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Thermoelectricity and disorder of FeCo/MgO/FeCo magnetic tunnel junctions
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We compute the thermoelectric transport parameterized by the Seebeck coefficient and thermal/electric
conductance of random-alloy FeCo/MgO/FeCo(001) magnetic tunnel junctions (MTJs) from first principles
using a generalized Landauer-Büttiker formalism. The thermopower is found to be typically smaller than those
of Fe/MgO/Fe(001) MTJs. The (magneto-)Seebeck effect is sensitive to the details of the FeCo/MgO interfaces.
Interfacial can greatly enhance the thermoelectric effects in MTJs. We also compute angular-dependent Seebeck
coefficients that provide additional information about the transport physics. We report large deviations from the
Wiedemann-Franz law at room temperature.
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I. INTRODUCTION

Spin caloritronics is a research direction that provides
alternative strategies for thermoelectric waste heat recovery
and cooling by employing the spin degree of freedom [1,2].
Seebeck [3] and Peltier [4] effects in magnetic nanostructures
become spin dependent, i.e., different spin channels contribute
differently and can be modulated by the magnetization direc-
tion. Moreover, in magnetic heterostructures, a thermal spin
transfer torque (TST) [5,6] can be induced by heat currents.

Magnetothermoelectric effects in magnetic tunnel junctions
(MTJs) were measured recently [7–10], partly motivated by
their potential applications in magnetic data storage technol-
ogy since nanoscale heating has been realized for heat-assisted
magnetic recording [11]. The reported Seebeck coefficients
(S) in MgO-based MTJs vary from 22 μV/K (Ref. [10]) to
−770 μV/K (Ref. [8]) for similar barrier thicknesses, while
for �S = Sp − SAP, the difference in Seebeck coefficients
between magnetic parallel (P) and antiparallel (AP) configu-
ration values between −8.7 μV/K (Ref. [7]) and −272 μV/K
(Ref. [9]) were measured. Seebeck coefficients as high as
mV/K have also been reported [12,13].

Due to the difficulty in determining the temperature differ-
ence across tunneling barriers, intrinsic Seebeck coefficients
cannot be measured directly but have to be determined using
thermal modeling, which introduces uncertainties. Calcu-
lations based on realistic electronic band structures yield
Seebeck coefficients of less than 60 μV/K at room temperature
(RT) [14,15].

The energy dependence of the MTJ conductance is sensitive
to the band alignment between insulator and metal. The
calculated thermoelectric coefficients depend quite sensitively
on the chosen model, such as the absence or presence of defects
in the barriers. In this paper, we address the complications
introduced by disorder in the hope of approaching the experi-
mental reality and find out how large the Seebeck coefficients
might become by interface engineering.

Here we disregard any magnon contributions that govern,
e.g., the spin Seebeck effect of magnetic insulators [16,17] to
the thermoelectric properties, i.e., we assume that in metallic

structures they are dominated by the mobile conduction elec-
trons. We then may adopt the Landauer-Büttiker formalism as
generalized to thermal transport and thermoelectric transport
by Butcher [18], which treats electrical transport in terms
of transmission through a scattering region between electron
reservoirs. The Seebeck coefficient and thermal conductance
by the mobile electrons can then be calculated from the
energy-dependent conductance.

Here we combine the Landauer-Büttiker formalism for
spin-polarized thermal and electrical transport with realistic
electronic band structures to compute the Seebeck coefficient
and thermal conductance in FeCo/MgO MTJs. In Sec. II,
we present the details of the formalism. In Sec. III, the
method is used to calculate the thermoelectric coefficients of
FeCo/MgO/FeCo with perfect interfaces and in the presence
of oxygen vacancies (OVs). In Sec. IV, we summarize our
results.

II. THERMOELECTRIC COEFFICIENTS

We model a device sandwiched by left (L) and right
(R) electron leads with chemical potential difference �μ =
μL − μR and temperature bias �T = TL − TR. The heat flow
.

Q and electric current I then read [19](
�μ/(−e)

Q̇

)
=

(
R S

� −κ

) (
I

�T

)
, (1)

where R is the electrical resistance while Seebeck S and Peltier
� coefficients are related by the Onsager-Kelvin relation
� = ST .

