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ABSTRACT

Wall-modeled large eddy simulations (WMLES) are becoming an increasingly viable tool
to study complex unsteady turbulent flows. Conventional wall models applied in these
simulations are however not applicable to laminar boundary layers. While these encom-
pass only a tiny fraction of the total surface area, erroneous predictions in this region
of the flow can greatly impact the downstream flow field. In the present study, a new
wall model is proposed by combining the laminar wall model and turbulent wall model
with the use of a transition model marking the laminar and turbulent regions. The pro-
posed wall model is applied to the laminar flat plate, wedge and laminar NACA 0012 flow.
Results show that errors incurred at the unresolved leading edge, where the similarity so-
lution used by the laminar wall model is invalid, accumulate in the velocity profiles for
the flat plate and wedge flow cases. In underresolved regions near the leading of the
NACA 0012 or near the tip of the wedge, good approximations to reference data have
been found. The proposed wall model is also applied to a high Reynolds number flow
involving an airfoil near stall. The proposed wall model shows promising results with
good agreement for the skin friction distribution, especially in capturing the laminar
skin friction peak if the transition location is known. However, the transition sensor con-
sidered for switching between the laminar and turbulent mode of the wall-stress model
performs unsatisfactory. Other discrepancies in the results, such as capturing the lami-
nar separation bubble and trailing edge separation are attributed to the relatively coarse
meshes used. Last but not least, the computational cost incurred by the new wall model
is marginal.
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1
INTRODUCTION

Computational fluid dynamics (CFD) is increasingly used in both academia and industry
to study fluid flows in a wide range of applications, ranging from the design of aerospace
vehicles, turbomachinery, and HVAC systems to the analysis of blood flow in cardio-
vascular systems made possible by an abundance of computational power in recent
years. In academia, performing direct numerical simulations (DNS) have consequently
become much more viable to study the mechanisms of turbulence in all its details. How-
ever, the computational cost required to perform DNS in engineering is still out of reach
as the required effort scales poorly with Reynolds number.

In the past several decades large eddy simulation (LES) has grown out to be one
of the focus in academic turbulence research to analyze unsteady turbulent flows. In
particular, LES is becoming increasingly attractive for higher Reynolds numbers as the
computational effort increases significantly less compared to DNS as LES only resolves
the largest turbulent structures, while smaller, more universal, structures of the flow are
modeled using a sub-grid scale (SGS) model.

Nevertheless, the use of LES in industry is still limited due to the cost in adequately
resolving the turbulent structures in boundary layers. Simply because the boundary lay-
ers are much thinner in size relative to the actual geometries simulated which requires a
very high resolution near the walls. To make matters worse, the cost to resolve boundary
layers also scales poorly with Reynolds number. Indeed, it is this “near-wall problem”
that prevents LES to be widely used in industry.

In the last fifty years, numerous studies have proposed to model (part of) the bound-
ary layer rather than resolving it. These proposals have consequently introduced two
sub-variants of LES. Namely, Detached Eddy Simulation (DES) which performs a LES
but models the full boundary layer and Wall-Modeled Large Eddy Simulation (WMLES)
in which, in contrast to DES, resolves the outer part of the boundary layer (≈ 80%) and
models the wall-shear stress that results from the small-scale structure of the inner layer.

Intuitively, resolving more of the physics of the flow implies a more accurate solu-
tion but at a higher computational cost. Hence, WMLES should be able to reconstruct
the flow more accurately than DES but worse than wall-resolved LES (WRLES). Perhaps
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2 1. INTRODUCTION

excellent wall-modeling causes the solutions retrieved from WMLES to come close to
WRLES with significantly lower cost.

Many wall models have been proposed to improve the conventional equilibrium wall
model (EQWM) in turbulent boundary layers. Recently, also the importance of model-
ing laminar boundary layers has been noted (Dauricio & Azevedo, 2022; Gonzalez et al.,
2020). In addition, a general wall model requires a transition model.

Indeed, this master thesis focuses on WMLES and aims to answer the question: "How
does the proposed laminar-turbulent wall model in a sensor-based approach compare
to a turbulent equilibrium wall model?". To answer this question, several sub-questions
are formulated:

• Can the Falkner-Skan wall model improve the shear stress prediction compared to
the linear wall model?

• What are the differences in the predicted velocity field of wall-bounded flow com-
pared to an EQWM?

• What are the differences in the predicted wall shear stress of wall-bounded flow
compared to an EQWM?

• How robust is the laminar-turbulent sensor in distinguishing laminar and turbu-
lent regions over a surface?

• What is the difference in computational cost between the proposed wall model
and the EQWM?

The outline of the master thesis is as follows. The literature review in chapter 2 in-
troduces the topic and problem at hand. Then, the methodology of the present code is
discussed in chapter 3. After which the features implemented for this thesis are elabo-
rated. Namely, the proposed laminar wall model (chapter 4), and the transition model
(chapter 5). Next, the newly implemented features in the present solver are tested by
first performing academic test cases and lastly a more application-based test case which
tests the integration of the features in the present solver. These test cases are discussed in
chapter 6. Finally, a conclusion and recommendations for future work is given in chap-
ter 7.

This thesis is performed in cooperation with a company with the aim to improve the
wall-modeling capabilities in their in-house LES code.



2
LITERATURE REVIEW

Firstly, the cost comparison is addressed in section 2.1. Afterwards, the relevant bound-
ary layer theory is discussed in section 2.2. Subsequently, conventional to novel wall-
modeling methodologies are mentioned in section 2.3 after which transition modeling
is explored in section 2.4.

2.1. COST ESTIMATION: DNS, LES, AND WMLES
To better appreciate the value of WMLES (and DES), a rough but instructive cost estima-
tion is elaborated for DNS, LES and finally WMLES.

2.1.1. ESTIMATING COST OF DNS BY DIMENSIONAL ANALYSIS
An approximate cost estimate of DNS in terms of the Reynolds number can be obtained
from dimensional analysis and using Kolmogrov’s hypotheses.

To perform DNS, a mesh resolution is required such that all the length scales of the
flow can be represented and resolved i.e., from the integral to the dissipative scales or the
so called Kolmogrov scales. Assuming that the DNS resolves a flow field of isotropic tur-
bulence, the dominant dynamics in this flow are the processes occurring in the energy
cascade i.e., (kinetic) energy transfer from the large-scale eddies to successfully smaller
eddies and viscous dissipation by the smallest of such eddies. Indeed, following Kol-
mogrov’s first similarity hypothesis, these two dominant dynamics can be uniquely de-
termined by the dissipation rate ϵ, and the kinematic viscosity, ν. By dimensional anal-
ysis, the definition of the Kolmogrov length scale η, see eq. (2.1) is derived from the fact
that η∼ νϵ.

η≡ (ν3/ϵ)1/4 (2.1) ϵ∼ u3
0/l0 (2.2)

By then observing that the kinetic energy of the largest eddies scales by u2
0, results in

eq. (2.2), where the subscript 0 denotes the integral scales. Finally, recall that the DNS
mesh resolution must be able to represent the smallest scales. Considering a flow field
of size l0 requires that at least l0/η grid points along each direction. Substituting eq. (2.1)
and eq. (2.2) into l0/η then gives the cost estimate of DNS in one dimension in terms of

3



4 2. LITERATURE REVIEW

Re shown in eq. (2.3). For three-dimensional space, the mesh resolution must then at
least be in the order of O (Re9/4

0 ).

l0/η=
(u0l0

ν

)3/4 =Re3/4
0 (2.3) T /∆t ∼O (l0/η) =O (Re3/4

0 ) (2.4)

For numerical stability, the numerical simulation must advance with a timestep of
∆t such that fluid motion moves a fraction of some grid spacing η and so ∆t ∼ O (η/u0).
Moreover, typically simulations are run for several integral time units for numerical ac-
curacy so the total simulation time is T ∝O (l0/u0), resulting in the DNS time cost shown
in eq. (2.4). Thus, the total DNS cost is O (Re3

0).
Assuming that an airfoil simulation at Re = 1000 is performed in one second, a sim-

ilar DNS performed at Reynolds numbers in the aeronautical range of Re = O (106) im-
plies a simulation time in the order of 1× 109 s, which is roughly 30 years. Hence, it is
obvious that the viability of DNS in transitional to high Reynolds number flows is still
severely limited for the foreseeable future, especially in an industrious setting which is
why the focus is set on LES which is computationally cheaper than DNS.

2.1.2. COST OF LARGE EDDY SIMULATION
LES has been the focus in the past several decades in academic turbulence research to
analyse unsteady complex turbulent flows as it is much more viable due to lower cost
scaling in Re. However, why LES scales much better will be explored subsequently. As
the cost derivation is not the main topic of this study, the cost of LES is concisely dis-
cussed. For a more detailed analysis, the reader is suggested to consult Choi and Moin
(2012), Pope (2000), and Yang and Griffin (2021).

LARGE EDDY SIMULATION

The main idea of LES is to resolve the largest eddies (turbulence) that contain most of the
energy in the flow, thereby reducing the restrictive mesh and temporal requirements of
DNS. To achieve this, LES relies on the concept of scale separation by (low-pass) filtering
the Navier-Stokes (NS) equations. The largest eddies are then resolved up to some cut-
off length scale or wave number ξc , while the smaller length scales, or eddies beyond
|ξ| > ξc are modeled. The momentum equation for LES of incompressible flow is shown
in eq. (2.5).

∂ū j

∂t
+ ∂ui u j

∂xi
− v

∂2ū j

∂x2
k

+ 1

ρ

∂p̄

∂x j
=−∂τi j

∂xi
(2.5)

The filtered velocities (ui ) are known, and so is the product of the filtered velocities
(ui u j ). However, the filtered product of the velocities (ui u j ) is not, which is where the
modeling part of LES arises. For closure, the filtered product term is replaced by the fil-
tered velocities term, plus the residual or sub-grid scale (SGS) stress tensor, τi j . The SGS
stress tensor includes the effect of the unresolved scales onto the large-scale motions.
Hence, successfully modeling the SGS stress tensor, allows for scale separation between
the large and small scale structures of the flow. One of these types of SGS models, are
the eddy-viscosity based models. For a detailed overview of the advancements made in
SGS modeling, the reader is referred to Moser et al. (2021). Next, the cost of LES for two
fundamental cases are discussed.
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HOMOGENEOUS ISOTROPIC TURBULENCE

One application of LES is the simulation of homogeneous isotropic turbulence (HIT). As
mentioned earlier, for isotropic flows, DNS scales roughly with Re3. However, for LES,
the computational cost does not scale strongly with the Reynolds number. This can be
clearly explained by considering the model energy spectrum shown in fig. 2.1 for various
Reτ. On the y-axis, the kinetic energy is displayed while the x-axis denotes the wave
number, which can be seen as the various length scales of the flow. Low wave numbers
denote large scales.

Figure 2.1: The model spectrum for various Reynolds numbers, scaled by (a) k (turbulent kinetic energy) and
L11 (integral scale), and (b) Kolmogrov scales (Pope, 2000, p. 242).

Remark from fig. 2.1 that as the Re increases, the energy spectrum shows a clear
linear regime between the largest energy-containing scales (k ∼O (L11)) and the scales in
the dissipative range (k ∼O (η)). In particular, this linear range is described as the inertial
range, which together with the dissipative range form the universal equilibrium range
that satisfies the Kolmogrov’s hypotheses of similarity and local isotropy. Indeed, as the
name suggests, the scales within this range are universal in nature and a function of ϵ
and ν. The takeaway from fig. 2.1 is that as the Reynolds number increases, separation
of scales becomes increasingly clear and so does the justification of modeling the scales
in the universal equilibrium range. Consequently, LES becomes increasingly attractive
in terms of costs as the Reynolds number increases. Hughes et al. (2001) show that an
LES of HIT performed at just Reτ = 90 is already very close to the DNS solution with half
of the mesh requirement.
Unfortunately, not all turbulent flows are isotropic and homogeneous in nature. Most of
the turbulent flows are wall-bounded, where at least one "wall" is present e.g., flow over
an aircraft. Such wall-bounded flows are inhomogeneous and so the weak scaling with
Reynolds number does not (partially) apply to these type of flows.

WALL-BOUNDED FLOWS

Wall-bounded flows are complex and inhomogeneous, requiring a different analysis of
the cost scaling with Re. Consider a snapshot of a developing turbulent boundary layer
shown in fig. 2.2. Remark that the length scales decrease as one moves closer to the wall.
A clear scale of separation is enforced by the presence of the wall as a function of the
wall-normal distance.

Consider a turbulent boundary layer of thickness δ, this boundary layer can be split
into an inner and outer layer. The inner layer (≈ 0.2δ) is the part of the boundary layer
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Figure 2.2: Frame from an imaging system capturing a developing turbulent boundary layer along a 5-meter
long flat plate submerged and towed through water (J. H. Lee et al., 2012).

closest to the wall and is predominantly affected by the smaller, viscous length scales
under the presence of this wall. The outer layer however, sits on top of this inner layer
(δ > 0.2), where viscous effects are negligible and is predominantly affected by the ex-
ternal flow beyond δ. Chapman (1979) approximated that the total cost (spatial and
temporal resolution) for the outer layer only scales with Re0.53. However, the same does
not hold for the inner layer, which scales with Re2.4. Over the years, these calculations
have been revisited, among others by Choi and Moin (2012) and Yang and Griffin (2021).
Yang and Griffin (2021) showed that the inner layer cost scales with Re2.72 and the outer
layer with Re1.14, significantly higher than the original numbers from Chapman (1979),
but slightly lower than the earlier improved estimations given by Choi and Moin (2012).

These cost estimations give a great reason to model the inner layer so that a signif-
icant cost reduction is achieved, thereby allowing higher Reynolds number simulations
to be performed. In fact, the cost estimations given above are analogous to the cost of
WRLES (inner layer) and WMLES (outer layer). Now that the cost of DNS, (WR)LES, and
WMLES are briefly discussed, the question remains as to how wall-modeling in LES is
achieved. Before elaborating on the methodologies used in existing wall models, a fun-
damental discussion on boundary layers is prerequisite.

2.2. BOUNDARY LAYER FLOWS
A discussion on the boundary layer dynamics is instructive for the subsequent part of
this study to better appreciate the proposed wall-modeling approaches, but more im-
portantly understand the reasons for the existing discrepancies in WMLES. Before dis-
cussing the boundary layer flows, some fundamentals are explained beforehand.

2.2.1. BOUNDARY LAYER CHARACTERISTICS

Consider a two-dimensional boundary layer flow over a flat plate. A freestream flow with
velocity Ue moves over the flat plate, as a result the flat plate induces a drag force onto
the flow, developing a shear area i.e., the boundary layer. As the boundary layer flow
moves further downstream, the velocity decreases and so to satisfy conservation of mass,
the sheared area must increase, deflecting the freestream flow away from the wall. At
any distance x from the leading edge, the boundary layer exhibits a velocity profile as a
function of the wall-norm distance, y with zero velocity at the wall, and some external
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flow velocity Ue at the edge of the boundary layer.
The distance at which the boundary layer flow returns to 99% of the freestream velocity is
defined as the boundary layer thickness (δ99). Associated with this, is the displacement
thickness (δ∗) which quantifies the amount of deflection experienced by the external
flow by the shear layer.

Figure 2.3: Definition of the control volume for the analysis of flow past a flat plate (White, 2006).

δ∗ =
∫ y→∞

0

(
1− u

Ue

)
d y (2.6) θ =

∫ δ

0

ρu

ρeUe

(
1− u

Ue

)
d y (2.7)

By applying conservation of mass to the control volume, the definition of the dis-
placement thickness is obtained which is given by eq. (2.6), where u is some velocity
profile at station y, and Ue is the external flow velocity. This displacement thickness can
be interpreted as the displacement of the streamlines in the external flow.

Another characterization of the boundary layer is the momentum thickness θ, which
is obtained by applying conservation of momentum instead, shown in eq. (2.7), and is
related to the drag of the surface. The ratio of these two parameters results in the shape
factor, a non-dimensional parameter which indicates the stability of the velocity profile,
where a low H implies a more stable boundary layer.

τw =µ∂u

∂y

∣∣∣
y=0

(2.8)

2.2.2. DERIVATION OF THE BOUNDARY LAYER EQUATIONS

Derivation of the boundary layer equations provides additional insight into their behav-
ior. Several assumptions are made however to simplify the derivations. Namely, consider
an incompressible flow at a high Reynolds number (Re ≫ 1). In the streamwise direc-
tion, flow convection dominates and so the scales can be defined by Ue ,L, and t =Ue /L,
where t is the transit time of the flow. In the transverse direction however, dissipation
dominates and so similarly, the scales may be defined by v and δ, where δ is again the
boundary layer thickness. These two scales are related by the Re as shown in eqs. (2.9a)
to (2.9c).
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δ=p
νt =

√
νL/Ue = LRe−0.5

L (2.9a)

v = δ/t =
√
νUe /L =UeRe−0.5

L (2.9b)

δ/L = v/U =Re−0.5
L (2.9c)

In other words, the transverse scales are much smaller than the convective scales
when Re ≫ 1, combined with the integral plate analysis done previously, the following
inequalities shown below hold.

Re ≫ 1 : δ≪ x v ≪ u
∂u

∂x
≪ ∂u

∂y

∂v

∂x
≪ ∂v

∂y

Now, consider the dimensional Navier-Stokes equations for incompressible flow shown
in eqs. (2.10a) to (2.10c), by substituting the non-dimensional parameters shown in eq. (2.11),
which are defined based on the obtained approximations previously, a non-dimensional
form of the Navier-Stokes equations is obtained.

