
Solution to the Steady Tran-
sonic Small Disturbance In-
tegral Equation

Emel Cankaya

Te
ch

ni
sc

he
Un

iv
er

sit
eit

D
elf

t

SOLUTION TO THE STEADY TRANSONIC
SMALL DISTURBANCE INTEGRAL EQUATION

by

Emel Cankaya

in partial fulfillment of the requirements for the degree of

Master of Science
in Aerospace Engineering

at the Delft University of Technology,

Supervisor: Prof. dr. ir. W.L. Harris, MIT
Dr. ir. A.H. van Zuijlen, TU Delft

Thesis committee: Prof. Wesley L. Harris, MIT
Dr. Ir. Sander van Zuijlen, TU Delft
Prof. Dr. Stefan Hickel, TU Delft
Dr. Ir. Mark Voskuijl , TU Delft

Acknowledgements

It is thoroughly enjoyable to now thank the individuals who have contributed to my intellectual and personal
growth during my academic years. First, a special thanks to Dr. A.H. van Zuijlen, who was my main thesis
supervisor. Despite I executed my M.Sc. abroad, he took the time to guide me and answer all my questions.
I appreciate his knowledge,patience, and advice. Much gratitude is also due to my second thesis supervisor,
Professor Wesley L. Harris who allowed me to execute my M.Sc. thesis at the Massachusetts Institute of Tech-
nology (MIT). I value the academic advice he gave as well as his support on matters outside the academics.,
which made my abroad experience more enjoyable. Both advisors cared about me and showed it, which I
very much appreciate.
This acknowledgement would be incomplete without mentioning my fellow students, their ability to make
me laugh and joke made my time in the Delft University of Technology (TU Delft) more memorable. They
supported me in tough and challenging times, and helped clear my mind by taking many coffee breaks with
me. Besides that, they were always there when I had questions and needed advice. Thanks guys, for being
such good friends.
A heartfelt thank you goes to Pauli Paap and Margaret Edwards, who had an enormous impact on my life.
Thanks, Pauli, for always having faith in me and reminding me to keep chasing my dreams. And thanks, Mar-
garet (Peggy), for making my day by giving compliments every single day. There are so many other people
who have contributed to my success, both at academic level and in daily life. However, since I do not want to
risk forgetting to mention someone, I hereby want to thank all of them.
Finally, I would like to express my extreme gratitude to my family who provided me with the best possible
education. During stressful times I could be very intolerable, and keep complaining. Despite this, they have
always supported me, and made me push trough. There is a lot more which I cannot describe in words, and
it is in this spirit that I dedicate this thesis to them.

CONTENTS

Acronyms v

List of Symbols vii

1 Introduction 1

2 Physical Model 3
2.1 Flow Characteristics . 3
2.2 Airfoil . 5
2.3 Potential Flow. 7

3 Mathematical Model 9
3.1 Transonic Small Disturbance Equation . 9
3.2 Differential Equations. 13
3.3 Integral Equations . 16

3.3.1 Thickness effect contribution . 17
3.3.2 Lifting contribution . 17
3.3.3 Non-linear contribution . 18
3.3.4 Total set of equations . 18

4 Numerical Implementation 21
4.1 Mesh Structure . 21

4.1.1 Cell type . 21
4.1.2 Grid type . 22

4.2 Implementation of Equations . 24
4.3 Summary . 26

5 Results 29
5.1 α= 0◦ . 29
5.2 α= 0.5◦ . 32
5.3 α= 1◦ . 33
5.4 Conclusions. 33
5.5 Limitations . 35

6 Verification & Validation 37
6.1 Verification . 37

6.1.1 Tools . 38
6.1.1.1 Lamah . 38
6.1.1.2 NumecaF i neT M /Open . 38

6.1.2 Results . 39
6.2 Validation . 50

7 Conclusions & Recommendations 51

A Classification of Partial Differential Equations 55

B Derivation TSD and Boundary Conditions 59

C Derivations for Numerical Implementation of the Governing Equations 71

D Equation Form of Algorithm 77

E M AT L AB code 81

F NumecaF i neT M /Open Settings 93

iii

iv CONTENTS

G NumecaF i neT M /Open Results 105

Bibliography 135

ACRONYMS

BC Boundary Condition

CFD Computational Fluid Dynamics

GE Governing Equation

IEM Integral Equation Method

NS Navier-Stokes equations

PDE Partial Differential Equation

TSD Transonic Small Disturbance Equation

v

LIST OF SYMBOLS

CP Pressure coefficient [-]
M∞ Freestream Mach number
P∞ Freestream static pressure [Pa]
P Static pressure at the point of interest [Pa]
V∞ Freestream velocity [m

s]
V Velocity vector field [m

s]

Γ Total circulation Γ [m2

s]
α Angle of attack of the airfoil [rad]

γ̄ Strength of elemental vortex [m2

s]
t̄ Dimensional spatial coordinate t [s]
x̄ Dimensional cartesian coordinate x [m]
z̄ Dimensional cartesian coordinate z [m]
β Transformation parameter [-]
ε0 Initial/starting value of the thickness ratio [-]
ε Thickness ratio of the airfoil, which is the ratio of maximum thickness of the airfoil to

the chord at that point (t
b) [-]

γ Specific heat ratio [-]
µ Transformation parameter [-]
ν Transformation parameter [-]
φ0 Steady component perturbation velocity potential [-]
φ1 Unsteady component perturbation velocity potential [-]
φ Perturbation velocity potential [-]

ρ∞ Freestream density [kg
m3]

ξ Non-dimensional x-location in the computational domain [-]
ζ Non-dimensional z-location in the computational domain[-]
b Airfoil semi-chord [m]
gL Lifting contribution to the steady velocity potential [-]
gT Thickness contribution to the steady velocity potential [-]
gN L Contribution of non-linear phenomena to the steady velocity potential [-]
g Perturbation velocity potential transformed into ε-space [-]
h

′
0 Thickness distribution of the body (i.e. airfoil) [-]

h
′
1 Unsteady displacement of the wing mean surface about z

′ = 0 [-]
h

′
Vertical coordinates of the body (i.e. airfoil) [-]

q∞ Freestream dynamic pressure [Pa]
t Non-dimensional spatial coordinate t [-]
u0 Base solution perturbation velocity, i.e. initial (starting) value [m

s]
u Perturbation velocity [m

s]
x Non-dimensional coordinate/location along the horizontal axis of the domain/airfoil

(running coordinate of the integrals) [-]
y± Vertical coordinates of the upper (+) and lower (-) side of the airfoil [-]
z Non-dimensional coordinate/location along the vertical axis of the domain/airfoil

(running coordinate of the integrals)[-]

vii

1
INTRODUCTION

This research deals with airfoils in high-speed compressible flow. What happens when an airfoil attains high-
subsonic or low-supersonic Mach numbers, close to the speed of sound? As Mach 1 is approached, the drag of
an airfoil abruptly increases. This phenomenon, known as drag divergence, raises questions and concerns on
aircraft design. Is it possible to deal with this drag divergence by determining its effects on the aerodynamic
loading on the airfoil in a relatively simple, affordable and fast way, instead of using complex, expensive and
time-consuming Computational Fluid Dynamics (CFD) tools? Wind tunnel testing as a design tool is also
avoided, as the cost of the models and wind tunnel test time are too high [1]. The aforementioned question is
a very important and practical question for preliminary design phases in particular, and will be addressed in
this research. The need for such a model arises due to the fact that CFD models are computationally inten-
sive, and the overall cost of the computational effort is not justified for the preliminary design phase. Also, for
the industry, reducing the time (of for example aircraft design) is vitally important to have lower development
costs and rapid product availability, which both contribute to the larger market share. Although CFD models
result in very accurate predictions, it should be noted that these levels of accuracy are not necessary for pre-
liminary design stage. Sufficient levels of accuracy can be reached with simpler models. The aforementioned
factors of computer capacity, processing time, computation costs, and level of accuracy make CFD insuitable
to solve transonic flows in the preliminary design phase of a project. A simpler, faster, and cheaper model
would be more favorable. The resulting algorithm could be used for stand-alone analysis as well as for mul-
tidisciplinary design. An example of multidisciplinary design processes is for example analyzing the effect of
drag divergence on flutter characteristics.

Both military and civilian operators have expressed the importance of aircraft flying in the transonic regime
either in the maneuvering or cruise mode,respectively. This makes aerodynamic prediction in this range ex-
tremely important. Therefore, the transonic flight regime should be well understood. The ability to determine
and predict the steady and unsteady aerodynamic loads acting on the aircraft in this flight regime is needed in
order to design a vehicle that can operate safely at the desired flight conditions. Unfortunately, predicting the
aerodynamic loads at transonic speeds is one of the major challenges the aircraft designer is facing, due to the
fact that a typical transonic flow has a subsonic free stream from which the flow over the wing accelerates to
supersonic speeds. One way the required deceleration from the supersonic speeds to the free stream velocity
takes place is through shock waves, resulting in the presence of various types of flow regions in the flow field.
This means that the algorithm that will be developed for this study to solve transonic flows should be able to
predict the subsonic and supersonic flows simultaneously. Hence, mathematical difficulties arise, since sub-
sonic flows are described by elliptic governing equations while supersonic flows are described by hyperbolic
equations. Thus, in order for the algorithm to describe transonic flows a nonlinear governing equation of
mixed elliptic/hyperbolic type must be solved. The difference in governing equations should be analyzed to
understand the main difficulties in predicting aerodynamic loading in the transonic flight regime. The gov-
erning equations are given in the form of partial differential (PDE) equations, which can be divided in three
categories based on the coefficients of the higher-order terms of the governing equation. These categories
are: elliptic, parabolic, and hyperbolic. A more detailed description about the classification of partial differ-
ential equations can be found in Appendix A. The difficulty in solving the mixed elliptic/hyperbolic problems

1

2 1. INTRODUCTION

arise due to the fact that the behavior of subsonic and supersonic flow is different, leading to difficulties in
finding a solution at the boundary of the hyperbolic and elliptic regions. Linear theory is sufficient in predict-
ing the aerodynamic loads in the subsonic and supersonic flow regimes, whereas in the transonic flow regime
even the most fundamental representation of the aerodynamics must be described by a nonlinear set of equa-
tions. Thus, the prediction method used in developing the algorithm need to be able to model all these types
of flow and is derived from the Navier-Stokes (NS) equations. However, since the NS equations are difficult to
solve analytically, certain simplifications are made. The first simplification is that the flow is always consid-
ered to be attached. If this is the case, the viscous terms can be neglected and the dominant nonlinearity will
be caused by the shock waves. Other simplifications are possible if the geometry of the shock-wave geometry
is considered to be simple across a wing, if the flow is considered to be irrotational, and if the disturbances
are assumed to be small. Further simplifications are not possible without removing the dominant transonic
phenomena of shock waves, resulting in the simplest physical problem that must be modeled to be that of
two-dimensional, irrotational, attached flow with shock waves and small disturbances. These assumptions
lead to the derivation of the Transonic Small Disturbance (TSD) equation from the NS equations.

This study is therefore concerned with the development of an accurate and efficient technique for solving
the steady Transonic Small Disturbance (TSD) equation, in the form of PDEs. Since simplicity, speed, and
cost are the key requirements in developing an effective algorithm, the main focus is on the integral equa-
tion method (IEM). This implies that the governing equations (GE) and boundary conditions (BC), which are
expressed by PDEs, will be re-formulated into integral forms where the unknown function occurs under the
integral sign [2]. The IEM has proven to be a powerful technique for solving a variety of practical problems.
This study investigates whether applying this technique to the TSD will be suitable for predicting the aerody-
namic loading on the airfoils in transonic flows. Further, the integral equation method offers a deeper insight
into the problem that is posed by studying the nature of the PDEs they originate from, as the analytical steps
involved are of physical significance. This includes in precisely identifying the different segments of the in-
tegrals, and the contour each integral applies to (such as infinity, the wake, airfoil body, shock-wave surface).
A more detailed discussion regarding the steps taken and the physical significance of each step can be found
in Appendix B. Moreover, for design applications repetitive and non-repetitive portions of the computations
are readily separable, and the required sensitivities of aerodynamic parameter to variations in airfoil geom-
etry can be readily calculated. Since the emphasis is on the speed of the algorithm, potential theory will be
used. The numerical simulations of potential equations are computationally efficient, as the solution con-
sists of only solving a simple scalar equation. A more complete composition of CFD, using the NS and Euler
equations, consist of five coupled equations. Moreover, numerical iteration schemes for solving the potential
equations characteristically converge in fewer iterations than the NS and Euler equations. Consequently, po-
tential solvers are typically an order of magnitude (or more) faster than Euler equation solvers on comparable
grids [3]. This difference in speed gets more recognizable as the problem posed gets more complex. Also, all
potential formulations are isentropic and irrotational. The aforementioned assumptions are commonly con-
sistent with subsonic, transonic, and supersonic flows, at or near the cruise conditions. In addition to this,
the shock-waves are required to be weak, which holds when the upstream, normal-shock Mach number com-
ponent is more than or equal to approximately 1.3. To simplify the problem even further, this special issue
is devoted to a symmetric parabolic arc airfoil. If the algorithm produces reliable results, it can be expanded
further to a wider range of airfoil configurations.

The objective of this study to develop an accurate and efficient technique for solving the steady TSD will be
achieved by the following approach. First, a physical model will be defined to develop the analytical model
for the treatment of two-dimensional airfoils in transonic flight regimes. This means that the characteristics
of the flow and the shape of the airfoil will be defined as reported in Chapter 2. Subsequently, the equa-
tions of motion and the boundary conditions used in developing the analytical model will be outlined in
Chapter 3, upon which the implementation of those set of equations into the technical programming lan-
guage M AT L AB will be discussed in Chapter 4. The results obtained with this algorithm will be treated next
in Chapter 5. Chapter 6 then will focus on the quality assessment of the algorithm, meaning that it will be
checked whether the developed product meets the objective of this study. Finally, based on these results,
conclusions will be drawn and some recommendations will be given in Chapter 7.

2
PHYSICAL MODEL

This chapter discusses the physical model defined to develop an analytical model for the treatment of steady,
two-dimensional flow around an airfoil in high-subsonic and transonic speeds. The ultimate goal of the
project is to determine the aerodynamic characteristics of the airfoil in the transonic flow regime. The flow
over the airfoil and the resulting aerodynamic forces are modeled as defined in this chapter in subsequent
sections.

