
 
 

Delft University of Technology

Document Version
Final published version

Licence
CC BY

Citation (APA)
Haghparast, S., Zhang, Y., Tao, Q., Stallinga, S., & Rieger, B. (2026). Detecting continuous structural heterogeneity in
single molecule localization microscopy data with a point cloud variational auto-encoder. Scientific Reports, 16(1),
Article 1379. https://doi.org/10.1038/s41598-025-31201-z

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
In case the licence states “Dutch Copyright Act (Article 25fa)”, this publication was made available Green Open
Access via the TU Delft Institutional Repository pursuant to Dutch Copyright Act (Article 25fa, the Taverne
amendment). This provision does not affect copyright ownership.
Unless copyright is transferred by contract or statute, it remains with the copyright holder.
Sharing and reuse
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without
the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as
Creative Commons.
Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

https://doi.org/10.1038/s41598-025-31201-z


Detecting continuous structural 
heterogeneity in single molecule 
localization microscopy data with 
a point cloud variational auto-
encoder
Sobhan Haghparast1,2, Yi Zhang1,2, Qian Tao1, Sjoerd Stallinga1 & Bernd Rieger1

The low degree of labeling and limited photon count of fluorescent emitters in single molecule 
localization microscopy results in poor quality images of macro-molecular complexes. Particle fusion 
provides a single reconstruction with high signal-to-noise ratio by combining many single molecule 
localization microscopy images of the same structure. The underlying assumption of homogeneity 
is not always valid, heterogeneity can arise due to geometrical shape variations or distinct 
conformational states. We introduce a Point Cloud Variational Auto-Encoder that works directly on 
2D and 3D localization data, to detect multiple modes of variation in such datasets. The computing 
time is on the order of a few minutes, enabled by the linear scaling with dataset size, and fast network 
training in just four epochs. The use of lists of localization data instead of pixelated images leads to 
just minor differences in computational burden between 2D and 3D cases. With the proposed method, 
we detected radius variation in 2D Nuclear Pore Complex data, height variations in 3D DNA origami 
tetrahedron data, and both radius and height variations in 3D Nuclear Pore Complex data. In all cases, 
the detected variations were on the few nanometer scale.

Single Molecule Localization Microscopy (SMLM) is a widely applied super resolution microscopy technique 
that enables below diffraction limit imaging1–4. The resolution of SMLM is mainly limited by the localization 
precision and the degree of labeling to values typically between 10 and 50 nm5. If multiple identical copies of a 
macromolecular structure are present in an image, the resolution can be improved by fusing these individual 
structures into a unified structure with increased signal-to-noise ratio6–9. Such methods are based on the 
assumption of homogeneity of the underlying data, that is, it is assumed that all imaged particles are structurally 
fully identical. This homogeneity assumption, however, does not necessarily hold, not even for chemically 
identical structures. Heterogeneity in the set of to-be fused particles can originate from biological changes10 
or sample preparation11 and can be continuous or in distinct classes12. In Cryogenic Electron Microscopy 
(Cryo-EM)13,14 heterogeneity detection of distinct classes is commonly applied15–17. SMLM data are point sets 
(coordinates of all localization events) that thus differ from pixelated images of Cryo-EM. Moreover, the complex 
photo-physics of the molecular on-off switching leads to SMLM data that often come with repeated localizations 
of the same emitter such that the number of localizations is not a linear representation of the actual density of 
fluorophores18,19. In detail, the underlying structure of the particle in SMLM is formed by the set of fluorophore 
binding sites. These are then stochastically labeled with fluorophores with a certain labeling efficiency (Degree 
Of Labeling, DOL, equal to the ratio of fluorophore occupation to available binding sites). The fluorophores 
randomly blink or bind, giving a random number of localization events per fluorophore, determined by the 
photo-physics. The aggregate of all localization events per particle is the input for the particle fusion algorithm. 
These differences in acquisition and data between SMLM and Cryo-EM stand in the way of direct application of 
Cryo-EM methods for particle fusion and for detecting heterogeneity in the underlying dataset, such as the use 
of learning-based mixed-dimensional Gaussian mixture models20.