The spin-dependent conductance

Gσ = e2

h

∫
dEtσ (E)[−∂Ef (E)], (2)

where σ =↑ (↓) denotes the spin species, tσ (E) is the spin
and energy (E)-dependent transmission probability, and the
Fermi occupation f (E) = f (E,μ,T ) = [e(E−μ)/kBT + 1]−1,
is a function of electrochemical potential μ = (μL + μR)/2
and temperature T = (TL + TR)/2.
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In the linear response approximation, the total electric
current reads

I (�T,�V )

= − e

h

∑
σ

∫
dE [f (E,μL,TL) − f (E,μR,TR)] tσ (E)

→ e�T

hT

∑
σ

∫
dE (E − μ) ∂Ef (E)tσ (E)

− e2

h
�V

∑
σ

∫
dE∂Ef (E)tσ (E) . (3)

The Seebeck coefficient S = −(�V/�T )I=0 is obtained
by setting I = 0 in Eq. (3), leading to

S = − 1

eT

∑
σ

∫
dE [(E − μ)t(E)∂Ef (E)]∑

σ

∫
dEt(E)∂Ef (E)

= S↑G↑ + S↓G↓
G↑ + G↓

, (4)

where

Sσ = − 1

eT

∫
dE [(E − μ)tσ (E)∂Ef (E)]∫

dEtσ (E)∂Ef (E)
, (5)

and e = 1.602 × 10−19 C. When the energy-dependent con-
ductance varies slowly around the Fermi level, only the leading
term in the Sommerfeld expansion contributes and Eq. (4)
becomes

S → −eL0T ∂E ln G(E)|Ef
, (6)

with Lorenz number L0 ≡ π2(kB/e)2/3 = 2.45 ×
10−8 V2 K−2.

The electronic contribution κ to the thermal conductance is

κ ≡ −
(

Q̇

�T

)
I=0

= −(K + S2GT ), (7)

where K in the Landauer-Büttiker formalism reads [18]

K = kB
2T

e2

∫
dEG (E)

(
E − μ

kBT

)2

∂Ef (E).

At low temperatures, the leading term in the Sommerfeld
expansion K dominates and

K → −L0T G(Ef ). (8)

We may disregard the term S2GT when S2 � L0, which leads
to the Wiedemann-Franz (WF) relation

κ → −(L0 + S2)T G(Ef ) ≈ L0T G(Ef ).

The tunnel magnetoresistance (TMR) ratio is defined in
terms of the conductances for P and AP configurations:

TMR = GP − GAP

GAP
× 100%, (9)

where GP/AP = e2

h

∑
σ tσP/AP(Ef ). Similarly, the tunnel-

magneto-Seebeck (TMS) and tunnel magneto-heat-resistance
(TMHR) ratios are defined as

TMS = SP − SAP

min (|SP| , |SAP|) × 100% (10)

and

κm = κP − κAP

min (κP,κAP)
× 100%. (11)

At sufficiently low temperature, the WF relation may be used
in Eq. (11) and κm → TMR.

III. THERMOELECTRICS OF FeCo/MgO/FeCo(001)

A. Model

We consider a two-terminal device consisting of a
MgO barrier sandwiched by two semi-infinite ferromagnetic
leads as shown in Fig. 1. Specifically, we address the
FexCo1−x /MgO/FeyCo1−y random alloy system, where x,y

are numbers between 0 and 1. The materials are in the bcc
crystal structure and grown along the (001) direction. The
atoms at the interfaces are not relaxed from their bulk crystal
positions. OVs in MgO are energetically favorable because
they relax the compressive strain at the interface during crystal
growth [20]. We assume that OVs only exists in the first MgO
atomic layers at the interfaces to FeCo.

The thermoelectric coefficients are governed by the energy-
dependent conductance. While the lateral supercell method
can be used to handle the impurity scattering in a metallic sys-
tem [21], the required high accuracy of the energy-dependent
conductance would be difficult to achieve, since the statistical
error due to the disorder configurations is much larger for MTJs
than metallic systems because of inefficient self-averaging in
reciprocal space.

The coherent potential approximation (CPA) is more suit-
able for a quantitative analysis of transport through disordered
tunnel junctions. We implemented the CPA into the Keldysh
nonequilibrium Green-function formalism including nonequi-
librium vertex corrections (NVC) [22]. The method has
been generalized here to handle noncollinear magnetization
textures. The details of the electronic structure and transport
calculations can be found in Appendix A.

We use 4 × 104 k points in the full two-dimensional (2D)
Brillouin zone (BZ) to ensure numerical convergence. Our
CPA method can only handle disorder in the scattering region;
we use the virtual crystal approximation (VCA) to deal with the
potential functions in the alloy leads. In order to prove that the
VCA treats the FeCo electrodes with sufficient accuracy, we
study the Fe/FeCo(6ML)/MgO(6ML)/FeCo(6ML)/Fe MTJs,
including six monolayers (6ML) of the alloy FeCo into the

