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Abstract

Conventional hydrological models use a deterministic approach. One could think of it like a black box, hav-

ing an input, parameters, relations and an output. The parameters are calibrated by comparing the model

output with observations of the system response (for example river runoff). When assessing the uncertainty

in models the focus is often on the parameter uncertainty and all other variables are considered to be true.

Not taking into account all sources of uncertainty, results in unreliable knowledge about the parameter un-

certainty.

A method to include more sources of uncertainty is applying a probabilistic model. Using this model, all

variables are described by probability distributions. In a spatially distributed model this allows for a spatial

estimation of variables and their uncertainty in all model components. Due to the large amount of variables

in a distributed model, the complexity of the exact solution of the probabilistic model increases. To be able to

efficiently calculate an approximate solution, the probabilistic model is factorized and structured in a factor

graph, a form of a probabilistic graph. A factor graph contains factors and variables, where the factors rep-

resent the relations between variables and physical knowledge while the variables represent the belief about

the data. A factor graph is bipartite, which means that factors are only connected with variables and vice

versa. Information propagates through the graph using message passing. This is a process where a factor

updates each connected variable, based on a function of the other connected variables. If the graph has a

tree structure, message passing starts at the highest level of the tree, progressing downward. This ensures

that all information reaches the root of the tree. The process is then reversed in an upward sweep of message

passing, propagating all gained knowledge also upstream. When approximations are used or when the tree

contains cycles, multiple iterations (downward and upward sweeps) are needed for the variables to converge

to their final value. The result is a posterior distribution of every variable in every cell.

In this research, a probabilistic graph is applied on a distributed runoff accumulation model. In each cell

of the model a local runoff is calculated based on the precipitation, evaporation and an unknown bias term

(initiated by bias parameters), which are all represented by a Gaussian distribution. Using flow paths, derived

from a Digital Elevation Model, the local runoff is accumulated into accumulated runoff. A physical positivity

constraint is added to the accumulated runoff and forcing data to prevent negative values. Multiple runoff

observations (Gaussian distributed) are added resulting in spatial estimations of accumulated runoff, local

runoff and bias, and an updated belief about the precipitation and evaporation. The bias parameters which

initiate the bias in each cell contain uncertainty as well, allowing the parameters to be updated given the data

received from the model. After the solution has converged, each dataset has been updated using the model

structure (physical knowledge and constraints) and the prior knowledge from all other data sets.

By looking at the spatial distribution of the bias, conclusions can be drawn about the quality of the data

and the water balance as a representation of the hydrological processes. Areas with a high posterior bias ei-

ther have a mismatch between forcing data and runoff observations, the water balance does not represent

the reality well, or the data conflicts with the positivity constraints. The model is applied on the Volta basins,

where 3 areas are identified where the bias is higher than in other areas of the basin, mainly influenced by
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the positivity constraints. These regions are next to a large river, next to lake Volta and the delta area at the

mouth of the river. They are characterized by a negative prior local and accumulated runoff, indicating net

evaporation while there is no water available. It is very likely that not the forcing data is faulty in these areas,

but that an important hydrological process has not been incorporated. Given the large water bodies in the

vicinity, ground water flow from the water body to the constrained cells is most probably the important hy-

drological process which is missing in the model. By applying probabilistic graphs on other (more complex)

hydrological models allows for a better spatial estimation of both the variable values and their uncertainty, as

well as a spatial evaluation of the performance of the model structure.



Preface

This thesis is the product of a very educative period of graduation. Combining my master track in water man-

agement and my background and interest in computer science, I decided to spend my graduation rethinking

the way modeling was taught me. This process led me to better understand the concept of uncertainty in

data, uncertainty propagation, Bayesian statistics and message passing. As knowledge does not always come

easy, I thank my supervisor Gerrit Schoups for the many hours of discussion about the subject which taught

me a lot. Furthermore I would like to thank the other committee members for their feedback during my

presentations.

I would like to use this opportunity to thank my parents, who always showed support in the decisions I’ve

made, bringing me to where I am today. I owe thanks to my girlfriend who, next to her loving support, chal-

lenged me to think with a different viewpoint and for the feedback on my report and presentations. Finally

I thank my colleague graduation students for a nice atmosphere to work in, and the regular game of table

tennis.

Emiel Verstegen,

Delft, July 22, 2016

v





Contents

Abstract iii
Preface v
List of Figures ix
List of Algorithms xi
List of Tables xi
Nomenclature xiii
1 Introduction 1
2 A probabilistic graphical model of spatially distributed runoff 5

2.1 Describing the probabilistic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Deterministic model structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Adding uncertainty to the model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Describing the joint and posterior distribution . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Translating into a graphical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Solving the graphical model: calculating the marginal posterior . . . . . . . . . . . . . . . . . 10

2.3.1 Message passing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Calculating a marginal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.3 Calculating the incoming message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.4 Calculating the outgoing message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.5 Scheduling factors: exploiting the tree structure . . . . . . . . . . . . . . . . . . . . . . 15

3 Model application using test data 17
3.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Effect of different model setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Adding observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.2 Adding constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.3 Adding a bias term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.4 Effects of combining components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Influence of prior model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 Influence of data uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.2 Influence of bias parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Effect of model on posterior bias parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Convergence of different model structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5.1 Factor scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.2 Positivity constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.3 Bias with parameter uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

vii



viii Contents

4 Model application using real data 29
4.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 Data sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.2 Data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Uncertainty quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 Precipitation uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.2 Evaporation uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.3 Runoff observations uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Implementation of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.1 Prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.2 Model 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.3 Model 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.4 Model 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Bias uncertainty influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4.1 Model without positivity constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4.2 Model with positivity constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Conclusions 43
6 Recommendations 45
References 47
A Basin description A1
B Differentmodel setups: Factor Graphs B1
C Differentmodel setups: Results of testdata C1

C.1 Model 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C2

C.2 Model 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C3

C.3 Model 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C4

C.4 Model 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C5

C.5 Model 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C6

C.6 Model 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C7

C.7 Model 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C8

D Results on Volta: figures D1



List of Figures

1.1 The four components of a model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1 Translation from Digital Elevation Model (DEM) to flow path. . . . . . . . . . . . . . . . . . . . . . 6

2.2 An example factor graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 One grid cell in the factor graph of the distributed model . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Message passing between a factor and a variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Constraining a variable to be positive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Drainage direction of all cells within the test data grid . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Influenced areas due to observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Effects of adding an observation on the accumulated runoff . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Effects of adding an observation on the local runoff . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 Effects of adding the constraints on the accumulated and local runoff . . . . . . . . . . . . . . . . 21

3.6 Mean value of the local bias and accumulated runoff, without parameter uncertainty . . . . . . 22

3.7 Mean value of the local bias and accumulated runoff, with parameter uncertainty (model 6). . . 22

3.8 Mean value of the local bias and accumulated runoff, with parameter uncertainty and constraints. 23

3.9 Mean value of the local bias under changing bias precision . . . . . . . . . . . . . . . . . . . . . . 24

3.10 Posterior value of the mean bias precision after each iteration for the closed (implied bias of

zero) and non closed water balance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.11 Convergence of the unscheduled (Infer.NET model) and the scheduled (manual model 7), shown

by plotting the mean accumulated runoff at the root cell. . . . . . . . . . . . . . . . . . . . . . . . 26

3.12 Applying a positivity constraint multiple iterations on the same variable. . . . . . . . . . . . . . . 27

3.13 Difference in outlet runoff compared to the previous iteration (model 3). . . . . . . . . . . . . . . 27

3.14 Difference in outlet runoff compared to the previous iteration (model 6). . . . . . . . . . . . . . . 27

4.1 Re-sampling grid cells using the nearest neighbor algorithm . . . . . . . . . . . . . . . . . . . . . 31

4.2 Calculated stream does not always match the river . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 River cross-over due to DEM uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Flow accumulation in a lake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 Prior mean values for accumulated runoff, local runoff, precipitation and evaporation . . . . . . 35

4.6 Difference in mean value with respect to the prior for all the variables after adding observations

(model 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.7 Difference in mean value with respect to the prior for all the variables after adding observations

and bias (model 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.8 Difference in mean value with respect to the prior for all the variables after adding observations,

bias and positivity constraints (model 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.9 Results of adding bias uncertainty and overfitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

A.1 Geographical map of the Volta basin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A1

ix



x List of Figures

B.1 Different factor graph structures represent all informed models (model 2-7) . . . . . . . . . . . . B2

C.1 Model 1, uninformed, unconstrained, unbiased . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C2

C.2 Model 2, informed, unconstrained, unbiased . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C3

C.3 Model 3, informed, constrained, unbiased . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C4

C.4 Model 4, informed, unconstrained, bias without parameter uncertainty . . . . . . . . . . . . . . . C5

C.5 Model 5, informed, constrained, bias without parameter uncertainty . . . . . . . . . . . . . . . . C6

C.6 Model 6, informed, unconstrained, bias with parameter uncertainty . . . . . . . . . . . . . . . . . C7

C.7 Model 7, informed, constrained, bias with parameter uncertainty . . . . . . . . . . . . . . . . . . C8

D.1 Mean accumulated runoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D2

D.2 Standard deviation accumulated runoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D3

D.3 Mean local runoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D4

D.4 Standard deviation local runoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D5

D.5 Mean precipitation runoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D6

D.6 Standard deviation precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D7

D.7 Mean evaporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D8

D.8 Standard deviation evaporation runoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D9

D.9 Bias Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D10

D.10 Bias SD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D10



List of Algorithms

1 Message passing (without making use of the model structure) . . . . . . . . . . . . . . . . . . . . . 11

2 Function UpdateMarginals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Message Passing (with scheduling) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

List of Tables

2.1 Infer.NET methods used to calculate outgoing messages . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Prior values [m3/s] for precipitation, evaporation and local runoff . . . . . . . . . . . . . . . . . . 18

4.1 Model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

A.1 General information of the Volta basin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A2

A.2 Discharge at the mouth of the river by combining different data products . . . . . . . . . . . . . . A2

xi





Nomenclature

Symbol Description Unit1

General
µ Mean [x]

σ Standard Deviation (SD) [x]

σ2 Variance [x]2

τ= 1/σ2 Precision [x]-2

CV = ∣∣σ/µ
∣∣ Coefficient of Variation [-]

Model variables
Pi Precipitation in cell i (Gaussian distribution) [m3/s]

Ei Evaporation in cell i (Gaussian distribution) [m3/s]

Bi Local bias in cell i (Gaussian distribution) [m3/s]

Qloc,i Local runoff in cell i (Gaussian distribution) [m3/s]

Qacc,i Accumulated runoff in cell i (Gaussian distribution) [m3/s]

Bias parameters
µB Bias mean (Gaussian distribution) [mm/y]

τB Bias precision (Gamma distribution) [(mm/y)-2]

Model parameters
CVP Coefficient of Variation of precipitation data [-]

CVE Coefficient of Variation of evaporation data [-]

CVObs Coefficient of Variation of runoff observation data [-]

µµ Mean of bias mean parameter µB [mm/y]

σ2
µ Variance of bias mean parameter µB [(mm/y)2]

µτ Mean of bias precision parameter τB [(mm/y)-2]

σ2
τ Variance of bias precision parameter τB [(mm/y)-4]

Other
N Set of all cells in the model {. . . }

M ⊆ N Set of all cells containing runoff observations {. . . }

u(i ) ⊂ N Set of upstream neighbor cells of cell i {. . . }

N Gaussian distribution given µ and σ2

G Gamma distribution given α and β

α=µ2/σ2 Shape parameter [-]

β=µ/σ2 Rate parameter [x]-1

Ai Surface area of cell i [m2]

C Conversion factor 1: 3.17e−11 [ m
mm

y
s ]

1Unit [x] represents the unit of the variable, described by the mean, standard deviation, etc.
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1
Introduction

When looking back on research of the last 50 years in Water Resources, it is clear that the topics have changed

over time. Before the topics were mainly focusing on the hydrologic mechanisms and processes, nowadays

the focus lies more on uncertainty in modeling and data assimilation (Rajaram et al. 2015). At the same time

the amount of data sources is growing. Nowadays, data from distributed measurement networks, radar and

satellites is published with a higher temporal and spatial resolution. The trend towards sharing data (open

data) is also growing accordingly. It is of importance that the hydro-informatics follow these trends and make

use of the available data. By combining many different data sources a higher temporal and spatial resolution

can be achieved with an uncertainty that can be minimized (Chen & Han 2016).

Current practice in hydrological modeling
Current models can often be considered as a black box with four components. These components are 1) forc-

ing data, 2) a set of deterministic relations, 3) parameters, and 4) a model output.

