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Step Location Control to Overstep Obstacles for
Running Robots

Delft Biorobotics Laboratory, Mechanical Engineering, Delft University of Technology
S.N. van der Geld, Advisor: J.G.D. Karssen,

June 7, 2012

Abstract—Obstacles in the path of a running robot need to
be avoided in order to avoid falling down. Currently, there
are no control strategies that determine the appropriate step
locations to obtain a successful overstep of an obstacle. The
objective of this simulation study is to maximize the gap size by
determining the step locations. The step strategy is tested on the
SLIP-model and a model containing leg damping and push-off.
With the means of an optimization, it is found that the optimal
step strategy consists out of 3 phases: an adaptive phase from
running cycle to the optimal state for the beginning of the leap,
the beginning and end of the leap and another adaptive phase to
end in a desired end state. For the SLIP-model is found that the
maximum gap size is almost independent of the initial velocity of
the model and mostly depends of the system’s energy. In order
to maximize the gap size, the first and second step location have
to be coincident. Furthermore, the damping and push-off proved
to be an important factor for the step locations and the obtained
gap size, as the first and second step locations do not coincident
anymore and the gap size is reduced significantly.

Index Terms—Robotics, SLIP, step location, maximum gap size

I. INTRODUCTION

ALMOST all current mobile robots use wheels to move
around. Wheels provide an easy to implement and energy

efficient way of moving around, but wheels restrict robots
to flat terrain. Legged robots, on the other hand, have the
potential to handle non-flat or rough terrain, as they can select
their ground contact points. The forward velocity for walking
robots is limited to

√
gl 1 [1], this boundary can be exceeded if

the robot starts running. Therefore, a running robot can travel
faster than a walking robot and is able to handle not-flat terrain
better than a wheeled robot.

Running robots have been built in different shapes and sizes.
There are monopods [2–4], bipeds [5–7], quadrupeds [8, 9]
and hexapods [10, 11]. The current state-of-art legged bipedal
robots are able to walk or run on a flat terrain and they
can cope with small perturbations [6, 7, 12]. These robots
cannot handle rough terrain though, because they only react
to perturbations, which works well if the perturbation is small.
However, an anticipative action is needed to handle a larger
perturbation.

A large perturbation can be caused by an obstacle in the run-
ning trajectory. Obstacles can be avoided by stepping around,
stepping on, or stepping over them. Obstacle avoidance has
been studied for both humans and for robots. For humans,

1in which l is the leg length and g is the gravitational acceleration
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Fig. 1. The Damped Spring Loaded Inverted Pendulum (DSLIP) model,
this model differs from the standard SLIP-model due to the addition of the
damper. The model consists of a point mass m, attached to a massless linear
spring, with spring constant k and rest length l0. Parallel to the spring is a
damper fitted with damping constant c, which functions like a simple dashpot.
The model is subject to gravitational acceleration g. The highest point of the
flight phase is called apex. The instances where the foot touches and leaves the
ground are called touchdown and lift-off respectively. At lift-off the model
pushes-off, which instantaneous adds a fixed amount of energy Epush. The
angle of the leg with respect to the ground at the moment of touchdown is
called the angle of attack, denoted by α0.

step location preference has been studied [13–16] and it is
shown that humans start to adjust their gait in the last two
steps prior overstepping an obstacle [17]. However, an exact
step planning strategy is not known yet. In robotics research,
stepping around obstacles has been studied extensively [18–
25] and for running robots it has been shown how to adjust the
running gait in order to select ground contact points [26, 27].
However, there is no strategy to optimize step locations.

In this paper we focus on overstepping an obstacle and we
omit stepping around or on obstacles. This leads to a strategy
which can be applied for both 2D as 3D simulations and for
obstacles or gaps. In order to avoid the influences of obstacle
height to the step locations, only gap size is studied. Further,
this study focuses on how to overstep a gap, hence the location
of the gap itself is omitted. The goal of this study is defined
as: “To determine step locations for running robots in order
to overstep the largest gap possible.”

In order to overstep a gap, it has to be determined where
a bipedal robot can place its feet without falling down. Pratt
et al. [28] proposed a method for walking robots to determine
step locations for which the robot can come to a full stop in N-
steps. We show that the behavior of running robots compared
with walking robots is different, that is why it is not possible
to use the method proposed by Pratt et al. to determine step
locations for running robots. Therefore, an optimization study
is necessary.
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The goal of this study is achieved by the means of a
simulation study, for which an optimization is implemented.
In this paper, a method to maximize the gap size is presented
and this method is used to determine the optimal step locations
for the DSLIP-model. This model is an expanded version of
the SLIP-model with a damper and push-off.

The remainder of this paper is organized as follows. Section
II introduces the simulation model used in this study. Section
III discusses the method used to determine the capture basin
of the model. Section IV discusses how to determine the
maximum gap size possible. Section V discusses the results
obtained with the optimization. Section VI discusses these
results and Section VII discusses the conclusions. The rec-
ommendations for further research are given in Section VIII.

II. THE DSLIP MODEL

An important 2D model in running robotics is the Spring
Loaded Inverted Pendulum (SLIP) model [29]. Although the
model is simple, research has shown that running gaits calcu-
lated with this model are similar to human and animal running
gaits [29], [30]. The SLIP-model consists of a point mass
attached to a massless spring. A drawback of the SLIP-model
is that it is a conservative model, which does not allow changes
in the system energy during the gait. In this study we make
the model non-conservative by adding a damper and a push-
off at lift-off to the SLIP-model, see Fig. 1. We use this non-
conservative model, because we believe that the system energy
is an important state in obstacle overstepping. We call this
model the Damped Spring Loaded Inverted Pendulum (DSLIP)
model.

The motion of the DSLIP-model can be divided into two
distinct phases: the flight phase and the stance phase. The
behavior of the flight phase of the model is equal to a ballistic
motion, leading to the following equations of motion:[

ẍ
ÿ

]
=

[
0
−g

]
, (1)

in which ẍ and ÿ are respectively the horizontal and vertical
acceleration of the point mass and g is the gravitation acceler-
ation. During the stance phase, the motion of the point mass
is affected by the leg forces Fs and Fd and by the gravitational
acceleration: ẍ

ÿ

=

 −cosα

sinα

 Fs +Fd

m
+

 0

−g

 , (2)

in which Fs and Fd are the forces in the spring and the damper
respectively, m is the mass of the point mass and α is the angle
between leg spring and ground. In this study, we use a linear
spring and a damper which is proportional to its velocity. The
damper only functions when the leg is compressing to ensure
that lift-off only occurs at the rest length of the leg spring.
The leg forces are given by:

Fs = k (l− l0)

Fd =

 cl̇, l̇ < 0

0, l̇ ≥ 0

, (3)

TABLE I
DSLIP MODEL PARAMETERS

Parameter Symbol Value Unit

mass m 1 kg

leg length l0 1 m

gravity g 1 m
s2

spring constant k 22.8 N
m

damping constant c 4.6 Ns
m

push-off energy Epush 0.1 J

in which k and c are the spring and damper constant respec-
tively, l is the spring length, l̇ is the leg velocity and l0 is the
length of the spring at rest.

The damper dissipates energy, hence energy needs to be
added in order to return to the initial conditions of the model.
The energy is added with an impulsive push-off at the end of
the stance phase. The push-off is applied in the direction of
the leg and causes an instantaneous velocity change ∆v: ẋ+

ẏ+

=

 ẋ−

ẏ−

+
 −cosα

sinα

∆v, (4)

in which ẋ− and ẏ− are the horizontal and vertical velocity
respectively before push-off and ẋ+ and ẏ+ are the horizontal
and vertical velocity after the push-off. The magnitude of the
push-off is set such that the energy supplied by the push-off
Epush is constant:

E+ = E−+Epush

1
2 m
(
ẋ+2 + ẏ+2

)
= 1

2 m
(
ẋ−2 + ẏ−2

)
+Epush

(5)

The stance and flight phases alternate each other by a
switching moment. The transition from flight phase to stance
phase is called touchdown. This happens when the foot hits
the ground:

y = l0 sinα0 , (6)

in which the angle α0 is the angle between leg spring and
ground at touchdown, also called the angle of attack. The
transition from stance phase to flight phase is called lift-off.
This happens when the foot leaves the ground, which is when
the leg spring returns to its rest length. This moment can be
denoted by:

l = l0

l̇ > 0
(7)

The state of the DSLIP-model is described by four inputs:
the horizontal and vertical positions x and y and the horizontal
and vertical velocities ẋ and ẏ. The model is completely
described by the height y and the horizontal velocity ẋ at
the highest point of the flight phase, called the apex. As the
vertical velocity is zero at this point by definition and the
horizontal position is irrelevant for normal running motion of
the model. This reduces the input state of the model at apex to
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q0 = [y0 ẋ0]
T . In this study, we choose to set the energy level

of the DSLIP-model to be constant, therefore the initial state
is set to q0 = [E0 ẋ0]

T in which E0 the initial energy level is.
The initial height of the system at apex is defined as:

y0 =
E0− 1

2 mẋ2
0

mg
(8)

In this study, a normalized model is used in order to obtain
results which are only dependent of the characteristics of the
model behavior. Therefore, all length and mass values are set
to unit length and mass. The normalized spring constant k
is based on the spring stiffness in the running robot Phides
[31] and is not varied in this study. The spring constant k is
normalized by:

k =
krobotL0(robot)

mrobotg
, (9)

in which krobot , mrobot and L0(robot) are the spring constant, the
mass and the leg length of the robot Phides respectively.

Raibert et al. [32] reported a mechanical loss of 25%
hopping energy per step for their bipedal hopping robot.
The same percentage of energy loss per step is used in this
simulation study. We use the kinetic energy at touchdown
to determine the loss per step. The damping constant c and
push-off energy Epush are determined for a limit cycle run
with a velocity of 2 m/s. This velocity is chosen such that
it is necessary to run, as it exceeds the maximum walking
velocity [1]. The damping constant and push-off energy are
held constant for the rest of this study. For calculations without
damping and added push-off energy, the SLIP-model is used.
The parameters used in this study are given in Table I.