FIG. 1. (Color online) Schematic atomic structure of FeCo/
MgO/FeCo magnetic tunnel junctions. Disorder is modeled by
randomly distributed oxygen vacancies in the MgO monolayer next
to the FeCo/MgO interfaces. FeCo is a random alloy indicated by
blue-magenta spheres; Mg: green spheres; O: red spheres. The O
vacancies are indicated by yellow spheres.
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TABLE I. TMR ratios of FeCo/MgO(nML)/FeCo with clean and
dirty (5% OVs on both sides) interfaces for n = 3, 5, 7, and 9-ML-
thick barriers, respectively.

n Concentration Disorder TMR (%)

3 Fe0.25Co0.75 clean 577
Fe0.50Co0.50 clean 934
Fe0.75Co0.25 clean 1003
Fe0.50Co0.50 5% OVs 209

5 Fe0.25Co0.75 clean 853
Fe0.50Co0.50 clean 900
Fe0.75Co0.25 clean 1017
Fe0.50Co0.50 5% OVs 113

7 Fe0.25Co0.75 clean 902
Fe0.50Co0.50 clean 957
Fe0.75Co0.25 clean 1061
Fe0.80Co0.20 clean 1178
Fe0.50Co0.50 5%OVs 90

Expt. [9] Co0.6Fe0.2B0.2 ∼70–140(RT)
Expt. [25] Co0.2Fe0.6B0.2 604(RT), 1144(5 K)

9 Fe0.25Co0.75 clean 947
Fe0.50Co0.50 clean 1033
Fe0.75Co0.25 clean 1101
Fe0.50Co0.50 5% OVs 82

Expt. [7] Fe0.50Co0.50 330(RT)

scattering region, thus treating them in the CPA. We compare
the energy-dependent conductance with that computed for
FeCo/MgO(6ML)/FeCo, in which the potential of the FeCo
electrodes is treated by the VCA. Our calculations show that
results are not sensitive to the approximate treatment of FeCo
alloy electrodes and therefore we adopt this VCA in the
following.

The TMR ratios calculated for barriers with different thick-
nesses are compared with experimental results in Table I. The
thinnest MgO barrier that can currently be grown coherently
comprises three ML [23,24]. In experiments [25], TMR ratios
can be maximized through controlled annealing and other grow
conditions, approaching our theoretical values for the clean
interfaces. However, the samples used in the thermoelectric
experiments [7,9] have lower TMR ratios and are most likely
disordered in the form of ∼3–5% OVs close to the interface.

Expt. [26]

Expt. [9]

FIG. 2. (Color online) Resistance-area (RA) dependence on the
thickness of MgO barriers with clean (black squares) and disordered
(with 5% OVs) (red circles) Fe0.5Co0.5/MgO interfaces. The blue
triangle and cyan star denote the experimental values.

In Fig. 2, we compare the computed resistance area (RA)
with published experiments [9,26]. For 7-ML-thick MgO
barriers (1.6 nm) in the parallel magnetic configuration, our
calculation yields 23.8 �μm2(clean) and 12 �μm2 (5% OVs),
close to a measured 17 �μm2 for 1.5-nm-thick tunnel
junctions [9].

B. Energy-dependent conductance Gσ (E)

Even though Fe/MgO/Fe and FeCo/MgO/FeCo MTJs
appear very similar and have comparable large TMR ratios,
their spectral conductance turns out to be quite different. In
Fe-based MgO MTJs, resonant transmission channels exist
just below the Fermi level [6], which are not found for
FeCo contacts. Figure 3 shows the spectral conductance of
Fe0.5Co0.5/MgO(5ML)/Fe0.5Co0.5 (001) MTJs with a given
concentration of OVs at both interfaces for P and AP magnetic
configurations. The energy window in the plots corresponds
to 11 kBT at room temperature (300 K), where kB is the
Boltzmann constant. The slope of the energy-dependent

FIG. 3. (Color online) Energy-dependent conductance of Fe0.5Co0.5/MgO(5ML)/Fe0.5Co0.5 with clean (green hollow squares), 5% OVs
(yellow squares), 7.5% OVs (red circles), 10% OVs (blue triangles) at both interfaces for P and AP configurations.
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FIG. 4. (Color online) Energy-dependent conductance for
minority-spin channel in Fe0.5Co0.5/MgO(5ML)/Fe0.5Co0.5 MTJs
with interfaces that are clean (black squares) or contain 5% OVs
(red circles) or 10% OVs (blue up-triangles), respectively, for the
P configurations. Inset: Energy-dependent conductance for the
minority-spin channel in FexCo1−x /MgO(5ML)/FexCo1−x MTJs
with different alloy concentrations x = 1 (black squares), 0.9 (red
circles), 0.7 (blue up-triangles), and 0.5 (green down-triangles),
respectively, but without OVs.

transmission around the Fermi energy dramatically changes
by only small amounts of OVs for P and AP.