∂u

∂x
+ ∂v

∂y
= 0 (2.10a)

ρ

(
∂u

∂t
+u

∂u

∂x
+ v

∂u

∂y

)
=−∂p

∂x
+µ

(
∂2u

∂x2 + ∂2u

∂y2

)
(2.10b)

ρ

(
∂v

∂t
+u

∂v

∂x
+ v

∂v

∂y

)
=−∂p

∂y
+µ

(
∂2v

∂x2 + ∂2v

∂y2

)
(2.10c)

x∗ = x

L
y∗ = y

L

p
Re t∗ = tUe

L

u∗ = u

Ue
v∗ = v

Ue

p
Re p∗ = p −p0

ρU 2
e

(2.11)

Remark that Re ≫ 1 and so terms containing 1/Re can be omitted. As a result the
streamwise diffusion term, and the transverse momentum equation reduce to a single
term. The latter equation therefore implies a constant pressure in y i.e., the pressure in
the boundary layer is equal to the external pressure (at the same x-position). Moreover,
note that the form of the continuity equation remains the same, hence conservation
of mass is independent of Re. The dimensional form of eqs. (2.12a) to (2.12c) are the
incompressible set of boundary layer equations originally developed by Blasius (1908).
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∂u∗

∂x∗ + ∂v∗

∂y∗ = 0 (2.12a)

∂u∗

∂t∗
+u∗ ∂u∗

∂x∗ + v∗ ∂u∗

∂y∗ =−∂p∗

∂x∗ +
����������:0(

1

Re
· ∂

2u∗

∂x∗2 + ∂2u∗

∂y∗2

)
(2.12b)

�������������:0
1

Re
·
(
∂v∗

∂t∗
+u∗ ∂v∗

∂x∗ + v∗ ∂v∗

∂y∗

)
=−∂p∗

∂y∗ +
������������:0

1

Re
·
(

1

Re
· ∂

2v∗

∂x∗2 + ∂2v∗

∂y∗2

)
(2.12c)

Note that stated equations have their limitations. Equations (2.12a) to (2.12c) can
only be valid for incompressible flows where Re ≫ 1. Additional limitations include
when separation occurs from a decelerating boundary layer. After this separation point,
the derived equations become invalid. Another limitation applies to regions with laminar-
to-turbulent transition.

2.2.3. SIMILARITY SOLUTIONS FOR LAMINAR BOUNDARY LAYER

Several solutions exist for obtaining the characteristics of laminar boundary layers. Most
famously are the Blasius solution for flat plate flow and the Falkner-Skan equations. Both
of these rely on the principle of similarity i.e., in the streamwise direction the shape of
the velocity profile remains the same and hence independent of x, but the thickness
grows and must be scaled based on the x-position. Before discussing the two similarity
solutions, first the general similarity boundary layer equation is derived.

Let δ(x) be the scaling factor so that a scaled wall-normal coordinate is defined.
Then, a scaled parameter for the velocity within the boundary layer can be written as
eq. (2.13).

Subsequently, rewriting the stream function to introduce f (η) in (ψ) such that ψ =
Ue (x)δ(x) f (η) allows the velocity components to be written as eq. (2.14) and eq. (2.15).
Then, by substituting the expressions for the velocities into the incompressible bound-
ary layer equations shown in eq. (2.16), the general self-similar boundary layer is ob-
tained, see eq. (2.17a), where eq. (2.17b) are the associated boundary conditions.

u(x, y)

Ue (x)
= f (η), where η= y/δ(x) (2.13)

∂ψ

∂y
= u =Ue (x) f ′(η) (2.14) −∂ψ

∂x
= v =−dUe (x)δ

d x
f ′(η)+Ue (x)

dδ

d x
η f ′(η) (2.15)

∂u

∂x
+ ∂v

∂y
= 0

u
∂u

∂x
+ v

∂u

∂y
=−Ue

dUe

d x
+ν∂

2u

∂y2

(2.16)
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f
′′′ +

[
δ

ν

dueδ

d x

]
f f

′′ +
[
δ2

ν

due

d x

](
1− f

′2
)
= 0 (2.17a)

f ′(0) = f (0) = 0 f ′(∞) = 1 (2.17b)

Subsequently, two forms derived from this self-similar solution are discussed i.e., the
Blasius and the Falkner-Skan equations.

BLASIUS FLAT PLATE FLOW SOLUTION

Blasius derived a simple self-similar solution for laminar boundary layer flow over a flat
plate by assuming that the external velocity remains constant i.e., Ue (x) = cst and em-
ploying the scaling factor in eq. (2.18). Since, Ue is constant, eq. (2.17a) can be simplified
to the problem shown in eq. (2.19).

δ=
√

2
νx

Ue
(2.18) f (η)′′′+ f f ′′ = 0 (2.19)

The Blasius equation is shown to be accurate for laminar boundary layers, as long
as Re > 1000 (White, 2006). For lower Reynolds numbers, Blasius underestimates the
skin friction. Moreover, the applicability of Blasius is limited to a flat plate geometry
and the additional requirement that Ue = cst aggravates this limitation further. A more
general self-similar solution is therefore desired that is applicable to a wider variety of
geometries and flows.

FALKNER-SKAN SOLUTION

The Falkner-Skan equation is a self-similar boundary layer problem that is more general
and able to express a wider range of laminar boundary layers and is obtained by choosing
Ue as eq. (2.20), and η as eq. (2.21), where m is a chosen parameter so that the problem
is self-similar. Substituting these into eq. (2.16), results in eq. (2.22).

Ue (x) = K xm (2.20) η= y

x

√
m +1

2

Ue x

ν
(2.21)

f
′′′ + f f

′′ +β(1− f
′2) = 0, β= 2m

1+m
(2.22)

Note that eq. (2.20) gives a power-law relation and therefore m dictates the acceler-
ation (or deceleration) of the external flow. Consequently, this also dictates the stream-
wise pressure gradient as shown by eqs. (2.12a) to (2.12c) and hence m < 0 indicates

decelerated flows ( d p
d x > 0), and accelerated ( d p

d x < 0) when m > 0. Moreover, the value of
m (or β) also has a geometrical interpretation. In particular, the Falkner-Skan equation
considers the (inviscid) solution for flows past wedges and corners with a half-wedge
angle β. The family of Falkner-Skan solutions are shown in fig. 2.4a and fig. 2.4b.

The effect of β on the shape of the velocity profile is evident, a boundary layer ex-
periencing an adverse pressure gradient shows a velocity profile with an inflexion point
such that an S-shaped velocity profile is created. For favorable pressure gradients, the
velocity profile quickly reaches the local external flow velocity, where the highest accel-
eration occurs very close to the wall. Finally, a zero-pressure gradient laminar boundary
layer exhibits a linear velocity profile near the walls with deceleration occurring further
away. Evaluating eq. (2.10b) at the wall (u = v = 0), gives the following relation:
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(a) (b)

Figure 2.4: (a) Velocity profile, (b) shear-stress profiles for various β angles (White, 2006).

∂2u

∂y2

∣∣∣∣
y=0

= 1

µ

d p

d x
(2.23)

Equation (2.23) shows the relation between the experienced pressure gradient and
the curvature of the velocity profile at the wall. As mentioned earlier, the velocity profile
is an indicator of the stability against separation. Indeed, the curvature of the velocity
profile indicates whether separation is possible. Under an adverse pressure gradient,
the boundary layer is decelerated, leading to backflow and separation in the boundary
layer downstream. This process is depicted in fig. 2.5. Note that separation cannot occur
in favorable gradients as the flow is accelerated downstream. Similarly for a boundary
layer in zero pressure gradient, as long as a zero gradient is maintained, no separation
can occur.

The two most popular similarity solutions for laminar boundary layers are described
above. However, due to the assumptions made in these self-similar solutions, the appli-
cability is limited. As noted earlier self-similarity requires that the velocity profile follow
some defined profile in the streamwise direction. In practice, this is most likely not the
case as the pressure gradient imposed by the outer flow changes e.g., from a favorable to
an adverse pressure gradient. Thus, solutions to laminar boundary layers which do not
rely on similarity are discussed subsequently.

2.2.4. NON-SIMILAR SOLUTION FOR LAMINAR BOUNDARY LAYER

Non-similar solutions provide a more generalized (set of) equation(s) to characterize
laminar boundary layers. Many approaches have been proposed in the last century and
can be classified into three general methodologies as shown by Rosenhead (1963). One
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Figure 2.5: Pressure gradient-induced geometric influences: (a) types of profile; (b) persistent adverse gradi-
ent (White, 2006, p. 229).

obvious choice is to assume that the velocity profile can be approximated by a polyno-
mial by means of series expansion. Such methods were introduced by Von Kármán in
1921(White, 2006) and in significantly refined form by Pohlhausen (1921). Many integral
boundary layer methods exist and are extensively discussed and compared in Rosenhead
(1963).

The method of Pohlhausen (VKP) assumes that the velocity profile satisfies a quartic
polynomial whose profile is dictated by the continuity boundary conditions at the edge
of the boundary layer and wall. Thwaites however, based his method on correlation us-
ing existing experimental data instead. Another approach is to use CFD, where the con-
tinuity and momentum equations are numerically solved to obtain the velocity profiles.
How to numerically solve the laminar boundary layer equations is beyond the scope of
this literature study. Many integral and series expansion methods have been proposed
to characterize the laminar boundary layer but only the two most popular methods of
Kármán-Pohlhausen and Thwaites are discussed in the present literature study.

VON KÁRMÁN-POHLHAUSEN METHOD

Von Kármán first introduced the integrated momentum equation to analyse boundary
layers and hence the equation is also referred to as the Kármán integral relation. This
integral relation is obtained by multiplying eq. (2.10a) with (u −Ue ) and subsequently
subtracting it from eq. (2.10c) (White, 2006).

−∂τ
∂y

= ∂

∂t
ρ(Ue −u)+ ∂

∂x
(ρu(Ue −u))+ρ(Ue −u)

dUe

d x
+ ∂

∂y
(ρv(Ue −u)) (2.24)

Then by integrating eq. (2.24), the Kármán integral relation is obtained. A more com-
pact form of this expression is achieved by substituting in the definitions of the displace-
ment eq. (2.6), and momentum thickness eq. (2.7), resulting in eq. (2.25), where vw is the
wall-normal velocity.

τw

ρU 2
e
= C f

2
= 1

Ue

∂

∂t
(Ueδ

∗)+ ∂θ

∂x
+ (2θ+H)

θ

Ue

dUe

d x
− vw

Ue
(2.25)
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Using eq. (2.24), Pohlhausen (1921) developed an approximate method to charac-
terize laminar boundary layers and obtain the parameters of interest (e.g. τw , H) by
assuming that the laminar velocity profiles are described by a quartic polynomial. Equa-
tion (2.26) is formulated such that all expressivity is contained in a single parameter Λ,
referred to as the Pohlhausen parameter, which couples the approximated velocity pro-
file with the local external pressure gradient. Remark that the assumed quartic polyno-
mial form is a linear combination of the expression for the Blasius profile and an ex-
pression to model the effect of the pressure gradient. for the elaborate discussion of the
derivation and numerical procedure of the VKP method, the reader is referred to Rosen-
head (1963) and White (2006), respectively.

f (η) = u/Ue = 2η−2η3 +η4 + Λ

6
[η(1−η)3], Λ=−δ

2

η

dUe

d x
(2.26)

Figure 2.6: Velocity profiles of the VKP method for various Λ (Rosenhead, 1963, p. 295).

Several limitations must be considered with the VKP method. Figure 2.6 shows that
for Λ> 12, the predicted velocity profile becomes unphysical. Indeed, the peak velocity
inside the boundary layer becomes larger than the local external flow velocity. Moreover,
it is found that λ > −12 implies flow separation which is beyond the region of applica-
bility of this method. Nevertheless, due to the simplicity of the velocity profile and re-
quiring only the additional knowledge of Λ, the profile assumption approach has been
for long considered the most widely used approximate method. Several others have ex-
tended the VKP method (Rosenhead, 1963), but Thwaites (1949) instead investigated an
approach based on correlation i.e., approximating laminar boundary layer profiles by a
universal function based on analytical and experimental data.

THWAITES’ METHOD

Thwaites (1949) based his model on a momentum-integral relation where eq. (2.25) is
multiplied by Ueθ/ν, resulting in eq. (2.27) (White, 2006). This makes both sides of the



14 2. LITERATURE REVIEW

equation to be related by a single parameter, λ defined in eq. (2.28). In particular, two
non-dimensional correlation parameters are defined based on the shear (LHS term) and
the shape factor as shown in eq. (2.29).

τwθ

µUe
= Ueθ

ν

dθ

d x
+ θ2u

ν
(2+H) (2.27) λ= θUe

ν
= (θ

δ

)2
Λ (2.28)

τwθ

µUe
≈ S(λ)

H = δ∗

θ
≈ H(λ)

(2.29)

Ue
d

d x

(λ
u

)≈ 2
[

S(λ)−λ(2+H)
]
= F (λ) (2.30)

By eq. (2.29) and eq. (2.27), the integral-momentum relation can be written in the
simplified form of eq. (2.30). Thwaites (1949) subsequently used this form to obtain a
function that is able to approximate the laminar boundary layer profile. However, he did
not base this on the assumption that these profiles can be approximated by "a family of
parametric function", rather he proposed to fit a simple single parameter equation to a
large collection of analytical and experimental data. His result is a linear function shown
in eq. (2.31), which is integrated to obtain θ and eq. (2.28) to acquire τw and H (and
all other parameters of interest). In practice, the shear and shape factor correlation are
either obtained from tabulated values or a convenient curve fit, which is found in either
Thwaites (1949) or White (2006). In the former, the coefficients of the linear function are
found to be a ≈ 0.45 and b ≈ 0.6. Generally, x0 = 0 in eq. (2.32) since a laminar boundary
layer develops from the stagnation point.

F (λ) = a −bλ (2.31) θ=
aν

U b
e

∫ x

x0

U b−1
e d x (2.32)

Thwaites’ method has shown an even simpler approach to approximate laminar bound-
ary layers without assuming a parametric shape which was common in earlier works. In
fact, the method only requires the knowledge and capability of integrating Ue (x).

In his extensive comparison between integral methods, Rosenhead (1963) notes that
the accuracy of each method in engineering application do not differ significantly and
instead one should choose the method based on labor. White (2006) further shows by
application of various approximate methods on the case of laminar flow past a circular
cylinder, that knowing the true Ue (x) is most critical for the accuracy of all approximate
laminar boundary layer methods, rather than the accuracy of the method.

As mentioned before, the boundary layer equations derived earlier do not hold in re-
gions of transition and separation. Hence, the next section aims to answer what mecha-
nisms occur during boundary layer transition and what models are available.

2.2.5. LAMINAR-TO-TURBULENT TRANSITION

In engineering applications, a laminar boundary layer is preferred as it generates up to
90% less skin friction drag compared to a turbulent boundary layer. In particular, for typ-
ical airliners in cruise flight, the boundary layer over the body and wing are mostly tur-
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bulent, resulting that skin friction drag comprises roughly 50% of the total drag. Hence,
knowledge to delay flow separation and controlling wall-bounded flows is of great eco-
nomical and environmental importance. This chapter serves only to summarize and dis-
cuss the required background to develop this report in the subsequent chapters. There-
fore, only the possible transition modes and characteristics are discussed in this section.

There are numerous paths in which laminar flow transitions into turbulence. In lit-
erature, the paths to turbulence are summarized and extensively discussed in Herbert
(1984) and Zaki and Durbin (2021). In general, three types of transition can be identified:
natural, forced, and separated flow transition. Natural transition occurs under small ex-
ternal disturbances which cause the development of Tollmien-Schlichting (TS) waves,
which is the primary mode of transition (Herbert, 1984). TS waves can be described
as vortices moving in the spanwise direction relative to the dominant flow direction.
These TS waves increase in size, become non-uniform due to external perturbations,
and consequently introduce λ−, or hairpin vortices. These λ vortices then perturb the
TS waves further and form the secondary instabilities. In transition literature, two types
of secondary instabilities are distinguished based on whether these hairpin vortices are
staggered (H-type transition) or aligned (K-type transition) (Panton, 2013, p. 756-759).
Further downstream, these three-dimensional TS waves grow even faster and within a
short distance, an intermittent process occurs where the TS waves locally breakdown
and form turbulent spots (Panton, 2013). As these turbulent spots become larger and
coalesce, transition to full turbulence is achieved. A schematic overview of the natural
transition process is shown in fig. 2.7.

Bypass transition, on the other hand is initiated due to large-amplitude external per-
turbations e.g., freestream turbulence, or surface roughness, in turn these introduce long
streamwise streaks in the boundary layer which, under perturbation of secondary insta-
bilities, and turbulent spots, transitions to turbulence.
Lastly, transition can also simply occur under a (strong) adverse pressure gradient. An
example, is the process in the formation of a laminar separation bubble, where a lami-
nar boundary layer detaches under an adverse pressure gradient and forms a recircula-
tion region i.e., the separation bubble. Above the bubble, the laminar flow transitions to
turbulence, re-energizes the boundary flow and consequently re-attaches downstream,
closing the laminar separation bubble.

In a subsequent chapter, transition models in CFD with the focus on RANS and LES
applicable models are discussed. However, prior to discussing these models, fundamen-
tals on turbulent boundary layers are elaborated to complete the current discussion of
boundary layer flows.
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Figure 2.7: Morkovin map of the roads to turbulence (Panton, 2013, p. 757).

