
Grace
in
Spoofax
Michiel Haisma

D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no
lo
gy

Grace
in

Spoofax
by

Michiel Haisma

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Thursday May 18, 2017 at 10:30 AM.

Student number: 1512285
Project duration: May 1, 2016 – May 18, 2017
Thesis committee: Prof. dr. E. Visser, TU Delft, supervisor

Dr. R. J. Krebbers, TU Delft
Dr. ir. G. Gousios, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

Grace is a programming language that aims to be an example of a contemporary object-oriented lan-
guage, to be used for teaching university level students. The language specification of Grace is in-
formal, and its various implementations are difficult to comprehend and change. Spoofax Grace is an
implementation of the Grace programming language, meant to serve both as a reference implementa-
tion, but also a specification, that can be easily read, understood and changed.
Spoofax Grace is implemented using the Spoofax language workbench, providing a declarative gram-
mar, program transformations and dynamic semantics. From these specifications a language inter-
preter is generated that can execute Grace programs. The system covers the core aspects of Grace,
yet a number of language features remain unimplemented. The implementation can be correlated to
the informal Grace specification, and can be changed or extended at will.

iii

Acknowledgements

I want to thank all members of the Programming Languages Research Group at TU Delft, in particular:
Vlad Vergu, for creating and maintaining the DynSem language and his invaluable help creating the
Grace dynamic semantics. Andrew Black, for helping define the Grace object model in DynSem; Tim-
othy Jones, for his helpful pointers regarding specific Grace methods and local variables semantics.
James Noble, Kim Bruce, Andrew Black, Micheal Homer et al. for creating the Grace programming
language; Eelco Visser, for his supervision and support as my thesis supervisor. I would also like to
thank the thesis committee: Eelco Visser, Robbert Krebbers and Georgios Gousios.
Part of this work was presented at the GRACE workshop at the 2016 ECOOP conference with the help
of Vlad Vergu and Eelco Visser.1

Michiel Haisma
Delft, March 2017

1See: http://2016.ecoop.org/event/grace-2016-spoofax-grace

v

http://2016.ecoop.org/event/grace-2016-spoofax-grace

Contents

1 Introduction 1
1.1 Architecture . 2

1.1.1 Parsing . 2
1.1.2 Desugaring and lowering. 2
1.1.3 Execution . 3
1.1.4 Testing . 3
1.1.5 Evaluation. 3

1.2 Outline . 3
1.3 Code repository. 4

2 The Grace programming language 5
2.1 Origin of Grace . 5
2.2 Objects . 5
2.3 Classes . 6
2.4 Method requests . 6

2.4.1 Field access . 8
2.4.2 Confidentiality. 8

2.5 Blocks . 9
2.6 Control flow . 9

2.6.1 Return . 10
2.7 Reuse . 10

2.7.1 Inheritance . 10
2.7.2 Traits . 11

2.8 Type system . 11
2.9 Imports and Dialects . 12

3 Syntax 13
3.1 Syntactic constructs . 13

3.1.1 Mixfix . 13
3.1.2 Operator methods . 13
3.1.3 Implicit method calls . 14
3.1.4 Layout sensitivity . 14
3.1.5 Unicode characters. 14

3.2 Syntax. 14
3.2.1 Program. 14
3.2.2 Object constructors . 15
3.2.3 Method requests . 15
3.2.4 Binary operators . 16
3.2.5 Types . 16
3.2.6 Priorities. 16
3.2.7 Lexical syntax. 17

vii

viii Contents

4 Transformations 19
4.1 Setup . 19
4.2 Desugaring . 20

4.2.1 Class to method . 20
4.2.2 Canonical method names . 21
4.2.3 Generating string interpolation code. 21
4.2.4 Annotations . 22
4.2.5 Other steps . 22

4.3 Lowering . 23
4.3.1 Generalising . 23
4.3.2 Simplifying . 23

5 Dynamic semantics 25
5.1 Program start-up . 25
5.2 Code execution . 26
5.3 Object construction . 27

5.3.1 Aliasing and exclusion . 28
5.4 Method requests . 29

5.4.1 Qualified requests . 29
5.4.2 Implicit requests . 30

5.5 Returning . 31
5.6 Declarations . 31

5.6.1 Object context . 31
5.6.2 Method context . 32

5.7 Confidentiality. 32
5.7.1 Annotations . 32
5.7.2 Checking confidentiality . 33

5.8 Dialects and imports . 33
5.8.1 Dialects . 33
5.8.2 Imports . 33

5.9 Native operators . 34
5.9.1 Limitations . 34

5.10 Types . 34
5.11 DynSem. 34

5.11.1 Implicit reductions . 36
5.11.2 Components . 36
5.11.3 Abrupt termination . 36

5.12 Process . 37

6 Evaluation 39
6.1 Testing . 39

6.1.1 Syntax and transformation testing with SPT . 39
6.1.2 Program evaluation with JUnit . 40

6.2 Review of Specification . 41
6.3 Minigrace test suite . 42
6.4 Omitted features of Grace . 43

Contents ix

6.5 Performance . 43

7 Related work 45
7.1 Formalisations . 45
7.2 Grace implementations. 46

8 Discussion 49
8.1 Future work . 49

8.1.1 Completing Grace features . 49
8.1.2 Static analysis . 49
8.1.3 Setting up a universal Grace test suite . 50
8.1.4 Exploring Grace performance . 50
8.1.5 Making Spoofax Grace more publicly available . 50

8.2 Concluding remarks . 50

Bibliography 51

A Grammar in SDF3 57

B Program transformations in Stratego 65

C Dynamic semantics in DynSem 79

1
Introduction

The Grace programming language [3, 14] is a young programming language, used in educational envi-
ronments for teaching object-oriented programming to university level students. For this language there
exists an informal, prosaic language specification [4] and a number of implementations. These imple-
mentations are: Minigrace (compiler) [12], Kernan (interpreter) [32], Hopper (interpreter) [34]. The
informal specification document describes syntax, program behaviour, and other language aspects.
However, it is unclear to what degree the currently existing implementations conform to the informal
specification. The reason for this is that the implementations are (1) not easy to read and understand,
making it difficult to verify their conformance to the specification, and (2) are not defined in a declarative
or formalised way such that certain properties may be shown to hold.
This work presents a language implementation for Grace called Spoofax Grace. Spoofax Grace aims
to provide an implementation for Grace which is (1) readable enough such that it can be understood
and compared to the language specification, and (2) is written using declarative tools. Spoofax Grace
is both a language specification and an implementation, and it may be used for prototyping, testing,
reviewing and verifying Grace language features and also for executing Grace programs.
The language implementation and specification is build with the Spoofax language workbench [38, 62],
a collection of languages and tools that allows for effective language prototyping.
Spoofax Grace consists of the following parts:

• AGrammar createdwith SDF3 [31], ameta-DSL (Domain Specific Language) for creating context-
free grammars. A parse table for an SGLR (Scannerless, Generalised, Left to right, Rightmost
derivation) parser is automatically generated from this grammar.

• Program transformations written in Stratego [19], a meta-DSL for creating program transforma-
tions. These transformations simplify theGrace programAST (Abstract Syntax Tree) that resulted
from parsing.

• Dynamic Semantics specified in DynSem [61]. This meta-DSL can be used to specify concise
dynamic semantics. From this dynamic semantics specification an AST interpreter is automat-
ically generated. This dynamic semantics specification is joint work with Vlad Vergu. Reverse
engineering the Grace semantics and creating the initial revisions of the specification is work by
the author. The specification in its current form is largely the work of Vlad Vergu. For more ex-
act details on authorship of the DynSem specification, please review the Git commit history on
https://github.com/metaborgcube/metaborg-grace

• A test suite to test syntax and program execution. Tests for testing the grammar and some trans-
formations are written with help of SPT (SPoofax Testing language) [37]. This is a meta-DSL that
allows for a concise specification of language tests. For testing the other transformations and
dynamic semantics, tests are created on a file-by-file basis, and these tests are executed using

1

https://github.com/metaborgcube/metaborg-grace

2 1. Introduction

a parametrised JUnit [10] test runner. This file-based test suite for dynamic semantics testing is
joint work with Vlad Vergu.

The test suite will be used to evaluate this implementation. In addition, a part of the system will be
reviewed and compared to the informal language specification.

1.1. Architecture
A language implementation can be seen as a program (or a set of programs) that takes a program
written in a certain language –in this case Grace– and the inputs, and evaluates the program, possi-
bly generating some output. This includes any behavioural side-effects such as file IO or printing to
stdout. To accomplish this, the implementation of the language must read, internalise and execute
the program.
Spoofax Grace does this in four main steps: parsing, desugaring, lowering and evaluating. Each of
theses steps is guided through a declarative specification: Parsing is done according to the SDF3
grammar, transformation is done through the specified Stratego rules, and execution is performed
according to a DynSem specification. The programs that actually perform this are a proxy of these
specifications: The SGLR parser uses a parse table generated from the SDF3 grammar. The Stratego
rules are compiled to Java code, which is run after parsing. Finally the interpreter is generated from the
DynSem specification. The tools provided by the Spoofax language engineering workbench allow these
steps to be performed from a single environment. Generating the final interpreter from the DynSem
specification combines the parser, transformations and the interpreter and allows Grace programs to
be executed from single entry point.
The following diagram shows how these steps are implemented for Grace, these steps are explained
in the following sections:

Figure 1.1: Process showing the steps when evaluating a Grace program

1.1.1. Parsing
The first step of evaluating a Grace program, is to parse the program code. This parsing step will yield
a Grace AST that is used in subsequent steps. The grammar is specified in the SDF3 language, from
which a parse table is generated. Spoofax includes an SGLR parser which uses this parse table to
allow Grace programs to be parsed. Also, from the syntax definition, a number of AST signatures are
generated. These signatures are used in the transformation and execution stages. If the given Grace
program is syntactically valid and unambiguous, an AST is produced and passed on to the next stage:
desugaring.

1.1.2. Desugaring and lowering
After parsing, we apply a number of transformation steps to the AST. The result will still be a valid
Grace AST. These transformation rules are not very complicated, and are described as a number of
Stratego [19] rules and traversal strategies that dictate how these transformation rules should be applied
to the AST in what order.

1.2. Outline 3

Desugaring is explained in more detail in Section 4.2.
After the desugaring stage, the Grace AST is then lowered to the Grace-lowered language, a ‘core’
version of Grace that removes everything from the AST that is not strictly needed for evaluation and
transforms nodes into into other nodes that more simple to use in the execution step. By using these
new types of nodes in the AST, this Grace-lowered AST does no longer represent a valid Grace AST.
The lowering steps are explained in more detail in Section 4.3.

1.1.3. Execution
In this fourth step the Grace-lowered AST is interpreted by an AST interpreter, which is generated from
the DynSem specification and is based on the Truffle [64, 65] framework and can be run on a normal
JVM [45] or the Graal VM [66].
In Chapter 5 this step is explained in more detail and the dynamic semantics of the most important
language features of Grace are highlighted.

1.1.4. Testing
The test suite developed with Spoofax Grace consists of two main parts: A set of tests written with the
SPT framework. These tests are largely designed to test the syntax and some transformations. The
other part of the test suite consists of a number of Grace programs with their expected outputs (or no
output if an error is expected). Of these program tests, a number of tests come from the Minigrace [12]
implementation. The other tests are written with the intention to exercise one single language feature
or component at a time, making the test suite as granular as possible.
How testing is performed is explained in more detail in Section 6.1.

1.1.5. Evaluation
To evaluate this project, we consider how well Spoofax Grace performs at the test suite that is set up
for this project. In addition, we consider how closely the Spoofax follows the Grace specification by
evaluating an example throughout all the steps of the system. Finally, we very briefly look at how well
the system performs in terms of language development and program execution.
The evaluation can be found in Chapter 6.

1.2. Outline
Chapter 2 shows the basic concepts of the Grace programming language are explained, to provide
guidance when exploring the details of the Grace programming language.
Chapter 3 provides an overview of the syntax specification by explaining parts of the SDF3 grammar
of Grace.
Chapter 4 explains how a parsed Grace program AST will be desugared (Section 4.2) and simplified
further (lowered) into the Grace-lowered form (Section 4.3).
Chapter 5 explains the dynamic semantics of Grace and disusses how this was implemented using the
DynSem language. This explanation includes object construction, inheritance, aliasing and excluding,
method calls, non-local returns, declarations, confidentiality, dialects and imports, native operators, and
types.
Chapter 6 shows the evaluation of this work, in particular we explain how the Grace specification com-
pares to this implementation, by using a concrete example of Grace object construction and through
discussing the test results. Since not all features of Grace are included in this implementation, the
features omitted from Spoofax Grace are discussed in this chapter as well.
Chapter 7 discusses Grace’s other language implementations and other related work involving object
oriented language implementations.

4 1. Introduction

Chapter 8 discusses the conclusions drawn from this project, reflects on the process that has taken
place and presents a number of possible future works. These include the possibilities for: implementing
more syntactic features, setting up a generic Grace-testing suite, exploring the performance of this
and other Grace implementations and how to make the Spoofax Grace implementation more publicly
available for educational use.
The full specification of Grace is included in the appendices. These include the grammar (Appendix A),
program transformations (Appendix B) and the dynamic semantics (Appendix C).

1.3. Code repository
All the source code for the Spoofax Grace implementation can be found in a git repository on:
https://github.com/MetaBorgCube/metaborg-grace/tree/045ac341d4.

https://github.com/MetaBorgCube/metaborg-grace/tree/045ac341d4

2
The Grace programming language

2.1. Origin of Grace
Grace has been designed by Andrew P. Black, Kim B. Bruce and James Noble, to be used for university
entry- and intermediate level object-oriented programming classes. The designers of Grace explicitly
name the different possible angle of attacks for these kinds of classes: object-oriented, functional or
procedural, and all that with or without (static) types. Most importantly, it aims to be a good example of
a contemporary object oriented language. To facilitate these multiple approaches, it can make use of
dialects (a special form of importing) to change the available default methods, or enforce other (typing)
constraints on a given program.
In addition to dialects, another appealing feature of Grace for use in education is its strict syntax, for
instance: indentation in blocks is mandatory and line continuations must be even further indented. This
forces students to write programs in a neat and consistent manner. In addition to these strict syntax
rules, Grace still is a block-based language, meaning that every class, object, method, type, trait or
block body is surrounded by curly braces ({ }) [14].
In contrast to some other object oriented programming languages such as Java, Grace programs can
be written as scripts, meaning the top level of a Grace program can contain both declarations and
statements, that will be executed upon program execution.
This chapter provides a simple overview of the Grace language, for more detail, please see the Grace
language specification on: http://web.cecs.pdx.edu/~grace/doc/.

2.2. Objects
The main vehicle of a Grace program is the object. Objects in Grace are constructed using the object
constructor. Unlike some object oriented languages such as Java, objects can be constructed without
the need for a class. The idea for creating objects this particular way is borrowed from the Emerald
language [13] and is also very prominent in a language like JavaSript [20].
Objects are first-class citizens, and therefore can be assigned to variables, passed as arguments, etc.
Objects in Grace can be constructed and assigned to a constant as follows:

def cat = object {
def colour = ”Black”
var miceEaten := 0
method eatMouse { miceEaten := miceEaten + 1 }

}

This object has two fields: colour and miceEaten and one method: eatMouse. The return value of
a method is determined by the value of the last statement inside the method body, or the value that is

5

http://web.cecs.pdx.edu/~grace/doc/

6 2. The Grace programming language

returned by using the return statement, for more detail see Section 2.6.1.
All fields create an accessor method with the same name, and mutable fields (var) also get a writer
method with the name ‘<name>:=(_)’. Fields can only be accessed or changed via these methods,
however, they can be overridden by a subclass (see Section 2.7). The body of an object can contain
arbitrary expressions that will be evaluated upon construction.
The structure of objects in Grace is immutable: the fields and methods (the structure) of objects in
Grace cannot be changed dynamically after an object has been created. This is in contrast to many
other object-oriented languages like JavaScript, Python or Ruby [20, 27, 59].
It is worth noting that in Grace, similar to JavaScript, O’Caml and Emerald, repeated execution of the
same object constructor will yield distinct objects [13, 20, 44]. This is unlike some other languages that
have a similar notation, like Scala and Self. [53, 58] Those languages will return the same object upon
repeated evaluation of the same object constructor.

2.3. Classes
In Grace, classes can define what the structure of an object is. Class declarations look very similar to
object constructors: they contain declarations and inline code of the object to be constructed. Essen-
tially, class declarations are just syntactic sugar for factory methods that produce new objects, making
the two following code snippets equivalent:

method Cat(name) {
object {

method meow { ”Meow!” }
}

}

def myCat = Cat ”Franz”

Is equivalent to:

class Cat(name) {
method meow { ”Meow!” }

}

def myCat = Cat ”Franz”

Creating an instance of the class Cat will just call the method Cat, that will return the last value of its
body, being the constructed object. Also, a class definition can have parameters, which are directly
available to the class’ body, because it is actually just a parameter of the Catmethod. Note that classes
in Grace are not objects, nor are they types, classes are merely generators of objects. [14] This also
means that objects created from a class, have no connection to the class or any other objects created
from it.

2.4. Method requests
In Grace, nearly all computation is performed through method requests, or in the more traditional
Smalltalk terminology this is also called “message sending” [28].
A method call is a request for an object to carry out one of its operations. This requires every method
request to have some target object, also referred to as the receiver. In Grace, this receiver may either
by explicit (the receiver is syntactically indicated), or implicit (the receiver is omitted from the actual
request, but automatically resolved). The following example shows a method request with an explicit
receiver:

a.f 5

2.4. Method requests 7

In this example a is the also a method request, which will return an object, which is the receiver for the
f(_) method request.
This means any identifier can be referred to as a method request:

f 5

This is called an implicit method call. Since all method calls in Grace must be resolved to a method
declared on some object, the receiver object needs to be (dynamically) resolved.
This method identifier will be looked up in the following objects in order: the current object, current
lexical scope and in lexically enclosing scopes, called outer scopes. For example:

method f(x) { x * 2 }
f 5 // will resolve to the f method
object {

f 6 // will resolve to the same f method
}

Methods may be explicitly called on the object itself with the keyword self, or to a specific outer scope
using the keyword outer. Requests that target an object more than one outer away may chain
multiple outer calls together. Here is an example with an object that has a nested object inside:

1 method f { ”!” }
2 object {
3 method g { ”hello” }
4 object {
5 method h { ”world” }
6
7 self.h // ”world”
8 outer.g // ”hello”
9

10 f // ”!”
11 self.f // f cannot be resolved
12 outer.f // f cannot be resolved
13 outer.outer.f // ”!”
14 }
15 }

The method calls in the inner object perform the following operations, explained per relevant line num-
ber:

7 self.h requests method h on the current object.
8 outer.g requests method g on the object one scope outside of the current object.
10 f is an implicit request that resolves to method f on line 1.
11 self.f is an explicit request that calls the f method on the current object. Since this object has

no method f, this is an invalid request. Because this request has an explicit receiver, there is no
further lookup performed.

12 outer.f is an explicit request that calls to the fmethod on the outer object, but since this object
has no f method (only g), this request is also invalid.

13 outer.outer.f is a chained outer request, that requests the fmethod on the second outerlying
object. In this example that refers to the method f declared on line 1.

Note that once the receiver is made explicit, no further lookup is performed. Do note that often, the
receiver of an explicit method request is an implicit request itself.

8 2. The Grace programming language

2.4.1. Field access
Calling methods and accessing fields are syntactically indistinguishable from each other, as can bee
seen in the following example:

def cat = object {
def colour is public = ”black”
method meow { print ”meow” }

}

cat.colour
cat.meow

Here the field colour, and the method meow are defined as a constant field and a method on the
cat object respectively , but their access pattern is identical. This is similar to the languages Eiffel and
Self [49, 58]. This property of Grace allows programmers to abstract over how storage and computation
is handled inside an object. In Eiffel, this principle is called: ‘The Uniform Access Principle’ as can be
read in Meyer’s Touch of Class [50]. The language Self also has this quality of having no distinction
between accessing variables that are fields and method requests, although this language follows the
prototype concept more strongly [58].
Note that when accessing constants and variables declared inside a method, and method arguments,
these are not object fields but local variables. However, the patterns of accessing these local variables
are the same as for normal method calls.

2.4.2. Confidentiality
There are essentially two modes of confidentiality in Grace that determine howmethods on objects may
be requested: confidential and public. By default, methods defined on an object are marked implicitly
as public, and therefore these methods can be requested whenever there is access to the object.
Methods may be marked with the confidential annotation to make them confidential.
Confidential methods can only be accessed by objects that have inherited from this object, or from an
enclosed (nested) lexical scope. This is referred to as requesting a method from the inside. Requesting
a confidential method from the outside (not from an enclosed lexical scope or to a method that is not
inherited) will lead to an error.
Accessor and writer methods for variables and constants are marked as confidential by default. Option-
ally, constants may be marked readable (making its accessor public), and variables may be marked
either readable or writeable, to make its accessor and/or writer method publicly available.
Note that unlike the private annotation in Java, objects that are created from the same class cannot
access each other’s confidential methods.
The following example illustrates how confidentiality can be used:

def b = object {
def colour is public = ”black” // marked as public
var miceEaten := 0 // confidential by default
method eatMouse { miceEaten := miceEaten + 1 } // public by default
object {

miceEaten := 2; // valid because access is from inside
};

}

b.colour // valid because member is public
b.miceEaten // invalid because variables are confidential
b.eatMouse // valid because methods are publicly accessible

In this example, we declare an object with a constant, variable and a method. The constant colour

2.5. Blocks 9

is explicitly marked as public. The variable miceEaten is not annotated, which makes it confidential.
The method eatMouse is not annotated as well, but it is public by default.
In the object b, we create a nested, anonymous, object and access the confidential miceEaten
variable, this is valid because we are doing it from a scope which is nested in the scope of where the
variable was declared (inside). When we access the colour member of b, we do it from the outside,
since we are not lexically enclosed by the b object, nor have we inherited from it. Because colour
is annotated is public, this access is valid. However, when we attempt to access the miceEaten
member, the access is denied because variables are confidential by default, and we access from
the outside. Finally, the invocation of the eatMouse method is valid because methods are public by
default.

2.5. Blocks
In Grace you can define blocks, which are like lambda’s. Blocks can have zero or more arguments, the
following example shows how to create blocks:

def a = { print ”hello” } // a block without arguments
def b = { x -> print (”hello, ” ++ x) } // a block with a single argument

a.apply // evaluate block
b.apply ”world” // evaluate block with argument

In this example we create two blocks, one without any arguments, and one with an argument. Request-
ing the applymethod on a block will execute it. When applicable, the arguments are also passed with
the apply method. Like method calls, the value of a block application is determined by the value of
the last expression in the block. Blocks close over their lexical scope.

2.6. Control flow
The Grace language has no build-in syntax features for common control flow structures such as if-
then-else or while. However, the standardGrace dialect provides a couple of methods that will allow
for control flow, that can mimic the common control flow structures. The following method defines if-
then-else in Grace using a build-in method ifTrue(_)ifFalse(_) on booleans, which conditionally
applies one of the blocks passed as its arguments:

method if (cond) then (blk1) else (blk2) {
cond.ifTrue { blk1.apply } ifFalse { blk2.apply }

}

The method declared in this example mixes its identifier names and arguments, this is called mixfix
syntax. This allows for method requests that mimic control-flow structures as they are often used in
many other languages. This example shows how the method from above may be requested:

if true then { // this is a block
print ”yay”

} else { // this is also a block
print ”boohoo”

}

Notice that this method request looks extremely similar to how such a control flow structure would look
like in another programming language. The first argument of this method call is a boolean literal. The
2nd and 3rd argument to this method are blocks without arguments. The implementation of this method
as seen above uses the build-in method ifTrue(_)ifFalse(_) on the boolean condition to apply
the appropriate block.

10 2. The Grace programming language

2.6.1. Return
The return statement can be used to return immediately from a method or block. This statement has
a special behaviour that allows control flow to break from block execution and return from the enclosing
method. Consider the example from before, but now with a return statement added:

if true then {
return false
print ”yay”

} else {
print ”boohoo”

}

The return statement will abruptly terminate the block application, but also will it return from the
if(_)then(_)else(_)method. This allows for the creation of varied custom control flow structures.

2.7. Reuse
In Grace there are two main forms of reuse: object inheritance and trait usage.
Object inheritance allows an object to inherit from another freshly created object whereas trait usage
allows objects to obtain methods from (possibly multiple) trait objects. The main difference is that traits
may only contain methods and use other traits. This restriction is not in place for inherited objects, but
objects may inherit at most from a single other object.

2.7.1. Inheritance
Grace’s inheritance model is based on a principle called uniform identity. [35] This model is very similar
to the behaviour of a class-based inheritance model, much like that of Java, but rather based on objects
than on classes. For more details about dialects, see Section 2.9. Objects can inherit from other
object, by requesting a method that returns a fresh object to a call in the inherit clause of the object
constructor, this can be seen in the following example:

class A {
method f { ”hello” }

}
object {

inherit A
f // ”hello”

}

Class A (which is just a method, see Section 2.3) will return an object when requested, and the bottom
object is extended with the declarations from A. During object construction, the only object identity
that exists, is that of the bottom object. Overriding is possible when an inheriting object implements a
method with the same signature as a method declared in a parent object. This signature is only based
on the name and arity of the object.
We expand the previous example to show how to override a method from an inherited object:

class A {
method f { ”hello” }

}
object {

inherit A
method f { ”bye” }
f // ”bye”

}

2.8. Type system 11

In this example, both the parent class A and the to-be constructed object declare a method f. In this
case, the bottom-most method overrides any methods coming from parent objects.
The inheritance system of Grace works as follows: Firstly, upon object construction, the bottommost
object is created. Secondly, the inheritance clause is evaluated, this evaluation leads to the construction
of the parent object, but no new identity is assigned to this object. When the topmost parent is reached,
all fields and methods of the objects are created top-down. Finally, all initialisers and inline code is
executed, again in a top-down fashion, and in the context of the bottommost object.
This design allows for down-calls from parent objects to overridden methods in subclasses. This par-
ticular way of dealing with object initialisation and inheritance is similar to that of Java [29].

2.7.2. Traits
Another form of reuse in Grace is the trait system. With the trait system, an object may obtain behaviour
described in multiple, different traits. Traits are similar to objects, but they may only contain method
declarations and use other traits. Traits can be constructed similarly to normal objects, as is shown in
the following example where we construct two traits and use them in another object:

trait T1 {
method square(x) { x*x }

}
trait T2 {

method double(x) { x+x }
}

object {
use T1
use T2
square 6 // 36
double 6 // 12

}

The final object constructed here uses traits T1 and T2, and therefore has access to the methods
described in the respective traits.
During object construction, trait usage is meant to be symmetrical. This means that the order of trait
usage does not matter, and neither trait may override a declaration from another trait. Conflicts may be
resolved by changing the names of the imported methods (aliasing), or excluding them. This particular
style of multiple inheritance is called Method Transformations [35].
Similarly to inheritance, all declarations that come from traits are installed on the object before any
initialisation or inline code is executed.

2.8. Type system
Grace has a structural type system. Each object’s type is defined by the set of method signatures that
it has. The method signature do not include the argument’s types nor the return type. However, type
object do contain the argument and return-type information, and types can be checked in a number of
places: constant and variable assignment, parameter passing and returning from methods.
Types can be declared through a type object like follows:

type T = type {
+++ (other: Number) -> Number

}

In this example we construct a type T specified by the type { ... } expression. This type expression
contains a list of type signatures. The type signatures contain the method name, arguments, argument

12 2. The Grace programming language

types (optionally) and return type (optionally) for a given method. Now this type can be referenced by
its given name T.
Constants, variables and method parameters and returns can be annotated with types, as is shown in
the following example:

def a: Foo = ...
var b: Bar := ...
method f (x: Number) -> Number { ... }

Type conformance is defined as follows: Given a type 𝐴 and 𝐵. If type 𝐵 conforms to type 𝐴, it means
that 𝐵 at least has all the signatures of 𝐴, and possibly more. Because the type system is strictly
structural, there is no notion of inheritance or trait usages in type signatures.
Grace is meant to be gradually typed: Types may be optionally added, such that they can be statically
checked, or they may be omitted in favour of dynamic type checking.
The Grace type system has more features like type arguments and type expressions. For more details
and a full overview of all features in Grace please refer to the Grace language specification, which can
be found at: http://web.cecs.pdx.edu/~grace/doc/lang-spec/

2.9. Imports and Dialects
Every Grace program, represented by some file containing Grace code is called a module. Every
module is considered to be surrounded by an invisible object { ... } constructor. This means all
top level declarations are actually members of what is called the module object.
At the top level, one can import another Grace module object by importing it and binding it to a name
as follows:

import ”animals/cats” as cats

This code will import the Grace module from a ”animals/cats.grace” file, evaluate it, and bind it
to a confidential constant field cats. Now cats is an object like any other object would be referenced.
Grace’s dialect system is a special form of importing other Grace modules as part of the current pro-
gram. A dialect may be imported as follows:

dialect ”beginner”

This will load a file ”beginner.grace”, evaluate it, and the module object from ”beginner.grace”
will now serve as the lexically enclosing scope of our program. Every top level declaration from
”beginner.grace” will now be available to our program by implicit requests, since those decla-
rations are reachable through the outer scope.
By defining library methods in dialects, the style of programming that is used in a Grace program can be
varied by using different dialects. As well as providing declarations, the creators of Grace also intend
to use the dialect system to create pluggable checkers; type checkers that can alter the behaviour of
the type checker, by implementing specific checker methods. A checker method would be passed the
AST of the program, and can perform any checks that it needs. [33]
In the next chapter we start explaining the Spoofax Grace specification, the first topic that is considered
is the syntax of Grace.

http://web.cecs.pdx.edu/~grace/doc/lang-spec/

3
Syntax

The Grace programming language has a very clean syntax with some very interesting features. The
grammar of Spoofax Grace is created with SDF3. This meta-language allows us to specify a context-
free grammar with disambiguation and preference rules. The disambiguation rules specify operator
precedence to pick between different AST (Abstract Syntax Tree) branches, and preference rules to
discard invalid ASTs after parsing. The Spoofax language engineering workbench generates a number
of artefacts from this grammar: a parse table which is used by the SGLR (Scannerless Generalised
Left-to-Right) parser, and a pretty-printer that can be used to transform ASTs back into concrete syntax
(code formatter). Finally, it generates signatures for the constructors used in the AST that are used in
the Stratego transformations and the DynSem specification.
In this chapter, we first highlight some interesting syntactic features of Grace, and subsequently the
SDF3 syntax is highlighted to show how some of these features are declared [57].