Results for a wider energy window of E = Ef ± 1.2 eV
are given in Fig. 4. Two peaks are observed above the Fermi
level for the minority spins. The OVs broaden these peaks and
shift them towards the Fermi level, where they increase the
conductance.

Thermoelectric effects are closely related to the slope of the
energy-dependent conductance near the Fermi level. Clearly a
certain amount of OVs at FeCo/MgO interfaces can enhance
the Seebeck and Peltier coefficients.

The origin of these two peaks is not easy to identify
for MTJs with random alloys. Fortunately, similar conduc-
tance peaks also exist in epitaxial Fe/MgO/Fe. The energy-
dependent conductance for epitaxial Fe/MgO(5ML)/Fe (inset
of Fig. 4, x = 1, black squares) displays a peak at 1.15 eV
above the Fermi energy and a shoulder around 0.9 eV. The
shoulder then develops into a plateau with 10% Co atoms
added (red circles). At higher Co concentrations (x = 0.7, 0.5),
the plateau develops into a second peak that shifts down-
wards to the Fermi level, where it affects the thermoelectric
properties.

We can identify the origin of these features in epitaxial
Fe/MgO/Fe by plotting the k‖-resolved transmission for the
minority spin in Fe/MgO(5ML)/Fe at different energies (see
Fig. 5). We observe “hot” single or double rings with energy-
dependent diameters. The maximum transmission approaches
unity, indicating resonant tunneling through the barrier. A
detailed study (see Appendix B) reveals that the single rings
at lower energy (Ef + 0.7 eV) can be identified to be bonding
orbitals of low-energy interface states on both sides of the bar-
rier. The corresponding antibonding states show up as the inner

FIG. 5. (Color online) k‖-resolved transmission of minority spins
through Fe/MgO(5ML)/Fe(001) MTJs in the P configurations with
clean interfaces for different energies above the Fermi level.

rings at higher energy, which coexist with the bonding orbital
of two higher-energy interface states that form the outer rings.

C. Seebeck coefficient

We limit the integration in Eq. (4) that defines the
Seebeck coefficient to the interval E − Ef ∈ (−0.3,0.3) eV,
introducing errors of less than 0.5% at T = 300 K (RT).
Figure 6 shows our results for the Seebeck coefficient at RT
of Fe0.5Co0.5/MgO(5ML)/Fe0.5Co0.5 MTJs with various (but
equal) concentrations of OVs at both FeCo/MgO interfaces.
The clean interface (black squares) gives the smallest Seebeck
coefficient, while an increasing OV concentration (up to 10%,
blue down-triangles) enhances it by an order of magnitude
for the P configuration. We can understand the enhanced
thermoelectricity by the spectral conductance in the vicinity
of the Fermi level that reflects the downward energy shift of
the resonant tunneling states by the interface disorder. We
eventually may take advantage of this insight to engineer
thermoelectric effects. The magneto-Seebeck ratio Sm, on the
other hand, is larger for the ordered system, viz., 369.3% and
−3.6% for clean and 10% OVs, respectively.

We list Seebeck coefficients and the corresponding
magneto-Seebeck ratios for different MgO barrier thicknesses

FIG. 6. (Color online) Seebeck coefficients of Fe0.5Co0.5/
MgO(5ML)/Fe0.5Co0.5 MTJs with clean interfaces (black squares),
5% (red circles), 7.5 % (green up-triangles), 10% OVs (blue
down-triangles) at both interfaces.
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TABLE II. Seebeck coefficients (in unit of μV/K) and magneto-
Seebeck ratios TMS (in %) of Fe0.5Co0.5/MgO(nML)/Fe0.5Co0.5

MTJs at T = 300 K for P and AP, compared with experimental results
from Ref. [7].

n Disorder P AP Sm (%)