III. CAPTURE POINT AND CAPTURE REGIONS

It is useful to know which step locations will not cause
the robot to fall down. These step locations can be used
to determine a strategy to overstep an obstacle. Pratt et al.
[28] proposed a method for walking robots to determine step
locations at which the robot can come to a full stop in N-
steps. This method is applied to the Linear Inverted Pendulum
Model (LIPM), which is a simplified model for human and
robotic walking [33].

The initial velocity and height of the model determine the
number of steps in which a full stop can be obtained. The
total state space containing these number of steps is called the
capture basin. The step location at which standstill is obtained
is called the capture point. The capture region is defined as
the set of step locations at which stepping is possible and
where standstill can be obtained in the next N-step(s). The
requirement of being able to come to a stop is essential, as
being able to take N-steps more, but eventually falling down
and not achieving standstill is considered as falling down.

The SLIP and DSLIP-model are nonlinear models, whereas
LIPM is a linear model. The capture point and capture regions
for LIPM can be calculated using linear equations, according
to [28] and [34]. Because linear equations are computationally
less expensive to solve than nonlinear equations, it is investi-
gated whether LIPM can be used to calculate capture points
and regions for SLIP and DSLIP-model based robots.

A. LIPM vs. SLIP and DSLIP Behavior

The LIPM model is a linear model and is in closed form
solvable. The equation of motion for the LIPM model is given
by:

ẍ =
g
y0

x, (10)

in which ẍ and x are the acceleration and position respectively
of the point mass in horizontal direction and y0 is the constant
height of the point mass. The capture point can be derived
using equation (10) and a conserved quantity called the
Linear Inverted Pendulum Orbital Energy equation [33]. This
equation represents the energy a spring-mass system with unit
mass and length and a negative stiffness of − g

y0
:

ELIP =
1
2

ẋ2− g
2y0

x2, (11)

and standstill will occur if x and ẋ become zero, thus when
ELIP is zero. Rewriting equation (11) for ELIP = 0 gives the
two eigenvectors of the system:

ẋ =±
√

g
y0

(12)

The step location at which standstill will occur can be obtained
by rewriting equation (12) for the stable eigenvector:

xcapture = ẋ
√

y0

g
(13)

The capture point for the SLIP and DSLIP-model is defined
as the location at which the model will maintain hopping with
zero horizontal velocity. Zero horizontal velocity is obtained
by choosing the angle of attack such that all of the initial
energy in the system is transformed into potential energy at the
end of the step. Thus, the angle of attack is chosen such that
the input state q0 = [E0 ẋ0]

T is transformed into the end state
q1 = [E1 0]T . By the means of an optimization implemented
in MATLAB using the function fminsearch, is the angle of
attack determined to obtain this desired end state.

The step location at which standstill is obtained is shown in
Fig. 2, showing the initial forward velocity ẋ0 plotted against
the capture point. Both the SLIP as the DSLIP-model behavior
is calculated. For the same initial velocity, it can be seen
that the capture point location for SLIP and DSLIP-model
are almost equal, however they differ from LIPM. There is no
capture point for the DSLIP-model for lower initial velocities.
The damping dissipates too much energy of the model for the
spring to return to rest length. As lift-off is triggered at rest
length of the spring, the model keeps its foot on the ground
and will not lift-off. The model falls over, ending in a fail
state.

It can be concluded that LIPM capture points and regions
cannot be used for SLIP and DSLIP based models. As the
difference between the SLIP and the DSLIP-model is negli-
gible, the SLIP-model is used to determine the capture point
and capture regions.
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Fig. 2. Capture point location as function of the initial velocity for LIPM,
SLIP and DSLIP. The initial conditions for the models are q0 = [y0 ẋ0], with
y0 = 1 m. All three models show, that the location of the capture point moves
forward with increasing initial velocity. The graph shows that SLIP and DSLIP
have similar capture points and that SLIP and DSLIP disagree with LIPM.

B. Capture Basin for SLIP

The capture point and capture regions for the SLIP and
DSLIP-model cannot be determined using the method avail-
able for LIPM. This section discusses how to determine the
capture basin, which is the total state space containing the
number of steps the model needs make in order to come to a
full stop.

The capture basin is obtained by calculating the speed at the
end of one step for an initial speed range ẋ0 and range of α0.
By comparing the speed at the end of one step with the initial
speed, it can be determined in how many steps the model is
capturable. Appendix A explains this process in more detail.

The capture basin is calculated for the SLIP-model and
Fig. 3 shows the N-step capturability for the initial conditions.
It is shown that the majority of the initial conditions with
ẋ0 6= 0 m/s will lead to a 1-step capturable system. The model
is not capturable for energy levels lower than 1 J, as this is
the boundary at which the model can come to a standstill.

The transition between the 1-step and the 2-step boundary
and between the 2-step and 3-step boundary is dependent of
the initial height. The initial height of the model is bounded by
the energy level and the initial velocity, according to equation
(8). For a higher initial velocity, the initial height becomes
lower until the boundary is reached where the model is unable
to come to zero velocity in one step. The lower initial height
reduces the possible step locations, as the model is not able
to position the leg at all angles in the range of [0−π] radians.
This makes it necessary take another step. For the 3-step
capture basin the same reasoning is valid, as the possible step
locations allow the model to take another step, but the end
state does not provide a possibility to come to a standstill.

Higher N-step boundaries are not investigated, as these
regions are not interesting to step. In Fig. 3 is shown that the
capture basin is reduced for higher N-regions. The associated
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Fig. 3. Capture basin for the SLIP-model. The graph shows depending on
the initial conditions, the number of steps in which the robot is able to come
to a stop. The lower boundary of the capture basin is given by the minimal
energy E = 1 J for which the model can come to a stop.

capture regions are also reduced, resulting in a relative small
area in which stepping is possible. This is discussed further
in Section III-C.

C. Capture Regions for SLIP

The capture regions are the step locations on the ground
where the model can stand and at the next apex will be in
one of the capture basin regions. Calculating the capture point
is useful if a certain point has to be reached, for example
stopping before an obstacle. Calculating the capture regions is
useful if one wants to keep the robot running and to overstep
gaps.

The capture regions can simple be calculated based on the
capture basins, because the flight phase behavior of the SLIP-
model is equal to a ballistic motion. If the model starts with
initial conditions y0, ẋ0, α0, and l0, than the height of the foot
is given by:

h = y0− l0 sinα0 (14)

The horizontal position of the point mass xCoM depends of the
initial velocity and the elapsed time. The horizontal position
is given by:

xCoM = ẋ0
√

2h (15)

The horizontal position of the foot is given by the point mass
position and the leg length:

x f = xCoM + l0 cosα0

= ẋ0
√

2y0− sinα0 + l0 cosα0
(16)

With the foot location known, the capture regions can be
determined. Fig. 4 shows the capture point and regions for
the SLIP-model, with the initial velocity range of ẋ0 = [0−
1.2] m/s and energy level E = 1.35 J. The black line represents
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Fig. 4. Capture regions for the SLIP-model. The y-axis represents allowable
step locations in which the model is capturable, calculated from the point
mass at 0 in m, whereas x-axis represents the initial velocity of the model.
The initial energy level is E = 1.35 J and the angle of attack range is [0−π]
radians. The black line represents the capture point at which the model is
capturable in N = 0 steps. The dark gray area represents the N = 1 area,
whereas the light gray area represents the N = 2 area. The thin black line
(N = lc) represents the step location at which limit cycle running is achieved.
It shows that for higher initial velocities, the capture region shifts further away
from the CoM.

the capture point where standstill occurs denoted by N = 0,
the dark gray area represents the 1-step capture region with
N = 1 and the light gray area represents the 2-step capture
region at N = 2.

If we want robots to overstep a gap, the capture point is not
important. Most interesting is the area which allows the robot
to put its foot, enabling it to continue running without ending
in falling down. Varying the step locations will influence the
upcoming step behavior. The range below the capture point
line provides step locations for which the robot will maintain
forward motion. As can be expected, the step location for
limit cycle running lies before the capture point, depictured
as the dashed black line (N = lc) below the capture point
line (N = 0) in Fig. 4. Stepping in the area between N = lc
and the boundary of N = 1 will increase forward velocity,
whereas stepping in the area between N = 0 and N = lc will
decrease forward velocity. Stepping beyond the N = 0 line
will cause the robot to run backwards. For the remainder of
this study, the 1-step capture region is the only region taken
into account. Because the purpose of this study is to continue
running forward after overstepping, the area above the N = 0
line and the higher N-regions are neglected, as these regions
causes the robot to take another step or to switch direction.

IV. MAXIMUM GAP SIZE

This section discusses how to use the capture regions
calculated in Section III, in order to determine the maximum
gap size. The maximum gap size possible depends on the
distance between the capture regions of two consecutive
steps. In this study, we define the maximum gap as:
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Fig. 5. Trajectory of the SLIP-model. The dashed line shows the trajectory
of the point mass during flight phases, whereas the solid line represents the
point mass during the stance phases. The SLIP-model is drawn at touchdown
for four subsequent steps. In here, α1, α2, α3 and α4 and x f 1, x f 2, x f 3 and
x f 4 are the angles of attack and the step locations of the associated steps
respectively. Furthermore, xa0, xa1, xa2, xa3 and xa4 denote the apexes from
start to the end of the step sequence. Finally, ‘Gap size’ denotes the distance
between the 2nd and 3th step location, which is the distance to be maximized.

“The maximum distance between two steps, with the constraint
that the robot does not has to put its foot in between these
steps in order to prevent falling down.”

The constraint prevents the model of putting the upcoming
step in between the previous steps, as this effectively shortens
the maximum gap size. Fig. 5 shows the SLIP-model drawn
for four subsequent steps, this model clarifies the designations
used in this en subsequent sections.