Figure 1.1: The four components of a model

Each of these components has an uncertainty

connected with it. The forcing data is often an es-

timate based on indirect measurements or an ex-

trapolation over space and/or time. In the case of

rainfall, satellites provide estimates based on other

physical phenomenon which have a relation with

the rainfall, for example water vapor in the atmo-

sphere or the cloud top temperature. These es-

timates are subject to uncertainties (AghaKouchak

et al. 2009).

The set of deterministic relations that is used to calculate the model output is almost always a simplifica-

tion of the reality, thus induce uncertainty in the model predictions (Refsgaard et al. 2006). An example of

model uncertainty is neglecting water withdrawal for industry or groundwater flows which are not modeled.

The model output is then compared with the observed system response (often river runoff) in order to

calibrate the model parameters. A common method to measure the (daily) river runoff is by using rating

1



2 1. Introduction

curves, a relation between the water level and the discharge. Uncertainty in rating curves have multiple

sources. The rating curve itself has uncertainties as the measurements of water level and discharge to create

the rating curve are prone to errors. The morphology of the river can change, out-dating the rating curve.

Often rating curves are created without taking extreme high or low runoffs into account. (Tomkins 2014, Di

Baldassarre & Montanari 2009, Domeneghetti et al. 2012)

The parameters are entered into a model, based on measurements or expert knowledge. Often the pa-

rameters are calibrated based on the output of the model and an observed quantity. If uncertainties of other

model components are not dealt with, all the discrepancy between the model and observation propagates

into the parameter uncertainty (Moradkhani & Sorooshian 2009).

According to McMillan et al. (2011) and Kavetski et al. (2002), the uncertainty in forcing data, model struc-

ture, and observations is usually neglected during calibration and uncertainty assessment, and only parame-

ter uncertainty is taken into account. McMillan further pleads for the use of error propagation of input data,

claiming that no model can produce accurate prediction when forced with erroneous forcing data. One way

to improve the model results is to reduce the error in the forcing data. Although the spatial and temporal

resolution and coverage of the rainfall data have improved a lot over the last decades, uncertainty of this data

will remain important in the close future due to the high variability of precipitation in both space and time

(Kavetski et al. 2006).

Besides a better incorporation of uncertainty, Liu & Gupta (2007) plead for a better understanding, quan-

tification and reduction of uncertainty.

Recent advances

One way of integrating uncertainty in a model is by defining the model with probabilistic/stochastic con-

straints, and the forcing data and observed system response with probability density functions. Recently, a

conceptual study was conducting describing a spatially distributed model, accumulating runoff in a drainage

network with a joint distribution (Schoups 2015). The joint distribution is a function dependent of all vari-

ables (3 million variables, due to the large amount of cells in the model). The posterior can be calculated by

integrating the joint distribution over all the unknown variables, which is almost impossible considering the

vast amount of variables. By factorizing the joint distribution, smaller problems are created which can be vi-

sualized by a factor graph. By solving these problems (factors) one by one an approximation of the posterior

distribution of all variables can be achieved.

By implementing a hydrological model as a probabilistic graph it can 1) take uncertainty in both forcing

data and system response into account, 2) combine different datasets to update knowledge of all of them,

3) show a spatial distribution of uncertainty and 4) calculate the posterior result with limited resources by

exploiting the graph structure.

In this study the concept is applied to a real world example, extended with precipitation and evaporation

data, runoff observations and physical constraints. It presents a the framework to build and solve a proba-

bilistic hydrological model, incorporating multiple sources of uncertainty. The posterior distribution of the

data is used to draw conclusions about the spatial estimate of the runoff and the spatial uncertainty of the

model in terms of data and water balance. For this purpose the following research question is formed:

How to provide a spatial estimate of the runoff and the uncertainty in the water balance using a

probabilistic graph ?



3

Report outline
The probabilistic model structure which is used in this research and the translation to a graphical model

is presented in Chapter 2. The model is then implemented using test data in Chapter 3 to analyze the the

influence of the different model components and parameters. In Chapter 4, the model is applied on a hydro-

logical basin to research what the practical implications of the model are and how to draw conclusions from

the model result. Conclusions regarding graphical modeling in general and the model result are presented in

Chapter 5. Recommendations for future research are addressed in Chapter 6.





2
A probabilistic graphical model of spatially

distributed runoff

In this chapter the basic model setup is introduced, and how the probabilistic component is added to the

model. First the difference between deterministic models and probabilistic models is discussed in Section

2.1. The translation to factor graphs, which function as a graphical representation of the model, is outlined

in Section 2.2. Finally, the mathematics and application of message passing and the algorithm for solving the

model is explained in Section 2.3.

2.1. Describing the probabilistic model
Many hydrological models are based on deterministic relations and data. They assume the data to be true and

the relations to be exact. Probabilistic models on the other hand, assume the model outcome to be a joint

distribution over random variables. In this section the structure of the model and the probabilistic notation

is described.

2.1.1. Deterministic model structure

The model setup is a distributed model. A distributed model divides the drainage basin in grid cells and

calculates the runoff of each cell. Using a Digital Elevation Model (DEM), the flow direction is calculated to

route the flow towards the mouth of the basin as is shown in Figure 2.1. Using this method the flows only

converge, which results in a tree structured flow path (further explained in Chapter 4). In each cell of the grid,

the local contribution to the flow is calculated using a water balance, which is described in Equation 2.1.

Ql oc,i = Pi −Ei +Bi (2.1)

where Pi is the precipitation [m3/s], Ei is the actual evaporation [m3/s], Bi is a local bias term [m3/s] ac-

counting for the model structure uncertainty, and Qloc,i is the local runoff in cell i ∈ N in [m3/s], where

N = {1,2, . . . ,n} is the set of all cells in the model . By using long term averages for the forcing data and river

runoff observations, change in storage can be neglected and a transport model does not have to be incorpo-

rated.

5



6 2. A probabilistic graphical model of spatially distributed runoff

Figure 2.1: From Digital Elevation Model (DEM) to flow path. On
the left the average elevation of each cell is shown. This is translated
into a flowpath, shown on the right. Source: (Olivera et al. 1998)

By means of the flow direction map the local

runoff is accumulated downstream into the accu-

mulated runoff, which is described by Equation 2.2.

Qacc,i =Ql oc,i +
∑

j∈u(i )
Qacc, j (2.2)

where Qacc,i is the accumulated runoff [m3/s] flow-

ing out of a cell, and Qacc, j is the inflow of accu-

mulated runoff from upstream cells [m3/s], where

j ∈ u(i ) are the upstream neighbors of cell i .

The local bias term

The local bias term Bi in Equation 2.1 was added in order to represent (un)known processes that are not taken

into account in the model structure. Examples of these processes that could cause a bias are:

• Lateral (ground)water flows, where the flow direction is other than indicated by the Digital Elevation

Model

• Discharge or withdrawal of water for consumption, industry or irrigation

• Divergence of flows (human influence like canals or natural divergence in delta areas)

• Long term change of storage due to construction of dams

Positivity constraints

More physical knowledge is added to the model using constraints. In this model the precipitation Pi , evap-

oration Ei and the accumulated runoff Qacc,i are constrained to be positive. The first two are constrained

because ’negative precipitation’ can be considered evaporation and ’negative evaporation’ can be considered

precipitation. The accumulated runoff is constrained to be positive because a negative value would indicate

a river flowing in the upstream direction. When the accumulated runoff is zero there is no water available to

withdraw from the flow.

2.1.2. Adding uncertainty to the model
In the model presented in this research, variables and relations are not described by deterministic variables

but by stochastic variables. This way the uncertainty of each component of the model can be incorporated.

This is done by defining each variable as a probability distribution, which follows from the Bayesian ap-

proach. Most variables are incorporated using Gaussian distributions to describe the variables. The mean µ

of the distribution represents the actual measured or estimated data point and the standard deviation σ is an

expression for the uncertainty. The Gaussian distribution was chosen for the following reasons:

• The central limit theorem states the Gaussian distribution is considered a good representation of a ran-

dom variable when this variable is an average of many smaller random variables, no matter their distri-

bution (Castrup 2001, Lyon 2014). In this research the variables are long term averages of observations,

which makes the Gaussian distribution suitable regardless of the distribution of the uncertainty on a

single observation.
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• The Gaussian distribution is closed under convolution (Vinga & Almeida 2004, supplementary mate-

rial). This makes it possible to sum variables with the result being a Gaussian distribution. No approxi-

mations in the flow accumulation are needed.

• The product and ratio of two Gaussian Probability Density Functions (PDF’s) is proportional to another

Gaussian PDF (Bromiley 2003). These operations are needed to add or subtract information to the

model, further explained in Section 2.3.

All uncertainty in the prior data is described relative to the magnitude of the mean, using the Coefficient

of Variation (CV ) [-], which is defined as:

CV = σ

µ
(2.3)

Forcing data uncertainty

The forcing data consists of a precipitation variable Pi and evaporation variable Ei in each cell. These vari-

ables are based on the observed precipitation µP,i [m3/s] and evaporation µE ,i [m3/s]. The model parameters

CVP and CVE determine the standard deviation of the Gaussian distribution.

Precipitation: Pi ∼N
(
µP,i ,σ2

P,i

)
(2.4)

where σP,i =CVP ∗µP,i

Evaporation: Ei ∼N
(
µE ,i ,σ2

E ,i

)
(2.5)

where σE ,i =CVE ∗µE ,i

Model structure uncertainty

The relations that the model uses in order to calculate the output (Equation 2.1) can also contain uncer-

tainty. Due to the simplification of the reality, not all hydrological processes in the water balance are captured.

Therefore a local bias is added to the water balance. The prior local bias will be a Gaussian distribution given

the mean µB [mm/y] and precision τB [(mm/y)-2], which are called the bias parameters. These variables are

not local (for one cell only) but apply to all the cells in the model.

Bias: Bi ∼N
(
µB ,σ2

B

)
(2.6)

where σ2
B = 1

τB

Parameter uncertainty

Each local bias is described by the bias parameters: µB and τB . These parameters would normally be chosen

using expert knowledge, and then optimized for better results. In this research the uncertainty of these pa-

rameters is added by describing the parameters with probability distributions. The bias mean is assumed

to have a Gaussian distribution (Equation 2.7), described by two model parameters: µµ [mm/y] and σ2
µ

[(mm/y)2]. The bias precision (reciprocal of the variance) is assumed to have a Gamma distribution (Equa-

tion 2.8). Using two model parameters, µτ [(mm/y)-2] and σ2
τ [(mm/y)-4], the shape parameter ατ [-] and rate

parameter βτ [(mm/y)2] of the Gamma distribution are calculated.

Bias mean: µB ∼N
(
µµ,σ2

µ

)
(2.7)

Bias precision: τB ∼G
(
ατ,βτ

)
(2.8)

where ατ =
µ2
τ

σ2
τ

and βτ = µτ

σ2
τ

(Dekking et al. 2005)
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Because the bias parameters are uncertain, information from the model can influence the posterior dis-

tribution of the bias parameters. Information from one part of the drainage basin influences the parameters

after which the parameters influence the other part of the basin. Because of this uncertainty in parameters a

spatial correlation of local biases Bi is established. If both σµ and στ approach zero, there is no uncertainty

in the parameters and the parameters will not be updated by the information from the model. The prior

distribution of the local bias Bi is in this case defined by Equation 2.9.

Bi ∼N (µµ,1/µτ) when σµ → 0 and στ → 0 (2.9)

System response uncertainty

The output of this model is compared with the system response (in this model the observed accumulated

runoff). This quantity has an uncertainty which is also described by a Gaussian distribution. The observed

value is the mean of the distribution and the uncertainty is defined as the standard deviation. The standard

deviation is calculated relative to the mean value, using the model parameter CVobs (Equation 2.10).

Runoff observations: Qacc,k ∼N
(
µacc,k ,σ2

acc,k

)
(2.10)

where σacc,k =CVobs ∗µacc,k

where k is a cell in the subset of set M , which contains cells that have an observed accumulated runoff.

2.1.3. Describing the joint and posterior distribution
The variables can be divided in observed variables (the data, Equation 2.11) and the unknown variables

(Equation 2.12):

Observed variables: D = {µP,σP,µE,σE,µµ,σµ,ατ,βτ,µacc,σacc} (2.11)

Unknown variables: X = {P,E,B,µB ,τB ,Qloc,Qacc} (2.12)

where the bold symbols are vectors of variables over all cells in the model (except µacc and σacc, which are

vectors over runoff observations).