2.1. FLOW CHARACTERISTICS
The characteristics of the flow over the airfoil will be treated in this section. It is important to have a well
defined flow and keep track of the assumptions that are made. The underlying assumptions impose certain
limitations on the final results, and should be cheered to avoid a situation in which the equation is not valid.
The fluid type and flow characteristics (i.e., the assumptions that are made regarding the flow) can be seen
below.

Fluid type = perfect gas, air
Flow characteristics = continuum

steady
inviscid
no body forces
irrotational
compressible

Here, continuum is defined as a region of space filled with continuous matter with continuous properties
[4], thereby defining continuous as various properties averaged on a length and time scale of interest varying
smoothly within the region, except possibly for a small number of discontinuities. Steady flow is charac-
terized as a flow of which the fluid properties at every point are time-independent, making the flow-field
variables a function of spatial location only. Inviscid flow means that viscosity of the flow can be neglected.
Physically, it means that viscous shear and normal stresses due to viscosity are negligible, resulting in the only
stresses acting on the body surface to be the normal stresses due to the pressure. Hence, the only surface
forces exerted on the fluid are the pressure forces. Due to this assumption the boundary layer on the surface
of the body will be eliminated, resulting in the boundary layer to be very thin compared to the dimensions of
the body. Subsequently, this absence of the boundary layer has a negligible effect pertaining to alternations of
the body geometry as seen by the flow. This changes when the flow separates and the boundary layer leaves
the body, which results in a big alternation of the effective geometry of the body. Also, it is assumed that no
body forces (e.g., electromagnetic forces, gravity, or any other forces which "act at a distance" on the fluid)
are experienced by the flow.

Irrotational flow is the flow type in which fluid particles do not rotate about their own axes and retain their
original orientations. This implies that the fluid elements have no angular velocity, and their motion through
space is a pure translation. This can be seen in Figure 2.1. Here, fluid elements moving along two different
streamlines are shown in various modes of translation. The upper streamline shows a fluid element where

3

4 2. PHYSICAL MODEL

the angular velocities θ of its sides are zero, while the lower streamline shows a fluid element where the an-
gular velocities of two intersecting sides are finite but equal and opposite to each other. Thus, the sum of
the angular velocities in the latter case is also equal to zero. In both cases, the angular velocity of the fluid
elements is zero meaning that their motion through space is pure translation.

Before discussing compressibility, it is worth reviewing the Mach number regimes since it determines whether
a flow has to be treated as compressible or incompressible. Using Mach numbers as the criterion, the follow-
ing speed regimes can be identified when considering the whole flow field:

• Subsonic flow: Mach number is less than one everywhere in the flow. A rule of thumb for subsonic flows
is that M∞ < 0.8 for subsonic flow over slender bodies. This value must even be lower for subsonic flow
over blunt bodies to ensure complete subsonic flow.

• Supersonic flow: Mach number is greater than one everywhere in the flow. The rule of thumb for
supersonic flows is M∞ > 1.2. Another feature is that usually shock waves arise, which causes the flow
properties and streamlines to alter discontinuously.

• Transonic flow: A flow with mixed regions of M < 1 and M > 1. Here M represents the local Mach
number. If M∞ is subsonic but near unity, the flow can locally become supersonic (M > 1). A shock
wave can cease this by reducing the flow behind the shock to a subsonic regime. Accordingly, this type
of flow is characterized by mixed subsonic-supersonic flows. A rule of thumb for transonic flows is
0.8 < M∞ < 1.2 for flows over slender bodies.

• Hypersonic flow: This type of flow occurs when M∞ becomes large enough such that viscous interac-
tion and/or chemically reacting effects begin to dominate the flow. The rule of thumb for hypersonic
flows is M∞ = 5.

Since the current research covers high-speed flow (near Mach 1 and above), the flow has to be modeled as
being compressible. This means that the density ρ can not be treated as a constant, and can vary over a wide
range. Only the flow of gases at low Mach numbers (M < 0.3) could be treated as incompressible, meaning
that the density is assumed constant in the flow field.

The research presented in this report treats the flow at freestream Mach numbers M∞ = 0.806 and M∞ = 0.86.
The first Mach number was chosen because one of the verification sources [5] has computed the pressure
distribution of a parabolic arc airfoil at this Mach number as well, since the entire flow happens to be subsonic
at this Mach number. However, since the regime of interest of this research is the transonic flow regime, mixed
regions of subsonic and supersonic regions have to be present. Shock waves start to arise on the surface of the
parabolic arc airfoil at a Mach number of M∞ = 0.86. This freestream Mach number, at which the local Mach
number on the airfoil reaches M = 1 for the first time, is called the critical Mach number Mcr . This value
has been found by trial and error with a CFD tool called Numeca. More about this tool will be explained in
Chapter 6.

Figure 2.1: Fluid elements in an irrotational flow [1]

2.2. AIRFOIL 5

Figure 2.2: Parabolic arc airfoil for ε= 0.03 and α= 0◦

2.2. AIRFOIL
Now the characteristics of the flow have been defined, the airfoil on which the aerodynamic forces have been
computed will be treated in this section. The coordinates of the upper and lower sides of the airfoil are deter-
mined using Equation 2.1.

y± =±2ε(1−x2)−αx (2.1)

where ε represents the thickness ratio of the airfoil, which is the ratio of maximum thickness of the airfoil
to the chord at that point (t

b). The angle of attack is denoted by α [r ad]. A graphical representation of this
airfoil for ε= 0.03 for both the upper and lower side of the airfoil can be seen in Figure 2.2. This value of the
thickness ratio is chosen for reasons which will be explained later in this report.
The computations will be done on a mesh created around the airfoil. Since placing the mesh points on the
surface of a rounded object with equal distances will be too complex, the airfoil will be projected on the x−
axis, making the airfoil a flat plate. Also, in order to simplify the theoretical prediction of the characteristics
of the airfoil, the thin airfoil theory is applied. In order to get familiarized with this theory, it is important to
understand the concepts of vortex flow, vortex filament and vortex sheet. Vortex flow type of elementary flow
is used to obtain lifting flow over several body shapes. A vortex flow is a type of flow where all the streamlines
are concentric circles about a given point. The velocity along each streamline is constant but varies from
one streamline to another inversely with distance from the center of the circle. The circulation Γ around this
point vortex is equal to the strength of the vortex. A sketch of this point vortex can be seen in Figure 2.3a,
where Vr and Vθ represent the radial and tangential velocity components respectively. Figure 2.3b displays a
vortex filament, which is a straight line perpendicular to the page, going through point O, and extending to
infinity both out of and into the page. By placing an infinite number of those straight vortex filaments side
by side, a vortex sheet can be formed. A three dimensional view of this vortex sheet can be seen in Figure
2.3c, where the elemental vortex γd s indicates the strength of an infinitesimal portion d s of the sheet and is
variable along the sheet.
According to the principle of thin airfoil theory, a thin airfoil can be simulated by placing a vortex sheet on
the surface of the airfoil as shown in Figure 2.3d. An important feature of thin airfoil theory is that for sym-
metric airfoils, this vortex sheet is placed along the chord of the airfoil, while for cambered airfoils the vortex
sheet is placed along the camber line of the airfoil. Each section of this vortex sheet induces an infinitesimally
small velocity in a direction perpendicular to r at point P . The total velocity induced at P is the summation
of the induced velocities by the individual vortex sheet segments, which can be obtained by integrating the
infinitesimally small induced velocities from the leading edge a to the trailing edge b. However, it should be
noted that the individual small induced velocities are perpendicular to r , meaning that it changes direction

6 2. PHYSICAL MODEL

(a) Concept of vortex
flow (point vortex) (b) Vortex filament (c) Vortex sheet

(d) Vortex sheet placed on airfoil surface

Figure 2.3: Application of vortex flow on airfoil [1]

at point P when summing up the individual induced velocities from a to b. Thus, the incremental velocities
induced at P by different sections of the vortex sheet must be added vectorially. Therefore, it is more conve-
nient to deal with the velocity potential. The objective now is to generate this velocity potential. Referring to
Figure 2.3d the total velocity potential at P induced by the entire vortex sheet from a to b is:

φ(x, z) =− 1

2π

∫ b

a
θγ̄d s (2.2)

The objective is to find that particular γ(S) such that the airfoil surface, chord, or camber line become a
streamline of the flow and and such that the Kutta condition of finite velocities is satisfied at the trailing edge
(γ(s)T E = 0). Once this particular variation of γ(s) is found, the total circulation Γ around the vortex sheet
along the airfoil can be found by the sum of the the strengths of the elemental vortices:

Γ=
∫ b

a
γ̄d s (2.3)

The determined value of circulation can than be used to calculate the resulting lift.

2.3. POTENTIAL FLOW 7

2.3. POTENTIAL FLOW
Potential flow studies the properties of forces, which follow the law of gravitation. A field of gravitational
forces is called a potential field, and the corresponding function is the potential. This theory arose after it was
realized that the fundamental forces of nature could be modeled using potentials that satisfy Laplace’s equa-
tion (∇2φ = 0). Potential theory can also be applied to aeronautical problems, where the flow surrounding
various shapes of bodies could be modeled in order to determine the flow properties. The potential flow the-
ory states that flow properties (such as the flow velocity V) can be written as the gradient of a scalar function
φ, which is called the velocity potential. In other words, it treats properties of vector fields (i.e. V = (u, v, w))
generated by gradients of a potential function φ (i.e. V = ∇φ). The gradient of a function is a vector field,
where the vector at each point, points in the direction in which the function increases most rapidly (steepest
ascent). The potential flow theory works by first introducing a potential function, known as velocity potential
φ, from which the individual velocity components (i.e. u, v, w) can be determined. Subsequently, the equa-
tions of motion for irrotational flow reduce to a single partial differential equation for velocity potential. This
equation of motion is known as the Laplace equation, and is used in solving the unsteady transonic small dis-
turbance equation, as explained in Chapter 3. A base solution, as a starting value of the perturbation velocity
will be constructed from Laplace equation satisfying the boundary conditions of the flow.
Potential flows by definition are irrotational. The physical meaning of irrotational flows was given in Section
2.1. This section will dive in the mathematical definition of it. In order to do so, a function f will be intro-
duced. Integrating the gradient of a function f along a curve, results in the difference between f at the end
of the curve and f at the beginning of the curve

(∫
c ∇ f dc = fend − fst ar t

)
. However, integrating the curl of a

function f along a surface, gives the integral of f along the boundary of the surface . This means looping from
some point f on the boundary of the surface back to itself along the boundary

(∫
S ∇× f ds = ∫

c f dc = f (x)− f (x)
)
.

Thus, integrating the curl of the gradient of a function f across any surface results in the integral of the gra-
dient of f along the boundary of that surface, meaning again looping from some point f on the boundary
of the surface back to itself along the boundary. It’s the difference between f at that ending point and f at
that same starting point, which is zero

(∫
S ∇×∇ f ds = ∫

c ∇ f dc = f (x)− f (x) = 0
)
. The curl of the gradient of

f always integrates to zero, leading to a feature of potential flow; potential flows are irrotational. The local
rotation of a vector field (i.e. the gradient of a function, ∇φ) is proportional to its curl, so that potential flows
do not rotate as they deform. This can be written in mathematical symbols as follows:

V =∇φ (2.4a)

∇×∇φ= 0 (2.4b)

∇×V = 0 (2.4c)

It should be noted that potential flow is restricted to situations where vorticity is not present, and will not
be able to forecast the flow properly when vorticity becomes important. The latter can occur for boundary
layers and wakes. But since the boundary layer will be neglected due to the assumption of inviscid flow, the
assumption of irrotationality is valid too. Therefore, potential flow can be applied to the current problem.
The governing equations and boundary conditions will be derived in Chapter 3, based on this theory.

The reason for applying potential flow theory to the current problem is due to the way the Transonic Small
Disturbance (TSD) equations are derived. The derivation starts from the Navier-Stokes (NS) equations, and
simplifies to the TSD by assuming inviscid, irrotational flow with small perturbation velocities. The assump-
tion of irrotational flow is where the non-physical scalar potential φ is being defined, since irrotationality
comes with the curl and gradient of the velocity potential as mentioned above.

3
MATHEMATICAL MODEL

This chapter outlines the equations of motion (EOM) and the corresponding boundary conditions (BC) used
in determining the aerodynamic loading on two-dimensional airfoils in transonic flight regimes. These equa-
tions are based on the potential flow theory, as explained in Chapter 2.3. As mentioned in Chapter 1, the
numerical analyses should be computationally less intensive than the state-of-the art CFD tools and thus
cheaper. Therefore, the integral forms of EOM and BC will be solved, rather than the PDEs.

First the equation used to obtain the governing equations will be discussed in Section 3.1. Then, the EOM
and BC in differential form (arising out of the aforementioned equation type) will be outlined in Section 3.2,
after which they will be transformed into integral form in Section 3.3 by applying Green’s theorem.

3.1. TRANSONIC SMALL DISTURBANCE EQUATION
This research is based on implementing the unsteady TSD equation for high-subsonic and transonic speeds.
Before deriving the governing equations and boundary conditions for steady transonic flow, solving the TSD
equation will be justified.
Figure 3.1, along with Table 3.1, gives an overview of the commonly solved equations along with their cor-
responding assumptions. The full Navier-Stokes (NS) equations describe how the velocity, pressure, tem-
perature, and density of a moving fluid are related [6]. The equations are a set of coupled, highly nonlinear
partial differential equations (PDEs), consisting of one continuity equation (i.e. conservation of mass), three
conservation of momentum equations, and one conservation of energy equation. Those equations are all
time-dependent. The numerical solution of these equations is a challenge, as well as its analytical solution.
Depending on the complexity of the problem, high computing power and time is required to solve the equa-
tions using different numerical techniques as finite difference - , finite volume - , and finite element meth-
ods. This branch of fluid mechanics is called Computational Fluid Dynamics (CFD). Solutions of the full NS
equations show the onset of turbulence, the interaction of shear layers, and almost all of the interesting aero-
dynamic phenomena.
Since the NS equations are too difficult to solve both numerically and analytically, due to the highly nonlinear
nature of the five coupled set of PDEs, and the purpose of this study is to develop a semi-analytical method,
further assumptions and simplifications are made to derive an analytically solvable equation. These assump-
tions and simplifications about the fluid flow will simplify the governing equations and their numerical so-
lution, which results in the reduction of computational costs. The hierarchy of the governing flow equations
based on their assumptions about the fluid flow is shown in Figure 3.1.

This figure can be divided into two categories; the approaches displayed on the left side of the figure neglects
the effect of viscosity, while the approaches on the right side include them into the analysis. However, since
the current study focuses on an analytically solvable approach, the right side of this figure will not be elabo-
rated further. Only a very brief introduction of the approaches on the right side will be given, whereafter the
left side of the figure will be elaborated on.

