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Abstract

Existing curvature estimators of planar curves are
applied to a binary representation of the object. The
parametric curve description is 1D-smoothed to
overcome quantization errors. In this paper we estimate
object curvature directly from a properly sampled gray-
scale image using 2D isotropic derivative-of-Gaussian
filters. Three times oversampling or a Gaussain ok of
2.7 yields sampling-error free results. The algorithm
was extended to find the principal curvatures of iso-grey
surface patches in 3D. The Gaussian and mean
curvatures can easily be computed from the principal
curvatures.

Integrated curvature and bending energy of a closed
object in 2D or 3D is frequently used as shape
discriminator. The binary methods sum the estimated
curvature/energy values over a chain-code description
of the contour (as in binary length estimators). We
estimate bending energy through grey-volume
measurement. Volume is measured without thresholding
and does not introduce a sampling error. Edges are
transformed into volumes by giving them a constant
height after which they are shifted perpendicular to the
edge over a small distance. Subtraction of the two
images shifted in opposite direction produces a volume
that is proportional to the edge length [1, 2]. This
volume is weighted using the obtained energy values.
This method produces very precise (CV < 0.01 %) and
accurate measures.

1. Introduction

An important contour descriptor in arbitrary
dimension is the curvature. It can be used to
characterize2D contour points as convex, concave
and flat/inflection points. Peak finding in curvature
values along image contours is used for corner
detection[3] and detection of significant concavities
in severalautomatedsegmentatiormethods.Points of

an iso-greysurfacepatch in 3D can be classified into
elliptic, hyperbolic, parabolic and flat points.

Worring and Smeulders [4] compared several
curvature estimation methods applied to a binary
representationof a curve. The measured bias is
inversely proportionalto the smoothingof the contour
which is embeddedin the analysis technique. Their
resampling method performed best. The maximhias
decreasesfrom 10% to 1% when the Gaussian
smoothing increases frow=3 to 0=16.

Stokely and Wu [5] comparedfive methods for
curvaturemeasuremengapplied to 3D binary spheres.
The errors decrease when the surfpaéch considered
increases. Their surface triangulation method
performed best. Therror decreasedrom 100% to 1%
when the patch size increasesfrom 75 voxels to 600
voxels.

We believe that in the thresholdingthat usually
produces the binary image valuahitgormationis lost
that should be preserved(and used) to improve the
curvature estimation. The method presentedin this
paperworks on grey value imagesand is foundedon
samplingtheory. Apart from this method Barman [6]
estimates curvature without thresholding. He uses
quadraturefilters applied to a vector field image to
estimate direction, curve/straight ratio’s, and
curvature.

Young [7] measuredthe bending energy of a 2D
object contour for the characterizationof biological
objects. This measurequantifies the energy storedin
the shape of the contour. A circle minimizes this
energy for all simply-connected closed cunagfssqual
length. His method sumsthe energy contributions per
chain-code element. Duncan [8] applied the same
model for measurementof cardiac shape deformity.
Our new method combinesrecentwork on estimators
for edgelength in 2D and surfaceareain 3D [1, 2]
with curvaturemeasurements$o calculate the energy
stored in the shapeof the object. Apart from a few
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plausible assumptionsit is founded on sampling
theory.

2. Theory

The curvature k at any point along a two-
dimensionalcurve is defined as the rate of changein
tangent directiorf of the contour, as a functiasf arc
lengths.

de
K =2 1
& (1)
For analytical functiong(x) curvature is given by
y” X
K(X) = |—()|23/2 (2)
(1+(y(9)?)

The curves (or edges) that occur in digitized
images can not be described using analytical
functions. A widely accepted method uses a

parametric description of the curve to be analyzed.

The spatial coordinatesare given as function of a
position parametert (x(t), y(t)). Using
() = V(%)
X) = —
y'(x)==5
gives the followingequationfor the curvatureat point
t

_ X(Oy(t) - x()y(t)
K(t) = T (3)
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To regularizethe differentiation processand allow
the constructionof curvature scale spaces[3, 9, 10]

the straight differentiation is replaced by the
convolution with the derivative of a Gaussian [11].

x(t) O x(t) OG(t,0) (4)

Differentiation with respectto s produces better
results than obtainely differentiation with respectto
t. The above formulas require a list of x- and y-
coordinates. These are usually obtained by
thresholding or edge detection after which an 8-
connected contour isbtained.To preventaliasing we
proposeto measurethe object curvaturedirectly from
a properly sampled grey-value image. Verbeek [12]
presentedthe idea to measurethe curvature of an
isophote. In this paper wexaminethe performanceof
this technique and extend it to 3D.
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3. Isophote curvature in 2D

Let f(x, y) be a grey-valueimage and f, and f,
respectively the derivativesin the x and y-direction.
Following the same argument as in the previous
section, the derivatives are computed bgamvolution
with the derivative of a 2D Gaussian.