2.2.6. TURBULENT BOUNDARY LAYER

The dynamics within turbulent boundary layers are more complex than those under a
laminar boundary layer and as such are divided into two parts. An outer layer is de-
fined from the edge of the boundary, which comprises around 80% of the boundary layer
thickness. This regime is predominantly affected by the external flow with diminishing
strength as one moves closer to the wall. The dynamics in the outer layer are not uni-
versal due to the influence of the freestream flow. Moving closer to the wall, the effect
of the external flow diminishes and instead, the presence of the wall dominates the flow
behavior in this region and is referred to as the inner layer. In contrast, the inner layer is
universal in nature compared to the dynamics in the outer layer, which makes modeling
the inner layer an attractive alternative to resolving it.

Within these two layers, several sub-layers can be identified. The extent of these re-
gions is usually expressed in y+, a non-dimensional measure for the distance from the
wall and is given by eq. (2.33), whereν is the kinematic viscosity and uτ the friction veloc-
ity defined by eq. (2.34). Here, τw is the wall-shear stress and ρ the local fluid density. For
far-away regions in the outer layer, the outer-scaling y/δ is used, where δ is the boundary
layer height.

y+ = uτy

ν
(2.33) uτ =

√
τw

ρ
(2.34)
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Starting from the wall, the first sub-layer in the inner layer is the so-called viscous
sub-layer (y+ < 5), where the mean fluid velocity increases linearly with wall-normal
distance. Above the sub-layer is the log layer whose name stems from the fact that the
velocity profile is universally described by a logarithmic equation shown in eq. (2.35),
where κ and B are constants. This log layer starts around y+ = 30 and extends up to
y+ : O (103). As discussed earlier, separation of scales becomes more pronounced as the
Reynolds number increases and so the log layer covers a larger extent of the boundary
layer.

u+ = 1

κ
ln y++B , u+ = u

uτ
(2.35)

Between the log layer and the viscous sub-layer is a transition region (5 < y+ < 30),
where the viscous and inertial stresses are roughly equal in magnitude and so is difficult
to accurately model. Similarly, between the inner layer (significant viscous effects) and
outer layer (negligible viscous effects) is also a transition layer called the buffer layer. At
the edge of the boundary layer lies the velocity defect region that extends from the log
layer to δ, this region is predominantly affected by the external flow and is therefore not
universal. The typical shape of the velocity profile of a high Re boundary layer is shown
in fig. 2.8.

Figure 2.8: Mean streamwise velocity profiles in wall units for wall-bounded flows at various Reynolds num-
bers (Pope, 2000, p. 303): circles, boundary layer experiments of Klebanoff (1954); dashed line, boundary
layer DNS of Spalart (1988), Reθ = 1410; dot-dashed line, channel flow DNS of Kim et al. (1987), Re = 13750;
solid line van Driest’s law of the wall (Van Driest, 1956).

A turbulent boundary layer can also be described by the equations derived earlier in
eqs. (2.12a) to (2.12c) which show that the average wall-parallel velocities must satisfy
eq. (2.36), and can be seen as an unsteady Reynolds-averaged Navier Stokes (URANS)
description of the boundary layer flow. On the left-hand side, the dynamics due to un-
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steadiness, convection and pressure gradient are described and combined must equal
the total stress in the boundary layer. νt is the eddy-viscosity which models the Reynolds
stresses from the unresolved scales.

∂ui

∂t
+ ∂ui u j

∂x j
+ 1

ρ

∂p

∂xi
= ∂

∂y

[
(ν+νt )

∂ui

∂y

]
, i = 1,3 (2.36)

In case it is assumed that the boundary layer is in steady-state i.e., the convective
term is balanced out by the pressure gradient, eq. (2.36) can be simplified to eq. (2.37),
which is the familiar law of the wall. In this case, a RANS formulation of the turbulent
boundary layer is solved.

∂

∂y

[
(ν+νt )

∂ui

∂y

]
= 0 (2.37)

At the start of this literature study, the cost benefit of WMLES over DNS and LES was
discussed to understand why WMLES is needed. In this chapter, the fundamentals of
boundary layers are discussed as a background before going over the different wall mod-
els and the underlying methodologies which will therefore be discussed subsequently.

2.3. TYPES OF WALL-MODELING IN LES
As mentioned earlier, the necessity of wall models are two folds. Firstly, the mesh re-
quirement for wall-bounded flows scales significantly with Re and hence is too costly
to be solved with current computing power. Secondly, current viable mesh sizes are un-
derresolved in the near-wall regions and hence unable to retrieve the right amount of
wall-shear stress. Indeed, the goal of wall models in LES is to apply sufficient wall-shear
stress to the LES region.
An overview of wall models is given below. First, the "conventional" wall models are
discussed which have been proposed in the early stages of WMLES. Afterwards, more
recently proposed wall models are addressed.

2.3.1. HYBRID LES/RANS WALL MODEL
One of the more versatile type of wall models employs a zonal approach to predict the
wall shear stress in the inner layer. In the hybrid LES/RANS approach, the computa-
tional domain is split between a near-wall RANS region with height hwm and a LES region
above this RANS domain, hence it is often referred to as a zonal approach as a distinct
interface is created between the two methods. Note that this means that the LES region
is prescribed up to some distance above the wall. Moreover, a separate grid is employed
in the RANS region to solve the inner (boundary) layer flow.

Versions of the hybrid LES/RANS approach are distinguished by how hwm is set.
If the wall model height is fixed, then the approach is referred to as a zonal approach
(Nikitin et al., 2000). When hwm is set by the grid or solution, the approach is referred to
as a "seamless" approach (Baurle et al., 2003).

An issue with the hybrid LES/RANS approach is the difference in computed quanti-
ties in the LES and RANS region i.e., LES feeds in instantaneous variables, while RANS
is only able to output the time-averaged wall-shear stress to the LES region. In prac-
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tice, this results in a phenomenon called log-layer mismatch, where in most cases, a
positive bias in the mean velocity profile is found. Several solutions exist to combat or
completely eliminate log-layer mismatch. These include adding artificial perturbations
around the interface (Piomelli et al., 2003), or improving the blending function between
the estimated eddy-viscosities (Shur et al., 2008).

Nevertheless, the hybrid LES/RANS approach also provides benefits in terms of flex-
ibility. Since the RANS region can be prescribed by hwm , the height may be adjusted to
run in DES or in full RANS mode which allows the same CFD code to be used for variety
of design purposes.

2.3.2. RANS-LIKE WALL MODEL
Another standard approach for wall-modeling in LES is using a wall-stress model which
solves the momentum equation in the wall-parallel direction i.e., eq. (2.36), repeated
here for convenience. In this method, a probing point is defined at some height hwm

to be used as input for the wall model. Compared to the hybrid LES/RANS approach, a
subtle difference is that the LES region is defined up to the wall. Note that the equations
here solve for the averaged wall-parallel quantities. Finally, an assumption of eq. (2.36),
is that a dominant external streamwise flow direction is present. As mentioned earlier,
if the inner layer is assumed to be in equilibrium, the LHS becomes zero and the wall
model is simplified to follow the famous log-law which can either be solved numerically
or algebraically. Since the latter is the cheapest computationally, it is also the most com-
mon wall-stress modeling approach. One advantage of numerically solving the log-law
is so that other flow physics can be taken into account in the implementation of the wall
model (Bose & Park, 2018).

∂ui

∂t
+ ∂ui u j

∂x j
+ 1

ρ

∂p

∂xi
= ∂

∂y

[
(ν+νt )

∂ui

∂y

]
, i = 1,3

Unfortunately, the equilibrium assumption rarely holds since it requires that the con-
vective term and pressure gradient to even out. In fact, an equilibrium wall-stress model
(EQWM) performs poorly in regions with large three-dimensionality, such as juncture,
and separated flows (Goc et al., 2021; Lozano-Durán et al., 2020; Tamaki et al., 2019).
Still, while the equilibrium condition is not satisfied in most cases, the EQWM performs
adequately well under non-equilibrium conditions. Several explanations are given by
Larsson et al. (2016). First, the outer layer (>80%) should be well-resolved in WMLES
and hence most of the non-equilibrium effects should already be captured. Secondly,
the inner layer turbulent dynamics are much faster than the dynamics in the outer layer,
as such the inner layer should be close to steady-state in non-equilibrium flows. Finally,
note that the LHS of eq. (2.36) describes various processes that includes the unsteadi-
ness, convection, and pressure gradient of the flow. These individual terms are large in
magnitude but should balance each other out above the viscous layer (y+ > 5) (Hickel
et al., 2012).

When equilibrium is not assumed and all LHS terms are included, a non-equilibrium
wall-stress (NEQWM) model is solved. If the accuracy of NEQWM is necessary for en-
gineering applications, Hickel et al. (2012) argue that one should at most include the
normal derivatives to reduce excessive additional computational cost.
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The issue of log-layer mismatch also occurs in the wall-stress modeling approach,
but is much more easily resolved. In the past, it was common to have ∆h ≈ hwm and
set the probing point at this first cell from the wall. However, to resolve the energetic
scales at hwm the mesh resolution must be sufficiently fine, and therefore having merely
one cell between the probing point and the wall may not be adequate. Indeed, Kawai
and Larsson (2012) show that to reduce or even eliminate log-layer mismatch, grid re-
finement must be employed. Kawai and Larsson (2012) found convergence for ∆y ≤
0.33hwm . Similarly, J. Lee et al. (2013) reported ∆y ≤ 0.3hwm . A common rule of thumb
is to have at least three to four cells between the probing point and the wall.

Together with the hybrid LES/RANS approach, wall-stress models are the most com-
monly implemented wall models. Comparing the two approaches, wall-stress EQWM
are computationally cheaper while the implementation is also more straightforward.
This is especially true for algebraic EQWM. Moreover, log-layer mismatch is also less
of an issue for wall-stress based models. On the other hand, the hybrid LES/RANS allows
for the most flexibility. Allowing users to either solve in RANS, DES, or WMLES mode.
Both approaches assume a dominant streamwise direction which is not always true and
certain non-equilibrium flows still pose a problem in terms of cost and accuracy.

2.3.3. INTEGRAL WALL MODEL

Wall-stress models perform well under equilibrium and relatively well for most non-
equilibrium flows. However, the inaccuracies lie in the assumptions of the wall-stress
formulation i.e., it assumes a dominant streamwise flow direction. Therefore, a wall-
modeling approach that has similar cost, but increased accuracy in non-equilibrium
conditions is desired.

Yang et al. (2015) proposed a wall-modeling formulation by vertical integration of the
boundary layer equations based on the integral analysis of amongst others, Von Kármán
and Pohlhausen discussed in section 2.2.4. Yang et al. (2015) named this approach, iWM-
LES (integral wall-modeled LES). Similarly to the VKP approach for laminar boundary
layers, Yang et al. (2015) assumed a velocity profile and determined several parameters
from the boundary conditions. Since the wall model formulation is based on eq. (2.36),
non-equilibrium effects such as a pressure gradient is also taken into account.

Additionally, it is also possible to add the effect of wall roughness. iWMLES is advan-
tageous as it is an algebraic method and does not require wall-normal refinement since
a velocity profile is assumed. Furthermore, iWMLES is able to approximate the full non-
equilibrium boundary layer equations all while retaining similar computational cost of
an EQWM.

Yang et al. (2015) have shown improved performance over an EQWM in the wall-
mounted cubes test case. Later on, Catchirayer et al. (2018) also performed adiabatic
and isothermal quasi- incompressible channel flow simulations and compared iWMLES
with an algebraic EQWM. Their results show that the performance iWMLES is on par
with algebraic EQWM. Nevertheless, additional testing must be performed to cases with
complex geometries for engineering applications.
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2.3.4. DYNAMIC SLIP WALL MODEL

A novel approach was proposed by Bose and Moin (2014), who rather than applying a
slip wall condition (applied wall-shear stress at the wall), prescribed a Robin condition,
allowing mass to flow through the walls (transpiration). A dynamic procedure then com-
putes the appropriate local slip length to predict the right amount of wall-shear stress.
The benefits of this dynamic slip wall method (DSWM) are two-folds: no assumptions
are made on the state of the boundary layer, which means it is applicable in both equi-
librium and non-equilibrium flows, and theoretically in laminar boundary layers. Ad-
ditionally, DSWM does not require any tuning parameters i.e., no empirical coefficients
are needed compared to RANS-like and hybrid LES/RANS approaches. For an extensive
explanation on the methodology, the reader is referred to the original paper.

Later on, Bae et al. (2019) extended this wall model by assessing the robustness of
the DSWM by varying the Reynolds number, grid size, and used SGS model. While, Bose
and Moin (2014) computed the slip length using a least-square fit on a modified form
of Germano’s identity, Bae et al. (2019) proposed a new framework for DSWM, referred
to as the wall-stress invariant model (WSIM). In this model, a new dynamic procedure
to compute the slip length is presented which is optimized to achieve a slip length such
that the mean wall stress (with a slip boundary condition) approximates DNS accuracy.
A key role in the performance of WSIM is enforcing a mean zero mass flow through the
walls, while computing the appropriate slip length and filter size.

Test cases performed by Bae et al. (2019) include both (steady) turbulent and tran-
sient channel flow, and a zero-pressure gradient turbulent flat plate. The results from
turbulent channel flow show the same order of discrepancy as an EQWM. However, the
error shows a significant increase for higher Reynolds numbers, much larger than for the
EQWM. Bae et al. (2019) notes that the better performance of EQWM is not surprising
since the model assumptions are satisfied. Moreover, the larger error is ascribed to the
incompatibility of larger filter sizes with the dynamic slip length procedure (a smaller fil-
ter size is needed for higher Re). Nevertheless, the results are much better than without
a model and the performance of WSIM matches those of EQWM.

Further validation on this method is performed by Whitmore et al. (2021), where flow
over a Gaussian bump is simulated. Compared to an EQWM, the results of the WSIM
show monotonic convergence for both the C f as well as the Cp profiles in contrast to the
EQWM results while offering approximately the same accuracy.

The above description of WSIM or DWSM sounds promising as the wall model is
free of any tuning or empirical coefficients, and is furthermore applicable under non-
equilibrium flows, all while having similar costs to an EQWM. However, the viability of
the wall model is limited due to the lack of robustness in the calculation of the local slip
lengths and sensitivity regarding the choice of SGS model.

2.3.5. MACHINE LEARNING BASED WALL MODEL

In the past years, machine learning has become a popular method to acquire a deeper
understanding to long-standing problems. Yang et al. (2019) was one of the first to intro-
duce machine learning to wall-modeling. Using a supervised learning approach which
takes as input the wall-parallel velocity at hwm , the grid aspect ratio, and the crossflow
pressure gradient and outputs the local wall-shear stress. Using only DNS data of chan-
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nel flow at Reτ = 1000, the model shows better performance compared to equilibrium
and non-equilibrium wall-models at greater Reynolds numbers.

Lozano-Durán and Bae (2020) took a step further and proposed a neural network us-
ing supervised learning and data from "canonical" test cases. The assumption used is
that any flow behavior occurring in nature can be represented by a set of canonical flow
units. In their paper, three flow units: boundary layer with separation bubble via blowing
and suction, turbulent duct flow, and turbulent channel flow at various Re and aspect
ratios are used to predict the wall-shear stress, and other flow information. These in-
clude for example the confidence of the predicted output and the composition of the
simulated flow in terms of the flow units. Subsequently, the model is applied to the
NASA juncture flow case and has shown to outperform the algebraic EQWM at a loca-
tion experiencing near-zero-pressure gradient flow and locations with large flow three-
dimensionality and separation. While the model is promising, Lozano-Durán and Bae
(2020) warns the reader of applying such a model to other applications since only lim-
ited validation is performed.

Indeed, the big issue is that such neural networks require DNS data of the aforemen-
tioned flow units at various Re and as always machine learning-based approaches must
be used with caution since the predictions are based on the training data and ultimately
can produce erroneous predictions if the flow case cannot be reproduced by the train-
ing data. It goes without saying that more research and testing must be performed on
combining machine-learning and wall-modeling.

At this point, all the wall models discussed are meant for modeling turbulent bound-
ary layers and perhaps the reader may wonder if there are also wall models for the lami-
nar part of the boundary layer. Moreover, when modeling laminar and turbulent bound-
ary layers, transition must occur inbetween these parts, therefore another question may
be whether transition models in LES also exist. Indeed, the latter is discussed in sec-
tion 2.4 and the former models are discussed subsequently.

2.3.6. SELF-SIMILARITY BASED WALL MODEL

From the infancy of WMLES, attention was solely spent on modeling turbulent boundary
layers. However, recently the WMLES community realized that predicting the wall-shear
stress at the laminar part of the boundary layer can have a significant impact on the
downstream flow (Gonzalez et al., 2020). Moreover, since laminar boundary layers are
even thinner than their turbulent counterpart, the associated grid requirement is even
more stringent and thus further necessitates the need for laminar wall-modeling.

While several laminar boundary layer approximations exist, some of them discussed
in section 2.2, Gonzalez et al. (2020) approached this problem by employing the Falkner-
Skan similary solution. The laminar part of the boundary layer over a NACA0012 is as-
sumed to be a locally self-similar Falkner-Skan solution, and that each cell along the
surface can be modeled as a wedge. Since the external flow along the surface is assumed
to follow a power-law relation, a system of equations can be composed to determine the
least square approximation of the Falkner-Skan parameters, β (half-wedge angle), and
k (power law exponent). The wall-shear stress is obtained by using tabulated values for
the relationship betweenβ and f

′′′
(0). Gonzalez et al. (2020) tested this approach in stag-

nation flow and a spatially varying pressure gradient boundary layer flow. For both test
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cases, the laminar wall model evidently outperformed the no-slip (no wall-modeling) or
equilibrium wall-stress model. Moreover, the latter case shows that it is valid to assume
local self-similarity over a surface.