Above a certain critical value of the Reynolds number (Re) the entire flow becomes turbulent, at which point

9

10 3. MATHEMATICAL MODEL

Figure 3.1: The governing flow equations based on the fluid flow assumptions [7]

3.1. TRANSONIC SMALL DISTURBANCE EQUATION 11

the flow is characterized by the presence of statistical fluctuations of all the fluid flow variables (such as the
density, pressure, velocities, etc.) around mean values as a consequence of the nonlinear convection terms.
The Direct Numerical Simulation (DNS) simulates the whole range of these turbulent statistical fluctuations
at all relevant physical scales in space and time. The Large-Eddy Simulation (LES) computes, just like the
DNS, directly the turbulent fluctuations, but only above a certain scale. Below this scale, the turbulence is
modeled by semi-empirical laws. This means that that the model makes some estimations by considering
experimental data for its constituent part in concert with some analytical models. As many calculations as
possible are being replaced with pre-calculated data that are an integral part of the program, which speeds
up the calculations.The Reynolds-Averaged Navier-Stokes equations (RANS) approach reduces the computa-
tional effort even further, since it treats turbulence through turbulence models. Therefore, it is not required
to resolve all the turbulent scales (which is the case for DNS and partially for LES). To acquire the RANS ap-
proach a turbulent quantity is averaged over time into a mean and fluctuating component. By doing this, the
viscous effects in the flow are retained.

Proceeding to the left side of the figure, the Euler equations can be encountered, which are obtained by as-
suming inviscid flow. They are valid for any arbitrary body shape at any angle of attack. However, they will
not produce reliable results if separation or other strong viscous effects are present. In transonic flow, the
supersonic region along the airfoil is being terminated by a shock wave, in order to reduce the flow behind
the shock wave to subsonic speeds. Besides reducing the flow speed, and thus the Mach number, discontin-
uously across this shock wave, the pressure, temperature, density, and entropy are being increased. A dis-
tinction can be made between weak and strong shock waves, which can be explained with the oblique shock
chart in Figure 3.2a. With the given upstream Mach number M1 and deflection angle θ the wave angle β can
be determined by using this oblique shock chart. Two oblique shock waves with two different wave angles β
are possible if θ ≤ θmax , where the smaller β corresponds to a weak shock while the larger β corresponds to a
strong shock. However, in supersonic flow weak shock waves are most likely to occur (up to freestream Mach
numbers of approximately M∞ = 1.3). Both shock waves can be seen in figures 3.2b and 3.2c. Here, M2 rep-
resents the Mach number of the flow after the shock waves. This is also an indication of how strong the shock
wave is. The lower the Mach number behind the shock wave, the stronger the shock. In addition, the flow
of weak shock waves can assumed to be isentropic, because of the small entropy change across the shocks.
This is due to the fact that the change in entropy is related to the shock strength by a third order relation. The
assumption of isentropic flow then allows for the assumption of irrotational flow, which cascades the Euler
equations to the full potential equation. This equation is a single, nonlinear PDE. Since irrotational flow has
resulted from the assumption of inviscid flow, it should be noted that viscous effects can be neglected for
flows with hight Reynolds numbers (i.e Reynolds numbers of typical aircraft range from 105 to 107 [7]) dom-
inated dominated by convective transport of momentum. Consequently, external laminar remaining flows
over solid surfaces or objects at high Reynolds numbers can be analyzed with potential flow, since this flow is
assumed to be irrotational [8]. Furthermore, for flow with high speeds over surfaces, and thus high Reynolds
numbers through the relation Re ∼V , the viscous boundary layer growing next to the solid body will be thin.
In this case, the existence of the boundary layer can be neglected when analyzing the potential flow region,
since assuming potential flow would be improper for viscous flows. Consequently, neglecting boundary lay-
ers would mean the potential flow to follow the contours of the solid surface. In addition to the assumption of
irrotationality, a small-disturbance assumption can be made if the airfoil is assumed to be a slender body at a
small angle of attack. This assumption transforms the full potential equation to the TSD equation. It should
be noted that all of the three sets of equations described in this paragraph represent models for the analysis
of inviscid, transonic flow past an airfoil and can be applied effectively for high-speed airfoil designs.
The TSD can not be simplified further, since this would result in linear theories. These theories will fail in
describing high-subsonic/low-supersonic and transonic flows, since the transonic flow regime must be de-
scribed by a non-linear equation or set of equations due to the mixed elliptic/hyperbolic and non-linear
regions involved. These sets of equations, along with their assumptions and simplifications, have been sum-
marized in Table 3.1. The Laplace equation has been included in this table as well, since it will be used in
determining the initial perturbation velocity only. It can not be used for further computations, since this
equation is only valid for incompressible flows.
Thus, it is concluded that the most simplified equation that should be solved for treatment of steady, two-
dimensional flows around airfoils in high-subsonic, transonic, and low-supersonic speeds is the TSD equa-
tion. The Laplace equation will be used to determine the initial perturbation velocity.

12 3. MATHEMATICAL MODEL

(a) Oblique shock chart

(b) Weak shock (c) Strong shock

Figure 3.2: Weak and strong shock waves [1]

Equation Inviscid Irrotational Small Perturbations Incompressible Notes

Navier - Stokes Homogeneous
Euler X

Full Potential X X
Transonic Small

Disturbance
X X X

Prandtl - Glauert X X X Linearized
Acoustic X X X Linearized
Laplace X X X

Table 3.1: Commonly solved equations with corresponding assumptions [9]

3.2. DIFFERENTIAL EQUATIONS 13

3.2. DIFFERENTIAL EQUATIONS
The non-linear two-dimensional unsteady TSD equation, which is the governing equation, for inviscid, irro-
tational, compressible flow past a thin airfoil at small angles of attack, can be written as:[

1−M∞2 −M∞2(γ+1)
δφ

δx̄

]
δ2φ

δx̄2 + δ2φ

δz̄2 −2M∞2 δ2φ

δx̄δt̄
−M∞2 δ

2φ

δt̄ 2 = 0 (3.1)

where

φ = perturbation velocity potential [−]
M∞ = undisturbed free-stream Mach number [−]
x̄, z̄ = cartesian coordinates [m]

t̄ = time [s]

For the derivation of this equation the reader is referred to Appendix B. In order to make Equation 3.1 entirely
non-dimensional, the cartesian coordinates and time are non-dimensionalized with respect to the airfoil
semi-chord b and the free-stream velocity U∞. The non-dimensionalized cartesian coordinates and time are
given by:

x = x̄

b
(3.2a)

z = z̄

b
(3.2b)

t = t̄V∞
b

(3.2c)

The BC [1, 5] that will be imposed on the flow boundaries are as follows:

• Flow tangency condition: the resultant velocity vector is always tangent to the local airfoil surface.

• The pressure is continuous off the airfoil, particularly across the wake. This means that there is a zero
pressure difference across the plane z = 0 at all regions outside of the wing.

• The Kutta condition of finite velocities is satisfied at the trailing edge of the airfoil.

• At distances far upstream of the airfoil, the perturbation velocity potential and its derivatives fade out.

Since the governing equation given by Equation 3.1 is of non-linear form, it is assumed that φ consists of the
sum of a steady component φ0 and a time-dependent component φ1:

φ(x, z, t) =φ0(x, z)+φ1(x, z, t) (3.3)

This decomposition is performed to solve Equation 3.1. On the basis of small perturbations, it is assumed
that φ1 ¿φ0. Substituting Equation 3.3 into Equation 3.1, and equating equal orders of magnitude, results in
the following set of governing equations:

(1−M∞2)
δ2φ0

δx2 + δ2φ0

δz2 = M∞2(γ+1)
δ

δx

(
1

2

(
δ2φ0

δx2

)2)
(3.4a)

(1−M∞2)
δ2φ1

δx2 + δ2φ1

δz2 −2M∞2 δ
2φ1

δxδt
−M∞2 δ

2φ1

δt 2 = M∞2(γ+1)
δ

δx

(
δφ0

δx

δφ1

δx

)
(3.4b)

The obtained set of equations (especially Equation 3.4b) show that in order to solve the unsteady compo-

nent φ1, prior knowledge of the steady velocities δφ0
δx in the flowfield is required. Although the current project

only focuses on determining the steady perturbation potentialφ0 and the steady velocities δφ0
δx , the governing

equations and boundary conditions for both situations are outlined.
The governing equations 3.4 are transformed into a more familiar form, by introducing the following param-
eters and variables:

14 3. MATHEMATICAL MODEL

Parameters: Variables:

β=
√

1−M∞2 x
′ = x̄

µ= (γ+1)M∞2

β3 z
′ =βz̄

ν=βµ t
′ = β

M∞ t̄

φ
′ = νφ̄

Applying those parameters and variables to Equation 3.4 results in the following steady and unsteady govern-
ing equations:

∇2φ
′
0 =

δ

δx

1

2

(
δφ

′
0

δx ′

)2
 (3.5a)

(
Dφ

′
1

Dt ′

)2

+ 2M∞
β

δ2φ
′
1

δx ′
δt ′ =− δ

δx

(
δφ

′
0

δx ′
δφ

′
1

δx ′

)
(3.5b)

Here, ∇2 and
(D

Dt

)2
, are:

∇2 ≡ δ2

δx′2 + δ2

δz ′2
and

(
D

Dt ′
)2 ≡ δ2

δt ′2
−∇2

The governing equations are obtained, and the boundary conditions mentioned earlier are written in equa-
tion form using the tangency condition as follows:

[
δφ

′

δz ′

]
z ′=h′ =µ

(
δh

′

δx′ + β
M∞

δh
′

δt ′
)

,−1 ≤ x ′ ≤ 1 (3.6)

The variable h
′

in this equation is defined as the vertical coordinate of the body surface. However, it should
be noted that this boundary condition is valid only along the surface of the airfoil and thus enforced on the
actual surface. This is indicated by z

′ = h
′

in equation. The airfoil is located between x ′ = −1 and x ′ = 1,
meaning that the chord of the airfoil is equal to b = 2. Therefore, the boundary condition given by Equation
3.6 is valid for |x ′| ≤ 1. In order to simplify the problem further, a thin airfoil is considered, and thus can
be prescribed by placing a vortex sheet on the chord of the airfoil b. This theory is known as the thin airfoil
theory, and is discussed in Section 2.2. Due to this assumption, the tangency boundary condition given by
Equation 3.6 is satisfied on the airfoil chord z

′ = 0, that is:

[
δφ

′

δz ′

]
z ′=0

=µ

(
δh

′

δx ′ +
β

M∞
δh

′

δt ′

)
(3.7)

The next step is to decompose the vertical coordinates of the body h
′

into a steady component and unsteady
component:

h
′
(x

′
, t

′
) = h

′
0(x

′
)+h

′
1(x

′
, t

′
) (3.8)

where

h
′
0(x

′
) = thickness distribution

h
′
1(x

′
, t

′
) = unsteady displacement of the wing mean surface about z

′ = 0

Now, inserting equations 3.3 and 3.8 into Equation 3.7 results in the tangency boundary condition for the
steady and unsteady case respectively:

3.2. DIFFERENTIAL EQUATIONS 15

[
δφ

′
0

δz ′

]
z ′=0

=µ
δh

′
0

δx′ ,−1 ≤ x ′ ≤ 1 (3.9)

[
δφ

′
1

δz ′

]
z ′=0

=µ

(
δh

′
1

δx′ + β
M∞

δh
′
1

δt ′

)
,−1 ≤ x ′ ≤ 1 (3.10)

Since this study is concerned with solving the steady TSD equations, the derivation of the steady tangency
condition will be shown in Appendix B.

Next, the wake boundary condition is defined, with continuous pressure across the wake. The wake condition
is valid for x

′ ≥ 1, since the wake arises at the trailing edge of the airfoil when the flow starts separating from
the airfoil as can be seen in Figure 3.3. During flight, the speed of the aircraft and angle of attack of the wings
(and thus the airfoils) change continuously. This in turn varies the strength of the trailing edge vortices, which
is accounted for by a continuous sheet of weak vorticity known as the wake. These wake related boundary
conditions are formulated as follows:

∆

(
δφ

′
0

δx ′

)
= 0 (3.11a)

∆

(
δφ

′
1

δx ′

)
+ β

M∞
∆

(
δφ

′
1

δt ′

)
= 0 (3.11b)

where ∆((φ
′
0)x) represents the jump in ((φ

′
0)x) across the wake.

The goal of this research was to determine the aerodynamic loading on airfoils in transonic regimes, which
can be done by computing the pressure distribution along the airfoil. However, the potential flow equa-
tions discussed so far are posed in terms of state variables and do not include the pressures. The differential
equations and boundary conditions allow the computation of the local velocities, but not the pressure distri-
butions. Therefore, after obtaining the velocities, the pressure coefficient CP ≡ P−P∞

q∞ will be used to find the
local pressures as can be seen in Appendix B. This leads to an expression for the pressure coefficient CP :

CP (x
′
, z

′
, t

′
) =− 2

νb

(
δφ

′

δx ′ +
β

M∞
δφ

′

δt ′

)
(3.12)

Again, substituting Equation 3.3 into Equation 3.12 results in:

CP (x
′
, z

′
, t

′
) =− 2

νb

δφ
′
0

δx ′ −
2

νb

(
δφ

′
1

δx ′ +
β

M∞

φ
′
1

δt ′

)
(3.13)

Figure 3.3: Airfoil wake [1]

Thus, the unsteady transonic small perturbation flow problem about two-dimensional lifting airfoils is for-
mulated by the following governing equations and boundary conditions in differential form:

16 3. MATHEMATICAL MODEL

Steady Component Unsteady Component

Governing Equation ∇2φ
′
0 = δ

δx

(
1
2

(
δφ

′
0

δx′

)2
) (

Dφ
′
1

Dt ′

)2

+ 2M∞
β

δ2φ
′
1

δx ′
δt ′

=− δ
δx

(
δφ

′
0

δx′
δφ

′
1

δx′

)
Tangency Condition

[
δφ

′
0

δz ′

]
z ′=0

=µ
δh

′
0

δx′

[
δφ

′
1

δz ′

]
z ′=0

=µ

(
δh

′
1

δx′ + β
M∞

δh
′
1

δt ′

)
|x ′ | ≤ 1

Wake Condition ∆

(
δφ

′
0

δx′

)
= 0 ∆

(
δφ

′
1

δx ′

)
+ β

M∞∆

(
δφ

′
1

δt ′

)
= 0 x

′ ≥ 1

3.3. INTEGRAL EQUATIONS
In this section integral representation corresponding to the steady transonic differential equations will be de-
rived. This will be done by linearizing equations 3.5a, 3.9 and 3.11a with the method of parametric differenti-
ation, and applying Green’s theorem [10]. Since this research focuses on applying the method of parametric
differentiation to the transonic differential equations, the method itself will not be elaborated on. However, a
parameter of interest is needed in using this method, which is taken to be the thickness ratio ε for this study.