Section IV-A discusses the behavior of the model, if for two
consecutive steps the boundary of the capture basin is selected
and the gap size is determined. We show that the boundaries of
the capture basin not necessarily have to lead to the maximum
gap size possible. Section IV-B discusses a four step sequence
approach to maximize the gap size. We show that using four
steps, the maximum gap size can be obtained if the 1st and
2nd step locations and the 3rd and 4th step locations coincide.
Moreover, we show that the maximum gap size is dependent
of the initial energy only and thus independent of the initial
velocity.

A. Capture basin based gap size

In this section is discussed how large the gap size is, if the
model selects the N = 1 boundaries of the capture basin for
any initial condition. The gap size between two subsequent
steps depends on the initial conditions of the SLIP-model and
the angle of attack of the steps.

In order to maximize the gap between to subsequent steps,
it can be understand it is beneficial to have the 1st step location
as far behind the point mass as possible and the 2nd step
location as far beyond the point mass as possible. The formula
to determine the step location, equation (16) and Fig. (3), show
the influence of the forward velocity of the model. Therefore,
in order to maximize the gap size, the difference in forward
velocity of two subsequent steps should be as big as possible.
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Fig. 6. 2-step strategy behavior with a preceding and subsequent step.
The SLIP-model hops on one spot and touches down at (1). The model
subsequently puts its foot as far backwards as possible at the boundary of
the capture basin and touches down at (2). The next step location is obtained
by putting the foot as far forwards as possible (3). The end position obtained
is where the model touches down at (4). With this strategy, the model is only
able to prevent falling down by selecting a step location for the preceding step
(1) and following step 4) within the outer steps, (2) and (3), thereby reducing
the gap size.

This method is used if the model selects the boundaries of the
capture basin.

The model can put its leg behind the point mass by selecting
the angle of attack such that α0 > π

2 in the first step, by
selecting a state from the capture basin which is on the
boundary of the 1-step region. The obtained gap size is
maximal if the forward velocity is 0 m/s at start, as with
an initial forward velocity larger than zero, the difference in
gap size would be smaller. This strategy causes the SLIP-
model to put its leg backwards as far as possible, causing
the model shoot forward, gaining a high forward velocity.
Subsequently, the model can put its leg as far forwards as
possible to maximize the step size, by selecting another state
from the capture basin which is on the boundary of the 1-step
region.

However, in order to prevent falling down, the preceding
and consecutive step locations would lie in between the step
locations of the leap with this strategy. This situation can be
seen in Fig. 6. As the obtained gap size with this strategy
is reduced, a different strategy is necessary which avoids the
previous stated problem.

B. 4-step Strategy

In Section IV-A is shown that a 2-step strategy limits the gap
size, as the model needs to step within the obtained gap size
range to prevent falling down. In this section a 4-step strategy
is proposed, which is able to maximize gap size, without the
necessity of stepping in between the step locations of the leap.

The 4-step strategy consists out of three distinct phases:
The first phase is an adaptive step(1), in which the angle of
attack can be chosen such that the upcoming apex has the

optimal state conditions for the beginning of the leap. The
second phase is the leap and consists out of step(2) and step(3).
The distance between the 2nd and 3rd step location is the gap
size to be maximized. The third phase is another adaptive
step(4), in which the angle of attack is chosen such that a
desired end state is reached. Fig. 7 shows the three phases and
its associated steps and step locations, showing the trajectory
of the model and its return to its initial condition.

In order to determine the largest gap size possible, an
optimization is used to determine the step locations needed
to obtain the maximum gap size. The optimization is imple-
mented using the function fmincon in MATLAB. The objective
to maximize is the gap size, denoted with f (gap):

max
gap

f (gap) = xend− xstart

xstart = max[x f 1 x f 2]

xend = min[x f 3 x f 4 xCoM
(4)]

, (17)

in which x f 1, x f 2, x f 3 and x f 4 are the step locations of the
associated steps and xCoM

(4) is the location of the point mass
at xa4. The location of the point mass is incorporated in the gap
size optimization, as there is a possibility that the location of
3rd and 4th step location is beyond the location of xCoM

(4). In
such a situation, a subsequent step could be necessary in order
to prevent falling down, at a location before the 3rd and 4th

step location. Then, falling down at xCoM
(4) can be prevented

by setting the angle of attack to π

2 radians. The gap size is
calculated between the first pair of steps and the second pair
of steps. This forces the leap physically to be between the
first pair of steps and the second pair of steps, but allows the
optimization to select the order of steps in any way if desired.

The optimization is constrained by g and h, which are the
inequality and equality constraints respectively:

g(gap) = αi−π ≤ 0 for i = 1 . . .4

= −ẋa4 ≤ 0

h(gap) = |q4−q0| = 0

, (18)

in which α1, α2, α3 and α4 are the allowable angles of attack
for the four subsequent steps, ẋa4 is the velocity at apex(4) and
q0 and q4 are the begin state and end state of the optimization
respectively. If the objective is to return to limit cycle running,
than q4 should be equal to q0. However, if the desired end
state is hopping with zero forward velocity, than the end state
should be q4 = [E 0]T . The optimization is described in more
detail in Appendix B.

V. RESULTS

The results for the optimization of the 4-step strategy
presented in Section IV-B are discussed in this section. We
show that the maximum gap size is almost independent of the
initial velocity and that the gap size mostly depends on the
initial energy level. Subsequently is presented that the 1st and
2nd step location should coincide in order to maximize the gap
size. In order to return to the initial state of the model, the 3rd

and 4th step location should coincide as well. The gap size
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(a) Trajectory SLIP - initial condition return
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Fig. 7. 4-step strategy behavior. The first touchdown of the SLIP-model is at (1), the model locates its foot at such an angle that the second touchdown is
possible at the same step location (2). The model leaps to the third touchdown (3) and the angle of attack at the last touchdown (4) can be chosen such that
model ends in a desired condition. Fig. 7(a) shows return to initial conditions, whereas Fig. 7(b) shows ending in hopping with zero forward velocity.
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Fig. 8. The maximum gap size for a range of initial conditions. At lower
energy levels, no solution is found for higher initial velocities. The initial
height is to low to successful make four steps. The figure shows that the
maximum gap size is almost independent of the initial velocity.

is increased even further if the 4th step location is positioned
at the capture point. This causes the model to hop with zero
velocity at the end of the step sequence. However, the gap size
increases only slightly in relation to the gap size obtained for
initial state return.

Fig. 8 shows the maximum gap size for the range of initial
velocities ẋ0 = [0 − 2] m/s and energy levels E = [1.1 − 3] J.
The gap size is calculated with the constraint that the model
should return to its initial condition after four steps. The figure
shows that the maximum gap size is mostly dependent of the
initial energy level, the initial velocity has almost no influence
to the gap size. The lower right hand side of the figure shows
no solutions for the optimization, as at lower energy levels
with higher initial velocities, the initial height is to low for
the model to successful make four steps.
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Fig. 9. Step locations for a constant energy level and a range of initial
velocities. The optimization is set such that the model returns to its initial
conditions. The figure shows that the 1st and 2nd step location and the 3rd

and 4th step location coincide. Furthermore, the figure shows that there is
almost no influence of the initial velocity to the gap size, barring the boundary
conditions.

Fig. 9 shows the four step locations for the range of
initial velocities ẋ0 = [0 − 2] m/s at an energy level of
E = 1.35 J. The gap size is calculated with the constraint that
the model should return to its initial conditions. The figure
shows that the 1st and 2nd step location and the 3rd and 4th

step location coincide. Furthermore, the maximum gap size
is almost independent of the initial velocity, barring the outer
solutions. At initial velocities higher than 1.2 m/s no solutions
are found, as the initial height is to low for a successful
sequence of four steps. The initial velocity of ẋ0 = 1.2 m/s
results in a successful sequence of steps. However, the gap size
is significant reduced and the step locations do not coincide.

Fig. 10 shows the four step locations for a constant ini-
tial velocity of ẋ0 = 0.8 m/s, at an energy range of Es =
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Fig. 10. Step locations for a constant initial velocity and a range of energy
levels. The optimization is set such that the model returns to its initial
conditions. The figure shows that the 1st and 2nd step location and the 3rd and
4th step location coincide. Furthermore, the figure shows that the maximum
gap size increases with the energy level of the system.

[1.1 − 3] J. The gap size is calculated with the constraint
that the model should return to its initial conditions. The figure
shows that the 1st and 2nd step location and the 3rd and 4th step
location coincide and the gap size increases with the energy
level of the system. At an energy level of E = 1.1 J it can
be seen that a success sequence is possible, yet the low initial
height reduces the gap size.

If the model does not have to end in a limit cycle condition,
than the 3rd and 4th step location might be chosen differently in
order to obtain a bigger gap size. Fig. 11 shows the maximum
gap size calculated for two different end constraints. The first
constraint demands the model to return to its initial condition,
whereas the second constraint demands the model to step on
its capture point. The gap size is calculated for an energy range
of Es = [1.1 − 3] J and with an initial velocity of 0.8 m/s. The
figure shows that the obtained result differences are small, and
that returning to the capture point results in a slightly larger
gap size.

VI. DISCUSSION

The results achieved with the optimization are not intuitive
for every situation. This section explains the behavior of the
optimization and discusses the results in detail. Section VI-A
discusses the coincident step locations obtained for the 4-step
strategy optimization. Section VI-B discusses the influence of
the initial velocity to the maximum gap size. The influence
of the damper and the push-off is discussed in Section VI-C.
Section VI-D discusses the behavior of the optimization com-
pared with the behavior of humans and discusses whether the
SLIP model is a good model for such an optimization.

A. Explanation Of Coincident Step Locations

The step strategy to obtain the maximum gap size per energy
level shows a sequence of step locations which is shown in
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Fig. 11. Maximum gap size for a simulation ending in limit cycle running
and a simulation ending in its capture point end state. The figure shows that
the maximum gap size difference obtained for capture point end state and
limit cycle return is small.

Fig. 9 and 10. The 1st and 2nd step locations and the 3rd and
4th step locations coincide if the model returns to its initial
condition. This section explains the coincident step locations.

