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ABSTRACT

Traditionally, prognostics approaches to predictive maintenance have focused on estimating the remaining
useful life of the equipment. However, from an industrial point of view, the goal is often not to predict the
residual life but to determine the need for a maintenance action at a given time window. This approach
allows us to frame the data-driven prognostics problem as a binary classification task rather than a regression
one. To address this problem, we propose in this paper to explore the relative strengths and limitations of
a set of classifier approaches such as random forests, support vector machines, nearest neighbors, and deep
learning techniques. We evaluate the models using metrics such as sensitivity, specificity, accuracy, receiver
operating characteristic curve, and F-score. This work’s novelty lies in adopting a modeling approach with
a natural probabilistic interpretation of the prognostics exercise. The comparison of an extensive range of
classifier models is performed on two real-world datasets from the aeronautics sector. Results indicate that
deep learning classifier methods are well suited for this kind of prognostics and can outperform by a significant
margin the traditional classification techniques. Importantly, the proposed modeling approach aims to generate

an alternative prognostics representation that goes in line with the expectations of aeronautical engineers.

1. Introduction

There have been several definitions of prognostics [1], each allud-
ing to their specific industrial context. For instance, in the case of
unmanned aerial vehicles (UAVs), the definition of prognostics relates
to the estimation of the end-of-charge or end-of-life of the equipment
based on the state of health (SOH) assessment [2]. Seemingly, in the
field of structural health monitoring, prognostics relates to damage
progression, such as crack growth in civil infrastructure [3]. In the aero-
nautics sector, prognostics deals with health monitoring information to
predict the onset of failures of the many components and subsystems of
avionics and aerospace systems [4]. Often, and in many of these fields,
prognostics is used intertwined with the idea of Remaining Useful Life
(RUL) [5-8]. The concept of RUL is defined as the usage life of a
system or component, measured in usage units (e.g., calendar time,
usage time, number of cycles), at a given instant in time. Sankararaman
and Goebel [9] provide a formal definition of the concepts of RUL and
end-of-life.

Importantly, the RUL and the remaining Time To Failure (TTF) are
not necessarily the same concepts. These concepts depend on how the
end-of-life is expressed [9]. For example, in aviation, the end-of-life
may be the point where the system reliability has degraded from “six-
nines” to “three-nines” and requires a preventive maintenance action.
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In contrast, the remaining TTF refers to when the system no longer
meets its functional specifications or design standards.

Notwithstanding the importance of RUL prediction, in the industry,
it is often more relevant to perform fault detection, i.e., to identify if
a fault or anomaly is going to happen in the next few days than to
perform RUL estimation. Fault detection differs from RUL estimation
in that it involves the setting of a time window and the binary classi-
fication of failure within that moving window. The goal of these two
approaches is fundamentally the same: to signal the end-of-life before
it occurs [10] and they are both in the field of prognostics. We concur
with [11] that the definition of prognostics is essentially the science of
making predictions about engineering systems.

The field of RUL estimation is well established [12,13] and there
are many evaluation instruments [14,15]. The field could, however,
benefit from the development of methodologies to understand the
impact of RUL estimation on the maintenance processes [16]. Adding
industrial interpretability to RUL estimates could significantly improve
their understanding and overall acceptance. In this paper, we aim to
address this issue by exploring how to perform fault detection.

This work aims to assess the performance of classification methods
using traditional metrics from machine learning and to discuss the
merits and limitations of these methods. Enhanced interpretability and
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more natural handling of the uncertainty of the estimates are the
two main advantages of the proposed approaches. We argue that the
categorical label proposed in the paper is an interpretable outcome that
responds to the needs of most industrial maintenance cases in aeronau-
tics. We claim that by generating probabilities instead of deterministic
RUL estimates, the proposed models can better handle the uncertainty
of the prognostics exercise.

In this work, we frame the problem of prognostics as a classification
task in which the goal is to estimate, at each prediction step, the
probability of the need for a maintenance action in the next time
window of length d using the discrete sequence of observations up to
the current time. The goal is to compute at each time the probability
distribution of a fault event in a future prediction window. To achieve
this goal, we compare a set of representative classifier models.

We take a data-driven approach to the prognostics exercise. The
models proposed do not rely on an explicit representation of physical
phenomena but capture damage patterns from historical data using ad-
vanced statistical and machine learning methods. Data-driven methods
such as the ones used (Naive Bayes, random forests, support vector
machines, neural networks, etc.) have the advantage of adapting to
different problems with more ease than physics-of-failure models. These
latter models are built on physics equations that describe the equipment
behavior and require adjusting the equations for each new case study.
This dependence on a physics-of-failure description is not necessary
for machine learning models. They optimize the relationship between
sensor data and the state of the component or system using data and
statistics. These approaches “learn” a specific task without having to
be coded explicitly for it.

