
L.J. van Vliet and P.W. Verbeek, Curvature and bending energy in digitized 2D and 3D images, in: SCIA’93, Proc.
8th Scandinavian Conference on Image Analysis, Tromso, Norway, 1993, 1403-1410.

Curvature and Bending Energy in Digitized 2D and 3D Images

Lucas J. van Vliet   and   Piet W. Verbeek

Pattern Recognition Group Delft, Faculty of Applied Physics, Delft University of Technology,
Lorentzweg 1, 2628 CJ  Delft, The Netherlands

Abstract

Existing curvature estimators of planar curves are
applied to a binary representation of the object. The
parametric curve description is 1D-smoothed to
overcome quantization errors. In this paper we estimate
object curvature directly from a properly sampled gray-
scale image using 2D isotropic derivative-of-Gaussian
filters. Three times oversampling or a Gaussain σκ of
2.7 yields sampling-error free results. The algorithm
was extended to find the principal curvatures of iso-grey
surface patches in 3D. The Gaussian and mean
curvatures can easily be computed from the principal
curvatures.

Integrated curvature and bending energy of a closed
object in 2D or 3D is frequently used as shape
discriminator. The binary methods sum the estimated
curvature/energy values over a chain-code description
of the contour (as in binary length estimators). We
estimate bending energy through grey-volume
measurement. Volume is measured without thresholding
and does not introduce a sampling error. Edges are
transformed into volumes by giving them a constant
height after which they are shifted perpendicular to the
edge over a small distance. Subtraction of the two
images shifted in opposite direction produces a volume
that is proportional to the edge length [1, 2]. This
volume is weighted using the obtained energy values.
This method produces very precise (CV < 0.01 %) and
accurate measures.

1. Introduction

An important contour descriptor in arbitrary
dimension is the curvature. It can be used to
characterize 2D contour points as convex, concave
and flat/inflection points. Peak finding in curvature
values along image contours is used for corner
detection [3] and detection of significant concavities
in several automated segmentation methods. Points of

an iso-grey surface patch in 3D can be classified into
elliptic, hyperbolic, parabolic and flat points.

Worring and Smeulders [4] compared several
curvature estimation methods applied to a binary
representation of a curve. The measured bias is
inversely proportional to the smoothing of the contour
which is embedded in the analysis technique. Their
resampling method performed best. The maximum bias
decreases from 10% to 1% when the Gaussian
smoothing increases from σ=3 to σ=16.

Stokely and Wu [5] compared five methods for
curvature measurement applied to 3D binary spheres.
The errors decrease when the surface patch considered
increases. Their surface triangulation method
performed best. The error decreases from 100% to 1%
when the patch size increases from 75 voxels to 600
voxels.

We believe that in the thresholding that usually
produces the binary image valuable information is lost
that should be preserved (and used) to improve the
curvature estimation. The method presented in this
paper works on grey value images and is founded on
sampling theory. Apart from this method Barman [6]
estimates curvature without thresholding. He uses
quadrature filters applied to a vector field image to
estimate direction, curve/straight ratio’s, and
curvature.

Young [7] measured the bending energy of a 2D
object contour for the characterization of biological
objects. This measure quantifies the energy stored in
the shape of the contour. A circle minimizes this
energy for all simply-connected closed curves of equal
length. His method sums the energy contributions per
chain-code element. Duncan [8] applied the same
model for measurement of cardiac shape deformity.
Our new method combines recent work on estimators
for edge length in 2D and surface area in 3D [1, 2]
with curvature measurements to calculate the energy
stored in the shape of the object. Apart from a few
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plausible assumptions it is founded on sampling
theory.

2. Theory

The curvature κ  at any point along a two-
dimensional curve is defined as the rate of change in
tangent direction θ  of the contour, as a function of arc
length s.

κ θ= d

ds
(1)

For analytical functions y(x) curvature is given by

κ ( )x
y x

y x
=

′′( )
+ ′( )( )( )1

2 3 2 (2)

The curves (or edges) that occur in digitized
images can not be described using analytical
functions. A widely accepted method uses a
parametric description of the curve to be analyzed.
The spatial coordinates are given as function of a
position parameter t (x(t), y(t)). Using

′( ) = ( )
y x

y x

x

d

d

gives the following equation for the curvature at point
t
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with

ẋ t
x

t
( ) = d

d

To regularize the differentiation process and allow
the construction of curvature scale spaces [3, 9, 10]
the straight differentiation is replaced by the
convolution with the derivative of a Gaussian [11].