Detecting distinct heterogeneity in SMLM data can be performed using template-free clustering approaches 
such as done by Huijben et al.12. Such methods, however, cannot be used to identify continuous variations such 
as geometric shape parameters of the imaged macromolecular structure. Recently, a template-free continuous 
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structural heterogeneity detection method has been proposed by us21. A key limitation of the method is its 
computational complexity, which scales as N2, with N the number of particles. In practice, the dataset size is 
therefore limited to a few hundred particles, which can be analyzed in a few hours. In addition, the ability to 
detect multiple modes of variation and non-geometrical modes of variation, such as the Degree Of Labeling 
(DOL) is limited. Alternative approaches for detecting continuous structural heterogeneity include methods with 
varying requirements and limitations. For example, a proposed learning-based method22 is heavily dependent 
on manual annotation during the training phase. This process is not only time-consuming, but is also prone to 
human error, and has poor scalability for large datasets. Similarly, the statistical pattern recognition method 
ECLiPSE23 requires precise segmentation and a high signal-to-noise ratio to operate optimally, which limits its 
effectiveness in scenarios with low DOL or complex environments. LocMoFit24, a model-based fitting technique, 
utilizes a parametric geometric model based on prior knowledge, constraining its adaptability to cases where this 
prior knowledge is available and reliable.

Here, we propose to overcome these limitations by applying a Variational Auto-Encoder (VAE) to 
extract generative features from the SMLM dataset, and thereby identifying continuous modes of variation. 
The VAE25 is a probabilistic generative model designed to map the input data, the SMLM point dataset, to 
a lower-dimensional latent space while preserving the essential statistical properties of the data distribution. 
Unlike traditional autoencoders that directly learn a deterministic encoding-decoding mapping, VAEs learn 
a probabilistic mapping by encoding inputs into distributions over latent variables, creating a continuous and 
smooth latent space where similar data points are mapped to nearby regions. This continuous nature of the 
latent representation enables interpolation between different data points (and the generation of new samples). 
In the context of SMLM data, the continuous latent space makes VAEs particularly suitable for characterizing 
and detecting heterogeneous spatial distributions, as the continuous latent space naturally captures the gradual 
variations in particle clustering patterns. Application of the VAE neural network architecture directly to the 
point datasets of SMLM, rather than to pixelated datasets, provides a major step to lower memory requirements 
and processing speed. Moreover, it provides access to multiple modes of variation via the different latent space 
dimensions, and is fully template free, minimizing the need for human interaction and avoiding user bias.

In view of the specific application to point clouds, we will refer to the proposed method as Point Cloud 
Variational Auto-Encoder (PC-VAE) in the following. We evaluated our PC-VAE network on multiple 
experimental datasets with different numbers of particles and structures, namely: Nuclear Pore Complex (NPC) 
data imaged in 2D and 3D with Stochastical Optical Reconstruction Microscopy (STORM)26, and DNA origami 
tetrahedrons imaged in 3D with DNA Points Accumulation for Imaging in Nanoscale Topography (DNA-
PAINT)27.

Methods
Point cloud variational auto-encoder framework (PC-VAE)
The purpose of applying VAE to SMLM data is to learn a continuous latent representation of the point cloud that 
captures the spatial heterogeneity inherent in the particles. The training process leverages a mini-batch-based 
stochastic gradient descent (SGD) strategy: In each iteration, a mini-batch of M particles is sampled, and the 
model computes the loss per particle, which combines reconstruction accuracy and latent space regularization. 
The loss, averaged across the M particles in the mini-batch, is used to update the model parameters via 
backpropagation. The optimization process is conducted in multiple epochs, ensuring that the entire dataset 
is traversed multiple times. As a result, the latent space induced by the trained encoder can effectively capture 
the spatial diversity and heterogeneity across all particles in the dataset. After training, the model encodes each 
particle into its respective latent representation, effectively capturing its spatial features for downstream tasks of 
identifying the structural heterogeneity.

