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Abstract

Data movement has been long identified as the biggest challenge facing modern com-
puter systems designers. To tackle this challenge, many novel data compression al-
gorithms have been developed. These compression algorithms can be embedded into
bandwidth-bound applications to reduce their memory traffic volume. As a result, data
decompression, in many instances, is in the critical path of the application execution,
while the compression itself can happen offline or outside of the critical path. There-
fore, fast data decompression is of utmost importance. However, most existing parallel
decompression schemes adopt a particular parallelization strategy suited for a particular
HW platform. Such an approach fails to harness the parallelism found in diverse modern
HW architectures. To this end, we propose multiple parallelization strategies for variable
rate data decompression. The proposed strategies aim to utilize parallel architectures
efficiently. Our strategies are based on generating extra information during the encoding
phase, and then passing this information in a side-channel to the decoder. After that,
the decoder can use that extra information to speed-up the decoding process tremen-
dously. To demonstrate the effectiveness of our strategies, we implement them in a
state-of-the-art compression algorithm called ZFP and apply it on a real-life industrial
application from ASML. Our implementation is publicly available on GitHub [1]. This
application is a feed-forward control model for controlling wafer heat in EUV lithogra-
phy machines. The application is dominated by matrix-vector multiplication (which is
bandwidth-bound) and is executed on GPUs. We show that parallelization strategies
suited for multicore CPUs are different from the ones suited for GPUs. On a CPU,
we achieve a near-optimal speedup and an overhead size which is consistently less than
0.04% of the compressed data size. On a GPU, we achieve a decoding throughput of
more than 130 GiB/s which allows us to execute the ASML application within the given
time budget.
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Introduction 1
Memory bandwidth and data movement have been long identified as the biggest challenge
facing computer systems’ designers in the current decade [4]. This challenge becomes
even harder in massively data-parallel architectures such as GPUs [5]. In order to over-
come this bottleneck, a lot of research has been focusing on novel online data compression
techniques [6]. In online compression, the data encoding and/or decoding happens at
run-time as part of another application. The primary goal of online compression is to
reduce the amount of data that the application has to transfer into/from memory at
the expense of sacrificing extra compute power to perform the encoding/decoding steps.
As the memory bandwidth gap worsens, any savings in data transfer time lead to huge
savings in the total application execution time, even with the additional overhead used
to encode/decode the data. In contrast to online compression, offline compression fo-
cuses solely on reducing, as much as possible, the compressed data size. At first look,
both online and offline compression seem to share the same final goal. However, online
compression focuses, in addition to reducing the compressed data size, on reducing the
overhead of encoding and decoding. To reduce such overhead, many online compression
algorithms focus on utilizing modern architectural features such as vector instructions,
multicore CPUs, and caches [6].

1.1 The memory wall

Computing applications are often categorized as either compute-bound or bandwidth-
bound. A compute-bound application is one where the majority of the total execution
time is spent on calculation operations, such as addition and multiplication. On the
contrary, a bandwidth-bound application is one where the majority of the total execution
time is spent in memory operations. This classification is hardware platform dependent,
as it is based on the time spent on specific operations. Due to the growing gap between
memory bandwidth and computation performance, an increasing number of applications
is qualified as bandwidth-bound on modern hardware architectures such as GPUs [4][5].
This is often referred to as the ”Memory Wall” [7]. Data compression is a solution to
speed up these bandwidth-bound applications.

1.2 Data compression

Compression algorithms can be analyzed based on many different metrics. In this work
we focus on compression ratio and decoding throughput. Compression ratio refers to the
reduction ratio in compressed data size vs. the original data size. For example, if the
algorithm compresses a file of 1 MB into 100 KB, then we say that the compression ratio

1



2 CHAPTER 1. INTRODUCTION

is 10. Decoding throughput is the amount of data that can be decoded in a given time
frame, for example 10 GiB/s.

Compression algorithms can also be classified in many different ways. An algorithm
is said to be a tiled algorithm if it divides the input data into tiles or blocks (i.e., groups)
of n values and then compresses each tile independently from other tiles. In this work we
focus on tiled algorithms, as the independence of tiles allows for tile-level parallelism. A
lossy compression algorithm is an algorithm where data compression introduces a user
controlled error. This is contrary to lossless algorithms where the decoded data after
decompression is bitwise (exactly) equal to the original data. For lossy compression
algorithms the maximum achievable compression ratio is dependent on the error bound,
where increasing the error bound allows a higher compression ratio. In this work we
focus on lossy algorithms, as they achieve much higher compression ratios than lossless
algorithms. Online compression means that data encoding and/or decoding happens
at run-time as part of another application. The primary goal of online compression is
to reduce the amount of data that the application has to transfer into/from memory
at the expense of sacrificing extra compute power to perform the encoding/decoding
steps. As the memory bandwidth gap worsens, any savings in data transfer time lead to
huge savings in the total application execution time, even with the additional overhead
used to encode/decode the data. In contrast to online compression, offline compression
focuses solely on reducing, as much as possible, the compressed data size. At first look,
both online and offline compression seem to share the same final goal. However, online
compression focuses, in addition to reducing the compressed data size, on reducing the
overhead of encoding and decoding. In this work, we focus on online decompression,
where only decoding is assumed to be in the critical path. This is true for many real-time
applications such as the ASML Wafer Heat Feed Forward (WHFF) model. Encoding is
assumed to be outside of the critical path and therefore not relevant to the total execution
time. Furthermore we can classify compression algorithms into: (i) fixed rate, and (ii)
variable rate. In fixed rate compression, each tile in the original dataset is encoded using
a fixed number of bits. In contrast, with variable rate compression, the number of bits
per compressed tile varies across the data. In this work we focus on variable rate, as
this generally achieves much higher compression ratios at the same error level.

To quantify the impact of applying compression to speed up applications with a data
transfer bottleneck, we will present the execution path with and without compression
and derive equations. This will show why it is important to have fast decoding and a
high compression ratio.

Figure 1.1 shows the execution path of an application without using compression. Let
Ttransfer be the time needed to transfer the data over the bandwidth-limited channel, and
Tapp be the time needed by the application to process the data once it arrives. Assume
that data transfer and computation are pipelined. Then, it follows that the latency and
period of the system without compression are given by:

Latency = Ttransfer + Tapp (1.1)

Period = max (Ttransfer, Tapp) (1.2)

Now, suppose that we compress the data before sending it with an average compres-
sion ratio denoted by R. This case is illustrated in Figure 1.2. It follows that the latency
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Figure 1.1: Execution path without compression

Figure 1.2: Execution path with compression

and period of the system with compression are given by:

Latency =
Ttransfer

R
+ Tdecode + Tapp (1.3)

Period = max

(
Ttransfer

R
, Tdecode + Tapp

)
(1.4)

It is straightforward to see from Equations 1.3 and 1.4 that the data transfer time is
reduced by a factor R. However, as shown in Figure 1.2, a decode step is added which
has its own latency (denoted by Tdecode). Therefore, it is important to keep the decoding
time as short as possible. In order to speed up decoding on modern multi-core HW
platforms, for example GPUs, it should be done in parallel.

1.3 An industrial case study: feed forward control in
lithography machines

The work described in this thesis was carried out at ASML. ASML is the world’s largest
manufacturer of photolithography machines. Photolithography is the process of printing
an image on silicon to produce an integrated circuit (IC). An important driver for the
development of this industry is Moore’s law [8]. This is a prediction made by Gordon
Moore in 1965 that the number of components on an IC would double every year until
1975, and from then on double every two years. This prediction has proven to be accurate
for decades [9].

In lithography, physical and chemical effects due to imperfections of the system and
wafer introduce small errors in the printed image. As the dimensions of the features
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to be printed are shrinking, these errors are becoming increasingly problematic. To
compensate for this, modern lithography machines model these processes and apply
corrections. This is called computational lithography.

At this moment Extreme Ultraviolet (EUV) Lithography is seen as the key enabler to
shrink transistor dimensions over the next decade. EUV lithography has been in devel-
opment for over two decades and over the last five years the first machines are deployed
in production. As the technology is maturing, a major challenge is the rapid increase in
complexity of computational lithography [10]. An example of a physical model with high
computational requirements is the Wafer Heat Feed Forward (WHFF) model [11] intro-
duced in EUV machines. Bamakhrama et al. recently published a paper [12] on using
HW acceleration to run this model within its real-time requirements. In this paper, they
state that the WHFF model can benefit greatly from GPU acceleration. When using
GPUs to run this model, the bottleneck is the PCIe interface found on all modern Com-
mercial Off The Shelf (COTS) GPUs. In order to alleviate this bottleneck to accelerate
the application they propose to use data compression. The algorithm they use to meet
the compression ratio requirements while staying within their error bounds is ZFP in
variable rate mode. However, there is no support for ZFP variable rate modes on GPU
yet. For this application it is essential to develop a strategy that can do PVLD (parallel
variable length decompression) on a GPU with high decompression throughput.

1.4 Problem statement

Contrary to parallel fixed rate decompression, parallel variable rate decompression is
challenging. We will illustrate this by presenting how fixed rate decompression is paral-
lelized in tiled algorithms and explain why this simple approach can not be applied to
variable rate decompression.

We start with an uncompressed dataset and a tiled compression algorithm. When
we look at the set of tiled compression algorithms, nearly all of them apply the same
three general steps:

1. Divide the data into tiles

2. Apply a transformation (often based on decorrelation)

3. Encode the blocks with either fixed or variable rate

The results of these steps is what we refer to as the (compressed) bitstream. It is a series
of encoded blocks. Now, we want to access a specific block in this bitstream. Before we
can do this, we have to decode it. In order to decode a specific block the decoder needs
to know the bit position corresponding to the start of this block in the bitstream. We
call this position the block offset and define it as follows:

Definition 1.1 (Block Offset) The block offset of block n, denoted by D(n), is the
number of bits between the start of a compressed bitstream and the starting bit of the nth
compressed block where n > 0. D(n) is given by:

D(n) =

n−1∑
i=0

Li (1.5)
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where Li is the length of compressed block i in bits.

Recall from Section 1.2 that in fixed rate the blocks in the compressed bitstream
have the same compression ratio. This means that a fixed-rate compressed block length
is the original block length B divided by the compression ratio R. Substituting this in
Equation 1.5 gives:

D(n) =
n−1∑
i=0

Li = n · B
R

(1.6)

This means that the offset of any block in a fixed-rate compressed bitstream can be
computed easily if the compression ratio R is known. As these parameters are constant
and known at encode- and decode-time, fixed rate decompression is easy to parallelize.
On the other hand, with variable rate compression, the compressed block length is not
constant. This means that the expression from Equation 1.5 does not simplify like in
Equation 1.6. It remains a summation where the offset of the current block depends
on the accumulated length of all previous blocks. Hence, the challenge in PVLD is to
efficiently access or compute the block offset for every block in the compressed bitstream.

1.5 Research contributions

In this thesis we address the following research questions:

1. Can we develop a solution for PVLD which
- is generic and can be applied to multiple compression algorithms?
- can be used efficiently on multiple HW platforms?
- allows the end user to make a trade-off between compression ratio and
decoding throughput?

2. Can we make an implementation that is able to run the WHFF model
within its requirements?

To answer the questions we develop a solution for PVLD. Our solution is based
on generating extra information during encoding that can be used to parallelize the
decoding. We call this extra information side-channel information and we propose a set
of three strategies to encode it. We also often refer to it as overhead, since it is extra
data which does not contain information about the original data but is required to allow
parallel decoding. Figure 1.3 illustrates the concept by depicting the execution path with
compression and the addition of the side channel information.