The joint distribution p(X,D) can be written as a product of factorized relations (factors) between the vari-

ables (Koller & Friedman 2009, pp. 50), assuming the variables are independent. Apart from the four sources

of uncertainty and the local and accumulating water balances, the positivity constraints are represented by a

factor. The factorized joint distribution is defined as:

p(X,D) =p
(
P,µP,σP,E,µE,σE,B,µB ,µµ,σµ,τB ,ατ,βτ,Qloc,Qacc,µacc,σacc

)=
N

(
µB |µµ,σ2

µ)G (τB |ατ,βτ
)× parameter uncertainty∏

i∈N

[
N

(
Pi |µP,i ,σ2

P,i

)
N

(
Ei |µE ,i ,σ2

E ,i

)× forcing data uncertainty

N
(
Bi |µB ,σ2

B

)× model structure uncertainty

δ
(
Qloc,i −Pi +Ei −Bi

)
δ
(
Qacc,i −Ql oc,i −

∑
j∈u(i )

Qacc, j
)× water balances

H
(
Pi

)
H

(
Ei

)
H

(
Qacc,i

)]× positivity constraints∏
k∈M

N
(
Qacc,k |µacc,k ,σ2

acc,k

)
system responce uncertainty

(2.13)

The dirac delta function δ and the unit step function H describe respectively the water balances and positivity

constraints.
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The posterior distribution p(X|D) is a function of the joint distribution p(X,D) divided by the marginal

likelihood of the data p(D):

p(X|D) = p(X,D)

p(D)
∝ p(X,D) (2.14)

or in terms of the variables of the model:

p
(
P,E,B,µB ,τB ,Qloc,Qacc|µP,σP,µE,σE,µµ,σµ,ατ,βτ,µacc,σacc

)=
p

(
P,µP,σP,E,µE,σE,B,µB ,µµ,σµ,τB ,ατ,βτ,Qloc,Qacc,µacc,σacc

)
p

(
µP,σP,µE,σE,µµ,σµ,ατ,βτ,µacc,σacc

) (2.15)

The model results is the marginal posterior of each variable. The marginal posterior is a representation of

a variable’s value and uncertainty, in terms of mean and variance, after incorporating all the information from

the model and the other variables. Let Y be the variable of interest, the marginal posterior of this variable can

then be written as the integral over all the variables except Y :

p(Y |D) =
∫

· · ·
∫

x∈X\Y
p(X,D)d x (2.16)

The model as defined by the joint distribution in Equation 2.13 has 5 unknown variables per cell. With an

increasing number of cells, the complexity of this integral increases drastically. In order to solve the model

efficiently with a large number of cells, another method is used to approximate the marginal posterior.

2.2. Translating into a graphical model
When the posterior distribution becomes very complex as the number of variables increase, graphical models

can be used in order to exploit the structure within a complex distribution (Koller & Friedman 2009, pp. 3).

There are two types of graphical models, Bayesian and Markov networks, respectively directed and undirected

networks. A factor graph, used in this research, is capable of representing both those networks. In this study

a mixture between directed and undirected dependencies is used.

The factor graph notation is used to transfer Equation 2.13 to a graph which is solved step by step. Frey

et al. (1998) defined a factor graph as “a bipartite graph that expresses how a global function of several vari-

ables factors into a product of local functions”.

Figure 2.2: An example factor
graph. Source: Frey et al. (1998)

An example of a factor graph is given in Figure 2.2. This example contains 5

variables x1...x5 and 5 factors f A , fB , fC , f2, f4, connected with edges. The graph

is bipartite which means that every variable is only connected with factors, and

every factor is only connected with variables. The variables are given a prior

probability distribution and the factors represent a local relation or function.

The global function illustrated in Figure 2.2 is:

g (x1, x2, x3, x4, x5) = f A(x1, x2) fB (x2, x3, x4) fC (x4, x5) f2(x2) f4(x4) (2.17)

where the value of the set of variables is the product of functions, depending on the set of variables.

All the components from Equation 2.13 are structured in a factor graph as can be seen in Figure 2.3, where

the graph of one cell of the model is displayed. The circle nodes in the figure are the variables from the joint

distribution. The grey circles are the observed variables (data D), while the white circles are the unknown

variables (X) of which we want to know the posterior distribution. The factorized relations of Equation 2.13

are represented in the graph as squares. In the following sections all factors of the model are covered.
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Gaussian from mean and variance: fP , fE and fobs

Figure 2.3: One grid cell in the factor graph of the distributed model.
Observed variables (data) are shown as grey circles, the unknown
variables as white circles. The squares represent factors.

These factors initializes variables to have a Gaussian

distribution, derived from the deterministic vari-

ables mean µ and variance σ2. Every cell has an

observed precipitation and evaporation, but only a

couple of cells (in subset M) contain an observation

of accumulated runoff.

Water balances: fl oc and facc

The water balance factor floc implements Equation

2.1, calculating the local runoff Ql oc,i from the forc-

ing variables Pi and Ei and the bias Bi . The factor

also works in the other direction, calculating a new

value for Pi , Ei or Bi when new information about

the local runoff is received.

The factor facc implements Equation 2.2, calcu-

lating the outgoing accumulated runoff Qacc,i as a

function of the incoming accumulated runoff from

upstream cells Qacc, j and the local runoff Qloc,i

from within the cell. Just as with factor floc , the fac-

tor facc can calculate a new value for all connected

(unknown) variables.

Constraints: CP , CE , Cacc

The constraining factors assign a new value to the

connected variable, as a function of the variable it-

self. If the connected variable is well above zero

(positive mean and low CV ), the new value will be

equal the old value and the constraint has no influ-

ence. The exact constraining procedure is discussed in Section 2.3.4.

Bias: fµ, fτ and fB

The factors fµ and fτ initialize the variables µB and τB to have respectively a Gaussian and a Gamma distri-

bution. The factor fB updates the local bias Bi based on the variables µB and τB . At the same time factor

updates the parameters, based on the local bias.

The bias parameters µB and τB are defined in mm/y and (mm/y)−2 respectively, not to be influenced by

the surface area of a cell. The data used later on in Chapter 4 has a resolution in degree latitude and longitude,

resulting a different surface area of a cell depending on the position of the cell. This means that the values of

µB and τB are converted to m3/s before applying factor fB .

2.3. Solving the graphical model: calculating the marginal posterior
As described in the previous section, the posterior result of the graph can be calculated by solving it factor by

factor. This section describes how each factor can be solved using Message Passing.
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2.3.1. Message passing
The message passing algorithm (Algorithm 1) uses Marginal Updating (Algorithm 2), where the marginals of

the variables connected with a factor are updated after every iteration. For the next sections, consider one

factor f and its connected variable x, as depicted in Figure 2.4

The outgoing message m f →x (from the factor to the variable) is a probability distribution which contains

all the information from the right side of the graph. The outgoing message to variable x is a function of the

incoming messages from all connected variables, except x itself (my1→ f . . .myn→ f ). The function calculating

the outgoing message depends on the type of factor.

The incoming message mx→ f contains all the information from the left side of the graph and is equal

to the variable marginal distribution divided by the outgoing message m f →x . Division removes information

because the marginal distribution of the variable is the product of the incoming and outgoing message (in-

formation from left and right side of the graph). By dividing with the outgoing message the information of the

right side of the graph is removed from the marginal, resulting in a distribution representing the knowledge

from the left side of the graph.

Figure 2.4: Message passing between a factor and a variable (variable x, factor f , messages m and neighbors of both nodes). Source:
(Kschischang et al. 2001, p. 502), edited to comply with symbol conventions.

Algorithm 1: Message passing (without making use of the model structure)

for iteration i in NumberOfIterations do
foreach Factor f in the factor graph do

function UpdateMarginals(f);

Algorithm 2: Function UpdateMarginals

Function UpdateMarginals (Factor f)
1) foreach Connected variable v to factor f do

incoming message = variable marginal / outgoing message;

2) foreach Connected variable v to factor f do
outgoing message = factor operation on (array of) incoming message(s);

3) foreach Connected variable v to factor f do
variable marginal = incoming message * outgoing message;
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Initialization of the model

Before using the algorithm, initialization of the model needs to take place. This is done by setting values of:

• Unobserved variables (defined by their connected observed variables):

– Define precipitation Pi and evaporation Ei marginals as a Gaussian distribution.

– Set bias Bi as a Uniform distribution, µB as a Gaussian distribution and τB as a Gamma distribu-

tion.

– Set local runoff Qloc,i marginals as a Uniform distribution.

– Set observed accumulated runoff Qacc,i marginals as Gaussian distribution, in the cells without

observation it is set to a Uniform distribution.

• Set all messages between factors and variables to a Uniform distribution.

2.3.2. Calculating a marginal
The marginal belief of variable x, written as b(x), is calculated by multiplying the incoming message (infor-

mation from the other factors connected to the variable) and the outgoing message (information from the

factor in question).

b(x) = mx→ f ∗m f →x (2.18)

Given that the incoming and outgoing messages are Gaussians, the updated marginal will also be a Gaus-

sian with the mean and variance (Bromiley 2003):

1

σ2
x
= 1

σ2
x→ f

+ 1

σ2
f →x

µx =
(
µx→ f

σ2
x→ f

+ µ f →x

σ2
f →x

)
σ2

x

(2.19)

The updated marginal belief has a mean which is an average of the mean of both messages, weighted on

the precision (reciprocal of the variance). The precision of the updated marginal is a sum of the precisions of

the messages. The next two sections describe how the incoming and outgoing messages are calculated.

2.3.3. Calculating the incoming message
A variable marginal is a product of all the information it received. The incoming message mx→ f is calculated

by removing the outgoing message m f →x from the marginal distribution b(x).

mx→ f =
b(x)

m f →x
(2.20)

Given a Gaussian marginal distribution and outgoing message, the incoming message mx→ f is a Gaussian

distribution as well. The mean and variance of the incoming message are calculated in Equation 2.21

1

σ2
x→ f

= 1

σ2
x
− 1

σ2
f →x

µx→ f =
(
µx

σ2
x
− µ f →x

σ2
f →x

)
σ2

x→ f

(2.21)
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2.3.4. Calculating the outgoing message
The outgoing message m f →x is calculated as a function of all incoming messages from the connected vari-

ables of f , except variable x itself (Figure 2.4, set y ∈ n( f )\{x}). This method is called Expectation Propaga-

tion (Minka 2001a,b) and is a parametric approximation. This means that beliefs (marginals) are not exactly

propagated, but their expectations (mean and variance) are. The general formula for calculating an outgoing

message using Expectation Propagation is (Winn & Minka 2007):

m f →x =
proj

[
mx→ f

∫
y∈n( f )\x

(
f (y, x)my→ f

)
d y

]
mx→ f

(2.22)

where the outgoing message is a function of the factor, the incoming messages and a projection. If the for-

mula between the projection brackets does not yield a proper Gaussian distribution, the projection creates

a Gaussian distribution which matches the result in terms of expected mean and variance. This process is

called M-projection (Koller & Friedman 2009, pp. 274).

In case the message does not need projection (proj[x] = x), exact beliefs are propagated instead of ap-

proximated beliefs (expectations). This specific case of Expectation Propagation is called Belief Propagation

and the outgoing message to a variable m f →x is not dependent anymore on the incoming message from that

same variable mx→ f , which is shown in Equation 2.23.

m f →x =
proj

[
mx→ f

∫
y∈n( f )\x

(
f (y, x)my→ f

)
d y

]
mx→ f

=
mx→ f

∫
y∈n( f )\x

(
f (y, x)my→ f

)
d y

mx→ f

=
∫

y∈n( f )\x

f (y, x)my→ f d y

(2.23)

In the model, outgoing messages are calculated using methods from the Infer.NET library, developed by

Microsoft Research (Minka et al. 2014). Table 2.1, at the end of this chapter, gives an overview of the Infer.NET

methods that are used for the calculation of outgoing messages. Next, two examples of these methods are

shown, using Belief and Expectation propagation.

Example: local water balance floc

The calculation of the outgoing message sent from the local water balance factor floc to the variable Qloc

is one of the simplest, and uses Belief Propagation. This means that the message is only dependent on the

incoming messages from the variables P , E and B , as is explained in Equation 2.23. Substituting the variables

used in this research into the equation, it becomes a triple integral over the three incoming messages (m),

shown in Equation 2.24.

m fl oc→Qloc
=

Ñ
δ
(
Qloc −Pi +Ei −Bi

)×mPi→ floc
×mEi→ floc

×mBi→ fl oc
dm (2.24)

∼N (µ fl oc→Qloc
,σ2

floc→Ql oc
)

When solving this integral it shows that the result is a Gaussian distribution of which the mean follows the

water balance, and all the variances are summed:

µ fl oc→Ql oc
=µPi→ floc

−µEi→ fl oc
+µBi→ floc

σ2
fl oc→Qloc

=σ2
Pi→ fl oc

+σ2
Ei→ floc

+σ2
Bi→ floc
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This factor is an example of Belief Propagation as the parametric approximation equals the exact belief

propagation.