To illustrate the model’s functionality, we take a single particle with N localizations as an example. Such 
a particle with N localizations is denoted as a matrix X = [x1, . . . , xN ] ∈ RN×p, with p = 2, 3 the spatial 
dimension of the dataset. The VAE learns a latent representation z in a lower-dimensional space Rd (d ≪ N ) 
through an encoder network qϕ(z|X) and a decoder network pθ(X|z), where ϕ and θ are the learnable parameters 
of the encoder and decoder. The encoder maps the input X to a multivariate Gaussian distribution in the 
latent space, which can be described by its mean vector µ and standard deviation σ, from which we use the 
reparameterization trick25 to obtain the latent representation of X. The reparameterization trick is a technique 
for making the sampling process differentiable, which is essential for training the VAE using backpropagation:

	

µ, σ = fϕ(X)
z = µ + σ ⊙ ϵ,

� (1)

where fϕ is the forward operation of the encoder neural network, ⊙ denotes the element-wise product, and 
ϵ ∼ N (0, I). With the reparametrization trick, gradients can be computed with respect to the encoder 
parameters ϕ, enabling end-to-end training of the VAE using backpropagation. The decoder network pθ(X|z) 
aims to reconstruct the cloud of localization points from its latent sample representation. Given a latent vector 
z ∈ Rd, the decoder learns to generate a matrix of spatial coordinates X̂ = [x̂1, . . . , x̂N ] ∈ RN×p that follows 
the original localizations.

To effectively encode and reconstruct the point cloud, we need to design a neural network architecture 
that can handle the properties of point clouds, which can be considered as sets. The key property we need for 
processing point cloud data is permutation invariance, as the ordering of points in a point cloud should not affect 
its representation. Formally, for any permutation matrix P ∈ {0, 1}N×N , it satisfies:
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	 fϕ(PX) = fϕ(X) .� (2)

This property is crucial for SMLM data since localizations are inherently orderless and any meaningful feature 
extraction should be invariant to their input ordering. To achieve this permutation invariance, we adopt a 
PointNet-based architecture28 for our encoder network, which processes each point cloud independently and 
then aggregates information through symmetric operations. Specifically, in our implementation, we employ three 
layers of shared-weight multilayer perceptrons (MLPs) with output dimensions of 64, 128, and 1024 to transform 
each p-dimensional localization (coordinates) into a higher-dimensional feature space. This transformation 
enables the network to capture more complex spatial relationships within the point cloud. Each MLP layer is 
followed by batch normalization (BN) and rectifier linear unit (ReLU) activation functions. The use of identical 
MLP weights when processing each localization ensures that the output remains unchanged regardless of 
how the input localizations are ordered. This architectural design directly enforces permutation invariance in 
point cloud processing. We further apply mean pooling as the final symmetric aggregation function to get the 
latent representation vector. This differs from the original PointNet architecture28, which uses max pooling for 
classification and segmentation tasks. Our choice of mean pooling is motivated by the generative nature of our 
task. While max pooling selectively preserves the most prominent features useful for discrimination tasks, mean 
pooling retains channel-wise average spatial information for robust latent representation and reconstruction.

For the VAE, the dimensionality of the compressed representation needs manual selection. This often involves 
a balance between capturing essential variability in the data while maintaining computational efficiency and 
interpretability. Although there is no universally optimal number of latent dimensions, the choice is guided by 
empirical testing. The criterion of dimensionality selection is to ensure that the model can effectively capture key 
generative features without overfitting to noise or irrelevant details. Through iterative evaluation, it is possible 
to identify a latent space size that balances these factors, enabling the model to capture the relevant modes of 
variation while avoiding redundancy of latent dimensions. For our architecture, the number of latent dimensions 
is empirically selected to d = 8 based on this criterion.

Our proposed decoder network progressively reconstructs the coordinates through a series of expanding 
transformations. The network first expands the latent vector through fully connected MLPs (256, 512, and 1024 
neurons) with hyperbolic tangent (Tanh) activations and batch normalization. We choose the Tanh activations 
in the decoder since its bounded output range (−1 to 1) naturally suits the generation of normalized point 
coordinates during reconstruction. A skip connection is used at the 1024 neuron layer for direct information 
flow. The skip connection allows information to bypass intermediate layers and flow directly from an earlier layer 
to a later one for stable backpropagation during training29. The network then applies two 1024 channel localized 
feature transformations through 1D convolutions, followed by a 4-headed self-attention30 that captures global 
dependencies between different regions of the point cloud. Finally, the network outputs the spatial coordinates 
of the reconstructed particles. This architecture enables the decoder to reconstruct both the overall structure 
and the local density variations characteristic of the SMLM data. An overview of the pipeline is shown in Fig. 1.