However, remark that the original Falkner-Skan self-similarity solution assumes an
inviscid flow. Therefore, viscous effects should be considered when applying Falkner-
Skan in WMLES. Dauricio and Azevedo (2022) modified the Falkner-Skan formulation
by including a correction factor that modified β to compensate for the (viscous) dissi-
pation of the boundary layer. Furthermore, Dauricio and Azevedo (2022) tested their
formulation on a NACA 0012 airfoil for various boundary layer growth rate, making hwm

a function of the streamwise direction. Regardless of the growth rate, the self-similar wall
model shows good agreement with reference data, but underestimates the peak skin fric-
tion at the leading edge and overestimates the skin friction in the decelerated region.

The present author has only found a handful of papers on laminar wall-modeling,
which is possibly due to the recent awareness regarding the importance of modeling the
laminar part of the boundary layer. A second and last proposed laminar wall-modeling
approach is discussed next.

2.3.7. POLYNOMIAL-BASED WALL MODEL

The last proposed type of wall model is the polynomial-based (laminar) wall model that
may in theory be used in both laminar and turbulent parts of the boundary layer. In
essence, the approach aims to use local wall-normal instantaneous quantities which is
fed into either a polynomial-based expression of the velocity profile (Woodruff, 2021) or
a taylor series expansion (Unglehrt et al., 2022). The former analyzed the accuracy of pre-
dicting laminar-turbulent transition in WMLES. In doing so, proposed a pre-transitional
(laminar) wall model using the wall-normal plus time derivatives. In particular, Woodruff
(2021) considered a polynomial function of order m which is approximated by a least-
square fit of the wall-tangent velocity values from m points above the wall. In contrast
to wall-stress models, the obtained wall-shear stress is input at some distance above the
wall, rather than at the wall itself since the shear stress of the laminar boundary layer is
not constant in the near-wall region.

Unglehrt et al. (2022) on the other hand, proposed a third-order Taylor series expan-
sion in which the higher-order derivatives are substituted with compatibility conditions
(similar to the approach discussed in section 2.2.4) which results in a PDE for the wall-
shear stress. In their work, the aim is to retrieve the correct wall-shear stress from a
known velocity and pressure gradient by using only the nearest cell from the wall. Un-
glehrt et al. (2022) remark that this formulation may be further expanded by including
both higher-order terms and the SGS model in the compatibility conditions.

Within the context of the present literature study, these two proposed wall models
require a higher mesh resolution than typical WMLES mesh sizes. In fact, the wall model
proposed by Unglehrt et al. (2022) is intended for WRLES, and results from Woodruff
(2021) are based on a mesh resolution with the first grid point at y+ = 0.11, and a sub-
sequent work of Woodruff (2022) used a mesh resolution of h = 0.035y/δ. Compare this
with ∆y ≤ 0.3hwm for typical WMLES grid sizes (Kawai & Larsson, 2012) shows that the
polynomial-based wall models are generally unsuitable for WMLES solvers.
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2.4. TRANSITION MODELING IN RANS AND LES
With the shift in focus to wall-modeling laminar boundary layers, perhaps the reader
wonders whether transition models exist in LES. This chapter focuses on such models
developed in the (WM)LES literature, while also discussing similar models developed in
RANS, which can potentially be used in LES.

The most famous transition model is the eN model, which predicts transition based
on linear stability theory by monitoring the value of N until a threshold is reached which
implied transition. However, the applicability of these models are limited to simple
geometries and low-fidelity codes as it requires knowledge of higher-order derivatives
which even for current industrial CFD solvers are difficult to reconstruct. The discussion
of such models is not the focus in this chapter. Instead, this chapter serves to summarize
the previous efforts of applying transition models in RANS and LES.

2.4.1. TRANSITION MODELS IN LES
Roughly a decade ago, Bodart and Larsson (2012) remarked that the predicted skin fric-
tion is overestimated by traditional wall models (EQWM) and that the sensitivity to an
adverse pressure gradient is limited due to a thicker (turbulent) boundary layer. Conse-
quently, this may result in erroneous flow prediction over the surface of the geometry.
Therefore, Bodart and Larsson (2012) looked for a way to distinguish between a lami-
nar or turbulent boundary layer so that separate treatment of the two types of boundary
layers can be applied. To achieve this, they used a measure of the local kinetic energy
(u

′
i u

′
i /2) normalized with the predicted local friction velocity (uτ) shown in eq. (2.38).

DNS datasets of turbulent channel flow from 180 < Reτ < 2000 show that this quantity
roughly approaches a constant value for y+ > 10 and y/δ > 0.2, which aligns with the
region of typical probing points for conventional wall models. For laminar regions, they
simply switched off the turbulent wall model which corresponds to solving an underre-
solved LES.

stl(xw , t ) =
〈√

u
′
i u

′
i /2

〉
〈uτ〉

(2.38)

Test cases performed on an multi-element airfoil and transitional boundary layer
show a much better agreement to reference data and prove that adequate treatment of
the laminar bounary layer is important for an accurate reconstruction of the flow. While
transition physics are not considered, Bodart and Larsson (2012) showed that knowing
the transition location, and consequently the laminar and turbulent boundary layer re-
gions are essential towards high-accuracy WMLES.

Much later, Duda et al. (2019) described a similar transition model. As a result, the
predicted τw from the wall model and the corresponding value of kwm are compared
to the local resolved value of kLES in the LES domain. When kLES > kwm , a turbulent
flow is assumed, otherwise the flow is laminar. A blending function is also used for the
transition region, acknowledging that a pure laminar or turbulent wall model cannot
return the skin friction accurately in this region.

In the work of Woodruff (2021), a wall model for the pre-transition (laminar) region is
discussed together with a simple blending function for the transition region to study the
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possibility of using WMLES in boundary-layer transition investigations. His work shows
that transition prediction is possible given three requirements. Namely, that an accurate
laminar (pretransition) wall model is utilised, a transition region is considered between
the laminar and turbulent wall model, and finally that limitations must be respected
regarding the viable spatial and temporal resolution to capture transition physics.

Models to treat the transition region in LES have not been extensively studied yet. In
fact, the bulk of transition modeling studies are performed in the RANS domain.

2.4.2. TRANSITION MODELS IN RANS
Two philosophies are mainly followed in the development of transition models in RANS,
as remarked by Menter et al. (2022). Either an approach using (linear) stability theory
or a form of RANS-type method is followed. The former aims to track the growth of
instabilities of the flow up to transition e.g., eN method is a famous example of this.
However, eN requires reconstruction of higher-order derivatives which is not suitable for
general-purpose CFD codes, where lower-order numerical methods are used and hence
are not discussed further. RANS-type methods however, utilises various forms of curve-
fitting to establish low-cost empirically-based parametric equations. Such methods have
gained many variations over the years of which five are discussed briefly.

LCTM: γ−Reθ
The earliest locally formulated transition model is the γ−Reθ-model, also described
by Langtry and Menter (2009), which solves two additional transport equations to pre-
dict transition. Namely, the intermittency (γ) which describes the coverage of turbulent
patches at a given streamwise location, and the momentum thickness based Reynolds
number (Reθ) which detects transition onset. Both parameters rely on tuning based on
experimental correlation to obtain accurate results. Nevertheless, γ−Reθ incorporates
both freestream turbulence and pressure gradient changes in transition onset predic-
tion.

LCTM: γ
Later, Menter et al. (2015) reduced the γ−Reθ-model to a single transport equation,
only needing to solve the intermittency equation. The detection of transition onset in
this model is based on computing the wall-normal velocity derivative which serves to
approximate the local pressure gradient. Later on, different variants of this one-equation
model are proposed which either extends it, or instead uses a different set of correlation
parameters. Several variants of these models are summarised by Menter et al. (2022).

LCTM: ALGEBRAIC

A recent development following the one-equation transition models are algebraic mod-
els which do not require solving additional PDEs, significantly reducing the computa-
tional cost. Many variants of algebraic models exist that are based on different param-
eters to predict transition onset (Kubacki et al., 2020; Menter et al., 2022; Sandhu &
Ghosh, 2021). Some are intended for different environments e.g., high turbulent inten-
sities (Kubacki et al., 2020), and tuned in combination with a certain turbulence model.
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kT −kL −ω
Alternatively to the above correlation-based models which require extensive tuning, a
more physics-based approach can be used. Walters and Cokljat (2008) proposed a tur-
bulence model capable of predicting transition, consisting of three transport equations
which follow the turbulent (kT ) and laminar (kL) kinetic energy, as well as the turbulent
specific dissipation rate, ω. Due to the three transport equations, the model is rather
complex and therefore difficult to tune and combine with other turbulence models other
than the k −ω turbulence model used in the original paper.

AFT MODEL

Lastly, a transition model based on linear stability theory has been proposed by Coder
and Maughmer (2014) that is also viable for general-purpose CFD codes and considers
both natural and separation-induced transition. The method is inspired by the well-
known eN -method and transports an amplification factor N to trigger turbulence. Fur-
thermore, in their paper the transition model is combined with the Spalart-Allmaras tur-
bulence model, in total requiring only two transport equations to be solved. For an ex-
tensive comparison between the discussed transition models, the reader is referred to
Lopes et al. (2020) and Menter et al. (2022).
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METHODOLOGY

The three-dimensional weakly compressible Navier-Stokes equations are solved in the
present work and discussed in section 3.1. Since the present solver is propietary, few
details can be given. A short discussion is provided on the immersed boundary method
and wall-modeling framework used in section 3.2, which is also discussed in Pasquariello
et al. (2023).

3.1. NAVIER-STOKES EQUATIONS

The governing equations can be written as eq. (3.1). With U = [
ρ,ρu1,ρu2,ρu2

]
, the in-

viscid and viscous contributions follow eq. (3.2). ui and τi j are the velocity vector and
viscous stress components. This viscous stress component can be expressed by eq. (3.3),
i.e. Stokes theorem for a Newtonian fluid. In LES, the dynamic viscosity is a linear com-
bination of the fluid and the eddy viscosity, i.e. µ= µai r +µSGS and in the present code,
Sutherland’s law (eq. (3.4)) is used to approximate the fluid viscosity given the (approxi-
mated) adiabatic wall temperature, reference velocity, ur e f and temperature Tr e f .

A linearization of the ideal gas law results in the linear barotropic equation of state
eq. (3.5), where A and B are constants derived from the specific gas constant for air. With
the NASA Glenn polynomials (McBride et al., 2002), Cp is obtained which consequently
determines the γr e f , closing the system of equations.

∂t U+∇·F(U)−∇·D(U) = 0 (3.1)

fi (U) = [
uiρ,uiρu1 +δi 1p,uiρu2 +δi 2p,uiρu3 +δi 3p

]T

di (U) = [0,τi 1,τi 2,τi 3]T
(3.2)

τi j =µ
(
∂ j ui +∂i u j −2/3δi j∂k uk

)
(3.3)
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µai r (Tw ) =µr e f

(
Tw

Tr e f

)3/2 Tr e f +Sr e f

Tw +Sr e f
(3.4)

Tr e f = 273.15 K,

µr e f = 17.16×10−6 Pa s,

Sr e f = 110.4 K,

Tw = Tr e f +
u2

r e f

2Cp (Tr e f )

p(ρ) = Aρ+B (3.5)

A = γr e f RTr e f

B = (1−γr e f )pr e f

3.2. IMMERSED-BOUNDARY METHOD
The present solver uses a ghost-cell immersed boundary method illustrated in fig. 3.1,
in which four types of cells are present. Namely, fluid, solid, ghost and wall-model cells.
To help identify these cells a signed distance field is created around the geometry. Fluid
cells define the inner computational domain where fluid variables are defined and have
positive signed distance. Solids are cells fully contained in the geometry. Ghost cells are
cells (partially) contained within the geometry and in which the boundary conditions on
the surface are imposed and hence have negative signed distance. Numerically, cells are
marked as ghost cells if they have at least one fluid-cell neighbor. Lastly, the wall model
is evaluated in the wall-model cells which are the nearest cells above the geometry (pos-
itive signed distance). Similarly, a cell is marked as a wall-model cell if it has at least one
ghost-cell neighbor. Two image points at 2∆ (IP1) and 1∆ (IP0) normal to the immersed
boundary are used to probe fluid information for the wall model.
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Figure 3.1: Schematics of the ghost-cell immersed boundary method and wall-modeling framework
(Pasquariello et al., 2023).

3.3. WALL-MODELING FRAMEWORK
In the present solver, an equilibrium wall-stress model has been developed, where fluid
information is exchanged at 2∆ normal to the immersed boundary to compute the wall-
shear stress, τw . Moving-least-squares (MLS) regression is performed with linear basis
functions with neighboring fluid cells to determine the fluid information at the exchange
location. The wall-model cells act as a source term by imposing the modeled shear stress
onto the fluid domain. It is assumed that the wall function models the total viscous
stress, hence the resolved viscous flux is blocked at wall-model cell faces adjacent to
ghost cells.

A partial slip velocity boundary condition is imposed on the ghost cells as suggested
by Tamaki and Kawai (2021) to alleviate numerical errors introduced by the underre-
solved near-wall region. The wall-tangential velocity is prescribed using the wall-normal
velocity gradient evaluated at 1∆ away from the wall, see fig. 3.1. The wall-normal veloc-
ity is obtained by imposing a zero-penetration boundary condition.





4
LAMINAR WALL-MODELING

This chapter discusses the implementation of the laminar wall model i.e., the local Falkner-
Skan wall model (FSWM). First, a recap of the theory underlying the FSWM is given in
section 4.1. After which the implementation of the FSWM in the present solver is elab-
orated in section 4.2, which includes details regarding the computation of the distance
field, surrogate modeling, velocity probing, and wedge angle computation.

4.1. THEORY
By assuming self-similarity the velocity profile is assumed to retain its shape in the stream-
wise direction. This self-similarity is achieved by transformation of coordinates, which
in this case is done by prescribing an external velocity profile Ue , and similarity variable
η, which describes the height of the velocity profile.

Ue (x) = K xm (4.1) η= y

x

√
m +1

2

Ue x

ν
(4.2)

For the Falkner-Skan formulation, the coordinate transformation is achieved using
eq. (4.1) and eq. (4.2), where m is a chosen parameter. Remark that eq. (4.1) implies that a
power-law external velocity profile is prescribed and consequently dictates the induced

pressure gradient of the boundary layer. In particular, d p
d x < 0 for m > 0 and d p

d x > 0 for
m < 0. Substituting the similarity variables into the incompressible laminar boundary
layer equations results in the Falkner-Skan similarity solution, eq. (4.3), where β is the
Falkner-Skan parameter. f ′(η) is the wall-tangential velocity of the boundary layer and
f ′′(η) the wall-tangential acceleration.

f
′′′ + f f

′′ +β(1− f
′2) = 0, β= 2m

1+m
(4.3)

In their implementation, Gonzalez et al. (2020) and Dauricio and Azevedo (2022) as-
sumed local self-similarity to compute the Falkner-Skan solution at each computational
node. Gonzalez et al. (2020) achieved this by computing the parameters K and m by
solving the least-square approximation of eq. (4.1). Knowing Ue and m, the wall shear
stress is subsequently computed.
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Dauricio and Azevedo (2022) differed slightly in that instead of using information of
neighboring cells, only local cell information is used. This is achieved by geometrically
computing the parameter m using the streamwise and cell tangential unit vectors. Fur-
thermore, they applied a viscous correction factor tuned to Rec . For both approaches,
the wall shear stress is computed by eq. (4.4), where x denotes the surface distance
from the stagnation point. In the present implementation, the approach of Dauricio
and Azevedo (2022) is followed as only local information is required.

τw =µ
√

1

2−β
U 3

e

νx
f
′′ ∣∣∣
η=0

(4.4)

4.2. IMPLEMENTATION
The discussion how the Falkner-Skan wall model is implemented is presented subse-
quently. The implementation consists of two parts, namely the core formulation and the
additional logic required to apply the wall model in more general applications.

4.2.1. FORMULATION
The Falkner-Skan wall model proposed by Dauricio and Azevedo (2022) requires the
computation of the wedge angle for each computational node of the geometry. In the
present solver, the normal vector of each triangle face is available. If the boundary layer
edge velocity is known, then the wedge angle and the similarity variable η can be ob-
tained. Consequently, these quantities are used to solve eq. (4.4). The wall-normal
derivative du

d y is obtained from eq. (4.4) by omitting the dynamic viscosity. Note that the

double derivative, f
′′ ∣∣
η=ηI P

is evaluated at the height of the probing point in that case. To

determine f
′′

a surrogate model is implemented. This surrogate model is further elabo-
rated in section 4.2.2.

Ideally, the probing point of the laminar wall model is outside the boundary layer
to obtain an approximation of the local edge velocity. This is in contrast to equilibrium
wall models, where the probing point is ideally located within the logarithmic region of
the boundary layer. This may pose a problem if WMLES is performed where the mesh
resolution is sufficient to somewhat resolve the laminar boundary layer which caues the
edge velocity to be underestimated. A similar problem occurs if the mesh is too coarse:
the probed velocity is too far away from the boundary layer. To alleviate this issue, an
inviscid approximation of the edge velocity Ue can be obtained by Bernoulli’s principle,
shown in eq. (4.5). However, since this is a potential flow approximation, significant
discrepancies may occur in the predicted velocity distribution compared to the viscous
flow solution.

Ue

U∞
=

√
p −pr e f

2
(4.5)

The approach presented above can be used as is without additional work for simple
geometries such as flat plates, wedges, and symmetric airfoils. However, when dealing
with more complex geometries the reference (starting point) of x must be known. The
starting point of x in this case is the stagnation point (or line) of the geometry and must
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be known a priori or detected. The distance of all cells with respect to this reference
point or line must be computed, which is further discussed in section 4.2.4.

