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Geometric cluster Monte Carlo simulation
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We discuss a cluster Monte Carlo algorithm for lattice models, based on geometric transformations. We
prove detailed balance when the transformation is self-inverse, and a symmetry of the Hamiltonian. This
algorithm opens new possibilities, in particular for the efficient simulation of critical model systems, where the
Metropolis method suffers from critical slowing down. We illustrate the generality of our method by applica-
tions to the Ising model in the constant-magnetization ensemble, and to the tricritical Blume-Capel model.
[S1063-651X98)00905-2

PACS numbe(s): 05.50+q, 02.70.Lq, 64.60.Ht

The Monte Carlo simulation of a lattice model with a  The proof that this process generates the Boltzmann dis-
dynamic expénpenz and sizelL in d dimensions requires of tribution relies on the condition of detailed balance, namely,
the order ofL%"* operations to generate an independent con-
figuration. For Iogal Metropol?s—type updates Fa)lt criticality T(S,S)Pef S)=T(S',5)Pe(S), @)
typically z=~2: the simulation time increases rapidly with the whereT(S,S') denotes the probability of a Wolff step from
system size. This ‘_‘c_ritical slowing down” makes it difficult 5 spin configuratiors' to S, and P is the Boltzmann dis-
to explore large critical systems. tribution. The proof of this conditiofi2] hinges on a sym-

This problem was partly solved after a breakthrough dugnetry of the Hamiltonian: the spin inversion symmetry. It
to Swendsen and Warid]: the cluster Monte Carlo method. 5|50 uses the fact that this symmetry is its own inverse. The
Instead of a single spin, a whole cluster of spins is flippedpolff algorithm does not work in a field, and for lattice-gas
simultaneously. The construction of these clusters can be fognggels, where the spin inversion symmetry is absent.
mulated as a critical percolation process, so that also clusters However, there are other symmetries that one may use.
of relatively large sizes can be formed. This Monte Carlojhyestigating hard-core gases in continuous space, Dress and
process has a nonlocal character, and suppresses critiqglauth [3] developed a cluster method using geometric op-
slowing down. _ o _ erations on the particle positions. For hard disks, the perco-

The Swendsen-Wang algorithm was originally applied tojation threshold of the cluster formation process does not
the ferromagnetia-state Potts model, which includes the cojncide with the phase transition of the mog@]. This is
Ising model. A number of related algorithms has been develynfortunate since it affects the efficiency of the algorithm.
oped, but their applicability is limited to models that are e applied the idea of using geometric symmetries to
symmetric under inversion or permutation of spin states. |attice models, hoping that the phase transition and the per-

In this paper, we formulate a cluster algorithm in the con-co|ation threshold coincide. We may employ reflections, in-
text of more general symmetries of the Hamiltonian. In parersions, translations and rotations, provided that these are
ticular, we use geometrical symmetries that map the sites afgf-inverse, and global symmetries of the Hamiltonian.

a lattice model onto one another. To display the role of sym- e formulate the geometric cluster formation process
metries, we first recall the Wolff versiof2] of the  pere such as to expose the analogy with the Wolff algorithm.
Swendsen-Wang method. We use the language of the spipzt sitesi, j, andk map oni’, j’, andk’ under the sym-

7 Ising model with pair interactions Ks;s;, but the method metry transformation. We denote the energy differefetie
described below is more generally applicable. One Wolffyjged bykT) when a neighbok of i is interchanged witt’

step involves the following: . as Aj.. For the Ising model,A;=K(s;Sk+ S Sk — SiSk
(1) Choose a random lattice site; denote. it —s;ssy). The algorithm involves the following steps:
(2) s{=—s; (flip spini). (1) Choose a random lattice sitg i andi’ belong to the
(3) For all neighbor sitek of i do the following. cluster.
(@ If sy,=—=5{ do the following with probability 1 (2) Interchanges; ands;..
—e 2 (i) s;=—s, (spink included in clustey; (i) write k (3) For all neighbor sitek of i that do not(yet) belong to
in a list of addresse&alled stack the cluster, do the following.
(b) If s,=s{, do nothing. (@ If A >0 do the following with probability 1
(4) Read an addregsfrom the stack. —eAik: (i) interchanges, ands, (k andk’ included in clus-
(5) Execute the steps listed und€s) for the neighbor tern); (ii) write k in a list of addresse&he stack
sitesk of j. (b) If Aj=<0, do nothing.
(6) Erase the addregsfrom the stack. (4) Read an addregsfrom the stack.