At any point &, y) in the image wehave a gradient
vectorg, a contour vectoc (in isophote directionpnd
a contour directiord.

9=(fe 1) (5)
c= (— f,, fx) (6)

0= arcco%— f, /||g||) =arcsir{ f, /|lg]) = arctani— fy/ fy)(7)

with
lgll = £+ £

To differentiate alonghe curve with respectto the
arc length we use the operator
-f
i:cosgi+smei:_yi+ki (8)
ds % % ol ox gl %y

Applying eq. (8) to eq. (7) we get
o ~{fecl? 280 f + 1, £2)
K = E = . NER
(12+12)

Note that the following relationshipexists between
the curvature k and the second derivative in the
contour direction ft, = SDCD).

lal

ds o

3.1. Sampling requirements

The discrete versions of all derivative filters
produce a sampling-error-frgesult when applied to a
properly sampled image. The numerator of eq.d®s
not exhibit aliasing if the image f(x,y) is sampledat
three times the Nyquist rate. Alternatively, we can
reducethe bandwidthof a critical sampledimage by
choosing a sufficiently large g, in the discrete
Gaussian derivativeso(, =2.7) [13, 14].

(9)

(10)

4. Isophote curvatures in 3D

Curvature in any dimensiois definedalong a line.
Considering an iso-grey surface patch dS centered
aroundthe point (x, y, z) we are interestedin the
principal curvatures k; and Kk, (Kky = Ky). The
correspondingsurface vectors are ¢; and c,. They
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sharethe samegradientvector g that is aligned with
the surface normal vector. Given the principal
curvatures one can compute well-known surface
descriptorssuch as the Gaussiancurvature(k,k,) and
the mean curvaturez((k;,+kKy)).

4.1. Principal curvatures of an isophote surface
patch

This section extendsthe 2D isophote curvature to
three dimensions.A three step algorithm is given
below.
step 1:Calculatethe gradientvector and the Hessian

matrix
9=(fe Ty 1) (11)
and the Hessian matrix
Oy fy  fiol
H=Cfy fy fo- (12)
@fxz fyZ fzzE
with
fo = Hxy.2) g(ﬁyy 2 0 f(x,y,2)0G(0y)

step 2: Rotatethe Hessianto align the first axis with
the gradient. The resulting matrix H* can be

written as
Of | O
O, Of ! C
H':D- 1 f f U-/m% ,__. 13
0 ! 1:uu W H’ TH{ ( )
D : uv Wl:|

with fgg the second derivative in gradient
direction (SDGD) and H;" a 2D Hessianin the
touching plan€r perpendicular ta.

step 3: Compute the eigenvalues of H,. These
eigenvalues A; and A, are respectively the
maximum andthe minimum secondderivatives
in the planeT. The eigenvectors arthe surface
vectorsc; and c,. Intersectingthe surfacepatch
with the planes(c,,g) and (c,,g) respectively
showsthat as in 2D there exists a relationship
between the second derivatives in contour
direction and the corresponding curvatures.

K, :_—Al:—_SDClD (14&)
lol

Ky = ~A; _ =SDGD (14b)
5 ol (el

The eigenvalue analysis is computed using the
Jacobi technique [15]. The spesfithis algorithm can
be increased when the Hessian and subsequent
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eigenvalueanalysisis only applied to those voxels
where the gradient exceeds a certain threshold.

5. Bending energy

The bending energy of an object denoties energy
storedin its shape.Using Elasticity theory [16] one
can show that the 2D bending energy [7] is directly
proportional to the bending energy of a deformed
circular rod. Similarly, we will show the relation
between our 3D bending energy and the bending
energy of adeflectedthin plate. In 2D as well as 3D,
we have only considered isotropic bodies whose
deformations follow Hook's law to a good
approximation. That is, thdeformationis proportional
to the applied forces.

