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Peter Palensky 

 TU Delft, Netherlands 

– Faculty for Electrical Engineering,  

Computer Science and Mathematics 

– Department for Electrical Sustainable Energy 

– Prof ¨Intelligent electric power grids¨ 

 Worked in Russia, Germany, Korea, South Africa, California, Austria 

 Methods/Theory for hybrid energy systems 

– Modeling, Simulation 

– Optimization 

 Applications for hybrid energy systems 

– Controls, Stability 

– Integration 
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The future power system 

 Expectations 

 Increased share of renewable energy sources 

 Host new applications like electric vehicles or 

cooperative loads 

 Optimized, resilient, flexible, robust, globalized, etc. 

 That leads to an increment in: 

 Distributed structure 

 Control and management 

 New energy technologies & markets 

 Links to other “systems” 

 

 Complex (hybrid / cyber-physical) power systems 
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Example Project / Motivation 

 New energy market design and  

implementation 

 Model-predictive load shed/shift 

 Interoperability of equipment 

 Information security 

 System integration 

 PowerMatcher, DEMS, grid plausibility,  

market platform, CellControler, etc. 

 OpenADR 

 Fine grained distribution grid model  

parameters 

 Intelligent demand side 

 DEMS: Decentralized Energy Management System (Siemens) 

OpenADR: Open Automated Demand Response 
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Intelligent Loads 

 Refrigerators as regulation power providers 

 Frequency-dependent setpoint adjustment 

 Distributed droop control 
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Intelligent Loads 

 “GridFriendly” (PNNL) 

 KNIVES (Japan) 

 California 

 ORB 

 Smart AC 

 PCT 

 “50.2 Hz problem” 

with 10 GW PV inverters  

in Germany 2011? 

 

PNNL: Pacific Northwest National Laboratory 

AC: Air Conditioning 

PCT: Programmable Communicating Thermostat 

PV: Photovoltaics 
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Intelligent Loads (OpenADR, bidding) 
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Research on future power systems 

 Usually: Experimental 

 Wanted: Model-based 

 

 Four fundamental types of hybrid system elements 

 Continuous: energy technology, infrastructure, physics 

 Discrete: ICT, software, controls, communication 

 Game Theory: markets, market players, roles, agents 

 Stochastic: weather, people, aggregated/not-modeled behavior, statistics 

 

 Scalability  

 Large (interconnected grids) <-> Small (microgrids) 

Quick (frequency balance, harmonics) <-> Slow (weather, fuel price, 

demographics) 
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Use Case 1: Simple Hybrid System 

 Thermal domain 

 Discrete controller 

 Agents/Market 

 Stochastic events 

 

 

 Describe via bond graph 

 Analyze interplay of  

continuous domain and 

asynchronous events 

 Scalability of platforms 
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Use Case 2: el. power station 

 Physical parts not isolated 

 Plus: Electrical domain 

 Ideal grid 

 Non-ideal power station 

 Plus: Mechanical domain 

 

 

 Further use cases 

 3: Thermal grid 

 4: Non-trivial market 

 5: Communication network 

 6: non-ideal grid 

 7: EV-charging EV: electric vehicle 
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Two types of Modeling Paradigms 

 Agent-oriented 

– Autonomous modules 

– Components determine synchronization points 

– Examples: GridLAB-D, Omnet++ 

 Monolithic 

– Equation-based model of physics -> ODE-> code 

– Solver integrates and tries to find zero crossings 

– Examples: Modelica, Simscape 

   

   

ODE: Ordinary Differential Equations 
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Monolithic Modeling 

 E.g.: Simscape, Modelica 

 PRO 

 Convenient 

 Multi-domain physics 

 Strong syntax 

 Good docu 

 CON 

 Low Performance 

 Closed platforms? 
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Modelica / Simscape code example 

package Energy 

  package Interfaces 

    partial connector 

HeatPort  

         “Thermal port for 1-

dim. Heat transfer“ 

      Types.Temperature T;  

      flow Types.HeatFlowRate 

Q_flow; 

    end HeatPort;   

    ... 

  end Interfaces;  

  package Components 

    model House4 

"House lumped thermal heat" 

       Types.Temperature T(st

art=20 + 273.15,  

           

displayUnit="degC") "Temperat

ure of element"; 

       parameter Energy.Types

.ThermalCapacity  

              

Cth = 430.578  "Heat capacity

 of element“; 

       parameter Types.Densit

y ro = 1.2041; 

       parameter Types.Volume

 volume = 200; 

       Interfaces.HeatPort_a 

port_a; 

    equation  

       T = port_a.T; 

       ro*volume*Cth*der(T) =

 port_a.Q_flow; 

    end House4; 

    model Heater  

       ...  

    end Heater; 

  end Components;   

end Energy; 

component ElHeater < 

foundation.electrical.branch 

  nodes 

     M = 

foundation.thermal.thermal; % 

B:right  

  end 

   

  inputs  

    Level = { 0.50, '1' }; % 

:left 

  end 

   

  parameters 

    R = { 40, 'Ohm' };   % 

Resistance 

  end 

 

  variables 

    Q = { 0, 'J/s' }; 

  end 

   

  function setup 

    through( Q, [], M.Q ); 

  end 

 

  equations 

    v == R*i*Level; 

    Q == v*i; 

  end 

end 
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Multi physics, multi-everything... 
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Use Case 1 monolithic results 

Good for  
components! 
 