(7) Repeat step$4)—(6) until the stack is empty. When (5) Execute the steps listed und@), substitutingj for i.
the stack is empty, the Wolff cluster is completed and (6) Erase the addregsfrom the stack.
flipped. (7) Repeat step#4)—(6) until the stack is empty.
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When the stack is empty, the cluster is completed and ' ' '
moved. Consider the probabiliffy(S’,S) of a cluster move
that transforms a spin configurati&into S’ by moving the 10
spins contained in the geometric clusteWe verify that the
condition of detailed balance, p 12

T(S',S) kT @ 1

T(S,S) 4E(S’)—E(S)}
exg———=——/|,
is satisfied. The energy chang€S') —E(S) is due to pair
interactions between spins insideand those outside. It con-
sists of a positive contributio&(C,S) due to pair interac- 10
tions whose energies increase wtgochanges int&', and a
negative contribution—E,(C,S) due to pair interactions

whose energies decrease. We write the probability of the 1072 1072 10'—1

cluster move ag (S',S)=T;(C,S)T,(C,S). The “internal” s/

factor T; is the probability that the cluster connects to all

sites withinC. The “boundary” factorT, is the probability FIG. 1. Scaled histograms of cluster sizes in a simulation at zero

that the cluster doesot include spins outsid€. T; depends magnetization of the critical two-dimensional Ising model. SiZe 8
only on spins irC. According to the above cluster formation is shown by a full line, 16 by a dotted line, 32by a dashed line,
rules, Ty(C,S) = exy —E,(C,S)/kT]. The reverse process sat- and 6% by long dashes.
isfies T(S,S')=T,;(C,S')T,(C,S'). The first factor equals . ) L . o
T,(C,S) because the operation is self-inverse, and a symme'itical lIsing sgsc_%ptlbmty x=ANTH(NL =N__)%) is
try of the system. Moreover, T4(C,S') propo_rt[onal toLYn ._We neglect the coupl!ng of the sheets
—exf —E4(C,S')/KT] = exd —E,(C,S)/kT]. Thus containings; ands;, via the boundary conditions. Up-down
symmetry then leads to

3 N™H(NL_—=N_ )%l d, (4)

T(S,S) F{El(C,S)—EZ(C,S)
=ex .
T(S,9) kT

Next, divide the Ising lattice into geometric clusters, and
The definitions o, andE, imply thatE(S') —E(S) =E;(C, ignore those consisting of two equal spins. Each remaining
S)—E,(C,S) so that detailed balance, E@®), is indeed sat- cluster consists of- spins in one sheet and spins in the
isfied. other. Its size is denotedl(k=1,2, ... M), and the sign of

These ideas have, in part, already been applied to hardts spins in the upper sheet gs. Thus, N._—N_,

core lattice gasep4]. For these models the energy change=3,n,p,. The signsp,==*1 are equally probable, so that
Ay is either zero or infinite, so that the probabilities are 0 or

1 and the cluster formation process becomes deterministic N Y(N,_—N_;)?

after step 1. It reduces to a special case of the algorithm )
given above. Histograms of the cluster size distribution, :lem< S (Z nkpk) >
taken at criticality, appeared to scale witkh, whereyy, is pi==1 py==*1

the Ising magnetic exponent. This is the same behavior as for

Wolff clusters in the Ising case. Thus, for these lattice gases, _ N1< 2 ni> _ (5)

the percolation threshold of the geometric clusters corre- K

sponds with the phase transition. In line with this observa-

tion, critical slowing down is effectively suppressed. Since the probability to select a clusterrig/N, Eq. (5) is
However, the presence of finite couplings modifies thgust the average cluster size produced by the geometric

cluster formation, and it is not clear that the process remainmethod; as in the Wolff case, it is proportional tt¥h~¢.

on the percolation threshold. Thus we applied the algorithnThis confirms the critical percolation property of the geomet-

to critical ferromagnetic Ising models in two and three di-ric algorithm, and its power to suppress critical slowing

mensions. The magnetization density was initializedmas down.