Figure 4.1 shows the flow diagram of the FSWM. First, the wedge angle is computed
by computing the angle between the wall-tangent (ut ) and freestream (u∞) velocity vec-
tor. Two exception handling routines are then passed which checks if the distance is
at least some epsilon away from the stagnation point and whether the wedge angle is
within the applicable range (−0.1980 < β< 2.0). If both are satisfied, the similarity vari-
able η is computed using additional geometric and flow field information. Namely, the
distance from the stagnation point x, the wall-normal distance y , the dynamic viscosity
µ, local fluid density ρ, and the boundary layer edge velocity Ue . After determining η,
the corresponding non-dimensional velocity derivative f

′′
at η= 0 and η= ηI P are com-

puted, which are consequently transformed to determine the wall-shear stress and the
wall-normal derivative at the image point.
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Figure 4.1: Flow diagram of the Falkner-Skan wall model. Here, x is the distance from the stagnation point
and y the wall-normal distance. The input variables are retrieved from the geometry and flow field.

4.2.2. SURROGATE MODELING
For each computational cell, the wall-shear stress as well as the wall-normal velocity
derivative are approximated using Falkner-Skan equations. Therefore, to obtain these
two quantities an ODE must be solved for each computational cell. Solving the FS equa-
tions is typically done using a shooting method. However, evaluating the ODE for each
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computational cell adds substantial computational cost. To reduce this cost, a look-up
table is used instead to obtain an estimate for f

′′ |η=0.

To obtain f
′′ |η=ηI P , the wall-normal derivative at the location of the probing point,

a surrogate model for the FS response surface with 25 points (five points in each di-
rection) in (β,η) space is evaluated using bilinear interpolation. These data points are
summarized in table A.1 and are near-uniformly placed between η ∈ [0.0,4.0] and β ∈
[−0.1980,2] to include all wedge angles. The maximum of η= 4.0 is chosen as the veloc-
ity profiles for β ≥ 0 reach the edge velocity well before η = 4.0. f

′′
is set to zero in the

case that β> 4.0.
The response of this surrogate model is compared to the actual response from the

ODE in fig. 4.2. It can be remarked that in general f
′′

is overestimated in regions con-
taining a large gradient (η> 2.0). Only for adverse pressure gradients (β< 0) an underes-
timation of f

′′
is observed around 1.5 < η< 2.5, which is also shown in fig. 4.2b.

0.0
0.5

1.0
1.5

2.0

0.00.51.01.52.02.53.03.54.0

f′′

0.00
0.25
0.50
0.75
1.00
1.25
1.50

Data
Surrogate
ODE

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

f''

= 0.1 - ODE

= 1.0 - ODE

= 0.1 - Surrogate

= 1.0 - Surrogate

(b)

Figure 4.2: (a) Comparison of the surrogate model with the (a) surface response of the Falkner-Skan ODE, and
(b) two selected β angles. The black dots denote the data points used in the surrogate model.

4.2.3. LAMINAR SEPARATION

Unique solutions of the Falkner-Skan equation exist only for β ≥ 0 and at least two so-
lutions exist for −0.1988 ≤ β ≤ 0 (White, 2006). For β ≤ −0.1988 infinitely many solu-
tions exist which model separated velocity profiles. In the present implementation, the
Falkner-Skan method is used for β ∈ [−0.1988,2.0]. For β<−0.1980 the flow is assumed
to be separated and a no-slip boundary condition is applied. For −0.1988 < β < 0, the
solution is used without backflow at the wall.

4.2.4. LEVEL SET REINITIALIZATION

Modeling laminar boundary layers requires knowing the distance from the stagnation
point. To obtain such a distance field, a level set reinitialization (LSR) algorithm is used
to find the signed distance field with respect to the stagnation point.

LSR makes use of the fact that the spatial gradient of the signed distance field is one.
Therefore, any arbitrary vector field can be forced towards a signed distance field. The
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only constraint is that this candidate vector field must have the same zero-crossing as
the desired signed distance field.

In other words, let Φ be the candidate scalar field then s the desired signed distance
field, where the latter is obtained by solving eq. (4.6), where S(.) is the sign function and
∂Φ
∂t is the time derivative of Φ. Note that this time variable is a pseudo time to drive Φ

to s. Furthermore, numerical smearing via eq. (4.7) is introduced to prevent oscillatory
convergence (Fedkiw et al., 1999).

∂Φ

∂t
= S(Φ)(|∇Φ|−1) = 0 (4.6)

S(Φ) = Φ

|Φ|+∆l
(4.7)

SIMPLIFIED FEDKIW

A well-known algorithm to solve eq. (4.6) is described by Sussman et al. (1994). How-
ever, several conditionals (if-else statements) are needed to implement this algorithm.
This can lead to thread divergence in parallel programming in which not all parallel-
executed threads finish at the same time, consequently leading to efficiency loss. Sev-
eral simplifications are therefore made in the present implementation. Firstly, only the
(unsigned) distance field is needed. Therefore, the sign function is neglected. Secondly,
the distance field is initialized as a uniform field except at the stagnation line, which acts
as a boundary condition for the convection equation defined by eq. (4.6). Thirdly, the
upwind direction is determined by comparing direct neighboring values.

The SDF along a surface geometry is solved as part of the laminar wall model. In the
present implementation, the SDF is computed on an unstructured triangular grid, where
a dual grid approach is used. In particular, the distance field is described on the vertices,
while the gradient is computed on the face neighbors using a per-cell linear estimation
(Mancinelli et al., 2018). Afterwards, the upwind direction at each vertex is determined
based on the face neighbor gradient information.

GRADIENT COMPUTATION

A per cell-linear estimation method is used to compute the gradient at the triangle faces
described in Mancinelli et al. (2018) and is summarized here. It is assumed in this method
that the distance field is defined at the vertices. Furthermore, if the distance field is as-
sumed to be linear within a triangle, then the gradient is constant within a triangle. As
such, the gradient ft can be geometrically computed using eq. (4.8), where vi , v j , and

vk denote the three vertices of the triangle, (vi−vk )⊥
2At

, is the dot product between edge ei k

and the normal vector of the triangle (rotation with respect to the normal vector), and
At is the area of the triangle.

∇ ft =
(

f j − fi
) (vi − vk )⊥

2At
+ (

fk − fi
) (

v j − vi
)⊥

2At
(4.8)

As the distance field is defined on the vertices, the gradient information on the faces
are used to determine the upwind direction. Inverse-distance weighted averaging is used
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to determine the upwind gradient. A face gradient is considered upwind if two of its three
vertices possess an upwind distance value. In case zero upwind neighbors are found, the
upwind gradient is assumed to be zero. As a result, the reinitialization step performs
a full "correction". A schematic of the upwind selection is shown in fig. 4.3a. In this
example, a linear distance field is present from bottom to the top. To determine the
upwind gradient of the center node, the neighboring faces are checked if all unshared
vertices hold a value lower than the evaluated node. In this case, only one upwind face
is considered (marked in green) and the corresponding gradient is used to correct the
evaluated node during reinitialization. If multiple neighboring faces are marked upwind
then the average of their gradient is taken.

22 2

33

1 1

distance field
gradient field

(a)

internal point
zero level set / stagnation point
boundary point

(b)

Figure 4.3: Sketch of the upwind selection (a) and boundary condition applied (b) to ensure a uniform dis-
tance field.

BOUNDARY CONDITION

Since the boundary vertices do not have the same number of neighbors as internal ver-
tices, the upwind gradient routine may lead to a far different upwind gradient which
results in a non-uniform distance field along a symmetric body (e.g. airfoil, flat plate).
Hence, a boundary vertex copies the gradient of the nearest internal vertex given that
this vertex is not a stagnation point nor a boundary vertex. This situation is shown in
fig. 4.3b, where the green edges indicate the shared gradient information between the
two vertices.

STOPPING CRITERIA

The algorithm is stopped after the root-mean square error of ∇Φ reaches below 1×10−6.
However, note that eq. (4.6) is an advection-like equation. From the zero level set mul-
tiple fronts are propagated during the reinitialization. At a certain point these fronts
collide, creating an interface and resulting in the breakdown of the algorithm. Continu-
ing the algorithm affects also the (converged) distance field in the vicinity of the colliding
fronts. Hence, an additional stopping criteria is applied, where non-monotonic conver-
gence is tracked. Namely, it is counted when the error of the current iteration is larger
than the previous error. If this occurs more than ten times, the algorithm stops.
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4.2.5. VERIFICATION
Verification is performed on the level set reinitialization method on several simple ge-
ometries. These include a flat plate, cylinder, sphere, and a NACA 0012 airfoil.

FLAT PLATE

The zero level set is imposed for vertices x < 0.01 of the STL. As a result, the distance field
is rectangular with a maximum on the right edge of the STL. The numerical values along
the x-coordinate are shown in fig. 4.4a with a RMS error below 1× 10−6. For the RMS
computation, the numerical curve is corrected for the offset in the distance field due to
the finite width of the zero level set (the level set is applied to a row of triangle faces).
This is also performed for subsequent test cases.
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Figure 4.4: Distance field along a flat plate with zero level set imposed for vertices satisfying x < 0.01.

CYLINDER

The zero level set is imposed at (x, y) = (1,0) after which the reinitialization algorithm
propagates the distance field in both directions. The distance field is shown in fig. 4.5a.
Note that the advecting waves in both directions collide at the other end of the cylin-
der, developing an interface. Regardless of the stopping criteria, the distance field value
diverges towards a value larger than the analytical maximum at this interface. This is
deemed acceptable as the distance field is only used near the zero level set (stagnation
point). A RMS error of 1.5×10−5 is reached excluding the diverged data points.

SPHERE

A zero level set is imposed at one of the poles of a sphere. In this case, the advection wave
propagates in all directions and an interface is developed at the opposing pole. From
fig. 4.6a, it is remarked that the discrepancy at the interface is limited. The dashed line
indicates the true maximum value of the distance field (π/2). A RMS error of 1×10−4 is
found which is partially attributed to the inaccurate location of the zero level set, which
is not exactly located at the pole. This also explains the offset seen between the true
distance (from pole to pole) and the numerical approximation. Lastly, the non-uniform
mesh also contributes to the larger error.
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Figure 4.5: Distance field along a cylinder with the zero level set line imposed at xmax .
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Figure 4.6: Distance field along a sphere with the zero level set imposed at ymax .

AIRFOIL

Lastly, a stagnation line is imposed on a NACA 0012 airfoil at 0.0 x/c, and the results
are compared with the distance field from XFoil. Figure 4.7b shows the distance field
near the zero level set which closely follows the distance field according to XFoil. A good
match is also found between the XFoil and present result beyond the leading edge with
a RMS error of 2×10−5.

In the present implementation it is observed that the stopping criteria for non-mono-
tonic convergence occurs more often than reaching the 1× 10−6 threshold. While the
accuracy reached with the present implementation is sufficient for the current use case,
the author suggests a special treatment for the interface(s) due to these colliding fronts
to improve the accuracy of the computed distance field.
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Figure 4.7: Distance field along a NACA 0012 airfoil where the zero level set (stagnation line) is imposed at
x/c = 0.





5
TRANSITION MODELING

To apply the computed shear stress in the appropriate regions, a transition model is im-
plemented to distinguish laminar and turbulent regions. In view of the computational
cost of more complicated transition models, the simple turbulent-laminar sensor from
Bodart and Larsson (2012) is used to distinguish laminar and turbulent boundary layers.
This chapter summarizes the formulation of the sensor in section 5.1, after which the
implementation and verification are elaborated in section 5.2 and section 5.3, respec-
tively.

5.1. THEORY

Bodart and Larsson (2012) observed that the turbulent kinetic energy (u
′
i u

′
i /2) normal-

ized by the friction velocity (uτ) approaches a certain value range (1.5-2.0) for increasing
Reτ in turbulent channel flow (TCF). This sensor is defined by eq. (5.1), where 〈.〉 denote
time-filtered quantities.

st l (xw , t ) =
〈√

u
′
i u

′
i /2

〉
〈uτ〉

(5.1)

τ(t ) = (Si j Si j )−1/2 (5.2)

• st l = 0 if laminar

• st l > st l ,threshold if turbulent

• 0 < st l < st l ,threshold if under transition

By comparing the computed st l with a threshold value, a distinction can be made
between laminar and turbulent regions. Bodart and Larsson (2012) used a value of 1.4
in their work which may differ for other CFD codes. In their work, an exponential mov-
ing average is used with the time integration constant τ based on the strain rate tensor

41
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(eq. (5.2)) such that the weighting is determined by: W (t ) = exp(−∆t/τ). Remark that the
value used is lower than the range (1.5-2.0) given earlier. Since the sensor is applied to
WMLES, not all of the turbulent scales are resolved and consequently the st l becomes
underestimated. Since eq. (5.1) only considers the resolved turbulent quantities, the
threshold value should be adjusted to a lower value.

5.2. IMPLEMENTATION
In the present solver, the sensor is evaluated on the surface mesh using quantities of
the flow field interpolated on to the unstructed triangular grid of the geometry. These
quantities are time-filtered and used for the computation of the TKE, friction velocity,
and the sensor value. Important to note is that the friction velocity is always computed
using the shear stress computed by the turbulent wall model, in this case an equilibrium
wall-stress model.

Bodart and Larsson (2012) used a time integration constant based on the strain rate
tensor in their implementation. However, this requires connectivity in three directions
from the neighboring cells which significantly increases the amount of computations
performed. For practicability, the integration constant is a single value and is user-
defined. Subsequently, a suitable constant τ is selected in section 6.4.2. A pseudocode
of the present algorithm is shown in algorithm 1.

Algorithm 1 Sensor computation

1: new_weight ← exp(∆t/τ)
2: old_weight ← 1−exp(∆t/τ)
3: for all i ∈ {0, . . . ,nfaces} do
4: u_I P , v_I P , w_I P , rho_I P ← PROBEFLOWFIELD(locI P , . . . )
5: ▷ Grab filtered quantities from array
6: u_ f , v_ f , w_ f ← filteredArr[idx_u f , . . . ]
7: k_ f ←filteredArr[idx_k f ] ▷ filtered square root of TKE
8: utau_ f ←filteredArr[idx_utau] ▷ filtered friction velocity
9: tau_w, rho_I P ← CALLWALLMODELFUNC(locI P , . . . )

10: ▷ Compute fluctuating components
11: u_p ← u_I P −u_ f
12: v_p ← v_I P − v_ f
13: w_p ← w_I P −w_ f
14: k_sqrt ←

√
0.5∗ (u_p2 + v_p2 +w_p2) ▷ square root of TKE

15: utau ←p
tau_w/rho_I P

16: ▷ Compute new sensor value and store in array
17: sensorArr[i]← k_ f /utau_ f
18: ▷ Update time-filtered quantities
19: FilteredArr[idx_u f ]← new_weight ×u_I P+ old_weight ×u_ f
20: . . .
21: FilteredArr[idx_k f ]← new_weight ×k_sqrt+ old_weight ×k_ f
22: FilteredArr[idx_utau]← new_weight ×utau+ old_weight ×utau_ f
23: end for
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5.3. VERIFICATION OF SENSOR IMPLEMENTATION
A verification of the sensor implementation is performed by running a laminar flat plate
and turbulent channel flow case. The former should result in a very low to zero value of
the sensor value, while the TCF case should produce a sensor value close to the range of
1.5-2.0. In this verification, the sensor is updated every 100 iteration with a preliminary
time integration constant of 1×10−2.

5.3.1. LAMINAR FLAT PLATE
A zero sensor value indicates zero turbulence. In practice, even in laminar flow the value
can be slightly non-zero due to numerical noise. To verify the working of the sensor,
laminar flow over the flat plate is simulated with a domain length and height of L = H =
10, Re = 10,000, and M = 0.1. Riemann boundary conditions are used for the inlet, and
top patches. A symmetry condition is imposed in the spanwise directions and a static
pressure outlet is applied. The result is shown in fig. 5.1. As expected, the sensor value
remains close to zero although the value increases along the streamwise direction. This
is expected as the friction velocity reduces (τw decreases along the length of the plate),
while local disturbances grow (increase in TKE).
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Figure 5.1: Spanwise-averaged sensor value in the streamwise direction of a laminar flat plate

5.3.2. TURBULENT CHANNEL FLOW
Bodart and Larsson (2012) show that the threshold value should be found between 1.5
to 2.0 based on DNS data of TCF simulations at various Reτ. In their paper, a slightly
lower value of 1.4 is used which is acceptable as only the resolved part of the turbulent
quantities in eq. (5.1) is used to detect transition. In WMLES only a part of the turbulence
is resolved, therefore it is natural to expect a lower sensor value in WMLES compared to
DNS near the transition location.

To verify that the present sensor implementation is close to the expected range of 1.5-
2.0, a TCF simulation at Reτ = 5200 is performed for two meshes shown in fig. 5.2 with
y+

mi n ≈ 40, and y+
mi n = 20 for the coarse and fine mesh, respectively. The figure clearly
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shows a mesh dependence of the sensor value, in agreement with the reasoning that
lower sensor values are expected if less turbulence is resolved. Hence, a value of 1.0 is
chosen for the threshold value instead. Note that for the present study only a reasonable
value is chosen and is not by any means optimized to be generally applicable for a wide
range of flow cases.
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Figure 5.2: Spanwise-averaged sensor value in the streamwise direction of turbulent channel flow at Reτ =
5200.