We aim to make our solution applicable to different algorithms by basing our strate-
gies on generic properties that are shared between algorithms. Our side channel informa-
tion encoding strategies have different properties in terms of overhead size and decoding
method. This will allow us to choose the optimal strategy based on the HW platform
used. It also provides the end user with a trade-off between compression ratio and de-
coding throughput based on their application. We will implement our strategies and
choose a configuration that allows us to run the WHFF model on a GPU.
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Figure 1.3: Execution path with compression including side channel information

1.6 Thesis structure

The thesis is structured as follows: In Chapter 2 we provide background information
on parallel computing, on compression algorithms and on ZFP. In Chapter 3 we show
related work in the field of parallel decompression on CPUs and GPUs and compare our
solution to other existing and self proposed solutions. In Chapter 4 we introduce our
general solution for parallelizing tiled variable rate decompression. We also propose a
ZFP specific optimization to increase the decoding throughput on GPU. In Chapter 5
we evaluate the performance of our strategies applied to ZFP on a multicore CPU and a
GPU. We also show that our proposed solution is able to meet and surpass the WHFF
requirements. Finally, in Chapter 6 we conclude the results of our strategies. We also
give recommendations on how to use them effectively and what is important in parallel
decompression on different HW platforms.



Background 2
In this chapter we give background information on parallel computing. Then, we compare
different floating-point compression algorithms. Finally we show why ZFP was chosen
for the WHFF model and we give an explanation of how ZFP works.

2.1 Parallel computing

Historically, computing performance has been growing with Moore’s Law for years, mean-
ing that a new CPU would offer a significant performance increase for older software,
as the chip would be much faster. However this scaling has ended more than a decade
ago and forced chip makers and software application designers to go towards parallel
computing [14]. This trend can be seen in both CPUs and GPUs.
A widely used method to classify computer architectures is Flynn’s taxonomy [15]. Flynn
proposed a model in which computer architectures are classified based on the number of
concurrent instructions issued and data-streams used. In this model there are 4 different
architecture types: SISD, SIMD, MISD and MIMD. The I and D stand for Instruction
and Data, the S and M for Single and Multiple. For example an SISD architecture is one
where one instruction is issued to work on one single data stream at a time. Alterna-
tively, an SIMD architecture issues one instruction which works on multiple datastreams
concurrently. Modern high end CPUs, which are multi-core and superscalar are defined
as MIMD architectures. GPUs are typically SIMD devices.

2.1.1 CPU

CPUs are computer architectures designed to efficiently handle all applications. Because
of this the focus in the design process is often on single core performance, since not
every application can make good use of multiple cores. Recently the number of cores is
increasing significantly in CPUs designed for specific applications, mainly CPUs aimed
at the server market. An example of this are Intel Xeon CPUs, which go up to 56 cores
each executing 2 threads simultaneously, allowing 112 parallel threads in total [16]. This
also holds for AMD Epyc CPUs, where the next generation is announced to have 64
cores with 2 simultaneous threads per core, so 128 threads per CPU in total [17]. These
devices are also suited for HPC applications, as these applications are typically designed
to exploit parallelism.
In order to make efficient use of the available cores, OpenMP [18] has been developed.
OpenMP is an API that allows the user to define parallel regions in their program. It is
compatible with C, C++ and Fortran code and supported by nearly every instruction
set architecture and operating system.
An example of a possible parallel region is a matrix vector multiplication where each

7
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output element of the resulting vector can be computed independently of the other ele-
ments. A possible implementation is to have each thread compute an output element by
multiplying a row of the matrix with the input vector and summing all the multiplication
results.
A good use of OpenMP is to implement your parallel region in a loop with fixed loop
bounds and defining this loop as a parallel region with the pragma omp parallel for .
Using this, the loop iterations are divided over a number of threads which is either
user-specified or the maximum number of threads available on the CPU. This allows the
user to control the load balancing. Furthermore, OpenMP has three scheduling policies:
static, dynamic and guided. The most simple policy is static, where the loop iterations
are divided at compile time into equally sized groups [19]. If the number of groups is
not specified by the user, it will be set to the number of threads that can be executed in
parallel on the available HW. This is a simple and effective way to divide the work over
the available cores, given that the loop iterations are approximately equal in terms of
execution time. With dynamic scheduling the loop iterations are divided over threads.
These threads are distributed to the cores at runtime based on availability. This can be
beneficial when the loop iterations have a varying execution time, as it allows cores that
execute the shorter threads to run multiple of them during execution of a long thread
on a different core. Guided is similar to dynamic, with the difference that the number of
loop iterations per thread is variable. The goal is to allow a fine-grained distribution with
low overhead, as the majority of the iterations are divided equally over the number of
threads and the remaining iterations are scheduled in a finer grained manner comparable
to the dynamic policy.

2.1.2 GPU

Since GPUs have historically been developed for image rendering, the focus has always
been on high throughput and floating-point computation power. Since image rendering
is a massively parallel application, the number of cores on GPUs is currently orders of
magnitude larger than on a CPU. Where high end parallel CPUs have tens of cores and
threads, GPUs have up to thousands. An example is the NVidia Tesla V100 which has
5.120 CUDA Cores [20]. Due to this high number of cores, the computational power of
a high-end GPU is much higher than any CPU, which makes them ideal candidates for
HPC applications [21].
Because the computational performance of GPUs is so high the memory bandwidth is
often a bottleneck. This is especially problematic for HPC applications, as these often
require large amounts of data. Therefore, GPU manufacturers are using HBM (High
Bandwidth Memory) in modern GPUs designed for HPC applications. An example of
this is the NVidia Tesla GPU series, where the two most recent high end devices (P100
and V100) are both equipped with HBM2. This trend is expected to continue as both
NVidia and AMD are announcing even higher memory bandwidth for their next gener-
ation of HPC GPUs.
In order to efficiently use a GPU in software applications, we have to look at the archi-
tecture of the device. In this thesis we focus on NVidia GPUs, which execute threads
in groups called warps. A warp is a group of threads which are executed in parallel on
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one streaming multiprocessor (SM). The warp size is the number of threads in a warp
and therefore also the number of cores in an SM. Each cycle, all threads in a warp have
to execute the same instruction. When each thread wants to issue the same instructions
this is a good model which leads to efficient execution with massive parallelism. However
when threads want to execute different instructions, for example when control decisions
differ between the threads, this leads to warp divergence. When warp divergence occurs,
the different instructions are executed sequentially. This means that while one thread is
executing its instructions, the other threads are waiting. This continues until all threads
reach the same instruction, which is is called synchronization. Warp divergence is a loss
of parallelism and can cause significant slowdown in GPUs. Therefore it is important to
keep threads synchronized on warp level.
Another architectural feature of GPUs is the availability of shared memory. NVidia
GPUs have a pool of low latency memory per SM which can be accessed by every thread
in a warp executing on this SM. This means that data sharing between threads in a warp
is very fast. However, when threads in different warps want to exchange data, it has to
go through main memory. Limiting or eliminating data dependencies between warps is
essential in developing high performance CUDA applications, as the latency of shared
memory is much lower than the latency of main memory, even when using HBM.

2.2 Compression algorithms

Compression is an active field of research and development is still happening for exist-
ing and new algorithms. For many algorithms the focus is online (de)compression, as
encoding and decoding time are becoming critical factors in an increasing amount of ap-
plications [22][23]. Both research institutions and commercial organizations are working
on this. For example, Facebook and Google both recently decided to open-source a com-
pression algorithm, Zstandard [24] and Snappy [25]. These algorithms are similar in the
sense that both of them share the same goal: To (de)compress any kind of data lossless
with high (de)compression speed and compression ratio. For Snappy, the focus is more
towards the speed rather than the compression ratio while Zstandard allows the user to
make a trade-off between them. Furthermore there are algorithms where the compres-
sion ratio and/or encoding/decoding throughput is heavily dependent on the input data.
These are algorithms that exploit a known property about the input data, such as local
correlation or repeating patterns. For example, a transform based algorithm achieves
the best results with highly correlated data, and an algorithm based on Huffman Encod-
ing achieves the best compression ratios for data with frequently repeating bit patterns.
Three of these algorithms are GFC [26], ZFP [27] and SZ [28].

Table 2.1 shows some properties of GFC, ZFP, SZ, Zstandard and Snappy. The first
observation is that all of these algorithms use a variable rate mode. This is because
variable rate modes generally achieve much higher compression ratios than fixed rate
mode. For lossy algorithms it should be noted that this means a higher compression ratio
at the same error bound. The reason for this is simple: in a large dataset, the information
density is nearly always varying across the data. With lossless algorithms it has been
shown the compression ratio is bound by the Shannon Entropy of the dataset [29], where
the optimal policy is to encode symbols with a different number of bits based on how
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frequent they occur. As the number of bits per encoded symbol is variable, this is
considered variable rate encoding. Lossy algorithms allow for some loss of information
to increase the maximum achievable compression ratio. To understand why variable rate
is favored over fixed rate, consider the following. When we compress a sequence with high
information density and one with low information density using the same error bound,
the resulting compression ratio will be higher for the sequence with low information
density. If we have a dataset consisting of 10 tiles with varying levels of information
density and we apply fixed rate compression, we have to encode every tile with the same
number of bits. This leads to high errors in the high density tiles, unnecessarily low
compression ratio for the low density tiles, or both. With variable rate the number of
bits used in encoding can vary between tiles, which means we can spend bits on high
density tiles and save bits on low density tiles. This leads to higher overall compression
ratio at the same error level.

Out of all the algorithms in Table 2.1, ZFP is the only one that has a fixed rate
mode. The reason for this is twofold: it simplifies memory management and random
access. Additionally, it also simplifies parallelization of decoding.

For many applications, including the WHFF model, random access is not a require-
ment. Here compression is applied solely to reduce strain on a bandwidth limited channel
and the array is decompressed as soon as possible after arrival. As the error bound of
an application is user defined, the goal is to achieve maximum compression ratio and de-
compression throughput at this error bound. In those cases it is optimal to use a variable
rate mode with an efficient PVLD strategy. This conclusion is also reached in the paper
about the WHFF model [12], where the authors call for a ’GPU-friendly’ decompression
scheme, for example an efficient GPU implementation of ZFP variable rate modes.

An algorithm that is designed specifically for GPUs is GFC. However, it can not
be used for the WHFF model as it is a lossless algorithm and therefore it is unable to
achieve the required compression ratio. Furthermore, GFC only allows inputs in double
precision. As the WHFF dataset is single precision it would require extra conversion
steps which increase the size of the dataset. Finally GFC is not as well documented and
maintained as ZFP which makes it more difficult to deploy in a business context.

Snappy and Zstandard are both lossless algorithms which are also unable to achieve
the required compression ratio for the WHFF dataset. For this application the algorithms
under consideration are SZ and ZFP.