Example: constraining the accumulated runoff Cacc

The constraining factor is only connected with one variable and is the most evident example of Expectation

Propagation. It is responsible for updating the variable for it to be positive. This factor works different from

the previous factor in the sense that it is only connected with one variable. This means that Equation 2.22

simplifies to:

mCacc→Qacc =
proj

[
mQacc→Cacc

∫
H

(
Qacc

)
dmQacc→Cacc

]
mQacc→Cacc

(2.25)

b(Qacc ) = mCacc→Qacc ∗mQacc→Cacc = proj
[
mQacc→Cacc

∫
H

(
Qacc

)
dmQacc→Cacc

]
(2.26)

In practice this means that the updated belief is a projection (parametric approximation) of the truncated

belief. The expected mean and variance for a truncated Gaussian are shown in Equation 2.27 (Greene 2003,

pp. 759).

E [x|x > a] =µ+σλ(α)

V ar [x|x > a] =σ2(1−δ(α))
(2.27)

where:

α= a −µ
σ

, a = 0

λ(α) = φ(α)

1−Φ(α)

φ(α): standard normal density function

Φ(α): standard normal cumulative distribution function

The updated marginal belief is a Gaussian distribution with always has a higher mean and lower variance

than the original marginal belief, which can be observed in Figure 2.5. Another observation is that there is

still a probability on a negative value of the variable. When using multiple iterations, the constraints will be

applied multiple times. The consequence of this is further discussed in Section 3.5.
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Figure 2.5: Constraining a variable to be positive
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2.3.5. Scheduling factors: exploiting the tree structure
As mentioned before, a drainage network built from a DEM has a tree structure. Each cell in the network can

have multiple upstream neighbors, but only one downstream neighbor. This means that eventually all cells

flow towards one basin outlet (the root of the tree). The factor graph within one cell also has a tree structure

(see Figure 2.3). All together, this results in the full factor graph having a tree structure as well.

Marginal Updating is a local operation which only updates the marginals of the connected variables of

one factor at a time. That is why it is important to schedule the order in which factors update their variable

marginals in order to minimize the amount of iterations needed to solve the model. Per iteration, two sweeps

are needed to propagate the information throughout the model (Algorithm 3).

The downwards sweep starts updating the factors at the leaf cells (cells at the highest level of the flow tree,

having no upstream neighbors). Once all these factors updated the connected variables, factors of one level

lower in the tree are updated. This continues until the root of the tree (mouth of the river) has been reached,

and all the marginals contain upstream information. Because down the line information is added due to

observations and positivity constraints, an upward sweep is also needed. This sweep will start at the root of

the tree with updating marginals, moving its way up the tree level by level. To determine the order in which

the factors are solved, the Breadth-First algorithm is applied to assign every cell in the grid a distance from

the root cell.

Multiple iterations of these sweeps have to be performed to converge to a solution. This is due to the fact

that cycles in the tree have been introduced by means of bias parameters (variables which are connected to

all cells) and approximations are made by re-projecting the constrained variables.

Algorithm 3: Message Passing (with scheduling)

for iteration i in NumberOfIterations do

General pass:
foreach Cell c in All Cells do

UpdateMarginals(Factor Constraint Precipitation CP );
UpdateMarginals(Factor Constraint Evaporation CE );
UpdateMarginals(Factor Bias fB );
UpdateMarginals(Factor Local runoff floc );

Downward pass:
foreach Cell c in CellOrder do

UpdateMarginals(Factor Accumulated runoff facc );
UpdateMarginals(Factor Constraint Accumulated runoff Cacc );

Upward pass:
foreach Cell c in inverted CellOrder do

UpdateMarginals(Factor Accumulated runoff facc );
UpdateMarginals(Factor Constraint Accumulated runoff Cacc );
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Table 2.1: Infer.NET methods used to calculate outgoing messages. Documentation: Microsoft Research Cambridge

Factor Direction Method

floc Qloc,i FastSumOp.SumAverageConditional()
floc Pi ,Ei ,Bi FastSumOp.ArrayAverageConditional()
facc Qacc,i FastSumOp.SumAverageConditional()
facc Qloc,i ,Qacc, j FastSumOp.ArrayAverageConditional()
CP ,CE ,Cacc CP ,CE ,Cacc IsPositiveOp.XAverageConditional()
fB Bi GaussianOp.SampleAverageLogarithm()
fB µB GaussianOp.MeanAverageLogarithm()
fB τB GaussianOp.PrecisionAverageLogarithm()
fP , fE , fµ Pi ,Ei ,µB Gaussian.FromMeanAndVariance()
fτ τB Gamma.FromShapeAndRate()



3
Model application using test data

In this chapter the influence of adding the observation, constraint and bias components to the model is

discussed. Seven different model setups using a set of test data were analyzed. The factor graph structure of

the model setups enumerated below are illustrated in Appendix B. Some results are highlighted using figures

in this chapter. A complete overview of the results can be found in Appendix C.

Model 1 includes forcing data, excludes runoff observa-
tions, bias term and positivity constraints

Model 2 includes forcing data, runoff observations, ex-
cludes bias term and positivity constraints

Model 3 includes forcing data, runoff observations and
positivity constraints, excludes bias term

Model 4 includes forcing data, runoff observations and
bias term (without parameter uncertainty), excludes
positivity constraints

Model 5 includes forcing data, runoff observations, bias
term (without parameter uncertainty) and positivity
constraints

Model 6 includes forcing data, runoff observations and
bias term (with parameter uncertainty), excludes
positivity constraints

Model 7 includes forcing data and runoff observations,
bias term (with parameter uncertainty) and positiv-
ity constraints

Figure 3.1: Drainage direction of all cells within the test data
grid. The color indicates the flow accumulation (increasing
accumulation from lightblue to red). The green cell contains
a runoff observation.

In the next sections the test data is described and the influence of adding each component to the model

is discussed.

17
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3.1. Data description
The test data consists of a 10 x 10 grid, subdivided in 4 basins of 5 x 5 cells (Figure 3.1). The drainage direction

of every cell is indicated by an arrow and the flow accumulation (amount of upstream cells) by the cell color.

The green cell in Figure 3.1 is the location of the runoff observation (used in models 2 to 7). The basins have

different prior mean values for precipitation and evaporation, resulting in different prior local runoff in each

basin. The uncertainty of the data is described relative to the magnitude by the coefficient of variation (CV ,

Equation 2.3).

The CV in this hypothetical example is 20% for precipitation, 30% for evaporation and 5% for the runoff

observation. The prior distributions of these variables per basin, and the resulting local runoff, can be found

in Table 3.1.

Table 3.1: Prior values [m3/s] for precipitation, evaporation and local runoff

Precipitation Evaporation Local runoff

Basin µ σ µ σ µ σ CV
1 Upper left 10 2 8 2.4 2 3.12 1.56
2 Upper right 20 4 10 3 10 5.00 0.5
3 Bottom left 20 4 10 3 10 5.00 0.5
4 Bottom right 50 10 10 3 40 10.44 0.26

The basins differ from each other on the value of the forcing data and on the position with respect to the

runoff observation (upstream or downstream of the observation).

• Basin 1 has a low precipitation and evaporation, but in the same order of magnitude. This leads to a

local runoff with a low mean value µ, a low absolute uncertainty σ but a high relative uncertainty CV .

This basin is positioned upstream of the observed cell.

• Basin 2 has a precipitation which is much higher than the evaporation. This results in a higher runoff

than in basin 1, a higher absolute uncertainty but a lower relative uncertainty. Also basin 2 is upstream

of the runoff observation.

• Basin 3 has the same input data as in basin 2, but basin 3 is not at all connected with the rest of the

basins. This in order to indicate the transfer of information purely by means of bias (models 4 to 7).

• Basin 4 has a very high precipitation compared to the other basins. This leads to an even higher local

runoff and absolute uncertainty but a very low relative uncertainty. This basin is connected to basin 1

and 2 downstream of the runoff observation.

As mentioned above, the relative uncertainty of local runoff is high when the precipitation and evapora-

tion are in the same order of magnitude. The mean local runoff is the difference between the mean values of

precipitation and evaporation, while the variance σ2 of the local runoff is sum of the variance of the precipi-

tation and evaporation. This leads to a high value for the coefficient of variation

For all informed models (model 2-7), an accumulated runoff observation (µobs = 100 m3/s andσobs = 5 m3/s)

is added in the observed cell. This observation is much lower than the calculated accumulated runoff in

model 1 (µacc = 340 m3/s and σacc = 31.3 m3/s), to be able to clearly asses its effects.
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3.2. Effect of different model setups
In this section more information is added to the model. First the accumulated runoff observation is added.

The positivity constraints preventing negative variables are implemented next. Finally the bias is added to

the model, first without bias parameter uncertainty and later with bias parameter uncertainty.

The spatial influence of adding information is expressed in absolute change in the mean and standard

deviation compared with the prior (model 1), as well as in the relative information gain which is measured

by the Kullback-Leibler divergence (KL divergence). The KL divergence is a measure of relative difference

between the prior and the posterior distribution. The general formulation of the KL divergence is (Bishop

2006, p. 55):

K L(p||q) =−
∫

p(x) log q(x)d x −
(
−

∫
p(x) log p(x)d x

)
(3.1)

where q is the prior distribution and p is the posterior distribution. Let us denote the distributions as Gaus-

sian distributions p(x) =N (µ1,σ1) and q(x) =N (µ2,σ2). The KL divergence for two Gaussian distributions

is (Belov & Armstrong 2009):

K L(p, q) = log
σ2

σ1
+ σ2

1 + (µ1 −µ2)2

2σ2
2

− 1

2
(3.2)

3.2.1. Adding observations

Figure 3.2: Observation influence spreads to the upstream cells
(blue), the observed cell itself (green), and the downstream cells
(red). The lateral cells (black) are not influenced by the observation.

The influence of adding the observation can be di-

vided into three areas (Figure 3.2). There are the

cells upstream of the observations (blue), the ob-

served cell itself (green) and the stream downstream

of the observed cell (red). Cells on (lateral) side-

branches of the tree are not influenced (black).

After one iteration (a downward pass and an up-

ward pass) the result has converged. Only one it-

eration is needed because the graph does not con-

tain any cycles due to absence of the bias parame-

ters and approximations (positivity constraints).

Influence on accumulated and local runoff

In the observed cell the mean accumulated runoff

has dropped from 340 m3/s to 106 m3/s and the

standard deviation from 31.2 m3/s to 4.9 m3/s (Figure 3.3). This is a direct result of multiplying the prior

accumulated runoff by the observation, resulting in a posterior accumulated runoff (posterior variables are

denoted with an asterisk ∗). The resulting mean is an average of the prior and the observations, weighted

on both uncertainties (as described in Equation 2.19). The posterior uncertainty is always smaller than the

smallest prior uncertainty, as more knowledge is added.

The information propagates to the cell downstream of the observed cell. To keep the model consistent,

the flow accumulation (Equation 2.2) is applied again in the downstream cell with the new knowledge of the

observed cell. As the other inflows (other upstream neighbors and the local runoff) have not changed, the

accumulated runoff in the downstream cell will change with the same magnitude as the observed cell (in

terms of mean and variance). The local runoff downstream of the observation will not be influenced, which

can be seen in Figure 3.4.
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Figure 3.3: Effects of adding an observation on the accumu-
lated runoff. Model 1 (left) and model 2 (right)
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Figure 3.4: Effects of adding an observation on the local
runoff. Model 1 (left) and model 2 (right)

The gained information also propagates upstream. This means that the summed accumulated runoff

from the upstream cells of the observed cell plus the local runoff must equal the posterior accumulated

runoff in the observed cell as stated in Equation 2.2. The propagation of this information depends on the

uncertainty of the inflows. Because the local runoff has a small absolute uncertainty compared to the inflow-

ing accumulated runoff, the mean of the local runoff will decrease only slightly (in absolute sense) compared

with the mean of the accumulated inflow.

This process is repeated with the upstream neighbor cells. These cells now have an updated accumulated

runoff that influences their local runoff, and in turn their upstream neighbors’ accumulated runoff. With

every cell upstream a bit of the information dissipates into the local runoff, while the rest propagates further

upstream. The variance of the local runoff does not vary within the basins, which causes the decrease in

mean local runoff to be equal throughout the cells in each basin. This dissipation can be observed in the KL

divergence (defined by Equation 3.2), indicating information gain.

In cells where the mean value of the accumulated runoff was already low, the posterior mean can have a

negative value. This can be prevented with a positivity constraint, which is discussed in Section 3.2.2 and will

be added in the next section.