Equations 3.5a, 3.9 and 3.11a will be transformed to ε-space with g = δφ
′
0

δε , and result into the following linear
governing equation and boundary conditions:

∇2g = δ

δx

(
u
δg

δx

)
(3.14a)

[
δg

δz

]
z=0

=µ
δ

δε

(
δh0

δx

)
, |x| ≤ 1 (3.14b)

∆
δg

δx
= 0, x ≥ 1 (3.14c)

Note that the accents have been removed for simplicity, and u in Equation 3.14a denotes the steady com-

ponent of longitudinal velocity δφo
δx . This transformation process to ε-space can be reviewed in Appendix B.

Now, let (x, z) be the running coordinates in the subsequent integrations. Then, for M∞ < 1, application of
Green’s theorem converts Equation 3.14a into the following integral relation [11]:

g (ξ,ζ) = gT (ξ,ζ)+ gL(ξ,ζ)+ gN L(ξ,ζ) (3.15)

This means that the steady velocity potential consists of three contributions, namely:

1. thickness effects

2. lifting

3. non-linear phenomenon

Before discussing those contributions, the region of integration will be shown which can be used to obtain the
integral equations of the different contributions. This region can be seen in Figure 3.4. The flow embodied
by the circle in this figure (i.e., reasonably large finite region of the flow) defines a control volume V to which
the fundamental physical principles are applied, and a control surface S is defined as the control surface
which bounds the control volume. Instead of looking at the whole flow field at once, the attention has been
limited to just the fluid in the finite region of the volume itself. The control volume shown in Figure 3.4 is
bounded by the circle C∞ around the airfoil (AB), and a cut that surrounds and wraps the surface of the body
(BC D A). Stations 1 and 2 are inflow and outflow stations, respectively. Assume that the contour C∞ is far
enough from the body such that the pressure is same everywhere on C∞ and equal to the freestream pressure
P = P∞, meaning that the perturbation velocity decays away from the airfoil. This assumption ensures that
the real life situation of undisturbed flow far away from the airfoil is imitated as good as possible, and that the
only disturbances are due to the airfoil. Consequently, the perturbation velocity fades away as the air moves
farther from the airfoil.

3.3. INTEGRAL EQUATIONS 17

Figure 3.4: Integration region used in obtaining velocity potential contributions due to thickness, lift, shock-wave and non-linear
phenoma [5]

3.3.1. THICKNESS EFFECT CONTRIBUTION

The contribution to the velocity potential due to thickness effects is [11]:

gT (ξ,ζ) = 1

2π

∫ 1

−1

[
∆
δg

δz

]
z=0

ln

(√
(x −ξ)2 +ζ2

)
d x (3.16)

The term
√

(x −ξ)2 +ζ2 in this equation represents the distance from a vortex sheet segment to a point in
the flow, as indicated in Figure 2.3d. However, point P for the thickness contribution case is placed between
x =−1 and x = 1 on the chord line, because of the thin airfoil theory mentioned in Chapter 2.2. Therefore the
distance r varies only due to the variation of the location on the x− axis.

3.3.2. LIFTING CONTRIBUTION

The lifting contribution to the velocity potential is represented by [11]:

gL(ξ,ζ) = 1

2π

∫ ∞

−1
[∆g]z=0

ζ

(x −ξ)2 +ζ2 d x (3.17)

The distance term appears in this equation as well, and is the same as for the thickness contribution case.
The only difference here is that the integration boundaries in Equation 3.17 are defined by x =−1 and x =∞.
This is due to the fact that both the thin airfoil and wake behind the airfoil (which expands to infinity) can be
simulated by placing a vortex sheet on them, resulting in both the airfoil and wake contributing to lift. The
reader is referred to Chapter 2.2 for a more detailed explanation of this principle. However, this difference
does not influence the z−axi s; point P in Figure 2.3d is still located on the chord line. Therefore the distance
term in equations 3.16 and 3.17 is the same. In order to maintain consistency in determining the several
contributions to the velocity potential, Equation 3.17 will be transposed to an integral with boundaries from

18 3. MATHEMATICAL MODEL

x =−1 to x = 1. This is done using integration by parts once and knowing that
[
∆
δg
δx

]
x=−1

= 0 and [∆g]x=∞ =
[∆g]x=1, and results in:

gL(ξ,ζ) = 1

2π

∫ 1

−1

[
∆
δg

δx

]
z=0

[
π

2
sg n(ζ)+ t an−1

(
ξ−x

ζ

)]
d x (3.18)

3.3.3. NON-LINEAR CONTRIBUTION

The last contribution to the velocity potential is due to the non-linear contributions, and is given by [11]:

gN L(ξ,ζ) =− 1

2πb

∫ ∫
(x −ξ)

(x −ξ)2 + (z −ζ)2

(
u
δg

δx

)
d xd z (3.19)

where u denotes the x-component of the perturbation velocity. The distance from an element of the vortex
sheet to a point in the flow field is indicated by r = (x −ξ)2 + (z −ζ)2, and can be seen in the denominator of
Equation 3.19. This distance differs from the distance term in equations 3.16 and 3.17, since Equation 3.19 is
a surface integral. The region of integration is the whole flow field domain, instead of only the chord line.
An example of a non-linear contribution is due to the shock wave, which most likely will arise at transonic
regimes.

3.3.4. TOTAL SET OF EQUATIONS

Now that the separate contributions are obtained, they can be put together to obtain the total set of equations,
as given below:

g (ξ,ζ) = 1

2π

∫ 1

−1

[
∆
δg

δz

]
z=0

ln

(√
(x −ξ)2 +ζ2

)
d x

+ 1

2π

∫ 1

−1

[
∆
δg

δx

]
z=0

[
π

2
sg n(ζ)+ t an−1

(
ξ−x

ζ

)]
d x

− 1

2πb

∫ ∫
(x −ξ)

(x −ξ)2 + (z −ζ)2

(
u
δg

δx

)
d xd zνmber thi s

The calculation of this equation proceeds in two steps:

1. First, the perturbation of the stream-wise derivative of the perturbation potential gξ (i.e. due to the
nonlinear character of the flow) is determined. The derivation of gξ can be found in Appendix C.

2. Subsequently, the surface distribution of the vortex strength is determined. Here, it is important that
the surface tangency boundary condition is satisfied. The derivation of this vortex strength is also out-
lined in Appendix C.

Those two steps of calculation are strongly coupled and must be solved numerically by an iterative procedure,
until gξ converges to a certain value and does not change anymore. Then this value will be used to determine
the perturbation velocity distribution u(ξ,ζ), which in turn can be used to determine the pressure coefficient
distribution CP (ξ,ζ) along the airfoil. A diagrammatic representation of this solution model is displayed in
Figure 3.5, and will be explained in Chapter 4.

This section is concluded with a summary of the governing equation and boundary conditions of the steady
transonic differential equation:

3.3. INTEGRAL EQUATIONS 19

Start

ε0, α

Determine gε(ξ,ζ)

gε(ξ,ζ) converged? gε(ξ,ζ) Update u(ξ,ζ) with ∆ε

Desired ε reached?

u(ξ,ζ)

Determine CP (x,0±)

No Yes

No

Yes

Figure 3.5: Flowchart of solution model

20 3. MATHEMATICAL MODEL

Steady Component

Governing Equation

g (ξ,ζ) = 1

2π

∫ 1

−1

[
∆
δg

δz

]
z=0

l n

(√
(x −ξ)2 +ζ2

)
d x

+ 1

2π

∫ 1

−1

[
∆g

δx

]
z=0

[
π

2
sg n(ζ)+ t an−1

(
ξ−x

ζ

)]
d x

− 1

2πb

∫ ∫
(x −ξ)

(x −ξ)2 + (z −ζ)2

(
u
δg

δx

)
d xd z

Tangency Condition
[
δg

δz

]
z=0

=µ
δ

δε

(
δh0

δx

)
|x| ≤ 1

Wake Condition ∆
δg

δx
= 0 x ≥ 1

4
NUMERICAL IMPLEMENTATION

Once the integral representations of the governing equation and corresponding boundary conditions of to the
steady transonic small disturbance equation are obtained, the equations are implemented numerically using
a technical programming language. M AT L AB is the program that is used for this project, and this chapter
treats the implementation of the obtained set of equations into this program. First, the mesh structure is
discussed in Section 4.1. This covers the type and number of cells on which the flow equations are solved,
and highly affects the rate of convergence and the solution accuracy. As the grid cells become smaller, and the
number of cells in the flow domain increase (i.e. fine grid rather than a coarse grid), the rate of convergence
will most likely increase too. At the same time, the solutions will become more accurate. As a result, a trade
off for the algorithm has to be made between rate of convergence (computation time) and solution accuracy.
Section 4.2 then covers the implementation of the equations on such mesh, and is performed as explained
earlier in the diagrammatic representation of the solution model given by Figure 3.5.

4.1. MESH STRUCTURE
This section covers the mesh structure for the flow simulations performed under this study. The meshing
starts by creating a grid, which qualifies the cells/elements the flow will be solved on, and represents the
geometry of the problem. A grid has a huge significance, as it impacts the rate of convergence, the solution
accuracy, and the required processing time. The quality of the mesh depends highly on the grid type. A
sketch of a two-dimensional and three-dimensional computational grid is as shown in Figure 4.1 [12]. The
terms used in this figure are as explained below:

Cell = control volume into which the domain is broken up
Cell center = center of a cell
node = grid point
edge = boundary of face
face = boundary of a cell
Zone = grouping of nodes, faces, and cells (wall boundary zone, fluid cell zone)
Domain = group of nodes, faces, and cell zones

From the figure, it is clear that certain decisions regarding the grid type and shape are required for performing
accurate flow simulations, which are further discussed in subsequent sections.

4.1.1. CELL TYPE

The choice of the cell type depends on the problem and the solver capabilities. Figures 4.2 and 4.3 show the
different cell types for two-dimensional and three-dimensional computations, respectively. One can see from
these figures that a tetrahedron is the three-dimensional form of a triangular cell, and a hexahedron is a three-
dimensional form of a quadrilateral cell. Since the objective of this research is to solve two-dimensional flow,
the choice of cell types reduces to two cases as can be seen from Figure 4.2. Because of the ease of creation
the quadrilateral cell is chosen to be the cell type that will be used in creating the computational domain.

21

22 4. NUMERICAL IMPLEMENTATION

(a) 2D Computational Grid (b) 3D Computational Grid

Figure 4.1: 2D and 3D computational grids [12]

(a) Quadrilateral (b) Triangle

Figure 4.2: 2D cell types [12]

(a) Tetrahedron (b) Hexahedron (c) Pyramid (d) Wedge (e) Polyhedron

Figure 4.3: 3D cell types [12]

4.1.2. GRID TYPE
This section outlines the most common grid types, after which the choice of grid type for the current project
is explained. The four most common used grid types and their definitions are as follows:

• Structured grid: This mesh consists out of different types of hexahedral grids, and the mesh is repre-
sented in a single block. The connectivity information is such that the mesh follows a structured i , j ,k
convention.

• Unstructured grid: The cells of this type of grid are arranged in an arbitrary fashion, without i , j ,k
indices. Thus, the mesh has no logical representation. Also, the processing and computation time with
these kind of grids are higher as compared to the structured grids.

• Multiblock: This type of mesh consists of multiple blocks. Each block can be meshed using a structured
or unstructured meshing approach.

• Hybrid: This type of grid is created by using the most appropriate cell type in any combination; triangle
and quadrilaterals in two-dimensional computations, and tetrahedra, prisms, and pyramids in three-
dimensional computations. Also, the grid lines do not need to match at block boundaries.

Since the geometry of the airfoil used in this study to determine the aerodynamic loading represents a simple
geometrical profile, and as the focus is on fast processing time, the structured grid will be used for the numer-
ical computations. Furthermore, the coordinate system defined is a non-uniform rectangular grid centered at
the mid-chord of the airfoil and symmetric with respect to the mid-chord. Also, the airfoil surface is projected
on the plane z = 0 in the interval −1 ≤ x ≤ 1. This is depicted in Figure 4.4.
As shown in Figure 4.4, the final mesh generated is non-uniform over the whole domain owing to the reduc-
tion in processing time. The quality of the generated mesh is further discussed in this section. One measure

4.1. MESH STRUCTURE 23

Figure 4.4: Mesh structure

of the mesh quality is the mesh density, which is required to be high enough to capture all relevant flow fea-
tures, and can be stretched where the flow is fully-developed. Another important feature is the total number
of cells. More cells can give a higher accuracy, with a downside of an increase memory and processing time.
Since the objective of the current research is to develop a tool that is accurate enough, but with a low pro-
cessing time, the cell count are kept low. This can be done by using a non-uniform grid to cluster cells only
where they are needed. The symmetry of the mesh is another factor that affects the mesh quality. In order to
get reliable results, a symmetrical mesh is desired. As such, the mesh spacing is decided to be non-uniform,
with a finer mesh in the vicinity of the airfoil which gets coarser further away from the airfoil. This is due
to the fact that the velocity gradients close to the airfoil surface are higher, and vanish when moving further
away from the airfoil. Therefore, the grid points have been clustered in this region to capture these rapid
velocity changes. Due to this type of non-uniform grid, the total number of mesh points are kept to a mini-
mum while as much area of interest as possible will be covered. In addition, the mesh should be suitable for
the integration and differentiation operations performed in the required numerical calculations. This will be
explained in the next section. Therefore, taking all requirements into account, a symmetric and non-uniform
structured grid consisting of hexahedral cells is used for the computations. Figure 4.4 shows that both the x
- and z-directions are divided into three regions, which are indicated by the red and blue lines for the x- and
z-directions respectively:

• The vicinity of the airfoil (−1 < x < 1 and −1 < z < 1)

• An intermediate region (−2 < x <−1, 1 < x < 2, −2 < z <−1, 1 < z < 2)

• The far field (x <−2, x > 2, z <−2, z > 2)

The mesh sizes d x and d z within each region are uniform but with different cell spacing; the grid region fur-
ther away from the airfoil is less dense compared to the region around the airfoil. This is due to the boundary

24 4. NUMERICAL IMPLEMENTATION

condition stating that he perturbation velocity potential and its derivatives fade out at large distances from
the airfoil. Since the algorithm computes the velocity distribution potentials and its derivatives, which de-
creases in magnitude further away from the airfoil, a coarser grid is sufficient for the numerical computations.
In particular, the mesh size is uniform along the airfoil surface, with 87 number of nodes in both the x and
z-direction.

