

[16] Marcel Heerink, Ben Kröse, Vanessa Evers, and BobWielinga. Assessing acceptance of assistive
social agent technology by older adults: the Almere model. International journal of social robotics,
2(4):361–375, 2010.

[17] R. Jager. Fuzzy Logic in Control. PhD dissertation, Delft University of Technology, 1995. Delft,
The Netherlands.

103

104 Bibliography

[18] Martin Knapp, Renée Romeo, and Jennifer Beecham. Economic cost of autism in the UK. Autism,
13(3):317–336, 2009.

[19] Matthew J Maenner, Kelly A Shaw, Jon Baio, et al. Prevalence of autism spectrum disorder among
children aged 8 years ­ autism and developmental disabilities monitoring network, 11 sites, United
States, 2016. MMWR Surveillance Summaries, 69(4):1, 2020. Report published by Centers for
Disease Control (CDC). DOI: http://dx.doi.org/10.15585/mmwr.ss6904a1.

[20] Eleni Mangina, Evan O’Keeffe, Joe Eyerman, and Lizbeth Goodman. Drones for live streaming of
visuals for people with limited mobility. In 2016 22nd International Conference on Virtual System
& Multimedia (VSMM), pages 1–6, Kuala Lumpur, Malaysia, 2016.

[21] Patrizia Marti, Margherita Bacigalupo, Leonardo Giusti, Claudio Mennecozzi, and Takanori Shi­
bata. Socially assistive robotics in the treatment of behavioural and psychological symptoms of
dementia. In The First IEEE/RAS­EMBS International Conference on Biomedical Robotics and
Biomechatronics, 2006. BioRob 2006., pages 483–488, Pisa, Italy, 2006.

[22] Mary Martin. Moving on the spectrum: Dance/movement therapy as a potential early intervention
tool for children with autism spectrum disorders. The Arts in Psychotherapy, 41(5):545–553, 2014.

[23] Amy McGovern. Pyparrot library, 2017. URL https://github.com/amymcgovern/
pyparrot. Last Time Accessed: 27­02­2021.

[24] Raman Mehra. On the identification of variances and adaptive kalman filtering. IEEE Transactions
on Automatic Control, 15(2):175–184, 1970.

[25] Christina Moro, Goldie Nejat, and Alex Mihailidis. Learning and personalizing socially assistive
robot behaviors to aid with activities of daily living. ACM Transactions on Human­Robot Interaction
(THRI), 7(2):1–25, 2018.

[26] Katsuhiko Ogata. Modern control engineering. Pearson, 5th edition, 2010.

[27] World Health Organization. World health organization fact sheets. https://www.who.int/
news­room/fact­sheets/detail/autism­spectrum­disorders, 2020. Last Time Ac­
cessed: 27­02­2021.

[28] J. Kober R. Babuška. Knowledge­based control systems, 2019. Delft University of Technology.

[29] Juan Rada­Vilela. The fuzzylite libraries for fuzzy logic control, 2018. URL https://
fuzzylite.com/. Last Time Accessed: 27­02­2021.

[30] Daniel J Ricks and Mark B Colton. Trends and considerations in robot­assisted autism therapy.
In 2010 IEEE international conference on robotics and automation, pages 4354–4359, 2010.

[31] Ben Robins, Kerstin Dautenhahn, R. Te Boerkhorst, and Aude Billard. Robots as assistive
technology­does appearance matter? In RO­MAN 2004 13th IEEE International Workshop on
Robot and Human Interactive Communication (IEEE Catalog No. 04TH8759), pages 277–282,
2004.

[32] Ben Robins, Kerstin Dautenhahn, and Janek Dubowski. Does appearancematter in the interaction
of children with autism with a humanoid robot? Interaction studies, 7(3):479–512, 2006.

[33] Aine Roddy and Ciaran O’Neill. The economic costs and its predictors for childhood autism spec­
trum disorders in Ireland: How is the burden distributed? Autism, 23(5):1106–1118, 2019.