Loss function
The loss function of our proposed method consists of two components that balance reconstruction quality and 
latent space regularization:

	 Ltotal = Lrecon + βLKLD,� (3)

where β ∈ R+ is the balancing coefficient. To avoid dependence on the ordering of localizations, we measure the 
quality of the reconstruction using the symmetric Chamfer distance (CD)31. The Chamfer distance computes the 
average minimum distance between points in two sets:

	

Lrecon = 1
N


∑

x∈X

min
x̂∈X̂

|x − x̂|22 +
∑
x̂∈X̂

min
x∈X

|x − x̂|22


 .� (4)

We follow the ordinary use of the Kullback-Leibler divergence (KLD) to regularize the latent space to follow the 
d-dimensional Gaussian distribution which has a closed form expression:

	
LKLD = DKL(qϕ(z|X)||N (0, I)) = 1

2

d∑
i=1

(µ2
i + σ2

i − log(σ2
i ) − 1).� (5)

The loss function is computed for each particle in a sampled mini-batch and then averaged over all particles in 
the mini-batch.

Training details
We implemented all our network-related codes with PyTorch 2.032 on a workstation with an NVIDIA RTX 
A40 GPU and an Intel Xeon (3.4 GHz, 4 cores) CPU. We conducted in-house ablation experiments via grid 
search to determine the hyperparameters for the best model performance and generalization capabilities in 
our settings. For the results presented here, we used a mini-batch scheme with a batch size of M = 8. Next, we 
use the Adam33 optimizer with an initial learning rate of 10−4 and a weight decay of 10−5. Although VAE is 
known for its ability to capture the representation of the underlying data, it is also known to be difficult to train 
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with a fixed value of β34. Thus, we used a Sigmoid warm-up of the KLD in the first 5000 optimization steps. 
The stochastic nature of the VAE training, facilitated by the reparameterization trick, ensures that the learning 
process effectively captures the underlying data distribution.

Binning and visualization
To visualize the modes of variations, we ordered the input particles based on each latent unit. This results in 8 
different orderings of the particles. The ordered particles are then binned in 20 bins of equal particle number. 
Next, the particles in each bin are registered together, resulting in a so-called super particle per bin. Then we 
register the 20 super particles with respect to each other and generate reconstructions per bin for each latent 
unit. For registration of each point cloud we employed the fast particle fusion approach of Wang et al.9. Each 
super particle then represents a specific state or shape of the particles, ordered according to the bin number.

Data description
Our proposed algorithm works on datasets consisting of point clouds (x, y, and depending on the data also, 
z coordinates) derived from SMLM experiments. Particles have been segmented from the overall FOV by 
manual particle picking software, as used and described earlier11–13,21. The resulting datasets typically have a 
few hundred to a few thousand particles where each particle has typically on the order of hundred localizations. 
Usually, there are multiple localization events per binding site of the underlying chemical structure. These arise 
from repeated blinking of a fluorophore that is firmly attached to the binding site (STORM), or from repeated 
binding/unbinding of a fluorophore that in itself does not blink (PAINT). The dimensionality can be 2D or 3D 
depending on the image acquisition. Here we use 2D and 3D datasets21,35 of Nuclear Pore Complexes (NPCS ), 
and a DNA origami tetrahedron dataset21, with in total 1,399, 3,810 and 218 particles, respectively.

Model based parameter estimation
In order to verify our PC-VAE approach we need to compare the latent space ordering with independent estimates 
for the different parameters such as height and radius. As these parameters are not known for experimental data 
we employ a model based approach described here. For the experimental 2D NPC dataset, we estimate the radius 
as follows. All particles are centered by subtracting the mean localization from all localizations of a particle, as 
described in Heydarian et al.7. The localization coordinates are then transformed into polar coordinates, and the 
mean of the radial coordinate is taken as the estimated NPC radius.