3.1. Syntactic constructs
In the following subsections we highlight a number of interesting syntactic features of Grace.

3.1.1. Mixfix
One of the most obvious syntactic features of Grace is the use of mixfix syntax: Mixing method iden-
tifiers and parameters to form a multi-part method identifier. In Grace this is used to create methods
that have syntactic structures similar to if and while in a language such as Java [29]. This allows
method calls in Grace to look like this:

if (condition) then { foo(5) } else { bar(6) }

While this may look like this is a build in syntactic construct, it is actually a just an implicit request of
the if(_)then(_)else(_) method. The second and third argument to this method calls are merely
blocks, and no parentheses are needed in this case.

3.1.2. Operator methods
Another interesting feature of Grace is that it allows methods to be constructed using a number of
operator characters1, and those methods can subsequently be used with infix style method calls. For
example:

method ++ (other) { self.append(other) }
1Any of the following characters: ! ? # % ˆ & | ˜ = + − * / \> < : . $

13

14 3. Syntax

This method can be used as such:

bar ++ foo

This allows for very natural composition of expressions. An example of this can be seen in theMinigrace
parser expression grammar: The ~ (tilde) operator is used to indicate subsequent valid constructs for
a given expression [11].

3.1.3. Implicit method calls
Method calls in Grace can have many forms, but what makes it a really clean syntax is that any identifier
can be a method call:

foo // just an identifier
foo 5 // identifier with argument
foo 5 bar 6 // mixed identifiers and arguments (mixfix)

Although all method calls in Grace need to have a receiver, these method calls have an implicit receiver.
For more details how method call receivers are resolved, please see Section 5.4.

3.1.4. Layout sensitivity
Even though not supported by Spoofax Grace, the specification describes a number layout-sensitivity
properties that together with implicit (mixfix) method calls, keep the syntax of Grace programs very
neat and suitable for novice programmers. Most importantly, newlines determine when statements end.
Consider the previous example, each of these three method calls are separated by newlines, which
makes it clear that they are in fact three different method calls. In Spoofax Grace, layout is stripped
during parsing, and therefore has no meaning. Fortunately, Grace allows for optional semicolons (;)
to indicate the end of a statement. In Spoofax Grace, these are not optional, but mandatory instead.
In addition to ending statements with newlines, the Grace specification also prescribes that each block
of code needs to be indented with more (but consistent) indentation than a previously opened block.
This leads to neatly formatted code. In Spoofax Grace, these rules are not enforced.

3.1.5. Unicode characters
The specification describes a number of Unicode2 characters that are used as part of the Grace gram-
mar. These can be used instead of other more common ASCII character combinations. These include
right-arrow (->), comparison operators (>=, <=, !=) and double brackets ([[,]]). Keywords are
specified in the ASCII subset of Unicode, while other Unicode characters can be used for identifiers or
operators. Due to technical limitations of Spoofax, this implementation does not support Unicode.

3.2. Syntax
In this section the implementation of a number of Grace syntactic features is explained.

3.2.1. Program
The goal of parsing is to transform a Grace program into an AST. The SDF3 (the meta-DSL that de-
scribes the grammar), grammar consist of a list of production rules. These rules are of the following
form:

Sort.Constructor = Expression

2Unicode character set. See: http://www.unicode.org/

http://www.unicode.org/

3.2. Syntax 15

The expression can contain a template, which is a piece of concrete syntax delimited by <> or []. In
these templates other production rules are referenced by escaping the template with the same delim-
iters.
The root node of the AST is the Program term, this term contains a sequence of statements:

Program.Program = <<{Statement ”\n”}*>>

This template describes that a Program constructor must consist of 0 or more Statement productions,
separated by newlines. Note that since layout is ignored during parsing, the newline separator here is
only relevant for pretty-printing.
Statements can be any of following: dialect, import, declaration or an expression: In SDF3, we can
write these rules as being of the same sort (Statement) but with a different constructor each time.

Statement.Dialect = <dialect <STRING>;>
Statement.Import = <import <STRING> as <Identifier><Annotations>;>
Statement.Declaration = <<Declaration>;>
Statement.Expression = <<Exp>;>

This forms the main structure of a Grace program. In the following subsections we highlight a couple
of interesting syntactic constructs.

3.2.2. Object constructors
A very common expression in Grace is the object constructor, which has the following production rule:

Exp.ObjectDecl = <
object {

<Inherit><Use*><{Statement ”\n”}*>
}

>

Within the template of this rule, we can see that the keyword (object and delimiters ({ ... }) of the
object constructor are described in concrete syntax. Inside the delimiters there are three references
(escaped with <>)to other sorts that go in these places: the inherit clause, zero or more use clauses,
and zero or more statements. Formatting matters when forming production rules, this is picked up by
the pretty-printer. One can see that in the body of the object, there must be an Inherit clause, zero
or more Use productions, and zero or more Statement productions.

3.2.3. Method requests
In Grace, there are many forms of method requests. For brevity in the code, We also refer to method
requests as method calls. The following grammar rules highlight explicit (with indicated receiver) and
implicit (without indicated receiver) method requests respectively:

Exp.MCallWDot = <<Exp>.<Part+>> {left}
Exp.MCallImpl = <<Part+>> {left}

Note that there is an annotation that implies that productions are left-associative (terms will be grouped
from left to right in absence of parentheses). Because of the mixfix notation in Grace, method requests
consist of one or more parts. As can be seen in the following piece of the grammar: Parts combine an
identifier and arguments:

Part.Part = <<Identifier><CallArgs>>

CallArgs can be one of the following things: a literal (without parentheses), blocks, or one or more
expressions within parentheses. The latter form is the more common one, as it is seen many program-
ming languages. A literal can be a number, string, list or boolean. This list of available CallArgs
options is expressed as follows:

16 3. Syntax

CallArgs.ArgNumber = < <String>>
CallArgs.ArgBlock = < <Block>>
CallArgs.ArgsParen = < (<{Exp ”, ”}+>)>
...

The first production rule shows that a string can follow directly, the second production rule indicates
that a block can also be used as a direct arguement. The third production rule indicates that CallArgs
can be a list of arbitrary expressions, separated by commas and surrounded by parentheses.

3.2.4. Binary operators
Arithmetic is done in a very generic way in Grace. Consider the following production rule for infix (the
placement of an operator between two operands) expressions:

Exp.MCallOpEx = <<Exp> <Operator> <Exp>> {left}

In this production rule we can see that there is no concrete syntax specified, but just the placement
of a reference to an Operator production between two references to Exp productions. Operator is
defined ultimately by a regular expression in the lexical grammar, which can include the operators as
specified in the Grace language specification [4]. For more details regarding lexical syntax, see Sec-
tion 3.2.7.

3.2.5. Types
Named types can be constructed as follows:

Declaration.TypeDecl = <type <Ident><TypeArg> <Annos> = <TypeDeclBody>>

Here we see the keyword type followed by an identifier, type arguments and annotations, then the
equals sign and the body of the type declaration.
The type declaration body can be either a type block, or a type expression:

TypeDeclBody.TypeDeclBlock = <<TypeBlock>>
TypeDeclBody.TypeDeclExp = <<TypeExp>>

A type block is a list of TypeRule surrounded by curly braces.

TypeBlock.TypeBlock = <{<{TypeRule ”\n”}*>}>

Finally, a type rule is a a method name optionally followed by a return type.

TypeRule.TypeRule = <<MethodNames> <TypeRuleRightHand>;>
TypeRuleRightHand.RH = [-> [TypeExp]]
TypeRuleRightHand.NoRH = <>

Note the use of different brackets to notate the type templates. For the RH constructor we use square
brackets rather than angle brackets to prevent a conflict with the literal arrow (->) inside the rule.

3.2.6. Priorities
An important aspect of dealing with context-free grammars is that conflicts may arise when a piece
of code is being parsed. In a language with many different types of expressions such as Grace, the
following conflict would arise:

A.f + 24

3.2. Syntax 17

Could be parsed as either of the following:

A.(f + 24)

Or:

(A.f) + 24

To decide between these kinds of ambiguities, we can indicate precedence of production rules in a
separate section of the grammar. These encode needed priorities, but not real operator precedence
(such as * takes precedence over +), since those are not directly encoded in the syntax definition.

context-free priorities
...
Exp.MCallWDot >
Exp.MCallPrefixOpExp >
Exp.MCallOpEx >
Exp.MCallOpExAssign >
Exp.TypeExp
...

This snippet illustrates that explicit method calls are selected before method calls with a prefix operator,
are selected before method calls with an operator, etc.

3.2.7. Lexical syntax
The main grammar of Spoofax Grace is concerned with the composition of different production rules.
However, some sorts are defined using a different notation, very similar to programming with regular
expressions. These rules form the lexical syntax. In Spoofax Grace, lexical syntax is used to indicate
how identifiers, numbers, strings, comments, and layout is formed. Note that even though lexical syntax
can be specified in a different way, the SGLR parser does not have a separate lexer.
For example, this is the rule that indicates the shape of identifiers:

lexical syntax

ID = [a-zA-Z] [a-zA-Z0-9\’_]* ”:=”?

As can be read from this: the identifier must begin with a letter (lower- or upper case), followed by zero
or more letters, numbers, single quotes and underscores and may optionally end with ‘:=’.
For a full overview of the SDF3 grammar please see Appendix A.

After parsing is complete and a valid AST has been formed, the AST is now subject to a number of
transformations, which are discussed in the next chapter.

4
Transformations

When a Grace program is parsed, the AST that is produced contains many different kinds of nodes (or
constructors). This means that even though semantically these parts of the AST mean the same thing,
they can have different forms. To illustrate this problem, consider the following three method requests:

print ”hey”;
print(”hey”);
print ”hey” and ”there”;

After parsing, these method calls are represented by the following ASTs:

MCallImpl([Part(ID(”print”), ArgString(”hey”))])
MCallImpl([Part(ID(”print”), ArgsParen([String(”hey”)]))])
MCallImpl([

Part(ID(”print”), ArgString(”hey”)),
Part(ID(”and”), ArgString(”there”))

])

As can be seen in this example, the arguments of the implicit method call can be supplied in different
forms (ArgString, ArgParen, etc.). Moreover, the method identifiers are distributed over different
AST nodes.
To simply the AST and make it more homogeneus, we employ two sets of program transformations:
desugaring and lowering.
In the desugaring phase, Grace ASTs are transformed and simplified, and after the transformation, the
resulting AST is still a valid Grace AST. No new AST constructs are introduced and the AST can still
be pretty-printed into valid concrete syntax.
In the lowering phase, the simplifications are even more rigorous, and new AST constructors are intro-
duced to further remove AST noise.1 After lowering, the resulting AST can no longer be pretty-printed
into concrete Grace syntax, however it can be transformed into its own concrete syntax for inspection
or debugging purposes.
The following section shortly describes how the transformations are applied using Stratego, and in
subsequent sections the transformations are discussed in more detail.

4.1. Setup
The transformation rules discussed in this section are made with the meta-DSL Stratego [19]. In
stratego, we declares a set of rules, these rules generally match on certain parts of the AST and
1Parts of the AST that have no semantic meaning are referred to as AST noise, or syntactic noise.

19

20 4. Transformations

construct new AST nodes. For example a Stratego rule may be created as follows:

desugar-operator: Operator(n) -> ID(n)

This rule consists of three main parts: the name (desugar-operator), the matching constructor
(henceforth called term, Operator(n)) and the created term (ID(n)). This particular rule transforms
the term named Operator into a new term called ID. The sub-term n is moved over to this new term.
Rules of the same name will be combined when the transformations are compiled into Java code into
a single strategy. Strategies may also be applied from within other rules by surrounding the strategy
name with angle brackets (<>) as follows:

desugar-operator: Operator(n) -> ID(<remove-quotes> n)

In this example the sub-term n will have the remove-quotes strategy applied to it.
Generally, all transformation rules described in the Spoofax Grace specification are applied exhaus-
tively on the AST. This means that every strategy will be attempted to be applied to every part of the
AST, until none can be applied any more.
To accomplish this, all necessary strategies are combined in a separate strategy, and this strategy
is applied to the AST using a library-offered strategy (innermost). For more details on the Stratego
language please refer to the Stratego reference manual [41].

4.2. Desugaring
The desugaring of the Grace AST produced by the parser is mainly involved in making the AST more
homogeneous. The following subsections cover the most important desugarings.

4.2.1. Class to method
One of the most interesting desugaring steps in the Grace language, is the desugaring of the class
construct. The class constructor is syntactic sugar for a method that returns a fresh object. So the
following Grace code:

class foo {
method f { };

};

Is equivalent to, and thus will be desugared to:

method foo {
object {

method f { };
};

};

The following Stratego rule will be applied to achieve this:

ClassDecl(MethodName(mIDs), annotations, type, inh, use, code) ->
MethodDecl(mIDs, annotations, type, MethodBody([

Expression(ObjectDecl(inh,use,code))
]))

Note in this snippet, that the method body that is begin constructed, begins with
Expression(ObjectDecl(...)), the object constructor. Also the inherit and use parts of the
class declaration is transferred to the object constructor, along with the body of the class.

4.2. Desugaring 21

4.2.2. Canonical method names
A critical part of desugaring is to convert mix-fix method names into a single, canonical method name.
This canonical name then forms the unique and final representation of the method signature.
Consider the following Grace code:

greet (”John”, ”Hello”) from (”Sam”);

This method call has the following AST:

MCallImpl([
Part(

ID(”greet”),
ArgsParen([String(”John”), String(”Hello”)])

), Part(
ID(”from”),
ArgsParen([String(”Sam”)])

)
])

But after desugaring it will be:

MCallImpl([
Part(

ID(”greet(_,_)from(_)”),
ArgsParen([String(”John”), String(”Hello”), String(”Sam”)])

)
])

The call consists of a single part now. All arguments are also collected in that first, single part. The
name of the method still resembles the original mixfix construction, but it squashed into a single iden-
tifier. Since the () tokens in the identifier are not valid in Grace, when this code is pretty-printed, the
parentheses are removed. However, this still uniquely identifies the method name. The same canonical
name generation is performed on all other declarations.

4.2.3. Generating string interpolation code
String interpolation is handled initially by the syntax specification, but we want to remove any string
interpolation specific nodes from the AST and convert the string interpolation to string concatenation
operations. This prevents the subsequent phases (lowering and execution) from having to handle the
many AST constructors that are involved with string interpolation. In the transformation phase this
is converted to Grace code that used the string concatenation operator (++) and thus removes any
referenced to AST nodes that are specific to string interpolation. Consider the following Grace code:

”hello {name}, it’s me: {sender}”;

This is the AST after parsing:

InterpolatedString(IntPolStr(
”hello {”,
[IntPol(MCallImpl([Part(ID(”name”), NoArgs())]),

”}, it’s me: {”
)],
IntPolEnd(MCallImpl([Part(ID(”sender”), NoArgs())]),

”}”
)

))

22 4. Transformations

And this gets desugared to:

MCallWDot(
MCallWDot(

MCallWDot(
String(”hello ”),
[Part(

ID(”++(_)”),
ArgsParen([MCallImpl([Part(ID(”name”), NoArgs())])])

)]
),
[Part(ID(”++(_)”), ArgsParen([String(”, it’s me: ”)]))]

),
[Part(

ID(”++(_)”),
ArgsParen([MCallImpl([Part(ID(”sender”), NoArgs())])])

)]
)

Even though the AST has grown in size, there is no more mention of any string interpolation specific
constructors.
This means that the lowering and execution need not be concerned with those constructors, simplifying
those operations.

4.2.4. Annotations
In the desugaring stage, the default annotations are placed on declarations. Constants (def), im-
ports (import) and variables (var) get a confidential annotation. Methods (method) and classes
(class) get public annotations by default.
After all defaults are set, there will be a second transformation that considers the type of declarations
and annotations, and optimises them. To illustrate: declaring a variable will at run-time generate a getter
and setter method, thus, a variable declaration with the public annotation will get with the readable
and writeable annotations that will be applied to its getter and setter respectively. Similarly this is
true for constants and imports, but only a getter is generated for these declarations and thus only the
getter is affected.

4.2.5. Other steps
Besides the desugaring steps detailed above, other steps include:

• Trait declarations are desugared to methods that return a trait.
• Places where types that are not explicitly annotated will receive the dynamic type annotation.
• Match cases are desugared into if-then-else calls with type matches.
• Calls with operators (using the operator symbols instead of normal identifiers) are transformed
into regular method calls.

• Prefix method names are transformed into normal method names.
• Blocks are desugared into a single form.
• Method arguments (single, no arguments, arguments in brackets, literals) are desugared into a
construct that is equal for all calls.

• Double quote symbols (”) are removed from string literals.

All these desugaring are applied exhaustively on the AST. The complete transformations can be found
in Appendix B.

4.3. Lowering 23

4.3. Lowering
After desugaring, the AST of a given Grace program has becomemore simple, but it still uses only valid
Grace AST constructs. These are not yet free of AST noise, and can be put into simpler forms that make
the dynamic semantics specification more concise. This is because the these transformations prevent
the dynamic semantics from containing different rules for the same thing. These transformations ef-
fectively translate the Grace AST into a more simple language, hence it is referred to as lowering. The
resulting Grace AST is said to be in the Grace-lowered ‘language’.
This lowered language can be seen as a ’core’ version of Grace, although technically it combines AST
constructors from both Grace and an additional Grace-lowered grammar. The Grace-lowered AST
should no longer contain certain constructors. Also, after lowering there is no longer a way to convert
the AST to concrete Grace syntax. However, there still is a concrete syntax for Grace-lowered that can
be pretty-printed, this can be used to translate for inspection and debugging purposes.
The following sections highlight the most important lowering steps that are performed.

4.3.1. Generalising
In the Grace syntax, there exist specialised AST nodes for some constructs. A good example of this is,
that a method call with a literal as a single argument does not need parentheses. For all literals there is
a separate constructor, but after lowering, all these different forms will be removed and the arguments
are put in a list. This transformation leads to loss of information as to how the request was originally
made.
The rules that perform these transformations are as follows:

lower-arguments: ArgNumber(a) -> [Number(a)]
lower-arguments: ArgString(a) -> [String(a)]
lower-arguments: ArgsParen(as) -> <lower-arguments> as
lower-arguments: [ArgsParen(a) | b] -> [a | <lower-arguments> b]
...

The lower-arguments rule is invoked from multiple rules where arguments present themselves in
the AST, such as for blocks.

4.3.2. Simplifying
To simplify the AST, new AST constructors are introduced for many syntactic constructs. These are
created in such a way that there is only one type of constructor needed for each type of construct. The
following constructs have a specific, lowered version:

• Implicit and explicit method calls.

• Object constructors.

• Inherit and use expressions, including aliasing and exclusion.

• Blocks.

• Uninitialised expressions.

• Unknown types.

• Method, variable and constant declarations.

• Type rules.

The resulting AST is very explicit, as every possible sub-term for each AST node is present. For
example, consider the following Grace program:

24 4. Transformations

class A {
method f(a) {
print ”Hey, ” ++ a

}
}

A.f ”Jude”

This program can be desugared, lowered and pretty-printed into the following Grace lowered concrete
syntax:

_method A |||| is public () : () -> _Unkwn {
_object {

method f |||| is public (a) : (_Unkwn) -> _Unkwn {
_recv (_impl (print_(”Hey, ”))).++_(_impl (a()));

};
};

};
_recv (_impl (A())).f_(”Jude”);

Note that in this example, the lists of type arguments (||||) are present, but empty. All declarations
are annotated with a confidentiality modifier. All implicit types are explicated to the unknown (dynamic)
type. All method calls have an identical form, and are either explicit or implicit (indicated by _recv or
_impl respectively). Methods do not only have an argument list, but also a list of the same length with
the types corresponding to those arguments.
Note that all lowering transformations happen after the desugaring operations. So in the example
above, before any lowering rules were applied, first the fragment is desugared.
The full grammar for Grace-lowered can be found in Appendix A. The lowering transformations can be
found in Appendix B.
Stratego is a very suitable language for composing these transformations, because it allows us to use
generic tree traversals, and specify concise transformation rules.
However, it could be possible to move these transformations to the domain of the dynamic semantics.
By doing this one would lose the possibility of using Stratego (and libraries) to perform static analysis
tasks, but on the other hand it would require one less meta-DSL to be understood and used, even if it
is not very complex.

After desugaring and lowering the AST is ready for execution. This next phase is discussed by explain-
ing the dynamic semantics of Grace in the next chapter.

5
Dynamic semantics

The dynamic semantics of SpoofaxGrace specifies the behaviour of Grace programs at run time. These
specification are written in the Meta-DSL called DynSem. In Sections 5.1 to 5.10 of this chapter we dive
deeper into the semantics of Grace, explaining themost crucial aspects of the language. In Section 5.11
of this chapter the basics of DynSem are explained. The DynSem specification is joint work with Vlad
Vergu. As the the most recent DynSem implementation of these semantics are mostly implemented
by Vlad Vergu1 , the focus lies on the underlying semantics themselves, and in lesser detail how these
are implemented. The inference rules shown in this chapter are based on the DynSem rules.

5.1. Program start-up
A Grace program is represented by a .grace file. This program, also called a module can be be
executed. The contents of the file are treated as if they were to be inside of an object constructor.
The body of the program —which is a list of statements and declarations— will be evaluated and
reduced to a value, which will be the final result of this Grace program. This can be seen in the following
(simplified) rule:

ProgPath, 𝑅, 𝑂, 𝑆, 𝑃, 𝑆𝑟𝑐 ⊢ 𝑝 ∶∶ 𝐻, 𝐿,VH,DCache, ICache, 𝐸𝑋 ⇒ 𝑣 ∶∶ 𝐻, 𝐿, 𝑉𝐻, 𝐸𝑋

𝑝@Program (_) ⇒ (𝑣, 𝐸𝑋,𝐻)
(5.1)

Note that in addition to the environment variables passed through rules, as indicated by the symbols
before the turnstile (⊢) symbol, there are also a number of components passed after the double colon
(∶∶). In a more traditional notation these would be propagated as a tuple.
Also note that this rule has an arrow named init. This indicates that this is the first rule that should be
applied in the semantics. All other rules in the specification can be considered an unordered set, as is
common in natural semantics [36].
Finally, note that in this rule, wematch on the Program(_) AST node (also referred to as constructors),
and we bind it to the 𝑝 variable (indicated by the @-symbol).
The following list describes all the components used in this rule:

ProgPath File path of the Grace module being executed.
𝑅 Return marker that indicated which method to return to upon return.
𝑂 Reference to the outer object. Initially points to a non-existing object.

1At the time of writing, around 21% of the lines of code in the dynamic semantics specification were last touched by the au-
thor. Please see the GitHub repository for more details: https://github.com/MetaBorgCube/metaborg-grace/tree/
045ac341d

25

https://github.com/MetaBorgCube/metaborg-grace/tree/045ac341d
https://github.com/MetaBorgCube/metaborg-grace/tree/045ac341d

26 5. Dynamic semantics

𝑆 Reference to the self object. Initially points to a non-existing object.
𝑃 Phase of execution; can be in normal execution mode or object construction mode. Initially
in normal execution mode.

Src Used to determine the source of methods (inherited, used, or from within object). Initially 0.

𝐻 Heap (map from reference to value). Initially empty.

𝐿 Locals (map from name to reference). Initially empty.

𝑉𝐻 Value heap, (map from reference to value, for locals). Initially empty.

DCache Dialect cache, since imported dialects may only be evaluated once, this cache stores the
module object from used dialects in case other imported module re-use the same dialect.
Initially empty.

ICache Import cache; similarly to dialects, imported module objects may only be evaluated once, so
when multiple imports import the same module, the object is drawn from this cache rather
than evaluated again.

𝐸𝑋 Exception, indication of early return, exception or normal status. Initially empty.

All these components will be initialised after this first rule. After this initial rule has been applied, the
next (and only) rule that can be applied is the following:

collect-dialect-statement (prog) ⇒ 𝑑𝑖𝑎 load-dialect (dia) ⇒ 𝑆 𝑆 , 𝑂 𝑆 ⊢ code ⇒ 𝑣
𝑆 ⊢ prog@Program (code) ⇒ 𝑣

(5.2)

In the conclusion, like in the previous example, the prog variable is bound to the constructor that follows
after the @-sign. In addition, the sub-term code of that constructor is also immediately bound.
In the first premise, we call the meta-functions called collect-dialect-statement. Meta-functions are
evaluated similarly as if they were any other constructor: they are matched against a rule, evaluated
and bound to their result variable. This rule collects the optional dialect statement from the code body
and binds it to the variable dia.
The second premise load-dialect evaluates this dialect statement and results in a new self reference
that is used in the next premise.
In the third premise, there are two components that come before the turnstile: 𝑆 and 𝑆. The latter is
actually assigned to the component sort (type) 𝑂, and 𝑆 is the variable name that we actually reference.
What happens here is that the dialect object serves now as an outer scope for the module object being
executed. Thus, this is also the premise that will lead to the evaluation the body of the program.
Note that in this rule, there is no mention of any other components that are not touched, this is the case
for all rules in this chapter.

5.2. Code execution
In the previous section we showed that the evaluation of the Program constructor will lead to the
evaluation of its body. This body is a list, and thus we define a number of rules that operate on this list:

[] ⇒ DoneV ()
𝑐 ⇒ 𝑣
[𝑐] ⇒ 𝑣

𝑐 ⇒ _ cs ⇒ 𝑣
[𝑐|cs@[_|_]] ⇒ 𝑣

(5.3)

These three rules are applicable in case of an empty body: (1) a body with a single entry, of which the
value will be the value of this whole body, (2) a body with more than one entry or (3) an empty body, of
which the result will be the DoneV value.
The following statements can occur in a code body:

5.3. Object construction 27

Figure 5.1: Grace-lowered grammar rules for statements (simplified).

⟨Statement⟩ ::= object { ⟨Inherit⟩ ⟨Use*⟩ ⟨Statement*⟩ }
| impl ⟨Identifier⟩(⟨Exp*⟩)
| recv ⟨Exp⟩.⟨Identifier⟩(⟨Exp*⟩)
| method ⟨Identifier⟩ ⟨TypeArg*⟩ ⟨Annos⟩ ⟨Param*⟩ ⟨ParamType*⟩ → ⟨TypeExp⟩ { ⟨Statement*⟩ }
| def ⟨Identifier⟩ ⟨TypeExp⟩ ⟨Annos⟩
| var ⟨Identifier⟩ ⟨TypeExp⟩ ⟨Annos⟩
| block { ⟨Param*⟩ ⟨TypeExp*⟩ → ⟨Statement*⟩ }

These statements are explained as follows:

object Object constructor. Has an inherit clause, use clauses and body statements.
impl Implicit method request. Has a name and argument expressions.
recv Method request with receiver. Has as receiver (an expression), name and argument ex-

pressions.
method Method declaration. Has a name, type arguments, annotations, parameters, parameter

types, return type and body statements.
def Constant declaration. Has a name, type and a list of annotations.
var Variable declaration. Has a name, type and a list of annotations (Initialisation is a separate

method request).
block Block constructor. Has a list of parameters with types and a list of body statements.

The following sections describe how these statements are handled in more detail. Note that throughout
this chapter, the terms method request and method call are used interchangeably.

5.3. Object construction
When an object constructor node is encountered, it requires the interpreter to construct a model of this
object. To illustrate the many steps that go into the object construction, please consider the following
Grace code snippet, with numbers added in comments to each line. These numbers represent the
order in which they are handled. Each step of the object construction is explained below.

class A { // 3
method f { } // 4
f // 5, 10

}
trait B { // 7

method g { } // 8
}

object { // 1
inherit A // 2
use B // 6
method f { } // 9
g // 11

} // 12

In this example we create a class, a trait and finally the object to be constructed. The class and trait
are considered to be already handled before the object is constructed.
As can be seen in Figure 5.1, the object constructor is represented by the object constructor node, the
inherit clause (optionally empty), a list of trait usage clauses (can be empty), and finally the body of the
object (which itself is a list of statements).
The following list explains what happens during object construction in order:

28 5. Dynamic semantics

1. The object constructor is considered, a new object is allocated.
2. The inherit expression is evaluated.
3. The method of the class declaration is resolved, but no new object is created.
4. Method f is allocated.
5. Initialisation code of this class is stored, but not executed.
6. The use expression is evaluated.
7. Method of the trait declaration is resolved, but no new object is created.
8. The method g is allocated.
9. The method f of the main object is allocated, overriding the previous declaration of f.
10. All allocations are complete, so the initialisation code is run, starting at the top object of the

inheritance chain, so f is called, which resolves to the overridden method.
11. The g method is evaluated as part of the bottom object initialisation code.
12. Object construction is completed.