3 clean −2.09 −23.82 1039.7
5% OVs −6.93 −19.41 180.1

7.5% OVs −12.87 −16.65 29.4
10% OVs −14.78 −25.77 74.4

5 clean −8.08 −37.92 369.3
5% OVs −22.48 −52.79 134.8

7.5% OVs −55.80 −69.23 24.1
10% OVs −77.36 −74.70 −3.6

7 clean −15.13 −50.26 267.6
5% OVs −40.46 −76.44 88.9

7.5% OVs −101.33 −99.20 −2.2
10% OVs −124.93 −98.93 −26.3

9 clean −23.12 −61.50 166.0
5% OVs −62.79 −99.80 58.9

6.5% OVs −112.86 −119.05 8.4
7% OVs −132.10 −124.15 −6.4

7.5% OVs −149.17 −127.99 −16.5
10% OVs −155.79 −121.74 −30.0

Expt. [7] −107.9 −99.2 −8.8

in Table II. First, the Seebeck coefficient increases with thicker
MgO barriers with identical interface disorder for both the P
and AP. For example, the Seebeck coefficient of MTJs with
MgO(9ML) is ∼2–10 times larger than that of MgO(3ML)
for different interfacial quality and configurations, while the
conductance changes by five orders of magnitude. The Seebeck
coefficient is therefore much less sensitive to the MgO barrier
thickness than the conductance. Second, at RT, the sign of
the Seebeck coefficient does not change with thickness and
its value is enhanced by OVs at the interface. In our study,
the thermopower is maximized for 10% OVs for 5ML MgO,
which can be understood from the spectral conductance in
Fig. 4. Third, the order and sign of the magneto-Seebeck ratio
TMS is sensitive to the details of the interfacial roughness.
In Table II and Fig. 3, we see that when the interface is
clean, |SAP| > |SP|, so the TMS is large and positive. Both
SP and SAP increase when the interfaces are disordered by
OVs, but SP always grows faster than SAP, which can be seen
by inspecting the slopes around the Fermi level in Fig. 3. So the
TMS decreases and even may change sign at low temperatures,
especially when the TMS at RT is small.

Our calculation of Seebeck coefficients and the TMS
of 9ML MgO barriers with 7% OVs at the interfaces are
consistent with the experiment results [7] in Table II for P
and AP, respectively.

In Table II, we show that MTJs with nine monolayers MgO
have the largest Seebeck coefficient. However, its conductance
and therefore thermoelectric current GS�T is small. The
thinnest MgO junctions therefore still generate the largest
thermoelectric power for a given temperature difference.

SP in Fe/MgO(5ML)/Fe with clean interfaces is 17.8 μV/K
at RT; the value is large than that of FeCo/MgO(5ML)/FeCo
as −8.08 μV/K.

FIG. 7. (Color online) Angle-dependent Seebeck coefficient of
Fe0.5Co0.5/MgO/Fe0.5Co0.5 without OVs at 300 K (black squares),
150 K (red circles), and 80 K (blue up-triangle).

The angular-dependent Seebeck coefficient (ADS) and
conductance can provide additional information about the
transport process. We plot the computed ADS at 300 K (black
squares), 150 K (red circles), and 80 K (blue triangles) for
Fe0.5Co0.5/MgO(5ML)/Fe0.5Co0.5 in Fig. 7. The horizontal
axis denotes the relative angle between magnetizations. The
Seebeck coefficient varies slowly from P (0◦) to 90◦ and dras-
tically from 90◦ to the AP (180◦), consistent with a previous
report [27]. Deviations from the simple cos θ dependence [28]
illustrate the importance of multiple scattering in the barrier
consistent with the existence of resonant states.

D. Thermal conductance κ

The electronic heat conductance is governed by the sym-
metric component of the spectral conductance around the
Fermi level. Figure 8 shows the thermal conductance of
Fe0.5Co0.5/MgO(5ML)/Fe0.5Co0.5(001) with 0%, 5%, 7.5%,
and 10% OVs at both interfaces, respectively. The thermal
conductance is enhanced by the OVs for the same reasons as
the charge conductance and Seebeck coefficient are. 10% OVs
enlarge the thermal conductance by 5 and 33 times for the
P and AP compared to clean interfaces at RT, respectively.
The tunnel magneto-heat-resistance (TMHR) ratio is strongly
modified by the OVs at the interface: we find 744.4% and
23.3% for clean and 10% OVs at both interfaces, respectively.

At sufficiently low temperatures, the Wiedemann-Franz
(WF) law always holds. When S2 becomes large, we have to
consider the Seebeck-Peltier effect on the heat conductance
(for constant �T ). When the thermal conductance varies
significantly in the thermal window kBT , the Sommerfeld
approximation breaks down and the WF relation is no longer
valid. The calculated deviations from the WF law are plotted
in Fig. 8. We define an effective Lorenz number Leff by

κ = LeffT G
(
Ef

)
, (12)
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FIG. 8. (Color online) Temperature-dependent thermal conduc-
tances for Fe0.5Co0.5/MgO(5ML)/Fe0.5Co0.5 with clean interfaces as
well as 5%, 7.5%, and 10% OVs at both interfaces. The open symbols
denote the heat conductances expected from the Wiedemann-Franz
(WF) Law.

to emphasize the breakdown of the WF law by comparing
Leff with the Lorenz constant L0 = 2.45 × 10−8 V2 K−2. The
temperature-dependent effective Lorenz number for different
OV concentrations is shown in Fig. 9. For elevated tempera-
tures, Leff is found to be significantly enhanced compared to
L0. The thermal conductance and corresponding TMHR ratios
for different MgO barriers are listed in Table III. First, the
thermal conductance decreases sharply with thicker MgO for
both P and AP. Second, the thermal conductance is enhanced
by interfacial OVs, whereas the TMHR ratios decrease. Third,
the TMHR ratio is less sensitive to interfacial disorder for
thicker MgO barriers. Large deviations from the WF law at
RT are induced by OVs and calculated thermal conductance

FIG. 9. (Color online) Effective Lorenz number Leff of
Fe0.5Co0.5/MgO(5ML)/Fe0.5Co0.5(001) with clean interfaces and 5%,
7.5%, and 10% OVs at both interfaces.