In order to explain whether coincident step locations lead
to the maximum gap size, an extra optimization is induced.
The distance of the point mass at xa2, which is halfway of the
leap, is calculated for different locations of the 1st and 2nd step
location. The 1st step location is determined for every angle
of attack in the range [0 − π] radians. By setting a desired
state at xa2, the 2nd step location can be determined with the
use of an optimization.

However, only one state variable can be set as a desired
value, as there is only one variable to tune, which is the angle
of attack of step(2). Therefore, the desired value at xa2 is set
to the velocity ẋdes equally to the velocity at xa2 obtained by
the optimization in Section IV-B.

The maximum gap size occurs where the largest of the two
step locations subtracted from the position of the point mass
at xa2 is maximal. The optimization is implemented using the
function fmincon in MATLAB and is started with an energy
level of E = 1.35 J, initial velocity of ẋ0 = 0.8 m/s and ẋdes =
0.94 m/s. The objective to maximize is half of the gap size,
denoted with f (1/2 gap):

max
1/2 gap

f (1/2 gap) = xend− xstart

xstart = max[x f 1 x f 2]

xend = xCoM
(2)

, (19)

in which x f 1 and x f 2 are the step locations of the associated
steps. xCoM

(2) is the location of the point mass at xa2, which
is the highest point of the flight phase during the leap.

The optimization is constrained by g and h, which are the
inequality and equality constraints respectively:
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Fig. 12. Coincident step locations result in the largest gap size. The step
location of step(1) is represented by the dashed line, whereas the dash-dotted
line represents the step location of step(2). The solid line represents the
location of the point mass at apex at the end of step(2). The gray area
represents half of the max gap size and this is determined by subtracting
the largest of the step locations from the point mass location of at the end
of step(2). It can be seen that the gap size is maximal when the foot steps
coincide.

g(1/2 gap) = α2 −π ≤ 0

h(1/2 gap) = |ẋq2− ẋdes| = 0
, (20)

in which α2 is the allowable angle of attack for the second
step. The velocities ẋq2 and ẋdes are the velocity at xa2 and the
desired velocity at xa2 respectively.

Fig. 12 shows the 1st and 2nd step locations and the location
of the point mass at xa2 plotted against the 1st step location.
The gray area represents half of the maximum gap size
determined with the optimization by subtracting the largest
of the step locations from the point mass location at xa2. The
figure shows that distance of the step locations to the location
of xa2 is maximal if the step locations coincide. We believe that
coincident step locations lead to the largest gap size possible,
as the gap size reduces if there is an offset between the 1st

and 2nd step location, independently of the order of the steps.

B. Influence Of Initial Velocity

The maximum gap size is, barring the boundaries, almost
independent of the initial velocity and mostly dependent of
the energy level of the system as can be seen in Fig. 8 and 9.
This section discusses the influence of the initial velocity to
the gap size.

In Section VI-A it is shown that the step locations have to
be coincident in order to maximize the gap size. In order to
achieve this, the 4-step optimization has to adjust any initial
velocity such that the forward velocity at xa1 still allows the
2nd step location to coincide with the 1st step location.

In order to explain why the initial velocity has no influence
to the maximum gap size, an extra optimization is induced.
The distance of the point mass at xa2, which is halfway of
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Fig. 13. The influence of the velocity at xa1 to the maximum gap size. The gap
size is calculated for several velocities at xa1 prior step(2). The optimization is
constrained such that the 1st and 2nd step location coincide. The figure shows
that the gap size is maximal for a low velocity at xa1.

the leap, is calculated for different locations of coincident
step locations. The 1st and 2nd step location are determined
for every angle of attack in the range [0 − π] radians. The
velocity at xa1 is known due to the constraint of coincident step
locations. The maximum gap size can now be determined for
the optimal velocity at xa1.

The optimization is implemented using the function
fmincon in MATLAB and is started with an energy level
of E = 1.35 J and an initial velocity of ẋ0 = 0.8 m/s. The
objective to maximize is half of the gap size, dependent of
the velocity at apex(1), which is denoted as f (ẋa1):

max
ẋa1

f (ẋa1) = xend− xstart

xstart = max[x f 1 x f 2]

xend = xCoM
(2)

, (21)

in which x f 1 and x f 2 are the step locations of the associated
steps. xCoM

(2) is the location of the point mass at xa2, which
is the highest point of the flight phase during the leap.

The optimization is constrained by g and h, which are the
inequality and equality constraints respectively:

g(ẋa1) = α2 −π ≤ 0

h(ẋa1) = x f 2− x f 1 = 0
, (22)

in which α2 is the allowable angle of attack for the second step
and x f 1 and x f 2 are the 1st and 2nd step location respectively.

Fig. 13 shows the maximum gap size for a range of
velocities at the xa1. The figure shows that the gap size is
maximal if the velocity at xa1 is 0.19 m/s, which is lower than
the initial velocity. Furthermore, it can be seen that the gap size
reduces if the velocity at xa1 is increased or further reduced.
Hence it can be concluded that in order to maximize the gap
size and to let the step locations coincide, the initial velocity
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(a) Optimal trajectory SLIP
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(b) Optimal trajectory DSLIP
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(c) DSLIP trajectory with coincident steps

Fig. 14. Trajectory and gap size comparison for SLIP and DSLIP models. The stance phases during the steps are indicated with a solid line, in which the
dots represent the touchdown and lift-off moments and the numbers indicate the step locations. All optimizations were started with energy level E = 1.35 J
and initial velocity ẋ0 = 0.8 m/s. The trajectory for the SLIP-model in Fig. 14(a) shows coincident step locations, whereas the DSLIP-model in Fig. 14(b)
only shows coincident step locations at the 3rd and 4th step. The gap size obtained for the SLIP-model is 1.86 m, whereas the gap for the DSLIP-model
(14(b)) is 1.49 m. In Fig. 14(c), the DSLIP-model is constrained to have coincident step locations. The gap size obtained with this constraint is 1.20 m. Hence
coincident step locations do not lead to the maximum gap size for the DSLIP-model.

has to be adjusted to a velocity at xa1 which still enables to let
the 1st and 2nd step location coincide. We believe the reason
that the initial velocity has a very small influence to the gap
size, is caused by the gap size optimization. The optimization
wants the step locations to coincide, which is only possible
for a low velocity at xa1. Therefore α1 is chosen such that
the velocity at xa1 is optimal for coincident step locations.
The small influence of the initial velocity can be explained, as
with a higher initial velocity, the initial height is reduced. A
lower initial height reduces the possible step locations, thereby
reducing the gap size.

C. Influence Of Damper And Push-off
In Section III is shown that the behavior of the SLIP and

the DSLIP-model is similar if the capture point has to be
calculated. Therefore the SLIP-model was used to determine
the optimal step strategy in order to obtain the maximum gap
size possible. This section compares the results found with the
SLIP-model to an optimization implemented with the DSLIP-
model in order to investigate whether damping and push-off
have significant influence to the behavior and step sequence.

In order to compare the DSLIP-model to the SLIP-model,
the optimization discussed in Section IV-B is implemented
with the DSLIP-model. The energy level per step might vary
due to the damping and the push-off. However, only one state
variable can be set as a desired value, as there is only one
variable to tune, which is the angle of attack of step. Therefore,
the desired end value of the step sequence is set to be equal
to the initial height of the system.

The optimization is implemented in the same manner as the
4-step optimization described in Section IV-B. The damping
constant is 4.6 Ns/m and the push-off energy is Epush = 0.1 J,
these values are held constant for the sequence of steps.
The optimization is constrained by g and h, which are the
inequality and equality constraints respectively:

g(gap) = αi−π ≤ 0 for i = 1 . . .4

= −ẋa4 ≤ 0

h(gap) = |y4− y0| = 0

, (23)

in which α1, α2, α3 and α4 are the allowable angles of attack
for the four subsequent steps, ẋa4 is the velocity at apex(4)

and y0 and y4 are the initial height and end height of the
optimization respectively.

Fig. 14(a) shows trajectory and step locations of the SLIP-
model, whereas Fig. 14(b) shows trajectory and step locations
of the DSLIP-model. The maximum gap size obtained for
the SLIP-model is 1.86 m with the given initial conditions,
whereas the maximum gap size obtained for the DSLIP-model
is 1.49 m, which is a reduction of 20%. The SLIP-model
optimization shows for the 1st and 2nd step and the 3rd and 4th

step coincident step locations, whereas the optimization results
for the DSLIP-model only show coincident step locations for
3rd and 4th step.

The result obtained for the optimization with the DSLIP-
model does not show coincident step locations for the 1st and
2nd step. For the SLIP-model was found that coincident step
locations is optimal to maximize the gap size. In order to inves-
tigate whether the found step sequence with the DSLIP-model
optimization is the optimal sequence, a new optimization is
induced. The gap size is optimized for the DSLIP-model, with
the additional constraint that the 1st and 2nd step location and
the 3rd and 4th step location should coincide.

The optimization is implemented in the same manner as the
4-step optimization described in Section IV-B. The optimiza-
tion is constrained by g and h, which are the inequality and
equality constraints respectively:

g(gap) = αi−π ≤ 0 for i = 1 . . .4

= −ẋa4 ≤ 0

h(gap) = x f 2− x f 1 = 0

= x f 4− x f 3 = 0

, (24)

in which α1, α2, α3 and α4 are the allowable angles of attack
for the four subsequent steps, ẋa4 is the velocity at apex(4) and
x f 1, x f 2, x f 3 and x f 4 are the step locations of the associated
steps.

Fig. 14(c) shows the trajectory and step locations of the
DSLIP-model with coincident step locations. The maximum



11

gap size obtained for the DSLIP-model is 1.20 m with the
given initial conditions, which is 19% shorter than the op-
timization for the DSLIP-model without the coincident step
location constraint and 35% shorter than the SLIP-model.