Fig. 1.  An overview of the proposed PC-VAE framework. For the sake of simplicity, we show the processing 
steps for a single particle only. The loss function is computed by averaging over a mini-batch of M sampled 
particles. In the encoder, each input localization point is transformed independently through three parallel 
MLP blocks to higher dimensions. These MLP blocks are applied to each localization individually, meaning 
that every localization undergoes the same transformation regardless of its position in the sequence. The 
resulting features are pooled to generate a global particle representation, which is then passed through two 
separate multi-layer MLPs to produce Gaussian latent variables. The encoder is designed to be invariant to the 
order of the input points. In the decoder, samples drawn from the Gaussian distribution are transformed to 
match the shape of the input localizations. In the figure, Skip denotes the skip connection, and Multi-head Att. 
denotes the multi-head attention mechanism. The reconstruction loss function also ensures that the order of 
the reconstructed points is irrelevant, maintaining the framework’s robustness to input permutations.
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For the experimental 3D DNA-origami tetrahedron dataset, we compare the latent space coordinate to the 
estimated height of the tetrahedron structure. Particles are projected onto the z-axis to generate a histogram of 
z-coordinates. This histogram exhibits two peaks, corresponding to the three binding sites at the base plate of 
the tetrahedron and the top of the tetrahedron, respectively. A mixture of two Gaussian distributions is fitted 
to this histogram, and the height is calculated as the difference between the means of the two fitted Gaussian 
distributions.

For the 3D NPC dataset, we detect both the radius and height of the structure. To estimate the radius, the 
particles are centered as in the 2D case, and the median of the radial coordinate in polar space is used. To 
determine the height, all localizations are projected onto the z-axis. By analyzing the z-coordinate histogram, 
height is estimated as the difference between the median of projected points above and below the central plane 
defined by the mean of all particles.

To evaluate the precision of each parameter estimate, we calculate the full width at half maximum (FWHM) 
of the respective histogram and divide it by the square root of the number of localizations to determine the 
standard error of the mean.

Results
We applied our proposed PC-VAE method on the above mentioned three experimental datasets and measured 
different modes of variation. Validation of these template-free modes of variation can only be performed by 
visual inspection or by an independent model. We therefore show and analyze the super particles obtained from 
registered particles in each bin for all latent dimensions.

2D NPC dataset
This dataset consists of 1399 particles, with a continuous distribution of ring radii with a mean around 55 nm, 
and on average 155 localizations per particle. Since each latent space dimension is organized based on the 
generative features of the data, particles within each bin are considered homogeneous with respect to the 
generative feature to which the latent space dimension is most sensitive. In Fig. 2 we show super particles for 
bin number 1, 5, 10, 15 and 20, respectively, in all 8 latent dimensions. Visual inspection of this Figure indicates 
that latent space dimension 6 and 7 have the clearest correlation with the radius. Other latent dimensions also 
carry information about the radius as will be explained in the discussion section. We confirmed the selection of 
the latent dimensions with maximum correlation with radius by estimating the radius of the individual particles 
and subsequently computing the Pearson and Spearman correlation coefficients of the resulting scatter plots 
per latent dimension (see Fig. 3). The distribution of estimated radii per bin along latent dimension 7 is shown 
in Fig. 4, and indicates a spread in radius inside each bin of about 2 to 3 nm, with a total variation in radius of 
around 15 nm across the latent dimension. Reconstructions per bin are shown in Fig. 5. The detected spread 
is similar to that found by our earlier continuous heterogeneity detection (CHD) method21. The quality of the 
reconstructions per bin are not improved over those for CHD, which is partly due to a larger number of bins for 
PC-VAE (20) compared to CHD (10) and hence a smaller number of particles per bin.

We have tested the PC-VAE method for robustness to missing data by randomly deleting fractions of the 
2D NPC dataset, running the PC-VAE algorithm, and monitoring the correlation between the latent space 
dimensions and the NPC radius. Figure  6 shows the dependence of the Pearson and Spearman correlation 
coefficients for the different dimensions of latent space as a function of sample ratio. It appears that the detected 
correlations are robust when up to 50% of the data is randomly removed, and only seriously drop when more 
than about 80% of the data is left out. The average number of localizations per particle in this dataset is 155, 
giving about 19 localizations on average for each of the 8 binding sites. It follows that the method breaks down 
when on average there are just a handful of localizations left per binding site. Further reduction would, by 
statistical fluctuations, make some binding sites fully disappear, which in turn would make the radius correlation 
undetectable.

