

Innovative On-the-Fly
Approach to Soft Landings in

Quadruped Robotics

Edoardo Panichi

Acknowledgments
I would like to express my sincere gratitude to my supervisor Cosimo della Santina,
and my daily supervisor Jiatao Ding, who proposed this exciting thesis to me and
helped me during the past months with the development of the project.
After that, a heartfelt thank you also goes to my friends with whom I have spent long
study sessions over the years, which have allowed me to complete this master’s;
and to my family and girlfriend who have supported me in every way during my
university career.
Last but not least, I would like to thank Albino Dallio who, especially in this last
period, has been a great benefactor during the finalization of my thesis.

Supervisors:
- Dr. Ding, J.
- Dr. Della Santina, C.

Thesis Committee:
- Dr. Ding, J.
- Dr. Della Santina, C.
- Dr. Prendergast, J.M.
- Dr. Mazo Espinosa, M.

Date of defense: 27th of February 2024
Awarding Institute: The Delft University of Technology

Student Number: 5630444

MASTER’S THESIS - MSC ROBOTICS - FEBRUARY 2024 1

Innovative On-the-Fly Approach to Soft Landings
in Quadruped Robotics

Edoardo Panichi

Abstract—In this thesis, we introduce a novel approach aimed
at enhancing the jumping and landing capabilities of quadruped
robots. Our method integrates both model-based and model-free
strategies and features a behavioral cloning framework designed
to reduce computational delays often encountered in trajectory
optimization.

Initially, we build upon an existing framework for quadruped
jumps, where we refine the trajectory optimization (TO) algo-
rithm and introduce a new Variable Impedance Control (VIC).
The VIC is specifically developed to facilitate softer landings. This
improved system was then utilized to generate a comprehensive
synthetic dataset, including 11,000 samples that cover a diverse
range of jumping scenarios. This dataset served as the foundation
for training a neural network. The primary objective of the
network is to emulate the performance of the model-based
approach. Structurally, the network is designed to process the
robot’s current state as input and generate the corresponding
control actions for its 12 motors as output.

The most significant achievement of this research is the neural
network’s ability to closely replicate the outcomes of the model-
based solution. Notably, it ensures more compliant behavior and
lower stress on the motors during the landing phase than an
MPC. The neural network demonstrates a 97.4% success rate.
This high level of performance underscores its potential for on-
the-fly application in robotic systems. The effectiveness of our
method is further validated through a series of simulations and
practical tests conducted on a Go1 quadruped robot.

I. INTRODUCTION

IN recent years, robots have rapidly spread across various
industries and applications. From manufacturing to

logistics, healthcare to services, robots are being used
to automate tasks, improve efficiency, and reduce costs.
Technological advancements, such as in the field of artificial
intelligence, machine learning, and sensors, have enabled
robots to perform increasingly complex and sophisticated tasks
while becoming more convenient, helpful, and accessible.

In the evolution of technological innovation, the natural world
has consistently served as a pivotal source of inspiration
by offering solutions refined over eons of evolution. The
emergence of humanoid and quadrupedal design is a primary
manifestation of this in the realm of legged robotics.
Traditionally, wheel-based machines have dominated the
field due to their simplicity, efficiency, robustness, and
cost-effectiveness in both production and maintenance.
However, recent years have brought a remarkable shift in
research focus, driven by the compelling advantages of legged
robots sparking significant interest and enthusiasm among
researchers.

Legged robotics is gaining prominence due to its superior
mobility and adaptability compared to traditional tracked or

Fig. 1: The Go1 performs a jump using the method proposed in this
paper. The distance between the green and the red line is 40cm.

wheeled vehicles. Legged robots excel in navigating complex,
uneven terrain, making them invaluable for disaster relief op-
erations and exploring uncharted areas, including challenging
environments like stairs, rocky terrain, and confined spaces.
In the early years of the advent of quadrupeds, researchers
focused their efforts on solving the locomotion problem
[1][2][3], and only after they focused on more dynamic skills
such as jumping [4][5][6]. Despite being different problems,
locomotion and jumping share many solutions. Both of these
problems can be solved following two main paths: model-
based and model-free approaches. The former operates within
a structured framework, primarily comprising a planner, such
as a trajectory optimization [7], which delineates the motion
to be executed, and a controller, which generates the con-
trol actions to track the planner’s reference trajectory. The
quintessential advantage of the model-based paradigm lies in
its integration of a detailed robot model. This model enables
the planner, and in certain instances the controller (e.g.,
Model Predictive Control), to anticipate the robot’s motion
and deduce the most effective strategy for attaining desired ob-
jectives. Solutions derived from this approach are anchored in
theoretical robustness and offer straightforward interpretability
due to their foundation on established mathematical principles
and physical laws.

Conversely, model-free methodologies exhibit distinct ad-
vantages, particularly in contexts where the formulation of pre-
cise models is challenging. These strategies develop a control
policy through direct interaction with the environment or by
learning from a dataset. They excel in adapting to dynamic
and unpredictable environments, due to their independence
from pre-established models. This attribute renders model-free
approaches apt for handling complex tasks characterized by
unpredictable or non-linear elements, which are notoriously
difficult to encapsulate accurately within a model.

Furthermore, it is imperative to consider the temporal

MASTER’S THESIS - MSC ROBOTICS - FEBRUARY 2024 2

efficiency of these systems. Model-based solutions, especially
those employing complex models, often require substantial
computational time to plan actions. In contrast, model-free
solutions do not encounter this obstacle. Therefore, model-free
methods emerge as a preferable alternative in contexts where
adaptability, swift responses, and reduced computational
demands are paramount.

In this work, we propose a novel approach that exploits
the best of both worlds for robotic jumping tasks. Traditional
model-based methods often require trade-offs for on-the-fly
applications, compromising jump performance. Our solution
involves a supervised learning framework that replaces the
planner and controller, enabling on-the-fly jumps without
performance loss.

Initially, we developed a model-based framework with a
trajectory optimization (TO) algorithm and controller, used to
generate a synthetic dataset of 11, 000 jumps. This dataset
was used to train a neural network capable of jumping various
distances with the same set of weights, achieving performance
comparable to the model-based method but without its com-
putational burden.

The focus of this study is not limited to executing accurate
jumps but also discusses how to achieve soft landings with
impact absorption techniques to enhance the practicality and
safety of jumps. Our main contributions to this research are
summarized as follows:

• We proposed an advanced single rigid body model
(SRBM) trajectory optimization algorithm, inspired by
[8], capable of generating more informed reference tra-
jectories than those typically based on Spring-Loaded
Inverted Pendulum (SLIP) models.

• We developed a compliant landing controller, incorporat-
ing the advantages of variable impedance controllers [9].
This approach aims to minimize impact forces and motor
efforts during landings.

• We utilized our model-based framework to generate
a synthetic dataset essential for training a behavioral
cloning algorithm. This algorithm successfully replicates
the results of the model-based solution mentioned in
the two previous points, bypassing the computational
inefficiencies associated with the planner.

• We thoroughly evaluated our contributions in both simu-
lated environments and real-world scenarios using a Go1
quadruped robot by Unitree, demonstrating the practical
application and effectiveness of our approach.

II. RELEVANT LITERATURE

A. Model-Based Solutions

Model-based approaches, long the cornerstone of robotics,
excel for basic robots and tasks. Even complex robots like
quadrupeds can be effectively managed with simplified models
for basic actions, facilitating real-time controller and on-the-fly
planner operation while ensuring robust control.

Yet, challenges arise with complex robots and dynamic tasks
like quadruped jumping, necessitating sophisticated models
due to intricate dynamics. To manage this, planning and

control are often split into two phases: an offline phase for
complex motion problem-solving, and an online phase focused
on tracking the planner’s reference trajectory.

A prevalent approach in the planning phase is trajectory
optimization, which involves defining a cost function and a set
of constraints. This method has enabled various achievements,
including planning jumps through window-shaped obstacles
[10], continuous jumping [11], and omnidirectional jumps
[12]. To decrease computational load, some strategies involve
manually setting contact phases and durations, sacrificing
optimality in the process [13]. Others adopt a reduced-order
model for optimizing these specific parameters [14]. However,
even with these approaches, planning a reference trajectory can
require several minutes.

Efforts to achieve online trajectory optimization are also
present in the literature. Chignoli et al. [15] propose a solution
that disregards joint dynamics and kinematics during the
stance phase, under the assumption that feet within an approxi-
mate Cartesian workspace relative to their hips will not violate
kinematics limits or collide. Alternatively, Mastalli et al. [16]
showcase agile online locomotion through Differential Dy-
namic Programming-based model predictive control, though
this too relies on a separate planner for contact scheduling.
Recent developments have also successfully integrated model-
based approaches with machine learning algorithms to reduce
computational complexity, achieving remarkable online results
[12][17]. None of the work mentioned though, emphasizes soft
landing.

B. Model-Free Solutions

Model-free strategies, particularly reinforcement learning
(RL) and imitation learning, are emerging as potent tools
for complex tasks like jumping. These methods depart from
traditional model-based approaches, using data-driven tech-
niques to learn control policies either through direct envi-
ronmental interaction or by analyzing existing datasets. RL
has facilitated significant advancements in teaching legged
robots to perform complex maneuvers, including locomotion
[18][19][20][21][22], and jumping [23][24][25]. For instance,
Bellegarda et al. [26] showcase the ability of RL to facilitate
robust jumping, overcoming environmental challenges. How-
ever, their study does not address the issue of soft landing.
Another notable work by Qi et al. [27] employs RL to
enable landing on an asteroid, encompassing take-off, attitude
adjustments, and soft landing, with the lower gravitational field
simplifying control requirements.