4.2. IMPLEMENTATION OF EQUATIONS
Once the mesh structure to perform the computations on is obtained, the way of implementing the mathe-
matical model (which was outlined in Chapter 3) into M AT L AB is discussed. This is done by using the flow
chart displayed in Figure 3.5 as a guideline. Before analyzing the flowchart, an overview of the equations that
will be implemented into the code will be given. Those equations are applied to a parabolic arc airfoil with
a thickness ratio ε and under small angles of attack α. Hence, this section starts with an expression for the
upper and lower boundaries of the profile:

h±
0 =±2ε(1−x2)−αx (4.1)

The coordinates in this equation are normalized with respect to the airfoil semi-chord b. Equation 4.1 is
used to determine the jump in normal velocity across the surface, by substituting it into the equation for the
surface tangency condition given by Equation 3.9. This results in:

[
∆
δφ0

δz

]
z=0

=µ

(
δh+

0

δx
− δh−

0

δx

)
=−8µεx (4.2)

Equation 3.14b is be used to transform Equation 4.2 into the ε parameter-space, by differentiating it with
respect to ε. This yields in: [

∆
δg

δz

]
z=0

=−8µx (4.3)

These equations are implemented into equations C.1 and C.4 to obtain the complete set of integral equations
formulating steady transonic flow about a parabolic arc airfoil. It is given as follows:

δg

δξ
(ξ,ζ) =4µ

π

∫ 1

−1

x(x −ξ)

(x −ξ)2 +ζ2 d x

+ 1

2π

∫ 1

−1

[
∆
δg

δx

]
z=0

ζ

(x −ξ)2 +ζ2 d x

− 1

2πb

δ

δξ

[Ï
S

(x −ξ)

(x −ξ)2 + (z −ζ)2

(
u
δg

δx

)
d xd z

]

∆
δg

δξ
(ξ,0±) = 2

π

√
1−ξ
1+ξ

∫ 1

−1

I (x)

ξ−x

√
1+x

1−x
d x

I (ξ) = 1

πb

Ï
S

2z(x −ξ)

[(x −ξ)2 + z2]2

(
u
δg

δx

)
d xd z (4.4)

In order to start the computations, an initial solution is required. This will be done by choosing a base solution
corresponding to some initial value of the thickness parameter ε0. A convenient choice is ε¿ 1, since the base
solution can then be constructed from Laplace’s equation introduced in Chapter 2.3 (i.e. ∇2φ = 0). Thus,
equating the steady component of the governing equation to zero, and satisfying the boundary conditions
of the flow results in the base solution. Since the perturbation velocity u is needed in the equations given
by Equation 4.4, the base solution is written in terms of the perturbation velocity as well. This can be done,
since:

δu

δε
= δg

δx
(4.5)

That is:

4.2. IMPLEMENTATION OF EQUATIONS 25

u0(ξ,ζ) =− 1

2π

∫ 1

−1

[
∆
δφ

δz

]
z=0

(x −ξ)

(x −ξ)2 +ζ2 d x + 1

2π

∫ 1

−1
[∆u]z=0

ζ

(x −ξ)2 +ζ2 d x (4.6)

Here,
[
∆
δφ
δz

]
z=0

is related to the airfoil geometry through Equation 4.2 and [∆u]z=0 denotes the vortex sin-

gularity distribution along the chord. This quantity is given by the flat plate relation in the linearized theory,
that is:

[∆u]z=0 = 2µα

√
(1−x)

(1+x)
(4.7)

This relation satisfies the Kutta condition at the trailing edge (x = 1) and features a square root singularity at
the leading edge (x = −1). Thus, combining equations 4.2, 4.6 and 4.7 results in the final expression of the
base solution:

u0(ξ,ζ) = 4µε0

π

∫ 1

−1

x(x −ξ)

(x −ξ)2 +ζ2 d x + αµ

π

∫ 1

−1

√
(1−x)

(1+x)

ζ

(x −ξ)2 +ζ2 d x (4.8)

Implementing the coupled system of equations 4.4 and 4.8 in M AT L AB is a complicated process, since iter-

ative procedures are involved; updating for δg
δξ , u and ε. These iterative procedures are displayed in Figure 3.5

by different colors. The computation process starts with determining a base perturbation velocity solution
u0 with the help of Equation 4.8, by choosing an initial thickness parameter ε0. Here, the subscript 0 denotes
that the determined values are the initial values to start the computations (i.e. base solutions). The next step

is solving for δg
δξ by using Equation 4.4. This is done at a fixed ε-level (ε0 in this case), and iterating the value of

δg
δξ while keeping u(x, z) (u0(x, z) in this case) constant. Once the value of δg

δξ is converged, the perturbation
velocity u(ξ,ζ) is updated by the following formula:

u(ε+∆ε) = u(ε)+
∫ ε+∆ε

ε

δu

δε
dε

= u(ε)+
∫ ε+∆ε

ε

δg

δx
dε (4.9)

As shown by Equation 4.4 that the base value of δg
δξ consist of only the thickness effect contribution to the

velocity potential gT , since the lifting contribution gL (second term) and non-linear contribution gD (third

term) disappear because of the non-existence of δg
δx for the very first, thus initial, step.Thus, it is remarkable

that the thickness effect contribution gT is independent of δg
δx and u(ξ,ζ) and can be placed outside the iter-

ative loops in M AT L AB .
After having calculated the first updated value of the perturbation velocity u1(ξ,ζ) with u1(ξ,ζ) = u0(ξ,ζ)+(
δg
δξ

)
0
∆ε, the aforementioned process of obtaining a converged value of δg

δξ , thus
(
δg
δξ

)
1

in this case,with the

new perturbation velocity u1(ξ,ζ) is carried out. Then, the velocity potential is updated again with u2(ξ,ζ) =
u1(ξ,ζ)+

(
δg
δξ

)
1
∆ε , after which the converged value of

(
δg
δξ

)
2

will be determined and so on.

The green symbols in the flowchart in Figure 3.5 indicate the iteration of δg
δξ until a converged value is found.

This iteration is incorporated into the M AT L AB code with an inner-loop, and indexed with n. The process
of updating u(ξ,ζ), indicated by the red symbols in the flowchart, is incorporated with an outer-loop and in-
dexed with m. It is important to note that ∆ε is the same for all iterations, thus there is a uniform increment
in the thickness ratio ε.
The iterative procedure is run until the desired thickness ratio of ε is reached, the pressure coefficient CP (x,0±)
on the z = 0 can be computed with:

CP (x,0±) =− 2

bν
u(x,0±) (4.10)

This algorithm can also be found in equation form in Appendix D. Note that the perturbation velocity is being
calculated in the whole flow domain, but only the value on the plane z = 0 should be used to determine the
pressure coefficient CP since the airfoil was projected onto this plane. The M AT L AB file with the entire code
can be found in Appendix E. One can see that the code is build up as follows:

26 4. NUMERICAL IMPLEMENTATION

• Defining parameters

• Mesh generation for vicinity of the airfoil, intermediate region, far field , and combining the separate
meshes into a single mesh for the whole flow domain

• Computing the base solution;

– Base solution in terms of the perturbation velocity u(ξ,ζ) .

– Base solution in terms of δg
δξ (ξ,ζ), which consists of only the thickness effect contribution gT as

explained before.

Both quantities are independent of u(x,0±) and δg
δx (ξ,ζ), and are therefore placed outside the inner and

outer loops.

• Inner loop, thus updating for δg
δξ (ξ,ζ) until it converges;

– Computing I (ξ)

– Computing ∆δξ
δξ (ξ,0±)

– Computing the lift contribution gL to δg
δx (ξ,ζ)

– Computing the non-linear contribution gN L to δg
δx (ξ,ζ)

An interesting parameter tho note is the under-relaxation factor d at the end of the inner-loop. This fac-

tor is introduced, because without this factor the solutions of δg
δξ (ξ,ζ) would be unstable. That is, when

plotting δg
δξ (ξ,ζ) versus iterations, a non-smooth curve with lots of rapidly changing ups and downs

were noticed. Therefore, the under-relaxation factor was introduced since this is a significant parame-
ter affecting the convergence of the numerical scheme, and represents the fraction of the solution being

carried forward from one iteration (j) to the next (j +1) for the computation of δg
δξ (ξ,ζ) as follows:

(
δg̃

δξ

)
j+1

=
(
δg

δξ

)
j
+d

[(
δg

δξ

)
j+1

−
(
δg

δξ

)
j

]

For a more detailed overview of this process the reader is referred to Appendix D. An optimized value for
this constant is therefore very important. Computations without an under-relaxation factor correspond
to d = 0. By trial-and error, thus by starting with d = 0 and increasing this value, an under-relaxation
factor of d = 0.1 is found to be optimal.

• Outer loop, thus updating for u(x,0±) by increasing ε every iteration by ∆ε, as follows:

ui+1 = ui +
(
δg

δξ

)
n
∆ε

Appendix D shows in more detail how this update is achieved.

The numerical techniques used to evaluate the integrals on the mesh, as well as the numerical treatment

of the differentiation showing up in the non-linear contribution to δg
δξ (ξ,ζ) as shown in Equation 4.4, are

outlined in Appendix C.

4.3. SUMMARY
The computations in this study are performed on a symmetric and non-uniform structured grid made up of
hexahedral cells. Two loops have been incorporated, viz. inner-loop and outer-loop. The goal of the inner-

loop is to find the converged value of δg
δξ in Equation 4.4, which then will be used in the outer-loop to update

the perturbation velocity u. The number of iterations of the outer- loop is determined by the thickness ratio ε.
In the current study the starting value of this thickness ratio ε and the increment in ε are set to be ε0 = 0.00125.
The prediction of the loads is aimed to be performed for a 6% thick airfoil, i.e. resulting in a thickness ratio
of ε = 0.06. Both the upper and lower side of the airfoil contribute to this 6% thickness. Since the parabolic
arc airfoil under consideration is a symmetric airfoil, the contribution of both sides is equal. Therefore, the

4.3. SUMMARY 27

thickness of both sides of the airfoil (as seen from the middle of the airfoil) is 3%. This is illustrated in Figure
4.5. Starting from ε0 = 0.00125, 24 incremental steps are required to reach this 3% thickness in incremental
steps of ∆ε = 0.00125 (i.e. ε0 = 0.00125 is counted as the first incremental step). Therefore, 24 outer-loop
iterations will be needed for the computations (indicated by m = 24 in the algorithm). After having computed
the perturbation velocity with the desired thickness ratio, the pressure coefficient on the z = 0 are computed.

Figure 4.5: Thickness ratio of ε= 0.03 for the upper- and lower-side of the parabolic arc airfoil

5
RESULTS

This chapter discusses the results of the tool developed to solve transonic flow around the symmetrical
parabolic arc airfoil. The pressure coefficient distributions have been determined for the freestream Mach
numbers M∞ = 0.806 and M∞ = 0.86. At each Mach number, the angles of attack of α = 0◦, α = 0.5◦, and
α = 1◦ have been treated. The number of mesh cells used for these calculations are 87 in both the x and z
direction. Coarser or finer meshes have not been researched, since the resulting pressure coefficients were in
good agreement with NumecaF i neT M /Open (as will be explained in Chapter 6). Also, due to the inefficient
implementation of mesh elements in the generated code, the number of cells were restricted to a particular
constant values and no further changes were made.
Furthermore, the initial thickness ratio is taken to be ε0 = 0.00125, which in 24 iterative steps of δε (outer-
loop) is increased to ε = 0.03 on both sides of the airfoil. This results in a total thickness of 6%. This airfoil
thickness was investigated for comparison purposes with Lamah’s results [5] in Chapter 6.The number of it-
erations for the x-derivative of the perturbation velocity potential gx (inner-loop) is chosen to be n = 10. The
number of iterations of the inner- and outer-loop (n = 10 and m = 24, respectively) have been obtained by
starting with m = 1, and varying the number of the iterations of the inner-loop, until no changes in the final
pressure coefficient distributions could be identified up to two decimal places. Then, the number of itera-
tions of the outer-loop were varied. This was accompanied by changing the initial thickness ratio ε0. This,
again, has been done until a converged solution was reached. For the computations of gx at the end of the
inner-loop, an under-relaxation factor of d = 0.1 has been used for stability purposes. This value determines

the faction of the difference between δg
δξ at the start of the iteration and δg

δξ computed at the end of the inner-

loop. This difference is being added to the value of δg
δξ at the start of every iteration. The resulting

(
δg
δξ

)
j+1

is

then used as the starting value for the next iteration. A value of d = 0.1 was found by starting with no under-
relaxation factor, and increasing it with intervals of ∆d = 0.1 to determine the effect of this factor on the final

results. No under-relaxation factor thus means that the value of δg
δξ taken for the next iteration is equal to the

value of δg
δξ determined at the end of the previous iteration. The reader is referred to Appendix D for a com-

plete overview of this process. After having run several simulations with increasing d , it was observed that
d > 0.1 results in no significant changes in the pressure coefficient distribution. However, the computation
time was marginally increased (maximum time difference of about one minute). Therefore, since no signifi-
cant difference in results was noticed, d = 0.1 was selected to minimize the resulting computational time.

First, the pressure coefficient distribution for the airfoil for zero angle of attack is treated in Section 5.1. The
results for α= 0.5◦ and α= 1◦ are then reported in sections 5.2 and 5.3 respectively.

5.1. α= 0◦

This section presents the pressure coefficient distribution of the parabolic arc airfoil under zero angle of at-
tack, immersed in free stream Mach numbers of M∞ = 0.806 and M∞ = 0.86. The CP distributions are as
shown in Figure 5.1. Before discussing these pressure distributions, the mathematical definition of the pres-

29

30 5. RESULTS

sure coefficient CP will be given by Equation 5.1a.