˙ ˙ ,x t x t G t( ) ⇒ ( ) ∗ ( )σ (4)

Differentiation with respect to s produces better
results than obtained by differentiation with respect to
t. The above formulas require a list of x- and y-
coordinates. These are usually obtained by
thresholding or edge detection after which an 8-
connected contour is obtained. To prevent aliasing we
propose to measure the object curvature directly from
a properly sampled grey-value image. Verbeek [12]
presented the idea to measure the curvature of an
isophote. In this paper we examine the performance of
this technique and extend it to 3D.

3. Isophote curvature in 2D

Let f(x, y) be a grey-value image and fx and fy

respectively the derivatives in the x and y-direction.
Following the same argument as in the previous
section, the derivatives are computed by a convolution
with the derivative of a 2D Gaussian.

At any point (x, y) in the image we have a gradient
vector g, a contour vector c (in isophote direction) and
a contour direction θ.

g = ( )f fx y, (5)

c = −( )f fy x, (6)

θ = −( ) = ( ) = −( )arccos arcsin arctanf f f fy x x yg g (7)

with

g = +f fx y
2 2

To differentiate along the curve with respect to the
arc length we use the operator

d
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Applying eq. (8) to eq. (7) we get

κ θ= =
− − +( )
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d
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Note that the following relationship exists between
the curvature κ  and the second derivative in the
contour direction (fcc  ≡ SDCD).

κ θ= = − = −d

ds

f SDCDcc

g g
(10)

3.1. Sampling requirements
The discrete versions of all derivative filters

produce a sampling-error-free result when applied to a
properly sampled image. The numerator of eq. (9) does
not exhibit aliasing if the image f(x,y) is sampled at
three times the Nyquist rate. Alternatively, we can
reduce the bandwidth of a critical sampled image by
choosing a sufficiently large σκ in the discrete
Gaussian derivatives (σκ ≈ 2 7. ) [13, 14].

4. Isophote curvatures in 3D

Curvature in any dimension is defined along a line.
Considering an iso-grey surface patch dS centered
around the point (x, y, z) we are interested in the
principal curvatures κ1 and κ2 (κ1 ≥ κ2). The
corresponding surface vectors are c1 and c2. They
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share the same gradient vector g that is aligned with
the surface normal vector. Given the principal
curvatures one can compute well-known surface
descriptors such as the Gaussian curvature (κ1κ2) and
the mean curvature (1

2 (κ1+κ2)).

4.1. Principal curvatures of an isophote surface
patch

This section extends the 2D isophote curvature to
three dimensions. A three step algorithm is given
below.
step 1: Calculate the gradient vector and the Hessian

matrix

g = f f fx y z, ,( ) (11)

and the Hessian matrix

H =

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step 2: Rotate the Hessian to align the first axis with
the gradient. The resulting matrix H´ can be
written as
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with fgg  the second derivative in gradient
direction (SDGD) and H t´ a 2D Hessian in the
touching plane T  perpendicular to g.

step 3: Compute the eigenvalues of Ht´. These
eigenvalues λ1 and λ2 are respectively the
maximum and the minimum second derivatives
in the plane T . The eigenvectors are the surface
vectors c1 and c2. Intersecting the surface patch
with the planes (c1,g) and (c2,g) respectively
shows that as in 2D there exists a relationship
between the second derivatives in contour
direction and the corresponding curvatures.

κ λ
1

1= − = −
g g

SDC D1 (14a)

κ λ
1

2 2= − = −
g g

SDC D
(14b)

The eigenvalue analysis is computed using the
Jacobi technique [15]. The speed of this algorithm can
be increased when the Hessian and subsequent

eigenvalue analysis is only applied to those voxels
where the gradient exceeds a certain threshold.

5. Bending energy

The bending energy of an object denotes the energy
stored in its shape. Using Elasticity theory [16] one
can show that the 2D bending energy [7] is directly
proportional to the bending energy of a deformed
circular rod. Similarly, we will show the relation
between our 3D bending energy and the bending
energy of a deflected thin plate. In 2D as well as 3D,
we have only considered isotropic bodies whose
deformations follow Hook’s law to a good
approximation. That is, the deformation is proportional
to the applied forces.