Important to notice is that the execution of the inherit clause must happen under a different mode
than normally. This is where the 𝑃 flag first mentioned in Equation (5.2) is for: before evaluating the
expression in the inherit clause, we change the standard flag for one that indicates that we are in a
special object construction mode. This ensures that we are going to construct the object and initialise
it in the correct order. Since we have different flags that indicate these execution modes, we also have
different execution rules.
The following two rules describe the behaviour of object initialisation for object construction in the Exec
(normal execution) mode and in the Flatten (mid-object construction) mode respectively:

new-object (𝑆) ⇒ 𝑆 snapshot-locals () ⇒ 𝐿
𝑆 𝑆 , 𝑂 𝑆,Flatten ⊢ inherit ⇒ oc-inherit 𝑆 𝑆 , 𝑂 𝑆,Flatten ⊢ uses ⇒ ocs-use

(𝑆, 𝐿, oc-inherit, ocs-use, code) ⇒ oc
𝑆 ⊢ install-members (oc) ⇒ oc 𝑆 ⊢ init-object (oc) ⇒ _

𝑆,Exec ⊢ Object (inherit,uses, code) ⇒ 𝑆
(5.4)

In this rule, a new object is allocated, its reference is bound to 𝑆 . Locals are captured and bound to
𝐿. In Flatten mode, the inherit and use clauses are evaluated and return an object constructor
tuple and a list thereof respectively. An object constructor tuple for this object is created and bound
to oc. Members will be installed, the object constructor tuple is used for this, this tuple also contains
all necessary information to install members for all parents in correct order, this is abstracted by the
install-members meta-function. Finally, the initialisation code is run by the init-object function, this
information is also kept in the object constructor tuple resulting from the install-members function.
The resulting value of an object constructor is an object reference, which is a value with an address
that points to this object on the heap.

snapshot-locals () ⇒ 𝐿
𝑂𝑆,Flatten ⊢ inherit ⇒ oc-inherit 𝑂𝑆,Flatten ⊢ uses ⇒ ocs-use

𝑆,Flatten ⊢ Object (inherit,uses, code) ⇒ (𝑆, 𝐿, oc-inherit, ocs-use, code)
(5.5)

This rule captures the locals, and constructs the object constructor tuples for inheritance and use
clauses. Finally it creates an object constructor tuple for the object itself.

5.3.1. Aliasing and exclusion
On the inherit and use expressions of the object constructor, there can appear any number of alias
and exclude clauses. These clauses indicate the copying and removal of a method signature during
the inheritance sequence, respectively. The general idea is to set extra components to the execution
environment when installing methods on objects (in the rules above denoted by the install-members

5.4. Method requests 29

function). Note that in these procedures, the resulting methods must be checked for presence (in case
of exclusion), and for duplication (in case of aliasing). When an excluded method is not present or a
method is aliased to a name that is already defined, the execution is halted.

5.4. Method requests
The main way of evaluating expressions in Grace is through method requests (or calls). Method re-
quests come in two forms after the lowering process: explicit (also referred to as qualified) and implicit.
Explicit requests have an expression that evaluates to the specific receiver object that the method
needs to be requested on, whereas implicit requests need a way to look up what method to invoke and
on what object, since its receiver is not yet determined.

5.4.1. Qualified requests
Requests with an explicit receiver can be expressed as follows:

foo.f 12

In this example, foo is the receiver of this call, f(_) is the canonical method name, and 12 is the
argument to f.
To evaluate this request, firstly the receiver must be resolved. In this case, the receiver expression is
itself a method request, an implicit one with the name foo. This should return an object, which has a
method with the name f. This will be requested directly after the arguments are evaluated from left to
right.
The rule for evaluating qualified calls is as follows:

𝑒 ⇒ 𝑟𝑒𝑐𝑣 recv ≠ build�in
call-qualified (recv, 𝑛𝑎𝑚𝑒, 𝑒𝑠) ⇒ 𝑣
Exec ⊢ MCallRecv (𝑒, 𝑛𝑎𝑚𝑒, 𝑒𝑠) ⇒ 𝑣

(5.6)

The second premise of this rule implies that the receiver is not one of the build-in object types (Number,
Boolean etc.), in that case the call is handled by a separate function depending on which object. These
functions typically delegate to native operations. The function call-qualified can be evaluated by on
of the following two rules, one in case the function is applying a block directly and one in the generic
case, where the method needs to be retrieved from the receiver object. Methods are stored on the
heap as closures, these closures collect all necessary information (references, types, code body) to
execute the methods it represents.

clos = closure
x.startsWith (”apply”)
call (clos, vs,name) ⇒ 𝑣

call-qualified (𝑐𝑙𝑜𝑠,name, 𝑣𝑠) ⇒ 𝑣

lookup-local-method (recv,name) ⇒ 𝑐𝑙𝑜𝑠
disambiguate (clos,name) ⇒ _

call (clos, vs,name) ⇒ 𝑣
call-qualified (clos,name, 𝑣𝑠) ⇒ 𝑣

(5.7)

The main reason for having these two rules split up, is that the apply method on blocks is never
explicitly defined in a program. This means that when we would do a normal method lookup on the
applymethod, it would not be found. Instead we use two possible rule matches to check for this case.
If any of the premises of either rule fails, the other rule will be applied.
In this rule a number of meta-functions are applied: The first one (lookup-local-method) is respon-
sible for fetching the receiver object from the heap, and retrieving the correct method from it. The
second premise uses the disambiguate meta-function, that will raise the appropriate error and halt
the interpreter if the method returned in clos is not valid.
The last function to be discussed is the call meta-function. This rule actually performs the request,
given the receiver, method name and argument values.

30 5. Dynamic semantics

clos = Closure (𝑆, 𝑂,params, locals, code, 𝑅,paramtypes)
type-check (paramtypes, 𝑣𝑠) ⇒ true ensure-access (name, clos, 𝑆) ⇒ true

add-locals (locals) ⇒ _ update-locals (params, vs) ⇒ _
𝑆, 𝑂 ⊢ handle-return (code, 𝑅) ⇒ 𝑣
call (clos, vs,name) ∶∶ 𝐿 ⇒ 𝑣 ∶∶ 𝐿

(5.8)

This rule does the following: it checks the types of the arguments, ensures that the caller is allowed
to access this method from an encapsulation perspective, adds the local variables from the declared
scope, adds the arguments to the local variables, and finally, handle-𝑟𝑒𝑡𝑢𝑟𝑛 evaluates the code and
checks whether to return normally or to propagate a return exception . This return exception will then
be handled at the appropriate level.
Note that the self and outer references that come from the closure are set prior to executing code.
This is to make ensure correct lexical scoping of the method body in question. In addition, note that this
function preserves the local variables component 𝐿, and re-outputs it, this is to prevent any changes
leaking into the callers scope.

5.4.2. Implicit requests
Implicitly calling methods without a receiver, requires the receiver object to be resolved before the
method may be evaluated. The following Grace code shows an implicit method call:

foo

There can be multiple possible receivers to this method request, and the receiver is resolved in the
following order:

1. Local: In case the name foo resolves to an argument of a method, or a constant or variable that
is declared directly inside a method, foo will resolve to a local value. When a method is local,
there is no receiver object. Locals are stored in an environment and have a reference to their
value on a heap.

2. Current object: If the method foo is a field on the same object that the request is made from, the
call resolves to that.

3. Outer object: The next possibility is that the method foo is declared in some outer scope, so all
outer scopes up to the dialect scope need to be checked one by one for having the foo method.

4. Inherited or from trait: Since the object construction folds all inherited and used objects into a
single object, methods from traits and the inherited object will be resolved to a field on the object
itself.

This means we need to locate the method in three possible places: local scope, current object or some
outer object. This is reflected in the rules for implicit calls:

is-local (name) = true
access-local (name, vs) ⇒ 𝑣
call-implicit (name, vs) ⇒ 𝑣

is-local (name) = false
lookup-local-method (name) ⇒ local
lookup-outer-method (name) ⇒ outer

disambiguate (local, outer,name) ⇒ 𝑐𝑙𝑜𝑠
call (clos, vs,name) ⇒ 𝑣

call-implicit (name, 𝑣𝑠) ⇒ 𝑣
(5.9)

The first rule only matches if name is indeed a local. In this case we access that local and evaluate
the request to a value.
The second rule shows what needs to happen in the case that name is not a local. In this rule we
perform lookups in the current object, much like in Equation (5.7) but also in the outer scopes. Then
there is a need to disambiguate between these two results: If either returned a valid closure, that is
correct and that respective closure is evaluated. If neither lookup returned a closure, the method could

5.5. Returning 31

not be found and the evaluation will halt. If both lookups return a closure, there might be a conflict:
the Grace language does not allow the shadowing of methods from an outer scope with methods that
come from an inherited (or used trait) object. This is also checked within the disambiguate function.
Finally, the same call function is called and evaluated to a value as shown in Equation (5.8).

5.5. Returning
The return statements inside of blocks can have a special effect. When a method is applied from
within a method, the returnwill not only return from the block, but also from the method. The following
example highlights why that is useful:

method foo {
if condition { // this is a block!

return
}
print ”hello?” // will not be executed

}

This example shows a method, that executes a request to the if(_)method, and passes in a block as
an argument. The block however has a return statement in it. When the return statement is executed,
it not only returns from the block, but also from the method that requested its execution. This behaviour
prevents the print method from being called, and allows the programmer not having to guard all
subsequent statements from begin executed when a block returns.

5.6. Declarations
In Grace, we can define constants (def), variables (var), methods (method) and imports (import).
Of these declarations, constants and variables can occur both within an object and a method body. This
context is important to the way they are handled: within objects they will be stored as fields, whereas
declarations in a method context will be stored as a value in an environment. Note that methods can
only be declared within objects, and imports may only be defined at the top level of a module (which is
also an object). These two possible different contexts are explained in the following sections.

5.6.1. Object context
When a method declaration is encountered within the context of an object, the method is stored as a
field on the object as a closure. The object will be stored on the heap. When a method is requested, the
appropriate closure is retrieved and can be evaluated. These closures store the following information:

• Reference to the object the method is declared in.
• Reference to the outer object the method is declared in.
• Parameters as a list of identifiers.
• Body of the method.
• The local environment.
• Whether the method is confidential or not.
• Whether this method is created as an inherited, used or normal method.
• Where to return to if a return were to occur.

Constant declarations are essentially a method declaration, where the constant defines a getter method
and a slot on the object which holds a reference to the value that is the result of evaluating the initiali-
sation expression of the constant.
This is the rule for defining a constant on an object:

add-slot (𝑛𝑎𝑚𝑒) ⇒ 𝑖 has-readable (annos) ⇒ public
make-getter (name, 𝑖,public) ⇒ getter install-method (getter) ⇒ _

install-declaration (Constant (name, type,annos, 𝑒)) ⇒ SlotWrite (𝑖, 𝑒, type)
(5.10)

32 5. Dynamic semantics

Note that since this regards object context, this rule is part of the object construction phase, as dis-
cussed earlier in Section 5.3. This rule will be invoked as part of the install-members rule as seen
in Equation (5.4).
Firstly, this rule creates a new numbered slot on the current object and binds it to the variable 𝑖. Sec-
ondly, it checks whether the getter for this constant should be declared public using the has-readable
function. The result (which is either true or false) gets bound to public. Thirdly, the meta-function
make-getter creates a getter method and binds it to getter. Finally, the getter method is installed on
the object.
What is very interesting about this rule (and similar rules, like the one for variables) is that what this rule
returns is a new constructor. This constructor is saved for later evaluation. This is important because
the object initialisation semantics of Grace prescribe that all declarations need to be handled before
any initialisation or inline code is run. Evaluating the expression of the constant declaration is of course
part of this initialisation, thus it must not happen at this time.
Variable declarations are similar to constants, but for variables also a setter method is installed. Setting
the initial value (if given) is separated from the declaration in the lowering phase.
Imports are very similar to constants but instead of evaluating the expression, a meta-function is used
to read an (module) object from an external file, or get it from a cache if that file has already been
imported.

5.6.2. Method context
When declarations are evaluated within a method scope, the values are not stored as fields on objects,
but they are kept in an environment. This environment (or component) is passed through such that
subsequent statements and lower lying scopes have access to locals from surrounding (outer) scopes.
The rule for declaring constants inside the context of a method is shown below:

𝑒 ⇒ 𝑣 type-check (type, 𝑣) = true update-local (name, 𝑣) ⇒ _
Constant (name, type,_, 𝑒)) ⇒ 𝑣 (5.11)

This rule evaluates the expression of the constant immediately, checks it against the declared type and
stores this local using the update-local function. Any annotations that are declared on this constant
will be ignored (hence the underscore in the rule conclusion): even if this declaration is said to be
confidential, that is irrelevant because it cannot be accessed from the outside regardless.
Note that Grace does not allow methods to be declared inside methods, and because imports may only
occur at the module object, only constants and variables can be declared as locals.

5.7. Confidentiality
In Grace, declarations (constants, variables, methods, imports) can have have their access limited, as
is discussed in Section 2.4.2. In this section we discuss how this confidentiality is applied and enforced.

5.7.1. Annotations
Declarations may be annotated with public, confidential, readable and writeable. These
annotations control from what objects methods can be called. As mentioned in Section 5.6.2 these
annotations only affect object fields, making them relevant only for method calls, not for local variable
access.
Essentially, there are only two concepts of confidentiality in Grace: public and confidential.
Confidential methods declared on an object means that a method can be accessed from either: inside
the same object, inside an object inside the declaring object (a nested object), or from an inheriting
object (an object that inherits from another object or uses a trait that declared the method).
Public methods can be accessed by any object that has access to the object the method is defined on.

5.8. Dialects and imports 33

For local variables, there is no extra encapsulation needed, even though you can annotate var and
def, it does not effect the semantics, as you are never able to reach a local variable from outside the
scope they are defined in.
When declaring a method, the desugaring step ensures that any method has either a public or a
confidential annotation. This information is transferred into the method closure, also see Sec-
tion 5.6.1. For constants, the annotation can be either readable or confidential, which will result
in the getter closure being public or confidential respectively. For variables, the possibilities are either:
confidential, readable, or writeable. This means the getter method will be confidential, public
or public respectively and the setter closure will be confidential, confidential or public respectively.

5.7.2. Checking confidentiality
When evaluating a method call, the following invariant holds: a resolved method defined on an object
is either public or confidential. When declarations are handled, this boolean is set to the proper value
(see also Section 5.6). To check this at run-time we consider this public boolean value and check
whether the call is being performed from the inside (see also Section 2.4.2). When an access violation
is detected, (a method is confidential but accessed from the outside) the interpreter halts with an error.

5.8. Dialects and imports
There are two main ways of referencing code from other files in Grace: dialects and imports. Dialects
can even alter the way the language is perceived, because the dialect typically provides access to library
methods. A Grace module has one dialect, if one is not specified, it uses the dialect standardGrace.
Since in Grace even simple control flow is handled through methods declared in a dialect, this heavily
influences the way a program is written. Imports are handled in a more familiar fashion: other Grace
files can be imported by referencing their filename and are assigned to an identifier. A Grace module
can have zero or more imports. This sections discusses how these two methods of importing are
implemented.

5.8.1. Dialects
As seen in Section 5.3, importing a dialect needs to be handled before the body of a Grace module is
executed, because it affects the surrounding scope. This can be done by checking the code at the top
of the Grace module for the presence of the Dialect constructor. If this constructor is not present,
the default dialect standardGrace is loaded instead.
When loading the dialect, it needs to be checked whether that dialect has not been loaded before
(this can happen through imports), as the Grace specification specifies that any import is only eval-
uated once. To achieve this, there is a semantic component that maps from dialect names to object
references. When the dialect is not present in this cache, it is loaded from the file system, parsed,
transformed and evaluated. After evaluation, a reference to the dialect object is added to the cache.
The reading, parsing and transforming of the dialect is performed through a native operator.
To prevent the leaking of the dialect’s dialect into deeper lying modules, the connection between the
outer scope of object is cut by updating that reference with a reference to an empty object.
When the none dialect is requested an empty object is returned as a dialect. For instance, the
standardGrace dialect uses the none dialect.

5.8.2. Imports
Imports work in a similar way as dialects, but they are defined through a statement that can be executed
normally. This is very similar to how a constant is defined, because imports are named. After the
external module is evaluated it is bound to its given name. Like dialects, when evaluating an import
statement, a cache is used to prevent duplicate evaluation of the same module, which is not allowed
by the Grace specification.

34 5. Dynamic semantics

5.9. Native operators
To implement native operators we use specific values in the specification for: numbers, strings, booleans
etc.

When a receiver of a method call is found to be one of these, the method call does not proceed to
look up the appropriate method, but checks a number of build-in method handlers. These handlers
subsequently use a number of native operations defined in Java classes to perform operations like
number arithmetic and boolean logic.
In addition to handling native functions for a couple of data-types, there are a number of build-in implicit
methods. These can be used for handling certain implicit method calls that need to defer to a native
operation (like print), but also to optimise functions that would otherwise might suffer from a stack
overflow problem. An example of a method like this is the while(_)do(_) method. This method can
easily be created as part of the standard dialect in a recursive form, but it would not be effective for
doing many iterations, as this will cause a stack overflow. By implementing loops as build-in methods,
we can leverage tail recursion elimination to prevent the stack from growing too large and increasing
performance.

5.9.1. Limitations
With the current approach to dealing with native operations, it is not possible to override the default
behaviour of these methods. When the receiver of the object is resolved to one of the aforementioned
data-types, the method call is intercepted and normal lookup semantics no longer apply.
A different approach to native data types can be taken to support extension. This can be done through
implementing the native types as proper Grace objects in the standard dialect, and having methods
that themselves call into native operations.

5.10. Types
Types in Grace are structural, they are expressed as a set of method signatures as follows:

type A = {
f(x: Number) -> String

}

In addition to specifying types as list of signatures, one can compose types with type expressions and
use a type constructor to create ad-hoc types:

def b: A | type { g -> Boolean } = ...

In this example we annotate the type of the constant b with a type expression: <type> | <type>
(type variant expression). This means the value of b must conform to either the type defined by A or
the ad-hoc constructed type: type { g -> Boolean }.
To be able to dynamically check these kind of types, the type annotations of declarations are stored as
the type expression itself. Resolution of a type name is identical to resolving a method call, except that
now a type value is expected to be the result of the look-up.
The type expression is compared with the dynamically computed type. When the type conforms, the
program proceeds, when it does not, the interpreter is halted.
Type declarations such as the one above, declare a type object. The name of the type is stored in the
same namespace as any other declaration (Grace only has a single namespace).

5.11. DynSem
All dynamic semantics for Spoofax Grace are specified in the meta-DSL DynSem [61]. The rules
presented in this chapter are a (simplified) representation of inference rules as specified in the Spoofax

5.11. DynSem 35

Grace DynSem specification.
A DynSem specification consists of the following parts: signatures, sorts, arrows, rules and compo-
nents. In this section, DynSem will be explained briefly. For further explanation of the DynSem lan-
guage please refer to the official documentation [60].

Signatures These are the constructors that are defined in the syntax of Grace and Grace-lowered. A
constructor consists of a name and optionally a number of subterms. More constructors
can be added at will.

Sorts The type of a constructor is referred to as its sort. For example: the constructor MCall
is of sort Exp. These sorts are defined by the syntax and can be added as well.

Arrows Arrows define the reductions that may occur in the specification. The arrows specify a
source and target sort. Optionally, an arrow may be named.

Rules Rules form the implementation of the reductions the arrows define. Rules make up the
majority of the specification. They match an arrow by specifying a conclusion that con-
forms to the from- and to sort and the arrow name. In addition to a conclusion, the rule
can have zero or more premises. These premises are be evaluated as well, and can
form restrictions on whether a certain rule can be applied or not. These rules are roughly
similar to big-step style operational semantics [21], but the premises follow the conclu-
sion rather than the other way around. To indicate this, the premises are preceded by
the where keyword.

Components As shown in the rules in this chapter, rules are evaluated accompanied by components,
also referred to as semantic components. In DynSem there are two forms of components:
read-only (appears before the turnstile in a rule) and read-write (appears after the double
colon in a rule). In a rule, the read-write component will be propagated from each premise
to the next up until the result of the conclusion, whereas the read-only component will
only be applied to the premises, but not between them, and not through the conclusion.

The following example shows a very simple DynSem specification:

module example

signature

sorts
Program
Value
Expression

arrows
Program --> Value // Unnamed arrow
Expression -e-> Boolean // Boolean is a build-in sort

constructors
Prog: Expression -> Value // Prog(Expression) is of sort Value
Result: Value // Result() is of sort Value

rules

Prog(exp) --> Result() // Conclusion of rule
where

exp -e-> true. // Rules end with a full stop

...

36 5. Dynamic semantics

In this example specification we define three sorts, two arrows (one without name and one named
e), two constructors and a single rule. This rule conforms to the unnamed arrow, as its conclusion
describes a reduction from the Program sort to the Value sort. In this rule, the subterm of Prog will
be bound to the name exp. In the premise of this rule, exp should be reduced to true. Finally, as the
product of the rule, the Result() constructor is produced.
Multiple rules can apply to the same arrow. The generated interpreter will match terms with rules, and
will try to fulfil the premises. If a premise fails, it will backtrack and attempt to a apply another rule. If
no rule can be applied, the interpreter is halted.

5.11.1. Implicit reductions
A key feature of DynSem that enables concise and readable specifications are implicit reductions: these
are reductions that can take place without an explicit premise that indicates that a certain term has to
be reduced.
The following example changes the rule above into one that has an implicit coercion:

rules

Prog(
::::
true) --> Result().

Because there exists a possible reduction from the sort Expression to Boolean using the -e->
arrow, and the given subterm of Prog should be Exp but a Boolean is given, DynSemwill implicitly add
this reduction as a premise. This is indicated in the Spoofax IDE as a note that informs the implementer
of what implicit reduction is being applied here. This is similar to how it is shown in the example above
with a blue, squiggly, underline.

5.11.2. Components
In the following example we have a rule with a read-only component (A) and a read-write component
(H). Note that these names represent be the sort of the component as well as the variable its bound to.

rules

A |- Program(subterm) :: H --> v
where

A {} |- some-function(H) --> v :: H’;
A != H’.

When evaluating the first premise, we set the read-only component of sort A to be the empty set, and
from the result of this evaluation we get a new read-write component H’. The next premise forces a
check that A is not equal to H’ can either succeed or fail. Components that are not mentioned explicitly
may still be passed implicitly. This is one of the great aspects of DynSem, as these implicit propagations
make sure each rule only needs to mention the components it needs to access or affect. This prevents
rules from having their true meaning obscured by superfluous details and specify only what is relevant
for that rule.

5.11.3. Abrupt termination
Another addition in DynSem that allows rules to stay concise and readable is the automatic handling
of abrupt termination. In the case a return statement is encountered, subsequent statements must
be prevented from being executed. This can be achieved by setting a semantic component to have a
certain value, and requiring all other rules to not match on this component. The rule in Spoofax Grace
for this is as follows:

5.12. Process 37

components

EX : Exn = Ok() // component EX of is of sort Exn, default value is Ok()

DynSem allows us to declare a special component that has a default value. Now the interpreter will
check after each subsequent evaluation of a premise inside a rule, that this component is still at its
default value. Additional rulesmay be created to handle the exceptional cases. This allows us to specify
rules withmultiple premises, without having tomanually check every time the exception component may
have changed.

5.12. Process
Initially, the first implementation that was created for Spoofax Grace already followed the pattern of
parsing, desugaring, lowering and evaluation. To get to a state in which the most simple Grace pro-
grams could be run, each of those four components were minimal, but functional. The syntax did not
include types, to simplify the grammar and reduce ambiguity problems. The transformations were very
simple, and since many components of the AST were not used in the evaluation at that point (such as
annotations, exclusions, aliases, and imports) these were ignored in the DynSem specification. The
DynSem wildcard identifier (_) proved very useful here.
Also this initial development iteration was very monolithic, most of the semantics were contained in a
single specification file. This was acceptable at this point because the specification was only a few
hundred lines of DynSem code, but it would not be wise to continue down this path.
Finally, there was no automated way of testing the dynamic semantics specification, so it was not
possible to detect all regressions when changing the specification.
In the second iteration, these problems were attacked: The grammar was extended to include types,
almost all syntactic constructs got a form of simplification and the dynamic semantics were split up in
many more modular parts. Also, a large number of tests (see: Chapter 6) was added to be able to
monitor the specification for regressions.
During the project, DynSem gained support for: printing reduction rule stack traces, improved notation
and handling of semantic components and support for abrupt termination with default values for se-
mantic components. During the project, the DynSem version was regularly updated, and this required
the specification be updated as well whenever a breaking change was introduced.

The next chapter details the evaluation of this project by discussing the test suite and how well the
Spoofax Grace correlates with the Grace language specification.

6
Evaluation

The goal set out for this project is to create an implementation and specification for the Grace program-
ming language. The system should conform to the Grace specification, have usable performance and
it should be easy to understand and change. In this chapter we consider the test suite used to eval-
uate Spoofax Grace (Section 6.1). In addition, we consider how Spoofax Grace correlates to the the
Grace language specification and how it complies to another implementation’s test set (Section 6.3).
Also, we discuss what features are not included in the Spoofax Grace implementation (Section 6.4).
Finally, we have a brief look at the performance of this system, not only how Grace programs perform
but also the time Spoofax Grace and other implementations take to rebuild after a change has been
made (Section 6.5).

6.1. Testing
The language implementation of Spoofax Grace includes parsing, transformation and execution com-
ponents. A correct implementation of these components does not only rely on the grammar, transfor-
mation specifications and the dynamic semantics specification, but also on the generated parser, the
compiled transformations and the generated interpreter. To verify that each component is behaving
correctly, we run a large number of tests against the specification. These tests allow the specification
to be changed without letting regressions go unnoticed. These tests allows the language implementer
to be more confident that the specification is implemented correctly and no unforeseen bugs arise.

6.1.1. Syntax and transformation testing with SPT
Tomaintain confidence that the language specification is not regressing while being implemented, a test
suite consisting of 427 small tests is used to test the grammar and transformations. Spoofax provides
a way to supply language tests, using the SPT (SPoofax Testing language). This language let us set
up snippets of concrete Grace code with the respective expected behaviour. These tests are collected
in SPT files, and can be grouped as the language implementer sees fit. An SPT file may look like this:

module syntax-numbers

language grace

start symbol Program

test decimal number with leading dot [[var a := .5;]] 0 warnings 0 errors
...

This test has a name, a concrete code snippet and an expected result. If there is any problem with pars-
ing or analysing this code snippet, the expected result would not hold and this information is reported

39

40 6. Evaluation

to the language implementer.
Other test expectations can include: indication of a parse failure, to be equal to the parse result of
another code snippet or to be equal to a given AST.
The tests are divided in the following categories:

• Desugaring - Assignments
• Desugaring - Canonical names
• Syntax - Types - Declarations
• Syntax - Types - Expressions
• Syntax - Types - Methods
• Syntax - Types - Variables and constants
• Syntax - Ambiguous
• Syntax - Assignments
• Syntax - Blocks
• Syntax - Classes
• Syntax - Comments

• Syntax - Expressions
• Syntax - Identifiers
• Syntax - Match case
• Syntax - Methods
• Syntax - Numbers
• Syntax - Objects
• Syntax - Precedence
• Syntax - Program
• Syntax - Traits
• Syntax - Types
• Syntax - Visibility

In total there are 427 SPT tests spread across 22 files. Running all these tests takes about 10 seconds,
or about 0.04 seconds per test.1

6.1.2. Program evaluation with JUnit
In addition to the SPT tests, there are a large number of unit tests that are created to test the dynamic
semantics and program transformations that are not covered by the SPT tests. There is a parametric
JUnit test that will scan a specific folder for .grace files and .output files with the corresponding
names. These files are grouped together in a test-case. The JUnit test-runner will then run all these
tests as normal Grace programs, and compare the program output with the expected output in the
.output file. The absence of an equally-named .output file indicates that this test-case should not
exit normally, but with an exception that halts the interpreter. The reason for having a separate infras-
tructure for dynamic semantics testing is twofold: initially, there was no support in SPT to test language
execution. Additionally, it makes the test set more portable, such that other language implementations
(that do not use Spoofax) can also benefit from these tests.
Each of these tests is made to test only one aspect of the Grace language, as far as that is possible.
Although for many test cases it depends on other language features to be working as expected. For
instance: to test inheritance it requires at least method declarations, method calls and object construc-
tion to be working. Almost all tests require some form of program output using the printmethod. This
means even though the test are as small as possible, many form integral tests. The program tests are
joint work with Vlad Vergu.2

In addition to the test cases that were created for this project specifically, there are a number of tests
taken from the Minigrace implementation. These tests were written in the GUnit (Grace-unit) testing
framework, which relies on many advanced Grace features to be working. These advanced features
include: exception handling, imports and correct scoping. Moreover, these tests were grouped in big
Grace source files, with up to 50 tests in single file. This is problematic because if there is a problem
with one of the tests , none of the test cases in the entire file could be run. This prevents the language
to be worked on incrementally, improving and implementing the language over time. To alleviate these
issues, and be able to run all tests before these features were completed, the Minigrace tests were
extracted and put into the form as described above. This way these tests could be used with fewer
1These results were achieved with Windows 10 x64, on an Intel i7-6700k (4.2GHz) with 16GB of memory using Oracle JRE
1.8.0-92.