6
VALIDATION OF THE

SENSOR-BASED WALL-MODELING

APPROACH

The implemented turbulence sensor and FSWM are combined with the existing EQWM
and integrated in a new wall model in the present solver. Subsequently, this new laminar-
turbulent wall model is validated subsequently. First, academic test cases are presented
which aim to validate the FSWM. Specifically, the laminar flate plate (section 6.1), and
the wedge flow (section 6.2). Afterwards, laminar flow over a NACA 0012 airfoil is simu-
lated and compared to reference simulations in section 6.3. Finally, section 6.4 tests the
fully integrated laminar-turbulent wall model with the inclusion of sensor feedback and
laminar and turbulent wall model switching by simulating a high Reynolds number flow
over an airfoil under near-stall conditions.

6.1. LAMINAR FLAT PLATE
The laminar flow over a flat plate is simulated and follows the well-known Blasius so-
lution. The described analytical solution is self-similar and applies to laminar flows
when Re > 1000 (White, 2006). First the setup of the case is discussed in section 6.1.1,
after which a mesh convergence study is performed with three levels of mesh refine-
ments in section 6.1.2. Finally, the FSWM is compared to the linear wall model in sec-
tion 6.1.3. This linear wall model mimics a no-slip boundary condition in the present
wall-modeling framework.

6.1.1. SETUP
For the simulation of a laminar flat plate, an eight unit long flat plate is present, with
symmetry boundary conditions in the spanwise direction. A Riemann condition on the
upper, and inlet boundaries is used, where a unit freestream velocity is imposed. A static
pressure boundary condition is applied at the outlet. A unit Reynolds number of 1×

45
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104 is set. The gas properties are set to achieve a non-dimensional simulation. Finally,
the simulation is run until t = 80. The case parameters and boundary conditions are
summarized in table 6.1 and table 6.2, respectively. The flat plate is placed slightly above
the bottom boundary patch and spans the whole domain. A slip wall is initially applied
near the inlet up to two units from the inlet (x = 2).

Mach Re Lx Ly Lz SGS Wall model Fluid model
0.10 1×104 10.0 10.0 0.5 Falkner-Skan / Linear - non-dimensional gas

Table 6.1: Main simulation parameters for the laminar flat plate simulation.

X0 X1 Y0 Y1 Z0 Z1
Riemann Static pressure - Riemann Symmetry Symmetry

Table 6.2: Boundary conditions for the laminar flat plate simulation.

Min cell size [×10−3] Number of blocks Number of cells [×106]
Coarse 15.6 17522 71
Medium 7.8 1100 6.4
Fine 3.9 3340 19.5

Table 6.3: Mesh settings for the laminar flat plate simulation. Each block contains 163 cells.

6.1.2. MESH CONVERGENCE
Figure 6.1 verifies the convergence of the integral drag (Fx ) and lift (Fy ) forces for the
conducted simulations with the FSWM. Statistics are recorded after t = 75 as highlighted
by the gray area. Note that small oscillations persist after convergence is reached. How-
ever, these oscillations are minute, having magnitudes in the order of 10−5. Remark that
a flat plate simulation is performed with the freestream flow tangent to the plate. While
on first sight it may imply that Fy should oscillate around zero as no lift is generated, this
is not the case as will be shown subsequently.

Figure 6.2 showcases the density and streamwise velocity field of the fine mesh. At
x = 2 the symmetry boundary condition ends, and the flow impinges on the leading edge
of the plate, resulting in a slight pressure gradient around this leading edge. As the flow
continues downstream, a boundary layer is developed.

When comparing with the Blasius solution, the numerical solution at a given stream-
wise location xphy s. is compared with the solution at xBl as. so that the δ99% is the same.
This ensures a fair comparison of the predicted boundary layer properties as the bound-
ary layer thickness is matching. Results are probed far away from both the inlet and
outlet at 3 < xphy s. < 5 to minimize boundary condition influences.

Figure 6.3 shows the boundary layer parameter distributions. Note that the x in these
figures are not with respect to the leading edge, but matched to the boundary layer thick-
ness (δ99%) found using Blasius as mentioned earlier. Observing fig. 6.3a, a considerable
underestimation of the displacement thickness δ∗ is remarked and the boundary layer
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Figure 6.1: Drag and lift force convergence monitored for the three simulations performed with the FSWM:
(a) coarse, (b) medium, and (c) fine.
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Figure 6.2: Density (a) and u-velocity (b) field for the finest mesh.

growth is also less compared to the reference curve. Three levels of mesh refinement
improves the discrepancy but a large offset remains.

In contrast, an overestimation of the momentum thickness θ is observed. The curva-
ture shown by the medium and fine mesh are similar but offset to the Blasius curve, in-
dicating a structural bias in the present simulation. The C f distribution however, shows
an underestimation compared to Blasius. Similarly to θ, the gradient of the numerical
solutions is similar to the Blasius solution. With the FSWM, this indicates that there is a
"lag" between xphy s. and xBl as..

Indeed, while an underestimation of C f combined with an overestimation of θ looks
contradictory, the quantities are plotted against a virtual (Blasius) x-coordinate. Fig-
ure 6.3a shows that the streamlines outside the boundary layer are less displaced; the
boundary layer is felt less by the external flow and so for the same δ∗ one has to move
further downstream i.e., xBl as. < xphy s.. Figure 6.4 shows the same quantities plotted
against the streamwise coordinate with respect to the leading edge.

The present results also show "wiggles" which is due to the linear interpolation used
to compute the the boundary layer thickness (δ99% = 0.99Ue ). The interpolation be-
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comes less noticeable as the mesh is refined.
The streamwise and wall-normal velocity profiles are shown in fig. 6.5b, where η is

the non-dimensional similarity variable, describing the height of the self-similar bound-
ary layer. The present results in fig. 6.5a show excess velocity throughout the boundary
layer, and consequently a slip velocity near the wall. Mesh refinement reduces the dis-
crepancy, but still remains for the finest mesh. The excess velocity is in agreement with
the earlier results shown in fig. 6.3c: At a given boundary layer thickness, too few wall-
shear stress is applied according to Blasius.

v =
√
νU

2x

(
η f ′− f

)
(6.1)

The wall-normal velocity is very sensitive as the magnitudes are very small, see also
fig. 6.5b. Since v is defined by eq. (6.1), this means that each curve follows a different
reference solution. An upwelling of the flow takes place due to the displacement effect
of the boundary layer, hence a small non-zero wall-normal velocity exists in the exter-
nal flow. Figure 6.5b shows convergence in the lower part of the curve, close to the wall.
However, the FSWM fails to approach the correct far-field velocity. Note that the up-
welling effect results in the earlier observed non-zero Fy shown in fig. 6.1. Zig-zag pat-
terns may be seen in the present results and is due to probing near a mesh coarsening
step during post-processing.
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Figure 6.3: Displacement (a), momentum (b) thickness, and (c) skin friction distribution for three mesh reso-
lutions plotted against the Blasius streamwise coordinate.
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Figure 6.4: Displacement (a), momentum (b) thickness, and (c) skin friction distribution for three mesh reso-
lutions plotted against the physical streamwise coordinate.
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Figure 6.5: Streamwise (a) and wall-normal (b) velocity profile for three mesh resolutions.

6.1.3. COMPARISON WITH LINEAR WALL MODEL

The FSWM is compared to a linear wall model on the fine mesh. The linear wall model
assumes a zero slip velocity at the wall, and a linear relation for the shear and wall-
normal derivative. For the present case study, where the laminar boundary layer over
the flat plate is resolved this formulation is consistent as the velocity profile is indeed
linear close to the wall. The boundary layer parameters and velocity profiles are shown
in fig. 6.6 and fig. 6.7b, respectively. In general, the no-slip wall outperforms the FSWM
and is able to approximate the boundary layer thickness very well. The linear wall model
slightly overestimates C f compared to Blasius, but also follows the linear trend in log
scale. This is consistent with the results in fig. 6.6a. Namely, the boundary layer imposes
a smaller displacement to the flow than Blasius, hence a larger velocity gradient exists
near the wall, in turn resulting a higher wall shear stress and skin friction. Remark that
the linear wall model has an advantage over the FSWM as the former is independent of
x which allows it to adjust the wall-shear stress locally.
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Figure 6.6: Displacement (a), momentum (b) thickness, and skin friction (c) distribution for two wall models.
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Figure 6.7: Streamwise (a) and wall-normal (b) velocity profile for three boundary condiions. The dashed
lines indicate the respective reference solution from Blasius.

6.1.4. LAG BETWEEN PHYSICAL AND BLASIUS COORDINATE
The essential issue of simulating laminar flow over a flat plate with the FSWM is the lag
between xBl as. and xphy s.. The discrepancy along the flat plate is shown in fig. 6.8. Note
that the lag is increasing throughout the domain with the FSWM. Although the magni-
tude is much smaller, this lag is also observed with a linear wall model. Hence, a fixed
offset to the physical x-coordinate does not cause the FSWM to produce more accurate
results.
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Figure 6.8: Lag between the physical streamwise coordinate (with respect to the leading edge) and the
streamwise Blasius coordinate for the FSWM and linear wall model.

FSWM provides the shear stress based on the Blasius analytical solution to laminar
flow on a flat plate. Consequently, the shear stress is applied at the provided x-coordinate
regardless of the state of the flow. The latter can also be seen as a disadvantage to the
present wall model.
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Namely, xbl as corresponds to a given boundary layer thickness and associated shear
stress. If the shear stress applied at the given xphy s. does not match the boundary layer
thickness at the same x-value in Blasius, then a different velocity profile is obtained. If
xphy s. < xbl as., then too much shear is applied to the given boundary layer at that slice.
Potentially, this induces flow-reversal. When xphy s. > xbl as., too few wall-shear stress is
applied, resulting in a slip-velocity near the wall. This lack of shear also causes an excess
momentum downstream, translating to a smaller boundary layer growth than predicted
by the analytical Blasius equation.

The issues described above introduce a significant error to the obtainable boundary
layer characteristics using FSWM compared to a linear wall model. As one approaches
the wall asymptotically, all laminar boundary layers display a linear velocity profile. So
for a resolved simulation a linear wall model is a natural and consistent choice. Addi-
tionally, a linear wall model does not rely on a streamwise distance x. Hence, a resolved
simulation converges towards the Blasius solution beyond the influence of the leading
edge.

It must be emphasized that the results above do not by any means imply that a linear
wall model is a good option to model laminar boundary layers in WMLES application.
The results obtained are accurate predominantly due to the boundary layer being re-
solved. In practice, especially in high Reynolds number flows this is not the case, as the
very thin boundary laminar boundary layers are not resolved.

The laminar flat plate case is deemed to be difficult to simulate perfectly, especially
given that the lag between the physical and Blasius x-coordinate remains non-constant
throughout the domain.
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6.2. WEDGE FLOW
To test the performance of the wall model also in non-face-aligned geometries, the in-
clined laminar flat plate case is performed. The flow can be seen as a wedge flow and
follows the Falkner-Skan self-similar solution.

6.2.1. SETUP
The case setup is similar to the laminar flat plate case, where the only difference is the
inclination of the plate which is set to 9◦ or 0.1π/2. Again, the domain is 10× 10× 0.5
with M = 0.1 and Re = 1× 104. A unit freestream flows over a symmetry plane up to
one-third of the domain, where the flow impinges and is accelerated over the wedge
and a boundary layer is developed. A static pressure outlet is applied to drive the flow.
Symmetry boundary conditions are applied in the spanwise direction. The setup and
boundary conditions are summarized in table 6.4 and table 6.5, respectively. A sketch of
the domain is also shown in fig. 6.9a.

The freestream velocity distribution over a wedge is known and is given by eq. (6.2)
(White, 2006), where again β is the Falkner-Skan parameter, and K is an unknown. A
power-law freestream flow field cannot be directly imposed above the boundary layer.
Moreover, the implemented Bernoulli approach to obtain the incompressible estimate
of Ue has shown to cause large oscillations over the wedge. It is found that passing the
power-law relation directly to the FSWM eliminates these oscillations. Hence, in the
subsequent wedge-flow simulations, the power-law relation is used with K = 1. In the
subsequent case study, again a mesh sensitivity study is performed with three mesh re-
finement levels described in table 6.6. A comparison of the FSWM with the linear wall
model is also conducted. The density and u-velocity field of the medium mesh are shown
in fig. 6.9. Note the wedge angle in fig. 6.9c is exaggerated to show the developed bound-
ary layer.

Ue (x) = K x
β

2−β (6.2)

Mach Re Lx Ly Lz SGS Wall model Fluid model
0.10 1×104 10.0 10.0 0.5 Falkner-Skan / Linear - non-dimensional gas

Table 6.4: Main simulation parameters for the wedge flow case.

X0 X1 Y0 Y1 Z0 Z1
Riemann Static pressure - Riemann Symmetry Symmetry

Table 6.5: Boundary conditions for the wedge flow case.
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Min cell size [×10−3] Number of blocks Number of cells [×106]
Coarse 7.81 1415 8.3
Medium 3.91 6903 40.3
Fine 1.95 33888 197.6

Table 6.6: Mesh settings for the wedge flow case. Each block contains 163 cells

(a) (b) (c)

Figure 6.9: Domain (a), density (b) and u-velocity (c) field for the medium mesh.

6.2.2. MESH CONVERGENCE
Similarly to the case-aligned laminar flat plate case, results from the simulation are probed
away from the outlet. The probed region is therefore limited between 0.0 < x < 5 and is
shown in fig. 6.9a, where xs denote the wall-tangent distance from the tip. In contrast to
the flat plate flow, x is with respect to the tip of the wedge (xt i p = 0). The convergence
of present results for the three mesh levels are shown in fig. 6.10. Statistics are recorded
between t = 8 and t = 10 highlighted by the gray area.
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Figure 6.10: X- (Fx ) and Y-force (Fy ) convergence monitored for the three simulations performed with the
FSWM: (a) coarse, (b) medium, and (c) fine mesh.

The u-velocity profiles at four xs locations are shown in fig. 6.11. Again η denotes the
similarity variable and can be seen as the non-dimensional boundary layer height. Us

and Ue are the wall-tangent and local edge velocity. The approximation improves with
mesh refinement, however it is evident that the discrepancy between the present results
and the analytical Falkner-Skan velocity profile increases as the profiles are compared
further downstream. This is attributed to the use of the power-law edge velocity which
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does not consider the actual velocity above the boundary layer in the flow field. Hence,
for fig. 6.11c and fig. 6.11d the edge velocity is underestimated, resulting in excess mo-
mentum in the boundary layer. In contrast, the results in fig. 6.11a and fig. 6.11b show
good agreement with the reference profile, but show an underestimation of the veloc-
ity for η < 2 for the finest mesh, which is attributed to a slight excess wall-shear stress
applied.
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Figure 6.11: Wall-tangent velocity profiles at (a) xs = 0.1, (b) xs = 1.0, (c) xs = 2.0, and (d) xs = 5.0.

6.2.3. COMPARISON WITH LINEAR WALL MODEL
Next, the FSWM and linear wall model are compared using the fine mesh. The com-
parison is summarized in fig. 6.12. Interestingly, the linear wall model also exhibits an
overestimation of the velocity moving away from the wall which worsens downstream of
the wedge. Since laminar boundary layers are affected by the flow history, one explana-
tion is that this is due to the accumulation of error upstream. For the linear wall model,
a smaller error growth is seen due to the resolved nature of the simulation (beyond the
tip) and the imposed no-slip condition at the wall. However, while the FSWM develops a
slip velocity downstream of the wedge, the shape of the velocity profile remains identical
in contrast to the linear wall model.
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Figure 6.12: Comparison of the wall-tangential velocity profiles for the FSWM and linear wall model at (a)
xs = 0.1, (b) xs = 1.0, (c) xs = 2.0, and (d) xs = 5.0.
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6.3. LAMINAR NACA 0012
A final case to test the FSWM is performed by simulating laminar flow over a NACA 0012
airfoil at Re = 5 × 103 and M = 0.5. Reference data are retrieved from Dauricio and
Azevedo (2022) and Swanson and Langer (2016). The airfoil makes a 0 deg angle of at-
tack and based on the resolved simulation of Swanson and Langer (2016), trailing edge
separation occurs at x/c ≈ 0.8.

6.3.1. SETUP
A sketch of the domain is shown in fig. 6.13a and a close-up of the mesh is shown in
fig. 6.13b. The airfoil is placed 6c away from the inlet and 9c away from the outlet, inside
a domain with a volume of 16c ×10c ×1c. A Riemann boundary condition is applied at
the inlet, botom and top patches. A static pressure condition is imposed at the outlet and
periodic boundary conditions are applied in the spanwise directions. The fluid proper-
ties are chosen such that a non-dimensional simulation is performed. The simulation
parameters are summarized in table 6.7 and table 6.8.

Mach Re Lx Ly Lz SGS Wall model Fluid model
0.50 5×103 16.0 10.0 1.0 - - non-dimensional gas

Table 6.7: Main simulation parameters for the laminar NACA 0012.

X0 X1 Y0 Y1 Z0 Z1
Riemann Static pressure Riemann Riemann Periodic Periodic

Table 6.8: Boundary conditions for the laminar NACA 0012.

Name Min cell size [×10−3] Number of blocks Number of cells [×106]
Coarse 7.81250 720 4.2
Medium 3.90625 2806 16.4
Fine 1.95312 13530 78.9

Table 6.9: Mesh settings for the laminar NACA 0012. Each block contains 163 cells.
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(a) (b)

Figure 6.13: Domain (a), and domain close-up (b) for the medium mesh.