Imitation learning [28] has also shown its efficacy in this do-
main. This technique involves teaching quadruped robots com-
plex skills, such as jumping, by mimicking behaviors of expert
human operators or simulations. This approach, combined
with RL, has been applied to refine jumping techniques from
various inspirations, including the animal kingdom [29][30],
manually crafted trajectories [31][32], and optimization-based
methods [23][33][26]. Behavioral cloning (BC), a variant of
imitation learning, has yielded impressive results in other
areas of robotics, though less explored in dynamic quadruped
movements [34][35][36].

MASTER’S THESIS - MSC ROBOTICS - FEBRUARY 2024 3

Concerning jumps, there seems to be a lack of studies
utilizing BC techniques. Kurtz et al. [37] appears to be the
closest study to a jumping application, where a synthetic
dataset was used to train a model on how to land a robot on
its feet after a fall, using inertia-shaping techniques for midair
reorientation. An advantage of BC, particularly when starting
from trajectories generated by optimal strategies (e.g., TO
paired with MPC), is that it allows the model to learn a policy
that replicates precise results while avoiding the computational
overhead of TO. Furthermore, unlike RL, BC avoids the
complexities associated with tuning reward functions to reach
desired outcomes [38].

C. Soft Landing

Soft landing is a critical feature in quadruped robotics,
essential for reducing mechanical stress and ensuring stability
post-jump. It extends the robot’s lifespan and ensures safe,
balanced landings, especially in uneven or challenging envi-
ronments, making it a key focus for enhancing robotic agility
and durability. A soft landing is characterized by two main fea-
tures: compliance in the movements and low stress on the mo-
tors [39]. In this context, Jeon et al. [8] developed an optimal
landing controller that operates online without pre-specified
contact schedules, effectively managing touchdown postures
and force profiles for drops up to 8 meters. Complementing
this, Nguyen et al. [14] applied an optimization framework to
determine optimal contact timings and a reference trajectory
for real hardware, achieving stable landings from 2 meters.
Both of these works show impressive achievements but are
focused on falls rather than jumps. Qi et al. [40] diverged
with a model-free reinforcement learning approach, focusing
on adaptive landings on asteroids, highlighting the importance
of orientation adjustments for optimal ground contact, which
is much more difficult when dealing with Earth’s gravity. A
different approach to the soft landing problem solves the issue
by acting directly on the hardware, designing the legs of the
robot to include compliant elements that help to reduce stress
on the motors and improve the compliance of the movements.

Additionally, advancements in hardware, such as
incorporating compliant elements into robot legs,
offer direct stress reduction on motors and enhanced
movement compliance, as demonstrated in multiple works
[41][42][43][44][45].

Given the current state of the art, the research goal of
this work is to develop a on-the-fly algorithm to perform
precise jumps and soft landing.

III. PROBLEM STATEMENT

The primary objective of this research is to design and
implement a technique enabling a quadruped robot to execute a
precise jump, culminating in a soft landing. This process must
be efficient enough to allow for on-the-fly execution without
necessitating extensive computation to determine the optimal
motion trajectory. Specifically, the robot should be capable of
jumping distances ranging from 0.1m to 0.55m, maintaining
minimal error at the final position. Our experimental platform

is the Unitree Go1, chosen for its representative features
common to similar quadruped robots.

The state of the robot at any given moment is encapsulated
by a 35-dimensional vector:

X = [z, ϕ, θ, ψ, ẋ, ẏ, ż, ω̇x, ω̇y, ω̇z, q, q̇, d]. (1)

Here, z represents the center of mass (CoM) position, while
ϕ, θ, ψ denote roll, pitch, and yaw (RPY) respectively. The
linear velocities of the CoM are expressed as ẋ, ẏ, ż, and
angular velocities are captured by ω̇x, ω̇y, ω̇z . The joint po-
sitions and velocities are represented by q ∈ R12 and q̇ ∈
R12, respectively, and d signifies the targeted jump distance.
Notably, the state vector X omits the x and y positions of
the robot’s CoM since the jump mechanics are invariant to
these dimensions—different values of x and y do not alter
the necessary control sequence for the desired jump. The
conventional state of the robot that includes x, y and neglects
d will be addressed as X+

X+ = [x, y, z, ϕ, θ, ψ, ẋ, ẏ, ż, ω̇x, ω̇y, ω̇z, q, q̇]. (2)

In this setup, the input u to our robot is represented by
the joint torques τ . The problem we seek to solve is formally
defined as:

Problem: Starting from an initial stance position denoted
by X(0), identify the control action sequence u that enables
the robot to achieve a jump of the desired length d. This
sequence should be optimized to minimize motor effort and
ensure smooth deceleration during the landing phase for a
soft landing. Moreover, the computation of u needs to happen
in real-time while ensuring small landing errors.

Fig. 2: This figure presents an example trajectory generated through
TO using the aSLIP model. The trajectory of the CoM in the X-
Z plane is delineated in green for the stance phase and red for the
flight phase. Control inputs during the stance phase are indicated by
vectors u1 where i ∈ 0, ..., Ns. Inputs to the TO are the initial and
targeted final positions of the CoM. For illustrative purposes, the foot
position is also shown but is not included in the TO. The TO outputs
the CoM’s position and velocity at discrete intervals defined by dts
for the stance phase and dtf for the flight phase.

IV. METHODOLOGY

A. Starting Framework
Our research builds upon an established framework, pre-

viously developed by colleagues of our research group. This

MASTER’S THESIS - MSC ROBOTICS - FEBRUARY 2024 4

framework integrates a kino-dynamic trajectory optimization
algorithm with a Model Predictive Control for effective trajec-
tory tracking. The TO algorithm, central to our approach, em-
ploys an actuated Spring-Loaded Inverted Pendulum (aSLIP)
model [46]. It is characterized by a predefined number of
steps, N , equally divided into stance (Ns) and flight (Nf)
phases. The step size, dt, is dynamically optimized by the
TO algorithm, with an initial value provisioned to enhance
computational efficiency. The full problem formulation for the
TO of the starting framework is reported in the Appendix A.

The initial implementation also includes an MPC, adapted
from Di Carlo et al. [47], for real-time reference tracking at
a 500Hz frequency. Additionally, it employs PD feedback
controller for maintaining the desired pose and a contact
controller to ensure effective ground contact during the jump.
This comprehensive setup aims to optimize the robot’s jump-
ing trajectory while respecting its physical constraints and
operational capabilities. The overall framework flow can be
visualized in Figure 3.

Fig. 3: This figure presents the overall starting framework described
in subsection IV-A. The light blue block represents the planner and
it gets as input d the desired jump distance. From the graph we see
the action of the three controllers: MPC, PD, and Contact Controller.

B. Single Rigid Body Model Trajectory Optimization

The first step to achieving the research goal of this study
is to improve the accuracy of the starting framework. The
initial setup’s main limitation was its oversimplified model
used in the TO able to capture only partial dynamics. This
led to less trackable and physically viable trajectories for the
robot. To overcome this, we shifted from the aSLIP model
to a more comprehensive Single Rigid Body Model (SRBM).
The SRBM, with six D.o.F, offers greater planning accuracy
without significantly increasing complexity. Our revised TO
draws inspiration from the work of Jeon et al. [8], albeit with
significant alterations. Notably, while Jeon et al.’s work pri-
marily addresses falls, our revisitation modifies its application
to work with jumps. The reformed TO algorithm is delineated
over N = Ns +Nf steps, and is expressed as follows:

argmin
X+

∥X̃− X̃ref∥2Q, (3a)

s.t. Kinematic constraints:
X+(0) = X+

0 , (3b)
r(0) = r0, (3c)

X+,goal
1:3 − ϵ ≤ X+

1:3,N ≤ X+,goal
1:3 + ϵ, (3d)

∀k ∈ [1, 2, . . . , Ns +Nf] :

rk = F(qk), (3e)
∥hk − rk∥ ≤ Lleg,max, (3f)

X+
k ∈ B, (3g)

Dynamics constraints:
Ẋ+

k+1 = f(X+
k , rk, Fk), (3h)

∀k ≤ Ns :

Fk ∈ S, (3i)
CCC(Fk, rk), (3j)

|JTFk| ≤ τmax, (3k)
− µFk,z ≤ Fk,x ≤ µFk,z, (3l)
− µFk,z ≤ Fk,y ≤ µFk,z. (3m)

The algorithm optimizes the robot state, denoted as X+,
which is elaborated in Equation (2) (Section III). The core
of this algorithm is the cost function (Equation (3a)), which
minimizes the error between the desired final state X̃ref and
the achieved state X̃. X̃ contains the first six states of X+

and the error is weighted by the matrix Q.
Constraints (3b) and (3c) define the initial conditions of the

system. These include the starting state of the robot X+
0 and

the initial position of the robot’s feet r0, expressed in global
coordinates. Conversely, constraint (3d) delineates the terminal
conditions, specifically targeting the CoM’s final x, y, and z
positions, with ϵ serving as a slack parameter to allow some
flexibility. The kinematic aspect of the algorithm is captured
in Equation (3e), which describes the forward kinematics
for leg configurations. This equation transforms the joint
configurations, denoted by q, into the feet’s positions r in a
global coordinate system. To aid the algorithm’s convergence,
inequality (3f) is introduced. This inequality relates the global
position of the hip joint h to the maximum extendable length
of the leg, represented as Lleg,max. Additionally, the constraint
(3g) sets boundaries for the state variables X+

k .
The robot’s dynamics, as defined in constraint (3h), treats

it as a single rigid body. This simplification is justified by the
fact that the legs constitute less than 10% of the robot’s total
mass.