2In the program test suite, 47% of the lines were last modified by the author. Fore more details, see the repository: https://
github.com/MetaBorgCube/metaborg-grace/tree/045ac341d4/grace.interpreter/src/test/resources

https://github.com/MetaBorgCube/metaborg-grace/tree/045ac341d4/grace.interpreter/src/test/resources
https://github.com/MetaBorgCube/metaborg-grace/tree/045ac341d4/grace.interpreter/src/test/resources

6.2. Review of Specification 41

dependencies on other Grace features. Also, the test result provides and indication of completion of
the language implementation.
In total there are 390 semantic tests specified. Of all semantic tests, 134 are from the Minigrace tests.
The remaining 254 tests were created to gradually test the Spoofax Grace implementation. They are
split up in the following categories:

• Object model - 48 tests
• Scoping - 31 tests
• Methods - 18 tests
• Expressions - 27 tests
• Qualification - 13 tests
• Exceptions - 3 tests
• Visibility - 22 tests

• Traits - 12 tests

• Aliasing - 24 tests

• Control flow - 6 tests

• Imports - 10 tests

• Types - 38 tests

• Whole programs - 2 tests

These tests can also be used to test any other Grace implementation. An initial investigation shows that
there exist compatibility differences between the implementations (and between the implementations
and current informal specification). For instance: one implementation (Hopper) only supports classes
in the A.B format (defines a constant (A) that is an object with a method (B) that returns fresh objects.
Currently, this format is no longer part of the Grace language (Spoofax grace supports it for backwards
compatibility). This shows it might be difficult to compare tests across multiple implementations. This
is also discussed in the discussion (Section 8.1.3).

6.2. Review of Specification
Evaluating the readability and quality of the specification is not trivial because it is not easy to quantify.
We attempt to show the specification is readable by examining a critical part of the Grace language
(the object constructor) and considering each part of the specification and comparing it to the Grace
language specification. As with all constructs in the Spoofax Grace specification, object construction
consists of four main parts: Syntax, desugaring, lowering and dynamic semantics.

Syntax When we consider the concrete syntax of a Grace object constructor in Source code 6.1, and
the syntax definition in SDF3 in Source code 6.2 it becomes clear that the definition resembles the
concrete syntax very closely.

Source code 6.1: Grace object constructor.

object {
inherit A;
use B;
method f { };

};

Source code 6.2: Definition of object constructor in SDF3.

Exp.ObjectDecl =
<
object {

<Inherit><Use*><{Statement ”\n”}*>
}
>

This is a very common pattern in the SDF3 Grace grammar. The full syntax definition can be found
in Appendix A.

Transformations The object constructor requires no desugaring, only lowering. The following Stratego
rule defines the lowering of the object constructor from an Object to an ObjectL:

42 6. Evaluation

lower-objectdecl:
ObjectDecl(inh, use, body) ->

ObjectL(
<lower-inherit> inh,
<map(lower-use)> use,
body

)

Lowering of the inherit clause is split from this rule, and since the object constructor contains the list of
trait uses, we simply map over those using a lowering rule similar to the lower-inherit rule. These
rules convert the Inherit(_,_) and Use(_,_) to InheritL(_,_,_) and UseL(_,_,_) construc-
tors respectively. The main purpose of these rules is that they split the aliasing and exclusion clauses
that can appear mixed in the original AST. From this rule it is quite apparent how the transformation is
made.

Dynamic semantics TheGrace language specification describes object construction as follows (short-
ened):

When executed, an object constructor (or trait or class declaration) first creates a new object
with no attributes, and binds it to self.
Second, the attributes of the superobject (created by the inherit clause, possiblymodified
by alias and exclude) are installed in the new object.

Third, the methods of all traits are combined.

Fourth, attributes create by local declarations are installed in the new object.

Finally, field initialisers and executable statements are executed. Initialisers for all defs
and vars, and code in the bodies of parents, are executed.

If we consider the DynSem code in Source code 6.3 we can see that the first step of the object con-
struction takes place on line 3. The second and third point from the specification are performed at line
5 and 6. The fourth point from the specification is performed on line 4. The final point is accomplished
by line 11. That leaves lines 7 trough 10, these lines are a bit harder to attribute directly to the specifi-
cation. Line 7 makes a binding of this object, to be used in updating of scopes on line 8 and 9, and the
installation of members, on line 10.
Overall, there seems to be a very strong correlation between the informal specification, and the DynSem
rule.
Source code 6.3: DynSem rule for object construction.

1 S, P Exec() |- ObjectL(inherit, uses, code) --> S’
2 where
3 new-object(S) --> S’;
4 snapshot-locals() --> L;
5 S S’, O S, P Flatten() |- inherit --> oc-inherit;
6 S S’, O S, P Flatten() |- uses --> ocs-use;
7 ObjC(S, src-base(), L, code, oc-inherit, ocs-use, [], []) => oc;
8 read(S’) --> Obj(outer, _, slots, methods);
9 update(S’, Obj(outer, objc-gather-scopes(oc), slots, methods)) --> _;

10 S’ |- install-members-top(oc) --> oc’;
11 S’ |- init-object(oc’) --> U().

6.3. Minigrace test suite
On the Minigrace test set, out of 101 tests, Spoofax Grace passes 50 tests. Many of the failing tests
can be attributed to the lack of implemented features: operators on numbers, lists, type arguments,
etc.3 In the interest of time, these cases are currently not investigated any further.
3A notable exception is a test which tests a form of recursion from within an interpolated string (Minigrace: t120_theBlock).

6.4. Omitted features of Grace 43

However, the main purpose of this project is to make sure the core of the language is supported well,
and considering the large test set that is created for that purpose, we feel that this goal has been
achieved. Many of the Minigrace tests exhibit features which are not part of the core of the language,
so we consider the lower score on this test suite not as a problem. However, it would be nice to also
have all these language features, but this would require a larger investment of time.

6.4. Omitted features of Grace
Due to time constraints, not all language features are fully implemented, this section highlights the
omitted features.

• Layout-sensitivity; even though trough an extension of SDF3, layout sensitivity may be speci-
fied in the grammar, this leads to a grammar which contains many details which obfuscate the
context-free essence of the grammar. This was shown in a preliminary investigation by Eduardo
Souza [22]. This has shown that is possible to extend the Grace grammar to accommodate the
layout-sensitive features. Since the focus of this work is mostly on dynamic semantics, these
features were omitted. However, in order to have a grammar that is unambiguous, we make
use of the optional semicolons that are allowed by the Grace syntax: Each statement in Grace
may be concluded with a semicolon. In Spoofax Grace, any statement must be concluded with a
semicolon, or it will not be terminated. Grace source files that are used in this work are therefore
backwards-compatible with the Grace specification, but not necessarily the other way around.

• Fully-featured type system; The type system implemented in this work is very basic, types can
be annotated and will be checked; type expressions can be evaluated and the match method
can be used to check if object conform to a type. More advanced type features in Grace such as
type arguments, type expressions, where clauses, and interfaces are not included. Programs
including these features may work, but no types will be checked for them. Additionally, not all
build-in types are complete.

• Static analysis; although there are some simple static analysis being performed during program
transformations, the focus of this work is on dynamic semantics, and therefore no type-checking,
name-binding or other static checks are performed before execution. This could lead to some
invalid Grace programs being executed without error, but no correct Grace programs should be
marked as erroneous by the implementation.

In addition to these points, the following features are not implemented in Spoofax Grace: multi-line
strings, return type checking, floating point and non-base-10 numbers, match objects, exceptions,
manifest and override annotations, extendible build-in objects, pluggable checkers, lineups (lists),
boolean block short circuiting and Unicode character support.

6.5. Performance
The usability of the system is influenced by the speed at which a language can be developed, and
how much time it takes to execute the programs of that language. The turnover rate at which lan-
guage changes can be processed varies depending on what kind of change needs to be performed.
The development time of various changes accumulates because each subsequent step in the building
process has to be executed as well. This means a change in the syntax requires every build step to
be executed, while a change in the dynamic semantics only requires the interpreter to be re-generated
and build. An overview of the rough build times can be seen in Table 6.1.4

Execution of Grace programs is also relevant for the usability of the system. Generally, in our set of
testing programs, the required computation is minimal, and programs are in the order of tens of lines
of code. When executing our test-set, the first program which is executed takes significantly longer
4These results were achieved with Windows 10 x64, on an Intel i7-6700k (4.2GHz) with 16GB of memory using Oracle JRE
1.8.0-92.

44 6. Evaluation

Table 6.1: Build times for Spoofax Grace

Part of implementation Time (separate) (s) Time (cumulative) (s)
Syntax 16 91
Transformations 26 75
Dynamic semantics 49 49

(about 1,5 seconds) than each subsequent test (about 0,1 second). This is expected to be because
of class loading and JVM compilation that only needs to be performed for the first test, and therefore
each subsequent test runs significantly (about 10×) faster.
It takes 45 seconds to run both test suites. The SPT tests take about 15 seconds, and the program
tests take about 30 seconds to run.
Running a single trivial Grace program takes a relatively long time because of its class loading and
initialisation. This can be offset by running the Grace interpreter continuously with a Nailgun [47] server,
this is supported by the generated interpreter.
In comparison to the other Grace implementation, the time required to rebuild Spoofax Grace is gen-
erally longer than for other implementations. For hopper, there is no need to rebuild, so this takes no
time. Kernan rebuilds very fast, taking about 2,5 seconds to rebuild. This holds for the initial build as
well as after a single change to the lexer. After a change to the dynamic semantics, a rebuild took
1,3 seconds.5 For Minigrace, a full build takes about 163 seconds, however, when a small change is
made to the lexer, a rebuild takes roughly 10 seconds and a change to the semantics (code generator)
a rebuild took 14 seconds.6 These build times can be reviewed in Table 6.2.

Table 6.2: Build times for Grace implementations

Implementation Time (initial) (s) Time (change lexer) (s) Time (change semantics) (s)
Spoofax 91 91 49
Hopper 0 0 0
Kernan 2,5 2,5 1,3
Minigrace 163 10 14

In the next chapter, we highlight work related to this project and discuss other Grace implementations.

5Achieved on an Intel i7-6700k (4.2GHz) with 16GB of RAM using XBuild version 14.0 and Mono version 4.8.1 on Ubuntu x64
16.04.2.

6Achieved on an Intel i7-6700k (4.2GHz) with 16GB of RAM using Node.js version 6.1.0 and NPM version 3.8.6 on Ubuntu x64
16.04.2.

7
Related work

In this chapter a number of similar works and other Grace implementations are highlighted. Some of
the specifications discussed here have a more mathematical character, where the specification more
formally specified and sometimes accompanied by proofs of certain language properties. Other speci-
fications are more execution-focussed, these are generally specified using in a kind of declarative style
that is strict enough to allow for reasonable execution.

7.1. Formalisations
One of the most foundational works in specifying a language in a formalised manner is the work The
definition of Standard ML by Milner et al. [52]. Here a formal semantics is presented in all its fullness:
Syntax, static semantics, types and dynamic semantics.
For non object oriented languages, many formal specifications exist. Such as for C [15, 23, 42, 48]. But
also for even lower level languages such as ARM [8] and x86 [56] there exist formalised (executable)
specifications.
Because Grace is object-oriented, we consider works such as K-Java: A Complete Semantics of Java
by Bogdanas and Rosu [17]. This work focussus more on the executable part of a language specifi-
cation. They created a complete executable formal semantics of Java 1.4 using the K-framework [55].
The parser-generator used is similar to SDF, as they use a generalised scannerless parser system.
The grammar is notated in BNF (Backus-Naur Form) style, rather than the algebraic style SDF uses. A
comprehensive test suite is used to validate their semantics. Their approach included splitting up the
static and dynamic semantics, and pre-processing Java programs to a certain subset before execution.
The semantics were used to model-check multi-threaded programs.
Other formalisations of the Java programming language include: A Formal Executable semantics for
Java [9], using Centaur [18] and A Machine-Checked Model for a Java-Like Language, Virtual Machine
and Compiler [40] using a more tractable Java-derived language to prove a large number of language
properties, using the Isabelle framework [63].
In addition to Java, other similar projects exists for other object-oriented programming languages, such
as for JavaScript.
Bodin et al. present A Trusted Mechanised JavaScript Specification, a formalisation of the ECMA
standard in the Coq proof assistant, and a reference interpreter for JavaScript extracted from Coq and
ported to OCaml [16]. They aim to ensure that their system is an accurate formulation of the ECMA
standard.
Guha et al. present The Essence of JavaScript. They created a core calculus for JavaScript called
Lambda-JS [30], and with that a small step operational semantics. Their system mostly concerns with
the desugarings that convert JavaScript to a core version called 𝜆 . Parsing input JavaScript program
is achieved through using a hand-crafted parser combinator implemented in Haskell. The desugaring

45

46 7. Related work

programwas implemented with Haskell as well and the semantics for the 𝜆 sub-language was created
with PLT Redex [25]. The system was tested against the Mozilla JavaScript test suite. Finally, they
demonstrate this system by implementing some safety features for the languages and providing proofs
for showing these programs have certain safety properties.
Other formalisations exist for JavaScript such as An Operational Semantics for JavaScript by Maffeis
et al. [46], however in this case the presented operational semantics are not executable.
Similar works exist for Python, another popular object oriented language. In Python: The Full Monty
by Politz et al. [54] presented a small step operational semantics for Python. This work follows a
similar pattern as the formalisation of Guha, where there is a parser and a desugaring program to
convert Python programs to a core language (𝜆) and a small step operational semantics for this core
language. The parser and desugarer are implemented with Racket [26], and the interpreter for the core
language is build using PLT Redex [25]. The system is validated against the CPython [1] test suite.
They use the system to highlight certain Python peculiarities.
Many of the aforementioned works regarding object oriented language above follow a similar pattern.
For executable specifications, it is common to first translate the language to some sort of core form,
and subsequently perform the operational semantics on this core language. This is the same approach
that Spoofax Grace follows.

7.2. Grace implementations
There are currently three main other Grace implementations: Minigrace, Kernan and Hopper. In this
section the details and origin of these implementation is discussed.

Minigrace is the most widely used implementation of Grace [12]. It was originally created by Michael
Homer, but the development has been handed over to Andrew Black after a couple of years. Mini-
grace is a self-hosted compiler that was bootstrapped using the Parrot Compiler Toolkit [7]. Originally
Minigrace was targeting LLVM [43], but currently it is generating both C and JavaScript code. Since
the compiler also targets JavaScript, it is able to generate an online IDE that allows users to run Grace
programs in the browser.
To parse Grace files, there is a separate lexer which tokenizes the input and passes it to a handwritten
recursive descent parser. Since the compiler can be compiled to, and can output JavaScript code, this
allows Minigrace to be run in the web browser. A public version of this compiler can be found at:
http://web.cecs.pdx.edu/~grace/ide/
Although this implementation is very complete and highly functional, due to the browser-interoperability,
none of its primary components (parser, transformations, code generator) are formalized, making it very
hard to grasp the semantics from it, or to correlate this implementation to the informal Grace language
specification. The source code for Minigrace can be found on the following GitHub repository:
https://github.com/gracelang/minigrace/.

Kernan is an interpreter created by Michael Homer, written in C#. Kernan aims to implement the
language in a complete way, however it is not updated very often around the time of writing [32]. Like
Minigrace, Kernan has a separate lexer and parser, that architecturally are very similar. The main
differences between Minigrace and Kernan is that Kernan is an interpreter rather than a compiler and
that Kernan is written in a different language than the target language.
Kernan uses either the Microsoft .NET framework [2] or the open source Mono framework [5], allowing
it to run on most platforms. The source code for Kernan can be found in the following git repository:
https://mwh.nz/git/kernan.

Hopper is an AST interpreter written in JavaScript using Node.js [6] created by Timothy Jones [34].
Hopper it similar to Kernan, it is also an interpreter written in a different language than the target lan-
guage, and it is quite simple and clean. Also, it has a separate lexer and recursive descent parser.
Hopper has not been updated in the past two years, so changes that have been made to the Grace

http://web.cecs.pdx.edu/~grace/ide/
https://github.com/gracelang/minigrace/
https://mwh.nz/git/kernan

7.2. Grace implementations 47

language since then are not supported. Hopper’s source code can be retrieved from GitHub:
https://github.com/zmthy/hopper

These three implementations all use a separate lexer and parser. These parsers and lexers have their
true meaning (the Grace grammar) hidden in the implementation; they are embedded in the code. This
means it can be quite hard to extract these properties and compare them to other implementations or
the informal language specification.
From Minigrace, Kernan and Hopper we can figure out that they all use an imperative style of check-
ing whether a character can be part of an identifier. The Spoofax implementation only declares what
kind of characters can be part of the identifier, but completely abstracts over how this is done in the
implementation.
Other than the lexer and parser, the actual implantation of the static and dynamic semantics is also
embedded in the code. It is very hard to track language features and properties throughout the imple-
mentation, although through an initial investigation, this seems to be more easy to do for Kernan and
Hopper than for Minigrace, because they do not need to generate code, but rather can operate on an
internal model directly instead.
Another beneficial factor for Kernan and Hopper, is that they benefit from better IDE support and
language tooling, as they are written in popular general purpose programming languages (C# and
JavaScript respectively). Since Minigrace is mostly written in Grace itself, it does not benefit from a
great variety of advanced tools.
Spoofax Grace is written in a number of languages (SDF3, Stratego, DynSem, Java), all of which have
at least some IDE support in the form of syntax highlighting and basic static analysis, which greatly
aids development.
In the next and final chapter we conclude this thesis and discuss possibilities for future work.

https://github.com/zmthy/hopper

8
Discussion

The Grace programming language could benefit from a more formal and executable language speci-
fication, in addition to its current informal specification document and other implementations. Spoofax
Grace delivers such an implementation at its core, but it is not yet fully complete, as many of the Min-
igrace implementation tests do not pass, and various features are not implemented. Considering the
constraints of this project, it seems appropriate to focus on the core of Grace: validating the crucial
parts, and leave other language features as future work.
However Spoofax Grace can form a platform for experimentation, and could be extended to support
the full Grace programming language. In addition, the test suite developed for Spoofax Grace can aid
other Grace implementation efforts, and steer discussion about the language.
Reverse engineering the semantics of the Grace programming languages was one of the greatest chal-
lenges, and now these efforts are cemented in the specification and the tests. A test driven approach
proved invaluable here.
Working with the tools the Spoofax language workbench provides was a good experience overall. With
the addition of DynSem to the suite of meta-languages, there is now a possibility to develop interpreted
languages from A to Z inside a single environment, which lowers the overhead of implementing a
language.

8.1. Future work
A number of suggestions for further work are highlighted in the following sections.

8.1.1. Completing Grace features
It would be great to complete Spoofax Grace to support all features of Grace. This includes syntac-
tic features (mostly layout-sensitivity), as well as dynamic features (match objects, exceptions). Even
though SDF3 does not include layout-sensitive features, support for this has been added to the lan-
guage [24]. A preliminary investigation by Eduardo Souza [22] has shown that the layout-sensitive
features of Grace can be added to the SDF3 grammar. However it may be argued that this convolutes
the grammar to such an extend that it loses its cleanliness. In addition, more desugaring is required to
strip away the additional AST noise. As far as other missing (dynamic) features are concerned, there
should be no large technical issues for completing these.

8.1.2. Static analysis
Currently the specification does not specify any form of static analysis. The transformation rules can be
extended to include a number of static analysis that could report errors back to users before executing
any code. These analyses could include: unresolved identifiers, invalid declarations, such as declaring

49

50 8. Discussion

a method in a method, or non-method in a trait, shadowing variables, etc. Since Spoofax already has
support for reporting issues back to programmers using IDE features, this could be a welcome addition.
On the other hand, it can also be argued that all transformations should be moved into the dynamic
domain. This would make the code more centralized, and specified in the same meta-language. How-
ever, to accommodate this it would be very useful to have some more basic functional programming
features build into DynSem, such as: map, filter, reverse, etc.

8.1.3. Setting up a universal Grace test suite
To map the differences between current Grace implementations, a universal test platform could be es-
tablished. This tool could serve to show the language designers how different implementations handle
certain Grace programs, and can help to establish what the desirable behaviour should be.

8.1.4. Exploring Grace performance
Regarding performance of Grace program execution, there are many interesting areas to explore: The
performance of current Grace implementation and their relation to the performance of Spoofax Grace,
discovering what should be the desired performance for a education targeted language such as Grace,
establishing which factors contribute most to the performance in Spoofax Grace (parsing, transforming,
etc.), and how this related to other Grace implementations.

8.1.5. Making Spoofax Grace more publicly available
Another interesting avenue that could be explored, is the integration of Spoofax Grace with an open
(educational) platform such as WebLab (an online learning management system used by TU Delft to
manage programming assignments) [39]. This could contribute to the efforts that are already been
done with the online Minigrace IDE, but systems like WebLab can also contribute to the deployment of
graded assignments, as programs submitted through WebLab are checked and graded on the server
side.

8.2. Concluding remarks
Milner et al. write in The definition of Standard ML [51]:

“A precise description of a programming language is a prerequisite for its implementation
and for its use.”

I very much agree with this statement, and to make significant claims about any language feature or
property, the formalisation of a language is invaluable.
Grace is an interesting and promising general purpose programming language in the educational
sphere, and to have it be supported by a formal specification would aid its practical use and develop-
ment. The Spoofax language engineering workbench is a good tool for developing an implementation
for Grace because it allows the implementation to remain readable and maintainable. The implementa-
tion can now serve as a specification as well, or in Milner’s words: as a precise description. I hope that
with this work the foundations for such a precise description has been created, and others are inspired
to continue down this path.

Bibliography

[1] Cpython, reference Python implementation. http://python.org/. Accessed: 02-03-2017.

[2] .NET Framework is a software framework developed by Microsoft. https://www.microsoft.
com/net. Accessed: 05-04-2017.

[3] The Grace Programming Language. http://gracelang.org/, . Accessed: 29-11-2016.

[4] The Grace Programming Language Draft Specification Version 0.7.7. http://web.cecs.pdx.
edu/~grace/doc/gracePdfs/spec_with_grammar.pdf, . Accessed: 05-04-2017.

[5] Mono is an open source implementation of Microsoft’s .NET framework. http://www.
mono-project.com/. Accessed: 05-04-2017.

[6] Node.js® is a JavaScript runtime built on Chrome’s V8 JavaScript engine. https://nodejs.
org/. Accessed: 05-04-2017.

[7] Parrot is a virtual machine designed to efficiently compile and execute bytecode for dynamic lan-
guages. http://www.parrot.org/. Accessed: 05-04-2017.

[8] Jade Alglave, Anthony Fox, Samin Ishtiaq, Magnus O. Myreen, Susmit Sarkar, Peter Sewell, and
Francesco Zappa Nardelli. The Semantics of Power and ARM Multiprocessor Machine Code.
In Proceedings of the 4th Workshop on Declarative Aspects of Multicore Programming, DAMP
’09, pages 13–24, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-417-1. doi: 10.1145/
1481839.1481842. URL http://doi.acm.org/10.1145/1481839.1481842.

[9] Isabelle Attali, Denis Caromel, and Marjorie Russo. A Formal Executable Semantics for Java. In
Proceedings of Formal Underpinnings of Java, an OOPSLA, volume 98, 1998.

[10] Kent Beck, Erich Gamma, David Saff, and Mike Clark. JUnit is a simple framework to write re-
peatable tests. http://junit.org/junit4/, 2002. Accessed: 29-11-2016.

[11] Andrew P. Black. Grace grammar. https://github.com/gracelang/language/blob/
master/languageSpec/grammar.grace, . Accessed: 05-04-2017.

[12] Andrew P. Black. Minigrace: self-hosting compiler for the Grace programming language. https:
//github.com/gracelang/minigrace, . Accessed: 29-11-2016.

[13] Andrew P. Black, Norman Hutchinson, Eric Jul, and Henry Levy. Object Structure in the Emerald
System. In Conference Proceedings on Object-oriented Programming Systems, Languages and
Applications, OOPSLA ’86, pages 78–86, New York, NY, USA, 1986. ACM. ISBN 0-89791-204-7.
doi: 10.1145/28697.28706. URL http://doi.acm.org/10.1145/28697.28706.

[14] Andrew P. Black, Kim B. Bruce, Michael Homer, and James Noble. Grace: The Absence of
(Inessential) Difficulty. In Proceedings of the ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software, Onward! 2012, pages 85–98, New
York, NY, USA, 2012. ACM. ISBN 978-1-4503-1562-3. doi: 10.1145/2384592.2384601. URL
http://doi.acm.org/10.1145/2384592.2384601.

[15] Sandrine Blazy and Xavier Leroy. Mechanized Semantics for the Clight Subset of the C Lan-
guage. Journal of Automated Reasoning, 43(3):263–288, 2009. ISSN 1573-0670. doi: 10.
1007/s10817-009-9148-3. URL http://dx.doi.org/10.1007/s10817-009-9148-3.

51

http://python.org/
https://www.microsoft.com/net
https://www.microsoft.com/net
http://gracelang.org/
http://web.cecs.pdx.edu/~grace/doc/gracePdfs/spec_with_grammar.pdf
http://web.cecs.pdx.edu/~grace/doc/gracePdfs/spec_with_grammar.pdf
http://www.mono-project.com/
http://www.mono-project.com/
https://nodejs.org/
https://nodejs.org/
http://www.parrot.org/
http://doi.acm.org/10.1145/1481839.1481842
http://junit.org/junit4/
https://github.com/gracelang/language/blob/master/languageSpec/grammar.grace
https://github.com/gracelang/language/blob/master/languageSpec/grammar.grace
https://github.com/gracelang/minigrace
https://github.com/gracelang/minigrace
http://doi.acm.org/10.1145/28697.28706
http://doi.acm.org/10.1145/2384592.2384601
http://dx.doi.org/10.1007/s10817-009-9148-3

52 Bibliography

[16] Martin Bodin, Arthur Chargueraud, Daniele Filaretti, Philippa Gardner, Sergio Maffeis, Daiva
Naudziuniene, Alan Schmitt, and Gareth Smith. A Trusted Mechanised JavaScript Specifica-
tion. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’14, pages 87–100, New York, NY, USA, 2014. ACM. ISBN 978-1-
4503-2544-8. doi: 10.1145/2535838.2535876. URL http://doi.acm.org/10.1145/
2535838.2535876.

[17] Denis Bogdanas and Grigore Roşu. K-Java: A Complete Semantics of Java. SIGPLAN Not., 50
(1):445–456, January 2015. ISSN 0362-1340. doi: 10.1145/2775051.2676982. URL http:
//doi.acm.org/10.1145/2775051.2676982.

[18] P. Borras, D. Clement, Th. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and V. Pascual. Centaur:
The System. SIGPLAN Not., 24(2):14–24, November 1988. ISSN 0362-1340. doi: 10.1145/
64140.65005. URL http://doi.acm.org/10.1145/64140.65005.

[19] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser. Stratego/XT 0.17.
A language and toolset for program transformation. Science of computer programming, 72(1):
52–70, 2008.

[20] Douglas Crockford. JavaScript: The Good Parts. O’Reilly Media, Inc., 2008.

[21] Joëlle Despeyroux, Thierry Despeyrout, Laurent Hascoet, and Gilles Kahn. Natural Semantics on
the Computer. 1985.

[22] De Souza Amorim Luís Eduardo. Layout sensitive Grace grammar. https://github.
com/MetaBorgCube/metaborg-grace/blob/layout-sensitive/grace/syntax/. Ac-
cessed: 05-04-2017.

[23] Chucky Ellison andGrigore Rosu. An Executable Formal Semantics of C with Applications. In John
Field and Michael Hicks, editors, Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January
22-28, 2012, pages 533–544. ACM, 2012. ISBN 978-1-4503-1083-3. doi: 10.1145/2103656.
2103719.

[24] Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus Ostermann. Layout-Sensitive
Generalized Parsing, pages 244–263. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. ISBN
978-3-642-36089-3. doi: 10.1007/978-3-642-36089-3_14. URL http://dx.doi.org/10.
1007/978-3-642-36089-3_14.

[25] Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics Engineering with PLT
Redex. Mit Press, 2009.

[26] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, Eli Barzilay,
Jay McCarthy, and Sam Tobin-Hochstadt. The Racket Manifesto. In Thomas Ball, Rastislav
Bodik, Shriram Krishnamurthi, Benjamin S. Lerner, and Greg Morrisett, editors, 1st Summit on
Advances in Programming Languages (SNAPL 2015), volume 32 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 113–128, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. ISBN 978-3-939897-80-4. doi: 10.4230/LIPIcs.SNAPL.2015.113.
URL http://drops.dagstuhl.de/opus/volltexte/2015/5021.

[27] David Flanagan and Yukihiro Matsumoto. The Ruby Programming Language: Everything You
Need to Know. ” O’Reilly Media, Inc.”, 2008.