The tested data-driven approaches include the models of K-Nearest
Neighbors (KNN), Gaussian Support Vector Machines (GSVM), Random
Forests (RF), Multi-Layer Perceptron (MLP), Gaussian Naive Bayes
(NB), and advanced models relying on Deep Recurrent Neural Net-
works (RNNs). We also compared these approaches against the baseline
models of the frequent, uniform, and stratified classifiers.

Grid search and evolutionary search are used to optimize the pa-
rameters of the algorithms. We also use signal processing and feature
engineering techniques such as Principle Component Analysis (PCA).
In addition to the classical classifier methods, we explore three deep
learning RNNs: the standard network [17,18], the state-of-the-art Long-
Short Term Memory (LSTM) network [19] and the more recent Gated
Recurrent Unit (GRU) network [20].

The novelty of our work lies in the use of the classification approach
to the problem of prognostics, with a comprehensive comparison of
models on two real-world industrial case studies, both involving large-
scale datasets from the aeronautics sector: (1) one describing the dam-
age progression of a critical component from a modern gas turbine
engine and (2) another describing the reliability of the engine. Note the
difficulty and the value of obtaining results on real-world datasets from
the aeronautical sector. It should also be noted that, from an industrial
point of view, the ability to anticipate the occurrence of a failure in a
future time window allows for more efficient planning of maintenance
actions.

The remainder of this paper is organized as follows. Section 2 re-
views related work. Section 3 describes the approach and classification
models. Section 4 presents the two case studies. In Section 5 we provide
a detailed treatment of the two real-world datasets, which are used to
establish the validity of the results. Finally, conclusions and future work
are addressed in Section 6.

2. Background

This section reviews previous work and starts in Section 2.1 with a
general overview of remaining useful life (RUL) prognostics. Section 2.2
reviews works that have also used classification methods to estimate
system health degradation. Along with the text, we introduce some
formal notation and essential concepts.
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Fig. 1. Taxonomy of prognostics approaches. We distinguish between prognostics based
on remaining useful life prediction and fault detection. Remaining useful life prognostics
focuses on estimating remaining useful life given health monitoring information
(features and conditions) up to the prediction time. Fault detection consists of detecting
a prognostics event. It is related to disciplines such as anomaly detection and machine
learning classification.

2.1. Remaining useful life estimation

Remaining useful life (RUL) models can be classified into model-
based, data-driven, and hybrid methods [16]. Model-based methods
exploit domain knowledge of the system and its failure mechanisms [6,
21]. Data-driven approaches, rather than relying on system and domain
knowledge to predict the RUL, use large amounts of sensor data to
train algorithms that aim at capturing degradation trends [22]. Hybrid
modeling combines data-driven and physics of failure techniques.

In data-driven RUL estimation, the problem of capturing the onset of
failure can be seen from two major perspectives (see Fig. 1). The first fo-
cuses on direct RUL estimation. This form of prognostics is particularly
efficient when enough run-to-failure data be used can extrapolate the
RUL estimates from the set of sensor readings. The second perspective
consists of the development of a health index. By health index, we mean
a health indicator describing the system’s current condition [14]. In this
approach, the RUL is predicted in two steps: (1) first from sensor signals
to health index, and then (2) mapping the index to RUL. We review a
few works on each of these topics to establish a basis for comparing
this work and previous contributions.

In data-driven direct RUL estimation models, algorithms learn the
relation between the sensor data and the end-of-life point directly.
There are a few published works [1,23,24] that follow this approach.
The drawback of using these methods is that in the face of missing
data, the extrapolation mechanisms of the algorithms may lead to
significant performance errors [25]. Several transfer learning strategies
have been used to improve the prediction accuracy of the RUL, such
as [26,27]. Also, to address the lack of run-to-failure data, simulation
data from a dynamic model has been shown to help improve the
modeling accuracy [28].

The problem of predicting a health trajectory proceeds in two
steps. First, estimates are made on the health monitoring domain. The
trajectory may take a non-linear form to better capture damage evolu-
tion over time, with the end-of-life being reached when the predicted
trajectory goes beyond a predefined threshold. This methodology has
the advantage of being easier to interpret. Health index prognostics is
a popular approach in the data-driven community with works of note
such as in [29-31].
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2.2. Fault detection

In the context of prognostics, fault can be defined as any change
in the nominal operation of a system that makes it unable to perform
its function satisfactorily or unavailable to meet its functional require-
ments [32]. The concept of fault is often used interchangeably with the
idea of failure. In this paper, we interchangeably use both concepts.

Some authors refer to fault detection as determining the source of
the problems after a fault has been detected [33]. This process occurs
when there is the need to diagnose and isolate the faults of the system.
In this paper, we refer to fault detection as the predictive exercise
before fault isolation that involves using anomaly detection or machine
learning classification techniques to indicate the eminence of failure.
The difference is that in fault diagnostics, detection concerns which
fault has occurred, while in prognostics, fault detection concerns if a
fault is set to happen.