[34] Syamimi Shamsuddin, Hanafiah Yussof, Luthffi Ismail, Fazah Akhtar Hanapiah, Salina Mohamed,
Hanizah Ali Piah, and Nur Ismarrubie Zahari. Initial response of autistic children in human­robot
interaction therapy with humanoid robot NAO. In 2012 IEEE 8th International Colloquium on Signal
Processing and its Applications, pages 188–193, 2012.

https://github.com/amymcgovern/pyparrot
https://github.com/amymcgovern/pyparrot
https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders
https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders
https://fuzzylite.com/
https://fuzzylite.com/

Bibliography 105

[35] Takanori Shibata, Teruaki Mitsui, Kazuyoshi Wada, Akihiro Touda, Takayuki Kumasaka, Kazumi
Tagami, and Kazuo Tanie. Mental commit robot and its application to therapy of children. In 2001
IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings (Cat.
No. 01TH8556), volume 2, pages 1053–1058, 2001.

[36] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

[37] Tomohiro Takagi and Michio Sugeno. Fuzzy identification of systems and its applications to mod­
eling and control. IEEE Transactions on Systems, Man, and Cybernetics, 15(1):116–132, 1985.

[38] Hideki Takahashi, Kanae Matsushima, and Toshihiro Kato. The effectiveness of dance/movement
therapy interventions for autism spectrum disorder: A systematic review. American Journal of
Dance Therapy, 41(1):55–74, 2019.

[39] TU Delft Webpage. Nao image, 2020. URL https://www.tudelft.nl/en/eemcs/
current/humans­of­eemcs/nao/. Last Time Accessed: 27­02­2021.

[40] Christopher JCH Watkins and Peter Dayan. Q­learning. Machine learning, 8(3­4):279–292, 1992.

[41] Edwar Yazid, Matthew Garratt, and Fendy Santoso. Position control of a quadcopter drone using
evolutionary algorithms­based self­tuning for first­order takagi–sugeno–kang fuzzy logic autopi­
lots. Applied Soft Computing, 78:373–392, 2019.

[42] Hans­Jürgen Zimmermann. Fuzzy set theory ­ and its applications. Springer Science & Business
Media, 2011.

https://www.tudelft.nl/en/eemcs/current/humans-of-eemcs/nao/
https://www.tudelft.nl/en/eemcs/current/humans-of-eemcs/nao/

	List of Figures
	List of Tables
	List of Acronyms
	Nomenclature
	I Scientific Article
	II Literature Survey
	Introduction
	Motivation
	Project Objective

	Socially Assistive Robots
	Introducing Socially Assistive Robots
	Main Characteristics Required in SARs
	Appearance
	Adaptability
	Simplicity
	Responsiveness
	Autonomy

	SAR Examples
	Mascot SAR: Charlie
	Animal SAR: Paro the Seal Robot
	Humanoid SAR: NAO

	Drones: Origin, Applications and Investment Boom
	Drones as Socially Assistive Robots
	Appearance
	Adaptability
	Simplicity
	Autonomy
	Responsiveness

	Drone's Social Applications
	Drones for Live Streaming of Visuals for People with Limited Mobility

	Final remarks

	State of the Art Control Methods
	Introduction to control systems
	Fuzzy Logic Controllers
	Mamdani Controller
	Takagi-Sugeno Controller
	Advantages of FLC

	Adaptive Controllers
	Gain Scheduling
	Model Reference Adaptive Systems
	Self-tuning Controller
	Advantages of Adaptive Control

	Fuzzy Logic Adaptive Controllers
	Reinforcement Learning
	Markov Decision Processes
	Discounted Return
	Policy and Value Function
	Temporal Difference Learning
	Q-learning

	Artificial Neural Networks
	Artificial Neural Network Training: Gradient Descent Approaches

	Deep Reinforcement Learning
	Actor-Critic Methods

	Examples of State of the Art Controllers
	Position Control of a Quadcopter Using Adaptive TS Controller
	UAV RL-based Pursuit Evasion Game Controller
	Autonomous Vehicle Control Using Fuzzy Controllers Adapted using Reinforcement Learning

	Controller Design for a SAD
	Drone Traits Influenced by the Controller
	Achieving Autonomy: Fuzzy Logic Controllers for SADs
	Achieving Adaptability: Adaptive Control for SADs
	Controller Inputs and Outputs: Using ANN for Image Processing
	Conclusions

	Preliminary Results
	Experimental Setup & Software
	Controller Inputs and Outputs
	SAD Game Modes
	Stand By Game Mode
	Pursuit Game Mode
	Mimic Game Mode

	Limitations
	Future work

	Closing Remarks and Future Work
	Appendices
	Appendix A: Yearly Drone Market Investments
	Appendix B: Experimental Results 1
	Appendix C: Experimental Results 2
	Appendix D: Experimental Results 3
	Bibliography