Not only the mean of the variables is influenced by the addition of the observation. As stated before, the

uncertainty in the observed cell has decreased by the addition of information. The accumulated runoff close

to the runoff observation also decreases, but with distance from the observed cell the effect dissipates as it

gets absorbed by the local runoff. The decrease of the standard deviation in the local runoff is very limited. In

Figure 3.4 the effect on the standard deviation is not visible as the difference is only in the range of decimals.
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Precipitation & Evaporation

The decreased local runoff in, and upstream of, the observed cell propagates into the forcing data. This causes

the mean precipitation to decrease and the mean evaporation to increase (Figure C.2a and C.2b in Appendix

C). The standard deviation in basin 1 is higher for the evaporation (Figure C.2f) than for precipitation (Figure

C.2e), therefore most of the change in mean local runoff propagates towards the evaporation dataset. In basin

2 the precipitation has a higher standard deviation, causing propagation of information mainly towards the

precipitation.

3.2.2. Adding constraints
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Figure 3.5: Effects of adding the constraints on the accumulated
runoff (top) and local runoff (bottom). Model 2 (left) and model 3
(right)

In the previous section, one of the mentioned side

effects of adding the observation is that the mean

accumulated runoff µ∗
acc becomes negative in some

areas of the model. In order to prevent the accumu-

lated runoff and forcing data to become negative,

positivity constraints are added besides the obser-

vation.

After applying the constraints, it is evident that

there are no more negative mean values in the accu-

mulated runoff (right top in Figure 3.5). The effect in

a constrained cell is twofold, as explained in Section

2.3.4. Firstly, the mean value in those cells will in-

crease, as can be seen in the top figures in Figure 3.5.

The other effect is a slight decrease in the standard

deviation of the accumulated runoff in constrained

cells due to truncation.

These two effects occurs throughout the model

where the accumulated runoff is negative or low

compared to the uncertainty (high CV ). In fact, all constrained distributions with a probability on negative

values are truncated and a new moment matched distribution is assigned to the variable. This new distribu-

tion might still contain probabilities in the negative domain. During a next iteration the variable constraints

are applied again. Especially in leaf cells, where the accumulated runoff is equal to the local runoff, the con-

straints influence the result. This is because the variance is high compared to the mean value. The mean value

of accumulated runoff in these cells is the difference in precipitation and evaporation (µacc =µloc =µP −µE )

while the variance is the sum of variances (σ2
acc =σ2

loc =σ2
P +σ2

E ).

The observation of the accumulated runoff still has to be matched. The accumulated runoff has increased

in the leaf cells of basin 1, so it needs to decrease somewhere else. This can be observed downstream in basin

1, where the local runoff becomes negative (bottom figures in Figure3.5). This decreases the accumulated

runoff in order to match the observation. The location where the local runoff will be negative will depend

on the water availability (accumulated runoff) and uncertainty of the local runoff. Regardless of the negative

local runoff in the downstream part of basin 1, the outflow of this basin has increased with the addition of the

positivity constraints. This increase will be compensated by a decrease of runoff from basin 2, which is less

effected by the positivity constraints (there is enough water available to decrease).

Unlike the model without constraints, this model cannot be solved using only 1 iteration. During the

downward pass the constraints do not have any effect as the mean value is well above zero. As the information

of the observation propagates upstream during the upward pass, the mean decreases and the constraints start



22 3. Model application using test data

effecting the variables. During the next iterations, information from the constraints propagates throughout

the model until consistency is reached.

The KL values are not necessarily higher compared to the observed model without constraints, even

though more information has been added. This is because the KL value depends on both change in mean

and variance. The constrains raise the mean values throughout the model, while the observation contradicts

this information and lowers the mean values. The uncertainty values are lowered by both the constraints and

observation.

3.2.3. Adding a bias term
The bias term accounts for unknown or unmodeled processes and represents the model structure uncer-

tainty. In this section a bias term is added to the observed model, without constraints and bias parameter

uncertainty (model 4). The influence of adding uncertainty to the bias parameter (model 5) is considered

next.

Bias in observed model, without parameter uncertainty, σµ,στ → 0
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Figure 3.6: Mean value of the local bias and accumulated runoff,
without parameter uncertainty (model 4). Due to the observation
a bias exists in the upstream area.

In the first application the bias term is added to

the observed model without parameter uncertainty.

This means that posterior values of the bias param-

eters are equal to the prior values. In other words,

the model will not influence the parameters. Effec-

tively this means that the factor fB is removed from

the factor graph (model 4, Appendix B).

The local bias Bi will have a prior value of

N (µµ, 1
µτ

) = N (0,100) and thus can be influenced.

In Figure 3.6a it can be observed that the area up-

stream of the observation has a posterior local bias

with a negative mean. This is because the observation is much lower than the prior accumulated runoff. The

local bias in the rest of the basin is not influenced and the mean remains zero.

The effect on the accumulated runoff (Figure 3.6b) is a higher decrease in mean value. Because more

uncertainty is added to the local runoff with the addition of the bias, the uncertainty in the accumulated

runoff increases. This gives more weight to the runoff observation compared with the prior accumulated

runoff.

Bias in observed model, with parameter uncertainty
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Figure 3.7: Mean value of the local bias and accumulated runoff,
with parameter uncertainty (model 6).

Uncertainty is added to the bias parameters by set-

tingσµ andστ to positive, non zero values (model 6,

Appendix B). The posterior parameters can now dif-

fer from the prior parameter, as added information

from the observation propagates through the local

bias to the bias parameters. The updated bias pa-

rameters now influence the local bias in all the cells

of the model. That the information about the bias

gathered in the upstream cells spreads out over the

whole basin, which can be observed in Figure 3.7a.

This effects the accumulated runoff is now not only upstream and downstream of the observation, but also

in the lateral connected cells in basin 4 and the completely disconnected basin 3 (Figure 3.7b).
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3.2.4. Effects of combining components
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Figure 3.8: Mean value of the local bias and accumulated runoff,
with parameter uncertainty and constraints.

In this section the interaction between observa-

tions, bias with parameter uncertainty and posi-

tivity constraints is analyzed. The observation de-

crease the runoff in the upstream area, causing a

negative local bias in parts of the upstream area

(Figure 3.8a). This local bias influences the bias

parameters, causing a negative mean bias parame-

ter µµ. The bias decreases the mean accumulated

runoff and increases the uncertainty in the runoff.

Both these effects cause constraints to have an effect

in a bigger area of the model (as opposed to Section

3.2.2, where the effect was mainly limited to basin 1). In basin 1, 2 and 3 the effect of constraints is noticeable

at the leaf cells where the constraints on the accumulated bias propagate to the bias, which is less negative or

even positive in these cells. The accumulated runoff shows a smoothened result of the accumulated runoff

in the area upstream of the observation (Figure 3.8b). This is due to the fact that the accumulated runoff is

constrained by the positivity constraints on one side, and the observation on the other side. Because the bias

has enough spatial variability, it adopts a value so that the accumulated runoff complies to all its constraints.

3.3. Influence of prior model parameters
Before running the model, the prior input has to be determined. The prior data uncertainty is set to be

relative to the mean value of the data. In the next sections the influence of the relative uncertainty and bias

uncertainty are discussed.

3.3.1. Influence of data uncertainty
The mean values for precipitation, evaporation and runoff observations will be from data sources in the next

chapter. The uncertainty of the data is entered in the model using 3 model parameters, the Coefficient of

Variance for the three data sets:

• Precipitation: CVP

• Evaporation: CVE

• Runoff observation: CVacc

Several conclusions can be made with respect to the value of these parameters. The most obvious con-

clusion is that a higher value of the CV (high prior uncertainty) results in a higher posterior uncertainty of

that same dataset. Secondly, a high prior uncertainty on one dataset causes this dataset to adapts more to

added information. For example, if the precipitation has a much higher absolute uncertainty than evapora-

tion, the precipitation will adapt more to the observation than the evaporation in terms of mean value. The

uncertainty of the observed accumulated runoff determines to which extent the model will adapt to these

observations, opposed to the calculated runoff from the forcing data. All these uncertainties are relative to

each other, if all the uncertainties increase, not much may happen to the result.

Finally when using constraints, a high uncertainty in the forcing data can cause a high accumulated runoff

because the constraint in each leaf cell re-projects the truncated Gaussian causing a relatively high mean

value for the accumulated runoff.
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3.3.2. Influence of bias parameters
In this section the influence of the model parameters is covered. The model parameters - enumerated below -

define the prior bias parameters according to Equation 2.7 and 2.8.

• Mean of the bias mean: µµ

• Variance of the bias mean: σ2
µ

• Mean of the bias precision: µτ

• Variance of the bias precision: σ2
τ

Mean of the bias mean µµ

The mean of the bias mean parameter is used to indicate prior knowledge about the bias. For example when

there is an overall increase in storage in the basin this parameter should be negative to compensate for the

storage term which is not modeled. If there is no knowledge about the general bias, this should be set to zero.

The data implies a bias (discrepancy between P−E and Qacc over the whole basin), defining the implied bias

(if the local bias Bi equals the implied bias, the prior accumulated runoff matches the runoff observations).

The posterior µ∗
µ has a value somewhere between the prior µµ and the implied bias. A prior µµ closer to the

implied bias strengthens the belief and reduces the posterior parameter uncertainty σ∗
µ.

Uncertainty of the bias mean σµ

The uncertainty of the bias mean indicates how sure one is about the µµ. If this parameter is high, the pos-

terior µ∗
µ can deviate more from the prior µµ, because is more sensitive to the data (implied bias). When

multiple observations are added, the implied bias in different parts of a basin is different. A higher uncer-

tainty of the mean will cause a higher spatial variation of the posterior local bias B∗
i .

Mean of the bias precision µτ
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Figure 3.9: Mean value of the local bias under changing mean bias
precision in model 7 (observed, constrained, bias with parameter
uncertainty)

The mean of the bias precision has a large influence

on the uncertainty of the local bias Bi . A lower mean

bias precision µτ results in a higher posterior vari-

ance of the local bias σ2∗
B ,i . A higher variance of the

local bias has as a result that the mean value of the

local bias is more sensitive to the gap in the local wa-

ter balance. In Figure 3.9 the mean bias is shown

with low and high mean bias precision µτ.

A low mean bias precision results in a higher

spatial variability of the mean local bias µ∗
B (and a

better fit to the other data). The average mean bias

in a cell deviates more from the prior µµ because it is more influenced by the model. A high precision results

in a mean bias µ∗
B which is spatially more smooth and closer to µµ.

Uncertainty of the bias precision στ

This parameter indicates the uncertainty of the µτ parameter and the extend in which the parameter can

change in the posterior with respect to the prior. As variances only decrease with the addition of information,

the posterior µ∗
τ will only increase compared with its prior. The στ indicates to which extend the uncertainty

will decrease based on the added data.
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3.4. Effect of model on posterior bias parameters
The prior bias parameters have a large influence on the posterior parameters, but also the model structure

and data has an effect on the posterior value of the parameters. In this section the influence of the runoff

observation and constraints on the bias parameters is explained.

The posterior mean of the bias meanµ∗
µ - in the case of a basin with one observation - is rather straightfor-

ward, assuming its prior value µµ is zero. If the observation is lower than the prior result, the µ∗
µ is negative .

With a higher observation than the prior result, the µ∗
µ is positive. The extend of deviation from zero depends

on the implied bias and the prior variance of the mean σ2
µ. A higher implied bias and variance allows for a

higher deviation from zero. With increasing uncertainty of the forcing data or observation data (higher CV

values), there will be a higher degree of adaptation of these datasets. A smaller bias is needed to close the

water balance, resulting in a small µ∗
µ. When multiple observations are added to the model, different areas

can have different implied biases. These areas will influence the µ∗
µ, considering the size of the area and the

uncertainty of the implied bias.

The posterior mean bias precision µ∗
τ is mainly influenced by the spatial variation of the bias. When the

bias is more or less uniform over the whole basin, the precision will be high. In case a model has multiple

runoff observations, implying different biases per sub basin will decrease the mean bias precision µ∗
τ . Pos-

itivity constraints can cause very local but high biases. This results in a high spatial variation in the bias,

causing the mean bias precision µ∗
τ to be low. In Figure 3.10 the value of µ∗

τ is shown after each iteration for

the test model with the original observation and an observation which closes the water balance (observation

matches the prior accumulated runoff, causing a posterior mean local bias µ∗
B of zero throughout the model).

Given an observation closing the water balance, results in a higher precision because our data enforces our

prior belief of the bias.
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Figure 3.10: Posterior value of the mean bias precision after each iteration for the closed (implied bias of zero) and non closed water
balance.

3.5. Convergence of different model structures
In this section the convergence of the different models is analyzed. The importance of factor scheduling is

addressed in the first section. The subsequent sections deal with the convergence using scheduled factors.

Using factor scheduling, models 1, 2 and 4 (forcing data, forcing data + observations, forcing data + observa-

tions + bias without parameter uncertainty) converge on the first iteration because those models do not use

approximations and there are no cycles in their factor graph.
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3.5.1. Factor scheduling
Scheduling of factors in a downward sweep and an upward sweep (discussed in the previous chapter) has a

big influence on the speed of convergence of the model.