SZ is a prediction based algorithm, which takes a sequence of input values and en-
codes every value as either a prediction based on the previous values, or ’not predictable’.
This algorithm performs well if there is predictability in the data, meaning that subsets
of the data are (near) constant or follow a linear trend or quadratic trend. As the WHFF
dataset contains correlated data, this algorithm performs well. However, at the same
error bound ZFP achieves a higher compression ratio on the WHFF dataset. Further-
more, SZ has no GPU implementation yet, meaning that the implementation effort is
considerably higher than with ZFP. Finally, we aim to develop a general solution for
parallelization that can be applied to multiple algorithms. With SZ this is difficult, as
the parallelization strategy that is currently implemented in their parallel CPU imple-
mentation is based on algorithm specific properties rather than a property that many
algorithms share, such as tiling. Therefore we choose to use ZFP. The same choice was
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made by Bamakhrama et al. [12] for the WHFF model.

2.3 ZFP

ZFP is an algorithm developed for high speed (de)compression with high compression
ratio. Its development is supported by large research project for to develop next gen-
eration HPC platforms such as the US Department on Energy’s Exascale Computing
Project [31][32]. It is tiled and transform based, which means the compression is based
on local correlation within tiles where a high degree of correlation will lead to a high
compression ratio. ZFP compression can be described by the three step process intro-
duced in section 1.4. In ZFP, tiles are referred to as blocks, which is the term we will use
for the rest of this thesis. A block is a set of 4d values, where d is the dimensionality of
the block from one (1D) to four (4D).

ZFP is a lossy algorithm which has three modes of operation: fixed rate, fixed preci-
sion and fixed accuracy. In fixed rate mode every block is encoded using a fixed number
of bits, as introduced in section 1.2. Fixed precision and fixed accuracy are both variable
rate modes. In fixed precision mode the user specifies a relative error bound, meaning
that the error introduced by compression can not be larger than for example 1% of
the original value. In fixed accuracy mode the user specifies an absolute error bound,
meaning that the error introduced by compression can not be larger than for example
1e-3. The proof that ZFP satisfies these user defined error bounds, along with a more
extensive description of the algorithm, can be found in [33].

In the next chapter, we will introduce our solution for parallel variable rate decom-
pression.
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Parallel variable rate compression has received a lot of attention in the past few years
[34, 26, 35, 36, 13]. Most of the existing work is motivated by the need to alleviate
the bandwidth limitation between memory and processing units. In this chapter we will
evaluate the existing solutions and show why they are not suitable for our problem.

3.1 Speculative execution

In [13], the authors proposed a new approach to parallel decoding based on speculative
execution. Speculative execution parallelizes decoding based on prediction of the block
boundaries. Their implementation splits decoding into three pipelined stages: Scanner,
Decompresser and Merger.

The Scanner stage scans the compressed bitstream and predicts where block bound-
aries are. Based on these predictions, the Decompresser stage will decompress blocks
starting from the predicted block boundaries. The correctness of the predictions can be
checked when previous blocks are done decompressing, since the end of a block is the
boundary with the subsequent block. For correct predictions, the decompressed block is
correct and the Merger stage will add it to the output. If the prediction was incorrect,
the incorrectly decompressed block is discarded and the correct block will be decom-
pressed from the now known block start. This is repeated until the whole compressed
bitstream has been decompressed and merged successfully.

The authors have applied their strategy to three variable rate compression algorithms:
zlib, bzip2 and H.264. Their approach achieves a speedup of 1.2 to 8.53 on a 36 core
platform and their results show that the optimal speedup is achieved at 3, 14 and 18
cores respectively for their chosen compression algorithms. In their results it can be
seen that the speedup is not linear with the number of cores used. When increasing the
number of cores used above the mentioned optimal numbers, the speedup saturates or
even decreases. This shows that the maximum speedup that can be achieved with their
strategy is limited and does not scale well with an increasing number of cores.

In order to evaluate the performance of this method it is important to look at:

1. The prediction accuracy (percentage of predictions that are correct)

2. The mis-prediction penalty (time lost when the prediction is incorrect)

3. Prediction overhead (time spent on predicting block boundaries)

The limited scalability of speedup is a property of speculative execution due to the
following three reasons. Firstly, they mention that a mis-prediction causes the detection
recovery overhead to propagate through the following predictions. This recovery is a

13
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penalty that does not reduce, but stays constant or even increases with an increasing
number of cores. Since it is not possible to completely eliminate prediction errors, this
issue will always limit the speedup for a large number of cores. Furthermore, speculative
execution does not account for load balancing, which is a major factor in the speedup
difference between algorithms reported in the paper. This will lead to scalability issues,
as load imbalance is a major limiting factor for scaling parallel efficiency. Finally, the
overhead of their scanner step is dependent on the compression algorithm their strategy
is applied to. Detecting a block boundary is dependent on the encoding strategy applied
to the blocks. This will limit the maximum achievable speedup in algorithms where it is
difficult to detect block boundaries.

We conclude that this approach is not suitable for our purpose, as our primary
objective is fast decoding. With this approach the speedup saturates after using a low
number of cores, while we need to keep scaling this into thousands of cores for GPU
acceleration.

3.2 JPEG compression

JPEG is an image compression algorithm which is mostly comparable to ZFP. It is also
lossy, uses tiling and is transform based. Since JPEG is widely used and a lot of research
has been done on efficient encoding and decoding it is a good reference point to compare
our work to.

Firstly, there is research on parallelizing individual steps of the JPEG algorithm. In
[37] the authors parallelize the most complicated step of JPEG, the Embedded Block
Coding (EBC). The authors report that a Verilog implementation of their proposed
method can achieve up to 6 times speedup and a factor 6 reduction in memory bandwidth
compared to other sequential implementation. Although the authors have devised a
scalable method to parallelize the EBC, it is not applicable for us for two reasons.
Firstly, the authors focus on a specific step of JPEG, which means that their approach
can only directly be applied to JPEG and needs reworking for other algorithms. Also,
when parallelizing a single step of an algorithm, the maximum achievable speedup is
bound by Amdahl’s Law. All other steps of JPEG decompression are executed serially
in their approach, which significantly limits speedup scalability.

An approach more similar to ours is [38] in which the authors propose a way to
parallelize Motion JPEG XR decoding on a GPU. They propose to parallelize JPEG
decoding on the block level, similar to our method. However they mention that for
JPEG there are dependencies between blocks, which makes it difficult to parallelize on
the block level. Their method to limit these dependencies is to increase the size of the
blocks, which in turn limits the number of blocks that can be processed in parallel.
The authors manage to achieve a decoding speed of 3652 frames per second for 352x288
images, to 46 frames per second for 7680x4320 images on an NVidia GeForce GTX 480
GPU. The use of a GPU shows that their approach of parallelizing decompression on
the block level is scalable to a high number of cores.

Patent [39] describes an approach to parallelize JPEG very similar to our offsets
strategy. It is based on placing restart markers in the compressed stream, which creates
blocks that can be decompressed independently. Then the bit location of these restart
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markers with respect to the start of the bitstream, the offsets, are stored and used to
parallelize the decoding. The difference with our approach is that this strategy requires
insertion of restart marker into the compressed bitstream, which means the paralleliza-
tion strategy and algorithm are not completely decoupled. This is needed because in
JPEG the blocks are coupled, whilst in ZFP they are independent. Furthermore, we
provide different methods of encoding the information besides simply storing the offsets.
This means that our proposed framework is more flexible, as it allows the user to trade
off compression ratio for decoding speed.

3.3 Side-channel information approaches

In Section 1.4 we stated that in order to parallelize decoding on block level we need to
know the block boundaries. We have concluded that fixed rate is not a feasible solution
for our problem as it often achieves low compression ratios when compared to variable
rate. Furthermore, in Section 3.1 we show that predicting block boundaries is also not
a feasible solution for large scale parallelism as it does not scale well. Therefore the
most suitable approach is to transfer extra information which helps identify the block
boundaries. This is an often used approach and can be implemented in many ways.

3.3.1 Block length encoding

In [34], the author implemented a parallel variable length encoding (PVLE) scheme
suited for integer data sets. The scheme is based on saving the length of each codeword
and then performing a parallel prefix sum [40] on the array of lengths. The author
reports a speedup of 35x to 50x when comparing this method on an NVidia GeForce
GTX280 GPU to a serial CPU method.

The lengths strategy is a reasonable approach and is one of the strategies in our
proposed framework. However, we will explore different schemes for generating the
extra information needed to parallelize the decompression process and show that the
lengths based approach used in [34] is not the most suitable one for modern GPUs.
Also, this work is not directly applicable to our case as the parallelization strategy has
been applied to a Huffman encoder which is not able to achieve the compression ratio
that is needed for our application. Furthermore in this work the strategy has only been
applied to GPU. It does not mention a parallel CPU implementation or the expected
benefits of parallelizing CPU execution. Since our work shows that the optimal strategy
is dependent on the HW platform used, it is important to compare execution on both.
Finally, the paper only mentions encoding, while we focus on decoding.

3.3.2 GFC

In [26], the authors proposed an algorithm, called GFC, for parallel compression and
decompression on GPUs. It achieves decoding throughputs of over 95 Gb/s (12 GB/s) for
many datasets on an NVidia GeForce GTX285 GPU. GFC shares many similarities with
the ZFP algorithm used in our work. Both algorithms are tiled compression algorithms
and support floating-point data. However, GFC is a lossless algorithm which means
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that the achievable compression ratio is very limited, between 1.013 and 3.528 for their
listed datasets. Furthermore, GFC is specifically designed to map well to GPUs. As
GPUs and CPUs are inherently different architectures it is expected that GFC will not
perform well on CPUs without adjusting the algorithm. In this work we propose to
apply a parallelization framework on top of an algorithm (in our case ZFP) where the
parallelization strategy can be based on the used HW platform without changing the
underlying compression algorithm.

3.4 Block length quantization

A solution to reduce the challenge of finding the block boundaries is to apply quantization
to the block lengths. While fixed rate allows only a single length for a compressed block
and variable rate modes allow any length, we propose a quantized length approach where
only a number of block lengths is allowed. For example, in a dataset where the original
size of a block is 512 bits, a fixed rate mode with rate 4 would only allow compressed
blocks with a length of 128 bits and a variable rate mode would allow any length between
1 and 512 bits. A quantized mode on the other hand could allow lengths of for example
128, 256, 384 and 512 bits. These lengths do not have to be distributed uniformly, as
long as the longest possible block length is included in order to guarantee that the error
bounds are satisfied. An advantage with this approach is that the block boundaries are
much easier to predict, since there are a limited number of possibilities much smaller
than in the original variable rate modes. Another advantage is the limitation in bits
required to store the length. If we allow only 4 lengths instead of 512, the number of bits
required to store side-channel information which indicates the block lengths is reduced
from 9 to 2.

However, this approach also has a number of disadvantages. First and foremost,
the algorithm should be adjusted in order to only allow the specified block lengths
and not any arbitrary value between 1 and the maximum length. This means that
with this approach we have to change the algorithm itself, not only the parallelization
strategy, which goes against our intention of developing a parallelization method that is
independent of the algorithm. Furthermore in order to satisfy the error bounds we have
to use the same number of bits or more than in the ’optimal’ variable rate modes, where
we use the minimum number of bits required to meet the error bounds. This means
that compared to the original variable rate modes all block lengths will be rounded up
to the nearest allowed length. Increasing the number of allowed lengths will decrease
the number of bits added by this ’rounding’, but increase the number of bits required
to store the side-channel information per block. This trade-off is input data dependent
and therefore to do this efficiently one would need to analyze the data to determine the
optimal number and values of quantization intervals.