TABLE III. Thermal conductance (in units of 106 Wm−2 K−1)
and κm(%) of Fe0.5Co0.5/MgO(nML)/Fe0.5Co0.5 MTJs at T = 300 K
for P and AP configurations with different interfacial roughness. The
corresponding WF law values are shown in parentheses.

n Disorder P AP κm

3 clean 128.67 (135.4) 16.44 (15.0) 682.7
5% OVs 147.26 (145.7) 55.28 (46.6) 166.4

7.5% OVs 169.9 (163.5) 84.1 (70.5) 102.1
10% OVs 198.13 (197.6) 122.99 (102.5) 61.1

5 clean 4.56 (4.58) 0.54 (0.46) 744.4
5% OVs 7.35 (6.20) 4.15 (2.89) 77.1

7.5% OVs 12.77 (8.41) 9.17 (6.09) 39.3
10% OVs 22.03 (16.25) 17.86 (13.36) 23.3

7 clean 0.313 (0.307) 0.037 (0.030) 737.8
5% OVs 0.84 (0.61) 0.53 (0.32) 58.5

7.5% OVs 2.27 (1.08) 1.59 (0.91) 42.8
10% OVs 5.73 (3.35) 4.15 (2.97) 38.1

9 clean 0.027 (0.026) 0.003 (0.002) 800.0
5% OVs 0.137 (0.083) 0.087 (0.045) 57.5

7.5% OVs 0.581 (0.208) 0.383 (0.187) 51.7
10% OVs 2.364 (1.127) 1.552 (1.016) 52.3

is larger than expected from the WF law. The numbers in
parentheses in Table III are the WF values for nML MgO with
OVs. The calculated heat conductance deviates ∼18%–51%
from the WF law at RT.

IV. SUMMARY

In conclusion, we computed the thermoelectric coefficients
of FeCo/MgO/FeCo MTJs from first principles. Controlled
oxygen vacancies in MgO close to the interface to FeCo can
be used to engineer thermoelectric effects. While interface
disorder can greatly increase the Seebeck coefficient, it sup-
presses the magneto-Seebeck ratio. The vacancy concentration
is therefore an important design parameter in switchable
thermoelectric devices based on magnetic tunnel junctions.
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APPENDIX A: COHERENT POTENTIAL
APPROXIMATION (CPA) FOR TRANSPORT
IN NONCOLLINEAR MAGNETIC SYSTEMS

In Ref. [22], Ke et al. formulated the nonequilibrium vertex
correction (NVC) in the CPA in order to calculate disorder
averaging at finite voltage bias in two-probe devices. When
the direction of the magnetization changes slowly in space, the
local electronic potentials should not be modified significantly
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from a collinear magnetic system. We may then employ the
frozen potential approximation to generalize the NVC theory
to noncollinear magnetization textures.

Let us start with the “tail-cancellation” equation in the tight-
binding linear muffin-tin orbital, atomic sphere approximation
(TB-LMTO-ASA) framework:

det
[
Pα
RL − U

†
RSα

RL,R′L′UR′
] = 0, (A1)

in which the coherent potential functions Pα contain all
information about the disorder and Sα is the structure constant,
while the superscript α indicates screening. The subscript R
denotes the atom site and L ≡ (l,m) is the orbital index. The
unitary rotation matrix UR is

UR (θR,ϕR) =
[

cos θR
2 e−i

ϕR
2 − sin θR

2 e−i
ϕR

2

sin θR
2 ei

ϕR
2 cos θR

2 ei
ϕR

2

]
, (A2)

where θR,ϕR are the polar angles of the local magnetization di-
rection. The screened structure constants Sα

RL,R′L′ in Eq. (A1)
are block diagonal matrices in spin space and depend only on
the crystal structure,

Sα
RL,R′L′ ≡

[
sα
RL,R′L′ 0

0 sα
RL,R′L′

]
, (A3)

and we define

S̃α
RL,R′L′ = U

†
RSα

RL,R′L′UR′ . (A4)