The model (model 7, including positivity constraints and bias with parameter uncertainty) is first exe-

cuted in an unscheduled manner. This is done by using the Microsoft Infer.NET package, in which the rela-

tions between variables and factors are defined. The software package then executes all the message passing

automatically, but does not use the tree structure of the factor graph. The model starts solving one type of

factor in the first cell (left top of the model), going down the rows to the last cell (right bottom of the model),

before progressing to the next type of factor. This limits the propagation of information in the upward and

left direction, because those cells were already solved during the iteration and will only propagate the infor-

mation further in the next iteration.

Next, the model is executed without using the Infer.NET package but by manually implementing the mes-

sage passing and scheduling (downward and upward sweep). Figure 3.11 shows the accumulated runoff at

the outlet of the basin. The model with scheduling has almost converged after 10 iterations, while the un-

scheduled model needs several iterations only to propagate any information to the accumulated runoff at

the outlet of the model. After the first information reached the outlet, it takes another 80 iterations to ap-

proach the point of convergence.
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Figure 3.11: Convergence of the unscheduled (Infer.NET model) and the scheduled (manual model 7), shown by plotting the mean
accumulated runoff at the root cell.

With upscaling of the model the difference in needed iterations only grows. The model with factor schedul-

ing still propagates all information through the model in one iteration. The unscheduled model needs more

iterations just to propagate knowledge through the model before the solution can start converging.

3.5.2. Positivity constraints
As explained in the previous chapter, applying a positivity constraint does not always result in a variable

which has no probability on a negative value. In a next iteration of the model, the variable will be again

subject to the positivity constraint. The effect of this is observed in Figure 3.12, where the mean value of the

variable increases with each iteration, while the variance decreases.

This process starts with a rapid convergence but it slows down as the variable nears its convergence point.

The convergence process can take very long, but the difference with each iteration will become so small that

for the use in this model it can be considered converged. The influence of the constraints on the accumulated

runoff is depicted in Figure 3.13, which shows the absolute difference of the outlet runoff with respect to the

previous iteration on a logarithmic scale.
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Figure 3.12: Applying a positivity constraint multiple iterations on the same variable.
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Figure 3.13: Difference in outlet runoff compared to the previous iteration (model 3).

3.5.3. Bias with parameter uncertainty
Each cell in the model updates the bias parameters, which in turn updates the local bias in all other cells. The

update of a local bias due to the updated bias parameters will propagate towards the accumulated runoff.

This results in the updating of the local bias elsewhere in the model, which will update the bias parameters

again. This cyclic behavior results in a need for multiple iterations to converge to a solution. Just as with the

positivity constraints, the convergence speed is high at the beginning and slows down with every iteration.

Figure 3.14 shows the difference in outlet runoff compared to the previous iteration. After a rapid decrease of

the influence, a logarithmic decrease of the difference is observed. Note that the addition of bias parameter

uncertainty results in a slower convergence compared to the addition of the positivity constraints.
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Figure 3.14: Difference in outlet runoff compared to the previous iteration (model 6).





4
Model application using real data

In the previous chapter, different model structures and the influence of model parameter influences was

analyzed. In this chapter, previously gained knowledge is applied on the Volta basin (Appendix A). The runoff

in the basin is monitored at 10 runoff locations.

The data used for the model and the data processing methods are outlined in Section 4.1. The quantifica-

tion of uncertainty of the different data sets is described in Section 4.2. The results of implementing different

model components is described in Section 4.3, followed by the influence of bias uncertainty in Section 4.4.

4.1. Data description
The datasets which are used in this research are described in Section 4.1.1. In order to use the data several

processing steps are performed, which are described in Section 4.1.2.

4.1.1. Data sources
For the setup of the model as described in Chapter 2, 5 data sources are needed. The first two data sources

are the spatially distributed forcing data precipitation and evaporation. The third dataset contains point mea-

surements of the river runoff. The fourth data source is the Digital Elevation Model, in order to accumulate

the local runoff downstream and connect the previously described datasets. Finally a land cover map is used

to identify open water.

Precipitation: CHIRPS

The Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) is a precipitation data product

combining long-time averages, infra-red observations, ground precipitation observations, remote sensing

precipitation data (Tropical Rainfall Measuring Mission, TRMM), and atmospheric model data (Funk et al.

2014). Its coverage is quasi-global (50°S–50°N), with a spatial resolution of 0.05°(≈ 5km at the equator). The

temporal resolution ranges from daily (for Africa 6 hourly) to annual, containing data from the year 1981 to

present.

Actual evaporation: CMRSET

The CMRSET dataset is a scaled dataset derived from the MOD16 ET algorithm dataset by Mu et al. (2011)

for actual evaporation (Guerschman et al. 2009). It contains monthly estimates for Actual Evapotranspiration

29
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(AET).

River runoff: GRDC

The river runoff observations are retrieved from the Global River Discharge Centre (GRDC) archive. The

GRDC operates under the World Meteorological Organisation (WMO) and is hosted by the German Federal

Institute of Hydrology (Bundesanstalt für Gewässerkunde 2014). Its international data archive contains over

200 years of river discharge data, a total of more than 9000 stations collecting daily or monthly data.

Digital Elevation Model: GMTED2010

In order to derive the flowpaths, the Digital Elevation Model (DEM) Global Multi-resolution Terrain Elevation

Data 2010 (GMTED2010) is used, a product from the United States Geological Survey (USGS) and National

Geospatial-Intelligence Agency (NGA) . It is available in 30, 15 and 7.5 arc-second resolution and is derived

from 11 datasets of which the SRTM Digital Terrain Elevation Data is the most important (Danielson & Gesch

2011). For this study the 30 arc-second resolution(≈ 1km at the equator) is used as this is already a higher

resolution than the precipitation and evaporation data. An even higher resolution would increase the amount

of cells in the model and the amount of stations that needs correction (Section 4.1.2.

Land cover

For the identification of lakes (which will be used further on in this chapter) the 0.5 km MODIS-based Global

Land Cover Climatology (Broxton et al. 2014) is used. This global map with a resolution of 15 arc seconds

classifies each grid cell as one of 17 classes, of which open water is one.

4.1.2. Data processing
In order to prepare the data for use in the model several operations are performed. The following data pro-

cessing steps are executed using 3 open source software packages: GRASS (GRASS Development Team 2012),

QGIS (QGIS Development Team 2015), and R (R Core Team 2015).

Averaging of Precipitation, Evaporation and Discharge measurements

The precipitation and evaporation datasets contain monthly estimates. Per year the monthly data is summed

resulting in a yearly precipitation and evaporation. This is then averaged over the period from the year 2000

up to and including the year 2012. This time frame was chosen because all datasets contain sufficient data in

this period. The local water balance in this model uses the precipitation and evaporation variables in m3/s.

Therefore the data products which are in mm/y are converted accordingly:

Xm3/s = Xmm/y ∗ Ai ∗C (4.1)

where Xm3/s is the variable of interest in volume per second [m3/s], Xmm/y is the variable of interest in depth

per year [mm/y], Ai is the surface area of a cell [m2] (cells have different surface areas depending on their

geographical coordinates as the resolution is in radian degrees), and C is the conversion constant [ m
mm

y
s ] that

converts the millimeters to meters and the year to seconds.

The river runoff measurements contain monthly values per station. More data gaps exist in this data.

An average of the available months is used in order to calculate a long term average. Depending on the

measurement station, 31 to 86 months (out of 156 months) were used to calculate the average yearly value.

From digital elevation model to flow direction map

In order to build a drainage direction map from the digital elevation model, the flow direction of each cell

is determined. This is done by using the D8 algorithm. For every cell, the neighbor (one of the 8 adjacent
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cells) with the lowest elevation is considered the receiving cell and all the water from the current cell will flow

towards that neighbor. If a cell is surrounded only by neighbor cells which all have a higher elevation, this cell

is called a pit. The pit is a local depression and all the water flowing towards this cell would disappear from

the catchment. In order to prevent this, the cell is raised to the level of its lowest neighbor and it will drain

in the direction of this neighbor. The result will be a raster map containing the flow direction of every cell,

starting at 1 for the east direction, going counterclockwise until 8 for southeast.

Re-sampling grids

The precipitation and evaporation dataset have a resolution of 0.05 °, the DEM has a 30 arc-second resolution

(= 0.0083333° ≈ 1km at equator) and the land cover has a 15 arc-second resolution. The data is re-sampled

in order for the grids to have the same resolution and origin as the DEM data. This is done by using the

Nearest Neighbor Resampling algorithm. This results for every cell of precipitation and evaporation in 36

cells containing the same value, slightly shifted with perspective to the larger original cell as is depicted in

Figure 4.1.

Figure 4.1: Re-sampling grid cells using the nearest neighbor algorithm. On the left: large red cell belongs to the precipita-
tion/evaporation grid, small black cells belong to drainage direction grid. Origins and resolution do not match. On the right: red cell was
shifted and split into smaller cells to match the raster of the drainage direction

Correction of observation stations

Not all measurement station the GRDC archive have well specified locations. Often the latitude and longitude

coordinates are documented with only 2 decimals which can induce an error of about 1 kilometer. Moreover,

errors in the steam network (from the DEM) result in a difference between the calculated position and the

real position of the river. This can be observed in Figure 4.2, where the calculated flow approximates the

real position of the river, but the measurement station (red circle) is not positioned in the calculated flow.

Fortunately, for each station the name of the river which is measured is documented, allowing for manual

correction using OpenStreetMap as a background map.

Using the D8 algorithm, flows can only converge. In reality flows do sometimes diverge naturally or by

man made structures. Canals can withdraw water from the river and discharge it again further downstream

or into a different river. If discharge measurement stations clearly observe only part of the flow (a side canal),

they should be excluded in order to get the best results.

When two rivers are in each others proximity there is a chance that the D8 algorithm makes a false cross-

over, as is shown in Figure 4.3. As a consequence, the accumulated runoff is assigned to the wrong river.

The error induced by this effect is only resolved at the point where the rivers converge. Runoff observations

between the cross-over and the point where these two rivers converge would introduce errors and should be

excluded from the model.
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Figure 4.2: The calculated stream does not exactly
match the river, causing an error if the location of the
observation station (red circle) is not moved accord-
ingly. Background: ©OpenStreetMap contributors

Figure 4.3: The calculated stream does follows the
stream from the right-bottom corner, but at the bend
in the river it makes a cross-over to another river.
Background: ©OpenStreetMap contributors

Not constraining accumulated runoff in lakes

Figure 4.4: Flow accumulation in a lake. Background:
©OpenStreetMap contributors

The stream calculated by the D8 algorithm is only one cell wide.

When a river enters a lake (or any other flat plain), a one cell

wide path to the outlet of the lake is created. The other cells

covering the lake are lateral inflows to this stream, as is shown

in Figure 4.4.

The evaporation in lakes is often higher than precipitation

because of the open water and water availability, which of-

ten causes a negative local runoff in the cells covering a lake.

Considering that the lateral streams in the lake contain cells

with a negative local runoff, the accumulated runoff of these

branches will also be negative. By constraining these cells

the lakes’ withdrawal (due to the negative local runoff) of the

stream becomes a discharge.

To prevent this effect from happening an exception to the

accumulated runoff constraint is added to cells which are clas-

sified as open water in the land use dataset. The lateral inflows will be able to have a negative accumulated

runoff it becomes possible to withdraw water from the stream.

4.2. Uncertainty quantification
Documented quantification of uncertainty of the datasets is often ambiguous, as sometimes an absolute

range is given (mm/month, as is the case with the TRMM data), sometimes relative to the measured value.

In many cases these values indicate the uncertainty in the 95% confidence interval, but this is not always

communicated.

4.2.1. Precipitation uncertainty
The TRMM dataset includes an absolute error (in mm/month). As the CHIRPS dataset (which does not in-

clude an error estimation) is based on the TRMM, the TRMM error estimation will be used as an indicator for

the magnitude of uncertainty in the CHIRPS dataset.

For the Volta basin the average relative error (CV = σ
µ ) is 3.2%. In recent studies by Karimi (Karimi &
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Bastiaanssen 2015, Karimi et al. 2015) the Mean Average Percentage Error (MAPE) on precipitation products

was found to be 18.5%. Although MAPE is not directly related to the standard deviation, it indicates a higher

uncertainty than the TRMM uncertainty suggests. The validation papers used in the literature study of Karimi

report a deviation of TRMM data between 0 and 64%. In other words, there is not much certainty about the

uncertainty.