This method is not the most suitable for our purposes since this will make the par-
allelization strategy dependent on the algorithm, as mentioned before. Also some early
tests have shown us that the rounding overhead will often be more than the side-channel
information size in the case where we do not apply quantization at all, therefore increas-
ing the size overhead introduced to allow parallelization.
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Speculative
exeuction

Step-level
parallelism

Side-channel
information

Block length
quantization

Decoding
throughput

+/- + ++ ++

Scalability - - - - ++ ++

Data overhead ++ + - - -

Algortihm
independence

- - - + -

Table 3.1: Properties of the different parallel decoding solutions
++ indicates positive, - - indicates negative

3.5 Solution comparison

Table 3.1 summarizes the properties of each strategy discussed in this chapter. Since
decoding throughput and scalability are the most important properties for our case, it is
clear that speculative execution and step-level parallelism are not suitable for our case.
Speculative execution has limited decompression throughput at a low number of cores
due to the extra scanner and merger steps that are introduced, and the throughput does
not scale well into a high number of cores. Although step level parallelism may give
good speedup for a low number of cores, its scalability is limited by the steps of the
compression algorithm that remain serial. Also, it is very algorithm dependent which
means a strategy for one algorithm can not simply be applied to a different one.

The side-channel information and block-length quantization approaches are similar
in terms of decoding throughput and scalability. Block length quantization can even
be faster considering that the possible lengths are restricted, meaning a decoder can be
optimized (e.g. unrolling) to efficiently decode specific lengths. However, placing this
restriction on the algorithm itself modifies the compressed bitstream and can break com-
patibility with the original implementation. The advantage of side-channel information
is that it generates extra information based on the properties of the encoded bitstream,
rather than adding restrictions to the format of the bitstream. This, combined with the
fact that the side-channel information overhead is often much smaller than the introduced
overhead by padding compressed blocks to fit a specific length, leads us to conclude that
our side-channel information approach is the optimal method for our use-case.
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Proposed Solution 4
In this section we introduce our solution, which can be applied to any tiled algorithm. We
propose three parallelization strategies and discuss their advantages and disadvantages.
Then, we look at practical implementation constraints to fit our strategies, applied to
ZFP, on modern hardware. Finally we look at some ZFP specific optimizations which are
needed to speed up ZFP decompression for our example application, the WHFF model.

4.1 Side-channel information

As mentioned in Section 1.4, in order to decode blocks of encoded data in parallel, the
block offsets have to be known before decoding starts. These block offsets can be stored
directly or can be computed with the sum in Equation 1.5. If one has only the compressed
bitstream, neither the block offsets nor the block lengths needed for the sum are known at
the decoder. Therefore our solution is to generate extra side-channel information during
encoding and transfer it to the decoder. The side-channel information can be transferred
over the same channel used to send the compressed data. This extra information allows
us to compute the start of each compressed block in the bitstream in parallel. In the
absence of the side-channel information, the decoder falls back to sequential decoding.

Figure 1.3 illustrates the concept of our solution. We use the extra information to
massively speed up the decoding. Therefore, as mentioned in Section 1.5, there is a
trade-off between the decoder speedup and the introduced side-channel size overhead.
The side-channel information can be compressed itself to reduce its size further, for
example using Binary Interpolative Coding [41]. However, this introduces a side-channel
decoding step before the data decoding can start. For the sake of simplicity, in the rest
of this thesis we assume that the side-channel information is sent as is.

4.2 Definitions

We start introducing our solution by defining its overhead factor as shown in Defini-
tion 4.1.

Definition 4.1 (Overhead Factor) Let S be the total size of the original uncompressed
data in bits, R be the average compression ratio and I be the total number of bits required
to encode the side-channel information. The overhead factor, denoted by f , is given
by:

f =
I

S/R
(4.1)

19
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Figure 4.1: The effective compression ratio Re versus the average compression ratio R
for different ratios of I / S

Sending extra information, over the same communication channels as the compressed
data reduces the effectiveness of compression. This reduction results in a new effective
compression ratio defined as follows:

Definition 4.2 (Effective Compression Ratio) The effective compression ratio, de-
noted by Re, is the original uncompressed data size divided by the total amount of data
transferred over the communication channel. Re is given by

Re =
S

S/R + I
=

R

1 + f
(4.2)

It can be seen from Equation 4.2 that the effective compression ratio depends merely
on two factors: (i) the average compression ratio R, and (ii) the overhead factor intro-
duced in Definition 4.1. To minimize the impact of the extra information on the transfer
time, one would like to minimize the side-channel information size I with respect to the
original data size S, as this in turn minimizes f . The impact of I on Re can be visualized
as shown in Figure 4.1.

To develop strategies that minimize I and still allow for a large decoding speedup,
we will introduce a number of definitions. Given a block with length L, we define the
number of bits required to encode L as IL and it is given by:

IL = dlog2(L)e (4.3)

Similarly, given a block with block offset D(n), then the number of bits required to
encode D(n) is denoted by ID(n) for n > 0 and it is given by:

ID(n) =

⌈
log2

(
n−1∑
i=0

Li

)⌉
(4.4)
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Finally, we define ID to be the maximum number of bits required to encode an offset
for any block in a compressed bitstream of N blocks with an average data compression
ratio of R. As an offset is a cumulative sum of lengths, the largest offset is the one of
the last compressed block in the bitstream. Then ID is given by:

ID = max
(
ID(n)

)
=

⌈
log2

(
N−1∑
i=0

Li

)⌉
≤
⌈

log2

(
S

R

)⌉
(4.5)

Now, we are ready to detail what and how much extra information we send to
compute the block offsets before we start decoding. In this work, we propose three
strategies for sending extra information which we explain in the following sections.

4.3 Strategy 1: offset encoding

The first and simplest strategy is to transfer the block offsets directly. This means that
the information can be used without an extra processing step during decoding. However,
from Equation 4.5, it follows that the number of bits required to encode offsets grows
with the original data size S. This means that encoding an offset using a fixed number of
bits gives an upper bound for the maximum compressed file size. Hence, the transfer size
overhead of this strategy can be significant. To reduce this, we introduce the concept of
chunks.

Definition 4.3 (Chunk) A chunk is a set of C consecutive compressed blocks to be
decoded by a single thread.

To reduce the transfer size overhead, we group the blocks in chunks of size C and
encode one offset per chunk rather than one offset per block. As a result, during de-
compression, every thread decodes a chunk instead of a block. This reduces the extra
information size by a factor C. However, the increase in blocks per thread introduces
the following two issues:

1. A decoding dependency between blocks in a chunk, which introduces a control loop

2. The number of available threads is reduced by a factor C, which can cause load
imbalance on many-core systems

The impact of these issues differs per HW architecture and will be explored later.
Figure 4.2 gives a visual impression of blocks and chunks in an example stream of 12

variable-rate compressed blocks with a chunk size of 2. The example stream is a selection
of 12 compressed blocks from the Brain dataset [2], compressed using ZFP with a fixed
accuracy of 0.05. The figure shows the offsets that should be encoded for this stream.
For the first chunk this starts at 0 and it accumulates for subsequent chunks.

4.4 Strategy 2: length encoding

From Equation 1.5, it can be seen that it is also possible to compute any offset as a
cumulative sum of the lengths of the previous blocks. Recall that for an uncompressed



22 CHAPTER 4. PROPOSED SOLUTION

Figure 4.2: Side-channel information for 12 compressed blocks of the Brain dataset [2]
using Strategy 1 with a chunk size of 2. The bold underlined values are encoded offsets
and the values inside the blocks are the block lengths in bits

Figure 4.3: Side-channel information for 12 compressed blocks of the Brain dataset [2]
using Strategy 2 with a chunk size of 2. The values under the chunks are the encoded
lengths and the values in the blocks are block lengths in bits

ZFP block, L is constant and is equal to 4d · 2p. Assume that we do not have expansion,
which means the length of any compressed block is smaller than or equal to the length
of an uncompressed block, so R ≥ 1 for each block. Then, from Equation 4.3 it follows
that for compressed ZFP blocks the number of bits required is given by:

IL,ZFP =
⌈
log2

(
(4d · 2p)/R

)⌉
≤ 2d + p (4.6)

Equation 4.6 shows that, contrary to offset encoding, the number of bits required to
encode the length of a ZFP block does not scale with array size and has an upper
bound based on the data precision and dimensionality. Therefore, instead of transferring
block offsets, we propose to transfer block lengths and introduce a preprocessing step
at the decoder. The preprocessing step computes the required block offsets through a
cumulative sum of all the block lengths. Such a sum introduces a dependency between
blocks, where the block offset of block n is dependent on the block lengths of the previous
n− 1 blocks. This cumulative sum is also known as Exclusive Scan or Prefix Sum [40].
In a naive implementation, the solution is N sequential additions, where N is the total
number of blocks in the compressed stream. This means that the naive implementation
can be solved in O(N) operations with O(N) sequential steps. However, there are work-
efficient parallel algorithms to perform Prefix Sum in O(N) operations in O (log2 (N))
parallel steps [42].

Similar to Strategy 1, we can create chunks of blocks and encode the length of a
chunk rather than a block. This reduces the number of elements in the Prefix Sum by a
factor C. However the number of bits needed to encode a chunk length is larger than the
number of bits required to encode a block length, as the maximum length of a chunk of C
consecutive blocks in bits is C times larger than the length of a single block. This effect
can be quantified by substituting L with L · C in Equation 4.3 to see that it increases
the required number of overhead bits per chunk by log2(C).

Figure 4.3 shows the chunk lengths that would be encoded with a chunk size of 2 on
the example bitstream shown in Figure 4.2. Here, it can be seen that contrary to chunk
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offsets, the chunk lengths do not accumulate, hence the number of bits needed to store
them does not scale with the compressed data size.

If we compare Strategy 1 to Strategy 2, we see that Strategy 1 has an advantage in
the sense that all of the required information is transferred as is. This means that in
Strategy 1, there is no preprocessing step needed to reconstruct the chunk offsets as is
the case with Strategy 2. However, the overhead size for Strategy 1 is larger than the
overhead size of Strategy 2. The main issue with the preprocessing step in Strategy 2 is
that even in a work efficient parallel implementation, its duration scales with the number
of blocks. In order to address the issues associated with both strategies, we propose a
third hybrid strategy. The third strategy combines the advantages of strategies 1 and 2
in order to minimize both size and computation overhead. Before we introduce the third
strategy, we define the concept of partitions as follows:

Definition 4.4 (Partition) A partition is a set of P consecutive chunks, hence a par-
tition contains P · C consecutive blocks.