In general, anomaly detection focuses on discovering patterns in
the data that do not conform to expected normal behavior [34,35].
In prognostics, anomaly detection can be defined as the process of
developing evidence to reject the null hypothesis that the component
is nominal. Early detection of anomalies can translate to significant
future actionable insights. Despite the advantages of this approach,
the nature of the data, availability of labeled data, and the type of
anomalies to be detected can make this approach challenging.

An important contribution to anomaly detection in prognostics is
the work in [36], which proposes a neural net anomaly detector to
predict faults and other off-nominal operations that were not antici-
pated nor found before. An application in the military aviation sector
is used to validate the approach. Other works of note include the
work of Ellefsen et al. [37] who used spectral anomaly detection com-
bined with a variational autoencoder to detect faults in autonomous
ferries. Jin et al. [38] proposed a moving window-based statistical
test to detect anomalies in bearing data. Zhang et al. [39] compared
different statistical methods to isolate rare events that may affect how
the equipment condition evolves in time.

Classification models are not standard practice in prognostics, but
these could significantly help tackle important industrial problems.
Several contributions are of mention. Ramasso et al. [40] propose an
approach based on case-based reasoning and belief functions to predict
an observation trajectory and classify the trajectory onto several dis-
crete degradation modes. Importantly, the work required the training
of a classification model to distinguish among the different states. These
states were then used to predict the RUL of the equipment.

Javed [41] proposed using classifier techniques to assess the health
state of engineering systems. The goal here is to cluster data into
homogeneous groups in which intragroup similarity is maximized, and
intergroup similarity is minimized, resulting in compact and separate
clusters. Based on distance metrics, data are assigned labels correspond-
ing to the closest cluster’s discrete state, and the RUL is estimated when
the transition from degrading to faulty condition occurs. This approach
is different from ours in that we aim at classifying fault and no-fault
states.

Another work of note is the one of Patil et al. [42]. The authors
propose a two-stage prognostics model in which a gross RUL estimation
is made on the first stage using a classification technique. In the second
stage, a regression technique is used to estimate a more accurate
RUL prediction. Other contributions that follow the same modeling
approach are in [43,44].

Note the difference between the previous approaches and the pro-
posed work. Our approach is based exclusively on classification meth-
ods from machine learning. We address how to map sensor data into
two classes that can support maintenance planning and scheduling
decisions. Here, the degradation processes are classified using a binary
label: the label is set to one if a maintenance action is required in
the next time window of size d, or set to zero, otherwise. The authors
believe that this study is one of the most extensive and comprehensive
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efforts in the field that uses real-world data obtained from two different
original equipment manufacturers in aeronautics. The connection with
the industrial mindset is another significant and relevant contribution
of this paper to prognostics and health management, and aeronautics.

3. Methodology

The problem of fault detection consists of detecting a future health
event of a system or component. In this section, we formally define
the problem of fault detection. We then describe a general data-driven
approach to prognostics. We briefly review the selected models and
describe the performance evaluation metrics.

3.1. Problem formulation

We assume the fault detection system can be described by:

y(@) :f(x(tP)”P:md) _ {O,

1, otherwise

if fault € [tp,1p, 4]

€9)

where tp € R is the continuous time variable with P being the current
time index, x(tp) € R"~ is the feature input vector, tp. p,, is the future
prediction interval of size d, f(.) is the classification function, y(f) € R"»
is the binary outcome vector. This representation considers a general
classification model with no restrictions on the functional form of the
function f(.).

Prognostics is framed as a classification task in which the goal is to
estimate at each prediction time 7, the probability of a health event in
the next time interval using the discrete sequence of observations up to
time 7, denoted as x.,,. The interest is not directly on the end-of-life
of the equipment, but on the need for a corrective intervention in the
prediction interval p. p, ;. We formally express the variable of interest
as the outcome of the function f(.) where f(.) is function of the system
state x(tp), and interval of prediction tp. p, ;. Concretely, the function f
estimates the need for a maintenance action, when f (x(t p)ip.p +d) =1
and zero otherwise.

Since many sources of uncertainty can influence prediction, rather
than a zero or one output, the fault detection system computes at each
time 7p, the probability distribution of the random variable X = Fault
in the interval [tp, Ty, ,]. The goal is therefore to compute, at time 7p,
a probabilistic outcome from function f(.). The resulting probabilities
are transformed into binary states (close/far from the end-of-life) with
predefined thresholds. These thresholds are determined such that the
generated receiver operating curve (ROC) in respect to the window size
(d) parameter has the maximum area under the curve. When above the
threshold, predictions are considered to belong to class 1 (close to end-
of-life), or else, they belong to class 0 (far from the end-of-life). The
higher the probability, the more likely it is that the failure event will
occur soon. The lower the probability, the more likely it is that the
equipment is far from its end-of-life.

3.2. Prognostics architecture

We follow a data-driven approach, wherein machine learning meth-
ods are used to extract actionable insights from data. The architecture
consists of two sequential phases, as illustrated in Fig. 2:

+ Offline phase: in the offline or training phase the goal is to
construct the model f from data that can capture the evolution
of damage over time. The relation between the extracted informa-
tion x(7) and the classification labels y() is characterized in order
to predict future fault events.