5.1. Bending energy of a circular rod

A bent rod is stretchedat some points (convex
side) and compressedat others(concaveside). There
exists, however, a neutral surface (or line) which
undergoesneither extension nor compression. The
length of the neutral line is unaffected by bending.
Large bending deflections will cause a deformation
that is acombinationof pure bendingand torsion. For
small deflections we can assumethat the bending
occursin a single plane. The deviation of a slightly
bent curve from a plane (its torsion) is at least one
order of a magnitude smaller than its curvature.

The bending energy per unit length of the rod is

1ei(r)? (15)

with E Young’s modulus| the momentof inertia of
the circular cross section, and r, is the second
derivative of the position vector r of a point on the
curve with respectto its length. The total bending
energy over a rod of lengthis therefore

1El J’OL(r||)2d|

For 2D obijects, the integrated squared curvature
along its contour is directly proportional to tbending
energy of a deformed circular rod.

(16)

BE,p = Kk%ds

contour

(17)

Young [7] proved thathe simply-connectedclosed
contourwith the minimum averagebendingenergy is
the circle.

5.2. Bending energy of a thin plate
Unlike a bentrod, it is impossibleto benda plate

without stretching An exceptionis the deformationof
a flat plate into a cylindrical surface.Closedsurfaces
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can never be deformed without stretching. Here we
only consider the bending component of the total
energy. The bending energy per unit volume of the
plate is given by [16]

oo i Gt ) B -2ty 19)

Z —_—

1+p
with E Young’s modulus,p Poisson’sratio, the xy-
plane is that of the undeformed plate (neutaitface),
the z-axis is normal to the surface, and { the

displacement of a point on the neutral surface, i.ez its

coordinate. The total bending energy of a deformed
plate of thicknes# is

3 gZxx"-Zyy)

ﬁz o erEE+21 p{ny) ZXXZyy}Hllxdy (19)

Since we are interestedonly in the shape,and not
in the distribution of deformationsinside, we regard
the plate as being of infinitesimal thickness.

By taking the x andy axesalong the directions of
principal curvaturesi andv we get

ﬂi—pzj I (qu +o+ zpzuuZW)dUdV (20)

Note that .=k, and {,,=k,. In practice, Poisson’s
ratio varies between0 and ;. A value close to ¥
correspondsto a medium (e.g. rubber) having a
modulus of rigidity that is small comparedto the
modulus of compression.

For small values of Poisson’sratio we obtain an
approximationof the bending energy of a deformed
plate in which the integrand is independentof the
medium.

En®
[ €+ Jduav (21)

surface

If Poisson’'sratio is close to % we get for the
bending energy

3
B[ (0 + 25+ Gudun)auav (22)

surface

After substitution of,,=«; and {,=K,, the bending
energy per unit surfaceis directly proportional to a
function of the principal curvatures.

BEp = [ (k7 +kZ+2pKy,)dS (23)

surface

The above theory applies to deformationsof flat
plates, i.e. the undeformed state. Deformations of
shells have properties which are fundamentally
different from those of the deformationsof flat plates.
For shells, stretchings a first order effect and thusis
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important even for small bending deflections. Here,
are only interested in bending energy. \&é&n think of
our closed surfaces composedof a set of small
rectangular surface patches satisfying the above
requirement. The surof energycontributionsfor each
patch gives the energy stored in the entire surface.

For a family of closed3D objects a sphereis the
shape of minimal energy. Note that the bendemgrgy
in 3D is dimensionless antthereforescaling invariant,
e.g. a sphere afadiusR hasthe samebendingenergy
as a sphere of radiaR (a > 0). The proposedbending
energy of eq. (23) with Poisson’s rape0 has already
been proposedas a fairness criterion in geometric
surface modelling [17, 18].

5.3. Measurement of bending energy

Existing binary methods in 2D [7, 8] sum the
estimated energgontributions(k2) over a chain-code
description of the contour (as in binary length
estimators).

We estimate bending energy through grey-volume
measurement. Volume is measured without
thresholdingand doesnot introduce a sampling error.
For a properly sampled signal, tkem of the samples
is directly proportionalto the volume under the grey-
scale landscape. When skipping the curvaterensin
the integrands of egs. (17,23), these egs. reduce
respectivelyto a 2D edge length estimator and a 3D
surface area estimator. In earlier work [2] we
developed a 2D edge length / 3D surface area
estimator based on volume measurements. We
developed aechnique(called the GCL technique)to
transform signals with edges into signals with a
volume proportional tahe edgelength (surfacearea).
Edgesare transformedinto volumesby giving them a
constant height after which they are shifted
perpendicularto the edge over a small distance.
Subtraction of the two images shifted in opposite
direction produces a volume thit proportionalto the
edge length [2]. This technique can also measure
bendingenergywhen the each point of the signal is
weighted by the bending energy contribution at that
point before integration.