5.1. Bending energy of a circular rod

A bent rod is stretched at some points (convex
side) and compressed at others (concave side). There
exists, however, a neutral surface (or line) which
undergoes neither extension nor compression. The
length of the neutral line is unaffected by bending.
Large bending deflections will cause a deformation
that is a combination of pure bending and torsion. For
small deflections we can assume that the bending
occurs in a single plane. The deviation of a slightly
bent curve from a plane (its torsion) is at least one
order of a magnitude smaller than its curvature.

The bending energy per unit length of the rod is

1
2

2
EI llr( ) (15)

with E Young’s modulus, I the moment of inertia of
the circular cross section, and rll is the second
derivative of the position vector r of a point on the
curve with respect to its length. The total bending
energy over a rod of length L is therefore

1
2

2

0
EI dlll

L
r( )∫ (16)

For 2D objects, the integrated squared curvature
along its contour is directly proportional to the bending
energy of a deformed circular rod.

BE dsD

contour

2
2= ∫ κ (17)

Young [7] proved that the simply-connected, closed
contour with the minimum average bending energy is
the circle.

5.2. Bending energy of a thin plate

Unlike a bent rod, it is impossible to bend a plate
without stretching. An exception is the deformation of
a flat plate into a cylindrical surface. Closed surfaces
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can never be deformed without stretching. Here we
only consider the bending component of the total
energy. The bending energy per unit volume of the
plate is given by [16]

z
E

p p xx yy xy xx yy
2 2 2

1

1

2 1+ −( ) +( ) + ( ) −
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with E Young’s modulus, p Poisson’s ratio, the xy-
plane is that of the undeformed plate (neutral surface),
the z-axis is normal to the surface, and ζ  the
displacement of a point on the neutral surface, i.e. its z
coordinate. The total bending energy of a deformed
plate of thickness h is
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Since we are interested only in the shape, and not
in the distribution of deformations inside, we regard
the plate as being of infinitesimal thickness.

By taking the x and y axes along the directions of
principal curvatures u and v we get

Eh

p
p dudvuu vv uu vv

surface

3

2
2 2

24 1
2

−( ) + +( )∫∫ ζ ζ ζ ζ (20)

Note that  ζuu≡κ1 and ζvv≡κ2. In practice, Poisson’s
ratio varies between 0 and 1

2 . A value close to 1
2

corresponds to a medium (e.g. rubber) having a
modulus of rigidity that is small compared to the
modulus of compression.

For small values of Poisson’s ratio we obtain an
approximation of the bending energy of a deformed
plate in which the integrand is independent of the
medium.

Eh
dudvuu vv

surface

3
2 2

24
ζ ζ+( )∫∫ (21)

If Poisson’s ratio is close to 1
2  we get for the

bending energy

Eh
dudvuu vv uu vv

surface

3
2 2

18
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After substitution of ζuu≡κ1 and ζvv≡κ2, the bending
energy per unit surface is directly proportional to a
function of the principal curvatures.

BE p dS
surface

3 1
2

2
2

1 22D = + +( )∫ κ κ κ κ (23)

The above theory applies to deformations of flat
plates, i.e. the undeformed state. Deformations of
shells have properties which are fundamentally
different from those of the deformations of flat plates.
For shells, stretching is a first order effect and thus is

important even for small bending deflections. Here, we
are only interested in bending energy. We can think of
our closed surfaces composed of a set of small
rectangular surface patches satisfying the above
requirement. The sum of energy contributions for each
patch gives the energy stored in the entire surface.

For a family of closed 3D objects a sphere is the
shape of minimal energy. Note that the bending energy
in 3D is dimensionless and therefore scaling invariant,
e.g. a sphere of radius R has the same bending energy
as a sphere of radius aR (a > 0). The proposed bending
energy of eq. (23) with Poisson’s ratio p=0 has already
been proposed as a fairness criterion in geometric
surface modelling [17, 18].

5.3. Measurement of bending energy

Existing binary methods in 2D [7, 8] sum the
estimated energy contributions (κ2) over a chain-code
description of the contour (as in binary length
estimators).