In Section VI-B is shown that in order to obtain coincident
step locations, the forward velocity at apex(2) should be such
that the 2nd step location still can coincide with the 1st

step location. However, due to the coincident step location
constraint and the reduced energy at lift-off, the gained forward
velocity at lift-off in Fig. 14(c) is lower than the lift-off
velocity obtained for the optimization in Fig. 14(b). This
results in a smaller gap size for the DSLIP-model. Hence for
the DSLIP-model, coincident step locations do not lead to the
maximum gap size possible.

The results obtained for the DSLIP-model optimizations
show different trajectories and smaller gap sizes than obtained
for the SLIP-model, thus it can be concluded that the system
energy is an important state in obstacle overstepping. All of
the system energy remains available at lift-off with the SLIP-
model, hence the model is able to position the leg at all angles
in the subsequent step. The reduced energy at lift-off has
evidently influence to the behavior of the model and the gap
size. For the DSLIP-model can be concluded that coincident
step locations do not lead to the optimal step strategy to
maximize the gap size.

D. Relation To Human Behavior
This simulation study focuses completely on robotic obsta-

cle overstepping, in which the SLIP-model is used. Research
has shown that running gaits calculated with the SLIP-model
are similar to human running gaits, hence the question rises
what humans would do.

Step location preference has been studied [13–16] and it is
shown that humans start to adjust their gait in the last two
steps prior overstepping an obstacle [17]. However, an exact
step planning strategy is not known yet and there is no mention
of coincident step locations. This suggests that although the
SLIP-model gives similar results to human running gaits, the
model is not used for activities other than normal running. The
DSLIP-model does provide different results than the SLIP-
model, although the applied damping and push-off method
might be chosen differently. The simulations do show that the
behavior of the SLIP and DSLIP-model is in agreement with
the results found by Mohagheghi et al. [17], which is that the
robot needs two steps to adjust prior overstepping an obstacle.

The SLIP-model is a simplified model for human and
robotic running and gives similar results for normal running.
However, in a task such as given, what would be the influence
of ankles and knees towards the optimal step locations? When
the SLIP-model leaps the gap, the velocity to height ratio is
relatively high. Due to the massless leg of the model, it is able
to position the leg such as it desires. However, humans do not
have massless legs, they have knees and ankles and they have
to be able to move their legs from one step location to the
other. These influences could be investigated and simulated
with the SLIP-model by adding mass to the legs, introduce a
minimal step time between two subsequent steps, or adding a
finite size foot.

VII. CONCLUSION

In this paper, the goal was to determine step locations for
running robots in order to overstep the largest possible gap.
This goal is investigated by the means of a simulation study
and it can be concluded that the optimal step locations can be
determined for running robots in order to obtain the largest
gap possible. From the results we conclude that:

• the method to determine the capture points and capture
regions for walking robots can not be used for running
robots,

• for the SLIP-model, a 4-step strategy is minimally
required to maximize the gap size. The strategy consists
out of three phases, which are an adaptive step, the leap
and another adaptive step,

• for the SLIP-model, the gap size is almost independent
of the initial velocity and mostly depends of the initial
energy level,

• for the SLIP-model, the first and second step location
should coincide to maximize the gap size,

• for the SLIP-model, the gap size is maximal if the model
ends with zero velocity at the end of the fourth step,

• for the DSLIP-model, the system energy and energy
prove to be important factors, as the gap size is reduced
significantly and the step strategy does not feature
coincident step locations at the first and second step
location.

VIII. RECOMMENDATIONS

Although successful obstacle overstepping is achieved, other
methods to select the step locations can be used. Robots are
not humans, therefore it is recommended to explore alternative
methods. Interesting would be to minimize the energy used to
overstep an obstacle, or to add extra constraints like leg or
feet mass and therefore inertia. The SLIP-model only features
one leg and the obtained trajectories might be different with
two legs. The damping constant in the DSLIP-model is set to a
fixed value, which is determined on the energy losses reported
by Raibert et al. [32], although a damping constant determined
for the robot Phides could be used. Furthermore, the dashpot
only functions if the velocity of the leg is negative. For a more
realistic behavior the damping could work in both directions.
The push-off is set to be added instantaneous at lift-off with a
fixed amount of energy, whereas different behavior might be
obtained if the amount of energy added would vary and the
energy could be added gradually. Furthermore, the addition
of leg mass could make the model behavior more realistic.
Experiments on the robot Phides can serve as a measure for
which the SLIP and DSLIP-model are valid for this specific
robot and this specific task.
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APPENDIX A
DETERMINATING THE CAPTURE BASIN

The capture basin shows per initial condition the number
of steps minimal needed to come to a standstill, in which
‘standstill’ means no forward movement; the model will
remain hopping on the same location. The general idea of
the capture basin is as follows. For every input state qin is
calculated what the end state qout is. Comparing between the
input and output states can tell the number of steps for which
the model can come to a full stop, also called the number of
steps for which the model is capturable.

The calculation of the capture basin is an iterative process,
which is calculated per energy level. The lower boundary of
the capture basin is at E = 1 J, as this is the boundary at which
the model can come to a standstill. For energy levels lower
than 1 J, the model is not able to put its leg at an angle of
π

2 , as the height of the model is to low. The upper boundary
is arbitrarily chosen at E = 5 J. The total dimension of the
capture basin is equal to the grid size of ẋ0×E.

For N-step capturability, the value of the capture basin R
is determined per initial velocity. For all successive calculated
steps (no falling down), the minimum and maximum output
velocities are stored. This process is repeated for a range of
initial velocities ẋ0 = [−5,5] m/s. Subsequently, per successful
step the minimum and maximum input velocity ẋin are stored.
The 0-step capture basin is determined by any combination
for which the input velocity 0 m/s is. With deduction can be
determined if the system is 1-step capturable or higher. The
value per element in R is given by:

R = N, if

 ẋmaxout ≥ ẋminin

ẋminout ≤ ẋmaxin

, (25)

in which ẋminin , ẋmaxin , ẋminout and ẋmaxout are the minimal and
maximal input and output velocity respectively.

If the output velocities of the step lie within the boundaries
given in equation (25), then value the of the element in R
is updated to N = 1. Subsequently, the next element of R is
calculated for its associated input velocity. If the system is not
1-step capturable, the process is repeated with different initial
conditions. If the system is now capturable, the value of R
is updated to N = 2. In pseudo code, this process looks as
follows:

Select speed ranges:
q0 =[y0 ẋ0] & α0 = [0−π]
→ simulate step
→ select ẋminout & ẋmaxout per ẋin
→ store all ẋminout & ẋmaxout values

Determining Capture Range R:
→ start at n = 0
→ select ẋminin & ẋmaxin from input ẋ0
→ R(ẋmaxout ≥ ẋminin & ẋminout ≤ ẋmaxin) = n

APPENDIX B
STEP LOCATION OPTIMIZATION

The 4-step strategy consists out of three distinct phases:
The first phase is an adaptive step(1), in which the angle of
attack can be chosen such that the upcoming apex has the
optimal state conditions for the beginning of the leap. The
second phase is the leap and consists out of step(2) and step(3).
The distance between the 2nd and 3rd step location is the gap
size to be maximized. The third phase is another adaptive
step(4), in which the angle of attack is chosen such that a
desired end state is reached. In order to determine the largest
gap size possible, an optimization is used to determine the
step locations needed to obtain the maximum gap size. This
appendix describes in detail the optimization process.

The objective of the optimization is to maximize the gap
size, which is the distance between the 2nd and 3rd step
location. In order to maximize the gap size, it is necessary to
calculate the end conditions of four steps and their associated
step locations. The initial condition is denoted with q0, which
is the vector containing the initial energy level and velocity:

q0 =

 E0

ẋ0

 (26)

As the model is described by its energy level and velocity, the
initial height is determined by:

y0 =
E0− 1

2 mẋ2
0

mg
(27)

An angle of attack can be set to make a step, the end state
after making a step is denoted with q1, which is also the input
state for the subsequent step. If the model makes four steps,
the states are denoted q0 to q4 and the associated angles of
attack α1 to α4. The relative step locations can be calculated
with:

x f (i) = ẋi
√

2yi− sinαi + l0 cosαi for i = 0 . . .4 ,

(28)
in which x f i, ẋi, yi and αi are the step location, velocity, height
and the angle of attack of the model respectively. In order to
determine the absolute step locations of the four subsequent
steps, the location of the point mass at the end of each step
has to be added to the relative step location:

x f 1 = x f 1

x f 2 = x f 2 + xCoM
(1)

x f 3 = x f 3 + xCoM
(1) + xCoM

(2)

x f 4 = x f 4 + xCoM
(1) + xCoM

(2) + xCoM
(3)

(29)
in which xCoM

(1), xCoM
(2) and xCoM

(3) are the locations of the
center of mass after the preceding step.

The optimization is implemented using the function
fmincon in MATLAB. The objective to maximize is the gap
size, denoted with f (gap):
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max
x

f (gap) = xend− xstart

xstart = max[x f 1 x f 2]

xend = min[x f 3 x f 4 xCoM
(4)]

, (30)

in which x f 1, x f 2, x f 3 and x f 4 are the step locations of the
associated steps and xCoM

(4) is the location of the point mass
after the 4th step. The location of the point mass is incorpo-
rated in the gap size optimization, as there is a possibility that
the location of 3rd and 4th step location is beyond the location
of xCoM

(4). In such a situation, a subsequent step could be
necessary in order to prevent falling down, at a location before
the 3rd and 4th step location. Then, falling down at xCoM

(4) can
be prevented by setting the angle of attack to π

2 radians. The
gap size is calculated between the first pair of steps and the
second pair of steps. This forces the leap physically to be
between the first pair of steps and the second pair of steps,
but allows the optimization to select the order of steps in any
way if desired.

In order to start the optimization successfully, the input
angles should have a valid solution. The first angle is set to
the capture point, whereas the subsequent angles are set to let
the model hop on the same spot:

αi =
[

αcp
π

2
π

2
π

2

]
, (31)

in which αcp is the angle of attack, which is chosen such
that the input state q0 = [E0 ẋ0]

T is transformed into the end
state q1 = [E1 0]T . The angle αcp to obtain this desired end
state is determined by the means of a separate optimization
implemented in MATLAB using the function fminsearch.