Online phase: in the online or testing phase the model f outputs
the probabilities of the binary labels y(rp.,, ) for each set of
input features x(¢p).
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Fig. 2. Fault detection architecture. We use a supervised fault detection architecture that proceeds in two steps. In the first step, offline signals and past run-to-failure data are fed
into a machine learning classification algorithm such as support vector machines or K-nearest neighbors to generate a model f(.). In the second stage, online signals are processed
to detect future fault events. A pre-processing step can take place for both stages to improve the input signals, such as Principal Component Analysis (PCA) or general statistical

functions.

The purpose of the offline or training phase is to learn a mapping
between the data representing the evolution of damage and the binary
outcomes (labels). Before the mapping, feature extraction is used to
convert each sensor readings group to a feature set. This stage consists
of the feature extraction module shown in Fig. 2. Statistical techniques
such as kurtosis, skewness analysis, and the feature reduction method
of Principal Component Analysis (PCA) are considered in this module.
Other techniques can be applied without loss of generality. This task
of feature extraction can be simplified in deep learning classifiers.
When utilizing these methods, more complex features/predictors can be
learned from data automatically [45]. This characteristic is beneficial
in our case, where performance is dependent on the quality of the
predictors and feature engineering is non-trivial.

Another important step of the offline phase is the extraction of the
classification labels y(¢) from the run-to-failure data. As shown in Fig. 3,
this task is performed by first calculating for each time 7, the true RUL
as RUL =ty —1p- Then, the RUL of each 7, is mapped into a label of
zero or one using a threshold d. If the RUL is below threshold d then the
label is one. Otherwise, it is zero. In this way, a label of one indicates
that a fault event will occur in the window [7p,?p, 41

y(0) = {1’ froL ~1p <d @

0, otherwise

The labeling threshold d is the time limit at which the binary classi-
fication label changes from zero to one. When the label is zero, the
equipment is far from the end-of-life, and a maintenance action is not
needed. When the label is one, the equipment is close to the end-of-
life, and a maintenance action is required within the following time
window of d days. This is a new approach to prognostics that follows
the industrial procedures in commercial aviation.

Note that the labeling threshold is different from the thresholds used
in works such as [46-48]. In those works, cut-off values are applied
to multidimensional sensor data (or to a health index) to determine the
end-of-life of the equipment. In this paper, we use direct classification
methods.

The labeling threshold d should be small but not as small as to
generate an imbalanced dataset. Note that as d increases, the larger
the prediction interval [7p,7p,,] becomes, and the more positive labels
are included in the dataset.

After feature and label extraction, the feature sets, which capture
the basic information about each input, and the labels, which classify
the input set in close or far from the end-of-life, are fed into a machine
learning classification algorithm to generate model f(.). This step com-
pletes the offline phase. The same feature extraction module is used

to convert unseen inputs to feature sets during the following online
phase. These feature sets are then fed into model f(.), which is used
to map the input into class zero, indicating that the equipment is far
from its end-of-life and does not require a maintenance action within
a d time horizon or into class one, indicating the opposite. In addition
to this classification, the model provides the probability (uncertainty)
associated with the prediction.

3.3. Fault detection models

The relevant features extracted from sensor signals can be used
for fault prediction by applying a non-linear pattern classifier. In this
work, we selected five classifiers and three variations of a deep recur-
rent neural network classifier. The selected classifiers are K-Nearest
Neighbors (KNN), Random forests (RF), Naive Bayes (NB), Gaussian
Support Vector Machines (GSVM), Multi-Layer Perceptron (MLP), and
three versions of deep Recurrent Neural Networks (RNNs): the stan-
dard Recurrent Neural Network (RNN), the Long-Short Term Memory
(LSTM) and the Gated Recurrent Unit (GRU). Please note that we only
experiment with deep versions (more than one layer) of recurrent neu-
ral networks. To emphasize this fact, we refer to the used architectures
as DSRNN, DLSTM, and DGRU.

3.4. Performance metrics

A considerable number of performance metrics have been proposed
for the field of prognostics [14]. Most of these metrics are, however,
specific to regression models, such as root mean square error or relative
accuracy [49], as the goal of prediction is typically the remaining useful
life (RUL). For this case, however, general-purpose evaluation metrics
for classification algorithms were used. The most commonly used ones
are built from a confusion matrix [50]. Table 1 presents the traditional
confusion matrix for a 2-class classifier [51]. In our case, we define
True Positive (TP) as a correctly predicted abnormal condition (fault)
and a True Negative (TN) as a correctly predicted normal condition
(no fault). In contrast, False Positives (FP) and False Negatives (FN)
are defined as false predicted abnormal and false predicted normal
equipment condition. The classification performance is measured based
on sensitivity, specificity, precision, accuracy, recall and F-score, which
are given by [52]:

TP
Sensitivity/Recall = ———— 3
ensitivity/Reca TP+ FN 3)
TN
S ficity = ———— 4
pecificity TN+ FP 4
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Fig. 3. Label extraction performed during the offline (training) stage. Classification labels are extracted from run-to-failure data using a threshold based approach. First, for each
time ¢, the remaining useful life (RUL) is calculated as RUL =Ty, —1p. A threshold d (set arbitrarily at 75 in this example) is used to classify each measurement in class zero

or one.
Table 1
Confusion matrix representation.
Actual Predicted
Negative Positive
Negative True negative (TN) False positive (FP)
Positive False negative (FN) True positive (TP)

Precision = _Trr 5)
TP+ FP

TP+TN
TP+ FP+TN+FN
2 X precision X recall

F-Score = 7
precision + recall )

Accuracy

©

Sensitivity or recall relates to the ability of the system to predict
fault events correctly. In contrast, specificity relates to predicting the
negative class correctly, that is, to assess that the equipment will be
operating still far from its end-of-life. Precision is a function of true
positives and false positives. Accuracy is the correct classification ratio
of normal and abnormal samples. F-score is a measure of an evenly
balanced precision and recall.

Receiver Operating Characteristic (ROC) analysis is an evaluation
method from statistical decision theory to compare and measure classi-
fication performance. It captures the relationship between the fraction
of true-positive samples (sensibility) and the fraction of false-positive
samples (1-specificity) as the decision criterion changes [53]. The Area
Under the ROC Curve (AUC) is a helpful index for measuring the
classifiers’ performance.

4. Case studies

This work is based on two real-world case studies from the aero-
nautical sector: one related to a gas turbine engine (DS-1) and another
specific to a critical valve-subsystem of the engine (DS-2). These two
datasets were obtained as part of a collaborative effort with two orig-
inal equipment manufacturers from aeronautics. The manufacturers
were responsible for collecting the data. A detailed description of the
datasets can be found in references [54-57]. In this section, we only
provide an overview of the data.

Regarding dataset DS-1, the data describe the performance of gas
turbine engines over approximately ten years. Each measurement con-
sists of a multidimensional signal taken at three different flight phases:

take-off, climb, and cruise. Overall, these multidimensional time se-
ries represent 3GB of data. These data consisted of one single cruise
snapshot per flight. In addition to the monitoring data, dataset DS-
1 comprises information about the engine overhauls. An overhaul is
a comprehensive engine inspection that involves removing and disas-
sembling the system, testing all its sub-systems, cleaning and replacing
parts as needed, and then reassembling the engine [58]. Both fixed-
interval and condition-based interventions are considered in dataset
DS-1.

Dataset DS-2 describes the reliability of engine bleed valves. These
valves are critical systems of the air management system of the air-
craft [59]. Primarily due not to the valve itself but to the complexity
of the system where the valve operates, it is not easy to recognize
faults and failure patterns [54]. We study the unscheduled removals
recorded between 2010 and 2015 for commercial aircraft of 3 airlines.
By removal, it is meant a maintenance and repair action where the
equipment is removed from the airplane and restored to its original
condition or replaced by a new or repaired unit. In addition to the
valves’ removal times, dataset DS-2 comprises 100 GB of data collected
from aircraft sensors. These data, recorded with a sampling frequency
of 1 Hz, contain monitoring information of the bleed system and
environmental conditions during flight.

Given the large volume of data on DS-2, the dataset is submitted to a
pre-processing stage. The functions shown in Table 2 [60] are applied
on equal-size time segments to produce the time domain features of
the models. Four functions (p,, p3, p4, p;) were used to capture the
amplitude and energy of each signal while the remaining ones reflect
the distribution of each signal over the time domain.

5. Results

In this section, we empirically evaluate the performance of the
proposed models. Details about the experimental setup are provided,
and results are presented and subject to discussion.

5.1. Research question

The goal of our experiments is to show the effectiveness of the
proposed classifier approach to prognostics. The research hypothesis of
the paper is the following:

H1: Classifier approaches to prognostics can be used as effective
means to predict fault events.
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Table 2

Pre-processing functions of dataset DS-2. Each sensor signal s(r) of dataset DS-2,
recorded with a sampling frequency of 1 Hz, was subject to different pre-processing
functions to generate the input features of the classification models..

Feature Description Equation
. 1 k -
P Average amplitude R Yy s) ]
ke \ ©
P> Standard deviation (Z:‘(,j(# ) :
'
3 Root mean square amplitude ( Y(l)z)
Ps Squared mean root abs amplitude ( ,—| |s()|2 )
. . . s(D)=p,
s Kurtosis coefficient Z (E o ')
- Z,‘:,(m)—py)’
P Skewness coefficient ST
2 Peak value max |s(i)|
Py Peak factor l’%
s
Po Margin factor ﬁ .
y
Waveform factor
Pio < E - \s(')l
Impulse factor
P P T Z 1 \\(')I
0.85
0.80
__or5
S —— KNN
z GSVM
e 0.70 RF
a MLP
S 065 i
2 DSRNN
2 DLSTM
£ os0 DERY
055
I e e
0 20 40 60 80

Time window (d) in days

Fig. 4. Area under the Curve (AUC) shown as a function of the window size d for
dataset DS-1.