mẌ+
1:3 =

nc∑
i=1

Fi − fg, (4a)

d

dt
(Iω) =

nc∑
i=1

(ri −X+
1:3)× Fi. (4b)

The linear and rotational dynamics of the robot are governed
by Equations (4a) and (4b). Specifically, the linear dynamics
are defined as the sum of the ground reaction forces (GRF)
acting on each foot (Fi), minus the gravitational force (fg),
acting on the CoM. The rotational dynamics are determined
by the torque generated by these forces about the CoM. The

MASTER’S THESIS - MSC ROBOTICS - FEBRUARY 2024 5

Fig. 4: The images from a to f show the robot making three jumps in a row. Each jump gets progressively longer, with the first jump (green)
being 0.15 meters, the second (blue) 0.30 meters, and the third (red) 0.45 meters. The yellow circles indicate where the robot aims to land
for each jump. Throughout this sequence, the robot is controlled by the feedback NN.

variable nc represents the number of feet in contact with the
ground, I is the rotational inertia tensor, and ω is the angular
velocity of the robot’s body.

When the robot is airborne, represented by the condition k ∈
(Ns, Ns+Nf], the dynamics simplify considerably due to the
absence of the GRF (Fi = 0). This simplification affects both
linear and rotational dynamics, as described in the equations
above.

The TO algorithm includes several critical constraints that
ensure the stability and feasibility of the robot’s jump. One
such constraint is (3i), which establishes a specific set, denoted
as S, for the GRF. A GRF Fk within this set implies a
symmetric distribution of forces across the robot’s legs, as
defined by the following relations:

FFR
k,z = FFL

k,z ,

FFR
k,y = −FFL

k,y ,

FRR
k,y = −FRL

k,y ,

where FR, FL, RR, and RL refer to the Front-Right,
Front-Left, Rear-Right, and Rear-Left legs, respectively. This
symmetric configuration of GRFs is crucial for ensuring a
straight trajectory during the jump, effectively mitigating any
lateral (y-axis) or rotational (yaw) deviations.

Further contributing to the algorithm’s robustness is the
constraint (3j), inspired by [8], which enforces Contact Com-
plementary Constraints. These constraints are crucial for pre-
venting slippage and enhancing the convergence of the TO
algorithm. They are represented as follows:

rz,k ≥ 0,

Fk,z ≥ 0,

Fk,z · rk,z ≤ ϵ,
Fk,z · (rk+1 − rk) = 0.

The inequality (3k), using the foot jacobian J and the
maximum torque produced by each motor τmax, limits the max-
imum GRF found by the TO, and to conclude, the compound
inequalities (3l) and (3m) implement a friction cone constraint
where µ is the friction coefficient between the feet and the
ground.

C. Impedance Controller for Soft Landing

The second major challenge addressed in this work is the
achievement of soft landings. A flexible solution, adaptable
across various legged robotic platforms, encounters signif-
icant obstacles, particularly when limitations are imposed
on auxiliary equipment. Our approach seeks to develop an
effective solution that operates independently of additional
sensors such as force sensors or vision systems. The absence of
these tools necessitates a focus on enhanced control strategies.
Consequently, we have opted to explore the development of
an advanced Impedance Controller.

Impedance controllers, first introduced by Hogan in 1984
[48], are widely used in robotics for compliance, especially in
human-interactive applications [49][50], and for reducing mo-
tor pick effort [51]. The key challenge with these controllers
is the task-specific adjustment of impedance gains (stiffness
K and damping D), where fixed gains are often inadequate.
Current methods for variable impedance planning, relying on
advanced force/torque sensors, are based on inertia shaping,
which requires precise sensing [49]. This reliance limits their
adaptability in various applications.

Addressing this challenge, Angelini et al. [52], and subse-
quently, Pollayil [9], introduced an innovative algorithm for
autonomously planning impedance gains, stiffness, and damp-
ing in a Cartesian impedance controller. This approach, aimed
at mitigating impact perturbations while maintaining tracking
performance, has been successfully applied in quadrupeds for

MASTER’S THESIS - MSC ROBOTICS - FEBRUARY 2024 6

compliant locomotion and appears promising for achieving
soft landings post-jump.

In practice, this translates to deactivating the MPC upon
landing detection and transitioning to the impedance con-
troller, as conceptualized by Angelini and Pollayil. The main
goal of their algorithm is to minimize accelerations while also
keeping tracking errors within an acceptable range. This is
especially important during the landing phase, where achieving
a compliant, or soft, landing is more crucial than maintaining
exact tracking. The control scheme after this modification can
be visualized in Fig 5. More information about this variable
impedance controller (VIC) can be found in the Appendix B
and the works of Angelini and Pollayil.

The pseudo-code block (1) illustrates the overall
logic for the robot’s controller. In the algorithm
S = {lki,j , uki,j , ldi,j , udi,j , lx̃0i

, ux̃0i
, l ˙̃x0i

, u ˙̃x0i
, bi,Λ}.

Look into Appendix B for more details about each element
of S.

Algorithm 1 Control Algorithm for Soft Landing

Require: S, Td,X+

Ensure: τtotal
1: repeat
2: if ¬Landed then
3: τmc ← SolveMPC(Td,X+)
4: else
5: (Kn, Dn)← SolveOptimization(S)
6: if StabilityPassivityCheck(S,Kn, Dn) then
7: (Kfinal, Dfinal)← FinalGains(Kn, Dn)
8: else
9: (K∗

n, D
∗
n)← EnforceStability(S,Kn, Dn)

10: (Kfinal, Dfinal)← FinalGains(K∗
n, D

∗
n)

11: end if
12: Wcom ← SolveVIC(Td,X+)
13: τmc ← MapComTorquesToLegs(Wcom)
14: end if
15: τPD ← SolvePD(Td,X+)
16: τnc

← SolveContactController(X+)
17: τtotal ← Sum(τmc, τPD, τnc)
18: until StoppingCondition

Whereas Td includes the desired CoM trajectories, desired
joint positions qd, and velocities q̇d. The algorithm’s output,
τtotal, is the aggregated control torque sent to the robot. Each
iteration of the algorithm comprises the following steps:

1) Calculate the Main Controller joint torques, τmc, the
MPC if the robot has not yet landed.

2) Upon landing, compute the damping Dn and stiffness
Kn gains using Equation (18).

3) Validate the gains against stability criteria of inequality
(21); if passed, assign Dn and Kn as the final gains,
Dfinal and Kfinal.

4) In case of stability failure, assign to Dfinal the right-
hand side of Equation (21) plus a small increment, and
Kfinal can be recalculated using Equation (20).

5) Solve the impedance control problem to determine
Wcom ∈ R6, the wrench at the center of mass, as per

Fig. 5: This figure presents the overall framework obtained after
improving the TO algorithm and introducing a variable impedance
controller (VIC). From the graph, we see that the planner commu-
nicates the desired trajectories to both the MPC and the VIC. They
both produced a control action as output but the algorithm considers
only one of the two solutions, based on the state of the robot that can
be Landed or ¬Landed, we call the resultant control action τmc,
where mc stand for main controller.

the following equation:

Wcom = Kfinalx̃+Dfinal
˙̃x. (7)

6) The wrenches Wcom computed for the CoM cannot be
directly applied as control actions to the robot. Instead,
they need to be translated from wrenches at the CoM
level to joint torque actions τmc ∈ R12. Before this
conversion, the feasibility of Wcom must be ensured.
This is achieved by solving a Quadratic Programming
(QP) optimization problem aimed at minimizing the
deviation of the resultant wrench W from Wcom, subject
to several constraints:

argmin
Fk

∥W −Wcom∥2Q, (8a)

s.t. W = [fx, fy, fz, τx, τy, τz], (8b)
fx = Fk,1 + Fk,4 + Fk,7 + Fk,10, (8c)

MASTER’S THESIS - MSC ROBOTICS - FEBRUARY 2024 7

fy = Fk,2 + Fk,5 + Fk,8 + Fk,11, (8d)
fz = Fk,3 + Fk,6 + Fk,9 + Fk,12, (8e)τxτy
τz

 =

4∑
i=1

Fk,3i−2

Fk,3i−1

Fk,3i

×
r̂3i−2

r̂3i−1

r̂3i

 , (8f)

− µFz ≤ Fx ≤ µFz, (8g)
− µFz ≤ Fy ≤ µFz, (8h)
fz ≥ 0, (8i)

|JTFk| ≤ τmax. (8j)

Here, Fk ∈ R12 denotes the GRFs to be applied at the
robot’s feet. Specifically, the first three elements of Fk

are the x, y, z components of the GRF on the FR foot,
and similar for the other feet. The equations (8c), (8d),
and (8e) sum up the GRFs in x, y, and z directions,
respectively. Constraint (8f) defines the torques τx, τy ,
and τz around the CoM, caused by the GRFs on the
feet, where [r̂3i−2, r̂3i−1, r̂3i]

T represent the x, y, and z
Cartesian distances between the ith foot position and the
CoM.
Constraints (8g), (8h), and (8i) represent the friction
cone and non-negativity of GRFs in the z direction.
Constraint (8j) ensures that the torques remain within
the mechanical limits of the robot.