The optimization is constrained by g and h, which are the
inequality and equality constraints respectively:

g(gap) = αi−π ≤ 0 for i = 1 . . .4

= −ẋa4 ≤ 0

h(gap) = |q4−q0| = 0

, (32)

in which α1, α2, α3 and α4 are the allowable angles of attack
for the four subsequent steps, ẋa4 is the velocity at xa4 and q0
and q4 are the begin state and end state of the optimization
respectively.

The inequality constraints are set such that the model puts
its leg in allowable positions during the sequence of four steps
and to ensure that the horizontal velocity at the end of the
sequence is zero or positive. The equality constraint is set
such that the model ends in a desired end state. If the desired
end state is equal to the initial state, than q4 is equal to q0.
However, if the desired end state is hopping with zero forward
velocity, than the end state should be q4 = [E 0]T .

The optimization outputs the four angles of attack necessary
to obtain the maximum gap size, and the obtained gap size.
This process is initiated for energy levels in the range of E =
[1.1 − 3] J and initial velocities of ẋ0 = [0 − 2] m/s with
increments of 0.1 per step.
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Abstract

State of the art running robots can handle small floor height disturbances, but
cannot run over rough terrain. A reason for this is that most running robots
only react to perturbations, but not anticipate to these perturbations. In this
paper, we present an overview about what is known in literature about how
robots and humans anticipate to obstacles. It is known when humans detect an
obstacle, how they adjust their steps and where last foot prior to overstepping is
positioned. However, it is unknown at what moment and how humans start to
alter their stride, but clues are given by long jumping related studies. For robots
are methods available to adjust the step length and to calculate step locations.
Adjustment can be achieved by adjusting gait parameters such as flight phase,
stance phase and forward velocity, or by using an asymmetric gait. Currently
it is unknown what method disturbs the natural running gait the least.
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Chapter 1

Introduction

Almost all current mobile robots use wheels to move around. Wheels provide an
easy to implement and energy efficient way of moving around, but they restrict
robots to flat terrain. Legged robots, on the other hand, have the potential to
handle non-flat or rough terrain, as they can select their ground contact points.

The current state-of-art legged robots are able to run on a flat terrain and they
can cope with small perturbations [1], [2]. However, these robots are not yet
able to run over rough terrain. A reason why these robots cannot handle rough
terrain is that they only react to perturbations, but not anticipate to these per-
turbations. Reacting to a perturbation works well for small perturbations, but
an anticipative action is needed to handle large perturbations.

For robots it is currently unknown how to anticipate to large perturbations. In
this paper, we present a literature study about what is known about how robots
and humans anticipate to obstacles. We study besides robots, also humans, be-
cause human related studies provide useful clues about how to cope with such
a situation. Bipedal robots are studied as they also provide information about
how humans walk, run and anticipate to perturbations.

The goal of this paper is to determine the best method to cope with an obstacle
in the horizontal plane for a 2D running biped, while disturbing the natural
running gait the least.

This literature study will only cover obstacle avoidance in the sagittal plane
(2D) to give the best overview possible of overstepping methods. In order to
understand the goal of this paper, it is important to know what is defined as an
obstacle. Normally one can cope with an obstacle in three ways. The first way
is stepping around the obstacle, the second way is stepping on the obstacle and
the third way is stepping over the obstacle.

7
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In this literature study, the obstacle is defined as having infinite width. Note
this constraint makes motion-planning papers not interesting for this study, as
their focus is mostly about avoiding the obstacle by going around it. Further,
the obstacle is defined as an area in the xy-plane with a variable height, i.e. like
a step-up or a gap. Therefore, the focus will be on stepping over an obstacle.
Figure 1.1 shows a graphical representation of possible obstacles.

Figure 1.1: Graphical representation of two obstacles, showing a gap and a step-
up. The robot is not able to run outside the lane, suggesting the infinite width
of the obstacles.

Chapter 2 discusses the results found in literature for human obstacle avoid-
ance. When a human runner approaches an obstacle, there is a sequence of
acts enabling the human to overstep an obstacle. These acts are divided into
four categories, in order to give a clear overview. Chapter 2 discusses these
categories by section. Chapter 3 discusses the results found in literature for
robots. Obstacle detection for robots is not covered in this literature study, as
this topic has been covered in other studies [3], [4] and suitable methods to de-
tect obstacles are available. Chapter 3 will discuss methods for step adjustment
and footstep locations. Chapter 4 discusses the conclusions of this literature
study and related future work.



Chapter 2

Human Obstacle Avoidance

Introduction

What do humans do when they want to overstep an obstacle or gap? This chap-
ter gives an overview about what is known in literature about human obstacle
overstepping. The information gained from human obstacle overstepping can be
used in the design of a robot obstacle-overstepping algorithm. When a human
oversteps an obstacle, there is a sequence of acts. These acts can be divided
into four categories:

I: Moment of obstacle detection while moving.

II: Position of the last foot prior overstepping the obstacle.

III: Step location planning between the point the obstacle is detected and the
object.

IV: Methods for step adjustment.

In literature, we found several papers about the acts of categories I, II and IV,
but none papers about step location planning, category III. However, we found
a number of papers about step location planning used by long jumpers. The
found papers for each of these categories are discussed in the following sections.

2.1 Obstacle Position Detection

When do humans start to look at an obstacle, and how important is visual infor-
mation for obstacle overstepping? It is shown by Patla et al. [5], that humans
start to gaze at the obstacle in the 4 - 6 meter region when humans approach
an obstacle. Adult humans have a step length of approximately 70 cm [6], and
so the gazing behaviour starts approximately 6 to 9 steps away from the obstacle.

9



10 CHAPTER 2. HUMAN OBSTACLE AVOIDANCE

Is knowing the whereabouts of the obstacle in advance enough to overcome the
obstacle successfully? Patla et al. [7] shows that visual information is impor-
tant to overcome an obstacle. In this study, subjects were allowed to look at the
obstacle in advance, but not during the last 5 or 6 steps. This caused subjects
to trip over or step on the obstacle, hereby showing that visual information
acquired about the obstacle in advance is not enough to avoid the obstacle.

Apparently, humans need more feedback to overstep obstacles successfully. How-
ever, when do humans need to detect an obstacle to achieve a successful over-
step? Regarding their gazing behaviour, humans look at their footsteps prior
overstepping the obstacle according to Patla et al. [8]. Humans look the last
two steps before the obstacle at their feet, to see the relation between their feet
and the obstacle and to ensure no collision between their feet and the obstacle
occurs. Hereby it can be concluded that precise step planning or foot placement
in the approach to the obstacle is not important except for the last two steps.
This is supported by a study done by Mohagheghi et al. [9], which shows that
successful obstacle avoidance is possible provided visual information is available
at least two steps before the obstacle.

Discussion

Patla wrote that people start gazing at an object at a range of 4 - 6 meter and
only fixate on their footprints two steps before avoiding an obstacle. Patla also
states that people really focus on their footsteps the lasts two steps before the
obstacle and Mohagheghi shows that with visual information successful over-
stepping can be realized within just two steps. It can be concluded that one
can start altering their gait, while walking, anywhere between 9 and 2 steps to
successful overcome an obstacle. However, it is shown that the largest changes
are made in the last steps prior to overstepping.

2.2 Foot-Obstacle Position

While approaching an obstacle, where should the last foot prior to overstepping
be positioned? Depending on the obstacle, the optimal position to place the
last foot before the obstacle differs per situation. There are two obstacle pos-
sibilities: (1) the obstacle is an area where one is not allowed to place a foot,
like a gap, or (2) the obstacle has a certain height. Figure 1.1 shows a graphical
representation of both these situations.

In the first situation (1), the location of the foot depends on the size of the gap
or area. In a situation in which the length of the obstacle is overstep-able with
a normal step, than step adjustment might be required. It can be deducted that
the location of the last foot should be as close to the edge as possible. Placing
the foot closer to the edge allows stepping over a bigger gap with a normal step.
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An example can be the ’obstacle’ for long jumpers. For the long jumper, the
goal is to achieve the biggest step length possible. In order to do this, the long
jumper places his last foot on the edge of the obstacle, the bar in the floor [10].
Therefore, if the length of the obstacle is uncertain, but it is known that the
obstacle can be overstepped with a normal step, than the position of the last
foot should be as close to the edge as possible. This improves the chances of
overstepping the obstacle successfully.

In the second situation, if the height of an obstacle is non-zero (2), it is not
preferable to place the foot as close to the edge as possible. To maintain a
smooth gait while crossing the obstacle, the foot is placed further before the
obstacle according to Sparrow et al. [11]. It was found that the crossing dis-
tance, expressed as a percentage of the normalized step length at which the
obstacle is crossed, remains almost unchanged with obstacle height as can be
seen in figure 2.1. The same result is found in a study done by Berard et al.
[12]. For male subjects this is around 80% of the step length, and for female
subjects this is around 75% of the step length, both for their lead leg. Sparrow
also found, that with increasing obstacle height the duration of lifting the leg
over the obstacle increases and the velocity lowers. This can be seen in figure 2.2.

Figure 2.1: Reprint from [11]. Bar crossing distance, for male and female sub-
jects. With crossing distance % per step length.
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Figure 2.2: Reprint from [11]. Stride characteristics for male adults for uncon-
strained walking (UN) and for crossing an obstacle of height 10%, 25% and 40%
of leg length.

Discussion

Sparrow’s and Berard’s studies show that the position of the last foot before
the obstacle, is at a constant distance from the obstacle. However, it is unclear
what happens if the height of the obstacle goes to 0. When the height lowers,
the situation goes from (2) to (1), ending up with an obstacle like long jumpers
have. The result found in Sparrow’s and Berard’s study is in such a situation
questionable.