[28] AdeleGoldberg andDavid Robson. Smalltalk-80: The Language and Its Implementation. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1983. ISBN 0-201-11371-6.

[29] James Gosling, Bill Joy, Guy L. Steele, Gilad Bracha, and Alex Buckley. The Java Language Spec-
ification, Java SE 8 Edition. Addison-Wesley Professional, 1st edition, 2014. ISBN 013390069X,
9780133900699.

http://doi.acm.org/10.1145/2535838.2535876
http://doi.acm.org/10.1145/2535838.2535876
http://doi.acm.org/10.1145/2775051.2676982
http://doi.acm.org/10.1145/2775051.2676982
http://doi.acm.org/10.1145/64140.65005
https://github.com/MetaBorgCube/metaborg-grace/blob/layout-sensitive/grace/syntax/
https://github.com/MetaBorgCube/metaborg-grace/blob/layout-sensitive/grace/syntax/
http://dx.doi.org/10.1007/978-3-642-36089-3_14
http://dx.doi.org/10.1007/978-3-642-36089-3_14
http://drops.dagstuhl.de/opus/volltexte/2015/5021

Bibliography 53

[30] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. The Essence of JavaScript,
pages 126–150. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. ISBN 978-3-642-
14107-2. doi: 10.1007/978-3-642-14107-2_7. URL http://dx.doi.org/10.1007/
978-3-642-14107-2_7.

[31] Jan Heering, P. R. H. Hendriks, Paul Klint, and Jan Rekers. The Syntax Definition Formalism SDF
- reference manual. SIGPLAN Notices, 24(11):43–75, 1989. doi: 10.1145/71605.71607.

[32] Michael Homer. Kernan is a second-generation reference interpreter for Grace. http://
gracelang.org/applications/grace-versions/kernan/. Accessed: 08-03-2017.

[33] Michael Homer, James Noble, Kim B. Bruce, Andrew P. Black, and David J. Pearce. Patterns As
Objects in Grace. SIGPLAN Not., 48(2):17–28, October 2012. ISSN 0362-1340. doi: 10.1145/
2480360.2384581. URL http://doi.acm.org/10.1145/2480360.2384581.

[34] Tim Jones. Hopper is an experimental Grace interpreter written in JavaScript Node.js. http:
//gracelang.org/applications/grace-versions/hopper/. Accessed: 08-03-2017.

[35] Timothy Jones, Michael Homer, JamesNoble, and KimBruce. Object InheritanceWithout Classes.
In LIPIcs-Leibniz International Proceedings in Informatics, volume 56. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2016.

[36] Gilles Kahn. Natural Semantics. STACS 87, pages 22–39, 1987.

[37] Lennart C. L. Kats, Rob Vermaas, and Eelco Visser. Testing Domain-specific Languages. In
Cristina Videira Lopes and Kathleen Fisher, editors, Companion to the 26th Annual ACMSIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2011, part of SPLASH 2011, Portland, OR, USA, October 22 - 27, 2011, pages 25–26. ACM, 2011.
ISBN 978-1-4503-0942-4. doi: 10.1145/2048147.2048160.

[38] Lennart C.L. Kats and Eelco Visser. The Spoofax Language Workbench: Rules for Declarative
Specification of Languages and IDEs. In Proceedings of the ACM International Conference on Ob-
ject Oriented Programming Systems Languages and Applications, OOPSLA ’10, pages 444–463,
New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0203-6. doi: 10.1145/1869459.1869497.
URL http://doi.acm.org/10.1145/1869459.1869497.

[39] Lennart C.L. Kats, Richard G. Vogelij, Karl Trygve Kalleberg, and Eelco Visser. Software Devel-
opment Environments on the Web: A Research Agenda. In Proceedings of the ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software, On-
ward! 2012, pages 99–116, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1562-3. doi:
10.1145/2384592.2384603. URL http://doi.acm.org/10.1145/2384592.2384603.

[40] Gerwin Klein and Tobias Nipkow. A Machine-checked Model for a Java-like Language, Virtual
Machine, and Compiler. ACM Trans. Program. Lang. Syst., 28(4):619–695, July 2006. ISSN 0164-
0925. doi: 10.1145/1146809.1146811. URL http://doi.acm.org/10.1145/1146809.
1146811.

[41] Gabriel D.P. Konat and Jeff Smits. Stratego Manual. http://www.metaborg.org/en/
latest/source/langdev/meta/lang/stratego/index.html. Accessed: 12-04-2017.

[42] Robbert Jan Krebbers. The C standard formalized in Coq. PhD thesis, Raboud University, 2015.

[43] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Program Analy-
sis & Transformation. In Proceedings of the International Symposium on Code Generation and
Optimization: Feedback-directed and Runtime Optimization, CGO ’04, pages 75–, Washington,
DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2102-9. URL http://dl.acm.org/
citation.cfm?id=977395.977673.

[44] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon.
The OCaml system release 4.02. Institut National de Recherche en Informatique et en Automa-
tique, 2014.

http://dx.doi.org/10.1007/978-3-642-14107-2_7
http://dx.doi.org/10.1007/978-3-642-14107-2_7
http://gracelang.org/applications/grace-versions/kernan/
http://gracelang.org/applications/grace-versions/kernan/
http://doi.acm.org/10.1145/2480360.2384581
http://gracelang.org/applications/grace-versions/hopper/
http://gracelang.org/applications/grace-versions/hopper/
http://doi.acm.org/10.1145/1869459.1869497
http://doi.acm.org/10.1145/2384592.2384603
http://doi.acm.org/10.1145/1146809.1146811
http://doi.acm.org/10.1145/1146809.1146811
http://www.metaborg.org/en/latest/source/langdev/meta/lang/stratego/index.html
http://www.metaborg.org/en/latest/source/langdev/meta/lang/stratego/index.html
http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673

54 Bibliography

[45] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java® Virtual Machine Specifi-
cation: Java SE 8 Edition. https://docs.oracle.com/javase/specs/jvms/se8/html/
index.html, 2015. Accessed: 29-11-2016.

[46] Sergio Maffeis, John C. Mitchell, and Ankur Taly. An Operational Semantics for JavaScript,
pages 307–325. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-3-540-
89330-1. doi: 10.1007/978-3-540-89330-1_22. URL http://dx.doi.org/10.1007/
978-3-540-89330-1_22.

[47] Martian Software, Inc. Nailgun is a client, protocol, and server for running Java programs from the
command line without incurring the JVM startup overhead. http://martiansoftware.com/
nailgun/. Accessed: 19-04-2017.

[48] Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan Nienhuis, David Chisnall, Robert
N. M. Watson, and Peter Sewell. Into the Depths of C: Elaborating the De Facto Standards. In Pro-
ceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’16, pages 1–15, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4261-2. doi:
10.1145/2908080.2908081. URL http://doi.acm.org/10.1145/2908080.2908081.

[49] Bertrand Meyer. Eiffel: The Language. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1992.
ISBN 0-13-247925-7.

[50] Bertrand Meyer. Touch of class. Learning to program well with Object Technology and Design by
Contract, AN INTRODUCTION TO SOFTWARE ENGINEERING, 2009. URL http://se.inf.
ethz.ch/touch.

[51] Robin Milner, Mads Tofte, and Robert Harper. Definition of Standard ML. MIT Press, 1990. ISBN
978-0-262-63132-7.

[52] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of Standard ML,
Revised. MIT Press, Cambridge, MA, USA, 1997.

[53] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth, Stéphane Mich-
eloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias Zenger. An Overview of
the Scala Programming Language. Technical Report IC/2004/64, EPFL, Lausanne, Switzerland,
2004.

[54] JoeGibbs Politz, AlejandroMartinez, MatthewMilano, SumnerWarren, Daniel Patterson, Junsong
Li, Anand Chitipothu, and Shriram Krishnamurthi. Python: The Full Monty. In Proceedings of
the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA ’13, pages 217–232, New York, NY, USA, 2013. ACM.
ISBN 978-1-4503-2374-1. doi: 10.1145/2509136.2509536. URL http://doi.acm.org/
10.1145/2509136.2509536.

[55] Grigore Roşu and Traian Florin Şerbănută. An overview of the K semantic framework. The Jour-
nal of Logic and Algebraic Programming, 79(6):397 – 434, 2010. ISSN 1567-8326. doi: 10.
1016/j.jlap.2010.03.012. URL http://www.sciencedirect.com/science/article/
pii/S1567832610000160.

[56] Susmit Sarkar, Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Tom Ridge, Thomas
Braibant, Magnus O. Myreen, and Jade Alglave. The Semantics of x86-CC Multiprocessor Ma-
chine Code. SIGPLAN Not., 44(1):379–391, January 2009. ISSN 0362-1340. doi: 10.1145/
1594834.1480929. URL http://doi.acm.org/10.1145/1594834.1480929.

[57] Jeff Smits, Gabriel D.P. Konat, Mark van den Brand, Paul Klint, and Jurgen Vinju. SDF3 refer-
ence manual – Spoofax documentation. http://www.metaborg.org/en/latest/source/
langdev/meta/lang/sdf3.html. Accessed: 19-04-2017.

[58] David Ungar and Randall B. Smith. Self: The Power of Simplicity. SIGPLAN Not., 22(12):227–
242, December 1987. ISSN 0362-1340. doi: 10.1145/38807.38828. URL http://doi.acm.
org/10.1145/38807.38828.

https://docs.oracle.com/javase/specs/jvms/se8/html/index.html
https://docs.oracle.com/javase/specs/jvms/se8/html/index.html
http://dx.doi.org/10.1007/978-3-540-89330-1_22
http://dx.doi.org/10.1007/978-3-540-89330-1_22
http://martiansoftware.com/nailgun/
http://martiansoftware.com/nailgun/
http://doi.acm.org/10.1145/2908080.2908081
http://se.inf.ethz.ch/touch
http://se.inf.ethz.ch/touch
http://doi.acm.org/10.1145/2509136.2509536
http://doi.acm.org/10.1145/2509136.2509536
http://www.sciencedirect.com/science/article/pii/S1567832610000160
http://www.sciencedirect.com/science/article/pii/S1567832610000160
http://doi.acm.org/10.1145/1594834.1480929
http://www.metaborg.org/en/latest/source/langdev/meta/lang/sdf3.html
http://www.metaborg.org/en/latest/source/langdev/meta/lang/sdf3.html
http://doi.acm.org/10.1145/38807.38828
http://doi.acm.org/10.1145/38807.38828

Bibliography 55

[59] Guido Van Rossum et al. Python Programming Language. In USENIX Annual Technical Confer-
ence, volume 41, page 36, 2007.

[60] Vlad Vergu and Gabriel D.P. Konat. DynSem – Spoofax documentation. http://www.
metaborg.org/en/latest/source/langdev/meta/lang/dynsem/index.html. Ac-
cessed: 05-04-2017.

[61] Vlad Vergu, Pierre Neron, and Eelco Visser. DynSem: A DSL for Dynamic Semantics Specifi-
cation. Technical report, Delft University of Technology, Software Engineering Research Group,
2015.

[62] Eelco Visser, Guido Wachsmuth, Andrew P. Tolmach, Pierre Néron, Vlad A. Vergu, Augusto Pas-
salaqua, and Gabriël D. P. Konat. A Language Designer’s Workbench: A One-Stop-Shop for Im-
plementation and Verification of Language Designs. In Andrew P. Black, Shriram Krishnamurthi,
Bernd Bruegge, and Joseph N. Ruskiewicz, editors, Onward! 2014, Proceedings of the 2014
ACM International Symposium on New Ideas, New Paradigms, and Reflections on Programming
& Software, part of SLASH ’14, Portland, OR, USA, October 20-24, 2014, pages 95–111. ACM,
2014. ISBN 978-1-4503-3210-1. doi: 10.1145/2661136.2661149.

[63] Makarius Wenzel, Lawrence C. Paulson, and Tobias Nipkow. The Isabelle Framework,
pages 33–38. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-3-540-
71067-7. doi: 10.1007/978-3-540-71067-7_7. URL http://dx.doi.org/10.1007/
978-3-540-71067-7_7.

[64] Christian Wimmer and Thomas Würthinger. Truffle: A Self-optimizing Runtime System. In Pro-
ceedings of the 3rd Annual Conference on Systems, Programming, and Applications: Software for
Humanity, SPLASH ’12, pages 13–14, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1563-
0. doi: 10.1145/2384716.2384723. URL http://doi.acm.org/10.1145/2384716.
2384723.

[65] Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Doug Simon, and Christian
Wimmer. Self-optimizing AST Interpreters. In Proceedings of the 8th Symposium on Dynamic Lan-
guages, DLS ’12, pages 73–82, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1564-7. doi:
10.1145/2384577.2384587. URL http://doi.acm.org/10.1145/2384577.2384587.

[66] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Chris-
tian Humer, Gregor Richards, Doug Simon, and Mario Wolczko. One VM to Rule Them All.
In Proceedings of the 2013 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming & Software, Onward! 2013, pages 187–204, New York, NY,
USA, 2013. ACM. ISBN 978-1-4503-2472-4. doi: 10.1145/2509578.2509581. URL http:
//doi.acm.org/10.1145/2509578.2509581.

http://www.metaborg.org/en/latest/source/langdev/meta/lang/dynsem/index.html
http://www.metaborg.org/en/latest/source/langdev/meta/lang/dynsem/index.html
http://dx.doi.org/10.1007/978-3-540-71067-7_7
http://dx.doi.org/10.1007/978-3-540-71067-7_7
http://doi.acm.org/10.1145/2384716.2384723
http://doi.acm.org/10.1145/2384716.2384723
http://doi.acm.org/10.1145/2384577.2384587
http://doi.acm.org/10.1145/2509578.2509581
http://doi.acm.org/10.1145/2509578.2509581

A
Grammar in SDF3

Grace
syntax/grace.sdf3

1 module grace
2
3 imports
4
5 general
6 keyword-rejections
7 grace-lowered
8
9 context-free start-symbols

10
11 Program
12 Exp
13
14 context-free syntax
15
16 Program.Program = <<{Statement ”\n”}*>>
17
18 context-free syntax
19
20 Statement.Dialect = <dialect <STRING>;>
21 Statement.Import = <import <STRING> as <Identifier><Annotations>;>
22 Statement.Declaration = <<Declaration>;>
23 Statement.Expression = <<Exp>;>
24
25 context-free syntax
26
27 VarInit.VarInit = < := <Exp>>
28 VarInit.NoVarInit = <>
29 Declaration.Constant = <def <Identifier><TypeAnn><Annotations>=<Exp>>
30 Declaration.Variable = <var <Identifier><TypeAnn><Annotations><VarInit>>
31 Declaration.MethodDecl = <method <MethodNames><Annotations><TypeRuleRightHand>

<MethodBody>>↪
32 Declaration.ClassDecl = <
33 class <ClassName><Annotations><TypeRuleRightHand> {
34 <Inherit><Use*><{Statement ”\n”}*>
35 }
36 >
37 Declaration.TraitDecl = <trait <MethodNames><Annotations><TypeRuleRightHand> {
38 <Use*><{Statement ”\n”}*>
39 }>
40 Use.Use = <
41 use <Exp><Modifier*>;
42

57

58 A. Grammar in SDF3

43 >
44
45 Inherit.Inherit = <
46 inherit <Exp><Modifier*>;
47
48 >
49 Inherit.NoInherit = <>
50
51 Modifier.AliasModifier = < alias <MethodNames> = <MethodNames>>
52 Modifier.ExcludeModifier = < exclude <MethodNames>>
53
54 ClassName.FullStop = <<ID>.<MethodNames>>
55 ClassName.MethodName = <<MethodNames>>
56
57 MethodNames.Single = <<MethodNameNoParam>>
58 MethodNames.Multiple = <<MethodName+>>
59
60 MethodNameNoParam.MethodID = <<Identifier><TypeArg>>
61 MethodNameNoParam.MethodOp = <<OperatorCF><TypeArg>>
62
63 MethodName.MethodID = <<Identifier><TypeArg> <Params>>
64 MethodName.MethodOp = <<OperatorCF><TypeArg> <Params>>
65
66 Declaration.TypeDecl = <type <Identifier><TypeArg> <Annotations> = <TypeDeclBody>>
67
68 TypeDeclBody.TypeDeclBlock = <<TypeBlock>>
69 TypeDeclBody.TypeDeclExp = <<TypeExp>>
70
71 TypeBlock.TypeBlock = <{<{TypeRule ”\n”}*>}>
72
73 TypeRule.TypeRule = <<MethodNames> <TypeRuleRightHand>;>
74 TypeRuleRightHand.RH = [-> [TypeExp]]
75 TypeRuleRightHand.NoRH = <>
76
77 // TypeConf.TypeConf = [[TypeExp] <: [TypeExp]]
78 TypeExp.Union = <<TypeExp> + <TypeExp>> {left}
79 TypeExp.Subtract = <<TypeExp> - <TypeExp>> {left}
80 TypeExp.Intersect = <<TypeExp> & <TypeExp>> {left}
81 TypeExp.Variant = <<TypeExp> | <TypeExp>> {left}
82 TypeExp.TypeID = <<Identifier><TypeArg>>
83
84 TypeExp.AnonType = <type <TypeBlock>>
85 TypeExp.Interface = <interface <TypeBlock>>
86
87 TypeArg.TypeArg = <[[<{Identifier ”,”}*>]]>
88 TypeArg.NoTypeArg = <>
89
90 TypeAnn.TypeAnn = <: <TypeExp>>
91 TypeAnn.NoTypeAnn = <>
92
93 Identifier.ID = <<ID>>
94 Identifier.WildCard = <_>
95
96 Annotations.Annotations = < is <{Annotation ”, ”}+>>
97 Annotations.NoAnnotations = <>
98
99 Annotation.Public = <public>

100 Annotation.Readable = <readable>
101 Annotation.Writable = <writable>
102 Annotation.Confidential = <confidential>
103 Annotation.Manifest = <manifest>
104 Annotation.Overrides = <override>
105
106 Params.Params = <(<{Param ”, ”}+>)>
107 Param.ParamWType = <<Identifier><TypeAnn>>
108
109 MethodBody.MethodBody = <
110 {
111 <{Statement ”\n”}*>
112 }

59

113 >
114
115 context-free syntax
116
117 Exp.ObjectDecl = <
118 object {
119 <Inherit><Use*><{Statement ”\n”}*>
120 }
121 >
122
123 Exp.TypeExp = <<TypeExp>> {avoid}
124 Exp.Number = <<NUM>>
125 Exp.String = <<STRING>> {prefer}
126 Exp.InterpolatedString = <<InterpolatedString>>
127 Interpolated.IntPol = <<Exp> <STRINGINTMID>>
128 InterpolatedEnd.IntPolEnd = <<Exp> <STRINGINTEND>>
129 Exp.Boolean = <<Boolean>>
130
131 InterpolatedString.IntPolStr = <<STRINGINTSTART><Interpolated*><InterpolatedEnd>>
132
133 Exp = <(<Exp>)> {bracket}
134
135 Exp.MCallOpEx = <<Exp> <OperatorCF> <Exp>> {left}
136 Exp.MCallOpExAssign = <<Exp> := <Exp>> {left} // prefer
137 Exp.MCallWDot = <<Exp>.<Part+>> {left}
138 Exp.MCallImpl = <<Part+>> {left}
139
140 Exp.Self = <self>
141 Exp.SelfType = <Self>
142 Exp.Outer = <outer>
143 Exp.MQCallOuter = <<Exp>.outer> {left}
144 Exp.MQCallSelf = <<Exp>.self> {left}
145
146 Exp.MCallPrefixOpExp = <<OperatorCF> <Exp>> {right}
147
148 Exp.Ellipsis = <...>
149 Exp.LineupExp = <<Lineup>>
150 Exp.BlockExp = <<Block>>
151
152 Exp.Return = <return <Exp>> {right}
153
154 Exp.MatchCase = <
155 match (<Exp>)
156 <{Case ”\n”}+>
157 > {prefer} // over methodcall
158 Case.Case = [case {[CaseExp] [Arrow] [{Statement ”\n”}*]}]
159 Case.CaseParen = [case ({[CaseExp] [Arrow] [{Statement ”\n”}*]})]
160 CaseExp.CaseExp = <<CaseLiteral>>
161 CaseExp.CaseExpMulti = <<CaseLiteral> <BoolOp> <CaseLiteral>>
162 CaseExp.ExpParens = <(<Exp>)>
163 CaseExp.CIdentifier = <<Identifier>>
164 CaseExp.ExpTyped = <<Identifier> : <TypeExp>>
165 BoolOp.Or = <|>
166 BoolOp.And = <&>
167 // CaseType.Type = <<Identifier>>
168 CaseLiteral.CNumber = <<NUM>>
169 CaseLiteral.CString = <<STRING>>
170 CaseLiteral.CBoolean = <<Boolean>>
171
172 Arrow.Ascii = [->]
173
174 context-free syntax
175
176 Part.Part = <<Identifier><CallArgs>>
177
178 CallArgs.ArgsParen = < (<{Exp ”, ”}+>)> {left}
179 CallArgs.NoArgs = <>
180
181 CallArgs.ArgBlock = < <Block>>
182 CallArgs.ArgNumber = < <NUM>>

60 A. Grammar in SDF3

183 CallArgs.ArgString = < <STRING>>
184 CallArgs.ArgInterpolatedString= < <InterpolatedString>>
185 CallArgs.ArgLineup = < <Lineup>>
186 CallArgs.ArgBoolean = < <Boolean>>
187
188 OperatorCF.OperatorCF = <<Operator>>
189
190 Boolean.True = <true>
191 Boolean.False = <false>
192 Lineup.Lineup = <[<{Exp ”, ”}*>]>
193 Block.Block = <{<{Statement ”\n”}*>}>
194 Block.BlockWParams = <{<BlockParams> <{Statement ”\n”}*>}> {prefer}
195 BlockParams.BlockParams = [[{Param ”, ”}*] ->]
196
197 context-free priorities
198
199 Exp.MCallWDot > Exp.Return
200 ,
201 Exp.MCallWDot >
202 Exp.MCallPrefixOpExp >
203 Exp.MCallOpEx >
204 Exp.MCallOpExAssign >
205 Exp.TypeExp
206 ,
207 Exp.MQCallOuter >
208 Exp.MCallOpExAssign
209 ,
210 Exp.MQCallSelf >
211 Exp.MCallOpExAssign
212 ,
213 Exp.MQCallOuter >
214 Exp.MCallOpEx
215 ,
216 Exp.MQCallSelf >
217 Exp.MCallOpEx
218 ,
219 {left: TypeExp.Union
220 TypeExp.Subtract
221 TypeExp.Intersect
222 TypeExp.Variant }
223
224 template options
225
226 tokenize : ”.”
227 tokenize : ”(”
228 tokenize : ”)”
229 tokenize : ”{”
230 tokenize : ”}”

syntax/general.sdf3

1 module general
2
3 lexical syntax
4
5 ID = [a-zA-Z] [a-zA-Z0-9\’_]* Assign?
6 ID = PrefixOperator
7 Assign = ”:=”
8 NUM.Integer = [1-9][0-9]* // prefer neg int over neg operator
9 NUM.IntegerZ = ”0” // prefer neg int over neg operator
10 NUM.Decimal = [0-9]* ”.” [0-9]+
11 NUM.RadixNum = [02-9][0-9]* [xX] [a-zA-Z0-9]+ // some radix number
12 NUM.RadixNum2 = [1][0-9]+ [xX] [a-zA-Z0-9]+ // some radix number
13 NUM.SciNum = [0-9]* ”.” [0-9]+ [eE] ”-”? [0-9]+ // scientific notation
14 NUM.SciNum2 = [0-9]+ [eE] ”-”? [0-9]+

61

15 PrefixOperator = ”prefix” Operator
16 Operator = [\!\?\@\#\%\^\&\|\~\=\+\-*\/\\\>\<\:\.\$]+
17 STRING = ”\”” StringChar* ”\””
18 STRINGINTSTART = [\”] StringChar* [\{]
19 STRINGINTMID = [\}] StringChar* [\{]
20 STRINGINTEND = [\}] StringChar* [\”]
21 StringChar = ~[\”\n\{\}]
22 StringChar = ”\\\””
23 StringChar = BackSlashChar [\{]
24 StringChar = BackSlashChar [\}]
25 StringChar = BackSlashChar
26 BackSlashChar = ”\\”
27 LAYOUT = [\ \n\r] // tabs are not allowed!
28 LAYOUT = ”//” ~[\n\r]* NewLineEOF
29 NewLineEOF = [\n\r]
30 NewLineCR = [\r]
31 NewLineCR = [\n\r]
32 NewLineEOF = EOF
33 EOF =
34
35 lexical restrictions
36
37 // Ensure greedy matching for lexicals
38
39 NUM -/- [a-zA-Z0-9_]
40 ID -/- [a-zA-Z0-9_]
41
42 Operator -/- [\!\?\@\#\%\^\&\|\~\=\+\-*\/\\\>\<\:\.\$]
43
44 // EOF may not be followed by any char
45
46 EOF -/- ~[]
47
48 // Backslash chars in strings may not be followed by doublequote
49
50 BackSlashChar -/- [\”]
51
52 context-free restrictions
53
54 // Ensure greedy matching for comments
55
56 LAYOUT? -/- [\ \n\r]
57 LAYOUT? -/- [\/].[\/]

syntax/keyword-rejections.sdf3

1 module keyword-rejections
2
3 imports
4
5 general
6
7 lexical syntax
8
9 ID = ”alias” {reject}

10 ID = ”as” {reject}
11 ID = ”class” {reject}
12 ID = ”def” {reject}
13 ID = ”dialect” {reject}
14 ID = ”exclude” {reject}
15 ID = ”import” {reject}
16 ID = ”inherit” {reject}
17 ID = ”is” {reject}
18 ID = ”method” {reject}
19 ID = ”object” {reject}

62 A. Grammar in SDF3

20 ID = ”outer” {reject}
21 ID = ”prefix” {reject}
22 ID = ”required” {reject}
23 ID = ”return” {reject}
24 ID = ”self” {reject}
25 ID = ”Self” {reject}
26 ID = ”trait” {reject}
27 ID = ”type” {reject}
28 ID = ”use” {reject}
29 ID = ”var” {reject}
30 ID = ”where” {reject}
31
32 ID = ”true” {reject}
33 ID = ”false” {reject}
34
35 Operator = ”.” {reject}
36 Operator = ”...” {reject}
37 Operator = ”:=” {reject}
38 Operator = ”=” {reject}
39 Operator = ”;” {reject}
40 Operator = ”{” {reject}
41 Operator = ”}” {reject}
42 Operator = ”[” {reject}
43 Operator = ”]” {reject}
44 Operator = ”(” {reject}
45 Operator = ”)” {reject}
46 Operator = ”:” {reject}
47 Operator = ”->” {reject}
48

Grace-lowered
syntax/grace-lowered.sdf3

1 module grace-lowered
2
3 imports
4
5 general
6 keyword-rejections
7 grace
8
9 context-free syntax
10
11 Exp.MCallL = <_impl (<Identifier>(<{Exp ”, ”}*>))> {prefer}
12 Exp.MCallRecvL = <_recv (<Exp>).<Identifier>(<{Exp ”, ”}*>)> {prefer}
13 Exp.ObjectL = <
14 _object {
15 <Inherit><Use*><{Statement ”\n”}*>
16 }
17 > {prefer}
18 Inherit.InheritL = <_inherit <Exp><Alias*><Exclude*>;>
19 Use.UseL = <_use <Exp><Alias*><Exclude*>;>
20 Alias.AliasL = <_alias <Identifier> = <Identifier>>
21 Exclude.ExcludeL = <_exclude <Identifier>>
22
23 Exp.BlockL = [_block { [Identifier*] | [{TypeExp ”, ”}*] -> [{Statement ”\n”}*]

}] {prefer}↪
24 Exp.Uninitialized = <_uninit> {prefer}
25 TypeExp.Unkwn = <_Unkwn> {prefer}
26 // methodname typearguments annotations formal

argument names formal argument types returntype↪
27 Declaration.MethodL = [
28 _method [Identifier] ||[Identifier*]|| [Annotations] ([{Identifier

”, ”}*]) : ([{TypeExp ”, ”}*]) -> [TypeExp] {↪

63

29 [{Statement ”\n”}*]
30 }
31] {prefer}
32 Declaration.ConstantL = <_def <Identifier> <TypeExp><Annotations> = <Exp>> {prefer}
33 Declaration.VariableL = <_var <Identifier> <TypeExp><Annotations> := <Exp>> {prefer}
34
35 TypeRule.TypeRuleL = <_tr <Identifier> ||<Identifier*>|| (<{TypeExp ”, ”}*>) <TypeExp>>

B
Program transformations in Stratego

Desugaring
trans/desugar/desugar.str

1 module trans/desugar/desugar
2
3 imports
4
5 src-gen/signatures/grace-sig
6 src-gen/signatures/grace-lowered-sig
7 src-gen/signatures/general-sig
8
9 trans/desugar/common