3D tetrahedron dataset
This dataset consists of 218 particles with 4 binding sites per structure. The average number of localizations per 
particle is 5188, giving over a 1000 localizations per binding site, which is typical for PAINT imaging. Figure 7 
shows super particles per bin of just 11 particles (20 bins in total, 20th bin has 9 particles) ordered along the 8 
latent dimensions. We manually selected latent dimension 2 for analyzing the relation of this latent dimension 
to tetrahedron height (see Fig. 8). The PC-VAE framework is able to detect continuous changes in height in 20 
bins ranging from 42.4 to 107.3 nm. The variation of height in this dataset was initially reported in three distinct 
classes (45 nm, 65 nm, 95 nm) by Huijben et al.12. Later, the height variation in this dataset was analyzed by us 
with CHD21 in ten bins from 60 to 107 nm , indicating that PC-VAE is able to detect a somewhat broader range 
of height values. Again the quality of the reconstructions per bin are not improved over those for CHD, due to 
the same reason as above for the 2D NPC data set.

3D NPC dataset
This dataset consists of 3810 cylindrically shaped 3D NPC structures imaged with 3D STORM. Each structure 
has 32 binding sites in two rings and the average number of localizations per particle is around 80. Recently, 
this dataset was analyzed by Wang et al.35 and compared against an electron microscopy derived representation. 
This study revealed that the distance between the two rings of the NPC is approximately 48.5 nm, with each ring 
having a radius of around 55 nm. While variations in radius are expected, they have not been directly measured 
with light microscopy. Additionally, a 5 nm height difference has been observed between in situ NPCs in HeLa 
and HEK cells, which could correspond to distinct functional states, such as dilation of the inner ring36,37. Our 
recent CHD approach21 is not well-suited for such large datasets, in view of the scaling of the computational 
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complexity with the square of the number of particles. Furthermore, the CHD method struggles with datasets 
that have a low Degree Of Labeling (DOL), particularly when dealing with complex datasets that include 
multiple modes of variation. As a result, it failed to identify continuous structural heterogeneity in this dataset.

Figure 9 shows the reconstructed super particles for all latent dimensions, indicating both radius and height 
variations in latent dimensions 4 and 8. In Figs. 10 and 11 we show the reconstructions for all 20 bins ordered 
along those latent dimensions, along with the estimated radius and height. This results in detected continuous 
heterogeneity in the radius ranging from 51.9 to 56.7 nm and a height variation ranging from 43.7 to 51.7 nm.

Discussion and outlook
VAEs are commonly used for (lossy) compression of data while retaining the most important data structural 
components. This happens mainly by detecting the generative features or the most important information to 
reproduce the data. By mapping the input data into a latent space, VAEs aim to capture the underlying structure 
in a compressed representation. In this study, we have developed a VAE based on point clouds to capture the 
low-dimensional representations of SMLM data, with the goal of identifying the inherent continuous structural 
variations. Our PC-VAE method demonstrates major improvements in computational efficiency compared to 
the MDS-based CHD approach21. First of all, the computational time scales linearly with the number of particles, 
as opposed to the quadratic scaling of computing the pairwise distance metric in the CHD approach. Second, 
the PC-VAE method works directly on lists of localizations, which does not lead to significant differences in 
computational time for 2D and 3D cases. Third, the learning phase of the algorithm converges very quickly, only 
4 epochs turned out to be necessary for the cases that were considered. The resulting computing times are very 
short indeed. The 2D NPC dataset with 1399 particles takes 24 seconds per epoch, the 3D tetrahedron dataset 
with 218 particles takes 13 seconds per epoch, and the 3D NPC dataset with 3810 particles takes 279 seconds 
per epoch. This results in typical computing times on the order of a few minutes. The dramatic reduction in 
processing time of PC-VAE proves the feasibility of scaling to larger datasets without sacrificing performance. 
Even with this effort, the CHD method was not able to detect height and radius variations because of the lack 