We estimate bending energy through grey-volume
measurement. Volume is measured without
thresholding and does not introduce a sampling error.
For a properly sampled signal, the sum of the samples
is directly proportional to the volume under the grey-
scale landscape. When skipping the curvature terms in
the integrands of eqs. (17,23), these eqs. reduce
respectively to a 2D edge length estimator and a 3D
surface area estimator. In earlier work [2] we
developed a 2D edge length / 3D surface area
estimator based on volume measurements. We
developed a technique (called the GCL technique) to
transform signals with edges into signals with a
volume proportional to the edge length (surface area).
Edges are transformed into volumes by giving them a
constant height after which they are shifted
perpendicular to the edge over a small distance.
Subtraction of the two images shifted in opposite
direction produces a volume that is proportional to the
edge length [2]. This technique can also measure
bending energy when the each point of the signal is
weighted by the bending energy contribution at that
point before integration.

In practice, the GCL technique [2] yields unbiased
edge length measurements for an object in image f

length f dxdy= ( )∫∫ GCL (24)

 This estimator for 2D bending energy is

BE x y f dxdy2
2

D = ( ) ( )∫∫κ , GCL (25)

and in 3D we get
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In the remainder of this paper we will set Poisson’s
ratio equal to zero  (p=0).

6. Experiments

We have performed experiments to test the theory
presented here. First we develop a recipe to construct
bandlimited test objects. In order to compare our
results with [4, 5], we give the bias and CV for the
measured curvature of individual pixels/voxels.

6.1. Test Images

The test images contain a simulated image of a
step edge object imaged through an optical system
and sampled at the Nyquist frequency (1N) or at twice
the Nyquist frequency (2N). Randomly positioned
bandlimited discs/ellipses/spheres/ellipsoids are
constructed as test object. To construct an arbitrary
bandlimited object, we start from its Fourier transform,
ensure proper bandlimitation by multiplying with the
perfect in-focus OTF (optical transfer function) [19,
20], and apply an inverse Fourier transform to obtain
the desired image. In 3D the OTF is replaced by a
Gaussian function that shows behavior comparable to
the corresponding OTF. In earlier work we found that
the 2D point spread function of an in-focus optical
system is well described by a 2D Gaussian; σPSF=0.9
[13, 14].

6.2. Isophote curvature in 2D

As in [4] we used a disc of radius 25. Our image,
however, is sampled at three times the Nyquist
frequency. We studied the bias as a function of the
orientation. In contrast to the binary methods we would
not expect a dependency between the bias and the
local orientation of the curve. However, repeated
measurements show that an extremely small bias
differs with a small dynamic range (cf. figure 1).  It is
smallest when the curve is aligned with the sampling
grid. It is largest at 3π/8. The CV is smaller than 0.001
%. The radial error is the same as for the measured
principal curvatures in 3D.
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Figure 1: Curvature bias as function of ϕ for a disc
of radius 25. The disc was sampled at three times the
Nyquist rate; curvature calculation was done with
σκ=1.5; and only pixels close to the true contour are
taken into account. Note that interpolation of the
result image is allowed to find the curvature at sub-
pixel resolution. In the edge region the CV was
smaller than 0.001 %.
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Figure 2: Cross-sections through the center of a sphere
sampled at three times the Nyquist rate. a) Original
grey-scale profile, prediction of κ-1 (for a sphere
κ1=κ2=r-1), at the right side the measured κ1

-1 and at the
left side the measured κ2

–1. b) Original grey-scale
profile and the absolute bias as function of the distance
to the center of the object. It is clear that in the edge
region the error becomes very small (<0.1%). In the
edge region the CV was smaller than 0.01 %.
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6.3. Principal curvatures of iso-grey surface
patch in 3D

The non-isotropy of the bias measured over a sphere
with radius 25 is again a factor of 2. The minimum
error occurs when the surface normal is aligned with
one of the axes of the sampling grid and the maximum
occurs around the surface point with surface normal in
the direction of the voxel diagonal. The radial error for
κ1 and κ2 are similar and displayed in figure 2 From
figure 2 we may conclude that the curvature
measurements in the edge region yield a bias smaller
than 0.1 %. The CV’s were smaller than 0.01 %.
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Figure 3: Bending energy measurements from 2D
discs and 3D spheres sampled at twice the Nyquist
rate. The curvature estimator used a σκ=5.4 to produce
am aliasing free result. a) Errors in bending energy for
2D discs as function of the disc radius. For each size
10 randomly positioned discs were measured. b) Errors
in bending energy for 3D spheres as function of the
sphere radius. For each size 10 randomly positioned
spheres were measured.