10 trans/desugar/matchcase
11 trans/desugar/lower
12 trans/desugar/unquote
13 trans/desugar/interpolate
14 trans/desugar/annotate
15 trans/desugar/analyse
16
17 rules
18
19 desugar-pre =
20 topdown(analyse-traits)
21 ; desugar-program
22 <+ desugar-fail
23
24 desugar-all = innermost(desugar)
25
26 desugar =
27 desugar-class-declaration
28 <+ desugar-trait-declaration
29 <+ desugar-optimize-annotations
30 <+ desugar-annotate-defaults
31 <+ desugar-annotations
32 <+ desugar-missing-return-types
33 <+ desugar-missing-annotated-types
34 <+ desugar-match-case
35 <+ desugar-methodOp
36 <+ desugar-flatten-methodID
37 <+ desugar-flatten-methodPart
38 <+ desugar-mcallopexp
39 <+ desugar-mcallopexpassign
40 <+ desugar-mcallprefixopexp
41 <+ desugar-block
42 <+ desugar-arg-noargs
43 <+ desugar-arg-argsparen

65

66 B. Program transformations in Stratego

44 <+ desugar-argBlock
45 <+ desugar-flatten-objectdecl
46 <+ desugar-flatten-declaration
47 <+ desugar-unquote-strings
48 <+ desugar-interpolate
49
50 desugar-all-post: ast -> <lower-post-all> <lower-all> ast
51
52 desugar-program: Program(code) ->
53 Program([Expression(ObjectDecl(NoInherit(), [], code))])
54
55 desugar-missing-return-types: NoRH() -> RH(TypeID(ID(”Unknown”), NoTypeArg()))
56
57 desugar-missing-annotated-types: NoTypeAnn() ->
58 TypeAnn(TypeID(ID(”Unknown”), NoTypeArg()))
59
60 desugar-class-declaration:
61 ClassDecl(MethodName(mIDs), annotations, type, inh, use, code) ->
62 MethodDecl(
63 mIDs,
64 annotations,
65 type,
66 MethodBody([
67 Expression(ObjectDecl(inh,use,code))
68])
69)
70
71 desugar-trait-declaration:
72 TraitDecl(mIDs, annotations, type, use, code) ->
73 MethodDecl(
74 mIDs,
75 annotations,
76 type,
77 MethodBody([
78 Expression(ObjectDecl(NoInherit(),use,code))
79])
80)
81
82 desugar-class-declaration:
83 ClassDecl(FullStop(iden, mIDs), annotations, type, inh, use, code) ->
84 Constant(iden, NoTypeAnn(), Annotations([Public()]), Expression (
85 ObjectDecl(NoInherit(), [], [
86 MethodDecl(
87 mIDs,
88 annotations,
89 type,
90 MethodBody([
91 Expression(ObjectDecl(inh,use,code))
92])
93)
94])
95))
96
97
98 desugar-methodOp: MethodOp(OperatorCF(n), typeArg, params) -> MethodID(ID(n), typeArg,

params)↪
99

100 desugar-flatten-methodID: [MethodID(n, typeArg, Params(ps))] ->
101 [MethodID(ID(name), typeArg, Params(ps))]
102 where
103 n’ := <name-to-string> n;
104 name := <concat-strings> [n’, <param-string> ps];
105 <not-substring(!”(”)> n’
106
107 desugar-flatten-methodID: [MethodID(n1, typeArg1, Params(p1)),
108 MethodID(n2, typeArg2, Params(p2)) | mids] ->
109 [MethodID(ID(name), types, Params(ps)) | mids]
110 where
111 n1’ := <name-to-string> n1;
112 n2’ := <name-to-string> n2;

67

113 types := <merge-typeargs> [typeArg1, typeArg2];
114 name := <concat-strings> [n1’, <param-string> p1, n2’, <param-string> p2];
115 ps := <concat> [p1,p2];
116 <not-substring(!”(”)> n1’
117
118 desugar-flatten-methodID: [MethodID(n1, typeArg1, Params(p1)),
119 MethodID(n2, typeArg2, Params(p2)) | mids] ->
120 [MethodID(ID(name), types, Params(ps)) | mids]
121 where
122 n1’ := <name-to-string> n1;
123 n2’ := <name-to-string> n2;
124 types := <merge-typeargs> [typeArg1, typeArg2];
125 name := <concat-strings> [n1’, n2’, <param-string> p2];
126 ps := <concat> [p1,p2]
127
128 merge-typeargs: [TypeArg(ls) , TypeArg(ls2)] -> TypeArg(<concat> [ls,ls2])
129 merge-typeargs: [NoTypeArg() , TypeArg(ls2)] -> TypeArg(ls2)
130 merge-typeargs: [TypeArg(ls) , NoTypeArg()] -> TypeArg(ls)
131 merge-typeargs: [NoTypeArg() , NoTypeArg()] -> NoTypeArg()
132
133 not-substring(s) = is-substring(s) < fail + id
134
135 desugar-flatten-methodPart: [Part(n, NoArgs())] -> <fail>
136 desugar-flatten-methodPart: [Part(n, a@_)] -> [Part(ID(name), a)]
137 where
138 n’ := <name-to-string> n;
139 name := <concat-strings> [n’, <param-string> a];
140 <is-argument> a;
141 // only if n does not contain (
142 <not-substring(!”(”)> n’
143 desugar-flatten-methodPart: [Part(n1, args1), Part(n2, args2) | ps] ->
144 [Part(ID(name), ArgsParen(args)) | ps]
145 where
146 n1’ := <name-to-string> n1;
147 n2’ := <name-to-string> n2;
148 name := <concat-strings> [n1’, <param-string> args1, n2’, <param-string> args2];
149 args := <flatten-list> <map(desugar-arg)> [args1, args2];
150 // make sure to process first list only once.
151 <not-substring(!”(”)> n1’
152
153 desugar-flatten-methodPart: [Part(n1, args1), Part(n2, args2) | ps] ->
154 [Part(ID(name), ArgsParen(args)) | ps]
155 with
156 n1’ := <name-to-string> n1;
157 n2’ := <name-to-string> n2;
158 name := <concat-strings> [n1’, n2’, <param-string> args2];
159 args := <flatten-list> <map(desugar-arg)> [args1, args2]
160
161 param-string: ps ->
162 <concat-strings> <flatten-list> <concat> [[”(”] , <commas> <map(!”_”)> ps , [”)”]]
163 where
164 <is-list> ps
165
166 param-string: a@ArgsParen(ps) -> <param-string> ps
167 param-string: a@p -> ”(_)”
168
169 commas: [] -> []
170 commas: [a | []] -> [a]
171 commas: [a | as] -> [a , ”,” | <commas> as]
172
173 neq(|a,b) = equal(|a, b) < fail + id
174
175 is-argument: a -> a
176 where
177 <neq(|a, NoArgs())> a
178
179 desugar-mcallopexp: MCallOpEx(recv, OperatorCF(name), arg)->
180 MCallWDot(recv, [Part(ID(<concat-strings> [name, ”(_)”]),
181 ArgsParen([arg])
182)])

68 B. Program transformations in Stratego

183
184 desugar-mcallopexpassign: MCallOpExAssign(MCallWDot(recv, [Part(ID(name), NoArgs())]),

arg) ->↪
185 MCallWDot(recv, [Part(ID(<concat-strings> [name, ”:=(_)”]),
186 ArgsParen([arg])
187)])
188
189 desugar-mcallopexpassign: MCallOpExAssign(MCallImpl([Part(ID(name), NoArgs())]), arg) ->
190 MCallImpl([Part(ID(<concat-strings> [name, ”:=”]), ArgsParen([arg]))])
191
192 desugar-mcallprefixopexp: MCallPrefixOpExp(OperatorCF(op), arg) ->
193 MCallWDot(arg, [Part(ID(<concat-strings> [”prefix”, op]), NoArgs())])
194
195 desugar-flatten-objectdecl: ObjectDecl(a, b, xs) -> ObjectDecl(a, b, ys)
196 where
197 ys := <flatten-list> xs;
198 <not(eq)> (xs, ys)
199
200 desugar-flatten-declaration: Declaration([a, b]) ->
201 [Declaration(a), Declaration(b)]
202
203 desugar-arg: ArgNumber(a) -> Number(a)
204 desugar-arg: ArgBoolean(a) -> Boolean(a)
205 desugar-arg: ArgString(a) -> String(a)
206 desugar-arg: ArgLineup(a) -> LineupExp(a)
207 desugar-arg: ArgInterpolatedString(intpolstr) -> InterpolatedString(intpolstr)
208 desugar-arg: ArgsParen(a) -> a
209 desugar-arg: a -> a
210
211 desugar-arg-noargs: ArgsParen(as) -> ArgsParen(as’)
212 where
213 as’ := <flatten-list> <filter-no-args> as;
214 <not(eq)> (as, as’)
215
216 filter-no-args: [NoArgs() | as] -> [<filter-no-args> as]
217 filter-no-args: [a | as] -> [a | <filter-no-args> as]
218 filter-no-args: [] -> []
219
220 desugar-arg-argsparen: ArgsParen(as@[_ | _]) ->
221 ArgsParen(<flatten-list> <map(strip-argsparen)> as)
222
223 strip-argsparen: ArgsParen(a) -> a
224
225 desugar-argBlock: ArgBlock(o) -> ArgsParen([BlockExp(o)])
226
227 desugar-block:
228 Block(BlockWParams(a, b)) -> BlockWParams(a, b)
229
230 desugar-block:
231 Block(a) -> BlockWParams(BlockParams([]), a)
232
233 desugar-fail: a -> <fail>

Lowering
trans/desugar/lower.str

1 module trans/desugar/lower
2
3 imports
4
5 src-gen/signatures/grace-sig
6 src-gen/signatures/grace-lowered-sig
7 src-gen/signatures/general-sig

69

8
9 trans/desugar/common

10 trans/desugar/analyse
11
12 rules
13
14 lower-all = innermost(lower)
15
16 lower = lower-mdecl <+
17 lower-methodcallwdot <+
18 lower-mcallopex <+
19 lower-mcallimpl <+
20 lower-mcallwdot <+
21 lower-objectdecl <+
22 lower-constant <+
23 lower-variable <+
24 lower-block <+
25 lower-type-unknown <+
26 lower-typerule <+
27 lower-fail
28
29 lower-post-all: ast -> <topdown(lower-post-analyse)> <topdown(try(lower-post-2))>

<topdown(try(lower-post-1))> ast↪
30
31 lower-post-1 =
32 flatten-statements-declaration <+
33 lower-fail
34
35 lower-post-2 =
36 flatten-statements <+
37 lower-fail
38
39 lower-post-analyse = id
40
41 lower-methodcallwdot:
42 MCallWDot(recv, [Part(idf, args)]) ->
43 MCallRecvL(recv, <name-to-id> idf, as)
44 with
45 as := <flatten-list> <lower-arguments> args
46
47 lower-mcallopex:
48 MCallOpEx(recv, name, arg) ->
49 MCallRecvL(recv, <name-to-id> name, [arg])
50
51 lower-mcallimpl:
52 MCallImpl([Part(name , args)]) -> MCallL(name, as)
53 with
54 as := <flatten-list> <lower-arguments> args
55
56 lower-mdecl:
57 MethodDecl(Multiple([MethodID(mName, typeArgs, ps)]), annotations, RH(te),

MethodBody(cs)) ->↪
58 MethodL(name, ta, annotations, params, pt, te, cs)
59 with
60 pt := <lower-get-param-types> ps;
61 ta := <lower-get-typeargs> typeArgs;
62 params := <lower-get-param-names> ps;
63 name := <name-to-id> mName
64
65 lower-mdecl:
66 MethodDecl(Multiple([MethodOp(mName, typeArgs, ps)]), annotations, RH(te),

MethodBody(cs)) ->↪
67 MethodL(name, ta, annotations, params, pt, te, cs)
68 with
69 pt := <lower-get-param-types> ps;
70 ta := <lower-get-typeargs> typeArgs;
71 params := <lower-get-param-names> ps;
72 name := <name-to-id> mName
73
74 lower-mdecl:

70 B. Program transformations in Stratego

75 MethodDecl(Single(MethodID(mName, typeArgs)), annotations, RH(te), MethodBody(cs)) ->
76 MethodL(<name-to-id> mName, ta, annotations, [], [], te, cs)
77 with
78 ta := <lower-get-typeargs> typeArgs
79
80 lower-get-typeargs: TypeArg(tas) -> tas
81 lower-get-typeargs: NoTypeArg() -> []
82
83 lower-mcallwdot:
84 MCallWDot(recv, [Part(ID(name), args)]) ->
85 MCallRecvL(recv, name, <lower-arguments> args)
86
87 lower-block: BlockExp(blk) -> blk
88 lower-block: BlockWParams(BlockParams(ps), cs) -> BlockL(params, types, cs)
89 with
90 params := <lower-get-param-names> ps;
91 types := <lower-get-param-types> ps
92
93 lower-objectdecl: ObjectDecl(a, b, c) -> ObjectL(<lower-inherit> a, <map(lower-use)> b, c)
94
95 lower-inherit: Inherit(exp, mods) -> InheritL(exp, alias, exclude)
96 with
97 alias := <get-lowered-alias> mods;
98 exclude := <get-lowered-exclude> mods
99

100 lower-inherit: noi@NoInherit() -> noi
101
102 lower-use: Use(exp, mods) -> UseL(exp, alias, exclude)
103 with
104 alias := <get-lowered-alias> mods;
105 exclude := <get-lowered-exclude> mods
106
107 get-lowered-alias: [] -> []
108 get-lowered-alias: [AliasModifier(Single(MethodID(toId, _)), Single(MethodID(fromId, _)))

| as]↪
109 -> [AliasL(toId,fromId) | <get-lowered-alias> as]
110 get-lowered-alias: [AliasModifier(Multiple([MethodID(toId, _, _)]),

Multiple([MethodID(fromId, _, _)])) | as]↪
111 -> [AliasL(toId,fromId) | <get-lowered-alias> as]
112 get-lowered-alias: [a | as] -> <get-lowered-alias> as
113
114 get-lowered-exclude: [] -> []
115 get-lowered-exclude: [e@ExcludeModifier(Single(MethodID(iden, _))) | es]
116 -> [ExcludeL(iden) | <get-lowered-exclude> es]
117 get-lowered-exclude: [e@ExcludeModifier(Multiple([MethodID(iden, _, _)])) | es]
118 -> [ExcludeL(iden) | <get-lowered-exclude> es]
119 get-lowered-exclude: [e | es] -> <get-lowered-exclude> es
120
121 lower-constant: Constant(a, t, b, c) -> ConstantL(a, <lower-typeann> t, b, c)
122
123 lower-variable: Variable(a, t, b, NoVarInit()) ->
124 VariableL(a, <lower-typeann> t, b, Uninitialized())
125 lower-variable: Variable(a, t, b, VarInit(exp)) ->
126 VariableL(a, <lower-typeann> t, b, exp)
127
128 lower-typeann: TypeAnn(t) -> t
129
130 lower-type-unknown: TypeID(ID(”Unknown”), NoTypeArg()) -> Unkwn()
131
132 lower-typerule: TypeRule(Single(MethodID(iden, typeArg)), RH(retType)) ->
133 TypeRuleL(iden, <lower-get-typeargs> typeArg, [], retType)
134 lower-typerule:
135 TypeRule(Multiple([MethodID(iden, typeArgs, ps)]), RH(retType)) ->
136 TypeRuleL(iden, <lower-get-typeargs> typeArgs, <lower-get-param-types> ps, retType)
137
138 flatten-statements-declaration: Declaration([a,b]) -> [Declaration(a),Expression(b)]
139
140 flatten-statements: ObjectL(a, b, code) -> ObjectL(a, b, <flatten-list> code)
141 flatten-statements: MethodL(n, ta, a, p, pt, t, code) ->
142 MethodL(n, ta, a, p, pt, t, <flatten-list> code)

71

143 flatten-statements: BlockL(p, t, code) -> BlockL(p, t, <flatten-list> code)
144
145 lower-get-param-names: Params(ps) -> <lower-get-param-names> ps
146 lower-get-param-names: [] -> []
147 lower-get-param-names: [ParamWType(n, _)] -> [n]
148 lower-get-param-names: [ParamWType(n, _) | bs] -> [n | <lower-get-param-names> bs]
149
150 lower-get-param-types: Params(ps) -> <lower-get-param-types> ps
151 lower-get-param-types: [] -> []
152 lower-get-param-types: [ParamWType(_, TypeAnn(te))] -> [te]
153 lower-get-param-types: [ParamWType(_, TypeAnn(te)) | ps] ->
154 [te | <lower-get-param-types> ps]
155
156 lower-arguments: ArgNumber(a) -> [Number(a)]
157 lower-arguments: ArgString(a) -> [String(a)]
158 lower-arguments: ArgBoolean(a) -> [Boolean(a)]
159 lower-arguments: ArgLineup(a) -> [LineupExp(a)]
160 lower-arguments: ArgInterpolatedString(a) -> [InterpolatedString(a)]
161 lower-arguments: NoArgs() -> []
162 lower-arguments: ArgsParen(as) -> <lower-arguments> as
163 lower-arguments: [ArgsParen(a) | b] -> [a | <lower-arguments> b]
164 lower-arguments: a -> a
165
166 lower-fail: a -> <fail>

Auxiliary transformations
trans/desugar/annotate.str

1 module trans/desugar/annotate
2
3 imports
4
5 src-gen/signatures/grace-sig
6 src-gen/signatures/general-sig
7
8 rules
9

10 desugar-annotate-defaults: Constant(nm, typeAnn, NoAnnotations(), exp)
11 -> Constant(nm, typeAnn, Annotations([Confidential()]), exp)
12
13 desugar-annotate-defaults: Variable(nm, typeAnn, NoAnnotations(), init)
14 -> Variable(nm, typeAnn, Annotations([Confidential()]), init)
15
16 desugar-annotate-defaults: MethodDecl(nm, NoAnnotations(), rh, body)
17 -> MethodDecl(nm, Annotations([Public()]), rh, body)
18
19 desugar-annotate-defaults: ClassDecl(nm, NoAnnotations(), t, inh, use, code)
20 -> ClassDecl(nm, Annotations([Public()]), t, inh, use, code)
21
22 desugar-annotate-defaults: Import(f, nm, NoAnnotations())
23 -> Import(f, nm, Annotations([Confidential()]))
24
25 desugar-annotate-defaults: TypeDecl(name, ta, NoAnnotations(), tb)
26 -> TypeDecl(name, ta, Annotations([Public()]), tb)
27
28 desugar-annotations: Constant(nm, typeAnn, Annotations([Public()]), exp)
29 -> Constant(nm, typeAnn, Annotations([Readable()]), exp)
30
31 desugar-annotations: Variable(nm, typeAnn, Annotations([Public()]), init)
32 -> Variable(nm, typeAnn, Annotations([Readable(), Writable()]), init)
33
34 desugar-annotations: Import(f, nm, Annotations([Public()]))
35 -> Import(f, nm, Annotations([Readable()]))

72 B. Program transformations in Stratego

36
37 desugar-annotations: MethodDecl(nm, Annotations(anns), rh, body)
38 -> MethodDecl(nm, Annotations([Public()]), rh, body)
39 where
40 <not(elem)> (Confidential(), anns);
41 <not(elem)> (Public(), anns)
42
43 desugar-optimize-annotations: Annotations(as)
44 -> Annotations(<optimize-annotations> as)
45 with
46 <check-annotations> as
47
48 optimize-annotations: [] -> []
49
50 optimize-annotations: [anns] -> [anns’]
51 where
52 <elem> (Public(), anns);
53 <elem> (Readable(), anns);
54 anns’ := <remove-all(?Readable())> anns
55
56 optimize-annotations: [anns] -> [anns’]
57 where
58 <elem> (Public(), anns);
59 <elem> (Writable(), anns);
60 anns’ := <remove-all(?Writable())> anns
61
62 check-annotations: anns -> anns
63 where
64 <not(<elem> (Public(), anns) ; <elem> (Confidential(), anns))> anns
65

trans/desugar/common.str

1 module trans/desugar/common
2
3 imports
4
5 src-gen/signatures/grace-sig
6 src-gen/signatures/grace-lowered-sig
7 src-gen/signatures/general-sig
8
9 rules
10
11 name-to-string: ID(a) -> a where <is-string> a
12 name-to-string: OperatorCF(a) -> a where <is-string> a
13 name-to-string: a -> a
14
15 name-to-id: ID(a) -> ID(a)
16 name-to-id: OperatorCF(a) -> ID(a) where <is-string> a

trans/desugar/interpolate.str

1 module trans/desugar/interpolate
2
3 imports
4
5 src-gen/signatures/grace-sig
6 src-gen/signatures/general-sig
7
8

73

9 rules
10 external substring(|begin, end)
11
12 trim-string(|b,e): a -> <substring(|b, <subti> (<string-length> a, e))> a
13
14 desugar-interpolate: Part(nm, ArgInterpolatedString(intpolstr))
15 -> Part(nm, ArgsParen([InterpolatedString(intpolstr)]))
16
17 desugar-interpolate:
18 InterpolatedString(IntPolStr(beginStr,[],IntPolEnd(exp,endStr)))
19 -> MCallWDot(
20 MCallWDot(
21 String(beginStr’)
22 , [Part(ID(”++”), ArgsParen([exp]))]
23)
24 , [Part(ID(”++”), ArgsParen([String(endStr’)]))]
25)
26 with
27 beginStr’ := <trim-string(|1,1)> beginStr;
28 endStr’ := <trim-string(|1,1)> endStr
29
30 desugar-interpolate:
31 InterpolatedString(IntPolStr(bStr, mids@[IntPol(_, _) | _],
32 end@IntPolEnd(eexp,eStr))) ->
33 MCallWDot(
34 MCallWDot(
35 sub
36 , [Part(ID(”++”), ArgsParen([eexp]))]
37)
38 , [Part(ID(”++”), ArgsParen([String(endStr’)]))]
39)
40 where
41 IntPol(mExp, mStr) := <last> mids;
42 sub := <desugar-interpolate> InterpolatedString(
43 IntPolStr(bStr, <init> mids, IntPolEnd(mExp, mStr)));
44 endStr’ := <trim-string(|1,1)> eStr

trans/desugar/matchcase.str

1 module trans/desugar/matchcase
2
3 imports
4
5 src-gen/signatures/grace-sig
6 src-gen/signatures/grace-lowered-sig
7 src-gen/signatures/general-sig
8
9 trans/desugar/common

10
11 rules
12
13 desugar-case(|liftedname):
14 Case(ExpParens(caseExpression), a, body) ->
15 <desugar-case(|liftedname, caseExpression)>
16 Case(ExpTyped(<new>, TypeID(ID(”Unknown”), NoTypeArg())), a, body)
17
18 desugar-case(|liftedname):
19 Case(CaseExp(CString(str)), a, body) ->
20 <desugar-case(|liftedname, String(str))>
21 Case(ExpTyped(innername, TypeID(ID(”String”), NoTypeArg())), a, body)
22 where
23 innername := <concat-strings> [”s_”, <new>]
24
25 desugar-case(|liftedname):
26 Case(CaseExp(CNumber(num)), a, body) ->

74 B. Program transformations in Stratego

27 <desugar-case(|liftedname, Number(num))>
28 Case(ExpTyped(innername, TypeID(ID(”Number”), NoTypeArg())), a, body)
29 where
30 innername := <concat-strings> [”n_”, <new>]
31
32 desugar-case(|liftedname):
33 Case(CaseExp(CBoolean(bool)), a, body) ->
34 <desugar-case(|liftedname, Boolean(bool))>
35 Case(ExpTyped(innername, TypeID(ID(”Boolean”), NoTypeArg())), a, body)
36 where
37 innername := <concat-strings> [”b_”, <new>]
38
39 desugar-case(|liftedname):
40 Case(CIdentifier(WildCard()), a, body) ->
41 <desugar-case(|liftedname)>
42 Case(ExpTyped(<concat-strings> [”u_”, <new>], TypeID(ID(”Unknown”), NoTypeArg())), a,

body)↪
43
44 desugar-case(|liftedname):
45 Case(CIdentifier(iden), a, body) ->
46 <desugar-case(|liftedname)>
47 Case(ExpTyped(iden, TypeID(ID(”Unknown”), NoTypeArg())), a, body)
48
49 desugar-case(|liftedname):
50 Case(ExpTyped(WildCard(), type), a, body) ->
51 <desugar-case(|liftedname)> Case(ExpTyped(ID(<new>), type), a, body)
52
53 desugar-case(|liftedname):
54 Case(ExpTyped(iden, TypeID(typeId, NoTypeArg())), _, body) ->
55 [BlockExp(Block ([Expression (
56 MCallWDot(
57 BlockExp(
58 BlockWParams(
59 BlockParams([ParamWType(iden, NoTypeAnn())])
60 , [Expression(
61 MCallWDot(
62 MCallImpl([Part(typeId , NoArgs())])
63 , [Part(
64 ID(”match”)
65 , ArgsParen([MCallImpl([Part(iden , NoArgs())])])
66)
67]
68)
69)
70]
71)
72)
73 , [Part(
74 ID(”apply”)
75 , ArgsParen([MCallImpl([Part(ID(liftedname), NoArgs())])])
76)
77]
78)
79)]))
80 , BlockExp(
81 Block([
82 Expression(
83 MCallWDot(
84 BlockExp(BlockWParams(BlockParams([ParamWType(iden, NoTypeAnn())]), body)),
85 [Part(ID(”apply”), ArgsParen([MCallImpl([Part(liftedname , NoArgs())])]))]
86)
87)
88])
89)
90]
91
92 desugar-case(|liftedname, matchExpr):
93 Case(ExpTyped(iden, TypeID(typeId, NoTypeArg())), _, body) ->
94 [BlockExp(Block([Expression(
95

75

96 MCallWDot(
97 MCallWDot(
98 MCallImpl([Part(typeId , NoArgs())])
99 , [Part(

100 ID(”match(_)”)
101 , ArgsParen([MCallImpl([Part(ID(liftedname), NoArgs())])])
102)
103]
104)
105 , [Part(
106 ID(”&&(_)”)
107 , ArgsParen(
108 [MCallWDot(
109 MCallImpl([Part(ID(liftedname), NoArgs())])
110 , [Part(ID(”==(_)”), ArgsParen([matchExpr]))]
111)
112]
113)
114)
115]
116)
117
118)]))
119 , BlockExp(
120 Block([
121 Expression(
122 MCallWDot(
123 BlockExp(BlockWParams(BlockParams([ParamWType(iden, NoTypeAnn())]), body)),
124 [Part(ID(”apply”), ArgsParen([MCallImpl([Part(liftedname , NoArgs())])]))]
125)
126)
127])
128)
129]
130
131 desugar-case(|liftedname): a -> <fail>
132 where
133 <debug(!”error: unkown case type: ”)> a
134
135 desugar-caseparen-to-case: CaseParen(a,b,c) -> Case(a,b,c)
136 desugar-caseparen-to-case: Case(a,b,c) -> Case(a,b,c)
137
138 desugar-match-case:
139 MatchCase(matchExpression, cases) ->
140 MCallWDot(
141 BlockExp(
142 BlockWParams(
143 BlockParams([ParamWType(ID(liftedname), NoTypeAnn())])
144 , [Expression(
145 MCallImpl(
146 [Part(
147 ID(methodName)
148 , ArgsParen(
149 cases’’
150)
151)]
152)
153)
154]
155)
156)
157 , [Part(ID(”apply”), ArgsParen([matchExpression]))]
158)
159 where
160 liftedname := <concat-strings> [”m_”, <new>];
161 cases’ := <map(desugar-caseparen-to-case)> cases;
162 cases’’ := <flatten-list> <map(desugar-case(|liftedname))> cases’;
163 numParts := <length> cases’’;
164 list := <range(|2)> <int-dec> <int-dec> numParts;
165 listNames := <map(!”elseif(_)then(_)”)> list;

76 B. Program transformations in Stratego

166 methodName := <concat-strings> [”if(_)then(_)” | listNames]

trans/desugar/unquote.str

1 module trans/desugar/unquote
2
3 imports
4
5 src-gen/signatures/grace-sig
6 src-gen/signatures/general-sig
7
8 rules
9
10 desugar-unquote-strings:
11 String(s) -> String(<unquote(?’”’)> s)
12
13 desugar-unquote-strings:
14 ArgString(s) -> ArgString(<unquote(?’”’)> s)
15
16 desugar-unquote-strings:
17 CString(s) -> CString(<unquote(?’”’)> s)
18
19 desugar-unquote-strings:
20 Dialect(s) -> Dialect(<unquote(?’”’)> s)
21
22 desugar-unquote-strings:
23 Import(s, b, c) -> Import(<unquote(?’”’)> s, b, c)
24
25 desugar-unquote-strings:
26 IntPolEnd(e, s) -> IntPolEnd(e, <unquote(?’”’)> s)

trans/desugar/analyse.str

1 module trans/desugar/analyse
2
3 imports
4
5 src-gen/signatures/grace-sig
6 src-gen/signatures/grace-lowered-sig
7 src-gen/signatures/general-sig
8
9 trans/desugar/common
10
11 rules
12
13 analyse-traits: a@TraitDecl(_,_,_,_,code) -> a
14 with
15 <only-methods> code
16 analyse-traits: a -> a
17
18 only-methods: [] -> []
19 only-methods: [Declaration(MethodDecl(_,_,_,_)) | code] ->
20 <only-methods> code
21 only-methods: a -> <fail> ”Only methods declarations may occur in trait.”
22
23 analyse-duplicate-decls: a@ObjectL(_,_,code) -> a
24 with <no-duplicates> (code, [])
25 analyse-duplicate-decls: a@MethodL(_,_,_,ids,_,_,[Expression(ObjectL(_,_,code))]) -> a
26 with
27 <no-duplicates> (code, <map(name-to-string)> ids)