Fig. 2.  Reconstructions ordered along all latent dimensions for the 2D-NPC dataset. Super-particles 
reconstructed by registration of particles in 20 bins for all 8 latent space dimensions. For the purpose of concise 
illustration we only show bins 1, 5, 10, 15 and 20. The reconstructions for latent dimension 7 show continuous 
heterogeneity in the radius of the NPC ring. The scale bar applies to all images.
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of sensitivity of the cost function to complex structures such as the NPC in 3D. In comparison to template or 
model driven approaches PC-VAE, just like CHD, has the advantage of being inherently free of any a priori bias 
regarding the underlying geometric structure. Fitting to a model or template necessarily confirms the model 
or template. The vast gain in computational cost of PC-VAE compared to CHD makes it also competitive to 
template approaches, as these also typically scale linearly with the number of particles. In addition to linear 
scalability, the fast convergence of PC-VAE also suggests the effectiveness of focusing on coordinates instead of 
pixelated images, as the network learns directly from the geometrical information that is characteristic of the 
modes of particles. A full comparison would be worthy of a follow-up study.

Regarding the disentanglement of different modes of variation, it turns out that the majority of the 
latent dimensions is correlated with some mode of variation that is present in the data. This makes isolating 

Fig. 4.  Spread in radius per bin for the 2D-NPC dataset. Violin plots of the distribution of detected radius 
values within each bin, along with mean and standard deviation.

 

Fig. 3.  Correlation latent dimensions with radius in the 2D-NPC dataset. Scatter plots of latent coordinate 
versus estimated radius and computed Pearson and Spearman correlation coefficients.
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Fig. 6.  Robustness of latent–radius correlation to missing localizations of the 2D-NPC dataset. Box plots with 
lines of sample ratios versus absolute Pearson and Spearman correlations. The experiment was implemented 
by randomly sampling the desired fraction of localizations per particle, while keeping all other experimental 
settings identical.

 

Fig. 5.  Detected radius variation in the 2D-NPC dataset. Super particles for all 20 bins ordered along latent 
dimension 7, with estimated radii of the super particles, ranging from 63.6 to 49.9 nm. The uncertainty of the 
radius estimation is 0.2 nm for all bins. The scale bar applies to all images.
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distinct factors of variation challenging, as the latent space does not naturally separate them into independent 
components. In Fig. 12 the correlation between each latent space and 3 different modes of variation (radius, 
height, number of localizations) is plotted for the 3D NPC dataset. Here we used the number of localizations as a 
rough estimate of the DOL. The first plot indicates that, while many of the latent dimensions are correlated with 
the change in radius, some exhibit an increasing trend, while others show a decreasing behavior. In particular, in 
latent dimension number 4, the radius variation is clearly observed. Similarly, the second plot shows increasing 
and decreasing dependence of height on the latent dimension coordinate for different latent dimensions, and 
latent dimension 8 showing the most clear trend in the height for each bin. The third plot shows a clear trend with 
the number of localizations especially for latent dimension 8. The impact of a low and high degree of labeling 
can also be observed in Fig. 10. Approaches such as the total correlation variational auto encoder (TC-VAE)38, 
which aims to reduce dependencies between latent variables, could be explored to improve the disentanglement 
of different modes of variation, allowing for more interpretable and controllable latent representations. Another 
inroad to investigate and improve the heterogeneity disentanglement and quantification is via simulation of a 
known ground truth21.

We foresee two different uses of PC-VAE in an application workflow. In a hypothesis driven workflow where 
the aim is to disentangle a mode of variation that is a priori foreseen PC-VAE can efficiently order or cluster 
the particles in a one or low dimensional sub-space of the overall higher dimensional latent space. After such 
ordering or clustering this may be used to generate better particle fusion reconstruction based on parts of the 
dataset zooming in on the heterogeneity axis. Also it may be possible to quantitatively map the heterogeneity 
within the dataset using PC-VAE by retrieving the distribution of particles along the targeted heterogeneity axis. 
This mapping can be used to support or guide the selection of the axis by maximizing separability along the axis. 
A second workflow is entirely discovery driven, where no hypothesis is present. In that case the use of PC-VAE 
is qualitative as the mode of variation has to be identified and then quantified. Selecting a lower dimensional 
sub-space of the overall latent space for disentangling heterogeneity is then purely based on visual inspection. In 
case this can be successfully applied one could revert to the first workflow.