2.3 Step Location Planning

Although it is known when humans detect an obstacle, at what distance related
to the obstacle do humans start to alter their gait? In order to develop a step
adjustment controller, it can be useful to know at what moment humans start
to alter their gait, and in what manner the gait is altered. For normal running
humans, currently no studies have been done on this topic. However, some clues
are given by studies of step location planning in long jumping.

Lee et al. [10] found that long jumpers divide their run-up to the board in two
phases; an initial accelerative phase, ending about 6 m from the board, and the
second phase, where the jumpers adjust their stride pattern. This matches the
findings of Patla [5], where subjects started to look at the obstacle from about
6 m and subsequently started to alter their stride. It can be concluded that the
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obstacle is detected in the same distant range. Hay et al. [13] show the same
results about the two phases. They also conclude that the last gait adaptions
are done in the last two steps of the run up and that regulating the vertical
impulse is used to achieve step length adjustment.

Montagne et al. [14] showed that the second phase of the long jumper’s approach
was initiated between the 6th and last step. Experiments showed that the
regulation was more often initiated at the second-to-last (22.58%), the third-to-
last (29.03%), or the fourth-to-last step (17.74%). A linear regression analysis
on the amount of adjustment and the step number at which regulation was
initiated showed that the greater the amount of adjustment, the earlier the
regulation was initiated. This can be seen in be seen in figure 2.3.

Figure 2.3: Reprint from [14]. The amount of adjustment (m) as a function of
the step number at which regulation was initated. The linear regression analysis
showed that the higher amount of adjustment, the earlier the regulation was
initiated.

Discussion

The studies done about long jumping, show that long jumpers divide their run-
up in two sections. The second phase is used to alter the step planning to get
the last foot to the edge of the object as close as possible. This phase gives
clues about how human plan their step locations. However, the run-up to a
long jump is different from regular running, as is the goal of the ’obstacle’ to
overcome. It is unclear to what degree the clues found for long jumping can be
compared to normal running step location planning.
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2.4 Step Length Adjustment

According to the previous section it is not known what drives humans to de-
termine their footholds prior to overstepping an obstacle. But what do humans
prefer in adjusting their step length? This section shows that humans do prefer
lengthening their step. This might help to deduct how humans determine their
footholds between themselves and the obstacle.

Patla et al. [15] did a study towards the decision whether to make a longer
step or a shorter one. In this study, lights visually cued subjects, indicating
available stepping positions. It was found that 50% of the subjects responded
by increasing their step length, whereas 30% responded by decreasing their step
length. The success rate was lower for later cueing times and it was lower for
shorter step length than for longer step length. Patla suggests that balance re-
quirements constrain the adaptations that can be made, so it depends at which
moment during the gait the subject would be disturbed. Lengthening does occur
more, however, there are situations where shortening is preferred. Experiments
for both walking and running were done, and the results found were similar.

In order to study alternative step location preferences of humans, Patla et al.
[16] did an experiment where subjects were not allowed to step on a lightened
spot. The subjects were able to see the spot, and step over, or step around
it. There were three major selection methods found: placing the foot in the
plane of progression, choosing to take a longer step over a shorter step, and se-
lecting an inward rather than outward foot placement. During the experiment,
the subjects knew where the object was, and therefore could alter their step
planning to it. Patla proposes that individuals minimize the displacement of
the foot from its normal landing spot. Patla’s proposal describes the possible
positions as vectors, see figure 2.4. The vector starts at the original landing
position of the swing foot, and ends at the possible new position of the swing
foot. This would result that an inward or outward foot placement would be
preferred above step lengthening, because the vector length is shorter. How-
ever, it was found by experiments that step lengthening was preferred above an
inward movement, and it was hypothesized that a movement inwards would cost
more effort than step lengthening. Selecting a step sideways is not relevant for
this literature study, as the obstacle was defined having infinitive width, so this
option is ignored. Furthermore, step lengthening is preferred above shortening,
as shortening requires reduction in the forward momentum of the body.

Step adjustment behaviour of humans about suddenly appearing obstacles has
been studied by Weerdesteyn et al. [17]. In this study, the subjects walked on a
treadmill, schematic diagram of the setup can be seen in figure 2.5. The subjects
were only allowed to step over the object, which was dropped onto the treadmill
in front of the left foot. This forced the subjects to make a decision between
making a long step, or a short step to overcome the obstacle. The choice of
step strategy varied on the available time for response and did not alter the rest
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Figure 2.4: Reprint from [16]. A schematic diagram showing how the magni-
tude of foot displacement from its normal landing spot to four possible choices
can be used to determine the new swing-limb trajectory through vector sum-
mation. Normal swing-limb trajectory is shown as dashed lines. (b)-(d) shows
the three option avoid an obstacle, step lengthening (b), step sideways (c) and
step shortening (d).

of the step strategy. Reaction time on step lengthening or shortening did not
significant differ, but lengthening occurred more. This could be due to that the
momentum causes the body to move on, and performing a counteraction would
take more effort and time.

In order to investigate whether lengthening or shortening of the step has the
preference, Weerdestyn et al. [18] proposed to use the minimisation of displace-
ment theory. This theory states that minimisation of displacement of the foot
from its original landing position has to be the main criterion for the selection of
alternative foot placement. For each trial, it was calculated how much lengthen-
ing and how much shortening of the stride was required minimally for successful
avoidance. This results in a vector, starting from the original landing spot of
the foot to the new landing spot. See figure 2.6. This is the same method Patla
[16] used. With experiments was shown that the behaviour of younger women
was in agreement with the minimal displacement criterion, whereas the older
women would prefer the longer step, even when shortening of the step would
be the more obvious choice. This could be explained by the fact that taking a
longer step over a short step is possibly less destabilizing and could result in
a standstill, whereas a short step could cause tumbling over. This is the same
conclusion that Patla et al. [16] draws. However, this is in contradiction with
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Figure 2.5: Reprint from [17]. Schematic diagram of the experimental setup.
The electromagnet (colored black) is attached to a bridge over the front of the
treadmill. After a trigger from the computer has switched off the electromagnet,
the obstacle falls onto the treadmill in front of the participant his left foot.

the results found by Chen et al. [19], they found that older adults prefer short-
ening their step. Differences could be caused by different experimental setups.
Chen used a band of light, which was always visible. Weerdesteyn used a setup
with a treadmill, similar to a previous study [17], as can be seen in figure 2.5.

Figure 2.6: Reprint from [18]. Calculation of ∆-step-strategy (∆-SS). The dot-
ted stick figure represents the normal landing position. In this example, 20%
shortening or 40% lengthening would be required in order to avoid the obstacle
successfully. The difference between lengthening and shortening (∆-SS) is 20%
in favor of shortening.

Rietdyk et al. [20] studied the modifications in gait parameters for long jump-
ing in several situations. To achieve a single lengthened step, runners decreased
braking and increased push-off during stance, and increased the reach of the
swinging leg. When foot placement was also important for the second subse-
quent step, than the gait parameters were modified in both stance and swing
legs during the first step. If a short step followed the long step, the center of
mass was moved backwards in the first step. With two long steps, the take-off
velocity was increased, while the landing velocity was reduced.
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Discussion

Most studies show that lengthening of the step is preferred to overcome an ob-
stacle. There are some exceptions, but these can be seen as a result of a different
experimental setup, or different initial conditions. The study done by Rietdyk
study shows that altering the step length during running in the approach of a
jump is complex and that several parameters are changed differently depending
on whether or not foot placement is contained in the next step.

2.5 Conclusion

For overstepping an obstacle, the only part that remains unknown is how hu-
mans plan their steps between them and the obstacle. For long jumpers clues
are given about how they alter their steps, but it is unknown to what degree
this is equal to normal running humans. Because of this uncertainty, there is
no conclusive number of control methods. However, two major control methods
can be described. The first strategy involves altering the running gait with the
knowledge of an obstacle being present that needs to be overstepped in a certain
distance range. Altering step planning can start in the range of 6 to 9 steps to
overstep the obstacle. The second strategy will be more drastic, being able to
control the steps in such a way that one is able to overstep a suddenly appearing
obstacle in just 2 or 3 steps. In addition, it should be noted that a transition
moment should be implemented: when to switch between the two methods?

In order to achieve full insight in human obstacle avoidance, actual step location
planning should be studied for walking and running humans. Currently only
clues are given by results found for long jumpers and the preferences of step
length adjustment.
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Chapter 3

Robotic Obstacle Avoidance

Introduction

In this chapter, an overview is given about the methods and strategies known
and used for robots to overcome obstacles. In order to adjust the steps of the
robot to overstep the obstacle, two main questions have to be answered: where
to place the feet of the robot and how to adjust the steps of the robot to get
the feet on the right location. The first section will answer the question where
to place the feet of the robot during its gait. The second section will answer
the question how to adjust the step planning. Each section is followed by a
discussion.

The previous chapter discusses the position detection of the obstacle for hu-
mans. For robots, it is possible to use cameras in order to monitor objects
and pattern recognition programs can be used to gain information about these
objects. The Honda Asimo [21] robot does have a system like this, but also the
robot TULip from the TU Delft [22] features such cameras. Obstacle detection
is not included in this literature study, as this topic has been covered in other
studies [3], [4].

There are two major different walking techniques: (1) Zero Moment Point
(ZMP) walking [23], like the Honda Asimo [21] and (2) dynamic walking. How-
ever, ZMP robots might use interesting methods, so papers regarding ZMP
related methods also taken into account.
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3.1 Step Locations

In the process of letting the robot cope with an obstacle, it is known that detect-
ing of an obstacle is possible. But how to determine where to place the feet of
the robot, in order to get to the obstacle? This section will discuss first where to
place the last foot before the obstacle, followed by methods for foot step location.

In the section about how humans position their last foot prior to overstepping
the obstacle, there are two obstacle possibilities defined: (1) the obstacle is an
area where one is not allowed to place a foot, like a gap, or (2) the obstacle has
a certain height. The same holds for robotic obstacle overstepping.