77

28 analyse-duplicate-decls: a@MethodL(_,_,_,ids,_,_,code) -> a
29 with
30 <no-duplicates> (code, <map(name-to-string)> ids)
31
32 analyse-duplicate-decls: a@BlockL(_,_,code) -> a
33 with <no-duplicates> (code, [])
34 analyse-duplicate-decls: a -> a
35
36 no-duplicates: ([],a) -> ([], a)
37 no-duplicates: ([Declaration(d) | code], names) ->
38 <no-duplicates> (code, names’)
39 with
40 names’ := <check-duplicate-decls> (d, names);
41 <no-dups> names’
42 no-duplicates: a -> a
43
44 // fail if d declares a name already in names, otherwise add name to names
45 check-duplicate-decls: (MethodL(ID(name),_,_,_,_,_,_), names) -> [name | names]
46 with
47 <not(elem)> (name, names)
48 check-duplicate-decls: (ConstantL(ID(name),_,_,_), names) -> [name | names]
49 with
50 <not(elem)> (name, names)
51 check-duplicate-decls: (VariableL(ID(name),_,_,_), names) -> [name | names]
52 with
53 <not(elem)> (name, names)
54 check-duplicate-decls: (BlockL(ids,_,_), names) -> names
55 with
56 <not(elem)> (<map(name-to-string)> ids, names)
57 check-duplicate-decls: (a, names) -> names
58
59 no-dups: [] -> []
60 no-dups: [x|xs] -> <no-dups> xs with <not(elem)> (x,xs)

C
Dynamic semantics in DynSem

trans/grace.ds

1 module trans/grace
2
3 imports
4 trans/semantics/semantics
5
6 signature
7 arrows
8 Program -init-> (V * Exn * H)
9

10 rules
11
12 p@Program(_) -init-> (v_out, EX, H)
13 where
14 next() --> base;
15 ProgPath native-term-origin-path(p), R No-Return(), O base, S base, P Exec(), Src

src-base() |- p :: H {}, L {},↪
16 VH {}, DCache {}, ICache {}, EX Ok() --> v :: H, L, VH, EX;
17 case EX of {
18 Ok() =>
19 v => v_out
20 otherwise =>
21 DoneV() => v_out
22 }.

trans/semantics/semantics.ds

1 module trans/semantics/semantics
2
3 imports
4 src-gen/ds-signatures/grace-lowered-sig
5
6 imports
7 trans/semantics/store
8 trans/semantics/values
9 trans/semantics/objectmodel

10 trans/semantics/functions/functions
11 trans/semantics/expressions
12 trans/semantics/statements
13 trans/semantics/numbers
14 trans/semantics/booleans

79

80 C. Dynamic semantics in DynSem

15 trans/semantics/strings
16 trans/semantics/imports
17 trans/semantics/store
18
19 signature
20 arrows
21 Program --> V
22
23 rules
24
25 S |- prog@Program(code) --> v
26 where
27 load-dialect(collect-dialect-statement(prog)) --> S’;
28 S’, O S |- code --> v.
29
30 [] : Code --> DoneV().
31
32 [c] : Code --> c.
33
34 [c | cs@[_|_]] : Code --> v
35 where
36 c --> _;
37 cs --> v.

trans/semantics/controlflow.ds

1 module trans/semantics/controlflow
2
3 imports
4 src-gen/ds-signatures/grace-lowered-sig
5 trans/semantics/expressions
6
7 signature
8 arrows
9 while-loop(Exp, Exp) --> V
10 while-loop-evaluated(V, V) --> V
11
12 rules
13
14 while-loop(e1, e2) --> v
15 where
16 e1 --> v1;
17 e2 --> v2;
18 while-loop-evaluated(v1, v2) --> v.
19
20 w@while-loop-evaluated(v1, v2) --> DoneV()
21 where
22 call(v1, [], ”apply”) --> BoolV(cond);
23 case cond of {
24 true =>
25 call(v2, [], ”apply”) --> _;
26 w --> _
27 otherwise =>
28 }.

trans/semantics/expressions.ds

1 module trans/semantics/expressions
2
3 imports

81

4 src-gen/ds-signatures/grace-sig
5 trans/semantics/values
6 trans/semantics/statements
7 trans/semantics/objectmodel
8
9 signature

10 sorts
11 Exn
12
13 constructors
14 Ok : Exn
15 Exn : String -> Exn
16
17 components
18 EX : Exn = Ok()
19
20 arrows
21 Exp --> V
22 List(Exp) --> List(V)
23
24 rules
25
26 Self() --> current-self().
27
28 Outer() --> current-outer().
29
30 Uninitialized() --> UninitializedV().
31
32 [] : List(Exp) --> [].
33
34 [e | es] : List(Exp) --> [v | vs]
35 where
36 e --> v;
37 es --> vs.

trans/semantics/imports.ds

1 module trans/semantics/imports
2
3 imports
4 src-gen/ds-signatures/grace-sig
5 src-gen/ds-signatures/grace-lowered-sig
6 trans/semantics/semantics
7 trans/semantics/statements
8
9 signature

10 sort aliases
11 Addr = Int
12
13 components
14 DCache : Map(String, Addr)
15 ICache : Map(String, V)
16
17 arrows
18 collect-dialect-statement(Program) --> Statement
19 load-dialect(Statement) --> Addr
20
21 load-import(String) --> V
22
23 parse-file(String) --> Program
24
25 dialect-cache-has(String) --> Bool
26 dialect-cache-add(String, Addr) --> Addr
27 dialect-cache-get(String) --> Addr
28 dialect-path(String) --> String

82 C. Dynamic semantics in DynSem

29
30 import-cache-has(String) --> Bool
31 import-cache-add(String, V) --> V
32 import-cache-get(String) --> V
33 import-path(String) --> String
34
35 native operators
36 native-parse-file: String -> Program
37 native-term-origin-path: AST -> String
38 native-parent-directory: String -> String
39 native-path-separator: String
40 native-standardgrace: String
41
42 components
43 ProgPath: String
44
45 rules
46
47 parse-file(s) --> native-parse-file(s).
48
49 load-dialect(Dialect(”none”)) --> new-object(S)
50 where
51 current-self() --> RefV(S).
52
53 load-dialect(Dialect(name)) --> dialect-cache-get(name)
54 where
55 dialect-cache-has(name) --> true.
56
57 load-dialect(Dialect(name)) --> dialect-cache-add(name, dialect)
58 where
59 dialect-cache-has(name) --> false;
60 parse-file(dialect-path(name)) --> program;
61 program --> RefV(dialect);
62 read(dialect) --> Obj(_, outers, slots, methods);
63 update(dialect, Obj(fresh, outers, slots, methods)) --> _.
64
65 collect-dialect-statement(Program([Expression(ObjectL(_,_,[dialect@Dialect(_) | _])) |

_])) --> dialect.↪
66
67 collect-dialect-statement(Program([Expression(ObjectL(_,_,[stm | _])) | _])) -->

Dialect(”standardGrace”)↪
68 where
69 stm =!=> Dialect(_).
70
71 collect-dialect-statement(Program([Expression(ObjectL(_,_,[])) | _])) -->

Dialect(”standardGrace”).↪
72
73
74 load-import(name) --> import-cache-get(name)
75 where
76 import-cache-has(name) --> true.
77
78 load-import(name) --> import-cache-add(name, import)
79 where
80 import-cache-has(name) --> false;
81 parse-file(import-path(name)) --> program@Program(_);
82 program --> import@RefV(_).
83
84
85 ProgPath |- import-path(name) --> native-parent-directory(ProgPath) ++

native-path-separator() ++ name.↪
86
87 ProgPath |- dialect-path(name) --> native-parent-directory(ProgPath) ++

native-path-separator() ++ name↪
88 where
89 name != ”standardGrace”.
90
91 dialect-path(”standardGrace”) --> native-standardgrace().
92
93

83

94 DCache |- dialect-cache-has(name) --> DCache[name?].
95
96 dialect-cache-add(name, dialect) :: DCache --> dialect :: DCache { name |--> dialect,

DCache}.↪
97
98 dialect-cache-get(name) :: DCache --> DCache[name] :: DCache.
99

100
101 ICache |- import-cache-has(name) --> ICache[name?].
102
103 import-cache-add(name, import) :: ICache --> import :: ICache {name |--> import, ICache}.
104
105 import-cache-get(name) :: ICache --> ICache[name] :: ICache.
106

trans/semantics/objectmodel.ds

1 module trans/semantics/objectmodel
2
3 imports
4 src-gen/ds-signatures/grace-sig
5
6 imports
7 trans/semantics/values
8 trans/semantics/store
9 trans/semantics/runtime/natives

10
11 trans/semantics/strings
12 trans/semantics/numbers
13 trans/semantics/lineups
14 trans/semantics/statements
15 trans/semantics/imports
16 trans/semantics/visibility
17
18 signature
19 sorts
20 Addr
21
22 sorts
23 Object
24 Member
25
26 sort aliases
27 Self = Addr
28 HeapData = Object
29 Slots = Map(Int, V)
30 Methods = Map(String, V)
31
32 constructors // extra instructions
33 SlotRead : Int -> Statement
34 SlotWrite : Int * Exp * TypeExp -> Statement
35
36 constructors
37 Obj: Addr * List(Addr) * Slots * Methods -> Object
38 RefV: Addr -> V {implicit}
39
40 components
41 S : Addr
42 O : Addr
43
44 rules
45
46 S, P Exec() |- ObjectL(inherit, uses, code) --> S’
47 where
48 new-object(S) --> S’;

84 C. Dynamic semantics in DynSem

49 snapshot-locals() --> L;
50 S S’, O S, P Flatten() |- inherit --> oc-inherit;
51 S S’, O S, P Flatten() |- uses --> ocs-use;
52 ObjC(S, src-base(), L, code, oc-inherit, ocs-use, [], []) => oc;
53 read(S’) --> Obj(outer, _, slots, methods);
54 update(S’, Obj(outer, objc-gather-scopes(oc), slots, methods)) --> _;
55 S’ |- install-members-top(oc) --> oc’;
56 S’ |- init-object(oc’) --> U().
57
58 SlotRead(i) --> ensure-defined(read-slot(i)).
59
60 SlotWrite(i, e, te) --> DoneV()
61 where
62 e --> v;
63 type-check([te], [v]) --> true;
64 write-slot(i, v) --> _.
65
66
67
68
69
70
71 /* ========== OBJECT FLATTENING =========== */
72 signature
73 sorts
74 Phase
75
76 constructors
77 Exec : Phase
78 Flatten : Phase
79
80 sort aliases
81 Source = Int
82
83 components
84 P : Phase
85 Src : Int
86
87 constructors
88 ObjC: Addr * Source * Env * Code * V * List(V) * List(Alias) * List(Exclude) -> V
89 NoObjC: V
90
91 arrows
92 Inherit --> V
93 List(Use) --> List(V)
94
95 arrows
96 objc-rec-aliases(V, List(Alias)) --> V
97 objc-rec-excludes(V, List(Exclude)) --> V
98 objc-gather-scopes(V) --> List(Addr)
99 objc-gather-scopes-concat(List(V)) --> List(Addr)

100
101 src-base() --> Source
102 src-next() --> Source
103 src-previous() --> Source
104 src-is-base(Source) --> Bool
105
106 rules
107
108 S, P Flatten(), Src |- ObjectL(inherit, uses, code) --> ObjC(S, Src, L, code, oc-inherit,

ocs-use, [], [])↪
109 where
110 snapshot-locals() --> L;
111 O S, P Flatten() |- inherit --> oc-inherit;
112 O S, P Flatten() |- uses --> ocs-use.
113
114 P Flatten() |- MCallRecvL(e, ID(x), es) --> v
115 where
116 P Exec() |- e --> recv;
117 P Exec() |- es --> vs;

85

118 P Flatten() |- call-qualified(recv, x, vs) --> v.
119
120 NoInherit() --> NoObjC().
121
122 InheritL(e, aliases, excludes) --> objc-rec-aliases(objc-rec-excludes(oc, excludes),

aliases)↪
123 where
124 Src src-next() |- e --> oc@ObjC(_, _, _, _, _, _, _, _).
125
126 [] : List(Use) --> [].
127
128 [UseL(e, aliases, excludes) | uses] : List(Use) --> [oc’|ocs]
129 where
130 Src src-next() |- e --> oc;
131 objc-rec-aliases(objc-rec-excludes(oc, excludes), aliases) --> oc’;
132 Src src-next() |- uses --> ocs.
133
134
135
136 objc-gather-scopes(NoObjC()) --> [].
137
138 objc-gather-scopes(ObjC(O, _, _, _, inherit, uses, _, _)) --> [O | scopes]
139 where
140 objc-gather-scopes-concat([inherit | uses]) --> scopes.
141
142 objc-gather-scopes-concat([]) --> [].
143
144 objc-gather-scopes-concat([oc | ocs]) --> ocs1 ++ ocs2
145 where
146 objc-gather-scopes(oc) --> ocs1;
147 objc-gather-scopes-concat(ocs) --> ocs2.
148
149 objc-rec-excludes(ObjC(outer, src, L, code, inherit, use, aliases, _), excludes) -->

ObjC(outer, src, L, code, inherit, use, aliases, excludes).↪
150
151 objc-rec-aliases(ObjC(outer, src, L, code, inherit, use, _, excludes), aliases) -->

ObjC(outer, src, L, code, inherit, use, aliases, excludes).↪
152
153 src-base() --> 0.
154
155 Src |- src-next() --> addI(Src, 1).
156
157 Src |- src-previous() --> addI(Src, -1)
158 where
159 gtI(Src, 0) == true.
160
161 src-is-base(Src) --> eqI(Src, 0).
162
163
164
165 /* ========== OBJECT MEMBER INSTALLATION ===== */
166 signature
167 sort aliases
168 Aliases = List(Alias)
169 Excludes = List(Exclude)
170
171 arrows
172 install-members-top(V) --> V
173 install-members(V) --> V
174 install-members-map(List(V)) --> List(V)
175
176 install-code(Code)--> Code
177
178 install-declaration(Declaration) --> Code
179
180 install-import(Statement) --> Code
181
182 install-method(Declaration) --> U
183
184 install-alias(String, V) --> U

86 C. Dynamic semantics in DynSem

185 install-aliases(String, V) --> U
186
187 exclude-method(String) --> Bool
188
189 ensure-unique-method(String, V) --> U
190
191 install-aliases() --> U
192 exclude-methods() --> U
193
194 components
195 Als: Aliases
196 Exs: Excludes
197
198 rules
199
200 install-members-top(v) --> v’
201 where
202 install-members(v) :: NS 0, GS {} --> v’.
203
204 install-members(NoObjC()) --> NoObjC().
205
206 install-members(ObjC(O, Src, L, code, inherit, uses, Als, Exs)) --> ObjC(O, Src, L, code’,

inherit’, uses’, Als, Exs)↪
207 where
208 install-members(inherit) --> inherit’;
209 install-members-map(uses) --> uses’;
210 O, Src |- install-code(code) :: L, Als, Exs --> code’ :: L _, Als _, Exs _.
211
212 install-members-map([]) --> [].
213
214 install-members-map([oc | ocs]) --> [oc’ | ocs’]
215 where
216 install-members(oc) --> oc’;
217 install-members-map(ocs) --> ocs’.
218
219 install-code([]) --> []
220 where
221 install-aliases() --> _;
222 exclude-methods() --> _.
223
224 install-code([Declaration(d) | code]) --> decl-code ++ code’
225 where
226 install-declaration(d) --> decl-code;
227 install-code(code) --> code’.
228
229 install-code([imp@Import(_, _, _) | code]) --> imp-code ++ code’
230 where
231 install-import(imp) --> imp-code;
232 install-code(code) --> code’.
233
234 install-code([e | code]) --> [e | code’]
235 where
236 e =!=> Declaration(_);
237 e =!=> Import(_, _, _);
238 install-code(code) --> code’.
239
240 install-declaration(m@MethodL(_, _, _, _, _, _, _)) --> []
241 where
242 install-method(m) --> _.
243
244 install-declaration(VariableL(ID(x), type, annos, e)) --> [SlotWrite(i, e, type)]
245 where
246 add-slot(x) --> i;
247 install-method(field-getter(x, i, has-anno-readable(annos))) --> _;
248 install-method(field-setter(x, i, has-anno-writable(annos), type)) --> _.
249
250 install-declaration(VariableL(WildCard(), _, _, e)) --> [Expression(e)].
251
252 install-declaration(ConstantL(ID(x), type, annos, e)) --> [SlotWrite(i, e, type)]
253 where

87

254 add-slot(x) --> i;
255 install-method(field-getter(x, i, has-anno-readable(annos))) --> _.
256
257 install-declaration(ConstantL(WildCard(), _, _, e)) --> [Expression(e)].
258
259 install-declaration(TypeDecl(ID(x), NoTypeArg(), annos, TypeDeclBlock(tb)))
260 --> [SlotWrite(i, TypeExp(AnonType(tb)), Unkwn())]
261 where
262 add-slot(x) --> i;
263 install-method(field-getter(x, i, has-anno-public(annos))) --> _.
264
265 install-import(Import(name, ID(x), annos)) --> []
266 where
267 add-slot(x) --> i;
268 write-slot(i, load-import(name)) --> _;
269 install-method(field-getter(x, i, has-anno-readable(annos))) --> _.
270
271 install-method(m@MethodL(ID(x), _, _, _, _, _, _)) --> U()
272 where
273 method-closure(m) --> clos;
274 install-aliases(x, clos) --> _;
275 exclude-method(x) --> excluded;
276 case excluded of {
277 false =>
278 ensure-unique-method(x, clos) --> _;
279 add-method(x, clos) --> _
280 otherwise =>
281 }.
282
283 install-aliases(_, _) :: Als [] --> U() :: Als [].
284
285 install-aliases(name, clos) :: Als [a@AliasL(_, ID(x)) | Als] --> u :: Als [a | Als’]
286 where
287 name != x;
288 install-aliases(name, clos) :: Als --> u :: Als’.
289
290 install-aliases(name, clos) :: Als [AliasL(ID(x’), ID(x)) | Als] --> u :: Als’
291 where
292 name == x;
293 install-alias(x’, clos) --> _;
294 install-aliases(name, clos) :: Als --> u :: Als’.
295
296 install-aliases() :: Als [] --> U() :: Als [].
297
298 install-aliases() :: Als [AliasL(ID(x’), ID(x)) | Als] --> U() :: Als []
299 where
300 disambiguate-closure(lookup-local-method(current-self(), x), x) --> clos;
301 install-alias(x’, clos) --> _;
302 install-aliases() :: Als --> _ :: Als _.
303
304 install-alias(x, clos@ClosV(_, _, _, _, _, _, _, _, _, _, _)) --> U()
305 where
306 copy-closure(clos) --> clos’;
307 ensure-unique-method(x, clos’) --> _;
308 add-method(x, clos’) --> _.
309
310 exclude-method(_) :: Exs [] --> false :: Exs [].
311
312 exclude-method(name) :: Exs [ExcludeL(ID(x)) | Exs] --> true :: Exs
313 where
314 name == x.
315
316 exclude-method(name) :: Exs [e@ExcludeL(ID(x)) | Exs] --> excluded :: Exs [e | Exs’]
317 where
318 name != x;
319 exclude-method(name) :: Exs --> excluded :: Exs’.
320
321 exclude-methods() :: Exs [] --> U() :: Exs [].
322
323 exclude-methods() :: Exs [ExcludeL(ID(x)) | Exs] --> U() :: Exs []

88 C. Dynamic semantics in DynSem

324 where
325 disambiguate-closure(lookup-local-method(current-self(), x), x) --> _;
326 remove-method(x) --> _;
327 exclude-methods() :: Exs --> _ :: Exs _.
328
329 ensure-unique-method(x, clos) --> U()
330 where
331 lookup-local-method(current-self(), x) --> clos’;
332 case clos’ of {
333 ClosV(_, _, _, _, _, _, _, _, _, _, _) =>
334 closure-source(clos) --> src;
335 closure-source(clos’) --> src’;
336 case eqI(src, src’) of {
337 true =>
338 halt-error(”Duplicate method: ”, x) --> _
339 otherwise =>
340 }
341 otherwise =>
342 }.
343
344 /* ============== OBJECT INIT ========== */
345 signature
346 arrows
347 init-object(V) --> U
348 init-object-map(List(V)) --> U
349
350 rules
351
352 init-object(NoObjC()) --> U().
353
354 init-object(ObjC(O, _, L, code, inherit, used, _, _)) --> U()
355 where
356 init-object(inherit) --> _;
357 init-object-map(used) --> _;
358 O |- code :: L --> _.
359
360 init-object-map([]) --> U().
361
362 init-object-map([oc | ocs]) --> U()
363 where
364 init-object(oc) --> _;
365 init-object-map(ocs) --> _.
366
367 /* ========== FIELD METHOD GENERATION ======= */
368 signature
369 arrows
370 field-getter(String, Int, Bool) --> Declaration
371 field-setter(String, Int, Bool, TypeExp) --> Declaration
372
373 native operators
374 mksettername: String -> String
375
376 rules
377
378 field-getter(x, i, c) -->
379 MethodL(ID(x), [], visibility-annos(c), [], [], no-type(), [SlotRead(i)]).
380
381 field-setter(x, i, c, argType) -->
382 MethodL(ID(mksettername(x)), [], visibility-annos(c), [ID(”p”)],
383 [argType], no-type(), [SlotWrite(i, MCallL(ID(”p”), [] : List(Exp)), Unkwn())]).
384
385 /* ======== OBJECT META-FUNCTIONS ========= */
386 signature
387 sorts
388 StatementResult
389
390 constructors
391 res: Statement -> StatementResult
392
393 arrows

89

394 new-object(Addr) --> Addr
395
396 add-slot(String) --> Int
397
398 read-slot(Int) --> V
399 write-slot(Int, V) --> U
400
401 add-method(String, V) --> U
402
403 remove-method(String) --> U
404
405 lookup-local-method(V, String) --> V
406 lookup-outer-method(V, String) --> V
407
408 current-self() --> V
409 current-outer() --> V
410 current-method-names() --> List(String)
411
412 is-member(String) --> Bool
413
414 outer(Addr) --> V
415 self(Addr) --> V
416
417
418 identity-check(V) --> V
419
420 components
421 NS : Int // NextSlot
422 GS : Map(String, Int) // GivenSlots
423
424 rules
425
426 S |- current-self() --> S.
427
428 O |- current-outer() --> O.
429
430 self(S) --> S.
431
432 outer(S) --> O
433 where
434 read(S) --> Obj(O, _, _, _).
435
436 new-object(O) --> S
437 where
438 allocate(Obj(O, [O], {}, {})) --> S.
439
440 add-slot(x) :: GS --> GS[x] :: GS
441 where
442 GS[x?] == true.
443
444 S |- add-slot(x) :: NS, GS --> NS :: NS addI(NS, 1), GS {x |--> NS, GS}
445 where
446 GS[x?] == false;
447 read(S) --> Obj(O, outers, slots, methods);
448 update(S, Obj(O, outers, {NS |--> UninitializedV(), slots}, methods)) --> _.
449
450 S |- read-slot(i) --> slots[i]
451 where
452 read(S) --> Obj(_, _, slots, _).
453
454 S |- write-slot(i, v) --> U()
455 where
456 read(S) --> Obj(O, outers, slots, methods);
457 update(S, Obj(O, outers, {i |--> v, slots}, methods)) --> _.
458
459 S |- add-method(x, v) --> U()
460 where
461 read(S) --> Obj(O, outers, slots, methods);
462 update(S, Obj(O, outers, slots, {x |--> v, methods})) --> _.
463

90 C. Dynamic semantics in DynSem

464
465
466 S |- current-method-names() --> allkeys(methods)
467 where
468 read(S) --> Obj(_, _, _, methods).
469
470 S |- is-member(x) --> methods[x?]
471 where
472 read(S) --> Obj(_,_,_, methods).
473
474
475
476 // Lookup in self
477 lookup-local-method(RefV(S’), x) --> v
478 where
479 read(S’) --> Obj(_, _, _, methods);
480 case methods[x?] of {
481 true =>
482 methods[x] => v
483 false =>
484 DoneV() => v
485 }.
486
487 lookup-local-method(v, _) --> DoneV()
488 where
489 v =!=> RefV(_).
490
491 // Lookup in outers
492 lookup-outer-method(RefV(S’), x) --> v
493 where
494 read(S’) --> Obj(O’, _, _, methods);
495 case methods[x?] of {
496 true =>
497 methods[x] => v
498 false =>
499 is-stored(O’) --> outer-exists;
500 case outer-exists of {
501 true =>
502 lookup-outer-method(O’, x) --> v
503 otherwise =>
504 DoneV() => v
505 }
506 }.
507
508 lookup-outer-method(v, _) --> DoneV()
509 where
510 v =!=> RefV(_).
511
512
513
514 identity-check(other) --> BoolV(true)
515 where
516 other => RefV(addr);
517 current-self() == addr.
518
519 identity-check(other) --> BoolV(false)
520 where
521 other => RefV(addr);
522 current-self() != addr.
523
524
525 signature
526 arrows
527 log-object-creation(Addr) --> Addr
528
529 rules
530
531 log-object-creation(S) --> S
532 where
533 read(S) --> Obj(O, outers, _, methods);

91

534 concat(separate-by(allkeys(methods), ”, ”)) --> method-names;
535 log(”S: ” ++ int2string(S : Int) ++ ” O ” ++ int2string(O : Int) ++
536 ” outers: ” ++ str(outers : AST) ++ ”, method-names: ” ++ method-names
537 ++ ”, methods: ” ++ str(methods : AST)) --> _.
538

trans/semantics/functions/calls.ds

1 module trans/semantics/functions/calls
2
3 imports
4 src-gen/ds-signatures/grace-sig
5 trans/semantics/statements
6 trans/semantics/functions/locals
7
8 signature
9 sorts

10 Return-Marker
11
12 constructors
13 // self outer params body env public source

return paramtypes ret-type↪
14 ClosV: Addr * Addr * List(Identifier) * List(Identifier) * Code * Env * Bool * Source *

Return-Marker * List(TypeExp) * TypeExp -> V↪
15
16 No-Return: Return-Marker
17 Return-To: Int -> Return-Marker
18
19 Rex: Int * V -> Exn
20
21 components
22 R: Return-Marker
23
24 /* =========== call resolution and dispatch =========== */
25 signature
26 arrows
27 call-implicit(String, List(V)) --> V
28 call-qualified(V, String, List(V)) --> V
29 call(V, List(V), String) --> V
30
31 access-local(String, List(V)) --> V
32
33 disambiguate-closure(V, String) --> V
34 disambiguate-closure(V, V, String) --> V
35
36 closure-source(V) --> Source
37
38 rules
39
40 call-implicit(x, vs) --> access-local(x, vs)
41 where
42 is-local(x) --> true.
43
44 call-implicit(x, vs) --> call(clos, vs, x)
45 where
46 is-local(x) --> false;
47 lookup-local-method(current-self(), x) --> local-clos;
48 lookup-outer-method(current-outer(), x) --> outer-clos;
49 log(”disambiguate-closure, from implicit call”) --> _;
50 disambiguate-closure(local-clos, outer-clos, x) --> clos.
51
52 access-local(x, [v]) --> DoneV()
53 where
54 str-ends-with(x, ”:=(_)”) --> true;
55 update-local(ID(str-rm-suffix(x, ”:=(_)”)), v) --> _.

92 C. Dynamic semantics in DynSem

56
57 access-local(x, []) --> read-local(x).
58
59 call-qualified(clos@ClosV(_, _, _, _, _, _, _, _, _, _, _), x, vs) --> call(clos, vs, x)
60 where
61 str-starts-with(x, ”apply”) == true.
62
63 call-qualified(recv, x, vs) --> call(clos, vs, x)
64 where
65 lookup-local-method(recv, x) --> clos;
66 log(”disambiguate-closure, from qualified call”) --> _;
67 disambiguate-closure(clos, x) --> _.
68
69 call(clos@ClosV(S, O, params, locals, code, L1, _, _, R, pts, rt), vs, name) :: L --> v :: L
70 where
71 log(name ++ ” params: ” ++ str(params:AST) ++ ”code: ” ++ str(code:AST) ++ str(pts:AST))

--> _;↪
72 type-check(pts, vs) --> true;
73 ensure-access(name, clos, S) --> _;
74 add-locals(locals) :: L1 --> _ :: L2;
75 update-locals(params, vs) :: L2 --> _ :: L3;
76 S, O |- handle-return(code, R) :: L3 --> v :: L4.
77
78 closure-source(ClosV(_, _, _, _, _, _, _, Src, _, _, _)) --> Src.
79
80 signature
81 arrows
82 do-return(V) --> V
83 handle-return(Code, Return-Marker) --> V
84
85 rules
86
87 R Return-To(r-mark) |- do-return(v) :: EX Ok() --> ??? :: EX Rex(r-mark, v).
88
89 handle-return(code, No-Return()) --> v
90 where
91 code --> v.
92
93 handle-return(code, R@Return-To(r-mark)) :: EX Ok() --> v :: EX
94 where
95 R |- code :: EX Ok() --> vcode :: EX1;
96 case EX1 of {
97 Rex(r-mark’, vret) =>
98 case eqI(r-mark’, r-mark) of {
99 true =>

100 vret => v;
101 Ok() => EX
102 otherwise =>
103 vcode => v;
104 EX1 => EX
105 }
106 otherwise =>
107 EX1 => EX;
108 vcode => v
109 }.
110
111 rules
112
113 disambiguate-closure(clos, x) --> disambiguate-closure(clos, DoneV(), x).
114
115 // closure was defined in bottom and found in local
116 disambiguate-closure(clos@ClosV(_, _, _, _, _, _, _, src, _, _, _), _, _) --> clos
117 where
118 src-is-base(src) --> true.
119
120 // closure was only found in local
121 disambiguate-closure(clos@ClosV(_, _, _, _, _, _, _, _, _, _, _), DoneV(), _) --> clos.
122
123 // closure was only found in outer
124 disambiguate-closure(DoneV(), clos@ClosV(_, _, _, _, _, _, _, _, _, _, _), _) --> clos.