Events? 
 
Scalability? 
 
Libraries? 
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Agent oriented: GridLAB-D 

 Simulation environment specifically designed  

for the analysis of modern power systems 

 open source, developed by PNNL 

 Main features: 

 command line tool written in C/C++ 

 runs under Windows (MSVC, MinGW, Cygwin) and Unices 

 flexible agent-based simulator 

 can model the behavior of many objects over time 

 comprises a modular design 

 buildings (residential, commercial, industrial) 

 electric network (generation, transmission, distribution, controllers, reliability) 

 markets (retail double auctions, transaction journals) 

 climate 

 implements a modeling language 

 parametric syntax for dynamic model generation 

 provides various simulation utilities 

 debugging, profiling, plotting, histogramming, write to file etc. 
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GridLAB-D: Results 

 Sophisticated time synchronization of objects 

 each object has to update its current state 

 each object can tell when it wants to update next 

 Good for systems... 

  Physics?, Libraries? 
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GridLAB-D  

OpenModelica  

PowerFactory 

Co-simulation environment 

 Many possible ways to  

couple simulations 
 

 Direct coupling of tools 

 small overhead 

 typically not reusable 

 complicated for  

complex scenarios 

 

 Generic coupling of tools 

 introduces overhead 

 reusable 

 more flexible 
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Physics: causal vs. acausal modeling 

 Block diagrams are very suitable for modeling of controls/signal processing 

 each block represent a set of equations 

 typically ordinary differential equations (ODE) 

 connections define uni-directional (causal) relations between blocks 

 i.e. between input signals, output signals and state variables 

 use numerical solver (ODE integrator) to compute successive states of system 

 Bi-directional (acausal) connections are more intuitive for physics modeling 
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FMI for Model Exchange/Co-Simulation 

 Functional Mock-Up Unit 

 model interface (shared library) 

 model description (XML file) 

 

 Executable according to C API 

 low-level approach 

 most fundamental functionalities 

only 

 tool/platform independent 

 FMI provides only well-defined access to the model 

 master algorithm definition left out on purpose! 
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Co-Simulation: thermal system simulation 

 domain-specific co-simulation 

components 

 developed by domain experts 

 

 generic coupling via Ptolemy II & FMI++ 

 

 mixed use of FMUs for Model Exchange 

and Co-Simulation 

 make use of what is available 

 

 mixed used of dynamic and fixed step 

simulation 

 handled automatically by the environment 

 

 
FMU: functional mockup unit 
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Co-Simulation: Power System, Communication & Controls 

 

 Coupling of event-based and 

continuous simulation 

 Real-time simulation  

 coupling with physical 

components (C-HIL) 

Use Case: LV Network, OLTC control and PLC communication 
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Co-Simulation of hybrid systems 

 Usecase 7: Flexible EV Charging as real-

time demand response 

 Co-Simulation 

 Gridlab-D -> Middleware 

 OpenModelica –> Components 

(Batteries, etc.) 

 PowerFactory -> el. grid 

 Standardized Interface: Functional Mockup 

Interface (FMI) 

 Combination of highly accurate physical 

models and large-scale system 

EV: Electric Vehicle 
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Use Case 7: MATSim, EVSim, 

PowerFactory 

Simulation Environment 
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Co-Simulation Results 

SOC: State of Charge 
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Demand 

Optimization of complex systems 

 Uncertainties, Constraints, Risk, etc. 

Objectives: Cost Minimization 

Constraints: 

Generator specific: Ramp rate, Minimum 

time for ON/OFF, power limits 

Network Specific: Power flow constraints, 

bus voltage limit  

Medium Voltage Substation 

Network 

Quadratic Optimization problem 

Constraints            : 1587             

Scalar variables       : 330              

Integer variables      : 120  

Solver Used: MOSEK 

Platform: Windows/64-X86  
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Hot Topics 2015++ 

 Fundamentals: Modeling and Simulation of (complex) power grids 

 Co-simulation, Modelica for power, power and controller HIL, etc.  

 Application: Distributed, network-based controls of power grids 

 Stability, scalability, structure, resilience, self-organization, etc.  

 Interdisciplinary teams 

• Mathematics, Computer Science, Physics, Electrical Engineering 

• Policy making, Markets, Socio-economic phenomena 

 International network 

 UC Berkeley/Berkeley National Lab (us), NREL (us) 

 TU Delft (nl), AIT (at), DTU (dk), OFFIS (de) 

HIL (Hardware in the Loop) Simulation 
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Peter Palensky 

Department of Electrical Sustainable 

Energy 

Delft University of Technology 

P.Palensky@tudelft.nl 

Thank you! 