6.3.2. MESH CONVERGENCE
Convergence is verified by observing the time series of CL and CD shown in fig. 6.14 for
the three mesh levels. Sinceα= 0, the lift generated should oscillate around zero which is
seen in all three figures. The amplitude of the oscillation decrease as the mesh is refined.
The u-velocity contours for the three meshes are shown in fig. 6.15.

The pressure distribution and skin friction distribution for three levels of mesh re-
finement are shown in fig. 6.16. Looking at the Cp curves, the pressure peak in fig. 6.16a
is underestimated with the presence of a shallow laminar separation bubble between
0.3 < x/c < 0.5, which based on resolved simulations is not present. This separation
bubble is attributed to the higher shear stress applied downstream, causing flow-reversal
near the wall. Note that the separation bubble moves further upstream as the mesh be-
comes more refined.

The predicted skin friction is in good agreement with the results from Dauricio and
Azevedo (2022). The mesh refinements show that the skin friction peak is more accu-
rately captured if the mesh is refined. table 6.10 shows the peak C f obtained from the
reference data and the present results of the fine mesh.

Downstream, the present results also follow the curve from Dauricio and Azevedo
(2022) which is expected as a very similar laminar wall model formulation is used. As
Swanson and Langer (2016) mentions, in their resolved simulation separation occurs at
x/c ≈ 0.8 which also roughly occurs in the present simulations. As mentioned earlier
in chapter 4, a linear boundary condition is applied in separated regions (β < −0.1980)
since the Falkner-Skan equations are not applicable in this regime. Due to this switch, a
drop in shear stress is seen in the plot, marking the point of separation. This drop is due
to the lower predicted shear from the linear approximation of the shear stress.

Table 6.10: Skin friction peak from reference and present simulations with the finest mesh.

Dauricio Swanson Present (fine, FSWM) Present (fine, Linear)
C f [-] 0.116 0.145 0.117 0.089
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Figure 6.14: CL and CD convergence monitored for the three simulations performed with the FSWM: (a)
coarse, (b) medium, and (c) fine.
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Figure 6.15: U-velocity contours for three levels of mesh refinement. 14 contour levels are used for u ∈
[−0.2,1.1].
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Figure 6.16: Pressure (a), and (b) skin friction coefficient distribution for three levels of mesh refinement.
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6.3.3. OTHER WALL MODEL FORMULATIONS
In Dauricio and Azevedo (2022), a viscous correction is applied to consider the reduction
in effective flow angle and henceβwhich is tuned for their respective code. However, the
correction value worsened the results in the present solver. As a result, this correction is
not applied. Also in this case study, a simulation is performed using a linear wall model.

χ
( x

c
,Rec

)
= 1− (

p
x/c)e−ARec

1+e−ARec
(6.3)

β̂=β−|β|(1−χ) (6.4)

Figure 6.17 shows the pressure and skin friction distribution comparison between
the linear and FSWM. Note that in contrast to the FSWM the plateau in the pressure dis-
tribution, physically indicating a separation bubble, does not exist with the linear wall
model. The pressure peak is also more pronounced compared to the FSWM. Moreover,
the linear wall model is in better agreement with the results of Swanson and Langer
(2016) which is consistent as the linear wall model assumes that the boundary layer is
well-resolved.

In fig. 6.17b, the advantage of the FSWM in a non well-resolved mesh is evident: the
skin friction peak is better resolved compared to the linear WM. However, similarly to
Dauricio and Azevedo (2022) the C f is overpredicted downstream of the leading edge.
In their work, however the integral shear was insufficient to trigger separation near the
trailing edge.
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Figure 6.17: Comparison of the pressure (a), and (b) skin friction coefficient distribution for the linear and
Falkner-Skan wall model.

6.3.4. WEDGE ANGLE AND EDGE VELOCITY COMPUTATION
Bernoulli’s principle is used to compute the incompressible approximation of the edge
velocity. The accuracy of this approximation decreases as the simulated fluid is in the
compressible regime, such as the present case study. Figure 6.18a compares the es-
timated Ue against numerical results from XFoil. In general the approximation is in
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good agreement with XFoil, but as observed earlier, the pressure peak is underestimated
which also implies an underestimation in the velocity returned by Bernoulli’s principle.
A slight underestimation is observed as well near the trailing edge. Additionally, also
the computation of β is assessed by comparing the angle made between the panel and
the freestream flow from XFoil. The results are shown in fig. 6.18b and shows a perfect
agreement till x/c ≈ 0.80, where flow separation occurs and the estimated β diverge.
This makes sense as the XFoil curve computes the local angle of the geometry and the
streamwise vector, while the present code computes the angle between the local flow
tangent vector and freestream velocity vector. This may allow one to detect separation
(β<−0.1980).
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Figure 6.18: Assessment of the Bernoulli approximation of Ue (a) and computation of the wedge angle (b)
with results from XFoil.
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6.4. LESFOIL
The next test case considers a case study from the LESFOIL project, where the feasi-
bility of large eddy simulations to perform accurate numerical simulations of complex
turbulent flows is assessed by simulating the flow around the A-airfoil at M = 0.15 and
Re =2.07× 106. In the present study, an airfoil at 13.3◦ angle of attack is simulated to
assess the performance of the laminar-turbulent sensor and observe if the laminar and
turbulent regions are correctly identified. At this angle of attack the airfoil encounters a
complex flow regime. At the leading edge, a small laminar region is present, which transi-
tions to turbulence after x/c = 0.14. Near the trailing edge the turbulent boundary layer
also separates. Results of this test case include a mesh convergence study with three
levels of mesh refinement using the presently developed laminar-turbulent wall model,
comparison wih other wall models and experimental data. The laminar-turbulent wall
model integrates the earlier tested FSWM, turbulence sensor, and the existing EQWM.

6.4.1. SETUP
For the boundary conditions, a Riemann inflow boundary condition is applied with a
unit flow velocity deflected 13.3◦. The same is done for the top and bottom boundary
patches. Periodic boundaries are used for the spanwise boundary conditions, and for
the outlet a Dirichlet static pressure boundary condition is applied. The A-airfoil has a
unit chord length with the span of the A-airfoil set to 20% of the chord. The length and
height of the domain are 20 chords length. For all simulations in this case study, the
Vreman SGS model (Vreman, 2004) is used and the fluid properties are set so that a non-
dimensional simulation is performed. The main simulation parameters and boundary
conditions are summarized in table 6.11 and table 6.12. Four levels of mesh refinements
are used and the details are summarized in 6.13. Sketches of the used meshes are shown
in appendix A.2.

Mach Re Lx Ly Lz SGS Wall model Fluid model
0.15 2.07×106 20.0 20.0 0.2 vreman EQWM, FSWM-EQWM, Linear-EQWM non_dimensional_gas

Table 6.11: Main simulation parameters for LESFOIL.

X0 X1 Y0 Y1 Z0 Z1
Riemann Static pressure Riemann Riemann Periodic Periodic

Table 6.12: Boundary conditions for LESFOIL.

Name Min cell size [×10−3] Number of blocks Number of cells [×106]
Very coarse 4.687 4839 28

Coarse 2.344 6589 38
Medium 1.172 10369 60
Fine 0.586 42261 246

Table 6.13: Mesh settings for LESFOIL. Each block contains 163 cells.
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6.4.2. SENSOR SENSITIVITY STUDY
This sensitivity analysis is performed to obtain a suitable value for the time integration
constant τ, and update interval. Note that the optimization is not meant to be exhaus-
tive, rather to obtain satisfactory value to showcase the laminar-turbulent wall model.
The purpose is to obtain hyperparameters so that the marked laminar and turbulent re-
gions is in agreement with the local flow field. In the subsequent LESFOIL simulations,
the (known) transition point is imposed by forcing the wall model switching to occur at
x/c = 0.14. No sensor feedback is provided so the sensor value depends only on the mesh
resolution, time integration constant (τ), and the update interval. The convergence of
the simulations performed are shown in appendix A.3.

TIME INTEGRATION CONSTANT

In general a larger τ results in a more sensitive sensor and cause smaller flow variations
to be detected. A too large τ however, may cause large-scale transient flow features to be
mistakenly seen as turbulence and as a result, the sensor detects transition prematurely.
Similarly, if τ is too small, turbulent fluctuations are not detected. The goal of the sensor
tuning is to obtain τ so that the sensor detects turbulence as much as can be resolved by
the mesh.

Figure 6.19 shows the sensor value distribution for three levels of τ for the pressure (a)
and suction side (b) of the airfoil. Note that the transition point is imposed at x/c = 0.14
and the flow is laminar and must be or close to zero upstream of this location. It was
found that τ= 1×10−1 has an excessively long "memory" such that the initial transient of
the flow is still included in the time-filtered quantities of the sensor. As a result, the TKE
computed led to spuriously high sensor values in the laminar region. This problem was
not found for the τ= 1×10−2 and τ= 1×10−3 curves. On the contrary, the sensor value
remains near-zero in the laminar region. Post-transition, τ = 1× 10−2 shows a similar
behavior as τ= 1×10−1 with large variation in the sensor value. τ= 1×10−3 on the other
hand shows higher frequency, but smaller amplitude oscillations after transition.

On the pressure side, similar observations are seen. The transition point on the pres-
sure side is imposed at x/c = 0.30. A high sensor value is predicted in the laminar region
by τ = 1× 10−1, in contrast to the other two curves. A larger variation in transition lo-
cation is seen and as expected the transition location moves upstream as τ decreases
(increasing sensitivity). However, all three curves are significantly off from the actual
transition point.

A large peak near the stagnation line is seen in all curves. This is due to the shear
stress approaching zero in the vicinity of the stagnation line. As the denominator is de-
fined by the time-filtered friction velocity, the sensor consequently attains a large value.

τ = 1× 10−1 shows a closer transition prediction, but suffers from too high values
predicted in the laminar region as explained earlier. τ = 1× 10−3 on the other hand is
less sensitive than τ= 1×10−2, resulting in a worse transition prediction on the pressure
side. Based on the these observations a value of τ= 1×10−2 is used.
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Figure 6.19: Streamwise sensor value for three levels of time integration constant τ with an update interval of
100: (a) on the suction side, (b) and on the pressure side.

UPDATE INTERVAL

Executing the sensor algorithm every iteration significantly increases the computational
cost. Preferably, the sensor is only updated every nth iteration. Figure 6.20 shows three
levels of update intervals. A shorter update interval shows a more downstream predic-
tion of the transition location and the post-transition behavior is more sensitive for a
shorter update interval. Similar observations are seen on the pressure side. Comparing
the figure with fig. 6.19 shows that a lower update interval has a similar effect as increas-
ing τ. It was found that this is due to an identical effective weighting function as the
timestep of each simulation is the same. Hence, an update interval of 100 iterations is
also chosen.
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Figure 6.20: Streamwise sensor value for three levels of update intervals for 1/τ= 100: (a) on the pressure side,
(b) and on the suction side.
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MESH SENSITIVITY

A small mesh sensitivity study is conducted with 1/τ = 100 and an update interval of
100. The velocity contour plot of each mesh is shown in fig. 6.21 and the sensor value
distributions are shown in fig. 6.22. A great dependence on the mesh is observed, with
the largest change in transition location when the mesh is refined to the medium mesh
resolution.

The predicted transition location is in agreement with the turbulence seen in the ve-
locity contours. In general, the transition location is predicted closely to where large tur-
bulent structures are resolved by the mesh, but is significantly off from the true transition
location (x/c = 0.14). In the shown flow fields in fig. 6.21c, the turbulent boundary layer
still looks laminar near the true transition point. Hence, the sensor should not detect
transition yet based on resolved flow information. The sensor formulation, reiterated in
eq. (6.5), shows that the time-filtered TKE is based solely on the resolved contribution.
Therefore, (parts of) the turbulent fluctuations must be captured by the mesh for the
sensor to work. This implies that the mesh must, to some extent, capture the TKE near
the transition point.

It is also remarked that the extremes are lower as the mesh becomes refined and also
the sensor value distribution is lower, but remain well above the threshold value. The
very coarse and coarse mesh did not detect any transition on the pressure side, which is
attributed to the relatively thin boundary layer present. Additional figures of the sensor
field on the suction and pressure side can be found in appendix A.4

st l (xw , t ) =
〈√

u
′
i u

′
i /2

〉
〈uτ〉

(6.5)

(a) (b) (c)

Figure 6.21: Three mesh resolutions for 1/τ = 100 and update interval of 100 iterations: (a) very coarse, (b)
coarse, and (c) medium mesh.
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Figure 6.22: Sensor value distribution for three levels of mesh refinement: (a) on the pressure side, (b) and on
the suction side.

6.4.3. MESH CONVERGENCE
A mesh convergence study is performed using the meshes described in table 6.13 and
the developed laminar-turbulent wall model. The convergence is verified by observing
the time series of the lift (CL) and drag coefficient (CD ). Most simulations are performed
till t = 40, where the statistics are recorded in the last ten convective time units (CTU).
The convergence plots of all simulations performed are found in appendix A.

Figures 6.23a to 6.23c show the velocity contours for the three mesh levels from coarse
to fine. Figures 6.23d to 6.23f also show the sensor contours associated with the pre-
dicted flow field. It is evident that the predicted flow field changes as the mesh becomes
refined as more large-scale turbulence becomes resolved. For the flow field of the coarse
mesh in fig. 6.23a, the mesh is insufficient to capture the near-wall unsteadiness but is
able to resolve more of the boundary layer as it grows further downstream. Observing
fig. 6.23d, the sensor only managed to mark the turbulent boundary layer near the trail-
ing edge.

Doubling the mesh resolution clearly improves the predicted flow field as shown by
fig. 6.23b. More unsteadiness is resolved in the aft part of the airfoil. However, the mesh
is still inadequate to partly resolve fluctuations in the turbulent boundary layer upstream
of x/c ≈ 0.40. Nevertheless, the medium mesh greatly increased the region marked as
turbulent. Note that on the pressure side, some spanwise variation is seen similar to the
results obtained by Bodart and Larsson (2012). Lastly, note the marked turbulent region
near the stagnation line which is due to the friction velocity, uτ approaching zero in the
vicinity of the stagnation line, as discussed earlier in section 6.4.2.

Further doubling the mesh resolution resolves more turbulence upstream and hence
the turbulence sensor marks a more extensive region as turbulent. The spanwise vari-
ation is also decreased on the pressure side. The contours show that the utility of the
sensor depends on the ability of the mesh to resolve turbulence. Moreover, the sensor
corresponds well with the resolved flow field.

The pressure and skin friction coefficient distribution are shown in fig. 6.24. An over-
estimation of the pressure peak is observed compared to the WRLES and WMLES (with
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(a) (b) (c)

(d) (e) (f)

Figure 6.23: U-velocity contours for three levels of mesh refinement: (a) coarse, (b) medium, and (c) fine. 21
contour levels are used for u ∈ [−0.4,1.6]. The sensor field is also shown for the three meshes: (d) coarse, (e)
medium, and (f) fine.

an EQWM)performed by Tamaki et al. (2019). Earlier work from Lars et al. (2003), shows
that the trailing edge separation is strongly coupled with the predicted pressure peak.
Namely, an overestimation of the pressure peak is observed unless the trailing edge sep-
aration is predicted.

The present Cp curves also display small-scale oscillations in the laminar and near-
transition region. This behavior in the present code is known and is earlier found to
be attributed to using a coarse mesh, and simulating an underresolved boundary layer.
However, fig. 6.24a shows that the oscillations persist over three mesh levels. A poten-
tial reason is found to be of similar origin: the FSWM attempts to model the laminar
boundary layer, but is unresolved by meshes used.

A kink at x/c = 0.14 in the Cp curve is present in the reference WRLES curve and
denotes the laminar separation bubble and consequent transition. For the present sim-
ulations, the kinks are also present at x/c ≈ 0.36 for the medium mesh and x/c ≈ 0.25 for
the fine mesh but are not able to capture a laminar separation bubble. For the coarse
mesh the transition point occurs at x/c ≈ 0.86 and a small kink in the curve is observed.
According to experimental data and WRLES data, trailing edge separation occurs around
x/c = 0.83. However, this is not predicted by the present simulations as shown by fig. 6.24b.

The C f curves clearly show the laminar-turbulent transition point. Since the transi-
tion point is predicted too aft downstream, also the skin friction peak is severely under-
estimated. Namely, the velocity has already been decelerated over the airfoil when the
transition point occurs and so the transition to a turbulent boundary layer provides a
far lower C f increase. Just after the transition point, the skin friction drops significantly
and consequently rises rapidly again. This is the transition physically taking place af-
ter switching to the turbulent EQWM. A similar behavior is observed from the results
of Chalmers University of Technology shown in Lars et al. (2003, pg. 80–96). Lastly, the
laminar skin friction peak is well-matched but the overall the C f in the laminar region
is overestimated by all three meshes. This is ascribed to the inability to capture the
laminar-separation bubble just before the true transition point (0.12 < x/c < 0.14).
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Figure 6.24: Pressure (a), and (b) skin friction coefficient distribution for three levels of mesh refinement.

6.4.4. COMPARISON TO OTHER WALL MODELS
The presently developed laminar-turbulent wall model is compared to other wall model
formulations and reference WRLES, and EQWM from Tamaki et al. (2019). The compared
wall models include the standard EQWM, and the laminar-turbulent linear-EQWM, where
the linear wall model replaces the FSWM. As shown earlier, the sensor is unable to cap-
ture the transition point near x/c = 0.14 with the present fine mesh. For a fair compari-
son, the sensor is forced to switch at x/c = 0.14. The Cp and C f comparison are shown
in fig. 6.25. All simulations from the present solver overestimate the pressure peak com-
pared to the reference WRLES, which is partially in agreement with EQWM simulation
performed by Tamaki et al. (2019) and earlier work performed summarized in Mellen et
al. (2003). The trailing edge pressure is also overestimated as the present solver settings
and mesh used are unable to predict both trailing edge separation and laminar separa-
tion bubble (Mellen et al., 2003).