CP = P −P∞
q∞

(5.1a)

q∞ = 1

2
ρ∞V 2

∞ (5.1b)

where

CP = Pressure coefficient [-]
P = Static pressure at the point of interest [Pa]
P∞ = Free stream static pressure [Pa]
V∞ = Free stream velocity

[m
s

]
ρ∞ = Free stream density

[
kg
m3

]
When there is no perturbation in the flow field, the static pressure at the point of interest P is equal to
the freestream static pressure P∞. Therefore, the pressure coefficient CP will be zero. However, when the
freestream flow is disturbed by an object immersed in the flow, the local pressure changes. Due to this in-
equality between the pressure at the point of interest and the freestream static pressure, the pressure coef-
ficient CP at the point of interest will not be equal to zero anymore, as can be derived from Equation 5.1a.
Remarkable features of the pressure coefficient distributions in figures 5.1a and 5.1b are itemized below.

• The pressure coefficient distributions for the upper and lower side of the airfoil lie on top of each other,
meaning that those values are the same. This is as expected, since those pressure distributions are
computed for a symmetric airfoil under zero angle of attack. Also, due to the symmetry of the airfoil in
both the x- and z-directions, the pressure coefficients are mirrored in the z-axis at x = 0. This means
that the pressure coefficients at −1 ≤ x < 0 are identical to the pressure coefficients at 0 > x ≥ 1.

• For M∞ = 0.806 the CP distribution in Figure 5.1a starts out at the value of CPLE = 0.28 at the nose.
The value of CP drops as the flow expands around the nose, yielding a minimum value of CPmi n =
−0.25 downstream of the nose. This occurs at the thickest point of the airfoil, which is at x = 0 for
the symmetrical parabolic arc airfoil under consideration. Further downstream the pressure tries to
recover and approaches a value of CPT E ≈ 0.28 at the trailing edge. Such a region of increasing pressure
in the direction of the flow is called an adverse pressure gradient. Too severe adverse pressure gradient
leads to boundary layer transition, and possibly separation. The pressure distribution in Figure 5.1a
does not indicate separation, since otherwise this value would be far below zero. In contrary, there is a
positive pressure coefficient at the trailing edge, which is exactly equal to the pressure coefficient at the
leading edge due to the symmetry of the airfoil.
This trend in the CP distribution is reasonable, since a typical pressure coefficient for symmetric airfoils
starts with a positive value at the leading edge (where the local velocity at the nose has come to rest),
whereafter it starts to decrease further downstream of the airfoil until it reaches its minimum value.
After this point the pressure coefficients increases again and reaches a value similar to the value at the
leading edge.

• For M∞ = 0.86 the CP distribution in Figure 5.1b starts out at the value of CPLE = 0.29 at the nose. The
value of CP drops as the flow expands around the nose, thereby decreasing the local pressure until it
yields a minimum value of CPmi n = −0.28 downstream of the nose. This occurs at the thickest point
of the airfoil, which is at x = 0 for the symmetrical parabolic arc airfoil under consideration. Further
downstream the pressure recovers and approaches a value of CPT E ≈ 0.29 at the trailing edge. Again, the
pressure distribution in Figure 5.1b does not indicate separation and the positive pressure coefficient
at the trailing edge is exactly equal to the pressure coefficient at the leading edge due to the symmetry
of the airfoil. It should be mentioned here that no separation was expected after the location of mini-
mum pressure coefficient, since this was already confirmed with the results of NumecaF i neT M /Open
(which will be shown in Chapter 6). M∞ = 0.86 was determined to be the critical Mach number.
The CP distribution looks reasonable again for the same reason as for M∞ = 0.806.

• When comparing the CP distribution of the airfoil immersed in a flow with freestream Mach numbers
M∞ = 0.806 and M∞ = 0.86, it can be observed that there is not a huge difference between the values of

5.1. α= 0◦ 31

CP at the leading and trailing edges and the middle of the airfoil for the two Mach numbers. The values
of CP for M∞ = 0.86 are slightly higher than for M∞ = 0.806, which makes sense since there is more
perturbation in case of a higher Mach number.

• The runtimes for M∞ = 0.806 and M∞ = 0.86 are roughly 5 minutes.

(a) M∞ = 0.806

(b) M∞ = 0.86

Figure 5.1: CP distribution for α= 0◦

32 5. RESULTS

5.2. α= 0.5◦
The CP distributions for the airfoil under an angle of attack ofα= 0.5◦ and immersed in a flow with freestream
Mach numbers M∞ = 0.806 and M∞ = 0.86 is treated in this section, as presented in Figure 5.2.

(a) M∞ = 0.806

(b) M∞ = 0.86

Figure 5.2: CP distribution for α= 0.5◦

• When the angle of attack increases from α = 0◦ to α = 0.5◦, the CP distributions along the upper and

5.3. α= 1◦ 33

lower side of the airfoil start to separate from each other at the leading edge, rather than lying on top
of each other, as can be seen from Figure 5.2. They meet again at the trailing edge, and reach a CPT E of
0.29 and 0.30 for M∞ = 0.806 and M∞ = 0.86, respectively.

• For M∞ = 0.806, CP along the upper side of the airfoil starts at CPLE = 0.01, after which it decreases
to CPmi n = −0.28 at the location x = −0.08. Further downstream CP gradually increases and reaches
CPT E = 0.28 at the trailing edge at the location x = 1.00.
The CP distribution along the lower side of the airfoil appears similar as on the upper side, but the level
is higher. It starts with CPLE = 0.55 at the leading edge (i.e.x =−1.00), decreases to CPmi n =−0.22 at the
location x = 0.08, and increases further downstream to CPT E = 0.28 at the trailing edge (i.e. x = 1.00).

• For M∞ = 0.86, CP along the upper side of the airfoil starts at CPLE = −0.02, after which it decreases
to CPmi n = −0.32 at the location x = −0.08. Further downstream CP gradually increases and reaches
CPT E = 0.29 at the trailing edge at the location x = 1.00.
The CP distribution along the lower side of the airfoil again appears similar as the upper side, but its
level is higher. It starts with CPLE = 0.60 at the leading edge (i.e.x =−1.00), decreases to CPmi n =−0.25 at
the location x = 0.08, and increases further downstream to CPT E = 0.29 at the trailing edge (i.e. x = 1.00).

• For both Mach numbers, a remarkable behavior occurs on the upper side of the airfoil close to the lead-
ing edge, where a local maximum pressure coefficient occurs. The values of these maximum pressure
coefficients are CP = 0.05 and CP = 0.07 respectively for M∞ = 0.806 and M∞ = 0.86. They occur at
x =−0.96 and x =−0.92, respectively.

• The runtimes for M∞ = 0.806 and M∞ = 0.86 are roughly 5 minutes.

5.3. α= 1◦
The pressure coefficient distributions for an airfoil under an angle of attack of α = 1◦ immersed in a flow
with freestream Mach numbers M∞ = 0.806 and M∞ = 0.86 are treated in this section, and are represented in
figures 5.3a and 5.3b respectively. The explanatios of these distributions are as follows:

• The CP distributions of the upper and lower side of the airfoil separate further from each other when
the angle of attack is increased to α= 1◦, after which they merge at the trailing edge and reach a value
of CPT E = 0.28 and CPT E = 0.29 for M∞ = 0.806 and M∞ = 0.86, respectively.

• For M∞ = 0.806, the CP distribution along the upper side of the airfoil starts at CPLE =−0.26, after which
it decreases to a value of CPmi n = −0.31 at the location x = −0.16, and then increases again towards a
value of CPT E = 0.28 at the leading edge (i.e. x = 1.00).
The CP distribution along the lower side of the airfoil starts at CPLE = 0.81 at the leading edge (i.e.
x = −1.00), reaches a minimum value of CPmi n = −0.19 at the location x = 0.12, and increases again
until it reaches a value of CPT E = 0.28 at the trailing edge (i.e. x = 1.00).

• For M∞ = 0.86, the CP distribution along the upper side of the airfoil starts at CPLE =−0.34, after which
it decreases and reaches a value of CPmi n = −0.36 at the location x = −0.16, and then increases again
towards a value of CPT E = 0.29 at the leading edge (i.e. x = 1.00).
The CP distribution along the lower side of the airfoil starts at CPLE = 0.90 at the leading edge (i.e.
x = −1.00), reaches a minimum value of CPmi n = −0.22 at the location x = 0.12, and increases again
until it reaches a value of CPT E = 0.29 at the trailing edge (i.e. x = 1.00).

• When the angle of attack increases from α = 0.5◦ to α = 1◦ the local pressure increase on the upper
side of the airfoil close to the leading edge becomes more significant. The values of these local max-
imum pressure coefficients, together with their locations, for M∞ = 0.806 and M∞ = 0.86 have been
determined to be CP =−0.10 (x =−0.92) and CP =−0.09 (x =−0.92).

• The runtimes for M∞ = 0.806 and M∞ = 0.86 are roughly 5 minutes.

5.4. CONCLUSIONS
In this section conclusions are drawn based on the pressure coefficient distributions of figures 5.1, 5.2, and
5.3. The present calculations require approximately 5 minutes of CPU time for all the cases. First, the effect of

34 5. RESULTS

(a) M∞ = 0.806

(b) M∞ = 0.86

Figure 5.3: CP distribution for α= 1◦

increasing angle of attack α are discussed, followed by the effect of increasing freestream Mach number M∞

Considering the upper side of the airfoil, the increasing angle of attack α causes the pressure coefficients at
the leading edge to decrease (i.e. become more negative). The minimum pressure coefficients along the up-
per side of the airfoil also decrease with an increasing angle of attack, while the locations where they occur

5.5. LIMITATIONS 35

move upstream towards the leading edge. The pressure coefficients at the trailing edge were observed to be
uneffected by the increasing angle of attack.
Along the lower side of the airfoil, the increase in α affects the pressure coefficients at the leading edge and
the minimum pressure coefficients in the opposite way as for the upper side of the airfoil. The pressure coeffi-
cients at the leading edge increase (i.e. become more positive) with increasing angle of attack. The minimum
pressure coefficients also increase with increasing angle of attack, but their locations on the contrary move
further downstream towards the trailing edge.
The values of the local increase in pressure coefficient along the upper side of the airfoil do change with in-
creasing α too, in that their values increase (i.e. become more positive). The locations where they occur,
however, almost remain the same. Only for M∞ = 0.806 this location moves further downstream (towards the
trailing edge of the airfoil) along the the upper side of the airfoil.

Examining the effects of the increasing freestream Mach number M∞ on the pressure coefficients, it can be
concluded that for all angles of attack α an increase in M∞ leads to increasing pressure coefficients at both
the upper and lower sides of the leading edge (i.e. they become more positive). The minimum pressure coef-
ficients on the contrary, become more negative (i.e. they decrease) with increasing M∞. This is as expected,
since more suction (i.e. more negative pressure coefficient) is expected when the aircraft goes faster, result-
ing in more lift. The locations where the minimum pressure coefficients occur remain the same, except for
α= 1◦, where the locations along the lower side of the airfoil move further upstream (i.e. towards the leading
edge). Finally, the pressure coefficients at the trailing edges increase with increasing M∞ (i.e. become more
positive). Subsequently the values of the local pressure increase along the upper side of the airfoil increase
with increasing freestream Mach numbers for α = 0.5◦, while their locations move further downstream (i.e.
towards the trailing edge). For α = 1◦, this value decreases with ∆CP ≈ 0.01, while the locations where they
occur remain the same.

5.5. LIMITATIONS

The algorithm developed for this study has some limitations, and thus generates reasonable results within
certain limits. These limits are set by some factors, which are discussed here.

The first parameter is the number of inner and outer iterations, which determines the convergence rate and
thus the speed of the algorithm. The initial parameters of the algorithm were n = 120 and m = 6 (with an
initial thickness parameter of ε0 = 0.005, where n and m represent the number of inner and outer iterations,
respectively. The runtime of the algorithm with these initial runtime parameters was approximately 17 min-
utes for all Mach numbers and angle of attacks. However, since run time speed was a key requirement for
the algorithm, this code is optimized and made faster by finding the most efficient combination of inner and
outer loop iterations. This combination turned out to be n = 10 and m = 24 (ε0 = 0.00125), which reduced the
run time of the algorithm to approximately 5 minutes.

Finding the optimal number of iterations was accompanied by finding the optimal under-relaxation factor,
which is a restraint on the change of a dependent variable (the derivative of the disturbance velocity po-
tential gx in this study) from one iteration to the next and is needed for stability purposes. Stability of the
coupled, (non-)linear system of equations is essential, since this factor could result in faster convergence or
in preventing divergence. Including an under-relaxation factor affects the number of iterations needed to
reach convergence. However, as long as the simulation is fully converged, the same result will be obtained,
irrespective of under-relaxation values. Thus, under-relaxation factors do not affect the solution value if con-
verged, but they only effect the time (number of iterations) taken to solution convergence.
This optimal under-relaxation factor has been found by trial and error, as explained before. First, the com-
putations have been run without an under-relaxation factor, which resulted in unstable solutions of gx (i.e.
non-smooth curves with rapidly changing ups and downs). Therefore, an under-relaxation factor has been
introduced, starting with d = 0.1. Various computations have been run by increasing this value in steps of
∆d = 0.1. The outcome of this process was that for d > 0.1 the final solution was not changing anymore,
but there was a small increase in computation time. Since the objective of this study was to develop a fast
algorithm, the smallest possible under-relaxation factor has been chosen. While optimizing the algorithm,
it is observed that an under-relaxation factor becomes essential when the number of iterations increases.
An increase in the number of iterations of the inner-loop in particular resulted in introducing an under-
relaxation factor. This is due to the fact that with increasing iterations, the value of the dependent variable

36 5. RESULTS

(i.e. gx), becomes larger. However, since the optimal number of inner-iterations was found to be n = 10, no
under-relaxation factor was required while computing the pressure coefficient distribution for M∞ = 0.806.
Performing the same computations for M∞ = 0.86 raised concerns, since the pressure coefficient values es-
pecially at the leading and trailing edges of the airfoil became extremely high. Therefore, an under-relaxation
factor of d = 0.1 was introduced.
Thus, it was observed that the number of iterations of the inner and outer loop, freestream Mach number,
and under-relaxation factor affect each other. The most optimal value of the number of iterations and the
under-relaxation factor have been chosen by taking this dependency into account.

The steady TSD formulation given in Chapter 3 is valid for isentropic, irrotational flows with negligible viscous
effects (flow separation in particular). It turned out that the current algorithm does not provide reliable results
when M∞ exceeds 0.92. At this Mach number, the pressure coefficient values at the leading and trailing edges
in particular, fluctuate and become very high. The algorithm also does not generate results for M∞ = 0, since
all terms of the governing equations and boundary conditions either become zero or infinite at this Mach
number. Thus, this algorithm produces results for Mach numbers ranging from M∞ = 0.01 to M∞ = 0.92.
However, the reliability of these results for all Mach numbers in this range is doubtful for reasons that are
discussed in Chapter 6. The algorithm generated for this study produces reliable results for freestream Mach
numbers up to M∞ = 0.85, since shock-waves start to arise at M∞ = 0.86 for the case treated in this study.
Thus, a shock-wave should be observed in the pressure coefficient distribution for M∞ = 0.86, which is not
the case as can be seen from the results displayed in this chapter. Hence, this algorithm produces reliable
results for 0.01 ≤ M∞ ≤ 0.85.