The following sections present the results of testing and comparing
different classifier algorithms on dataset DS-1 and dataset DS-2. First,
AUC performance is shown as a function of the window size d to
demonstrate the classifiers’ performance for different prediction inter-
vals. Second, we evaluate the models quantitatively according to the
metrics in Section 3.4. Third, the algorithms’ performance is shown for
a set of randomly selected samples to give a qualitative idea of how
they forecast a health event.

To support this hypothesis, we propose to compare a set of classifier
models. Concretely, we empirically evaluate the performance of K-
Nearest Neighbors (KNN), Random forests (RF), Naive Bayes (NB),
Support Vector Machines (SVM), Multi-Layer Perceptron (MLP) and
three versions of deep Recurrent Neural Networks (RNNs), namely the
standard RNN, the Long-Short Term Memory (LSTM) and the Gated
Recurrent Unit (GRU). More details about these models can be found
in [61]. As baseline models, we choose classifiers that make decisions
based on simple rules: the uniform random classifier, the stratified
classifier, and the most frequent item classifier. The random classifier
generates predictions uniformly at random. The stratified classifier
draws predictions from the training set’s class distribution. The most
frequent classifier predicts the most frequent label in the training set.

5.2. Area Under the Curve (AUC) analysis

Figs. 4 and 5 illustrate the Area Under the Curve (AUC) performance
of the classifier algorithms for different values of parameter d. The
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Fig. 5. Area under the Curve (AUC) shown as a function of the window size d for
dataset DS-2.

parameter d sets the size of the prediction window, i.e., the days in
advance that the algorithm should alert the occurrence of a health event
of interest, an engine overhaul (DS-1), or a valve removal (DS-2). For
example, if d = 10, ten days before the health event, the algorithm
should signify the occurrence. The range of the d parameter varied
between zero and the maximum prediction window that made sense
for each dataset: a value that allowed maintenance staff to intervene
with some planning time in advance but not too large as to promote
too soon maintenance actions. Maximum acceptable window sizes of 80
days and 40 days were set for DS-1 and DS-2 datasets, respectively. This
configuration resulted from the time between engine overhauls being
as long as four years for dataset DS-1 and one year long for the valve
removals in dataset DS-2.

From Fig. 4, it can be seen that the AUC performance of the
traditional classifier methods of KNN, GSVM, RF, MLP, and NB is
approximately the same over the range of the parameter d for both
datasets. For all values of d, the mentioned classifiers’ performance
is around 0.50, which is equal to a random classifier’s performance.
Such low AUC values indicate that traditional classifiers could not
distinguish between the two degradation states in the tested dataset
(DS-1). The referred models performed poorly, with none showing
better results than the other.

The results on dataset DS-2 were similar to the ones on dataset DS-
1, but for d € [0, 10[, results differed. These shorter intervals leave the
least space for imprecision as to when the removal will happen. In the
case of DS-1, the models show the same performance for this interval
as for other values of d (0.50). However, in DS-2, it seems easier for
traditional models (except the GSVM) to identify health events on these
shorter intervals. This result might indicate a more evident degradation
pattern on the interval of zero to ten days before the valve removal,
less precise for other time windows. This assumption is supported by
the fact that experts usually look at a window of 10 days to make a
removal decision.

As shown in Fig. 4, the deep recurrent neural network classifiers
of DSRNN, DLSTM, and DGRU exhibit performance superior to that
of a random classifier for the considered range of d values — the
discriminative ability of the models is acceptable for most values of
d in DS-1. For dataset DS-1 and after d = 20, the deep models show
acceptable AUC values ranging between 0.69 (lowest value at d = 44)
and 0.84 (highest value at d = 20). Please note that for d < 20,
all models show significantly low AUC values. This finding may be
explained by the fact that the dataset is too unbalanced with such low
d values, i.e., negative samples outnumber the positive samples. After
this analysis of the AUC with the d parameter, we selected d = 30 as
the value of interest for dataset DS-1. This value allows for acceptable
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algorithmic performance and gives enough time to arrange for the
following maintenance action.

For dataset DS-2, we can see a trend different from dataset DS-1 for
the deep models. Here and as show in Fig. 5, the AUC of the DSRNN,
DLSTM, and DGRU tends to decrease until reaching its lowest value for
d = 15 and then tends to increase again. Once again, this trend can
be explained by the fact that it may be easier to discern fault events
for smaller prediction windows (d < 15). The desirable window of
prediction for valve removal, from an industrial standpoint, is around
10 and 30 days. Taking this into consideration, we selected d = 10 for
our experiments in dataset DS-2. This choice was made to respect the
window sizes usually used in the industry.