Compared to the other wall model formulations of the present solver, the FSWM-
EQWM performs the best overall. Namely, a good agreement is found for both the lam-
inar and turbulent skin friction peak. As expected, the EQWM is only able to predict a
single peak and also seems to transition well before x/c = 0.14. For the EQWM results
of Tamaki et al. (2019), a linear profile is assumed prior to transition, which explains the
differences between the present EQWM results.

Since the laminar boundary layer is underresolved by the present mesh, the linear
approximation poorly estimates the laminar C f peak, but shows a better transition be-
havior than the FSWM-EQWM. It is believed that the lower shear applied in the laminar
region, provides the flow additional momentum towards x/c = 0.14. Due to the higher
velocity, a greater change in shear stress is provided, resulting in a more rapid transition.
Both the EQWM and FSWM-EQWM exhibit a similar transition behavior in the C f plot.

The velocity as well as sensor contours for the FSWM-EQWM (left) and linear-EQWM
(right) are shown in fig. 6.26. Note that the sensor value is computed but not fed back
to the simulation. Remark that the predicted laminar and turbulent regions with forced
switching at x/c = 0.14 produces a near-identical sensor field compared to fig. 6.23f.
This confirms that the sensor field is limited by the present mesh resolution. A similar
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sensor field is obtained for the linear wall model. However, turbulent patches are also
predicted in the laminar region, which is found to be caused by higher TKE present near
the leading edge which could be due to larger numerical noise present in the linear-
EQWM simulation as evidenced by the oscillations seen in fig. 6.25a.

Since the sensor and FSWM are proposed to be added in conventional industrial
WMLES, the additional computational time due to these new features must be consid-
ered. Table 6.15 compares the wall-clock time of the conventional EQWM and the hybrid
wall-modeling routine after simulating 40 convective time units (CTU) for two meshes.
It must be remarked that the newly added features are unoptimized, hence the perfor-
mance deficit can be alleviated. Still, the addition of a turbulence sensor and laminar
wall model only brings a 2.8% decrease in solver performance with the fine mesh which
is deemed acceptable.
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Figure 6.25: Comparison of the pressure (a), and (b) skin friction coefficient distribution with different wall-
model formulations.
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Figure 6.26: U-velocity contour for the (a) EQWM, (b) FSWM-EQWM and (c) linear-EQWM. 21 contour levels
are used for u ∈ [−0.4,1.6]. The sensor field is also shown for the (d) FSWM-EQWM, and (e) Linear-EQWM.
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Table 6.14: Comparison of the lift and drag predictions from several wall models and reference data.

EQWM (Present) Linear-EQWM FSWM-EQWM EQWM (Tamaki) WRLES (Tamaki) F1 (Exp.) F2 (Exp.)
CL 1.637 1.704 1.671 1.576 1.496 1.56 1.515
CD 0.0446 0.0224 0.0301 - - 0.0204 0.0308

Table 6.15: Wall-clock time given in (hh:mm) while simulating 40 CTU with two wall-modeling routines per-
formed on the fine and coarse mesh.

EQWM Hybrid Wall Model
Fine 05:54 06:04

Coarse 00:19 00:20





7
CONCLUSION AND DISCUSSION

A conclusion of the findings and answer to the questions posed at the start of the thesis
is provided together with the author’s recommendation for future work.

7.1. CONCLUSION
In wall-modeled large eddy simulation (WMLES), typically a wall model assuming an
equilibrium turbulent boundary layer is used. This equilibrium assumption is less re-
strictive than believed, and to some extent is also applicable to non-equilibrium flows
(Larsson et al., 2016). However, the standard equilibrium wall models (EQWM) are not
applicable to laminar boundary layers. While the extent of laminar boundary layer in
high Reynolds number flows is limited, poorly resolving this region can have detrimen-
tal effect on the predicted flow field. For typical industrial WMLES mesh resolutions,
the laminar boundary layer will almost always be underresolved, and hence poorly pre-
dicted.

The present thesis has attempted to extend the applicability of WMLES by firstly im-
plementing and combining a Falkner-Skan-based laminar wall model (FSWM) with con-
ventional EQWM and secondly, implementing a turbulence detecting sensor to auto-
matically switch between the two wall models. In doing so, the following sub-questions
are answered:

CAN THE FALKNER-SKAN WALL MODEL IMPROVE THE SHEAR STRESS PREDICTION COM-
PARED TO THE LINEAR WALL MODEL?
Shear stress prediction of the FSWM and linear wall model are compared in most case
studies performed in the present thesis. In the resolved cases, such as the laminar flat
plate and the laminar NACA 0012 it is concluded that the linear wall model outperforms
the FSWM as the shear stress is in better agreement with reference data. This is at-
tributed to the less restrictive formulation and a mesh being able to fully resolve the
boundary layer. Namely, the velocity profile near the wall of a laminar boundary layer
is indeed linear and hence the shear stress and wall-normal derivative naturally follows
from the linear wall model.

71
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However, in regions where the laminar boundary layer is underresolved such as near
the leading edge and in high Reynolds number flows, the FSWM captures the shear stress
more accurately as the linear assumption does not hold. Results from the LESFOIL case
study further shows that indeed the linear wall model is inadequate in obtaining appro-
priate amount of shear in underresolved regions. It must be emphasized that there are
still deficiencies in the presently implemented FSWM. Notably, the discrepancies in the
predicted velocity profiles and boundary layer properties for the resolved cases studied.

WHAT ARE THE DIFFERENCES IN PREDICTED VELOCITY FIELD OF WALL-BOUNDED FLOWS

COMPARED TO AN EQWM?
The comparison of the velocity contours between the EQWM and FSWM-EQWM laminar-
turbulent wall model (LTWM) for the LESFOIL case shows that a thinner boundary layer
has developed over the suction side of the airfoil. The boundary layer only starts to
thicken significantly after the transition at x/c = 0.14. In contrast, a boundary layer al-
ready develops near the leading edge and large turbulent fluctuations become resolved
much earlier due to a more developed turbulent boundary layer. Besides that, no sig-
nificantly noticeable features distinguish the flow field between the two simulations in
the LESFOIL case, partially due to the inability of the present mesh to resolve the trailing
edge separation and laminar separation bubble before transition.

HOW ROBUST IS THE TURBULENCE DETECTING SENSOR IN DISTINGUISHING LAMINAR AND

TURBULENT REGIONS OVER A SURFACE?
Results of LESFOIL simulations performed with three levels of refinement show that the
sensor is greatly dependent on whether the mesh is able to resolve large-scale turbu-
lence. This is expected since the sensor formulation is based on the resolved turbulent
kinetic energy, therefore the mesh must be sufficiently fine for the solver to capture parts
of the turbulent fluctuations. In this regard, the sensor is unrobust.

The sensor sensitivity study performed also shows that for the given mesh, changing
the sensor threshold value does not necessarily result in a significantly better transition
location. As transition occurs, the sensor value rises rapidly, and so the distance travelled
by lowering the threshold value is marginal. Still, lowering the threshold value too much
however may result in false-positives i.e., parts of the laminar region may be marked as
turbulent. Notably, the sensor consistently marks the vicinity near the stagnation line as
turbulent if a threshold value of 1.0 is used.

However, it must be emphasized that this sensitivity study only considered the LES-
FOIL case and additional cases must be simulated to check the robustness of the sensor.
Especially, the effect of the time integration constant must be more thoroughly inves-
tigated on a wider range of test cases. Results show that setting this integration con-
stant too high tends to result in high sensor values in laminar regions. Similarly, setting
the integration constant too low causes the sensor to be too sensitive, resulting in more
downstream predictions of the transition location.

WHAT IS THE DIFFERENCE IN COMPUTATIONAL COST BETWEEN THE PROPOSED WALL MODEL

AND THE EQWM?
WMLES is applied to analyze complex unsteady, turbulent flows in wall-bounded flows,
with significant cost reduction compared to LES. Therefore, features designed to im-
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prove the accuracy of WMLES must also be cost-efficient to maintain the cost effective-
ness of WMLES over LES. Earlier it was shown that the added sensor and laminar wall
model resulted in an increase of 2.8% to the wall-clock time of the LESFOIL simulation
using the finest mesh. Larsson et al. (2016) show that for WMLES of a NACA 0012 airfoil
at 2.5 deg at Rec = 106, equivalent to Reτ = 103 requires approximately a quarter of the
cost of traditional LES. Hence, a slight increase of 3% over the WMLES computing time
is minimal. Especially, given that the discussed features in the present code are yet to be
optimized, which could reduce this cost penalty.

The above answered sub-questions help to address the main research question posed at
the beginning of the present thesis.

HOW DOES THE PROPOSED LAMINAR-TURBULENT WALL MODEL IN A SENSOR-BASED AP-
PROACH COMPARE TO A TURBULENT EQUILIBRIUM WALL MODEL?
The LTWM without a priori known transition location shows to be more accurate than
results obtained with the EQWM. The benefit of the LTWM is evident in the skin friction
distribution, where the laminar peak is well captured, and as well as the turbulent peak if
the transition location is known. The Cp curve differs moderately between the two wall
models, with only the pressure peak becoming more overestimated by the LTWM. How-
ever, this is due to the solver being unable to capture the laminar separation bubble and
trailing edge separation with the given mesh. Mellen et al. (2003) have shown that cap-
turing these two flow features is crucial to reach a good agreement with the experimental
and reference data.

For the LTWM with sensor feedback, the used mesh in combination with the sensor is
unable to come close to the true transition location as part of the TKE must be resolved
for the sensor to detect a turbulent boundary layer. Hence comparing the Cp and C f

distributions, the present LTWM with sensor feedback can be seen as worse than the
EQWM. Especially given additional computational costs incurred. Still, if the sensor can
be tuned or a better sensor formulation can be found to detect the transition location
more accurately without needing to resolve (part of) the outer layer TKE, the LTWM has
the potential to outperform the EQWM. Especially in cases where the laminar boundary
layer has a significant effect on the downstream flow field.

7.2. FUTURE WORK AND RECOMMENDATIONS
Many improvements for a LTWM to improve the applicability of WMLES are left to be
investigated at the end of this thesis. Several recommendations and future work are de-
scribed below.

STAGNATION POINT DETECTION ALGORITHM

In the present code, the stagnation line is imposed, however, for laminar wall models
to be incorporated in conventional WMLES, the stagnation line must be found in-the-
loop. This prevents the need of knowing the stagnation line a priori and makes the LTWM
more robust and applicable as the stagnation line is generally not known a priori.
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ROBUST REINITIALIZATION ALGORITHM APPLICABLE TO 3D GEOMETRIES

The developed reinitialization method is tested for two-dimensional shapes. However,
the present mehod may break down for three-dimensional geometries. For an arbitrary
shape, many advecting fronts may collide and consequently break down the distance
field. Since two-dimensional geometries are only tested, the fronts usually collide at the
maximum of the distance field. However, this is generally not the case, especially if the
zero level set is non-linear.

Also in the present implementation, a better method to track and prevent the in-
terface of the advecting fronts in affecting the converged distance field must be found.
Currently, this is done by logging non-monotonic convergence and (prematurely) stop-
ping the reinitialization algorithm after ten non-monotonic iterations. However, this has
found to decrease the accuracy of the obtained distance field.

IMPROVE SENSOR TURBULENCE DETECTION

In-the-loop prediction of the transition location is crucial for LTWM-like wall-modeling
formulations to succeed and consequently make WMLES more widely accepted. Sec-
tion 6.4 suppports this as evidenced by significant improvements in the skin friction
prediction given an a priori known transition location. However, the transition loca-
tion is predicted too far downstream, resulting in a poorly reconstructed flow field and
C f distribution. One way to improve the sensor, while limiting computational cost, is
to perform better tuning of the presented sensor formulation described in chapter 5. In
contrast to the original formulation proposed by Bodart and Larsson (2012), a constant
time integration is proposed. The time integration as well as the update interval can be
tuned to obtain better predictions. How the sensor performs in various other turbulent,
high Reynolds number cases, must also be investigated.

Another approach is to adopt a different sensor formulation to detect turbulence.
One suggestion, which retains the current formulation, is to also include the sub-grid
contribution of the TKE in the sensor value by coupling the SGS model to the sensor.
Bodart and Larsson (2012) mention a range for the threshold value based on numerous
TCF cases of a moderate range of Reτ. However, this range is applicable only if the tur-
bulent flow is fully resolved. In LES, and especially WMLES this is not the case. Hence,
a lower threshold value must be chosen. However, if typical WMLES grid resolution is
insufficient to resolve enough of the TKE, then lowering the threshold may cause lami-
nar regions to be falsely identified as turbulent. The information from a SGS model may
provide a way to avoid such errors.

ACCURATE DETERMINATION OF VELOCITY DISTRIBUTION

Accurate approximation of the velocity distribution above the laminar boundary layer is
quintessential for modeling them. In the conducted case studies, the use of a potential
flow approximation of the edge velocity has shown to underestimate the edge velocity
compared to the "true" velocity distribution. Merely probing the edge velocity is diffi-
cult for general-purpose codes. Large probing distances mean a greater chance that the
point lies inside a nearby geometry. Moreover, the boundary layer grows downstream
and therefore the probing distance must scale accordingly. For robustness, a technique
to obtain a better estimate of the local edge velocity without the need of probing further
than 2∆ away is recommended to advance laminar wall-modeling.
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EXTEND VALIDATION OF FALKNER-SKAN WALL MODEL

Validation work of the present FSWM shows reasonable agreement with reference data in
the laminar NACA 0012, and the wedge flow case, but poor results for the flat plate case.
The latter is partially attributed to the difficulty of matching the physical streamwise
coordinate with the Blasius streamwise coordinate, which is an important variable in
the Blasius equation. For the wedge flow, the results are mixed, showing a streamwise
variation in the results obtained. The FSWM is able to capture the skin friction peak for
the laminar NACA 0012. However, in the resolved downstream region, the skin friction is
overestimated. Therefore, it is recommended to extend the validation work.
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A.1. FALKNER-SKAN DATA TABLE

Table A.1: f
′′

data points used for the Falkner-Skan surrogate model.

β

η
0 1 2 3 4

-0.198 2.7496e-02 2.1781e-01 3.5445e-01 2.8924e-01 9.8349e-02
0 0.4696e-00 4.3564e-01 2.5851e-01 6.9252e-02 7.1251e-03

0.67 1.0306e-00 4.3657e-01 9.8353e-02 1.0161e-02 4.3987e-04
1.33 1.3837e-00 3.7314e-01 4.8430e-02 2.9890e-03 8.1526e-05
2.0 1.6623e-00 3.1438e-01 2.6927e-02 1.1283e-03 2.1610e-05
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A.2. LESFOIL GRID SKETCHES

(a) (b)

(c) (d)

Figure A.1: Sketches of the four meshes used in the LESFOIL case study: (a) very coarse, (b) coarse, (c)
medium, (d) fine.
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Figure A.2: Convergence of the LESFOIL simulations with hard-coded wall-model switching for the sensor
sensitivity study (a) very coarse, (b) coarse, (c) medium. The gray-shaded area indicates the time interval in
which statistics have been computed.
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Figure A.3: Convergence of the LESFOIL simulations with sensor feedback using the FSWM-EQWM hybrid
wall model with the coarse (a), medium (b) and fine (c) mesh. The gray-shaded area indicates the time inter-
val in which statistics have been computed.
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Figure A.4: Convergence of the LESFOIL simulations with hard-coded wall-model switching with the FSWM-
EQWM (a), Linear-EQWM (b), and (c) EQWM. The gray-shaded area indicates the time interval in which
statistics have been computed.

A.4. LESFOIL SENSOR CONTOUR PLOTS

(a) (b) (c)

(d) (e) (f)

Figure A.5: Sensor contours of the pressure (d)-(f) and suction sides (a)-(c) in the mesh sensitivity study. (a)
and (d) show the very coarse mesh, (b) and (e) the coarse mesh, and (c) and (f) the medium mesh sensor
contour.
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(a) (b) (c)

(d) (e) (f)

Figure A.6: Sensor contours of the pressure (d)-(f) and suction sides (a)-(c) for increasing levels of τ. (a) and
(d) show the τ= 10, (b) and (e) the τ= 100, and (c) and (f) the τ= 1000 sensor contour.

(a) (b) (c)

(d) (e) (f)

Figure A.7: Sensor contours of the pressure (d)-(f) and suction sides (a)-(c) for increasing update intervals
(UI). (a) and (d) show the U I = 10, (b) and (e) the U I = 100, and (c) and (f) the U I = 1000 sensor contour.


	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Literature Review
	Cost Estimation: DNS, LES, and WMLES
	Boundary Layer Flows
	Types of Wall-Modeling in LES
	Transition modeling in RANS and LES

	Methodology
	Navier-Stokes Equations
	Immersed-Boundary Method
	Wall-Modeling Framework

	Laminar Wall-Modeling
	Theory
	Implementation

	Transition Modeling
	Theory
	Implementation
	Verification of sensor implementation

	Validation of the Sensor-Based Wall-Modeling Approach
	Laminar Flat Plate
	Wedge flow
	Laminar NACA 0012
	LESFOIL

	Conclusion and Discussion
	Conclusion
	Future Work and Recommendations

	Appendix
	Falkner-Skan Data Table
	LESFOIL grid sketches
	LESFOIL convergence plots
	LESFOIL sensor contour plots