7) The optimized solution Fk from the QP problem is then
converted to joint torques τmc using the foot Jacobian:

τmc = JTFk. (9)

8) Once τmc is computed, the PD control action is retrieved
using the equation:

τPD = P (q − qo) +D(q̇ − q̇o). (10)

Here, P and D are the proportional and derivative
gains, respectively. The values qo and q̇o are references
manually chosen to keep the robot in a standard config-
uration. It is important to note that τPD is modulated
to reduce its effect during the initial phase of landing.
This modulation is designed to prevent interference with
the compliance level established by the VIC during the
most critical moment of landing, specifically in the first
few milliseconds.

9) For each foot not in contact with the ground, an addi-
tional vertical force, Fpush, is applied. This is calculated
to push the leg downwards, generating the contact torque
τnc

:

τnc
= JT

 0
0

Fpush

 .
10) The final control action τtotal for the current iteration

is obtained by summing τmc, τPD, and τnc
. This aggre-

gated torque is then used to control the robot.

D. Supervised Learning Algorithm Structure

In this paper’s Introduction, we highlighted the imperative
of executing all processes on-the-fly, specifically to avoid

delays caused by trajectory optimization solvers. This is cru-
cial for deploying responsive quadruped robots in real-world
environments. Achieving on-the-fly results using model-based
solutions often requires renouncing accuracy, but this would
not satisfy the research goal of the work. The solution we
found exploits the concept of behavioral cloning (BC). This
methodology, as a component of imitation learning, serves as a
straightforward method to imitate expert behavior by directly
learning a mapping from observations to actions based on
expert demonstrations [53].

Leveraging the existing model-based framework (refer to
Fig. 5), which had already demonstrated desirable outcomes,
we generated a synthetic dataset to train our neural network.

Following the methodology of Kurtz et al. [37], we
developed two distinct neural network architectures, named
Feedforward NN and Feedback NN.

Feedforward NN: The core concept of the Feedforward
approach involves a single pre-jump prediction by the neural
network, forecasting all necessary jump parameters. The input
is a 35-element vector representing the robot’s initial state:

XFF = [z0, ϕ0, θ0, ψ0, ẋ0, ẏ0, ż0, ω̇x,0, ω̇y,0, ω̇z,0, q0, q̇0, d].

Here, FF denotes ”feedforward”.
Conversely, the network’s output comprises five predicted

trajectories:
OFF = [xp, zp, τ p,qp, q̇p] ,

with p indicating predictions. These bolded terms represent the
trajectories’ evolution during the jump, rather than instanta-
neous values. The first two trajectories, i.e. xp and zp, belongs
to R150×1 and the remaining to R150×12. The total output size,
combining these elements, is therefore 5700.

Before applying these predictions to the robot, it is essen-
tial to interpolate them to synchronize with the controller’s
frequency. This interpolation ensures that each trajectory, now
transformed from its original vector space, aligns seamlessly
with the real-time operational tempo of the robot’s control
system.

In OFF , the first two elements, xp and zp, serve primarily
to assess the predicted jump’s quality. Smooth trajectories in
these dimensions suggest a higher likelihood of a successful
jump. This evaluation is especially useful in real robot tests,
as it enables operators to halt a jump based on the instability
of these graphs. Meanwhile, τ p replaces τmc in Algorithm
(1), and qp and q̇p facilitate the computation of τPD as per
equation (10). The Feedforward NN’s architecture is depicted
in Fig. 6.

Feedback NN: The second architecture we designed is
the Feedback NN, which more closely resembles a traditional
feedback control system. In this model, the neural network
computes torque actions at each iteration, based on the current
state of the robot. The input to this network is a 36-element
vector, detailed as follows:

XFB = [z, ϕ, θ, ψ, ẋ, ẏ, ż, ω̇x, ω̇y, ω̇z, q, q̇, d, t]. (11)

Here, FB signifies ’feedback’, and t represents the elapsed
time since the start of the motion.

MASTER’S THESIS - MSC ROBOTICS - FEBRUARY 2024 8

Fig. 6: Control scheme using a Feedforward NN. Note that the NN
outputs belong to R150×12 and cannot be directly summed with
feedback loop quantities. Instead, the vectors τ p,qp, and q̇p are
interpolated to match the control loop frequency, with corresponding
elements selected at each iteration.

The output of this network is defined in the vector space
R12:

OFB = τp,

where τp represents the predicted torque, which can be directly
applied as a control action to the robot, as depicted in Figure
7.

Fig. 7: A simplified representation of the Feedback NN’s operational
principle.

The inherent design of each network type confers dis-
tinct operational characteristics. The Feedback NN excels
in dynamic adaptability; its embedded feedback mechanism
enables robust control even under mid-jump disturbances.
Furthermore, the Feedback NN is characterized by its limited
output, consisting of merely 12 distinct functions to learn. This
limited output scope enhances the precision and reliability of
its learning process.

In contrast, the Feedforward NN is challenged by its con-
siderably larger output range. This 5700-dimensional output
inherently increases the likelihood of inaccuracies in learn-
ing individual functions. The possibility of even a single
imprecise output can potentially lead to operational failures.
Acknowledging this challenge, it’s important to note that the
Feedforward NN is also defined by its trajectory determinism;

once a jumping trajectory is initiated, it cannot be altered,
which limits the system’s adaptability to in-flight disturbances
or environmental changes.

However, this very limitation of the Feedforward NN is
somewhat mitigated by its reduced reliance on extensive data.
Unlike the Feedback NN, which requires a comprehensive
learning base encompassing a wide array of potential in-jump
states, the Feedforward NN focuses on a more restricted set
of initial states. The structure of this network not only eases
the data requirement but also enhances the interpretability of
the network. Specifically, the trajectories generated by the
Feedforward NN can be scrutinized for critical issues, such
as excessive joint torques or self-collision risks, before their
execution.

In the context of supervised learning, especially for
neural network architectures, the quality and volume of
training data are paramount. For this project, we employed
the pybullet simulation engine to generate a diverse dataset,
comprising approximately 11, 000 simulated jumps under
varying conditions. These jumps were executed by the robot
using the framework outlined in Fig. 5. Specifically, the robot
was programmed to jump distances ranging from 0.10m
to 0.55m, in increments of 0.01m. This approach ensured
that each discrete distance was represented equally in the
dataset, providing a comprehensive basis for training the
algorithm. The selection of the jumping range warrants an
explanation. The minimum jump length of 0.1m was chosen
as the threshold below which a forward jump would be
meaningless. Conversely, the maximum distance of 0.55m
was dictated by the limitations of the SRBM TO’s design,
which is optimized for shorter jumps. As this research focuses
not on long-distance jumping, extending beyond this range
was deemed beyond the study’s scope.

A critical aspect of data collection is ensuring a thorough
exploration of the robot’s state space. To this end, we intro-
duced three types of noise into the simulation:

• Gaussian noise on the initial configuration (X+
0), facil-

itating a broad range of starting positions akin to those
the real robot might encounter.

• Gaussian noise on the state readings (X+), to explore the
neighborhood of the trajectory and promote resilience to
measurement errors.

• An external disturbance force applied to the robot’s CoM,
designed to test the robot’s trajectory stability and balance
recovery capabilities.

The disturbance force, equating to 10% of the robot’s mass,
was applied with a 30% probability at each control iteration,
with its direction randomized. This methodology not only
broadened the trajectory data domain but also contributed to
the robustness of the resulting neural network by including
scenarios where the robot must adjust to unexpected forces.

Out of the 11, 000 jump simulations, one-third incorporated
all three types of noise. The remaining two-thirds included
only the first two noise types, thus ensuring a balanced and
comprehensive dataset for the training of our behavior cloning
algorithm.

MASTER’S THESIS - MSC ROBOTICS - FEBRUARY 2024 9

V. EXPERIMENTAL VALIDATION

In this section, we present the empirical assessment of the
methods proposed in the earlier sections of this thesis.

The goal is to validate the theoretical models and simula-
tions through concrete data, bridging the gap between theory
and application in robotic systems.

A. SRBM vs. SLIP Trajectory Optimization Algorithm

In the methodology section, we introduced the SRBM
trajectory optimization problem to generate more feasible tra-
jectories for robotic jumps. A solid method to assess trajectory
feasibility is to evaluate the tracking error, representing the
discrepancy between the desired and actual trajectories. Under
a constant controller setting, a reduction in this error indicates
a more realistic and achievable trajectory for the robot.

To quantify the tracking error, we employed the mean square
error (MSE), calculated as:

MSE =
1

N

N∑
i=1

(Pi − P TO
i)2. (12)

Here, Pi and P TO
i denote the position values at point i of the

actual and the predicted trajectories, respectively. Accordingly
to the model used in the trajectory optimization, P TO

i could
become P SLIP

i or P SRBM
i . The robot was tasked to jump

distances ranging from 0.1m to 0.55m in increments of
0.05m. Each distance was attempted 20 times (starting each
time from a slightly different initial configuration) to calculate
the mean and standard deviation of the results.