6
VERIFICATION & VALIDATION

This chapter will analyses the quality of the algorithm developed as part of this study. The purpose of this
study is to develop a tool to predict the pressure coefficient distribution on a symmetric parabolic arc airfoil
flying at transonic speeds (i.e. high-subsonic, low-supersonic), with varying angle of attacks in a flow with
varying freestream Mach numbers. This airfoil in particular has been selected in order to be able to compare
the outcomes of the resulting algorithm to Lamah’s results [5]. By executing verification and validation stud-
ies, it is checked whether the developed product meets the underlaying purpose.

First, the verification of the tool is performed. Verification deals with whether the product is built right, thus
whether the equations are solved right, how well the product approximates the model, and whether the ob-
tained results are reasonable. This is done by comparing the results of this product with the result of other
reliable sources. For the verification of the product that resulted from this study, two sources have been cho-
sen. The first source is the master’s thesis of Charles A. Lamah [5], who was supervised by one of the two
supervisors (i.e. Professor Wesley L. Harris, MIT) of the study presented in this report. The second source
is a computational fluid dynamics (CFD) tool called NumecaF i neT M /Open. This tool is a fully integrated
platform of CFD based on unstructured grid systems. A more detailed explanation of these sources, as well
as the verification process, can be found in Section 6.1.

The second step in the quality assessment process (i.e. validation) is carried out in Section 6.2. Validation
answers the question whether the right product has been built, thus whether the right equations have been
solved, whether the model includes all the physics to approximate reality, whether the product produces the
results aimed for and does what it is built for.

6.1. VERIFICATION

As mentioned in the introduction of this chapter, verification answers the question whether the product is
built right. This applies to the results of the product, and assess whether the obtained results are reliable.
In order to decide on the quality of the results, a comparison study is performed using data from reliable
sources. These sources, and their explanations can be found in Section 6.1.1. The results arising from these
sources, which have been obtained for the three angles of attack α= 0◦, α= 0.5◦, and α= 1◦, can be reviewed
in Section 6.1.2.

Thus, in this section the question regarding whether the algorithm, is built right is answered by comparing the
pressure coefficient distributions resulting from the algorithm and Lamah’s results [5] along with the pressure
coefficients obtained using Numeca. It should also be noticed that Lamah only generated pressure coeffi-
cients for the freestream Mach number M∞ = 0.806, and angles of attack α = 0.5◦ and α = 1◦. Thus, for the
remaining freestream Mach number and angles of attack this source of comparison is lacking.

37

38 6. VERIFICATION & VALIDATION

6.1.1. TOOLS

LAMAH

Charles A. Lamah has presented a numerical method for the solution of the transonic small disturbance equa-
tion in his master’s thesis [5] at the Massachusetts Institute of Technology (MIT). The analysis combines the
method of parametric differentiation and the integral equation technique to predict aerodynamic loadings
on thin lifting airfoils in steady, subcritical, two-dimensional flow. The developed product has been applied
to a 6% thick symmetric parabolic arc airfoil, immersed in a freestream Mach number of M∞ = 0.806 under
angle of attacks α= 0.5◦ and α= 1◦.
Lamah’s work has been appointed as a verification tool, because it models the same equations and has been
verified with other sources.

NumecaF i neT M /Open

NumecaF i neT M /Open is a fully integrated platform of CFD based on unstructured grid systems. It is de-
signed to solve complex internal and external flows and is dedicated to any flow, from incompressible to
compressible and low speed to high speed flows. It combines completely unstructured hexahedral grids with
an efficient preconditioned compressible solver with fast agglomerated multigrid acceleration and adapta-
tion techniques. The simulation setup and settings can be found in Appendix F.
By using this tool, the pressure coefficient distribution along the symmetric parabolic arc airfoil in consider-
ation is computed by solving the Euler equations from Figure 3.1. This is done for three different angles of
attack α; α= 0◦, α= 0.5◦, and α= 1◦. For each of these angles of attack, there are different test-setups, which
are discussed in Appendix F. The resulting pressure coefficient distributions were outlined and discussed in
Appendix G. The setups will be recalled here again.

• α= 0◦:

– The airfoil is created in C ati a by inserting the airfoil coordinates with Equation 4.1. Then, the
borders of the domain are created within C ati a as well.

– The airfoil is created in C ati a by inserting the airfoil coordinates with Equation 4.1, but the
borders of the domain are created using Numeca.

• α= 0.5◦:

– The airfoil under an angle of attack α= 0◦ is created in C ati a by inserting the airfoil coordinates
with Equation 4.1. Then, the borders of the domain are created within C ati a as well. The airfoil
is put under an an angle of attack of α= 0.5◦ within Numeca.

– The airfoil under an angle of attack α= 0◦ is created in C ati a by inserting the airfoil coordinates
with Equation 4.1. Then, the borders of the domain are created within Numeca, and the airfoil is
put under an angle of attack of α= 0.5◦ within Numeca.

– The airfoil under an angle of attack of α= 0.5◦ is created in C ati a with Equation 4.1, as well as
the borders of the domain itself. Then, the computations are performed by:

¦ not decomposing the lift and drag computations of the external flow in a x− and z-direction.
This means that lift is fully oriented in the positive z-direction, while drag is fully oriented in
the positive x-direction.

¦ decomposing the lift and drag computations of the external flow in a x− and z-direction,
since the airfoil is placed under an angle of attack. This decomposition is done as explained
in Appendix F.

– The airfoil under an angle of attack of α= 0.5◦ is created in C ati a with Equation 4.1, but the
borders of the domain are created within Numeca. Then, the computations are performed by:

¦ not decomposing the lift and drag computations of the external flow in a x− and z-direction.
This means that lift is fully oriented in the positive z-direction, while drag is fully oriented in
the positive x-direction.

¦ decomposing the lift and drag computations of the external flow in a x− and z-direction,
since the airfoil is placed under an angle of attack. This decomposition is done as explained
in Appendix F.

• α= 1◦:

6.1. VERIFICATION 39

– The airfoil under an angle of attack α= 0◦ is created in C ati a by inserting the airfoil coordinates
with Equation 4.1. Then, the borders of the domain are created within C ati a as well. The airfoil
is put under an angle of attack of α= 1◦ within Numeca.

– The airfoil under an angle of attack α= 0◦ is created in C ati a by inserting the airfoil coordinates
with Equation 4.1. Then, the borders of the domain are created within Numeca, and the airfoil is
put under an angle of attack of α= 1◦ within Numeca.

– The airfoil under an angle of attack of α= 1◦ is created in C ati a with Equation 4.1, as well as the
borders of the domain itself. Then, the computations are performed by:

¦ not decomposing the lift and drag computations of the external flow in a x− and z-direction.
This means that lift is fully oriented in the positive z-direction, while drag is fully oriented in
the positive x-direction.

¦ decomposing the lift and drag computations of the external flow in a x− and z-direction,
since the airfoil is placed under an angle of attack. This decomposition is done as explained
in Appendix F.

– The airfoil under an angle of attack of α= 1◦ is created in C ati a with Equation 4.1, but the
borders of the domain are created within Numeca. Then, the computations are performed by:

¦ not decomposing the lift and drag computations of the external flow in a x− and z-direction.
This means that lift is fully oriented in the positive z-direction, while drag is fully oriented in
the positive x-direction.

¦ decomposing the lift and drag computations of the external flow in a x− and z-direction,
since the airfoil is placed under an angle of attack. This decomposition is done as explained
in Appendix F.

The objective of performing different tests for the borders of the domains created in C ati a and Numeca, is
to examine whether one of the two programs is more efficient. Another important point to mention is the
way the airfoil is created within C ati a. This is done by first computing the airfoil coordinates with Equation
4.1 with Mi cr oso f tE xcel , and then importing those coordinates into C ati a and interpolating in between
the coordinates with the GSDP oi ntSpl i neLo f tF r omE xcel feature of C ati a. Finally, the reason for decom-
posing and not decomposing the lift and drag computations of the external flow in x− and z−direction is to
examine whether this decomposition is needed when the airfoil is already put under an angle of attack within
C ati a.
Each one of these computations is carried out for different number of mesh cells in the x− and z-directions,
i.e. 20, 40, 60, 80, 100, 250, 500, 750, and 1000 (same amount in both directions since the mesh is symmet-
ric; i.e. 20 mesh cells in both x− and z−directions). The simulations have been conducted for an increasing
number of mesh cells to obtain converged solutions, i.e. as a convergence check.

6.1.2. RESULTS
The way this section is structured is by treating the results generated for M∞ = 0.806 and M∞ = 0.86 in sep-
arate sections. First, the pressure coefficients obtained for M∞ = 0.806 are discussed, followed by the results
generated for M∞ = 0.86.

M∞ = 0.806
The pressure coefficients of the parabolic arc airfoil immersed in a flow with freestream Mach number M∞ =
0.806, and at angles of attackα= 0◦,α= 0.5◦, andα= 1◦ are displayed in figures 6.1, 6.2, and 6.3. These results
also are summarized in Table 6.1 for a better overview.

Starting with Figure 6.1, one can notice that only one verification tool is provided here (Numeca). This is
due to the fact that Lamah’s work does not contain CP distributions for an airfoil under zero angle of attack.
Therefore only the results obtained with NumecaF i neT M /Open will be used for comparative study. From
this figure it can be observed that the two sets of data show good agreement in the shape of the pressure
coefficient distributions. The locations of CPLE , CPmi n , and CPT E are exactly the same for the results of both
tools (the algorithm and Numeca). However, there is some difference in the magnitude of the pressure co-
efficients itself. The biggest discrepancies take place at the leading and trailing edges, with discrepancies
of 61% and 32%, respectively. It is also striking that the data obtained with Numeca are not symmetrical,

40 6. VERIFICATION & VALIDATION

meaning that the pressure coefficients at the leading and trailing edges (CPLE and CPT E , respectively) differ.
The data obtained with the algorithm on the contrary, result in the same pressure coefficient at the leading
and trailing edges, which is as expected since the computations are applied to a symmetrical parabolic arc
airfoil. This inequality of the pressure coefficients at the leading and trailing edges, computed with Numeca,
and the discrepancies in pressure coefficients between the data obtained with the algorithm and Numeca,
might be caused by three factors. The first explanation is due to the way the integral equations are solved
with the algorithm. At the leading and trailing edges of the airfoil (i.e. these locations correspond to the lower
and upper limits of the integrals in Chapter 3.3), singularities were occurring when solving these integrals.
Slightly changing the lower limit in the algorithm from x = −0.99 to x = −1 solved this problem. This also
explains the bigger discrepancy at the leading edge. Another factor causing the discrepancies in the pres-
sure coefficients might be due to the difference in methodology. Numeca solves the Euler equation, which
is the inviscid form of the Navier-Stokes equations. However, the present study solves the TSD equation to
compute the pressure coefficients. This equation is derived by assuming irrotational flow, assuming that per-
turbation velocities are small, and by relating the local speed of sound to the freestream value by making use
of the isentropic relations. These simplifications cause the results to become less accurate, which explains
the discrepancies in the pressure coefficients at the leading and trailing edges of the airfoil computed with
the algorithm and Numeca. This last factor also explains the discrepancy in the magnitude of the minimum
pressure coefficient, which differs with 20%. The assumption of irrotationality results in a reduction of accu-
racy, which causes the equality in pressure coefficients at the leading and trailing edges (since no other factors
have been taken into account in this case). Another factor causing the discrepancy at the leading edge might
arise from thin airfoil considerations in the formulation of the boundary conditions. The surface tangency
condition is applied on the profile mean chord rather than on the actual surface. The third factor could be
the mesh resolution, which is different for the algorithm and Numeca. Although the number of mesh cells of
both applications is almost the same (87 vs. 80 for the algorithm and Numeca, respectively), Numeca uses
advanced cells and adapts the mesh to the geometry. The algorithm however, assumes the airfoil to be a flat
plate and creates a mesh around that plate.

Before observing Figure 6.2, a typo has been identified along the x
c axis. Here, x

c = 0.8 has been mentioned
twice.The most right one should be x

c = 0.9. Also, the scale of the x-axis is not consistent with the scale of the
x-axis of the results generated with the algorithm, as can be seen in Chapter 5 (i.e.0 < x < 1 for Lamah’s results
vs. −1 < x < 1 for the results generated with the algorithm). When mentioning the values along the x-axis in
Figure 6.2b, the converted values to the scaling system of the algorithm will be given. Another remark is re-
garding the orientation of the CP -axis. It seems that Lamah has flipped the pressure coefficient distributions,
without flipping the axis itself (while should have been done). As a result, the CP values resulting from Figure
6.2b should be multiplied by negative unity in order to obtain a reasonable value.
When observing this figure, it is noticed that the shapes of the pressure coefficients resulting from the three
sets of data are in good agreement. However, both the magnitudes and the locations of CPLE , CPmi n , and CPT E

computed with the algorithm differ from Lamah’s results and the results generated with Numeca. Compar-
ing the pressure coefficients resulting from the algorithm to Lamah’s pressure coefficient distributions, it is
observed that the disagreements are considerably large. The biggest discrepancies regarding the magnitude
of the pressure coefficient can be found at the leading edge along the upper and lower sides of the airfoil
(300% and 56% respectively) and at the trailing edge (64%). The disagreements of the minimum pressure co-
efficients are less severe (23% vs. 14% along the lower and upper sides respectively). These large discrepancies
might be caused by the differences in the mesh used between the algorithm and Lamah’s code, in terms of
the number of points on the x-axis, z-axis, and the body. Lamah’s work does not provide the reader with this
information. Also, Lamah uses a semi-chord of b = 0.5 in his calculations, while the upper and lower limits of
the integrals used range from −1 to 1. The combination of these differences might cause the pressure coeffi-
cients to differ substantially.
The data of the algorithm and Numeca show a much better agreement. The biggest discrepancies regarding
the magnitude of the pressure coefficients can again be found at the leading edge along the upper side of the
airfoil (∆CPuLE

≈ 500%) and at the trailing edge (∆CPT E ≈ 36%). The disagreement regarding the location of
these pressure coefficients is negligibly small. The pressure coefficients at the leading edge along the lower
side of the airfoil, and the minimum pressure coefficients along both sides of the airfoil, differ in a less ex-
tent and with approximately the same amount (∆CPlLE

≈ 25%, ∆CPumi n
≈ 18%, ∆CPlmi n

≈ 18%). The reason of
these disagreements is most likely due to the way the algorithm deals with the singularities, and due to the
differences in methodology.