5.3. Receiver operating characteristic curve (ROC) analysis

Several insights arise from an analysis of the ROC curves in Fig. 6
(d = 30) and Fig. 7 (d = 10). As illustrated, the performance of
the traditional classifiers of KNN, GSVM, RF, MLP, and NB is low, as
measured by the closest point to the ROC’s top left corner and by the
AUC. The performance of these approaches is, however, slightly better
for dataset DS-1 than for DS-2. This result can be explained by the
lower quality of the data (i.e., missing data, outliers) and the limits of
predictability of dataset DS-2. As previously mentioned, DS-2 is a very
challenging dataset where fault patterns are difficult to recognize, even
by experts [54]. Note that this dataset consists solely of unscheduled
removals, that is, fault events that experts were unable to trace. In con-
trast, DS-1 only includes overhauls scheduled by human intervention,
automatic detection, or fixed intervals, with more traceable causes.

The Figs. 6 and 7 also show that the performance of the deep models
is acceptable and superior to the traditional approaches, with the points
that represent the hit and the false-alarm rate tracing out curvilinear
bow-shaped ROC curves almost symmetric about the negative diagonal.

5.4. Performance evaluation

After examining the AUC performance of the proposed approaches
and selecting the appropriate window size (d) values, we compared the
models numerically. Tables 3 and 4 illustrate this comparison for the
two datasets. The baseline models exhibit, as expected, the worse AUC
results (around 0.50 for all algorithms). The frequent baseline always
predicts that the equipment is far from the end-of-life, which is of no
use to our case. The uniform classifier randomly predicts one of the
two labels. The stratified classifier attempts to generate predictions by
drawing on the 2-class distribution of the training set.

Despite the apparent advantage of the stratified approach over the
random (uniform) classifier, this algorithm gives worse F-Score results
than the later model. On DS-1, the uniform classifier’s performance
is low, as measured by its AUC, but its F-Score is better than the
score of the traditional classifiers. Concretely, the F-Score of 18.14%
is better than the F-Score of the KNN, NB, GSVM, and the MLP on
DS-1. Seemingly, the uniform classifier’s F-Score of 48.37% surpasses
the NB, KNN, MLP, RF, and GSVM on DS-2. Only the RF shows better
F-Score performance for dataset DS-1, even though the improvement
is not significant. These results reinforce the notion that traditional
classifier approaches are not suited to this kind of prognostics task.

A comparison between the uniform classifier and the deep models
shows that the latter approaches are better for prognostics purposes.
Here, the deep models surpass the baseline in almost all metrics. For
example, on DS-1, with an AUC of 0.81, the DGRU model is better than
the random classifier, which only exhibits an AUC of 0.50. The F-Score
of 32.88% is almost doubling the baseline score of 18.14%. On DS-2,
differences are not as significant, with a difference of 0.3 between the
models’ AUC and 0.10 between the models’ F-Score.
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5.5. Illustrative examples

We end this section with an illustrative example of how the clas-
sifiers generate predictions for different samples of datasets DS-1 and
DS-2. Fig. 8 illustrates the predictions of four randomly selected over-
hauls from dataset DS-1. In the charts, we show the time to overhaul on
the x-axis. On the y-axis, we show the predicted probability of a fault
event (overhaul in this case). It is expected that the predicted proba-
bility increases as the time to the overhaul advances. The predictions
over time of each model are shown in different colors. Horizontal lines
are drawn to indicate the probability thresholds of each model. These
thresholds are calculated from the ROC curve of the models as the
values that maximize the AUC. When above these lines, the predictions
are considered to belong to class 1, signaling that the equipment is
far from the end-of-life and no maintenance action is needed. When
below the cut-off values, the equipment is far from the end-of-life, and a
maintenance action is not required within the next d days. The optimal
expected behavior is to have predictions of class 1 only after the vertical
line of x = 30 days.

The best models in Fig. 8 are the models of DSRNN, DLSTM, and
DGRU as these tend to consistently output predictions above their
thresholds only after the x = 30 and x = 10 days line. For example,
from Figs. 8(a) and 8(b) it can be seen how the models predictions
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Table 3

Results of dataset DS-1 (ordered by AUC and F-Score).
Classifier Sensitivity (%) Specificity (%) Precision (%) Accuracy (%) F-Score (%) AUC
Frequent (Baseline) 0.00 100.00 ND 90.03 ND 0.50
Stratified (Baseline) 9.21 91.39 10.60 83.19 9.86 0.50
Random (Baseline) 100.00 0.00 9.97 9.97 18.14 0.50
KNN 50.84 50.86 10.28 50.86 17.11 0.50
NB 51.34 51.30 10.46 51.31 17.38 0.51
MLP 51.76 51.78 10.63 51.78 17.63 0.52
GSVM 52.43 52.47 10.89 52.47 18.04 0.53
RF 51.26 54.95 11.19 54.58 18.38 0.53
DLSTM 63.40 63.48 16.13 63.47 25.72 0.68
DSRNN 71.36 71.35 21.62 71.35 33.19 0.80
DGRU 71.02 71.09 21.39 71.08 32.88 0.81