As Figure 8 demonstrates, the SRBM TO consistently
outperforms SLIP TO across various metrics, aligning with
our hypothesis that a refined model yields improved movement
predictions.

B. Soft Landing - MPC vs. VIC

The primary focus of the second contribution in this work
is addressing the challenge of achieving a soft landing in
quadruped robot jumps. As detailed in the methodology sec-
tion, we enhance the existing framework by replacing the MPC
with a Variable Impedance Controller (VIC) at the onset of the
landing phase. A successful soft landing is distinguished by
two key features: minimal stress exerted on the robot’s motors
and a compliant response in the robot’s body and legs.

To perform a comparative analysis between the MPC and
the VIC, we employed multiple metrics, each examining
the robot’s performance in jumping distances ranging from
0.1m to 0.55m, increasing in 0.05m increments. Following
the approach adopted to create Fig. 8, for each distance, the
robot completed 20 trials to facilitate the calculation of mean
values and standard deviations. When evaluating the MPC,
we adhered to the scheme outlined in Figure 5, while keeping
the VIC’s switch perpetually open. Conversely, in the VIC
assessment, we utilized the same framework but allowed for
the controller’s normal operation, activating the switch when
the robot’s four feet made contact with the ground. As a
reference, we conducted the same experiments on the starting
framework of Figure 3, called ”baseline” in the graphs.

For the evaluation of motor effort, we devised two metrics:
rotational effort and peak torque. The rotational effort is
defined as:

Rotational Effort =
12∑
i=1

∫
|τi(t)| dt. (13)

This metric quantifies the cumulative effort exerted by all
motors during landing, with lower rotational effort values
indicating a softer landing. As depicted in Figure 9, the VIC
generally demonstrates reduced rotational effort across various
jump distances, except the 0.50m distance.

While the rotational effort provides insights into the overall
load on the motors, we also focus on the peak effort required
by these motors. High rotational effort might accelerate wear
in motor components, whereas peak effort is closely associated
with the motors’ capacity to handle sudden forces.

The peak effort is defined as:

Pick Effort = max
i

√√√√ 12∑
j=1

τ2ij

 . (14)

Here, i represents the time instance, and j denotes the motor.
This equation calculates the norm of the torques at each time
instant and then identifies the maximum value across the time
instances.

From the graph in Figure 10 we can see how the VIC
outperforms the MPC.

The rotational effort and peak effort effectively gauge motor
stress; however, they do not fully capture the compliance
aspect of a soft landing. To assess this, we examined the accel-
eration of the center of mass during landing. A compliant robot
is characterized by its ability to adapt to external forces, which
can be quantitatively inferred from the CoM acceleration.
Continuing with our experimental methodology, we collected
data summarized in Figure 11. This figure includes three
graphs showing the maximum CoM acceleration along the x,
y, and z axes. The VIC consistently outperforms the MPC
in reducing z axis acceleration across all jumping distances.
For the x axis, a similar trend is observed except at a 0.55m
jumping distance. The y axis results are less uniform, but the
VIC generally surpasses the MPC in performance.

C. Feedback vs. Feedforward NN

In the methodology section, we introduced two neural
network architectures: Feedback and Feedforward. Extensive
testing led to the optimal Feedback NN configuration of two
1024-neuron layers with ReLU activation function, while the
Feedforward NN performed best with two 128-neuron layers
using eLU activation function.

Comparative analysis showed the Feedback NN as superior
for our task. The landing accuracy of the two solutions was
tested by performing 100 jumps of random lengths to compute
the mean and standard deviation of the landing error for x
and z position of the CoM. The results are reported in Table
II inside Appendix C. At the same time, the Feedforward NN

MASTER’S THESIS - MSC ROBOTICS - FEBRUARY 2024 10

Fig. 8: The graph illustrates the MSE comparison between SRBM TO (in green) and SLIP TO (in red), focusing on the x and z positions
of the Center of Mass (CoM). The SRBM TO consistently exhibits lower MSE values and standard deviations, indicating more reliable
performance, except the x-MSE at 0.35m. The y-MSE is not reported, as this study concentrates on forward jumps.

Fig. 9: Comparative analysis of rotational effort between the MPC
(in red) and the VIC (in green), showing the VIC’s overall reduced
demand on the robot’s 12 motors. In black, as a reference, the data
related to the ”starting framework” of subsection IV-A.

showed worse performances in cloning the behavior of the
model-based controller as shown by the plots in Appendix C.

Due to the demonstrated superiority of the Feedback NN,
the subsequent section will analyze in detail the performance

Fig. 10: Comparative analysis of peak effort between the MPC
(in red) and the VIC (in green), demonstrating the VIC’s lower
instantaneous torque demands on the robot. In black, as a reference,
the data related to the ”starting framework” of subsection IV-A.

of this architecture.

MASTER’S THESIS - MSC ROBOTICS - FEBRUARY 2024 11

Fig. 11: Three graphs depicting CoM accelerations during landing: in green, the VIC controller’s performance, and in red, the MPC. Lower
acceleration values indicate higher compliance. In black, as a reference, the data related to the ”starting framework” of subsection IV-A.

D. Feedback NN Performance
In the previous paragraphs, we reported the performances

of the new TO algorithm and landing controller. But, as
mentioned in the methodology section, the idea of this work
is to use the model-based solution as the source to create
a synthetic dataset on which we train a neural network.
This method’s advantage is to eliminate the computational
overhead of an accurate trajectory optimization algorithm
while maintaining the performance. The following graphs
will be used to support this statement.

The first step we take is plotting again the metrics of
Subsection V-B adding to the graphs the data obtained while
controlling the robot with the Feedback NN (to keep the
graph readable we removed the baseline data).

Fig. 12: Comparative analysis of rotational effort between the MPC
(in red), the VIC (in blue), and the Feedback NN (in green), showing
the NN’s overall reduced demand on the robot’s 12 motors similarly
to the VIC.

Looking at Figures 12, 13, and 14 we can see that the
NN produces results that map the behavior of the VIC, with

Fig. 13: Comparative analysis of peak effort between the MPC
(in red), the VIC (in blue), and the Feedback NN (in green),
demonstrating the NN’s ability to preserve the qualities of the VIC.

similar values.

The second evaluation to conduct is related to the solving
time of the TO plus MPC/VIC solution versus the Feedback
NN. To do so we calculated the time to solve the trajectory
optimization and then the time to solve the MPC/VIC at each
iteration summing these quantities together. For the neural
network, we summed up all the prediction times. We repeated
this process ten times to extract the mean and standard
deviation at each jump length. The results are reported in
Figure 15, showing a significant difference in favor of the
model-free method. Note that in the results of Figure 15, the
TO is implemented in C++ using Opti framework for CasADi,
the MPC is developed in C++, and the NN in Python.

It is imperative to compare also the solving time of the MPC
only with the prediction time of the NN. This comparison is
crucial as the control frequency of the real robot is contingent

MASTER’S THESIS - MSC ROBOTICS - FEBRUARY 2024 12

Fig. 14: Three graphs depicting CoM accelerations during landing: in blue, the VIC controller’s performance, in red the MPC, and in green
the Feedback NN. Lower acceleration values indicate higher compliance. The graph shows how the NN can reproduce the performances of
the model-based solution.

Fig. 15: The bar chart displays a comparison between model-based
and model-free approaches to solving times across different jump
distances. Red bars show trajectory optimization times, and blue bars
represent the main controller time, which includes MPC and then VIC
during landing phases. Small green bars adjacent to these indicate the
Feedback NN’s cumulative prediction time in the behavioral cloning
approach.

on these values. To conduct this analysis we implemented also
the Feedback NN using C++. Table I compares mean, standard
deviation, and maximum solving/prediction time computed
over 100 random jumps, revealing that the NN substantially
outperforms the MPC by at least an order of magnitude in
each metric.

Metrics MPC Feedback NN
Mean 951 µs 78 µs

Std 139 µs 3 µs

Max 5325 µs 389 µs

TABLE I: MPC vs. Feedback NN: The NN outperforms MPC by
over ten times in all metrics.

This superiority allows for a higher control frequency when
implemented on the robot.

The alleviation of the computational demands associated
with trajectory optimization enables the quadruped robot
to execute continuous jumps without the necessity of

pre-computation. This capability is of significant utility in
dynamic environments where the distances of subsequent
jumps cannot be predetermined. The efficacy of this approach
has been validated through simulations, as illustrated in
Figure 4.

Lastly, it is crucial to address the success rate of the
Feedback NN. While previous graphs have showcased
the network’s performance under successful conditions,
it is equally important to assess its reliability. Figure 16
presents a heatmap illustrating that the NN’s success rate is
approximately 97.4%. In the picture the x-axis represents the
jump length, the y-axis denotes attempts per length, and the
color bar reflects the landing error based on the robot’s final
x position of the CoM. Notably, the robot exhibits optimal
performance in the middle of the jumping range, where
landing errors are minimal.

Fig. 16: The heatmap depicting the jumping performances of the
Feedback NN. The graph illustrates the relationship between the jump
length, the number of attempts per length, and the landing error
calculated at the final x position of the robot’s CoM.