In practice, the GCL technique[2] yields unbiased
edge length measurements for an object in infage

length = I J’ GCL( f)dxdy (24)
This estimator for 2D bending energy is
BE,p = IIKZ(X, y) GCL( f)dxdy (25)

and in 3D we get
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(xy)+kZ(xy) O
BE GCL( f Jdxdydz (26
o J-J]-lji-ZpKl (%, y)K o (x, y) ()ddydz (26)

In the remainder of thipaperwe will set Poisson’s
ratio equal to zero pE0).

6. Experiments

We have performedexperimentsto test the theory
presented heredrirst we developa recipe to construct
bandlimited test objects. In order to compare our
resultswith [4, 5], we give the bias and CV for the
measured curvature of individual pixels/voxels.

6.1. Test Images

The test images contain a simulated image of a
step edge object imaged through an optical system
and sampled at the Nyquist frequency (1N)abtwice
the Nyquist frequency (2N). Randomly positioned
bandlimited  discs/ellipses/spheres/ellipsoids are
constructedas test object. To construct an arbitrary
bandlimited object, we start from its Fourigansform,
ensureproper bandlimitation by multiplying with the
perfect in-focus OTF (optical transfer function) [19,
20], and apply an inverse Fourier transformto obtain
the desiredimage. In 3D the OTF is replacedby a
Gaussianfunction that showsbehavior comparableto
the correspondingOTF. In earlier work we found that
the 2D point spread function of an in-focus optical
system iswell describedby a 2D Gaussian;opg=0.9
[13, 14].
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Figure 1: Curvaturebias as function of ¢ for a disc
of radius 25. The disc was samplectlatee times the
Nyquist rate; curvature calculation was done with
0,=1.5; andonly pixels close to the true contourare
taken into account. Note that interpolation of the
resultimage is allowed to find the curvatureat sub-
pixel resolution. In the edge region the CV was
smaller than 0.001 %.
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6.2. Isophote curvature in 2D

As in [4] we useda disc of radius 25. Our image,
however, is sampled at three times the Nyquist
frequency.We studied the bias as a function of the
orientation. In contrast to the binary methods wi@uld
not expect a dependencybetweenthe bias and the
local orientation of the curve. However, repeated
measurementsshow that an extremely small bias
differs with a small dynamic ranggf. figure 1). It is
smallestwhen the curve is aligned with the sampling
grid. It is largest at @8. The CV issmaller than 0.001
%. The radial error is the same as for the measured
principal curvatures in 3D.
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Figure 2: Cross-sectionshroughthe centerof a sphere
sampled at three times the Nyquist rate. a) Original
grey-scale profile, prediction of k1 (for a sphere
K1=K,=r"1), at the right side the measureg! and at the
left side the measured k, 1. b) Original grey-scale
profile and theabsolutebias as function of the distance
to the center of the object. It is clear that in the edge
region the error becomesvery small (<0.1%). In the

edge region the CV was smaller than 0.01 %.
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6.3. Principal curvatures of iso-grey surface
patch in 3D

The non-isotropy of the bias measured ovephere
with radius 25 is again a factor of 2. The minimum
error occurswhen the surface normal is aligned with
one of the axes of the sampling grid athé maximum
occurs around the surface poinith surfacenormalin
the direction of the voxel diagonal. Thmadial error for
k1 and k, are similar and displayedin figure 2 From
figure 2 we may conclude that the curvature
measurements ithe edgeregionyield a bias smaller
than 0.1 %. The CV’'s were smaller than 0.01 %.
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Figure 3: Bending energy measurementsfrom 2D
discs and 3D spheressampledat twice the Nyquist
rate. The curvature estimator use@,g5.4 to produce
am aliasing free resulf) Errorsin bendingenergyfor
2D discs as function of the disc radius.For each size
10 randomly positioned discs wenmeeasuredb) Errors
in bending energy for 3D spheresas function of the
sphereradius. For each size 10 randomly positioned
spheres were measured.
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6.4. Bending energy

We have arguedthat three times oversamplingis
needed to avoid aliasing in the curvature
measurement. Consequently, bending energy (k?)
requires six timesoversamplingof the original image,
or sampling near the Nyquist rate and a laogen the
discrete Gaussianderivatives (0,=6x0.9=5.4). Due to
the low energy contribution ithe highestfrequencies,
a somewhat  smaller discrete Gaussian
(0,=5.4xv2=3.8) will ensureenoughbandlimitationto
avoid seriousaliasing effects. The discrete Gaussian
filters have to be a few times (=3) smaller than the
smallestedge radius of the object to allow accurate
curvature measurements.