6.4. Bending energy

We have argued that three times oversampling is
needed to avoid aliasing in the curvature
measurement. Consequently, bending energy (κ2)
requires six times oversampling of the original image,
or sampling near the Nyquist rate and a large σκ in the
discrete Gaussian derivatives (σκ=6×0.9=5.4). Due to
the low energy contribution in the highest frequencies,
a somewhat smaller discrete Gaussian
(σκ≈5.4×√2≈3.8) will ensure enough bandlimitation to
avoid serious aliasing effects. The discrete Gaussian
filters have to be a few times (≈3) smaller than the
smallest edge radius of the object to allow accurate
curvature measurements.

Bending energy for 2D discs and 3D spheres were
evaluated as a function of the object radius. The
results are shown in figure 3. The CV’s in 2D and 3D
are about the same. The bias of the 3D energy
measure is significantly smaller than that of its 2D
counterpart.

We have also measured the bending energy of 2D
ellipses. For each eccentricity, the a and b (a > b)
values have to satisfy the minimum edge radius
condition, Rmin>3σ with σ2=σ2

PSF  + σ2
κ

(b2/a) > 3σ
Table 1 shows the bending energy for ellipses with

the same minimum edge radius. The relative error in
the bending energy is mainly governed by error of the
point with the highest curvature (smallest edge
radius). Similar for 3D ellipsoids with principal axes a,
b, and c (a > b > c). The minimum edge radius
condition is

(c2/a) > 3σ
Table  2 shows the 3D bending energy for ellipses.

Notice that indeed a sphere has the lowest amount of
free energy.

7. Conclusions

In this paper we measure the isophote curvature in
2D and 3D images. The theory is based on sampling
theory and yields very small errors: bias < 0.1% and
CV<0.01%. These errors are significantly smaller than
those produced by binary measurement methods [4, 5].
The theory requires oversampling by a factor three, or
a critically sampled image and a discrete Gaussian
derivatives with σκ=2.7.

Using the estimated curvatures we can calculate
the energy stored in the elastic rod or sheet that
follows the shape of the object. Analagous to our edge
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length/surface area estimator, we accomplish this by
measuring the volume of a grey value landscape. The
volume produced by the GCL method [2] is directly
proportional to the edge length of objects in 2D or the
surface area of objects in 3D. A point-by-point
multiplication of the GCL landscape with the energy
contribution for the underlying pixel/voxels yields a
volume proportional to the bending energy of the
object present in the image.

The bending energy estimation of 2D ellipses
improves with increasing edge radii. The bias depends
on the point of the contour having the highest
curvature (smallest edge radius). Ellipses with various
eccentricities but equal minimum edge radius show
that bending energy changes from a small
overestimate (2%) for eccentricity = 1 to a small
underestimate (–2%) for ellipses with an eccentricity
near 3. The corresponding CV’s are smaller than
0.01%.

The bending energy for spheres remains accurate
over the entire range of edge radii. An experiment
applied to 3D ellipsoids show that the bias increases
from –0.05% for spheres to –1% for ellipsoids with
‘eccentricities’ near 1.5. The CV’s are around 0.001%.

Our method can be applied using simple
derivatives-of-Gaussian filters, some point operations

and a little help from Numerical Recipes in C [15] to
do eigenvalue analysis.

The current method is sensitive to shading in the
image. This can easily be eliminated by applying the
curvature algorithm to the output of a second-
derivative filter.
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Appendix A

The circumference of a 2D ellipse is given by an
elliptical integral. In order to evaluate the proposed
measures for bending energy we need to calculate the
true bending energy of ellipses in 2D and ellipsoids in
3D. These values are obtained using numerical
integration in Mathematica™ [21] based upon the
theory of Differential Geometry. The function
EllipseLengthBE computes the perimeter and
bending energy of 2D ellipses. The function

Table 1: Relative error (in %) of the bending energy for a set of ellipses having the same smallest edge radius
of 16.2 pixels (3*5.4). The measurements are averaged over 50 ellipses of different position and orientation. The
ellipses are sampled at twice the Nyquist rate, the σκ is either 5.4 or 3.8. The CV’s are on the order of 10–3 %.
The theoretical values are calculated using the Mathematica script of appendix A.

theory experiments:   bias(BE)
a (∆) b (∆) b/a L  (∆) BE (∆-1) σκ=5.4 (%) σκ=3.8 (%)