4.2.2. Evaporation uncertainty
The CMRSET dataset for evaporation does not include a quantification of uncertainty either. Research has

been conducted for validation of the MOD16 data product, of which CMRSET is a scaled version. It is assumed

that the uncertainty of the two data sets does not differ much. Velpuri et al. (2013) reports an uncertainty of

25% in the MOD16 actual evaporation dataset. The literature is not clear about the definition of uncertainty,

therefore it is assumed to be the deviation from the mean at a 95% confidence interval. Assuming a normal

distribution the Coefficient of Variance can be calculated:

µ±1.96σ=µ±0.25%µ

1.96σ= 0.25µ

CV = σ

µ
= 0.25

1.96
≈ 0.13

(4.2)

According to the literature study of Karimi & Bastiaanssen (2015), on average the accuracy of the evapo-

ration products is higher than those of precipitation products. The MODIS product has a MAPE ranging from

0.6% to 18% with a mean of 6%. Again, as is the case with the precipitation, there is no real consensus about

the uncertainty of the evaporation dataset.

4.2.3. Runoff observations uncertainty
The same principle is applied to the runoff observations. The exact method for the collection of the data in the

GRDC river runoff dataset is not known. Quantification of uncertainty of individual discharge measurements

is in the range of 5-20% (Herschy 2009). Rating curves are often used to determine runoff based on water level

observations. Di Baldassarre & Montanari (2009) investigated the uncertainty induced by these rating curves

using a 1D model of the Po river in Italy. The global uncertainty (combining measurement and rating curve

uncertainty) was found to be 25.6% at the 95% confidence interval on average. Applying equation 4.2 again,

it leads to a CV of 0.13.
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4.3. Implementation of the model
In this section the model is applied on the Volta basin and the results are shown. The influence of different

components of the model is discussed. The estimations of data uncertainty discussed in the previous section

are used, together with an estimate of the bias parameters, all of which can be found in Table 4.1. The model

parameters concerning the bias are chosen for the following reasons:

• µµ: no information about a prior bias is available

• σ2
µ: allows posterior bias mean to deviate from prior, but it should not account for too much of the

adaptation due to observations

• µτ: adds uncertainty to the local water balance but it should not be the main source of uncertainty. Still

small compared to forcing data uncertainty

• σ2
τ: causes the shape parameter of the Gamma distribution of the precision to be 1, allowing the bias

precision to approach zero

Table 4.1: Model parameters

Coefficient of Variation Bias parameters

Precipitation Evaporation Observation µµ[ mm
y ] σ2

µ[ mm
y

2] µτ[ mm
y

−2] σ2
τ[ mm

y
−4]

3.2% 13% 13% 0 100 0.01 0.0001

In the first section the prior results are calculated, adding forcing data but no observations, bias and pos-

itivity constraints (model 1). In the following sections, the effect on the results caused by the different model

components is shown. Note that in those sections, the graphs show the difference in mean value of the vari-

able in respect to the prior results. An overview and additional graphs regarding the standard deviation can

be found in Appendix D. The results for the local runoff, precipitation, evaporation and bias are converted to

a more comprehensible mm/y .

• Model 2: Forcing data + observations

• Model 6: Forcing data + observations + bias (with parameter uncertainty)

• Model 7: Forcing data + observations + bias (with parameter uncertainty) + positivity constraints

4.3.1. Prior
The prior values of each variable are shown in Figure 4.5. The prior is the result of the model where only

forcing data is added to the model and propagated to the local runoff and accumulated runoff. The locations

of the runoff observations, that will be added in the next models, are indicated with black circles.

In the mean local runoff (Figure 4.5b), Lake Volta in the south can be clearly identified, due to its high

negative local runoff due to high values of open water evaporation (see Figure A.1 for a geographical map of

the Volta basin). Just north-west and south-east of Lake Volta there are two area’s with a negative local runoff

due to higher levels of evaporation than precipitation. This leads to a negative accumulated runoff (Figure

4.5a). When applying positivity constraints in model 7, these area’s will be prone to high changes in variable

values.
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(d) Prior mean evaporation

Figure 4.5: Prior mean values for a) accumulated runoff, b) local runoff, c) precipitation, and d) evaporation. The circles indicate the
position of the runoff observation stations.

4.3.2. Model 2

In this model the observations are added, which are lower than the prior data suggests. In the accumulated

runoff the influence of these observations results in a decrease in the mean value in the whole upstream

area (although the effect mainly occurs in the bigger streams as the uncertainty there is larger) and the river

downstream (Figure 4.6a). The decrease is rather small, as the uncertainty on the accumulated runoff at the

observation stations is lower than the uncertainty of the runoff observation itself. Due to the addition of

information by means of runoff observations, the uncertainty in the accumulated runoff decreases slightly.

In the local runoff and forcing data the influence only occurs upstream of the observation (Figure 4.6b).

The effect on precipitation and evaporation (Figures 4.6c and 4.6d) is of different extend in each region

upstream of an observation depending on the runoff observation. Also within each upstream sub catchment,
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which has to do with the fact that in each cell the variance is relative to the value. A higher variance results

in a higher adaptation to the observation. This is also the reason why the evaporation adapts much more

to the lower observations than the precipitation, as the variance on the evaporation is higher than on the

precipitation.

The standard deviation σ in these variables hardly decreases. This is because the small decrease in vari-

ance σ2
acc in accumulated runoff is divided over all upstream cells, resulting in an even smaller decrease in

standard deviation.
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(d) Difference in mean evaporation

Figure 4.6: Difference in mean value with respect to the prior for all the variables after adding observations (model 2)
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4.3.3. Model 6
The bias is added to the local water balance. In essence, the bias adds uncertainty to the local water balance

and consequently will increase the uncertainty in the local runoff and accumulated runoff. This results in a

higher decrease of those variables, compared with model 2 (Figures 4.7a and 4.7b). At the local water balance

this adaptation to the observations is partly absorbed by the bias, resulting in a smaller difference in the

precipitation and evaporation (Figures 4.7c and 4.7d).

In the cells upstream of the observations, the local bias becomes negative as the local runoff decreases.

This updates the knowledge about the bias parameters. Due to the updated bias parameters, the local bias

in the area downstream of the observations will also become negative (Figure 4.7e) resulting in a decrease of

the local runoff in that area.

4.3.4. Model 7
Finally the positivity constraint is added on top of the observations and bias. In contrast with the previous

results, an increase in accumulated and local runoff is observed compared with the prior results. This effect is

caused at the cells in which the positivity constraint increases the accumulated runoff. The increase in accu-

mulated runoff propagates into the increase of the local runoff. Further propagation into the local bias takes

place, resulting in updated bias parameters. During the model run the bias parameter µµ becomes positive,

which will influence the local bias in other cells. This results in an overall increase of local runoff (although

the influence of the observations can still be seen, Figure 4.8b) and therefore also an increase in accumulated

runoff (Figure 4.8a). Although the bias absorbs some of the increase in local runoff, the precipitation and

evaporation adapt to a high degree to the change in local runoff 4.8c and 4.8d.

When taking a closer look on the spatial distribution of the bias (Figure 4.8e), a higher bias is observed in

the regions where the prior local runoff was negative, and around Lake Volta. Apparently, the data suggests

a negative local runoff where there is no water available. This could be the result of faulty precipitation and

evaporation data, or suggest that the used water balance does not represent the processes in a good way. The

areas with a negative local runoff according to the precipitation and evaporation data could be fed through

ground water flows or irrigation, where water is pumped from the ground water or nearby rivers or lakes

causing a higher evaporation then naturally would be possible.

The high bias due to constraints around lake Volta has two explanations. The first reason is that the orig-

inal evaporation data has a courser resolution than the digital elevation model. This means that the original

pixel of the evaporation product overlaps model cells which represent open water but also cells which rep-

resent land. In the cells representing land, the evaporation is still in the same order of magnitude as the

evaporation above the water. Even outside of the influence of these courser cells constraining is observed

through a higher bias, which can be explained by ground water flows from the lake to the cells that cover the

flat plains around the lake.
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Figure 4.7: Difference in mean value with respect to the prior for all the variables after adding observations and bias (model 6)
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Figure 4.8: Difference in mean value with respect to the prior for all the variables after adding observations, bias and positivity constraints
(model 7)
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4.4. Bias uncertainty influence
As described in the previous chapter, the mean bias precision parameterµτ is an indicator for spatial variation

of the local bias. A lower precision results in a higher variance of the local bias. A higher variance allows the

local bias to be more influenced by the data received from the model. First the influence of this parameter

on the model without positivity constraints is considered, followed by the model containing the positivity

constraints.

4.4.1. Model without positivity constraints
The prior mean bias parameter µµ is set to zero and the observations are lower than the prior data. A small

bias uncertainty of the bias results in:

• A posterior µ∗
µ close to its prior.

• A small spatial variation of the mean local bias.

• Overall a better match between the model results and the runoff observations compared to the model

without bias. Due to limited spatial variation, the match between the model result and observed runoff

may worsen. Example: when all but one runoff station observe a lower runoff than the prior, the µµ pa-

rameter will be negative. Because of a low mean bias precision, the local bias will also become negative

even though the runoff observations suggests otherwise. As a result the accumulated runoff decreases

compared to the prior result, causing a worse fit to the runoff observation.

Increasing the bias uncertainty results in:

• A posterior µ∗
µ further from its prior.

• A higher spatial variation of the mean local bias.

• The result at some observation stations match better with the observation due to a higher (negative)

bias. Some stations which were already matching well at a lower bias uncertainty now match less well.

This is because the increase in mean bias can not be compensated by the increased spatial variation.

Increasing the bias uncertainty even further causes overfitting:

• A posterior µ∗
µ close to its prior.

• A very big spatial variation of the bias.

• Results at all observation station match very well because the local bias will adapt to a high degree to

the runoff observations due to the high uncertainty.

4.4.2. Model with positivity constraints
When the constraints are added, the bias variance influences the results through another mechanism. This

has to do with the moment matching of the constrained variables. A higher variance in accumulated runoff

means that constraints increase the mean value more. This is illustrated using the following examples.

Using a low bias uncertainty, effects on the constrained model results are:

• Even though the observations are lower than the prior result, the posterior µ∗
µ is positive. This is a result

of the constraints which increase the local bias, which in turn updates the bias parameters.
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• Throughout the model the local bias is positive, which increases the local and accumulated runoff.

• Observations match less well compared with the unconstrained model which is a result of the increase

in accumulated runoff.

Adding more bias uncertainty:

• A lower bias precision µτ causes a higher variance in the local bias and therefore in the local runoff and

the accumulated runoff. Due to the higher variance in the accumulated runoff, the constraints have a

higher increasing effect on the mean of the constrained variable. This results in a higher local bias and

in turn in a higher posterior µ∗
µ.

• Accumulated runoff matches even worse with the observed runoff at most observation locations.

Overfitting due to too high bias uncertainty:

• Very high uncertainty in the local bias leads to an extreme effect of the constraints in all cells that have

a low accumulated runoff, resulting in an extremely high mean local bias.

• The high bias uncertainty allows for a high spatial differentiation of the bias. Because the accumulated

runoff has to match with the observations, the bias in the larger flows has an extreme negative value

decreasing the accumulated runoff.

• The posterior µ∗
µ has decreased again, compared to the previous result.

• At the runoff observation locations, the accumulated runoff matches well with the observed runoff.
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Figure 4.9: Results of adding bias uncertainty and overfitting.

Although the accumulated runoff matches better with the observed runoff when the bias uncertainty is

high (Figure 4.9a), the bias uncertainty parameter is now so large that the posterior results of the mean bias

are unrealistic as is shown in Figure 4.9b. This results in a very chaotic accumulated runoff which is very high,

far away from runoff observations, but decreases towards these stations to match the runoff observation.

In order to prevent overfitting a validation step can be conducted. This can be done by removing a runoff

observation and executing the model. If there is no overfitting, the accumulated runoff should still more or

less match with the removed runoff observations. When over fitting occurs, the accumulated runoff will not

match with the removed runoff observation.





5
Conclusions

Over the course of the previous chapters insight is gained on how probabilistic modeling works and how some

hydrological processes can be described. In this chapter the conclusions regarding the research question ’how

to provide a spatial estimate of the runoff and the uncertainty in the water balance using a probabilistic graph?’

are discussed.

Spatial estimation of the accumulated runoff
The structure of a factor graph represents the model structure which consists of physical knowledge. By

supplying this graph with estimations of forcing data and runoff observations (observed variables which are

Gaussian distributed) and and solving it by means of message passing, the unobserved variables can be de-

termined. The result is a posterior estimation for the true accumulated runoff in each cell of the distributed

model. The posterior estimation includes all prior data (forcing data and runoff observations) as well as the

physical knowledge (water balances, positivity constraints).