Table 4

Results of dataset DS-2 (ordered by AUC and F-Score).
Classifier Sensitivity (%) Specificity (%) Precision (%) Accuracy (%) F-Score (%) AUC
Frequent (Baseline) 0.00 100.00 ND 68.10 ND 0.50
Stratified (Baseline) 30.18 69.62 31.75 57.04 30.95 0.50
Random (Baseline) 100.00 0.00 31.90 31.90 48.37 0.50
NB 50.90 50.95 32.71 50.93 39.82 0.52
KNN 51.35 51.48 33.14 51.44 40.28 0.53
MLP 51.80 52.11 33.63 52.01 40.78 0.54
GSVM 54.73 54.96 36.27 54.89 43.63 0.54
RF 54.05 54.43 35.71 54.31 43.01 0.55
DSRNN 60.36 60.65 41.81 60.56 49.40 0.65
DGRU 65.77 65.72 47.33 65.73 55.04 0.70
DLSTM 65.77 65.82 47.40 65.80 55.09 0.70

increase considerably after the x = 30 and x = 10 lines crossing their
probability thresholds close to the engine overhaul.

Given these results, we find enough evidence to support hypothesis
H1 partially: it is possible to perform fault prognostics using classifier
approaches, albeit only if advanced classifier methods such as deep
recurrent neural networks are used. Also, and as can be seen in the
different plots of Fig. 8, the weak learners, i.e., the models that perform
slightly better than random guessing, output approximately the same
probability outcomes at each moment in time. This finding suggests
that it would be challenging to increase overall performance by fusing
these approaches since they operate similarly.

6. Conclusion

In this paper, a novel approach to prognostics based on classification
algorithms has been proposed. The proposed models intend to be an
alternative solution to remaining useful life estimation methods. Im-
portantly, the proposed methodology does not make use of remaining
useful life estimates to perform the prognostics but directly estimates
the probabilities of a binary classification label. This label provides
information to help industry experts decide if a maintenance action
is needed within a given time window of fixed size. To this aim, we
have evaluated the use of several machine learning classifiers on two
real-world case studies from aeronautics.

The tested data-driven approaches were devised so that they could
learn the prognostics task at hand without having to be coded explicitly
for it. Only minimal changes were required to adapt the techniques
to the two case studies. The configuration, pre-processing, and train-
ing stages of the algorithms were the same in both scenarios. The
adaptive capabilities of these techniques make them useful methods of
general-purpose.

The proposed classification models have been validated through
comparison with simple classifiers. Traditional classification models,
such as Naive Bayes or support vector machines, have shown only a
slight improvement over random guessing. This type of classification
model might not be the most appropriate for this kind of task. On
the contrary, the deep learning classifiers exhibited a very satisfac-
tory performance. According to our experimental results, the most

suitable prognostics models are deep learning methods. The best per-
forming deep model seems to depend on the specific application and
significantly affects the classification performance.

In this work, we utilized a sliding time window to classify each
data point as being close or far from the end-of-life. The smaller the
size of this forecasting window, the lower the performance of the
classification algorithms tended to be. After performing a sensitivity
analysis, the window sizes of 30 and 10 days were selected for the
two case studies, respectively. The industry experts referred to these
time windows as acceptable forecasting intervals in which the deep
learning methods also exhibited satisfactory performance. Maintenance
engineers typically want to know 10 days in advance if a maintenance
action of the bleed system is needed. The same holds for 30 days for
aircraft engines.

The positive results of the deep neural networks in this work align
with previous studies from other fields [62]. These methods try to
overcome some of the problems of techniques such as those based on
statistical hypothesis testing, which require the configuration of fixed
parameters and are significantly dependent on the application. For
example, the popular Z-score test [63] has its limitations, such as when
the data are not normally distributed or when the data contain extreme
values. In these situations, statistical testing may fail to screen outliers
appropriately. Statistical techniques may be sufficient for anomaly
detection, but there is often the need to investigate more sophisticated
algorithms.

The proposed approach in this work is an alternative interpreta-
tion of data-driven prognostics. To a certain extent, it may even be
easier to interpret and manage an array of probabilities describing
the needs for a maintenance intervention in the following days than
to deal with a collection of RUL estimates. Note that classification
techniques deal with probabilities in a natural way as opposed to most
regression methods. By classifying and associating a confidence level to
the maintenance needs, we obtain more interpretable models that can
better support decision-making in maintenance.

In the future, we intend to study how to set the model’s probability
cut-off values dynamically. In theory, this will allow us to generate bet-
ter predictions and eventually improve traditional and more advanced
classifiers’ performance. It is also our goal to explore other advanced
deep models such as convolution networks and auto-encoders. Finally,
we aim to propose new evaluation metrics for these models.
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