MASTER’S THESIS - MSC ROBOTICS - FEBRUARY 2024 13

E. Hardware Results

Prior sections of this research utilized simulations to explore
the efficacy of behavioral cloning in facilitating robotic jumps.
A pivotal aspect of this study involves validating these findings
on actual hardware. Among the neural network architectures
examined in Section IV-D, the Feedback NN was found
superior in performance. Conversely, the Feedforward NN,
while not as effective in simulations, offers essential benefits
for hardware applications, particularly in the interpretability of
its outputs. This feature is vital for the pre-assessment of joint
movements and center of mass (CoM) trajectories, crucial for
ensuring safety during operations.

Given the essential focus on safety and the upcoming
paper submission deadline, the study proceeded with the
Feedforward NN for empirical validation of the behavioral
cloning approach, despite its comparative under-performance
in simulations relative to the Feedback NN. To adapt the
Feedforward NN for hardware execution, two modifications
were implemented:

• Introduction of a low-pass filter on the predicted torques
to mitigate jerky movements.

• Network weight refinement using an additional dataset
comprising 3000 jumps, aimed at addressing discrepan-
cies between simulation and physical execution.

The necessity for fine-tuning arose from the realization
that the robot’s initial stance in the synthetic dataset differed
markedly from its actual starting position, leading to unsuc-
cessful jump executions. To rectify this, 25 actual starting
positions were recorded and used to synthesize a new dataset
for training. Besides this difference, the refinement dataset has
been collected following the approach described in section
IV-D. Following these adjustments, the robot was tested with
jumps ranging between 0.1m and 0.5m, as depicted in Figure
1 and 17.

VI. DISCUSSION & CONCLUSION

This work shows the potential of merging model-based
with model-free techniques. Often these two techniques show
complementary strong points, and combining them is a good
way to exploit the best of both worlds. In particular, we started
improving the trajectory optimization algorithm, introducing
the single rigid body model in the dynamics equations. We
proved how using a more accurate model in the TO leads to
more feasible trajectories, hence lower tracking errors. This
improvement comes at the expense of a longer computational
time. Building on this improved framework, we introduced an
innovative variable impedance controller during the landing
phase, to automatically tune the stiffness and damping of
the robot and achieve a compliant solution without allowing
big tracking errors. We then proved that a VIC outperforms
a traditional MPC when it comes to soft landing, not only
reducing the accelerations on the CoM but also reducing the
stress on the motors.

Once proved the superiority of the model-based solution
compared to the starting framework, we solved the computa-
tional burden generated by the TO by training a behavioral
cloning algorithm. This algorithm aimed to generate a neural

network capable of doing the job of the TO and the controller
at the same time. We structured it in the form of a Feedback
NN and a Feedforward NN. To obtain reliable results, we
collected a synthetic dataset of 11, 000 jumps ranging from
0.10m to 0.55m with several types of noise, which allowed
us to explore the state space as much as possible and obtain a
NN able to generalize when faced with unforeseen scenarios.
The Feedback NN, featuring two hidden layers of 1024 neu-
rons each, demonstrated superior performance in simulations,
achieving a remarkable average landing precision of 0.02m
and a success rate of 97.4%, effectively mimicking the VIC’s
soft landing capabilities.

We then proceeded to validate our approach on hardware,
but this time using the Feedforward NN for safety and timing
reasons. The real-world tests proved the feasibility of the
approach showing good sim-to-real transferability.

The results of the Feedback NN demonstrate how it is
possible to have advanced results by exploiting behavioral
cloning techniques, usually limited to complex model-
based solutions [10][11][12], without renouncing on-the-fly
performances. When compared with reinforcement learning
[23][24][25][26][27], relying on a BC inspired by a model-
based solution is a straightforward way to define one’s desired
goal, rather than crafting a complex reward function.

Looking at the main limitation of this work, we recommend
extending this research to include hardware implementation
of the Feedback NN and direct comparison with model-based
results. Another possible shortcoming of this study lies in the
jumping range achievable, an interesting follow-up paper may
be to investigate a reformulation of the trajectory optimization
to extend the maximum jumping distance.

Since the literature, up to the author’s knowledge, is
very scarce about BC solutions to jump, future compelling
works may include applying similar techniques to obtain
omnidirectional and obstacle-aware jumps. Some effort
could go into exploring network architectures and dataset
compositions to achieve a nearly perfect success rate.
Another possibility is improving the VIC, in particular
trying to implement the algorithm without the assumption
of a diagonally dominant inertia matrix. Avoiding this
simplification allows us to find the values of the impedance
controller that updates with more accuracy based on the
configuration of the robot. In summary, our study marks a
notable advancement in robotic locomotion, highlighting the
benefits of merging model-based and model-free strategies
using behavioral cloning. This paper introduces a versatile
method applicable across various locomotion tasks, laying a
foundation for broad applications in the field.

MASTER’S THESIS - MSC ROBOTICS - FEBRUARY 2024 14

Fig. 17: Each row of this picture illustrates a jump of a different length. For each one four steps are reported: the starting position, the
highest point of the trajectory, the lowest point of the landing, and the final position. In each picture, the red line indicates the initial position
of the CoM, and the green one is the desired end position.

REFERENCES

[1] V. Hugel and P. Blazevic, “Towards efficient implemen-
tation of quadruped gaits with duty factor of 0.75,”
in Proceedings 1999 IEEE International Conference
on Robotics and Automation (Cat. No.99CH36288C),
vol. 3, Detroit, MI, USA: IEEE, 1999, pp. 2360–2365.

[2] J. Z. Kolter, M. P. Rodgers, and A. Y. Ng, “A con-
trol architecture for quadruped locomotion over rough
terrain,” in 2008 IEEE International Conference on
Robotics and Automation, Pasadena, CA, USA: IEEE,
May 2008, pp. 811–818.

[3] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, and
S. Schaal, “Fast, robust quadruped locomotion over
challenging terrain,” in 2010 IEEE International Con-
ference on Robotics and Automation, Anchorage, AK:
IEEE, May 2010, pp. 2665–2670.

[4] G. K. K. and P. M. Pathak, “Dynamic modelling & sim-
ulation of a four legged jumping robot with compliant
legs,” Robotics and Autonomous Systems, vol. 61, no. 3,
pp. 221–228, Mar. 2013.

[5] C. D. Bellicoso, F. Jenelten, C. Gehring, and M. Hutter,
“Dynamic locomotion through online nonlinear motion
optimization for quadrupedal robots,” IEEE Robotics
and Automation Letters, vol. 3, no. 3, pp. 2261–2268,
Jul. 2018.

[6] H.-W. Park, P. M. Wensing, and S. Kim, “Online
planning for autonomous running jumps over obstacles
in high-speed quadrupeds,” Park, 2015.

[7] A. Gasparetto, P. Boscariol, A. Lanzutti, and R. Vidoni,
“Path planning and trajectory planning algorithms: A
general overview,” in Motion and Operation Planning

of Robotic Systems: Background and Practical Ap-
proaches, ser. Mechanisms and Machine Science, G.
Carbone and F. Gomez-Bravo, Eds., Cham: Springer
International Publishing, 2015, pp. 3–27.

[8] S. H. Jeon, S. Kim, and D. Kim, “Online optimal
landing control of the MIT mini cheetah,” in 2022
International Conference on Robotics and Automation
(ICRA), May 2022, pp. 178–184.

[9] M. J. Pollayil, F. Angelini, G. Xin, et al., “Choosing
stiffness and damping for optimal impedance plan-
ning,” IEEE Transactions on Robotics, vol. 39, no. 2,
pp. 1281–1300, Apr. 2023.

[10] S. Gilroy, D. Lau, L. Yang, et al., “Autonomous navi-
gation for quadrupedal robots with optimized jumping
through constrained obstacles,” in 2021 IEEE 17th
International Conference on Automation Science and
Engineering (CASE), Lyon, France: IEEE, Aug. 23,
2021, pp. 2132–2139.

[11] C. Nguyen, L. Bao, and Q. Nguyen, Continuous jump-
ing for legged robots on stepping stones via trajectory
optimization and model predictive control, Sep. 16,
2022.

[12] M. Chignoli, S. Morozov, and S. Kim, “Rapid and re-
liable quadruped motion planning with omnidirectional
jumping,” in 2022 International Conference on Robotics
and Automation (ICRA), Philadelphia, PA, USA: IEEE,
May 23, 2022, pp. 6621–6627.

[13] Q. Nguyen, M. J. Powell, B. Katz, J. D. Carlo, and
S. Kim, “Optimized jumping on the MIT cheetah 3
robot,” in 2019 International Conference on Robotics

MASTER’S THESIS - MSC ROBOTICS - FEBRUARY 2024 15

and Automation (ICRA), Montreal, QC, Canada: IEEE,
May 2019, pp. 7448–7454.

[14] C. Nguyen and Q. Nguyen, “Contact-timing and trajec-
tory optimization for 3d jumping on quadruped robots,”
in 2022 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), Kyoto, Japan: IEEE,
Oct. 23, 2022, pp. 11 994–11 999.

[15] M. Chignoli and S. Kim, “Online trajectory optimiza-
tion for dynamic aerial motions of a quadruped robot,”
in 2021 IEEE International Conference on Robotics and
Automation (ICRA), Xi’an, China: IEEE, May 30, 2021,
pp. 7693–7699.

[16] C. Mastalli, W. Merkt, G. Xin, et al., Agile maneuvers
in legged robots: A predictive control approach, Jul. 18,
2022.

[17] S. H. Jeon, S. Kim, and D. Kim, Real-time optimal
landing control of the MIT mini cheetah, Oct. 6, 2021.