Bending energyfor 2D discs and 3D sphereswere
evaluated as a function of the object radius. The
results areshownin figure 3. The CV’s in 2D and 3D
are about the same. The bias of the 3D energy
measureis significantly smaller than that of its 2D
counterpart.

We have also measuredthe bendingenergy of 2D
ellipses. For each eccentricity, the a and b (a > b)
values have to satisfy the minimum edge radius
condition,Ri,>30 with 02=0%p + 02,

(b?%/a) > 30

Table 1showsthe bendingenergyfor ellipses with
the same minimum edgeradius. The relative error in
the bending energis mainly governedby error of the
point with the highest curvature (smallest edge
radius). Similar for 3D ellipsoids with principal axas
b, and ¢ (a > b > ¢). The minimum edge radius
condition is

(c%a) > 30

Table 2 showsthe 3D bendingenergyfor ellipses.
Notice thatindeed a spherehasthe lowest amount of
free energy.

7. Conclusions

In this paperwe measurethe isophotecurvaturein
2D and 3D images.The theory is basedon sampling
theory and yields very small errors: bias < 0.1% and
CV<0.01%. These errorare significantly smaller than
those produced by binary measuremergthods[4, 5].
The theory requiresversamplingby a factor three, or
a critically sampledimage and a discrete Gaussian
derivatives witho,=2.7.

Using the estimatedcurvatureswe can calculate
the energy stored in the elastic rod or sheet that
follows the shape of the objedhnalagousto our edge
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Table 1: Relative error (in %) of the bending energy for a set of ellipses hakangame smallestedgeradius
of 16.2 pixels (3*5.4). The measurements are averaged over 50 ellipses of different position and ori€htatic
ellipses are sampled at twice the Nyquist rate,ahés either 5.4 013.8. The CV's are on the order of 103 %.
The theoretical values are calculated using the Mathematica script of appendix A.

theory experiments: bias(BE)
a (4) b (4) b/a L (4) BE (41) 054 (%) 0,=3.8 (%)
16.2000 16.2000 1.0 101.788 0.38785 2.2996 2.3460
20.0000 18.0000 0.9 119.463 0.33461 1.3428 1.5430
25.3125 20.2500 0.8 143.581 0.29060 0.1022 0.7285
33.0612 23.1428 0.7 177.948 0.25491 -1.2204 -0.0239
45.0000 27.0000 0.6 229.743 0.22661 -2.4111 -0.6946
64.8000 32.4000 0.5 313.906 0.20482 -3.4499 -1.2577
101.250 40.5000 0.4 466.016 0.18865 -4.5085 -2.0753
180.000 54.0000 0.3 789.464 0.17727 -4.4672 -1.1897

Table 2: Bending energy of ellipsoids that all have a smallest edge radius of 11.4 pixels (3*3.8). The
measurements are averaged over 10 ellipsoids of different position and orientation. The ellvpseisismpled
at twice the Nyquist rate, the is set at3.8. The CV’s are on the order of 103 %. The theoreticalvaluesare
calculated using the Mathematica script of appendix A.

theory experiment
scale ) a b c A (A2) BE BE bias (%)
11.4000 1.0 1.0 1.0 1633.13 25.1327 25.1200 -0.0504
14.0741 1.0 0.95 0.9 2245.63 25.3567 25.2983 -0.2302
14.0741 1.0 0.9 0.9 2167.12 25.4221 25.3484 -0.2898
17.8125 1.0 0.9 0.8 3224.30 26.1493 25.9621 -0.7157
17.8125 1.0 0.8 0.8 2986.36 26.3973 26.1852 -0.8035
23.2653 1.0 0.85 0.7 4894.35 27.7918 27.4698 -1.1585
23.2653 1.0 0.7 0.7 4317.98 28.2883 27.9515 -1.1905

length/surfacearea estimator, we accomplish this by
measuring thesolume of a grey value landscape.The
volume producedby the GCL method [2] is directly
proportional to the edge lengtif objectsin 2D or the
surface area of objects in 3D. A point-by-point
multiplication of the GCL landscapewith the energy
contribution for the underlying pixel/voxels yields a
volume proportional to the bending energy of the
object present in the image.