=0 and is conserved. Using the Wolff scaling fadtdr, we While the efficiency of this algorithm is comparable with

again observed that histograms of the geometric cluster size Wolff algorithm, its applicability is different because it

collapse well. Figure 1 shows the result for the two-samples the constant magnetization ensemble: the magnetic

dimensional case. field does not enter the simulation algorithm. An example of
We proceed by sketching a proof that the cluster sizes possible application is the determination of the simulta-

scale similarly as in the Wolff case, i.e., the percolationneous probability distribution of the magnetization and the

threshold coincides with the phase transition. Fold the Isinggenergy, which may be usdd] to find the distribution of

model such thas; and s;; form adjacent pairs in thed( Lee-Yang zero$6] at nonzerom, and to calculate thermo-

+1)th dimension: an Ashkin-Teller model at the decouplingdynamic observablds].

pont. The numbers of such pairs&e ., N,_, N_,, As a further test, we calculate the fieldm) from fre-

andN_ _; the subscripts refer to the signs®fands;,. The  quencies of “local states{8], at different magnetizations.
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FIG. 2. Magnetic fieldh as a function of the magnetization  F|G, 3. Autocorrelation times of the energy(nearest-neighbor
densitym for a 16 Ising model(data pointy calculated from local sum for single-spin update&ircles and for the geometric cluster
states in cluster simulations at constant magnetization. Also shoWpethod (squares vs system size, using logarithmic scales. The

is the canonical magnetization as a function of the magnetic fieldtraight lines correspond with dynamic exponents2.2 and with
(dashed curve obtained by conventional Monte Carlo methods. ,—q 21.

Results for a 1&simple cubic Ising model are shown in Fig. erage cluster size appears to grow algebraically with

2. For comparison, the canonical relatimih) was obtained Which indicates that again the process occurs near the perco-
from reweighted Wolff(for small h<0.01) and Metropolis lation threshold. o _
simulations(for =0.01). The agreement is good at lamge ~_ _ Figure 3 displays energy relaxation times at the estimated
for small m, fluctuations are important and differences aremcm'Cal point, for single spin updates as well as for the new
visible. cluster method. In both cases we chose the time unit as the

Finally, the geometric cluster method was applied to th number of steps needed to update or mbvespins. Thus,

Blume-Capel model on the simple cubic lattice. The spinl:[he “work” per unit of time is of the same order. For single
assume the values 1 and 0; an additional energykT is Spin updates we find a dynamic exponent of atoae. 2.

) e The cluster method yields an effective exponentzsf0.21
assigned to each nonzero spin: in the range 1ZL<24: again, critical slowing down is
small. The resulz=0.21 seems to violate the Li-Soldl1]

HIKT=—-K >, sis; + D>, s?. (6) boundz=al/v=1 (for «=v=0.5). However, the conserva-
() K tion of p,,. suppresses energy fluctuations and the canonical
tricritical value «=0.5 does not apply.

This model can be simulated by combined Wolff and Me-  |n conclusion, our results show that the geometric cluster
tropolis stepg9]. However, for largeD a tricritical point  algorithm effectively suppresses critical slowing down, at
occurs where large fluctuations occur in the number of valeast for a number of Isinglike models. It opens new possi-
cancieqspins with value §) and critical slowing down reap- bilities for applications to models that were, until now, out-
pears. side the reach of cluster simulations. Furthermore, one may

Preliminary work[10] locates this tricritical point near investigate different ensembles, for instance, the constant
K=0.7194, D=2.05, where the density of the vacancies ismagnetization ensemble in the case of the Ising model.
pvac~0.61. In addition toK, we used the density of the va- V\/_hile the efficiency of new applications to critical systems
cancies(and not the conjugate parame} in order to fix still depends on the question of whether the geometric clus-
the position of the system in the phase diagram. After initialters are formed at thg percolatlon threshold, the results pre-
ization, p,,c=0.61 remains constant, just as the magnetiza-semed here are promising.
tion that was chosen remains=0. The value oD may be H.B. is indebted to Professor J.M.J. van Leeuwen for his
determined from local states in analogy wittm). The av-  elucidating comments.
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