Only the scattering region contains disorder. Each atomic
position in the alloy as well as barrier can be occupied by
two atomic species, Q = A,B, with concentration CA

R and CB
R

(CA
R + CB

R = 1). The conditionally averaged auxiliary Green’s
function is introduce as [30]

gα = [P α − S̃α]−1 = [Pα − S̃α]−1, (A5)

where [·] is an average over random disorder configurations.
The coherent potential functionPα

R satisfies the self-consistent
relation [22]

Pα
R = P

α

R + (
Pα
R − P

α,A
R

)
gα
RR

(
Pα
R − P

α,B
R

)
, (A6)

where P
α

R = (CA
RP

α,A
R + CB

RP
α,B
R ) and P

α,Q

R is the screened
potential function of atomic species Q at R.

The transmission probability through the system is [22]

T = tr
[
�Lg

α,r
cc,1N�Rg

α,a
cc,N1

]
, (A7)

where g
α,a
cc,N1 = (gα,r

cc,1N )† and subscript cc denotes the cen-
tral region. The transport system is always partitioned into
principle layers (PL) indexed by p = . . . , − 1,0,1, . . . ,N −
1,N,N + 1, . . . . The central region contains N layers where
p = 1, . . . ,N . �L/R is the spectral function matrix of the
ordered left/right leads. The trace runs over atom sites and
orbitals.

The configurational average in Eq. (A7) can be expressed
as

[gα,r�Rgα,a] = gα,r�Rgα,a + gα,r�α
NVCgα,a, (A8)

where

�α
NVC =

∑
R

�NVC,R, (A9)

and

�NVC,R =
∑

Q=A,B

C
Q

R t
Q,r

R [gα,r�Rgα,a]RRt
Q,a

R

+
∑

Q=A,B

C
Q

R t
Q,r

R

⎡
⎣gα,r

∑
R′ =R

�NVC,R′gα,a

⎤
⎦

RR

t
Q,a

R ,

(A10)

where

t
Q,r

R = (
Pα
R − P

α,Q

R
)[

1 − g
α,r
RR

(
Pα
R − P

α,Q

R
)]−1

, (A11)

with t
Q,r

R = (tQ,a

R )†. Finally, the transmission probability can
be written

T = tr
[
�Lg

α,r
cc,1N�Rg

α,a
cc,N1

] + tr
[
�Lg

α,r
cc,1N�NVCg

α,a
cc,N1

]
,

(A12)

where �NVC is the noncollinear vertex correction. The first
term on the right-hand side of Eq. (A12) corresponds to
specular and the second to diffusive scattering, respectively.

APPENDIX B: ANALYSIS OF THE RESONANT
“HOT” RINGS

The bonding and antibonding states originate from two
localized interface states that couple to each other through the
thin tunnel barrier [29]. The antibonding state with a node in
the center of the barrier is shifted to higher energy, while the
bonding state at lower energy should have a finite electron
density in the barrier. Bonding and antibonding states can
therefore be identified by the layer-resolved density of states
(DOS).

Grouping atoms into layers, the equation of motion (EOM)
for the I th layer can be written as [21]

−SI,I−1CI−1 + [P(E) − S]II CI − SI,I+1CI+1 = 0, (B1)

where E is the energy and CI is the wave-function amplitude in
the localized orbital basis |RL〉. The EOM with open boundary
conditions for a device usually contains an infinite number
of equations. By incorporating the boundary conditions in
the leads, the scattering problem can be reduced to a set of
coupled linear equations with finite number of equations and
the scattering wave function can be found as⎛
⎜⎜⎜⎜⎜⎜⎝

C0

C1

C2
...

CI

CI+1

⎞
⎟⎟⎟⎟⎟⎟⎠

= (P − S̃)−1

×

⎛
⎜⎜⎜⎜⎜⎝

S1,−1
[
F−1

L (+) − F−1
L (−)

]
C0 (+)

0
...
0
0

⎞
⎟⎟⎟⎟⎟⎠ , (B2)

where S̃ is a block tridiagonal matrix with S̃0,0 and S̃I+1,I+1

renormalized by the boundary condition to the leads.
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FIG. 10. (Color online) Schematic atomic structure of Fe/
MgO(5ML)/Fe magnetic tunnel junctions; the numbers are the
numbers I of the atom layers used below.

TABLE IV. Energies (in units of eV) of bonding and antibonding
states in Fe/MgO(5ML)/Fe(001) MTJs. The energy splitting �E =
Eantibonding − Ebonding reflects their overlap and is a function of energy.