4.5 Strategy 3: hybrid encoding

The idea of this strategy is to divide the decoding work over partitions, where each
partition is independent of other partitions. This means that the complexity of any
preprocessing step is bounded by the partition size. The partitions are encoded efficiently
to ensure minimum size, while also limiting the time consumed by preprocessing. For a
partition of cardinality P , the side-channel information is encoded as follows:

• The first element will be encoded as a single chunk offset

• The remaining P − 1 elements will be encoded as chunk lengths

Such an encoding scheme provides the following advantages:

• An offset as first element decouples the partition from other partitions

• The partition size P decouples the complexity of the preprocessing step from the
array size

As a result, the preprocessing step execution time does not scale with the array size for
Strategy 3. Figure 4.4 shows Strategy 3 applied to the example from Figure 4.2. The
chunk size C is set to 2 and the partition size P is set to 3. With such parameters,
the encoded information starts with one chunk offset, followed by two chunk lengths
per partition. The chunk lengths within a partition are used to compute the chunk
offsets using Prefix Sum. The overhead size for large partitions is comparable to that of
Strategy 2 as for every P blocks we store P − 1 chunk lengths and only a single chunk
offset. Thus, the overhead per partition is defined by:

IH = ID + (P − 1) · IL (4.7)
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Figure 4.4: Side-channel information for 12 compressed blocks of the Brain dataset [2]
using Strategy 3 with a chunk size of 2 and a partition size of 3. Values in the blocks
are block lengths in bits. The bold underlined values are chunk offsets, the others are
chunk lengths

Strategy f

Strategy 1 R ·
(⌈
log2

(
S
R

)⌉)/
(C · L)

Strategy 2 R · (dlog2(C · L)e)/(C · L)
Strategy 3 R ·

(⌈
log2

(
S
R

)⌉
+ (P − 1) · (dlog2(C · L)e)

)/
(P · C · L)

Table 4.1: Overhead factor f for the side-channel strategies

4.6 Overhead analysis and implementation considerations

To compare the overhead size of the different strategies we use Table 4.1. The values for f
are computed by substituting the expression of I in Equation 4.1 for every strategy. This
means that these values are the maximum achievable f , as they assume a size-optimal
implementation, meaning that the information is stored in the absolute minimum num-
ber of bits required. However, there are several practical and hardware considerations
that prevent us from using the minimum number of bits. First, most modern computer
architectures work with data types that are multiples of bytes. An implementation with
for example 7 or 33 bits per value would increase complexity and may limit performance.
Therefore, we choose to implement schemes where lengths and offsets are encoded using
standard data types, so I = 2k+3 with k ∈ N. Second, in the case of ZFP, the num-
ber of bits required to encode chunk lengths in Strategy 2 and 3 is dependent on the
dimensionality of the array. For example, a block length for a 1D single precision array
requires 7 bits to encode, while a block length for a 3D double precision array requires
12 bits. In order to make one general solution that is applicable to all modes, one has
to ”over-size” the type used for storing the chunk lengths. Hence, such a type will not
be optimal in terms of overhead size for all dimensions and precision modes. Third, the
number of bits used to encode chunk offsets places an upper bound on the compressed
file size. In this work, we have a design requirement to support compressed files with
sizes up to 1 TiB. Such file size means that the chunk offset size must be encoded with
at least 43 bits. In order to fit a 43 bit value within standard data types, we choose to
encode chunk offsets as 64 bit integers. In turn, this allows us to address a compressed
file of up to 2 EiB.
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Figure 4.5: Stalls caused per line of code

4.7 ZFP specific GPU optimizations

Besides the general approach of presenting a framework for parallel variable rate decom-
pression for tiled algorithms, we also look specifically at ZFP, release version 0.5.4. The
goal is to improve the current CUDA fixed rate implementation, and carry any changes
over to the variable rate version that will be implemented. Such improvements are useful
for ZFP in general and are required to meet the WHFF model time budget.

To accelerate the ZFP GPU implementation, we analyze the execution time break-
down in order to identify the biggest contributors. For this we use NVidia Visual Pro-
filer [43]. This tool allows us to profile the execution time of individual functions and
analyze up to assembly level where stalls, warp divergence and other performance de-
creasing effects are occurring. From there we can decide which (sub)functions need to
be re-evaluated.

Figure 4.5 shows the code of a core function of ZFP decoding, decode ints. It can be
seen that a large number of stalls are occurring in line 133. Figure 4.6, which shows the
distribution of the causes of pipeline stalls in the application. As decode ints is the only
function where stalls due to memory dependencies occur, it is clear that this line is the
most significant cause of stalls and therefore significantly slows down the application.
In order to reduce or remove the stalls, we have to analyze the implementation of this
function.

Line 133 is an implementation of the transposed storage of a decoded bit plane.
What this means is that the bit plane, which is currently stored in a 64-bit unsigned
integer, needs to be stored as a single bit (e.g. the second bit) of 64 subsequent values.
This is illustrated in Figure 4.7. The current implementation stores the last bit and
right-shifts the bit plane, until all leftover bits to be stored are zeros. This is possible
because the memory where the values have to be stored is initialized as all zeros, meaning
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Figure 4.6: Distribution of causes of stalls

that storing a zero bit is essentially a redundant operation. The implementation is work-
efficient as it minimizes the amount of store operations and can terminate the loop earlier
than the maximum 64 iterations. However on GPU, this early termination causes warp
divergence, since not every bit-plane has the same number of non-zero bits to store. This
warp divergence leads to stalls, and false memory dependencies for the load and store
operations in the divergent code. We propose to set this loop bound to the maximum
theoretical value, the 64 iterations. This increases the total amount of work to be done.
However, it eliminates warp divergence and therefore the false memory dependencies. It
also allows us to unroll the loop with a factor of 64, which eliminates control dependencies
between iterations. We expect this optimization to completely eliminate the memory
dependency stalls and warp divergence on line 133, which will cause significant decoding
speedup. The speedup will be most significant at low compression ratios, as this line
is called once per decoded bit plane and the number of encoded bit planes is inversely
proportional to the compression ratio.

Another cause of stalls are lines 125, 126 and 127. Line 125 reads a variable number
of bits based on the state of the decoder. Lines 126 and 127 together form the implemen-
tation of a decision tree, where the decoder reconstructs the original bit planes based
on the encoded bitstream. All of these 3 lines implement processes based on variable
input data, which is the encoded bitstream. Therefore it is very difficult to eliminate
dependencies or warp divergence. We decide that trying to optimize these lines is cur-
rently not worth the effort for our application, as the potential speedup is expected to
be minimal.

In the next chapter we will evaluate the results of implementing the fixed loop bound
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Figure 4.7: Transposed storage of a bit plane of 64 bits

optimization, as well as our proposed strategies for parallel variable rate decoding.
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Evaluation and Results 5
In this Chapter, we present the results of evaluating our three proposed strategies in
Chapter 4. First, we describe the experimental setup. Then, we measure the performance
with a range of different datasets. We analyze both the CPU and GPU results. This is
done to get an insight in the properties of our strategies, and to find the optimal strategy
for each HW platform. Finally, we evaluate the compression ratio and GPU throughput
of ZFP using the ASML dataset.

5.1 Experimental setup

We evaluate the proposed strategies on both a CPU and a GPU. The parallel variable
rate decoding is implemented in the following frameworks:

• OpenMP: targeting CPUs

• CUDA: targeting NVIDIA GPUs

We use a dedicated test server to evaluate ZFP specific optimizations, our strategies
and the results of applying ZFP to the WHFF model. The configuration of our test
server is outlined in Table 5.1.

We implement our proposed strategies on top of ZFP release version 0.5.4. First,
we apply the fixed loop bound improvement as was mentioned in Section 4.7. Then, we
compare the performance of the optimized CUDA fixed rate implementation on NVidia
Tesla P100 and V100. Following this, we extend the CUDA fixed rate implementation
to also support our strategies for variable rate decoding.

In the CUDA fixed rate implementation, the block offsets are computed by multi-
plying the block number by the compressed block size, as denoted in Equation 1.6. To
support variable rate, we first introduce a parameter that contains information on the

Table 5.1: The setup used for evaluating the strategies

Item Value

CPU Intel Xeon Bronze 3106 (dual socket, 6 cores/socket)
GPU NVIDIA Tesla V100 32 GiB (PCIe Gen3 16 lanes)
RAM 256 GiB DDR4 2666 EEC

Storage 1.92 TiB SSD SATA disk
OS CentOS 7 (64-bit)

Compiler GNU GCC 4.8.5
CUDA CUDA version 10.0.130

29
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execution policy. Then, if we are in a variable rate mode, we allocate and transfer the
side channel information to the GPU along with the compressed data. We also introduce
the concept of chunks and a chunk size parameter, which is ignored in fixed rate mode,
but based on the side channel information in variable rate modes. The decoding in fixed
rate is unchanged, it still creates one thread for each block and computes the block
offset based on the block number. However, for variable rate, we create one thread per
chunk which decodes C blocks sequentially. The chunk offset is read or computed from
the side channel information, based on the strategy applied as explained in Chapter 4.
ZFP release v0.5.4 does not support OpenMP decoding at all. However, it does support
OpenMP encoding as well as serial decoding. In order to implement parallel OpenMP
decoding, we use the same method as described for the CUDA version. We implement
both fixed and variable rate modes and use static OpenMP scheduling. The full code of
ZFP and parallel variable rate decompression, which includes the CUDA and OpenMP
decoding, can be found on Github, branch zfp parallel [1] and in Appendix A.

We choose to use open source datasets used in research on compression algorithms in
order to get reproducible results. For initial ZFP benchmarking we use a single precision
version of the Brain [2] dataset. This is because it is 2D single precision, similar to
the ASML dataset, and it provides comparable decoding throughput when compressed
with the same compression factor as the ASML dataset. For evaluation of the strategies
we use multiple datasets with different properties (1/2/3D single/double), which are
described in Table 5.2. Finally for the WHFF model we generate results using the ASML
dataset and then provide results using the Brain dataset to allow verification. For all
datasets on a CPU, we use the evaluation methodology outlined in Figure 5.1. The
decoding throughput is defined as the uncompressed array size divided by the decoding
time, so S/Tdecode. In ZFP, the decoding throughput is highly dependent on array
dimensionality, data type and compression ratio. We use multiple datasets which have
different dimensionalities and data types. For every dataset we use 5 ZFP precision
values and we compute the mean of the compression ratios and execution times. The
reason to average over these parameters is that the goal is to analyze the impact of our
proposed parallelization strategies, rather than the maximum ZFP performance using
optimal settings. On a GPU we use the same methodology with chunk sizes 1, 2, 4, 8
and 16.

5.2 ZFP specific GPU optimization results

Figure 5.2 shows the decoding throughput before and after implementing the fixed loop
bound and unrolling optimization. It can be seen that the throughput has increased
with a factor of at least 1.4, up to 4.4 for low compression ratio. Figures 5.3 and 5.4
show the stalls per line of code and per cause of the optimized version. In comparison to
Figures 4.5 and 4.6 it can be seen that the number of stalls on line 133 have decreased
massively. Also, there are no more memory dependency stalls due to this line. The
impact of the optimization can be seen clearly when comparing the percentage of total
stalls caused by memory dependencies, which is 75.45% in the original implementation
and only 11.64% after applying the optimization. This optimization has been accepted
as a contribution to the official ZFP repository. It can be found in pull request #35 [44]
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Table 5.2: The used datasets. More extensive descriptions can be found in the referenced
sources

Name Description

NYX Cosmological hydrodynamics simulation
ISABEL Hurricane simulation
CESM-ATM Climate simulation
BRAIN Brain impact simulation
BROWN Synthetic Brown data
PLASMA Plasma temperature simulation

Name Dimensions Precision Size (MiB) R Source

NYX 3D: 512x512x512 (6 fields) Single 3072.0 4.94 [45]
ISABEL 3D: 100x500x500 (13 fields) Single 1239.8 3.22 [45]
CESM-ATM 2D: 3600x1800 (79 fields) Single 1952.9 5.60 [45]
BRAIN 2D: 17730 x 1000 Double 135.3 7.45 [2]
BROWN 1D: 8388609 Double 64.0 5.75 [45]
PLASMA 1D: 4386200 Single 16.7 1.88 [2]

Require: A dataset to be evaluated
1: R = ∅ {List of mean compression ratios}
2: T = ∅ {List of mean execution times}
3: I = ∅ {List of extra information sizes}
4: for i = 0 to 12 do
5: C = 4i

6: Γ = ∅
7: Λ = ∅
8: for j = 8 to 24 (incremented by 4) do
9: Invoke ZFP on the dataset using precision given by j

10: Add the resulting compression ratio to Γ
11: Store the execution time in Λ
12: end for
13: Compute the harmonic mean of Γ and add it to R
14: Compute the standard mean of Λ and add it to T
15: Compute the extra information size I and add it to I
16: end for
17: return Mean compression ratio, overhead, and execution time of the dataset under

every chunk size C

Figure 5.1: Evaluation methodology for the CPU implementation

and in Appendix B.