The bending energy estimation of 2D ellipses
improves with increasing edgadii. The bias depends
on the point of the contour having the highest
curvature (smallest edgedius). Ellipses with various
eccentricities but equal minimum edge radius show
that bending energy changes from a small
overestimate (2%) for eccentricity = 1 to a small
underestimatg—2%) for ellipseswith an eccentricity
near 3. The correspondingCV’'s are smaller than
0.01%.

The bending energy for spheresremains accurate
over the entire range of edge radii. An experiment
applied to 3D ellipsoids showthat the bias increases
from —0.05% for spheresto —1% for ellipsoids with

‘eccentricities’ near 1.5. The CV’s are around 0.001%.

Our method can be applied using simple
derivatives-of-Gaussiaffilters, some point operations

and a little help from Numerical Recipesin C [15] to
do eigenvalue analysis.

The current method is sensitive to shadingin the
image. This can easily be eliminated by applying the
curvature algorithm to the output of a second-
derivative filter.
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Appendix A

The circumferenceof a 2D ellipse is given by an
elliptical integral. In order to evaluate the proposed
measures for bending energye needto calculate the
true bending energy of ellipsés 2D and ellipsoids in
3D. These values are obtained using numerical
integration in Mathematica™ [21] based upon the
theory of Differential Geometry. The function
El | i pseLengt hBE computes the perimeter and
bending energy of 2D ellipses. The function
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El | i psoi dAr eaBE computesthe surface area and
bending energynote that we have set Poisson’sratio
equal to zero) of 3D ellipsoids. For readability
purposeswe have adoptedthe exact notation used by
[22, 23].

HlipseLengthBHa , b ] :=
(* a, b: principal axes of 2D ellipse *)

Modul e[ {
t, (* curve parameter *)
X, (* position vector x(t) *)
xt, (* 1St derivatives of x tot *)
xtt, (* 2nd derivatives of x to t *)
d, (* dummy vector *)
ds, (* length el emrent *)
K (* curvature *)
L, (* total length *)
BE}, (* 2D bendi ng energy *)
x = {a*Cos[t], b*Sin[t], O};
xt = 0Ox,t]; xtt = O x, {t,2}];
ds = Sgrt[xt.xt];
d = OossProduct[xt,xtt];
K =8grt[d.d]/(xt.xt)"(3/2);
L =4* Nntegrate[ds, {t,0,Pi/2}];
BE =4 * Nntegrate[K*2 * ds, {t,0,Pi/2}];
{L, BE}]

HlipsoidAreaBEa , b, c ] :=
(* a,b,c: principal axes of3D ellipsoid *)
Modul e[ {

u, (* surface paraneter 1 *)

v, (* surface paraneter 2 *)

X, (* position vector x(u,v) *)
XU, XV, (* 1St derivatives of x *)
XUu, Xuv, Xvv,

(* 2"d derjvatives of x *)

E F G (* first fundamental form*)

dA (* area elenent *)

n, * surface normal vector *)

L, M N (* second fundanental form *)
Km * mean curvature *)

Kg, * Gaussian curvature *)

A * total area *)

BE}, (* 3D bendi ng energy *)
x={a*Sin[v] Cos[u],b*Sin[v] Sinu],c*Cos[V]};
xu = Ox,ul;

xv = O x,v];

xuu = O x,{u, 2}]

xuv = O x,u,v];

xvv = O x,{v, 2}];

E = xu. xuy; F = xu. xv; G = xv.Xv;
dA = Sgrt[E*G - F*F];

n = OrossProduct [ xu, xv] / dA

L = xuu.n; M = xuv.n; N = xvv.n;

Km= (EXN - 2*F*M+ G'L)/(2(E*G - FF));

Kg = (L*XN- MM/ (E*G- FF);

A= 8*Nntegrate[dA {u,0,Pi/2},{v,0,Pi/2}];

BE = 8*N ntegrat e[ (4*Km2 - 2*Kg) *dA
{u,0,Ri/2},{v,0,Pi/2}];

{ABE} ]
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