[18] N. Heess, D. TB, S. Sriram, et al., Emergence of
locomotion behaviours in rich environments, Jul. 10,
2017.

[19] J. Hwangbo, J. Lee, A. Dosovitskiy, et al., “Learning
agile and dynamic motor skills for legged robots,”
Science Robotics, vol. 4, no. 26, eaau5872, Jan. 16,
2019.

[20] V. Tsounis, M. Alge, J. Lee, F. Farshidian, and M.
Hutter, “DeepGait: Planning and control of quadrupedal
gaits using deep reinforcement learning,” IEEE Robotics
and Automation Letters, vol. 5, no. 2, pp. 3699–3706,
Apr. 2020.

[21] A. Kumar, Z. Fu, D. Pathak, and J. Malik, RMA: Rapid
motor adaptation for legged robots, Jul. 8, 2021.

[22] N. Rudin, H. Kolvenbach, V. Tsounis, and M. Hutter,
“Cat-like jumping and landing of legged robots in
low gravity using deep reinforcement learning,” IEEE
Transactions on Robotics, vol. 38, no. 1, pp. 317–328,
Feb. 2022.

[23] M. Bogdanovic, M. Khadiv, and L. Righetti, “Model-
free reinforcement learning for robust locomotion using
demonstrations from trajectory optimization,” Frontiers
in Robotics and AI, vol. 9, 2022.

[24] Z. Li, X. B. Peng, P. Abbeel, S. Levine, G. Berseth,
and K. Sreenath, Robust and versatile bipedal jumping
control through reinforcement learning, May 31, 2023.

[25] X. Huang, Z. Li, Y. Xiang, et al., “Creating a dy-
namic quadrupedal robotic goalkeeper with reinforce-
ment learning,” in 2023 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), Detroit,
MI, USA: IEEE, Oct. 1, 2023, pp. 2715–2722.

[26] G. Bellegarda, C. Nguyen, and Q. Nguyen, Robust
quadruped jumping via deep reinforcement learning,
Aug. 11, 2023.

[27] J. Qi, H. Gao, H. Su, et al., “Reinforcement
learning-based stable jump control method for asteroid-
exploration quadruped robots,” Aerospace Science and
Technology, vol. 142, p. 108 689, Nov. 2023.

[28] S. Schaal, “Learning from demonstration,” in Advances
in Neural Information Processing Systems, vol. 9, MIT
Press, 1996.

[29] X. B. Peng, E. Coumans, T. Zhang, T.-W. Lee, J. Tan,
and S. Levine, “Learning agile robotic locomotion skills
by imitating animals,” 2020.

[30] Q. Yao, J. Wang, S. Yang, et al., “Imitation and
adaptation based on consistency: A quadruped robot
imitates animals from videos using deep reinforcement
learning,” in 2022 IEEE International Conference on
Robotics and Biomimetics (ROBIO), Jinghong, China:
IEEE, Dec. 5, 2022, pp. 1414–1419.

[31] X. B. Peng, P. Abbeel, S. Levine, and M. Van De
Panne, “DeepMimic: Example-guided deep reinforce-
ment learning of physics-based character skills,” ACM
Transactions on Graphics, vol. 37, no. 4, pp. 1–14,
Aug. 31, 2018.

[32] C. Li, M. Vlastelica, S. Blaes, J. Frey, F. Grimminger,
and G. Martius, “Learning agile skills via adversarial
imitation of rough partial demonstrations,” in Proceed-
ings of The 6th Conference on Robot Learning, PMLR,
Mar. 6, 2023, pp. 342–352.

[33] Y. Fuchioka, Z. Xie, and M. Van De Panne, “OPT-
mimic: Imitation of optimized trajectories for dynamic
quadruped behaviors,” in 2023 IEEE International Con-
ference on Robotics and Automation (ICRA), London,
United Kingdom: IEEE, May 29, 2023, pp. 5092–5098.

[34] D. A. Pomerleau, “Knowledge-based training of artifi-
cial neural networks for autonomous robot driving,” in
Robot Learning, J. H. Connell and S. Mahadevan, Eds.,
Boston, MA: Springer US, 1993, pp. 19–43.

[35] J. Choi, H. Kim, Y. Son, C.-W. Park, and J. H. Park,
“Robotic behavioral cloning through task building,”
in 2020 International Conference on Information and
Communication Technology Convergence (ICTC), Jeju,
Korea (South): IEEE, Oct. 21, 2020, pp. 1279–1281.

[36] Q. Wang, Z. He, J. Zou, H. Shi, and K.-S. Hwang,
“Behavior cloning and replay of humanoid robot via
a depth camera,” Mathematics, vol. 11, no. 3, p. 678,
Jan. 29, 2023.

[37] V. Kurtz, H. Li, P. M. Wensing, and H. Lin, “Mini
cheetah, the falling cat: A case study in machine
learning and trajectory optimization for robot acro-
batics,” in 2022 International Conference on Robotics
and Automation (ICRA), Philadelphia, PA, USA: IEEE,
May 23, 2022, pp. 4635–4641.

[38] Z. Hu, K. Wan, X. Gao, and Y. Zhai, “A dynamic
adjusting reward function method for deep reinforce-
ment learning with adjustable parameters,” Mathemat-
ical Problems in Engineering, vol. 2019, pp. 1–10,
Nov. 23, 2019.

[39] J. Zhang, M. Li, J. Cao, Y. Dou, and X. Xiong,
“Research on bionic jumping and soft landing of single
leg system in quadruped robot,” Journal of Bionic
Engineering, vol. 20, no. 5, pp. 2088–2107, Sep. 2023.

[40] J. Qi, H. Gao, H. Yu, M. Huo, W. Feng, and Z. Deng,
“Integrated attitude and landing control for quadruped
robots in asteroid landing mission scenarios using
reinforcement learning,” Acta Astronautica, vol. 204,
pp. 599–610, Mar. 2023.

MASTER’S THESIS - MSC ROBOTICS - FEBRUARY 2024 16

[41] J. Ding, V. Atanassov, E. Panichi, J. Kober, and C.
della Santina, Robust quadrupedal jumping with impact-
aware landing: Exploiting parallel elasticity, Dec. 10,
2023.

[42] A. Spröwitz, A. Tuleu, M. Vespignani, M. Ajallooeian,
E. Badri, and A. J. Ijspeert, “Towards dynamic trot
gait locomotion: Design, control, and experiments with
cheetah-cub, a compliant quadruped robot,” The Inter-
national Journal of Robotics Research, vol. 32, no. 8,
pp. 932–950, Jul. 2013.

[43] R. Sato, I. Miyamoto, K. Sato, A. Ming, and
M. Shimojo, “Development of robot legs inspired
by bi-articular muscle-tendon complex of cats,” in
2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Hamburg, Germany: IEEE,
Sep. 2015, pp. 1552–1557.

[44] L. Wang, F. Meng, H. Liu, et al., “Design and imple-
mentation of jumping robot with multi-springs based
on the coupling of polyarticular,” in 2018 IEEE In-
ternational Conference on Robotics and Biomimetics
(ROBIO), Kuala Lumpur, Malaysia: IEEE, Dec. 2018,
pp. 287–292.

[45] E. Kazama, R. Sato, I. Miyamoto, A. Ming, and M.
Shimojo, “Development of a small quadruped robot
with bi-articular muscle-tendon complex,” in 2015 IEEE
International Conference on Robotics and Biomimetics
(ROBIO), Zhuhai: IEEE, Dec. 2015, pp. 1059–1064.

[46] M. Ernst, H. Geyer, and R. Blickhan, “SPRING-
LEGGED LOCOMOTION ON UNEVEN GROUND:
A CONTROL APPROACH TO KEEP THE RUNNING
SPEED CONSTANT,” in Mobile Robotics, Istanbul,
Turkey: WORLD SCIENTIFIC, Aug. 2009, pp. 639–
644.

[47] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt,
and S. Kim, “Dynamic locomotion in the MIT chee-
tah 3 through convex model-predictive control,” in
2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Madrid: IEEE, Oct. 2018,
pp. 1–9.

[48] N. Hogan, “Impedance control: An approach to ma-
nipulation,” in 1984 American Control Conference, San
Diego, CA, USA: IEEE, Jul. 1984, pp. 304–313.

[49] A. Albu-Schaffer, C. Ott, U. Frese, and G. Hirzinger,
“Cartesian impedance control of redundant robots: Re-
cent results with the DLR-light-weight-arms,” in 2003
IEEE International Conference on Robotics and Au-
tomation (Cat. No.03CH37422), vol. 3, Taipei, Taiwan:
IEEE, 2003, pp. 3704–3709.

[50] F. Ficuciello, A. Romano, L. Villani, and B. Si-
ciliano, “Cartesian impedance control of redundant
manipulators for human-robot co-manipulation,” in
2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Chicago, IL, USA: IEEE, Sep.
2014, pp. 2120–2125.

[51] A. Ghorbanpour and H. Richter, “Energy-optimal
impedance control of cooperative robot manipulators,”
Journal of Dynamic Systems, Measurement, and Con-
trol, vol. 144, no. 12, p. 121 002, Dec. 1, 2022.

[52] F. Angelini, G. Xin, W. J. Wolfslag, et al., “Online
optimal impedance planning for legged robots,” in
2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Macau, China: IEEE, Nov.
2019, pp. 6028–6035.