32 CHAPTER 5. EVALUATION AND RESULTS

32 16 8 4 2 1
0

20

40

60

80

100

120

Compression Ratio

T
h

ro
u

gh
p

u
t

(G
iB

/s
)

Original Optimized

Figure 5.2: Decoding throughput of the original and the optimized CUDA fixed rate
decoder on NVidia Tesla V100 using the Brain dataset [2]

Figure 5.3: Stalls caused per line of code after applying the fixed loop bound optimization

5.3 NVidia Tesla P100 vs V100 comparison

Our test server contains an NVidia Tesla V100 GPU. However, we want to compare
ZFP performance on different GPUs, specifically with NVidia Tesla P100, as both seem
suitable for running the WHFF model. To compare we use a node on the ASML High
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Figure 5.4: Distribution of causes of stalls after applying the fixed loop bound optimiza-
tion

Table 5.3: The Tesla P100 node on the HPC

Item Value

CPU Intel Xeon E5-2660 v4 (single socket, 14 cores/socket)
GPU NVIDIA Tesla P100 32 GiB (PCIe Gen3 16 lanes)
RAM 4 GiB

Storage 4 GiB
OS RedHat Enterprise 7.2 (64-bit)

Compiler GNU GCC 4.9.3
CUDA CUDA version 8.0.44

Performance Cluster (HPC) which contains an NVidia Tesla P100. The configuration of
this node is listed in Table 5.3. We use the optimized fixed rate implementation from
Section 5.2 and the Brain dataset [2].

Figure 5.5 shows ZFP decoding throughput on the P100 and the V100. The speedup
of the V100 compared to the P100 ranges from a factor 2 to a factor 3. In explaining this
large speedup, we first evaluate the differences between the configuration of the HPC
P100 node compared to the V100 server. As we are looking at the execution time of
a single GPU kernel, we expect that any configuration differences other than the GPU
itself have minimal impact on the execution time. The speedup can be attributed to two
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Figure 5.5: Decoding throughput on an NVidia Tesla V100 and P100 with the optimized
ZFP fixed rate implementation using the Brain dataset [2]

GPU CUDA Cores
Single Precision

TeraFLOPS
Memory Bandwidth

(GB/s)
Datasheet

V100 5120 14 900 [20]
P100 3584 9.3 732 [46]

Table 5.4: Specifications of the NVidia Tesla V100 and P100

other factors: general device performance and specific architectural optimizations.

Table 5.4 shows the specifications of the NVidia Tesla P100 and V100. Compared
to the P100, the theoretical peak single-precision FLOPS of the V100 is approximately
50.5% higher and the theoretical memory bandwidth is also 23% higher. The speedup
can partially be attributed to these differences.

Furthermore, there are some architecture specific differences between the V100 and
the P100. The Volta architecture of the V100 is the first NVidia GPU to support
independent thread scheduling [47]. This means that in the case of warp divergence,
threads can still execute and reconverge on sub-warp granularity, leading to more efficient
execution of divergent branches. In Section 4.7 we explain that the core decoding function
is an input data based decision tree which causes warp divergence. This function is
executed more efficiently on the V100. This can be seen in Visual Profiler, where it is
indicated that the number of memory dependency stalls is much higher in the P100 than
the V100. This is caused specifically by memory operations before sync operations in
the disassembly, as in the P100 these cause the whole warp to stall until the memory
operation is completed, rather than scheduling this during execution of another thread



5.4. STRATEGY 1 RESULTS 35

100 101 102 103 104 105 106 107
0

0.2

0.4

0.6

0.8

1

Chunk Size (in blocks)

M
ea

n
T

h
ro

u
gh

p
u
t

(i
n

G
iB

/
s)

(a) Decoding throughput as a function of C
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Figure 5.6: Strategy 1 using OpenMP on Xeon Bronze 3106

as is done in the V100.

5.4 Strategy 1 results

To evaluate the strategies, we start with Strategy 1. First we show the impact of chunk
size C on the throughput and storage overhead. Then, we show the speedup obtained
using this strategy. We use the V100 server to evaluate all of our proposed strategies.

5.4.1 CPU results

Figure 5.6a shows the throughput of the OpenMP implementation as a function of the
chunk size. We observe that the throughput increases as we increase the chunk size until
a certain threshold. This threshold is different for the datasets, but is between 104 and
106 for most of them. Beyond the aforementioned threshold, the throughput for Strategy
1 starts to degrade. This is caused by insufficient load balancing. Since the chunks are
distributed over the threads, the maximum number of threads is inversely proportional
to the chunk size. Increasing the chunk size leads to more coarse-grain parallelism, as
we parallelize per chunk of C blocks rather than per block. If the number of chunks
is smaller than the number of cores, the available parallelism is not fully used. In the
worst case, if the chunk size is equal to or larger than the number of blocks, all the
blocks are decoded by a single thread. This can be seen in the PLASMA dataset, where
increasing the chunk size from 106 to 107 does not impact the throughput anymore. For
the considered datasets, one can conclude that a chunk size in the range [103, 104] would
correspond to near-optimal throughput.

Figure 5.6b shows the storage overhead introduced by Strategy 1 as a function of
the chunk size. The y-axis shows the extra information size divided over the compressed
data size. Hence, a value of 1 in the y-axis indicates that the overhead is as large as
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Figure 5.7: OpenMP decoding speedup under Strategy 1

the compressed data itself. We observe that Strategy 1 suffers from very large storage
overhead for small chunk sizes. However, as the chunk size increases, the overhead drops
dramatically and becomes less than 0.0004 for chunk size C = 4096. This corresponds to
an overhead size of 400 KiB for a compressed size of 1 GiB. Therefore it can be concluded
that the storage overhead is negligible to the extent that one does not need to look into
further size reduction strategies for OpenMP.

Figure 5.7a shows the speedup achieved by the OpenMP implementation on a 6-core
CPU for chunk size C = 4096. We see clearly that the implementation has a near-
optimal speedup, as it is linear with the number of threads. If we combine the findings
from Figures 5.6a, 5.6b, and 5.7a, then one can conclude that Strategy 1 is a very good
choice for CPUs as it provides near-optimal speedup for negligible overhead. One can
also conclude that there is an optimal choice for chunk size, as the throughput has a
clear maximum at a set chunk size. Increasing the chunk size beyond this point has a
severe negative impact on throughput, with a minimal gain in overhead as this is already
<1% for chunk sizes above 200.

To investigate the speedup for larger core counts, we evaluated Strategy 1 on an Intel
Xeon Gold 6126, which has 24 cores. Figure 5.7b shows the speedup as a function of
the number of threads. We used C = 1024 instead of the C = 4096 we used on Xeon
Bronze, since the number of threads is four times higher. At 24 threads, we achieve,
on average, a speedup of 18 which corresponds to approximately 75% efficiency. We see
that the efficiency varies between the datasets. This is caused by load balancing. Since
we use static OpenMP scheduling, the loop iterations are distributed equally over the
threads. However, some chunks require more decoding time than others, which means
that the time of a loop iteration is not constant, but variable over the whole dataset.
A mitigation could be to change from a static to a dynamic scheduling policy, which
allows a more fine-grained work distribution. However using a different policy affects
the scheduling overhead. The impact of this change is data dependent and can lead to
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Figure 5.8: Strategy 1 using CUDA on Nvidia Tesla V100

a speedup in decoding for one dataset, while it leads to a slow down in decoding for
another dataset. To allow a fair comparison between the results of strategies, we only
use static scheduling.

5.4.2 GPU results

Figure 5.8a shows the throughput of the CUDA decoder under Strategy 1. If we compare
Figure 5.8a to Figure 5.6a we observe that CUDA throughput decreases if we increase the
chunk size. This is in contrast to OpenMP, where increasing chunk size would increase
throughput up to a threshold. The reasons for this decrease are the load balancing and
control loop issues introduced in Chapter 4.3. Since a GPU has many more cores than
a CPU, the load balancing issues appear at a much lower chunk size than on the CPU.
Furthermore the introduction of a control loop has a larger impact on a GPU than on
a CPU. This is due to the fact that after each iteration all threads in a warp need to
synchronize. Finally the overhead associated with launching many threads is smaller on
a GPU.

Figure 5.8b shows the overhead factor with the CUDA implementation of Strategy
1. Due to the large decrease in throughput, it is not feasible to increase the chunk size
to the same extent as in the OpenMP implementation. Therefore, when comparing to
Figure 5.6b, we see that the CUDA implementation suffers from a much larger overhead
factor. The aim of strategies 2 and 3 is to reduce this overhead factor for the CUDA
implementation, without significant loss of decoding throughput.
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5.5 Strategy 2 results

5.5.1 CPU considerations

In evaluating Strategy 1, we concluded that the size overhead at chunk sizes that are
suitable for OpenMP is minimal. Recall from Chapter 4 that the advantage of Strategy 2
is a reduction of the storage overhead, at the cost of throughput due to the preprocessing
step. In order to encode the length of a chunk of 4096 ZFP blocks, one would need at
least 24 bits. In order to fit this in a standard data type it would have to be encoded in
32 bits, which is only half of the bits used for the offsets in Strategy 1. Therefore, we
conclude that introducing a preprocessing step to halve the already minimal overhead is
not worth the implementation effort and, as a result, we do not implement Strategy 2
using OpenMP.

5.5.2 GPU results

On a GPU, we implemented this strategy in an attempt to reduce the overhead. We
encoded the lengths with 16 bits per value which ensures correctness for chunks of ZFP
blocks with a chunk size up to 24. However, the extra time needed to perform the Prefix
Sum for large arrays turned out to be the dominant factor in the decoder execution time,
even when using a work efficient parallel implementation such as [42]. This confirms ear-
lier observations [34] where other authors also used Prefix Sum for parallel decompression
on GPUs and reached the same conclusion. A dominant factor in the Prefix Sum exe-
cution time for large arrays is inter-warp dependencies. As a result, Strategy 2 results
in a throughput which is lower by a factor of more than two for the same chunk size
as Strategy 1. Since our primary objective is maximizing the decoder throughput, we
decided that Strategy 2 is not promising for a GPU and we move on to Strategy 3 where
we eliminate the inter-warp dependencies to speed up the preprocessing step.

5.6 Strategy 3 results

5.6.1 CPU considerations

Similar to Strategy 2 we do not implement this strategy on a CPU as the overhead gain
from this strategy is very low while leading to lower throughput.

5.6.2 GPU results

The major disadvantage of Strategy 2 is the time required by the Prefix Sum for large
arrays, which is caused by communication between warps. In order to eliminate inter-
warp dependencies, we propose a partition size of 32, which is the warp size for modern
NVIDIA GPUs [48]. This minimizes both the preprocessing time needed per block and
the overhead size.