Ebonding − Ef 0.5 0.6 0.7 0.8 0.9 1.0
Eanti-bonding − Ef 0.916 0.972 1.012 1.067 1.104 1.148
�E (eV) 0.416 0.372 0.312 0.267 0.204 0.148

FIG. 11. (Color online) (a1), (b1) Transmission spectrum in 2D BZ [k|| = (kx,ky) ∈ (± π

a
, ± π

a
), and a is the lattice constant] at energy

E1 = Ef ± 0.7 eV and E2 = Ef ± 1.012 eV, respectively. (a2), (b2) Three-dimensional (3D) plots of ρ = ρI (k||) (arb. units) for
Fe/MgO(5ML)/Fe MTJs, where k|| = (kx,ky) corresponds to the white square in (a1): k|| ∈ (±0.24, ± 0.24) π

a
; (b1): k|| ∈ (±0.32, ± 0.32) π

a
.

(a3) DOS of typical k|| points on the single “hot” ring. (b3), (b4): DOS of typical k|| points on the inner and outer hot rings in (b1).
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FIG. 12. (Color online) k||-resolved transmission probabilities of
minority spins through Fe/MgO(5ML)/Fe(001) MTJs in the P
configurations with clean interfaces and for various energies. The
white arrows map the inner ring (antibonding state) at high energy on
the single ring (bonding state) at low energy with the same radius.

Let us consider an electronic Bloch wave with amplitude
C0 (+), where +/− in the bracket denotes right/left-going
components. Equation (B2) gives us the wave-function am-
plitudes of layers from 0 to I + 1 as well as the wave

functions aI = �
− 1

2
I CI , where � is a potential parameter

called the width of theRLth “band” [30,31]. All of the physical
quantities in Eq. (B2) are k|| resolved in our calculations,
and ρI (k||) = a†I (+,k||)aI (+,k||), where aI (+,k||) is the right-
going components of scattering wave function. We label the
monolayers of the MTJ as shown in Fig. 10.

We first focus on the resonant tunneling “hot” ring at
E1 = Ef + 0.7 eV shown in Fig. 11(a1). The transmission
probability on the ring approaches unity. By scanning the
energy-dependent transmission probability for the k|| on this
ring, we find a ring with the same radius at E2 = Ef + 1.012
eV, i.e., the inner ring in Fig. 11(b1). This ring is now
accompanied by a second one with larger radius.

To identify the origin of these rings, we plot ρI (k||) for the
two energies in Figs. 11(a2) and 11(b2), where k|| = (kx,ky)
corresponds to the white squares in Figs. 11(a1) and 11(b1),
respectively. The DOS is concentrated on the rings, where it
is enhanced on the Fe atoms next to the interfaces.

Figures 11(a3), 11(b3), and 11(b4) plot the DOS on the
ring for selected k||. These ρI are not symmetric relative to the
scattering center since they are computed from the scattering
wave function with a transmission slightly smaller than unity.

Figure 11(b3) (inner ring) displays a node in the center
of the barrier, as expected for antibonding states. The ρI in
Figs. 11(a3) and 11(b4), on the other hand, vary smoothly
through the MgO barrier. We may conclude that the bonding
combination of interface states causes the single ring in
Fig. 11(a1) and the outer ring of Fig. 11(b1). The double

FIG. 13. (Color online) Layer-thickness dependence of the k||-
resolved transmission probability of minority spins through
Fe/MgO(nML)/Fe(001) (n = 5,6,7) MTJs in the P configuration with
clean interfaces for selected energies.

ring structure is evidence of the coexistence of two transport
channels, i.e., the antibonding combination of low-energy and
the bonding combination of high-energy interface states.

The explanation of the rings at E1 and E2 in Fig. 11
is supported by the energy dependence of the transmission
probabilities in Fig. 12. There is only a single ring for
E − Ef ∈ (0.5,0.92) eV, while a double ring structure is
observed for E − Ef ∈ (0.92,1.1) eV, which is consistent with
the double step feature in the energy-dependent conductance
(black squares in the inset of Fig. 4).

The radius of the single ring increases with energy.
However, at higher energy, the growth rate decreases and
the double ring structure appears at E = Ef + 0.92 eV.
The energy splitting between bonding and antibonding states
in Table IV decreases with energy until the whole feature
disappears.

Finally, the transmission probability in k|| space as a
function of MgO barrier thickness with specular interfaces
(Fig. 13) reveals that the energy splitting of bonding and
antibonding decreases with thicker MgO barriers, reflecting
the reduced overlap between the two interface states. The
maximum transmission does not change so the resonant
tunneling is preserved for specular interfaces.

However, the resonant states are increasingly vulnerable
to disorder scattering and decoherence, and their contribution
to transport is expected to vanish in the thick-layer limit. We
observe that the double ring feature vanishes for thick layers,
indicating that the interaction of the higher-energy interface
states is suppressed.
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