The designed PC-VAE can also be adapted to incorporate localization uncertainty, by modifying the Chamfer 
cost function to account for uncertainties, and so designing a new model that integrates these variations. 

Fig. 7.  Reconstructions ordered along all latent dimensions of the 3D tetrahedron dataset. Super-particles 
reconstructed by registration of particles in 20 bins for all 8 latent space dimensions. For the purpose of concise 
illustration we only show bins 1, 5, 10, 15 and 20. The reconstructions for latent dimension 2 show continuous 
heterogeneity in the height of the tetrahedrons. The scale bar applies to all images.
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However, the design and potential convergence of such a model would also need to be carefully considered, as 
the introduction of uncertainties could affect the stability and efficiency of training. By accounting for potential 
variations in the data, this approach could offer a more reliable representation by balancing the competing 
demands of reconstruction accuracy and latent space heterogeneity.

In principle, PC-VAE can incorporate additional quantitative features such as foreground count, background 
count, or PSF width by appending them to the point coordinates as extra input dimensions. We chose not to 
do this as variations in these parameters can be expected to correlate to the photo-physical behaviour of the 
fluorophores and not to the underlying structural variations, while at the same time could be more dominant 
than the geometric heterogeneity, thus overshadowing the structural variations in the latent space dimensions. 
In addition, this would also require a significant redesign of the PC-VAE network since these extra features do 
not have the same physical dimension (and numerical dynamic range) as the localization coordinates. In an 
exploratory sense it could be interesting to test if and if so what kind of heterogeneity is actually revealed by 
including these parameters.

Finally, we foresee that PC-VAE can be adapted for a variety of other applications within SMLM, such as 
image registration and particle tracking, as it is a machine learning approach specifically tailored for SMLM data.

Fig. 8.  Detected height variation in the 3D tetrahedron dataset. Super particles for all 20 bins ordered along 
latent dimension 2, with estimated heights, ranging from 42.4 nm to 107.3 nm. The average model estimation 
precision is around 0.1 nm for all bins. The scale bar applies to all images.
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Fig. 9.  Reconstructions ordered along all latent dimensions of the 3D-NPC dataset. Super-particles 
reconstructed by registration of particles in 20 bins for all 8 latent space dimensions. For the purpose of concise 
illustration we only show bins 1, 5, 10, 15 and 20. The reconstructions for latent dimension 4 show continuous 
heterogeneity in the radius of the NPCs, latent dimension 8 in the height of the NPCs. The scale bar applies to 
all images.
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Fig. 11.  Detected radius variation in the 3D NPC dataset. Super particles for all 20 bins ordered along latent 
dimension 4, with estimated radii, ranging from 51.9 to 56.7 nm. The average model estimation precision is 
around 0.2 nm for all bins. The scale bar applies to all images.

 

Fig. 10.  Detected height variation in the 3D NPC dataset. Super particles for all 20 bins ordered along latent 
dimension 8, with estimated heights, ranging from 43.7 to 51.7 nm. The average model estimation precision is 
around 0.3 nm for all bins. The scale bar applies to all images.

 

Scientific Reports |         (2026) 16:1379 12| https://doi.org/10.1038/s41598-025-31201-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Data availability
The single molecule localization data is accessible via the 4TU.research repository at ​h​t​t​p​s​:​​​/​​/​d​a​t​​a​.​4​t​​u​.​​n​l​/​p​r​​i​v​a​​t​e​​_​
d​a​t​a​s​​​e​t​s​/​d​b​​g​c​L​O​A​​n​B​s​W​z​Z​​U​J​j​o​V​b​​h​c​X​g​i​r​​K​J​m​P​9​​y​c​A​3​F​l​m​f​F​c​J​j​0.

Code availability
The used software can be downloaded from https://github.com/Sobhanhaghparast/PCVAE.
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