[53] A. O. Ly and M. Akhloufi, “Learning to drive by imita-
tion: An overview of deep behavior cloning methods,”
IEEE Transactions on Intelligent Vehicles, vol. 6, no. 2,
pp. 195–209, Jun. 2021.

MASTER’S THESIS - MSC ROBOTICS - FEBRUARY 2024 17

APPENDIX A
TO OF THE STARTING FRAMEWORK

We express the problem formulation using the following set
of equations:

argmin
x,u,dt

Jcost, Cost Function (15a)

s.t. Kinematic constraints:
x(0) = x0, Initial condintions (15b)
ẋ(0) = 0, (15c)
x(N) = xf , Final condintions (15d)
ẋ(N) = 0, (15e)
xz(Ns − 1) = xz,takeoff, Takeoff condintions (15f)
0 ≤ dt ≤ dtmax, Step-size (15g)

Dynamics constraints:
∀k ∈ [1, 2, . . . , Ns +Nf] :

x(k + 1) = Taylor(·(k)), Discrete Dynamics (15h)
∀k ≤ Ns :

xx(k) ∈ conv[pfeet], Support Polygon (15i)

ẍ(k) =
Fs(x(k))

m
+ g + u, Stance Dynamics (15j)

uz +
Fs.z(x(k))

m
≥ 0, Gravity Constraint (15k)

∀k > Ns :

ẍ(k) = g, Flight Dynamics (15l)

the constraints (15b)(15c)(15d)(15e) distinctly define the
initial and final states of the system, where x ∈ R2 ∈ [x, z]
represents the state vector. The system operates under hybrid
dynamics: during the stance phase, the spring force (Fs ∈ R)
and control inputs (u ∈ R2×Ns , representing additional CoM
acceleration) are the primary dynamics, while in the flight
phase, the system follows a gravity-dominated parabolic trajec-
tory and becomes uncontrollable. The discretization step-sizes
for both stance and flight phases are contained within dt ∈
R2 = [dts, dtf]. The state position X(k+1) = Taylor(·(k)) is
approximated through a second-order Taylor expansion, using
the respective component of the step-size dt during stance
and flight phase, and the state acceleration (constraints (15j)
or (15l)) for the respective phase, i.e.:

x(k + 1) = x(k) + ẋ(k)dt+
1

2
ẍ(k)dt2.

Additionally, constraints (15j) and (15k) ensure that the max-
imum acceleration in the negative Z-direction during stance
does not exceed gravitational acceleration. Constraint (15f)
specifies a mandatory z-position at iteration Ns. Simultane-
ously, constraint (15i) guarantees that the x-component of the
CoM during stance remains within the support polygon defined
by the robot’s feet, assuming no movement of the feet during
this phase. See Figure 2 for a graphical representation of the
jump.

The cost function (15a) comprises components penalizing
control input and jerk during stance, rewarding vertical veloc-

ity at takeoff, and penalizing deviation from the takeoff height
during flight. These components are:

Jcost = Jstance + Jtakeoff + Jflight, (16a)

Jstance =

Ns∑
k=1

ωu∥u(k)∥2 + ωjerk∥
...
x (k)∥2, (16b)

Jtakeoff = −ωtoẋz(Ns − 1), (16c)

Jflight =

Ns+Nf∑
k=Ns

ωf∥xz(k)− xz,takeoff∥2. (16d)

APPENDIX B
VARIABLE IMPEDANCE CONTROLLER: IMPLEMENTATION

The foundation of the variable impedance controller (VIC)
is an optimization problem [9]:

argmin
D,K

h(D,K), (17)

s.t. ldi,j ≤ di,j ≤ udi,j ,

lki,j ≤ ki,j ≤ uki,j ,

s.t. max
x̃0, ˙̃x0,Fext

|x̃i(t)| ≤ bi ∀t ∈ [0,+∞),

s.t. lx̃0i
≤ x̃0i ≤ ux̃0i

,

l ˙̃x0i
≤ ˙̃x0i ≤ u ˙̃x0i

,

lFexti
≤ Fexti ≤ uFexti

,

Λ(q)¨̃x+D ˙̃x+Kx̃ = Fext.

This optimization seeks to find matrices D and K that
minimize the cost function h(D,K). The solution ensures
boundedness of the tracking error x̃ over time. Specifically, the
optimization constrains the peaks of each component x̃i(t) to
remain within predefined bounds bi, regardless of the duration.
This constraint holds under the assumption that external forces
Fext and initial conditions x̃0 and ˙̃x0 are within set boundaries.

In the optimization problem, x̃ denotes the tracking error
computed between the desired trajectory and X+

1:6. The ma-
trix Λ(q) ∈ R6×6 represents the positive-definite Cartesian
inertia and the vector Fext ∈ R6 encapsulates the external
force/torque acting on the robot’s CoM.

The elements of the damping matrix D and the stiffness
matrix K are denoted by di,j and ki,j , respectively. These
matrices are subject to bilateral constraints, which are rep-
resented using the lower bound operator l(·) and the upper
bound operator u(·). These constraints apply to the variables
di,j , ki,j , x̃0, ˙̃x0, and Fext, ensuring that the system’s physical
and operational limits are respected.

The optimization problem outlined in Equation (17) is not
directly implemented on the robot. Instead, as detailed in
[9], several simplifications enable the closed-form solution of
the problem. This leads to the following expression for the
damping coefficient di:

di = min

(
max

(
ldi ,

2mi
˙̃x0i,max

(bi − x̃0i,max)e

)
, udi

)
. (18)

MASTER’S THESIS - MSC ROBOTICS - FEBRUARY 2024 18

Here, mi represents the ith diagonal element of the matrix
Λ. Whereas x̃0i,max and ˙̃x0i,max, are defined respectively as:

x̃0i,max ≜ max
(
|lx̃0i
|, ux̃0i

)
,

˙̃x0i,max ≜ max
(
|l ˙̃x0i
|, u ˙̃x0i

)
.

Key to deriving the solution (18) are two assumptions:
firstly, treating Λ(q) as a diagonally dominant matrix, which
allows for decoupling the system’s dynamics. This enables
solving each ith element of the optimization problem (17) indi-
vidually. Secondly, a critically damped behavior is imposed to
the controlled system, which relates the damping coefficient di
to the stiffness coefficient ki as per the following relationship:

ki =
d2i
4mi

. (20)

After determining the appropriate values for damping and
stiffness using Equations (18) and (20), it is imperative to
ensure the stability of the closed-loop system with time-
varying gains. This is verified using the stability condition
demonstrated in [9]:

di(t+ T) > di(t)−
d2i (t)T

mi(t)
+
di(t)ṁi(t)T

mi(t)
. (21)

If the calculated di values satisfy Equation (21), di and
ki can be applied to the VIC as new damping and stiffness
parameters. If not, di must be adjusted to the right-hand side
of Equation (21) plus a small increment, and ki recalculated
using Equation (20).

APPENDIX C

In Table II, we present a comprehensive list of parameters
associated with both the Feedback NN and the Feedforward
NN.

Feedback NN Feedforward NN
Epochs 400 1000

Batch Size 500 2

Input Size 36 35

Output Size 12 5700

Normalization Layer yes yes
Learning Rate 0.001 0.001

Hidden Layer 2× 1024 neurons 2× 128 neurons
Activation Function ReLU eLU
Optimizer Adam Adam

Landing error on x-position of CoM
Mean 2.0cm 5.7cm

Std 1.2cm 3.5cm

Landing error on z-position of CoM
Mean 1.7cm 1.8cm

Std 0.7cm 0.6cm

TABLE II: Comparison of Feedback and Feedforward Neural Net-
works.

This delineation facilitates a direct comparison of the two
methodologies, particularly in terms of landing precision, as
illustrated at the end of the table, and in terms of soft

landing as illustrated in the Figures 18, 19, and 20. Upon
evaluation, it is evident that the performance metrics of the
Feedforward NN are inferior when compared to the Feedback
NN. Consequently, for the specified task of this work, the
Feedback NN is identified as the more viable and effective
approach.

Fig. 18: Comparative analysis of rotational effort between the MPC
(in red), the VIC (in blue), and the Feedforward NN (in green). For
this metric, the network can properly clone the behavior of the VIC.

Fig. 19: Comparative analysis of peak effort between the MPC (in
red), the VIC (in blue), and the Feedforward NN (in green). The
network’s results are worse than both the VIC but better than the
MPC.

MASTER’S THESIS - MSC ROBOTICS - FEBRUARY 2024 19

Fig. 20: Three graphs depicting CoM accelerations during landing: in blue, the VIC controller’s performance, in red the MPC, and in green
the Feedforward NN. The graph shows how the NN results are the least compliance solution along y and z, and it is only partially able to
reproduce the VIC’s results along x.

	Introduction
	Relevant Literature
	Model-Based Solutions
	Model-Free Solutions
	Soft Landing

	Problem Statement
	Methodology
	Starting Framework
	Single Rigid Body Model Trajectory Optimization
	Impedance Controller for Soft Landing
	Supervised Learning Algorithm Structure

	Experimental Validation
	SRBM vs. SLIP Trajectory Optimization Algorithm
	Soft Landing - MPC vs. VIC
	Feedback vs. Feedforward NN
	Feedback NN Performance
	Hardware Results

	Discussion & Conclusion
	Appendix A: TO of the Starting Framework
	Appendix B: Variable Impedance Controller: Implementation
	Appendix C