In the streams in the vicinity of runoff observations, the uncertainty of the estimation decreases due to

the addition of knowledge from the observations. In the example applied in this research this influence is

small and dissipates fast as the distance to the runoff observation increases.

Including sources of uncertainty
In this research, uncertainty was successfully added to the four components of the model (forcing uncer-

tainty, model structure uncertainty, parameter uncertainty, validation data uncertainty). The introduction of

uncertainty in the forcing data enables the model to make use of different data sources, regardless of their

quality, as long as the uncertainty is well assessed.

Moreover, the model can be easily ’calibrated’ using different measurements. The uncertainty of runoff

observations depends on the method used to estimate the runoff. More precise methods of runoff estimation

will have a higher influence on the model result. Given the increase of available hydrological data, probabilis-

tic modeling is the way forward in order to incorporate more of the available data.
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Propagation of information to all data
The focus in this research was to achieve a spatial estimation of the accumulated runoff, which was done by

combining forcing data, runoff observations and physical knowledge (water balance and constraints). Not

only was the accumulated runoff estimated, the belief about the precipitation and evaporation data was up-

dated at the same time. This is a form of data assimilation and can improve the knowledge of this data, by

using the physical knowledge combined with other data sources.

The bias as a spatial estimation of the water balance error
The posterior bias gives an indication of how well the prior data fits with the observations and the positivity

constraints. The closer the posterior mean bias in a cell is to the prior mean bias (zero in this case), the better

the applied water balance represent the processes occurring in that cell. Upon investigation of the bias in the

Volta basin, a higher bias is found in three regions. These regions are either relative dry and in the vicinity of

a large river, in the flat planes around lake Volta and in the delta area close to the mouth of the river. These

local differences in bias are induced by the positivity constraints. This means that the model suggests that not

enough water is available to evaporate, causing a higher value for the bias. This can be interpreted as faulty

data or a bad representation of the processes.

In this case, both are the case. The resolution of the evaporation data is rather course compared with

the elevation dataset. This causes that a pixel of the evaporation overlaps both water and land, causing high

evaporation values over land. But also outside the influence of the courser resolution we see a higher bias due

to positivity constraints because of available water limitations. The most probable explanation for the high

bias is the absence of ground water flows in the model. All regions with a high bias are close to a large water

body from which ground water can flow to the cells that are currently subjected to positivity constraints.

Including ground water flows in the model could reduce the bias, improving the model.

Spatial distribution of uncertainty
Another strength of this model is the spatial distribution of uncertainty. By combining multiple observations

and physical constraints, an insight in the quality of data in different areas of the basin can be gained. If the

prior accumulated runoff matches well with the runoff observation, uncertainty in the upstream forcing data

will decrease more, compared to the case where the accumulated runoff does not match well with the obser-

vation. The spatial distribution of uncertainty can provide us with knowledge about the performance of data

products in different regions, for example if a satellite precipitation product performs well in a mountainous

area compared to flatlands. Unfortunately only a small influence of the runoff observations on the uncer-

tainty of other data was found, especially with respect to the influence of the positivity constraints, which

reduce uncertainty greatly when applied.



6
Recommendations

During the research several problems were encountered which can have an influence on the model quality.

This chapter addresses these issues and the recommendations for future research.

Positivity constraints and representation of constrained variables
The positivity constraints used in this research did not always show the intended effects. When constraining,

the result is a symmetrical Gaussian with an increased mean value and a decreased variance in order to pre-

vent the probability on a negative value. This causes that the probability on a constrained variable close to

zero is very low. While in the used basin this poses no problems for precipitation and evaporation (they do

not approach zero), it does so for the accumulated runoff in regions with a low local runoff. An area with a

prior mean precipitation and evaporation which are equal implies that there is no runoff from this area, but

by constraining this variable the probability of zero runoff is almost non existent.

A better choice for the representation of those variables would be a Gamma distribution. This distribution

has zero probability in the negative domain and does not need to be constrained. A Gamma distribution can

have its highest probability at zero, decreasing in probability as the variable value goes up. When the variable

mean is close to zero it will show an asymmetric distribution, but as the mean value increases compared to

the variance, it will approach the Gaussian distribution.

The problem with the Gamma distribution is that accumulation of independent Gamma distributions

do not provide a new Gamma distribution but can be approximated (Murakami 2015). This research was

conducted to explore the possibilities of the framework of graphical models in runoff modeling, therefore the

less complicated and exact Gaussian distribution was used.

Quantification of uncertainty
During the literature study it became clear how hard it is to gather information about the uncertainty of data

sets. Some data sets do not report any uncertainty, others report it in many different quantities which can not

easily be compared with one another. More research should be conducted for a better quantification of the

data uncertainty.

In this research the uncertainty was considered to be relative to the mean value of the variable. The

strength of this model is that it can include a spatially distributed uncertainty, which can be used to improve
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the model results. Satellite precipitation estimates in mountains can be more uncertain (due to high spatial

variation of precipitation) then estimates in flat plains where point measurements are used to calibrate and

validate the data. This spatial variation of uncertainty can be incorporated using the model used in this

research.

Convergence with increasing graph complexity
The introduction of approximations and cycles into the model increases the amount of iterations needed

to converge. Since this model uses mostly linear relations (local water balance and flow accumulation), the

amount of iterations is still manageable. When using non-linear relations, the model will apply more approx-

imations resulting in a slower convergence.

Many hydrological models use time steps to calculate time series, where variables in time step t +1 are

dependent on variables in time step t . This could be visualized by one factor graph per time step, plus factors

connecting the dependent variables in both graphs. If there are multiple connections between the two time

steps, this causes additional cycles in the factor graph. These extra cycles will require the model to iterate

more often in order to converge.

Uncertainty in the Digital Elevation Model
One source of uncertainty which is not included in this research is the uncertainty of the Digital Elevation

Model. The DEM is the base for the structure of the factor graph and its uncertainty can not be included in

the model. If uncertainties in the DEM lead to errors in the flow direction map this means that the knowledge

is not propagated in the right way.

Examples are the cross-over of the flow path to a different river and divergence of flows as discussed in

Chapter 4. The former can be corrected manually, the latter could also be implemented manually, however

the proportionality of the divergent flows has to be estimated, which introduces a new source of uncertainty.
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A
Basin description

Figure A.1: Geographical map of the Volta basin ©OpenStreetMap
contributors

In this research the Volta basin is used to investi-

gate how the model performs using a real basin and

which conclusions can be drawn from it. The basin

is located in West Africa and spans almost 400,000

km2 over six countries (Mali, Burkina Faso, Benin,

Togo, Ivory Coast and Ghana). There are 10 runoff

observation station located throughout the basin

that collect monthly data of the discharge.

An important water body in the basin is Lake

Volta, located in the south. The lake can have a

change of water storage over the long term data, but

as all runoff observations are positioned upstream

of the lake it should have no effect on the model.

The Volta has bi-modal rainfall pattern climate,

semi-arid sub-humid savanna (Andah et al. 2003).

This causes some streams to dry up during parts of

the year. Because long term averages are used this

does not pose a problem for the model.

Several data products for precipitation and ac-

tual evaporation were examined on the average

value in the Volta basin (Table A.1). The examined

precipitation products do not differ that much, but

the evaporation products do. When applying the

water balance with different data products, and cal-

culating the total runoff from the basin, the results

show a large variation in total runoff (Table A.2)

A1



A2 A. Basin description

Table A.1: General information of the Volta basin

Area [km2] 394,196
Amount of discharge stations [-] 10

Station density [1/km2] 39,420

Precipitation [mm]
CHIRPS 995

TRMM 1,010

Evaporation [mm]
CMRSET 744

FAO 856
MOD16 961

Table A.2: Discharge at the mouth of the river by combining
different data products

Discharge at mouth [m3/s]

Precipitation

E
va

p
o

ra
ti

o
n CHIRPS TRMM

CMRSET 3,137 3,325
FAO 1,737 1,925

MOD16 425 612



B
Different model setups: Factor Graphs

B1



B2 B. Different model setups: Factor Graphs

Figure B.1: 6 connected cells with each a different factor graph, representing a different model structure. In the top row from left to right
model 2, 3 and 4. On the bottom row model 5, 6 and 7.
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Different model setups: Results of testdata
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C2 C. Different model setups: Results of testdata

C.1. Model 1
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Figure C.1: Model 1, uninformed, unconstrained, unbiased
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C.2. Model 2
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Figure C.2: Model 2, informed, unconstrained, unbiased



C4 C. Different model setups: Results of testdata

C.3. Model 3
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Figure C.3: Model 3, informed, constrained, unbiased
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C.4. Model 4
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Figure C.4: Model 4, informed, unconstrained, bias without parameter uncertainty



C6 C. Different model setups: Results of testdata

C.5. Model 5
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Figure C.5: Model 5, informed, constrained, bias without parameter uncertainty
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C.6. Model 6
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Figure C.6: Model 6, informed, unconstrained, bias with parameter uncertainty



C8 C. Different model setups: Results of testdata

C.7. Model 7

0

20

40

60
m3 s

(a) Precipitation Mean

−5

0

5

10

15

20
m3 s

(b) Evaporation Mean

0

20

40

60
m3 s

(c) Local Mean

0

300

600

900

1200
m3 s

(d) Accumulated Mean

−5.0

−2.5

0.0

2.5

5.0
m3 s

(e) Bias Mean

0

1

2

3

4

5
m3 s

(f) Precipitation SD

0

1

2

3

4

5
m3 s

(g) Evaporation SD

0

5

10

15

20
m3 s

(h) Local SD

0

10

20

30

40

50
m3 s

(i) Accumulated SD

0.0

2.5

5.0

7.5

10.0
m3 s

(j) Bias SD

0.00

0.25

0.50

0.75

1.00
[−] 

(k) Precipitation CV

0.00

0.25

0.50

0.75

1.00
[−] 

(l) Evaporation CV

0

10

20

30
[−] 

(m) Local CV

0.00

0.25

0.50

0.75

1.00
[−] 

(n) Accumulated CV

0

10

20

30
[−] 

(o) Bias CV

0.00

0.25

0.50

0.75

1.00
[−] 

(p) Precipitation KL

0.00

0.25

0.50

0.75

1.00
[−] 

(q) Evaporation KL

0

1

2

3

4

5
[−] 

(r) Local KL

0

5

10

15
[−] 

(s) Accumulated KL

Figure C.7: Model 7, informed, constrained, bias with parameter uncertainty



D
Results on Volta: figures

D1



D2 D. Results on Volta: figures

●

●
●

●●

●

●

●
●

●

7.5

10.0

12.5

15.0

−4 −2 0 2
Longitude

La
tit

ud
e

0

1000

2000

3000

µacc [m
3 s]

(a) Mean accumulated runoff model 1, grey areas indicate a
negative value

●

●
●

●●

●

●

●
●

●

7.5

10.0

12.5

15.0

−4 −2 0 2
Longitude

La
tit

ud
e

−10

−5

0

5

10

∆µacc [m
3 s]

(b) Difference of mean accumulated runoff in model 2,
compared with model 1

●

●
●

●●

●

●

●
●

●

7.5

10.0

12.5

15.0

−4 −2 0 2
Longitude

La
tit

ud
e

−40

−20

0

20

40

∆µacc [m
3 s]

(c) Difference of mean accumulated runoff in model 6,
compared with model 1
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Figure D.1: Mean accumulated runoff
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Figure D.2: Standard deviation accumulated runoff
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(b) Difference of mean local runoff in model 2, compared
with model 1
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(c) Difference of mean local runoff in model 6, compared
with model 1
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(d) Difference of mean local runoff in model 7, compared
with model 1

Figure D.3: Mean local runoff
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(c) Difference of SD local runoff in model 6, compared with
model 1
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Figure D.4: Standard deviation local runoff
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(a) Mean precipitation runoff model 1
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(b) Difference of mean precipitation runoff in model 2,
compared with model 1
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(c) Difference of mean precipitation runoff in model 6,
compared with model 1
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(d) Difference of mean precipitation runoff in model 7,
compared with model 1

Figure D.5: Mean precipitation runoff
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(b) Difference of SD precipitation in model 2, compared
with model 1
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(c) Difference of SD precipitation in model 6, compared
with model 1
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Figure D.6: Standard deviation precipitation
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(a) Mean evaporation model 1
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(b) Difference of mean evaporation in model 2, compared
with model 1
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(c) Difference of mean evaporation in model 6, compared
with model 1
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Figure D.7: Mean evaporation
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(b) Difference of SD evaporation runoff in model 2, com-
pared with model 1
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(c) Difference of SD evaporation runoff in model 6, com-
pared with model 1
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Figure D.8: Standard deviation evaporation runoff
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(a) Bias Mean model 6
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(b) Bias Mean model 7

Figure D.9: Bias Mean
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(a) Bias SD model 6
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Figure D.10: Bias SD
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