93

125
126 // closure found in inherited and in outer
127 disambiguate-closure(ClosV(_, _, _, _, _, _, _, src, _, _, _), ClosV(_, _, _, _, _, _, _,

_, _, _ ,_), x) --> DoneV()↪
128 where
129 src-is-base(src) --> false;
130 halt-error(”Method ’” ++ x ++ ”’ is defined both as an inherited/used” ++
131 ”field and in an enclosing scope.”, ””) --> _.
132
133 // closure not found
134 disambiguate-closure(DoneV(), DoneV(), x) --> DoneV()
135 where
136 halt-error(”No such method: ”, x) --> _.
137
138
139

trans/semantics/functions/functions.ds

1 module trans/semantics/functions/functions
2
3 imports
4 src-gen/ds-signatures/grace-sig
5 trans/semantics/values
6 trans/semantics/statements
7 trans/semantics/objectmodel
8 trans/semantics/types
9 trans/semantics/booleans

10 trans/semantics/visibility
11 trans/semantics/controlflow
12 trans/semantics/functions/calls
13 trans/semantics/expressions
14
15 signature
16 arrows
17 method-closure(Declaration) --> V
18 block-closure(Declaration) --> V
19 copy-closure(V) --> V
20
21 native operators
22 nativePrint: V -> V
23
24 rules
25
26
27 MQCallOuter(e) --> outer(S)
28 where
29 e --> RefV(S).
30
31 MCallL(ID(x), es) --> v
32 where
33 case x of {
34 ”print(_)” =>
35 es => [e];
36 nativePrint(e) => v
37 ”nativeIdentity(_)” =>
38 es => [e];
39 identity-check(e) --> v
40 ”while(_)do(_)” =>
41 es => [e1, e2];
42 while-loop(e1, e2) --> v
43
44 otherwise =>
45 call-implicit(x, es) --> v
46 }.

94 C. Dynamic semantics in DynSem

47
48 P Exec() |- MCallRecvL(e, ID(x), es) --> v
49 where
50 e --> recv;
51 case recv of {
52 BoolV(_) =>
53 bool-call(recv, x, es) --> v
54 NumV(_) =>
55 num-call(recv, x, es) --> v
56 StringV(_) =>
57 str-call(recv, x, es) --> v
58 TypeV(_) =>
59 type-call(recv, x, es) --> v
60 TypeV(_,_,_) =>
61 type-call(recv, x, es) --> v
62 otherwise =>
63 call-qualified(recv, x, es) --> v
64 }.
65
66 BlockL(params, paramTypes, code) -->
67 block-closure(MethodL(ID(”lambda”), [], NoAnnotations(), params, paramTypes, no-type(),

code)).↪
68
69 Return(e) --> do-return(e).
70
71 rules /* closure construction */
72
73 Src |- method-closure(MethodL(name, _, annos, params, paramTypes, returnType, code)) :: L

-->↪
74 clos :: L
75 where
76 current-self() --> S;
77 current-outer() --> O;
78 collect-locals(code, params) --> locals;
79 error-check-locals(locals) --> _;
80 ClosV(S, O, params, locals, code, L, has-anno-public(annos), Src, Return-To(fresh),

paramTypes, returnType) => clos.↪
81
82 block-closure(MethodL(_, _, _, params, paramTypes, _, code)) :: L -->
83 ClosV(S, O, params, locals, code, L, true, src-base(), No-Return(), paramTypes,

no-type()) :: L↪
84 where
85 current-self() --> S;
86 current-outer() --> O;
87 collect-locals(code, params) --> locals;
88 error-check-locals(locals) --> _.
89
90 copy-closure(ClosV(S, O, params, locals, code, L, _, Src, No-Return(), pt, rt)) -->
91 ClosV(S, O, params, locals, code, L, false, Src’, No-Return(), pt, rt)
92 where
93 Src |- src-previous() --> Src’.
94
95 copy-closure(ClosV(S, O, params, locals, code, L, _, Src, Return-To(_), pt, rt)) -->
96 ClosV(S, O, params, locals, code, L, false, Src’, Return-To(fresh), pt, rt)
97 where
98 Src |- src-previous() --> Src’.

trans/semantics/functions/locals.ds

1 module trans/semantics/functions/locals
2
3 imports
4 src-gen/ds-signatures/grace-sig
5 trans/semantics/statements
6 trans/semantics/functions/calls

95

7
8 signature
9 sort aliases

10 Env = Map(String, Addr)
11
12 components
13 L : Env
14
15 arrows
16 collect-locals(Code, List(Identifier)) --> List(Identifier)
17 declaration-name(Declaration) --> Identifier
18
19
20 rules
21
22 collect-locals([], xs) --> xs.
23
24 collect-locals([c | code], xs) --> collect-locals(code, xs)
25 where
26 c =!=> Declaration(_).
27
28 collect-locals([Declaration(d) | code], xs) --> collect-locals(code, [x | xs])
29 where
30 declaration-name(d) --> x.
31
32 declaration-name(VariableL(x, _, _, _)) --> x.
33
34 declaration-name(ConstantL(x, _, _, _)) --> x.
35
36
37 /* ======== local variable error checking ========= */
38 signature
39 arrows
40 error-check-locals(List(Identifier)) --> U
41
42 ensure-valid-local(String) --> U
43
44 rules
45
46 error-check-locals([]) --> U().
47
48 error-check-locals([WildCard() | ids]) --> error-check-locals(ids).
49
50 error-check-locals([ID(x) | ids]) :: L --> U() :: L
51 where
52 ensure-valid-local(x) --> _;
53 error-check-locals(ids) :: L { x |--> 0, L} --> _.
54
55 ensure-valid-local(x) --> U()
56 where
57 is-local(x) --> true;
58 halt-error(”Local ’” ++ x ++ ”’ may not redefine local method.”, ””) --> _.
59
60 ensure-valid-local(x) --> U()
61 where
62 is-local(x) --> false;
63 lookup-local-method(current-self(), x) --> ClosV(_, _, _, _, _, _, _, _, _, _, _);
64 halt-error(”Local ’” ++ x ++ ”’ may not redefine method from self.”, ””) --> _.
65
66 ensure-valid-local(x) --> U()
67 where
68 is-local(x) --> false;
69 lookup-outer-method(current-outer(), x) --> ClosV(_, _, _, _, _, _, _, _, _, _, _);
70 halt-error(”Local ’” ++ x ++ ”’ may not shadow method from an enclosing scope.”, ””) -->

_.↪
71
72 ensure-valid-local(_) --> U().
73
74
75 /* ======== local environment operations ========== */

96 C. Dynamic semantics in DynSem

76 signature
77 arrows
78 add-local(Identifier) --> U
79 add-locals(List(Identifier)) --> U
80
81 update-local(Identifier, V) --> U
82 update-locals(List(Identifier), List(V)) --> U
83
84 is-local(String) --> Bool
85 read-local(String) --> V
86 snapshot-locals() --> Env
87
88 rules
89
90 add-local(ID(x)) :: L --> U() :: L {x |--> addr, L}
91 where
92 v-allocate(UninitializedV()) --> addr.
93
94 add-local(WildCard()) --> U().
95
96 add-locals([]) --> U().
97
98 add-locals([x | xs]) --> add-locals(xs)
99 where

100 add-local(x) --> _.
101
102 update-locals([], []) --> U().
103
104 update-locals([id | ids], [v | vs]) --> update-locals(ids, vs)
105 where
106 update-local(id, v) --> _.
107
108 update-local(ID(x), v) :: L --> U() :: L
109 where
110 v-update(L[x], v) --> _.
111
112 update-local(WildCard(), _) --> U().
113
114 is-local(x) :: L --> is-local :: L
115 where
116 ”:=(_)” => bind_suffix;
117 str-ends-with(x, bind_suffix) --> is-assign;
118 case is-assign of {
119 true =>
120 str-rm-suffix(x, bind_suffix) --> x’;
121 L[x’?] => is-local
122 false =>
123 L[x?] => is-local
124 }.
125
126 read-local(x) :: L --> ensure-defined(v-read(L[x])) :: L.
127
128 snapshot-locals() :: L --> L :: L.
129
130
131 /* ============ variable heap operations ======== */
132
133 signature
134 sort aliases
135 Addr = Int
136 VHeap = Map(Addr, V)
137
138 components
139 VH : VHeap
140
141 arrows
142 v-allocate(V) :: H --> Addr :: H
143 v-update(Addr, V) :: H --> Addr :: H
144 v-read(Addr) :: H --> V :: H
145 v-next() --> Addr

97

146
147 rules
148
149 v-allocate(v) :: VH --> addr :: VH {addr |--> v, VH}
150 where
151 v-next() --> addr.
152
153 v-read(addr) :: VH --> VH[addr] :: VH.
154
155 v-update(addr, v) :: VH --> addr :: VH {addr |--> v, VH}.
156
157 v-next() --> fresh.

trans/semantics/statements.ds

1 module trans/semantics/statements
2
3 imports
4 src-gen/ds-signatures/grace-sig
5 trans/semantics/expressions
6 trans/semantics/values
7
8 signature
9 sorts V

10 constructors
11 DoneV : V
12
13 sort aliases
14 Code = List(Statement)
15
16 arrows
17 Statement --> V
18 Code --> V
19
20 rules
21
22 // unwrap expression
23 Expression(e) --> e.
24
25 Dialect(_) --> DoneV().
26
27 Declaration(VariableL(x, _, _, e)) --> v
28 where
29 e --> v;
30 case x of {
31 ID(_) =>
32 update-local(x, v) --> _
33 WildCard() =>
34 }.
35
36 Declaration(ConstantL(x, _, _, e)) --> v
37 where
38 e --> v;
39 case x of {
40 ID(_) =>
41 update-local(x, v) --> _
42 WildCard() =>
43 }.
44

98 C. Dynamic semantics in DynSem

trans/semantics/store.ds

1 module trans/semantics/store
2
3 signature
4 sorts
5 HeapData
6
7 sort aliases
8 Addr = Int
9 H = Map(Addr, HeapData)
10
11 components
12 H : H
13
14 arrows
15 allocate(HeapData) :: H --> Addr :: H
16 update(Addr, HeapData) :: H --> Addr :: H
17 is-stored(Addr) :: H --> Bool :: H
18 read(Addr) :: H --> HeapData :: H
19 next() --> Addr
20
21 rules
22
23 allocate(data) :: H --> addr :: H {addr |--> data, H}
24 where
25 next() --> addr.
26
27 is-stored(addr) :: H --> H[addr?] :: H.
28
29 read(addr) :: H --> H[addr] :: H.
30
31 update(addr, data) :: H --> addr :: H {addr |--> data, H}.
32
33 next() --> fresh.
34

trans/semantics/types.ds

1 module trans/semantics/types
2
3 imports
4 src-gen/ds-signatures/grace-sig
5 trans/semantics/visibility
6 trans/semantics/store
7 trans/semantics/objectmodel
8
9 signature
10
11 sorts
12 TypeOp
13
14 sort aliases
15 Type = List(TypeRule)
16
17 constructors
18 TypeV: List(TypeRule) -> V
19 TypeV: TypeOp * V * V -> V
20 UnkwnV: V
21 Variant: TypeOp
22 Intersection: TypeOp
23 Subtraction: TypeOp
24 Union: TypeOp
25
26 arrows

99

27 TypeExp --> V
28 List(TypeExp) --> List(V)
29
30 type-check(List(V), List(V)) --> Bool
31
32 no-type() --> TypeExp
33 new-type(List(TypeRule)) --> V
34 type-call(V, String, List(Exp)) --> V
35 get-type(V) --> V
36 get-names(V) --> List(String)
37 get-object-names(Addr) --> List(String)
38 get-object-type(Addr) --> V
39 get-type-methods(Type) --> List(String)
40 methods-to-list(Methods) --> List(String)
41 methods-to-type(Methods) --> Type
42
43 names-to-type(List(String)) --> Type
44
45 compare-types(V, V) --> Bool
46
47 compare-names(List(String), List(String)) --> Bool
48
49 contains-name(String, List(String)) --> Bool
50
51 rules
52
53 AnonType(TypeBlock(trs)) --> new-type(trs).
54
55 [] : List(TypeExp) --> [] : List(V).
56 [te | tes] : List(TypeExp) --> [tv | tvs] : List(V)
57 where
58 te --> tv;
59 tes --> tvs.
60
61 TypeExp(t) --> t.
62
63 Variant(v1, v2) --> TypeV(Variant(), v1, v2).
64
65 Unkwn() --> UnkwnV().
66
67 TypeID(ID(name), _) --> type
68 where
69 call-implicit(name, []) --> type.
70
71 no-type() --> Unkwn().
72
73 type-check([] , []) --> true.
74 type-check([pt | pts] , [v | vs]) --> type-check(pts, vs)
75 where
76 compare-types(pt, v) --> true.
77
78 type-check(ptypes@[pt | pts] , vtypes@[v | vs]) --> type-check(pts, vs)
79 where
80 log(”parameter types:” ++ str(ptypes:AST) ++ ” value types:” ++ str(vtypes:AST)) --> _;
81 compare-types(pt, v) --> false;
82 halt-error(”Type mismatch!”, ””) --> _.
83
84
85 new-type(trs) --> TypeV(trs).
86
87 type-call(t, ”match(_)”, [other]) --> BoolV(compare-types(t, get-type(other))).
88
89 get-type(v) --> v
90 where
91 ”getting type of: ” => prefix;
92 case v of {
93 RefV(addr) =>
94 get-object-type(addr) --> v;
95 ”Object Ref” => type
96 StringV(_) =>

100 C. Dynamic semantics in DynSem

97 TypeV([]) => v;
98 ”String V” => type
99 BoolV(_) =>

100 TypeV([]) => v;
101 ”Boolean V” => type
102 tv@TypeV(_) =>
103 tv => v;
104 ”Type V” => type
105 tv@TypeV(_,_,_) =>
106 tv => v;
107 ”Type V expr” => type
108 otherwise =>
109 TypeV([]) => v;
110 ”Unknown V” => type
111 };
112 log(prefix ++ type) --> _.
113
114 get-names(v) --> t
115 where
116 case v of {
117 RefV(addr) =>
118 get-object-names(addr) --> t
119 NumV(_) =>
120 [] => t
121 StringV(_) =>
122 [] => t
123 BoolV(_) =>
124 [] => t
125 TypeV(tr) =>
126 get-type-methods(tr) --> t
127 UninitializedV() =>
128 [] => t
129 otherwise =>
130 [] => t;
131 halt-error(”Unknown V to get type for: ”, str(v)) --> _
132 }.
133
134 get-object-type(addr) --> TypeV(t)
135 where
136 read(addr) --> Obj(_,_,_,methods);
137 methods-to-type(methods) --> t.
138
139 get-object-names(addr) --> ls
140 where
141 read(addr) --> Obj(_,_,_,methods);
142 methods-to-list(methods) --> ls.
143
144 get-type-methods([]) --> [] : List(String).
145 get-type-methods([TypeRuleL(ID(n), _, _, _) | trs]) --> [n | get-type-methods(trs)].
146
147 methods-to-type(methods) --> trs
148 where
149 methods-to-list(methods) --> mls;
150 names-to-type(mls) --> trs.
151
152 names-to-type([]) --> [].
153 names-to-type([s|ss]) --> [TypeRuleL(ID(s), [], [], no-type()) | names-to-type(ss)].
154
155 methods-to-list(map) --> methodnames
156 where
157 allkeys(map) => methodnames.
158
159 compare-types(UnkwnV(), _) --> true.
160
161 compare-types(TypeV(Variant(), t1, t2), t3@TypeV(_)) --> b
162 where
163 compare-types(t1, t3) --> res;
164 case res of {
165 true =>
166 true => b

101

167 otherwise =>
168 compare-types(t2, t3) --> b
169 }.
170
171 compare-types(_, UninitializedV()) --> true.
172
173 compare-types(t1@TypeV(_), v) -->
174 compare-names(get-names(t1), get-names(v))
175 where
176 log(”comparing two type sigs, 1: ” ++ str(t1) ++ ”, 2: ” ++ str(v)) --> _.
177
178 compare-names([], _) --> true.
179
180 compare-names(t1@[_|_],[]) --> false
181 where
182 log(”type doesn’t conform because t2 doesn’t contain the types: ” ++ str(t1:AST)) --> _.
183
184 compare-names([t1|t1s], t2s) --> compare-names(t1s, t2s)
185 where
186 contains-name(t1, t2s) --> true.
187
188 compare-names([t1|_], t2s) --> false
189 where
190 contains-name(t1, t2s) --> false;
191 log(”comparing names, t2 is missing a type that t1 has”) --> _.
192
193 contains-name(_, []) --> false.
194
195 contains-name(s, [s’ | _]) --> true
196 where
197 s == s’.
198
199 contains-name(s, [s’ | ss]) --> contains-name(s, ss)
200 where
201 s != s’.

trans/semantics/values.ds

1 module trans/semantics/values
2
3 imports
4 trans/semantics/runtime/natives
5
6 signature
7
8 sorts
9 V

10 U
11
12 constructors
13 UninitializedV: V
14 U : U
15
16 variables
17 v : V
18 vs : List(V)
19
20 arrows
21 ensure-defined(V) --> V
22
23 rules
24 ensure-defined(v) --> v
25 where
26 v =!=> UninitializedV().
27

102 C. Dynamic semantics in DynSem

28 ensure-defined(v@UninitializedV()) --> v
29 where
30 halt-error(”Read of an uninitialised value attempted”, ””) --> _.

trans/semantics/visibility.ds

1 module trans/semantics/visibility
2
3 imports
4 src-gen/ds-signatures/grace-sig
5 src-gen/ds-signatures/grace-lowered-sig
6
7 imports
8 trans/semantics/values
9 trans/semantics/store
10 trans/semantics/runtime/natives
11 trans/semantics/strings
12 trans/semantics/numbers
13 trans/semantics/lineups
14 trans/semantics/objectmodel
15 trans/semantics/statements
16 trans/semantics/imports
17
18
19 /* ======= REACHABILITY CHECK ======= */
20 signature
21 sort aliases
22 HeapData = Object
23 arrows
24 ensure-access(String, V, Addr) --> V
25
26 can-reach(Addr) --> Bool
27 can-reach-map(List(Addr), Addr) --> Bool
28
29 rules
30
31 ensure-access(x, clos@ClosV(_, _, _, _, _, _, true, _, _, _, _), recv) --> clos.
32
33 ensure-access(x, clos@ClosV(_, _, _, _, _, _, false, _, _, _, _), recv) --> clos
34 where
35 can-reach(recv) --> visible;
36 case visible of {
37 false =>
38 halt-error(”Requested confidential method ’” ++ x ++ ”’ of object: ” ++

int2string(recv) ++ ” from outside”, ””) --> _↪
39 otherwise =>
40 }.
41
42 S |- can-reach(S’) --> true
43 where
44 S == S’.
45
46 S |- can-reach(S’) --> false
47 where
48 S != S’;
49 is-stored(S) --> false.
50
51 S |- can-reach(S’) --> maybe
52 where
53 S != S’;
54 is-stored(S) --> true;
55 read(S) --> Obj(_, outers, _, _);
56 can-reach-map(outers, S’) --> maybe.
57
58 can-reach-map([], _) --> false.

103

59
60 can-reach-map([S | ss], S’) --> reachable’
61 where
62 S |- can-reach(S’) --> reachable;
63 case reachable of {
64 false =>
65 can-reach-map(ss, S’) --> reachable’
66 otherwise =>
67 true => reachable’
68 }.
69
70
71
72 /* ==== VISIBILITY ANNOTATION PROCESSING ==== */
73 signature
74
75 arrows
76 has-anno-readable(Annotations) --> Bool
77 has-anno-writable(Annotations) --> Bool
78 has-anno-confidential(Annotations) --> Bool
79 has-anno-public(Annotations) --> Bool
80
81 has-anno(List(Annotation), Annotation) --> Bool
82
83 visibility-annos(Bool) --> Annotations
84
85 rules
86
87 has-anno-readable(Annotations(annos)) --> has-anno(annos, Readable()).
88
89 has-anno-writable(Annotations(annos)) --> has-anno(annos, Writable()).
90
91 has-anno-confidential(Annotations(annos)) --> has-anno(annos, Confidential()).
92
93 has-anno-public(Annotations(annos)) --> has-anno(annos, Public()).
94
95 has-anno([], _) --> false.
96
97 has-anno([anno | _], anno’) --> true
98 where
99 anno == anno’.

100
101 has-anno([anno | annos], anno’) --> has-anno(annos, anno’)
102 where
103 anno != anno’.
104
105 visibility-annos(true) --> Annotations([Public()]).
106
107 visibility-annos(false) --> Annotations([Confidential()]).

trans/semantics/booleans.ds

1 module trans/semantics/booleans
2
3 imports
4 src-gen/ds-signatures/grace-lowered-sig
5 trans/semantics/expressions
6 trans/semantics/values
7
8 signature
9 constructors

10 BoolV : Bool -> V
11
12 arrows
13 bool-call(V, String, List(Exp)) --> V

104 C. Dynamic semantics in DynSem

14
15 native operators
16 bool-call-native: String * V * V -> V
17 bool-call-native: String * V -> V
18
19 rules
20
21 Boolean(True()) --> BoolV(true).
22
23 Boolean(False()) --> BoolV(false).
24
25 bool-call(v, x, []) --> bool-call-native(x, v).
26
27 bool-call(v1, x, [v2@BoolV(_)]) --> bool-call-native(x, v1, v2).
28
29 bool-call(BoolV(true), ”ifTrue(_)ifFalse(_)”, [e1, _]) --> call(e1, [], ”apply”).
30
31 bool-call(BoolV(false), ”ifTrue(_)ifFalse(_)”, [_, e2]) --> call(e2, [], ”apply”).
32
33
34 bool-call(BoolV(true), ”ifTrue(_)”, [e]) --> call(e, [], ”apply”).
35
36 bool-call(BoolV(false), ”ifTrue(_)”, [_]) --> DoneV().
37
38
39 bool-call(BoolV(true), ”ifFalse(_)”, [_]) --> DoneV().
40
41 bool-call(BoolV(false), ”ifFalse(_)”, [e]) --> call(e, [], ”apply”).
42
43 bool-call(BoolV(true), ”asString”, []) --> StringV(”true”).
44 bool-call(BoolV(false), ”asString”, []) --> StringV(”false”).

trans/semantics/strings.ds

1 module trans/semantics/strings
2
3 imports
4 src-gen/ds-signatures/grace-lowered-sig
5 trans/semantics/expressions
6 trans/semantics/values
7 trans/semantics/runtime/natives
8
9 signature
10 constructors
11 StringV : String -> V
12
13 arrows
14 str-call(V, String, List(Exp)) --> V
15 str-call-evaluated(String, V, V) --> V
16
17 native operators
18 string-call-native: String * V * V -> V
19 string-call-native: String * V -> V
20
21 rules
22
23 String(s) --> StringV(s).
24
25 str-call(v1, op, [v2]) --> str-call-evaluated(op, v1, v2).
26
27 str-call(v, op, []) --> string-call-native(op, v).
28
29 str-call-evaluated(op, v1, v2@StringV(_)) --> string-call-native(op, v1, v2).
30
31 str-call-evaluated(op, v1, NumV(i)) --> string-call-native(op, v1, StringV(s))

105

32 where
33 int2str(i) --> s.
34
35 str-call-evaluated(”==(_)”, _, v2) --> BoolV(false)
36 where
37 v2 =!=> StringV(_).

trans/semantics/numbers.ds

1 module trans/semantics/numbers
2
3 imports
4 src-gen/ds-signatures/grace-lowered-sig
5 trans/semantics/expressions
6 trans/semantics/values
7 trans/semantics/runtime/natives
8 trans/semantics/booleans
9

10 signature
11 constructors
12 NumV : Int -> V
13
14 arrows
15 num-call(V, String, List(Exp)) --> V
16 num-call-evaluated(String, V, V) --> V
17
18 native operators
19 num-call-native: String * V * V -> V
20 num-call-native: String * V -> V
21
22 rules
23
24 Number(a) --> NumV(string2int(a)).
25
26 num-call(v1, x, [v2]) --> num-call-evaluated(x, v1, v2).
27
28 num-call(v1, x, []) --> num-call-native(x, v1).
29
30 num-call-evaluated(”==(_)”, _, v2) --> BoolV(false)
31 where
32 v2 =!=> NumV(_).
33
34 num-call-evaluated(”++(_)”, NumV(i1), StringV(s2)) --> StringV(s1 ++ s2)
35 where
36 int2str(i1) --> s1.
37
38 num-call-evaluated(x, v1, v2) --> num-call-native(x, v1, v2).

trans/semantics/lineups.ds

1 module trans/semantics/lineups
2
3 imports
4 src-gen/ds-signatures/grace-sig
5 trans/semantics/expressions
6
7 signature
8 constructors
9 LineupV : List(V) -> V

10

106 C. Dynamic semantics in DynSem

11 rules
12
13 LineupExp(Lineup(vs)) --> LineupV(vs).

trans/semantics/runtime/natives.ds

1 module trans/semantics/runtime/natives
2
3 imports
4 trans/semantics/values
5
6 signature
7 native operators
8 parseI : String -> Int
9 error: String * String -> String
10 addI: Int * Int -> Int
11 int2string: Int -> String
12 str: AST -> String
13 eqI: Int * Int -> Bool
14 gtI: Int * Int -> Bool
15 arrows
16 string2int(String) --> Int
17 int2str(Int) --> String
18 halt-error(String, String) --> String
19
20 rules
21
22 string2int(s) --> parseI(s).
23 int2str(i) --> int2string(i).
24
25 halt-error(s1, s2) --> error(s1, s2).
26
27
28 /* string ops */
29
30 signature
31 native operators
32 logdebug: String -> String
33 str_starts_with : String * String -> Bool
34 str_ends_with : String * String -> Bool
35 str_remove_suffix : String * String -> String
36
37 arrows
38 concat(List(String)) --> String
39 separate-by(List(String), String) --> List(String)
40 log(String) --> String
41 str-starts-with(String, String) --> Bool
42 str-ends-with(String, String) --> Bool
43 str-rm-suffix(String, String) --> String
44
45 rules
46
47 concat([]) --> ””.
48
49 concat([s | ss]) --> s ++ ss’
50 where
51 concat(ss) --> ss’.
52
53 separate-by([], _) --> [].
54
55 separate-by([s], _) --> [s].
56
57 separate-by([s1| xs@[_ | _]], sep) --> [s1, sep | xs’]
58 where
59 separate-by(xs, sep) --> xs’.

107

60
61 str-starts-with(s, prefix) --> str_starts_with(s, prefix).
62
63 str-ends-with(s, suffix) --> str_ends_with(s, suffix).
64
65 str-rm-suffix(s, suffix) --> str_remove_suffix(s, suffix).
66
67 log(s) --> s
68 where
69 logdebug(s) => _.

	Introduction
	Architecture
	Parsing
	Desugaring and lowering
	Execution
	Testing
	Evaluation

	Outline
	Code repository

	The Grace programming language
	Origin of Grace
	Objects
	Classes
	Method requests
	Field access
	Confidentiality

	Blocks
	Control flow
	Return

	Reuse
	Inheritance
	Traits

	Type system
	Imports and Dialects

	Syntax
	Syntactic constructs
	Mixfix
	Operator methods
	Implicit method calls
	Layout sensitivity
	Unicode characters

	Syntax
	Program
	Object constructors
	Method requests
	Binary operators
	Types
	Priorities
	Lexical syntax

	Transformations
	Setup
	Desugaring
	Class to method
	Canonical method names
	Generating string interpolation code
	Annotations
	Other steps

	Lowering
	Generalising
	Simplifying

	Dynamic semantics
	Program start-up
	Code execution
	Object construction
	Aliasing and exclusion

	Method requests
	Qualified requests
	Implicit requests

	Returning
	Declarations
	Object context
	Method context

	Confidentiality
	Annotations
	Checking confidentiality

	Dialects and imports
	Dialects
	Imports

	Native operators
	Limitations

	Types
	DynSem
	Implicit reductions
	Components
	Abrupt termination

	Process

	Evaluation
	Testing
	Syntax and transformation testing with SPT
	Program evaluation with JUnit

	Review of Specification
	Minigrace test suite
	Omitted features of Grace
	Performance

	Related work
	Formalisations
	Grace implementations

	Discussion
	Future work
	Completing Grace features
	Static analysis
	Setting up a universal Grace test suite
	Exploring Grace performance
	Making Spoofax Grace more publicly available

	Concluding remarks

	Bibliography
	Grammar in SDF3
	Program transformations in Stratego
	Dynamic semantics in DynSem