For obstacles with zero or negative height (1) it is preferable to place the foot as
close to the edge as possible according to Nieuwenhuizen [24]. Nieuwenhuizen
states that the error in distance estimation increases as the distance to the ob-
ject increases. If the length of the obstacle is uncertain, but it is known that
the obstacle can be overstepped with a normal step, than the position of the
last foot should be as close to the edge as possible.

For obstacles with a positive height (2), the step location can be calculated
if the exact location and height of the obstacle are known. Yasar et al. [25]
developed a system to overstep an obstacle with height. They chose in their
experiments to take a full-length step while overstepping an obstacle, even if
the size of the obstacle was smaller. This is because computation of different
stepping trajectories for stepping over obstacles of different sizes would make
the algorithm more computationally complex. For experiments, they used a
ZMP robot, which is able to stop before the obstacle and to balance itself in
double support state before overstepping the obstacle. The algorithm propesed
by Yasar et al. successfully demonstrates a global reactive footstep planning
method with a human-like approach.

Dittrich et al. [26] showed that obstacle avoidance in bipedal robots can be
achieved with sensory feedback and closed loop control. Using a robot based
on the SLIP model with linear leg retraction, periodic stable running was ap-
proached. No information about the location of the obstacle was put into the
system, but by controlling the angle of attack of the leg, hopping over and on
obstacles was achieved. Hodgins et al. [27], [28] showed with experiments, that
they are able to let the robot step on a desired target. Simply put, if the lo-
cation of the obstacle is known, than by backwards calculating it is possible to
determine the footstep locations for the robot. In this experiment, the foot-
step locations were only calculated once, and not iterated. With this method,
successful jumping over obstacles was achieved as well. The distance between
the footstep locations were chosen to be as close to the original running gait as
possible to minimize differences in step length.
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Lewis et al. [29] showed that it is possible to achieve human-like overstep be-
havior over an obstacle by using just a few image samples of the environment
prior to overstepping an obstacle. Patla et al. [30] showed, that humans can
walk with intermittent visual sampling. Successful overstepping depends on the
sampling moment. According to Hollands et al. [31], samples taken when the
foot to be controlled is in stance phase are far more effective in modulating gait
than samples taken in swing phase. For the experiments by Lewis et al., a range
encoder was used to estimate the distance to the obstacle in the last three steps
before the obstacle. By using a learning algorithm, they managed to alter the
gait of the robot smoothly, to overstep the obstacle. It was shown that the step
length of the robot is gradually changed to overstep the obstacle, see figure 3.1.

Figure 3.1: Reprint from [29]. Examples of gait trajectory before and after
learning. The foot goes through the obstacle, as no attempt was made to sim-
ulate the physics of the foot’s collision with the obstacle.

Discussion

The study done by Yasar et al. contained a ZMP robot, which was stopped prior
to overstepping the obstacle. This made it possible to overstep the obstacle in
the most efficient way. However, this method does disturb the natural running
gait completely. If the goal is to overstep an obstacle with 0 height, the foot
can be placed as close to the edge as possible, according to Nieuwenhuizen.

With the methods used by Hodgins et al., it is possible to adapt the running
gait of the robot and to successful overstep an obstacle. However, Hodgins
et al. only calculated the footstep locations once for the robot and did not
iterate it. Humans do not calculate their footstep locations when they see an
obstacle. Therefore, Hodgins et al. method could work, but is far from ’human’.
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The method proposed by Lewis et al. seems promising for the use with a 2D
running robot. An obstacle can be programmed into the learning algorithm, and
it could be tested whether or not it also works for running robots. Simulations
could tell whether this would work with a dynamic robot.

3.2 Step Adjustment Methods

In order to overstep an obstacle, the robot needs to adjust the length of its step.
However, how is step length adjustment achieved? This section will discuss the
methods available for step adjustment. The focus is on step lengthening and
shortening, as these are the only possible options to overstep the obstacle of
infinitive width.

A method used to achieve different step lengths is proposed by Yagi et al. [32].
They proposed a control strategy for a ZMP robot that made it possible to avoid
obstacles by going around, over, or stepping on them. The strategy consists out
of several preprogrammed solutions like different step lengths that are stored
and used to achieve the optimal position to avoid the obstacle. Although the
ZMP robot used for experiments is successfully able to deal with scenes and
unknown obstacles, it is not known if preprogrammed solutions work for a dy-
namical walking robot.

For dynamic running robots, Hodgins et al. [27] proposed three methods to con-
trol step length: adjusting the duration of flight phase, the duration of stance
phase, or variation in the forward velocity, see figure 3.2 for a graphical re-
presentation. Experiments showed that adjusting flight duration and adjusting
forward velocity, produce similar accuracy in following a pattern of footholds,
but that adjusting forward velocity allows a greater range of step lengths. Fur-
thermore, it was found that changes in stance duration are not large enough to
produce a large change in step length.

The step length can also be controlled by the use of an asymmetric gait, ac-
cording to Dunn et al. [33]. In an asymmetric gait, the two legs have a different
gait. In order to achieve smooth walking (where smooth walking is defined as
v− = v+, see figure 3.3), they developed an algorithm being able to control the
walking speed as a function of the step length. The basis of the algorithm is an
asymmetric gait to adjust walking velocity combined with a set of conditions
on the leg lengths. The algorithm is able to track independently 30% change in
desired walking velocity and a 25% change in desired step length, while main-
taining smooth exchange of support.
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Figure 3.2: Reprint from [27]. The top drawing portrays a normal step. The
three other drawings show longer steps produced by the three methods for ad-
justing step length. The second drawing has an extended flight phase, the third
an extended stance phase, and the fourth an increased forward velocity.

Discussion

The method proposed by Yagi et al. with preprogrammed solutions seems logical
for ZMP robots, as their computations are complex. For dynamic walkers it is
the question whether or not this is the optimal solution. Dynamic walkers have
due to their control technique often different initial conditions prior to their
next step and preprogrammed solutions could result in a non-stable gait. The
methods proposed by Hodgins et al. and Dunn et al. seem usable. A possible
combination of both methods might lead to flexible and usable solutions in
adjusting the step length. Experiments in simulations and on the real robot
should give insight in this. It should be noted that both experimental robots

Figure 3.3: Reprint from [33]. During single support, the hip follows the arc
of a circle with radius equal to the stance leg length. At exchange of support,
there is an instantaneous change in linear velocity of the hip. In order to achieve
smooth walking, vector v− should be equal to vector v+, which is not achieved
in this figure.
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used by Hodgins and Dunn feature legs without knees. If these methods work
on kneed robots is currently unknown.

3.3 Conclusion

Successful overstepping of an obstacle is theoretical achievable. The location of
the last foot prior to overstepping depends on the obstacle and step length ad-
justment is achievable by altering the gait parameter of the robot. Whether the
methods proposed by Hodgins et al., the method proposed by Dunn et al., or
a combination of both are favored could be decided by the means of simulation
or experiments. The footstep locations can be calculated, and therefore suc-
cessful overstepping is possible. Human-like footstep planning can be achieved,
although it is not known how humans exactly plan their foot steps. However,
the study done by Lewis gives a useful clue in how humans would act in order
to overstep an obstacle.
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Conclusion

This literature study gives an overview on what is know about how humans
and robots overstep obstacles. In order to develop a step planning controller
for a 2D running robot, available methods are compared and tested whether
they match with the goal of this study, which is to determine the best method
to cope with an obstacle in the horizontal plane for a 2D running biped, while
disturbing the natural running gait the least.

It was found that humans detect an obstacle in the 6 m region, and from that
point they are therefore able to adjust their step planning. However, when hu-
mans exactly start to alter their gait, and how, is currently unknown. For long
jumpers clues are given about how they alter their steps, but it is unknown
to what degree this is equal to normal running humans. Long jumpers make
their final adjustments mostly in the last two steps of the run up, by controlling
their vertical impulse. This gives insight in when humans adjust their steps,
but no exact results are known as no studies have covered this topic. Because of
this uncertainty, there is no conclusive number of control methods. This makes
it therefore impossible to develop a step length controller for a robot which is
inspired on human behavior. For step length adjustment, it is shown that step
lengthening has the preference, although shortening does occur.

For robots is it possible to create a controller, which is able to adjust the gait of
the robot in such a fashion that the robot can overstep an obstacle. Obstacles
can be detected or can simply be programmed in the control algorithm. Step
adjustment and planning can be realized by the methods proposed by Hodgins
and Dunn. In simulations can be experimented in to what degree the methods
match the research question by disturbing the natural running gait the least.

But does any relation exist between current studies about human and robotic
obstacle overstepping? In experiments done by Hodgins et al., the robot started
to alter its gait 5 m in advance of the obstacle. This matches results found by
Patla et al., where subjects started to gaze at an obstacle in the 4− 6 m region
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and subsequently started to alter their gait. However, Hodgins et al. did a
backwards calculation to determine equal step lengths for the robot, while for
humans it was found that humans mostly make their final adjustments in the last
two steps. So obstacles can be overstepped, but the method used by Hodgins
et al. is not human-like. The method used by Lewis et al. does provide an
iterative adjustment method, which seems more human-like, but this method
was not tested for running nor dynamic walking robots. Information about step
location planning and step adjustment methods is provided in studies about
long jumping, however it is not known to what degree this can be compared to
normal human running. Therefore it can not be said if this information can be
used to determine the best method to cope with an obstacle in the horizontal
plane for a 2D running biped, while disturbing the natural running gait the
least.

4.1 Future work

We would like to recommend that actual step location planning for humans
should be studied. This is in order to develop a controller to achieve successful
step location planning in a human-like way. Furthermore, it should be studied
to what degree the run-up and the adjusting behavior of long jumpers can be
compared to normal running and adjusting of humans.

The step length adjustment methods proposed by Hodgins et al. and Dunn
et al. should be tested whether or not they perform well on kneed robots.
Furthermore, combining the proposed methods might lead to flexible controllers,
although this has not be done yet. In the introduction was mentioned that a
measure should be found to compare initial running gait with the adapted gait
for overstepping the obstacle. This measure needs to be found, in order to
determine the best step length adjustment method.
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