16.2000 16.2000 1.0 101.788 0.38785 2.2996 2.3460
20.0000 18.0000 0.9 119.463 0.33461 1.3428 1.5430
25.3125 20.2500 0.8 143.581 0.29060 0.1022 0.7285
33.0612 23.1428 0.7 177.948 0.25491 -1.2204 -0.0239
45.0000 27.0000 0.6 229.743 0.22661 -2.4111 -0.6946
64.8000 32.4000 0.5 313.906 0.20482 -3.4499 -1.2577
101.250 40.5000 0.4 466.016 0.18865 -4.5085 -2.0753
180.000 54.0000 0.3 789.464 0.17727 -4.4672 -1.1897

Table 2: Bending energy of ellipsoids that all have a smallest edge radius of 11.4 pixels (3*3.8). The
measurements are averaged over 10 ellipsoids of different position and orientation. The ellipsoids were sampled
at twice the Nyquist rate, the σk is set at 3.8. The CV’s are on the order of 10–3 %. The theoretical values are
calculated using the Mathematica script of appendix A.

theory experiment
scale (∆) a b c A (∆2) BE BE bias (%)
11.4000 1.0 1.0 1.0 1633.13 25.1327 25.1200 -0.0504
14.0741 1.0 0.95 0.9 2245.63 25.3567 25.2983 -0.2302
14.0741 1.0 0.9 0.9 2167.12 25.4221 25.3484 -0.2898
17.8125 1.0 0.9 0.8 3224.30 26.1493 25.9621 -0.7157
17.8125 1.0 0.8 0.8 2986.36 26.3973 26.1852 -0.8035
23.2653 1.0 0.85 0.7 4894.35 27.7918 27.4698 -1.1585
23.2653 1.0 0.7 0.7 4317.98 28.2883 27.9515 -1.1905
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EllipsoidAreaBE computes the surface area and
bending energy (note that we have set Poisson’s ratio
equal to zero) of 3D ellipsoids. For readability
purposes we have adopted the exact notation used by
[22, 23].

EllipseLengthBE[a_, b_] :=
(* a, b: principal axes of 2D ellipse *)
Module[{

t, (* curve parameter *)
x, (* position vector x(t) *)
xt, (* 1st derivatives of x to t *)
xtt, (* 2nd derivatives of x to t *)
d, (* dummy vector *)
ds, (* length element *)
K, (* curvature *)
L, (* total length *)
BE}, (* 2D bending energy *)

x  = {a*Cos[t], b*Sin[t], 0};
xt = D[x,t]; xtt = D[x,{t,2}];
ds = Sqrt[xt.xt];
d  = CrossProduct[xt,xtt];
K  = Sqrt[d.d]/(xt.xt)^(3/2);
L  = 4 * NIntegrate[ds, {t,0,Pi/2}];
BE = 4 * NIntegrate[K^2 * ds, {t,0,Pi/2}];
{L,BE}]

EllipsoidAreaBE[a_, b_, c_] :=
(* a,b,c: principal axes of3D ellipsoid *)
Module[{
u, (* surface parameter 1 *)
v, (* surface parameter 2 *)
x, (* position vector x(u,v) *)
xu, xv, (* 1st derivatives of x *)
xuu, xuv, xvv,

(* 2nd derivatives of x *)
E, F, G, (* first fundamental form *)
dA, (* area element *)
n, (* surface normal vector *)
L, M, N, (* second fundamental form *)
Km, (* mean curvature *)
Kg, (* Gaussian curvature *)
A, (* total area *)
BE}, (* 3D bending energy *)
x={a*Sin[v]Cos[u],b*Sin[v]Sin[u],c*Cos[v]};
xu = D[x,u];
xv = D[x,v];
xuu = D[x,{u,2}];
xuv = D[x,u,v];
xvv = D[x,{v,2}];

E = xu.xu; F = xu.xv; G = xv.xv;
dA = Sqrt[E*G - F*F];
n = CrossProduct[xu,xv]/dA;
L = xuu.n; M = xuv.n; N = xvv.n;

Km = (E*N - 2*F*M + G*L)/(2(E*G - F*F));
Kg = (L*N - M*M)/(E*G - F*F);
A = 8*NIntegrate[dA,{u,0,Pi/2},{v,0,Pi/2}];
BE = 8*NIntegrate[(4*Km^2 - 2*Kg)*dA,

{u,0,Pi/2},{v,0,Pi/2}];
{A,BE} ]
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