Figure 5.9a shows the throughput of CUDA under Strategy 3. It can be seen that the
results are very similar to Strategy 1. We observe that the impact of the required prepro-
cessing step is minimal, as the difference in throughput is < 3% for every measurement.
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Figure 5.9: Strategy 3 using CUDA on NVidia Tesla V100

C (Chunk Size) 1 2 4 8 16

Re (Effective Compression Ratio) 8.49 9.98 10.94 11.49 11.79

Decoding throughput (GiB/s) 131.27 87.41 77.70 60.09 35.62

Table 5.5: WHFF dataset Re and decoding throughput for different values of C

This confirms our assumption that with a partition size of 32 the required preprocessing
step is very efficient. In addition, we observe the same throughput degradation for chunk
sizes larger than 1. If we look to the overhead of the CUDA implementation of Strategy 3
as shown in Figure 5.9b, then we see the clear advantage of Strategy 3. Under Strategy 1,
the overhead is 64 bits per chunk, while under Strategy 3 the overhead is 64+31 ·16 bits
per partition, which is 17.5 bits per chunk. This is an overhead reduction of a factor of
3.66 for less than 3% loss in throughput. This shows clearly that Strategy 3 is well suited
for GPUs. However, reducing the size overhead further involves a trade-off as increasing
the chunk size impacts the throughput significantly. This trade-off is data-dependent in
the case of ZFP and it requires consideration of the application requirements.

5.7 WHFF model results

After analyzing the strategies individually we now look at the results of applying the ZFP
variable rate GPU implementation to the WHFF model. The dataset to be compressed
is the WHFF dataset, which is 2D and single precision. When compressing the WHFF
dataset using ZFP with an application specific accuracy, we can get compression ratios
up to R = 12.1. As decompression will be done on the GPU we choose to use Strategy
3, the Hybrid approach, with P = 32 and multiple chunk sizes. For all these we measure
the decoding throughput and effective compression ratio Re. The results are shown in
Table 5.5.
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Figure 5.10: WHFF execution time using ZFP variable rate GPU decompression on
Tesla V100, using Strategy 3 with P = 32, C = 1

From Table 5.5 it is clear that the required decoding throughput of 100 GiB/s can
only be achieved with C = 1. Figure 5.10 shows the resulting normalized breakdown
of execution time of the WHFF model when applying ZFP with these parameters. To
analyze if the solution meets the requirements, we look into the time budget for pipelined
execution. Note that pipelined here refers to pipelining of the transfer and computation
step. For decoding and the application we assume that they are executed sequentially,
meaning there is no overlap in their execution times.

Figure 5.10b shows that both the transfer and computation are now executed in
the available time budget. The latency as defined in Equations 1.1 and 1.3 has been
reduced by a factor 3.13. The period as defined in Equations 1.2 and 1.4 has been
reduced by a factor 3.95. As the period is the execution time of the slowest stage in
a pipelined implementation, it is the inverse of the throughput. This means that our
solution increases the effective throughput of the application with a factor of 3.95.

The results shown in Table 5.5 are generated using the WHFF dataset. To verify
and recreate our results with the Brain dataset, use the following:

• Dataset: Brain

• Precision: Single

• Dimensions: 2D, 17730 x 1000

• Mode: Fixed accuracy, 0.05

• Side-channel strategy: 3 (Hybrid)

• Partition size: 32

• Chunk size: 1
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• GPU: NVidia Tesla V100

With these settings we achieved the following results:

• R = 11.1

• Re = 8.0

• Decoding throughput = 115 GiB/s
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Conclusions and
Recommendations 6
In this thesis we have proposed a strategy for PVLD. Our goal is to answer the following
research questions:

1. Can we develop a solution for PVLD which
- is generic and can be applied to multiple compression algorithms
- can be used efficiently on multiple HW platforms
- allows the end user to make a trade-off between compression ratio and
decoding throughput

2. Can we make an implementation that is able to run the WHFF model
in its requirements?

We will conclude each question individually.

6.1 Conclusions

Can we develop a solution for PVLD which is generic and can be applied to multiple
compression algorithms?
Our solution is based on exploiting the parallelism introduced tiling. We recognize
that not all algorithms use tiling and our solution is not completely generic. However
many algorithms do and we believe that our solution can be applied to these. We have
proven this for one tiled algorithm, which is ZFP. We conclude that our solution can be
considered generic at least for tiled algorithms.

Can we develop a solution for PVLD which can be used efficiently on multiple
HW platforms?
We have proposed three side channel information encoding strategies, each with different
properties. We have implemented them in OpenMP for CPUs and in CUDA for GPUs.
With these implementations we show that the optimal choice of strategy and chunk
size is dependent on the HW platform used. We conclude that our solution can be used
efficiently on multiple HW platforms.

Can we develop a solution for PVLD which allows the end user to make a trade-
off between compression ratio and decoding throughput?
We have developed multiple strategies which allows the user to choose their preferred
strategy. Furthermore we have introduced the chunk size as a user defined parameter.
This allows the user to reduce the side channel information size, often at the cost
of decoding throughput. We conclude that this does allow the user to trade-off be-
tween these metrics in order to adjust the performance to their application requirements.
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Can we make an implementation that is able to run the WHFF model within its
requirements?
We have implemented our strategies in the compression algorithm ZFP. This implemen-
tation is publicly available on GitHub [1]. With this implementation we have achieved a
decoding throughput of 131.27 GiB/s on an NVidia Tesla V100 GPU, which is enough
to run the WHFF model within its requirements. With this result we conclude that we
have successfully achieved all of our research goals in this thesis.

6.2 Recommendations

In this work, our approach to minimize the size of the side channel information has been
to increase the chunk size. However on a GPU this significantly reduces the decoding
throughput. On a CPU increasing the chunk size can cause problems in applications that
require random access. We suggest future research to investigate alternative options to
reduce the size of the side channel information, for example by applying compression on
this information.

On a CPU we have used OpenMP static scheduling. We have observed that the
speedup with respect to the number of parallel threads is dependent on the dataset. We
have noted that using a different scheduling policy can be beneficial to some applications
and we suggest future research to further investigate the impact of using different chunk
sizes and OpenMP scheduling policies. We believe that this can lead to a framework that
determines the optimal chunk size and scheduling policy based on dataset characteristics.

Finally, in this work we have assumed that decoding is part of the critical path while
encoding is done offline. Future research can focus on fast and efficient encoding for
applications where this is required.
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ZFP patch for CUDA &
OpenMP A
The developed patch adds parallel decompression to ZFP. This patch will be contributed
to the ZFP repository after aligning on the exact implementation with the maintain-
ers [1]. This has a large impact as ZFP is a widely used open source library and this
patch would allow users to decode faster on a CPU when using OpenMP and to use
GPU decompression for variable rate modes. The patch consists of 1.279 lines of code
added and 441 deleted in a total of 14 files. It contains new functionality and changes in
existing code for indentation consistency. Below we highlight a number of code snippets
that form the core of our patch.

A.1 Side channel information allocation

We allocate the side channel information in a struct in order to allow configuration of the
type of side channel information (hybrid or offsets, chunk size, etc.). We implement this
with an alloc, set and free function to stay consistent with the rest of the ZFP library.
The implementation can be seen in the code snippet below.

+++ src/zfp.c

+/* public functions: side channel info

--------------------------------------*/

+

+zfp_side_channel*

+side_channel_alloc ()

+{

+ zfp_side_channel* side_channel = (zfp_side_channel *) malloc(

sizeof(zfp_side_channel));

+ if (side_channel) {

+ side_channel ->length_table = NULL;

+ side_channel ->type = 0;

+ side_channel ->chunk_size = 0;

+ side_channel ->side_channel_data = NULL;

+ }

+ return side_channel;

+}

+

+int

+side_channel_set_params(zfp_side_channel* side_channel , uint16 *

length_table , side_channel_type type , uint chunk_size , void *

side_channel_data)

+{

+ if (! side_channel)

+ return 0;
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+ side_channel ->length_table = length_table;

+ side_channel ->type = type;

+ side_channel ->chunk_size = chunk_size;

+ side_channel ->side_channel_data = side_channel_data;

+ return 1;

+}

+

+void

+free_side_channel(zfp_side_channel* side_channel)

+{

+ free(side_channel);

+}

+

A.2 Side channel information encoding

Encoding of the side channel information is a 2 step process. During compression, the
length of each compressed block in bits is written to an array. When compression is
done, this array of lengths is used to encode the side channel information based on the
input parameters. The current version of this encoding support offsets and hybrid with
a variable chunk size, as well as lengths with a chunk size of 1. For hybrid the chunk
size is limited by the dimensionality and input data precision, from 16 for 3D double
precision to 512 for 1D single precision. Below is a code snippet of this side channel
information encoding.

+++ src/share/omp.c

@@ -22,4 +23 ,66 @@ chunk_count_omp(const zfp_stream* stream , uint

blocks , uint threads)

return MIN(chunks , blocks);

}

+/* TODO: consider moving this to zfp.c to allow serial side

channel encoding */

+static int

+encode_side_channel(const zfp_stream* stream , uint blocks)

+{

+ const side_channel_type table_type = stream ->side_channel ->type

;

+ const uint16* length_table = stream ->side_channel ->length_table

;

+ if (table_type != none) {

+ if (table_type == offset) {

+ uint chunk_size = stream ->side_channel ->chunk_size;

+ uint64* offset_table = (uint64 *)stream ->side_channel ->

side_channel_data;

+ uint64 sum = 0;

+ int i, chunk , block , chunks;

+ chunks = (blocks + chunk_size - 1) / chunk_size;

+ for (chunk = 0, block = 0; chunk < chunks; chunk ++) {
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+ offset_table[chunk] = sum;

+ for (i = 0; i < chunk_size; i++, block ++) {

+ sum += length_table[block ];

+ }

+ }

+ }

+ else if (table_type == hybrid) {

+ const uint chunk_size = stream ->side_channel ->chunk_size;

+ const uint chunks = (blocks + chunk_size - 1) / chunk_size;

+ uint16* hybrid_table16 = (uint16 *)stream ->side_channel ->

side_channel_data;

+ uint64* hybrid_table64 = (uint64 *)stream ->side_channel ->

side_channel_data;

+ const uint partitions = (chunks + PARTITION_SIZE - 1) /

PARTITION_SIZE;

+ uint j = 0;

+ uint lim = 0;

+ uint64 sum = 0;

+ uint16 partialsum = 0;

+ uint i = 0;

+ uint chunk = 0;

+ uint a = 0;

+ for (; i < partitions; i++) {

+ /* store the offset for partition i on position i*

PARTITION_BYTES */

+ hybrid_table64[i * 9] = sum;

+ for (chunk = 0; chunk < PARTITION_SIZE; chunk ++) {

+ partialsum = 0;

+ for (a = 0; a < chunk_size && j < blocks; a++, j++) {

+ partialsum += length_table[j];

+ }

+ hybrid_table16[i * 36 + 4 + chunk] = partialsum;

+ sum += partialsum;

+ }

+ }

+ /* Finish the last partial partition */

+ for(; chunk < PARTITION_SIZE; chunk ++) {

+ hybrid_table16[i * 36 + 4 + chunk] = 0;

+ }

+ }

+ else if (table_type == length) {

+ /* possible encoding of a new lengths table

+ current implementation: write fixed size (2 bytes per block

) lengths table to file */

+ if (stream ->side_channel ->side_channel_data != length_table

)

+ fprintf(stderr ,"side channel information is not the

original lengths table\n");

+ }

+ else {
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+ fprintf(stderr ," unknown side -channel information type to be

encoded\n");

+ }

+ }

+}

+

#endif

A.3 OpenMP decompression

We have added OpenMP decompression functions for 1D, 2D, 3D and 4D. The functions
are consistent with the existing OpenMP encoding in terms of scheduling policy and load
distribution, as well as functionality with respect to serial decompression. The current
version support offsets with a variable chunk size. A code snippet of decompression for
2D arrays can be found below, the other dimensionalities are implemented similarly.

+++ src/template/ompdecompress.c

@@ -0,0 +1,299 @@

+#ifdef _OPENMP

+

+/* decompress 2d strided array in parallel */

+static void

+_t2(decompress_strided_omp , Scalar , 2)(zfp_stream* stream ,

zfp_field* field)

+{

+ if (stream ->side_channel ->type != offset) {

+ fprintf(stderr , "current version only supports OpenMP

decompression with an offset table\n");

+ return;

+ }

+ Scalar* data = (Scalar *)field ->data;

+ const uint nx = field ->nx;

+ const uint ny = field ->ny;

+ const int sx = field ->sx ? field ->sx : 1;

+ const int sy = field ->sy ? field ->sy : nx;

+ uint threads = thread_count_omp(stream);

+

+ /* calculate the number of blocks and chunks */

+ const uint bx = (nx + 3) / 4;

+ const uint by = (ny + 3) / 4;

+ const uint blocks = bx * by;

+ const uint chunk_size = stream ->side_channel ->chunk_size;

+ const uint chunks = (blocks + chunk_size - 1) / chunk_size;

+

+ /* allocate per -thread streams */

+ bitstream ** bs = decompress_init_par(stream , field , chunks ,

blocks);

+

+ /* read 1 bit from the stream to prevent decompression failed

+ TODO: find a better fix */
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+ stream_read_bit(stream ->stream);

+

+ /* decompress chunks of blocks in parallel */

+ int chunk;

+ #pragma omp parallel for num_threads(threads)

+ for (chunk = 0; chunk < (int)chunks; chunk ++) {

+ /* determine range of block indices assigned to this thread

*/

+ const uint bmin = chunk * chunk_size;

+ const uint bmax = MIN(bmin + chunk_size , blocks);

+ uint block;

+

+ /* set up thread -local bit stream */

+ zfp_stream s = *stream;

+ zfp_stream_set_bit_stream (&s, bs[chunk ]);

+

+ /* decode all blocks in the chunk sequentially */

+ uint x, y;

+ Scalar * block_data;

+

+ for (block = bmin; block < bmax; block ++) {

+ x = 4 * (block % bx);

+ y = 4 * (block / bx);

+ block_data = data + y * sy + x * sx;

+ if (nx - x < 4 || ny - y < 4)

+ _t2(zfp_decode_partial_block_strided , Scalar , 2)(&s,

block_data , MIN(nx - x, 4u), MIN(ny - y, 4u), sx, sy);

+ else

+ _t2(zfp_decode_block_strided , Scalar , 2)(&s, block_data ,

sx , sy);

+ }

+ }

+ decompress_finish_par(bs, chunks);

+}

A.4 CUDA decompression

We have added CUDA variable rate decompression for 1D, 2D and 3D. We implemented
this by modifying the already existing functions for fixed rate compression and decom-
pression, by implementing checks on everything that is mode specific and adding the
variable rate path there. We support hybrid and offsets side channel information, both
with variable chunk sizes. Below there are two code snippets: the first shows the pa-
rameter setting for the different modes, the second shows the 2D decompression kernel
which supports variable rate. The other dimensionalities are implemented similarly.

+++ src/cuda_zfp/cuZFP.cu

@@ -374,74 +365 ,103 @@ cuda_decompress(zfp_stream *stream ,

zfp_field *field)

Word *d_stream = internal :: setup_device_stream(stream , field);
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+ Word * d_side_channel = NULL;

+ zfp_mode mode = zfp_stream_compression_mode(stream);

+

+ /* parameter needed to decode the bitstream differs per

execution policy */

+ size_t table_size;

+ uint blocks;

+ int param;

+ uint chunk_size = stream ->side_channel ->chunk_size;

+ side_channel_type table_type = stream ->side_channel ->type;

+ if (mode == zfp_mode_fixed_rate) {

+ param = (int)stream ->maxbits;

+ chunk_size = 1;

+ }

+ else if (mode == zfp_mode_fixed_accuracy || mode ==

zfp_mode_fixed_precision) {

+ blocks = 1;

+ if (dims [0]) blocks *= ((dims [0] + 3)/4);

+ if (dims [1]) blocks *= ((dims [1] + 3)/4);

+ if (dims [2]) blocks *= ((dims [2] + 3)/4);

+ if (table_type == 1) {

+ /* Check why ’offset ’ doesnt work and this has to be

hardcoded as 1 */

+ table_size = (( size_t)blocks + chunk_size - 1 ) /

chunk_size * sizeof(Word);

+ }

+ else if (table_type == hybrid) {

+ /* Hardcoded to partitions of 32 values with a size of 72

bytes , could be defines */

+ size_t partitions = (blocks + (32 * chunk_size) - 1) / (32

* chunk_size);

+ table_size = partitions * 72;

+ }

+ else {

+ std::cerr <<"Non -supported side channel information type for

GPU. Use hybrid or offset \n";

+ return;

+ }

+ d_side_channel = internal :: setup_device_side_channel(stream ,

table_size);

+ param = (mode == zfp_mode_fixed_accuracy ? (int)stream ->

minexp : (int)stream ->maxprec);

+ }

+ else {

+ std::cerr <<"Custom mode not supported on GPU\n";

+ return;

+ }

+++ src/cuda_zfp/decode2.cuh

template <class Scalar , int BlockSize >

__global__
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void

cudaDecode2(Word *blocks ,

+ Word *side_channel ,

Scalar *out ,

const uint2 dims ,

const int2 stride ,

const uint2 padded_dims ,

- uint maxbits)

+ const uint total_blocks ,

+ const int param ,

+ const uint chunk_size ,

+ const zfp_mode mode ,

+ const side_channel_type table_type)

{

typedef unsigned long long int ull;

typedef long long int ll;

- const ull blockId = blockIdx.x +

+

+ const uint blockId = blockIdx.x +

blockIdx.y * gridDim.x +

gridDim.x * gridDim.y * blockIdx.z;

-

- // each thread gets a block so the block index is

- // the global thread index

- const ull block_idx = blockId * blockDim.x + threadIdx.x;

-

- const int total_blocks = (padded_dims.x * padded_dims.y) / 16;

-

- if(block_idx >= total_blocks)

- {

- return;

+ const uint chunk_idx = blockId * blockDim.x + threadIdx.x;

+ const int warp_idx = blockId * blockDim.x / 32;

+ const int thread_idx = threadIdx.x;

+

+ ll bit_offset;

+ if (mode == zfp_mode_fixed_rate)

+ bit_offset = param * chunk_idx;

+ else if (table_type == offset){

+ bit_offset = side_channel[chunk_idx ];

+ }

+ else if (table_type == hybrid) {

+ __shared__ uint64 offsets [32];

+ uint64* data64 = (uint64 *) side_channel;

+ uint16* data16 = (uint16 *) side_channel;

+ data16 += warp_idx * 36 + 3;

+ offsets[thread_idx] = (uint64)data16[thread_idx ];

+ offsets [0] = data64[warp_idx * 9];

+ int j;

+

+ for (int i = 0; i < 5; i++) {
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+ j = (1 << i);

+ if (thread_idx + j < 32) {

+ offsets[thread_idx + j] += offsets[thread_idx ];

+ }

+ __syncthreads ();

+ }

+ bit_offset = offsets[thread_idx ];

}

-

- BlockReader <BlockSize > reader(blocks , maxbits , block_idx ,

total_blocks);

-

- Scalar result[BlockSize ];

- memset(result , 0, sizeof(Scalar) * BlockSize);

-

- zfp_decode(reader , result , maxbits);

// logical block dims

uint2 block_dims;

- block_dims.x = padded_dims.x >> 2;

- block_dims.y = padded_dims.y >> 2;

- // logical pos in 3d array

- uint2 block;

- block.x = (block_idx % block_dims.x) * 4;

- block.y = (( block_idx/ block_dims.x) % block_dims.y) * 4;

+ block_dims.x = padded_dims.x >> 2;

+ block_dims.y = padded_dims.y >> 2;

+

+ BlockReader <BlockSize > reader(blocks , bit_offset);

+ uint block_idx = chunk_idx * chunk_size;

+ const uint lim = MIN(block_idx + chunk_size , total_blocks);

- const ll offset = (ll)block.x * stride.x + (ll)block.y * stride

.y;

-

- bool partial = false;

- if(block.x + 4 > dims.x) partial = true;

- if(block.y + 4 > dims.y) partial = true;

- if(partial)

- {

- const uint nx = block.x + 4 > dims.x ? dims.x - block.x : 4;

- const uint ny = block.y + 4 > dims.y ? dims.y - block.y : 4;

- scatter_partial2(result , out + offset , nx , ny , stride.x,

stride.y);

- }

- else

- {

- scatter2(result , out + offset , stride.x, stride.y);

+ for (; block_idx < lim; block_idx ++) {

+ Scalar result[BlockSize] = {0};

+ zfp_decode <Scalar ,BlockSize >(reader , result , param , mode , 2);
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+

+ // logical pos in 3d array

+ uint2 block;

+ block.x = (block_idx % block_dims.x) * 4;

+ block.y = (( block_idx / block_dims.x) % block_dims.y) * 4;

+

+ const ll offset = (ll)block.x * stride.x + (ll)block.y *

stride.y;

+

+ if(block.x + 4 > dims.x || block.y + 4 > dims.y) {

+ const uint nx = block.x + 4 > dims.x ? dims.x - block.x :

4;

+ const uint ny = block.y + 4 > dims.y ? dims.y - block.y :

4;

+ scatter_partial2(result , out + offset , nx, ny, stride.x,

stride.y);

+ }

+ else

+ scatter2(result , out + offset , stride.x, stride.y);

}

}



58 APPENDIX A. ZFP PATCH FOR CUDA & OPENMP



Deposit bit plane patch B
This patch has been contributed to the ZFP repository and has been merged into the
development branch [44]. It will significantly speed up the CUDA fixed rate decoding
for all current users of the ZFP library. Furthermore, it also speeds up decoding in our
new CUDA variable rate decoding patch.

diff --git a/src/cuda_zfp/decode.cuh b/src/cuda_zfp/decode.cuh

index d3d0877 ..656 cf0b 100644

--- a/src/cuda_zfp/decode.cuh

+++ b/src/cuda_zfp/decode.cuh

@@ -127,12 +127,8 @@ void decode_ints(BlockReader <Size > &reader ,

uint &max_bits , UInt *data)

for (; n < (Size - 1) && bits && (bits --, !reader.read_bit

()); n++);

// deposit bit plane

+#if (CUDART_VERSION < 8000)

#pragma unroll

+#else

+ #pragma unroll Size

+#endif

+ for (int i = 0; i < Size; i++, x >>= 1)

- for (int i = 0; x; i++, x >>= 1)

{

data[i] += (UInt)(x & 1u) << k;

}
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