6.1. VERIFICATION 41

Observing Figure 6.3 results in the conclusion that the disagreements between the data of the algorithm,
Lamah and Numeca are less pronounced. The biggest discrepancies are between the algorithm and Lamah’s
data, and in particular at the leading edge along both sides of the airfoil and at the trailing edge (∆CPlLE

≈ 53%,
∆CPuLE

≈ 35%, and CPT E ≈ 64%). The minimum pressure coefficients differ less (CPlmi n
≈ 11% and CPumi n

≈
13%). The locations of these pressure coefficients also vary, but to a lesser extent compared to the disagree-
ments in their magnitudes. The explanation of these discrepancies is again the same as for α = 0.5◦, and
therefore will not be repeated here.
Observing the data of algorithm and Numeca, it is again evident that these data are in better agreement.
The most notable difference occurs along the upper and lower sides at the leading edge (CPuLE

≈ 54% and
CPlLE

≈ 54%). The differences between the remaining pressure differences range from 16% to 32%. The fac-
tors causing these differences are again the way the algorithm deals with the singularities and the differences
in methodology.

42 6. VERIFICATION & VALIDATION

Lo
w

er
Si

d
e

U
p

p
er

Si
d

e
M

∞
=

0.
80

6
M

∞
=

0.
86

M
∞

=
0.

80
6

M
∞

=
0.

86
C

P
L

E
x

C
P

m
in

x
C

P
L

E
x

C
P

m
in

x
C

P
L

E
x

C
P

m
in

x
C

P
T

E
x

C
P

L
E

x
C

P
m

in
x

C
P

T
E

x

α

0
A

lg
o

ri
th

m
-

-
-

-
-

-
-

-
0.

29
-1

.0
0

-0
.2

5
0.

00
0.

29
1.

00
0.

30
-1

.0
0

-0
.2

8
0.

00
0.

30
1.

00
N

u
m

ec
a

-
-

-
-

-
-

-
-

0.
45

-1
.0

0
-0

.3
0

0.
00

0.
37

1.
00

0.
50

-1
.0

0
-0

.4
2

0.
23

0.
40

1.
00

0.
5

A
lg

o
ri

th
m

0.
56

-1
.0

0
-0

.2
2

0.
08

0.
61

-1
.0

0
-0

.2
5

0.
08

0.
05

-0
.9

6
-0

.2
8

-0
.0

8
0.

29
1.

00
0.

08
-0

.9
2

-0
.3

2
-0

.0
8

0.
30

1.
00

L
a

m
a

h
0.

24
-0

.9
1

-0
.2

7
0.

13
-

-
-

-
-0

.0
3

-0
.9

1
-0

.3
2

-0
.1

6
0.

10
0.

91
-

-
-

-
-

-
N

u
m

ec
a

0.
76

-0
.9

8
-0

.2
6

0.
08

0.
76

-0
.9

8
-0

.3
3

0.
14

0.
06

-0
.9

4
-0

.3
3

-0
.0

6
0.

38
1.

00
0.

10
-0

.9
4

-0
.5

8
0.

43
0.

40
1.

00

1
A

lg
o

ri
th

m
0.

82
-1

.0
0

-0
.1

9
0.

12
0.

92
-1

.0
0

-0
.2

2
0.

12
-0

.1
0

-0
.9

2
-0

.3
1

-0
.1

6
0.

29
1.

00
-0

.0
9

-0
.9

2
-0

.3
6

-0
.2

0
0.

30
1.

00
L

a
m

a
h

0.
38

-0
.9

1
-0

.2
1

0.
14

-
-

-
-

-0
.1

7
-0

.9
1

-0
.3

5
-0

.1
8

0.
10

0.
91

-
-

-
-

-
-

N
u

m
ec

a
0.

97
-0

.9
8

-0
.2

2
0.

13
0.

97
-0

.9
8

-0
.2

7
0.

16
-0

.1
4

-0
.9

4
-0

.4
0

-0
.1

0
0.

37
1.

00
-0

.0
9

-0
.9

4
-0

.7
5

0.
53

0.
40

1.
00

Ta
b

le
6.

1:
P

re
ss

u
re

co
ef

fi
ci

en
ts

at
th

e
le

ad
in

g
an

d
tr

ai
li

n
g

ed
ge

s
an

d
th

e
su

ct
io

n
p

ea
k

fo
r

th
e

an
gl

es
o

fa
tt

ac
k
α
=

0◦
,α

=
0.

5◦
,α

=
1◦

an
d

fr
ee

st
re

am
M

ac
h

n
u

m
b

er
s

M
∞

=
0.

80
6

an
d

M
∞

=
0.

86
re

su
lt

in
g

fr
o

m
th

e
al

go
ri

th
m

,L
am

ah
,a

n
d

N
u

m
ec

a
.

6.1. VERIFICATION 43

M∞ = 0.86
Starting with the assessment of Figure 6.4, it is observed that the biggest discrepancies in the magnitude of the
pressure coefficients between the results of the algorithm and Numeca occur at the leading edge of the air-
foil (∆CPLE ≈ 72%). Moving further downstream the differences in the magnitude of the pressure differences
become smaller, with a difference of ∆CPmi n ≈ 50% for the minimum pressure coefficient and ∆CPT E ≈ 38%
for the pressure coefficient at the trailing edge. The location where CPmi n occurs also differs with ∆x ≈ 23%.
It is remarkable though, that the pressure coefficients at the leading and trailing edges generated with Numeca
differ in value. The pressure coefficients at the leading and trailing edges, resulting from the algorithm, have
exactly the same values. This is as expected, since the airfoil under consideration is a symmetrical parabolic
arc airfoil under zero angle of attack. The inequality of the pressure coefficients at the leading and trailing
edges, generated with Numeca, might originate from the difference in the method used for computing the
pressure coefficients. Numeca solves the Euler equations, which are less simplified than the TSD equations
used for the algorithm. The assumptions of irrotationality and small perturbations don’t hold in this case,
which might be the cause of the difference in pressure coefficients at the leading and trailing edges of the
airfoil.
Another striking difference between the data generated with the algorithm and Numeca, is that a shock wave
is clearly present in the data generated with Numeca, while no shock wave can be seen in the pressure co-
efficient distribution generated with the algorithm. This originates from the fact that the algorithm does not
include the integral for the shock wave contribution. Adding a separate shock wave contribution integral to
the perturbation velocity potential within the algorithm will solve this problem. However, in order to do so
the location of the shock wave has to be predicted (without using an external tool such as C F D tools). Moving
to Figure 6.5, one can see that along the upper side of the airfoil the biggest discrepancy in the magnitude of
the pressure coefficient holds for the minimum pressure coefficient (CPLE ≈ 250%). The discrepancies of the
minimum pressure coefficient and at the trailing edges are less pronounced, with difference of ∆CPLE ≈ 81%
and ∆CPT E ≈ 38%. The locations where CPmi n occurs differ for both methods as well. Another significant
difference between the two data is that the data generated with Numeca show a shock wave, while the data
generated with the algorithm does not.
The lower side of the airfoil shows differences too, with the biggest discrepancy being the magnitudes of CPmi n

(32%). The difference in the magnitudes of CPLE is less pronounced, with a difference of ∆CPLE ≈ 27%. The
difference in the location of the minimum pressure coefficient is determined to be ∆x ≈ 75%.

The differences in pressure coefficients along the upper side of the airfoil in Figure 6.6 show the same trend
as in Figure 6.5. The biggest discrepancy occurs between the magnitudes of the minimum pressure coeffi-
cient, being ∆CPmi n ≈ 108%. The pressure coefficient at the trailing edge is less pronounced, and differs with
∆CPT E ≈ 38%. However, the value of the pressure coefficient at the leading edge is exactly the same for both
methods. The location of these pressure coefficients resulting from the algorithm and Numeca differs as
well, with the biggest discrepancy being the location of CPmi n . Additionally, the appearance of a shock wave
can be observed in the pressure coefficient distribution generated with Numeca, while the data generated
with the algorithm does not show any trail of the shock wave.
However, the data along the lower side of the airfoil show better agreement. The biggest discrepancy observed
is between the magnitude of the pressure coefficients at the leading edge(∆CPLE ≈ 54%). The minimum pres-
sure coefficients differ less, i.e. a difference of ∆CPmi n ≈ 23%. The locations of the minimum pressure coeffi-
cients show bigger discrepancies, with a difference of ∆x ≈ 33%.

44 6. VERIFICATION & VALIDATION

(a) Al g or i thm

(b) Numeca

Figure 6.1: Comparison of the CP distributions generated with the algorithm and Numeca; α= 0◦, M∞ = 0.806

6.1. VERIFICATION 45

(a) Al g or i thm

(b) Lamah

(c) Numeca

Figure 6.2: Comparison of the CP distributions generated with the algorithm, Numeca, and Lamah’s results; α= 0.5◦, M∞ = 0.806

46 6. VERIFICATION & VALIDATION

(a) Al g or i thm

(b) Lamah

(c) Numeca

Figure 6.3: Comparison of the CP distributions generated with the algorithm, Numeca, and Lamah’s results; α= 1◦, M∞ = 0.806

6.1. VERIFICATION 47

(a) Al g or i thm

(b) Numeca

Figure 6.4: Comparison of the CP distributions generated with the algorithm and Numeca; α= 0◦, M∞ = 0.86

48 6. VERIFICATION & VALIDATION

(a) Al g or i thm

(b) Numeca

Figure 6.5: Comparison of the CP distributions generated with the algorithm and Numeca; α= 0.5◦, M∞ = 0.86

6.1. VERIFICATION 49

(a) Al g or i thm

(b) Numeca

Figure 6.6: Comparison of the CP distributions generated with the algorithm and Numeca; α= 1◦, M∞ = 0.86

SUMMARY

After comparing the data of the algorithm to Lamah’s data and the data generated with Numeca, few con-
clusions are drawn. The most striking observation was that Lamah’s data differ more from the data resulting
from the algorithm, while both methods solve the TSD equations. These discrepancies are expected to arise
due to the way the equations are implemented in the corresponding programming languages. Lamah does
not provide the reader with information regarding the limits of the integrals, but the algorithm developed for
this study has changed the lower limit of the integral equations from x =−1 to x =−0.99 because of occurring
singularities. This also explains the bigger discrepancy at the leading edge, rather than the minimum pressure
coefficient and the pressure coefficient at the trailing edge. Another factor which might be causing the dis-
crepancies are the iterations. Lamah only provides information about the number of iterations for updating
the perturbation velocity u with increments in the thickness ratio ∆ε. Starting with an initial thickness ratio
of ε0 = 0.01, the thickness has been increased to ε= 0.06 within six iterations (i.e. ∆ε= 0.01). However, noth-
ing is stated about whether this is the optimized number of iterations. Also, no information is provided at all

50 6. VERIFICATION & VALIDATION

about the convergence of the x-derivative of the perturbation velocity potential gx . The algorithm developed
for this study consist of an inner-loop and outer-loop. The inner-loop, in which gx is being computed until it
reaches a converged value, consist of n = 10 iterations. The outer-loop, in which the perturbation velocity is
being updated, consists of m = 24 iterations (i.e. ε0 = 0.00125, ∆ε = 0.00125, εmax = 0.03, for both the upper
and lower sides of the airfoil). However, it should be noted that Lamah’s scenario has also been investigated
with the algorithm, but this was producing almost similar results as with ε0 = 0.00125 and m = 24. The most
important difference was the computation time, which turned out to be 16 minutes. Also, Lamah does not
use an under-relaxation factor, while the algorithm developed for this study does (i.e. d = 0.1). Another re-
markable difference is that Lamah’s code uses a different value for the airfoil semi-chord (b = 0.5) than the
value used for the algorithm (b = 1). A difference in the number of mesh cells which is also a factor influenc-
ing the results. The algorithm uses 87 cells in both the x and z-directions, while Lamah does not provide any
information regarding this.

The data obtained with Numeca also differ from the data resulting from the algorithm, with the most signif-
icant difference being the appearance of the shock wave for M∞ = 0.86. Shock waves have been captured in
the pressure coefficient distributions resulting from Numeca, while the algorithm fails in showing any trail of
a shock wave. This originates from the fact that the algorithm lacks the shock wave effects. Adding a separate
shock wave integral contribution to the perturbation velocity potential will solve this problem. The tricky part
in doing so is to predict the location of the shock wave analytically, without an external tool. Other evident
discrepancies between the data resulting from the algorithm and Numeca have been observed at the leading
and trailing edges in particular (as it was the case for Lamah’s results as well). Another remarkable difference
between these two data, other than the magnitude of the pressure coefficients, is that the pressure coefficient
distribution for the airfoil under zero angle of attack obtained with Numeca is not symmetric, while this was
the expected result. The data resulting from the algorithm do show symmetry. The different methodologies
(equation sets) used for these tools are one of the reasons for the discrepancies in the two data sets. Numeca
solves the Euler equations, in which inviscid flow is assumed. However, the algorithm solves the TSD equa-
tions, for which irrotational, isentropic flow and small-disturbances have been assumed. In addition to this,
the algorithm computes the pressure coefficient distribution along the chord of the airfoil (z = 0). The surface
tangency condition is applied on the profile mean chord, rather than on the actual surface, due to thin airfoil
considerations in the formulation of the boundary conditions. Thus, the additional assumptions due to the
TSD equations, are probably causing the differences in the pressure coefficients resulting from the two tools.
Also, the quality of the meshes of both tools differs very much, resulting in discrepancies in the results. But
the same mesh as Numeca cannot be reproduced for the algorithm

Thus, after having compared the data of the three tools, it can be concluded that the product is built right
for shock-free freestream Mach numbers (i.e. shock waves appear for freestream Mach numbers starting
from M∞ = 0.86 for the present study). The failure in capturing the shock waves originates due to a lack of
a separate shock wave contribution integral, which is difficult to implement since the location of the shock
wave has to be predicted analytically (without an external tool). The overall shapes of the pressure coefficient
distributions obtained with the algorithm are in good agreement with the data resulting from Lamah’s code
and Numeca up to a freestream Mach number of M∞ = 0.86. However, there are some differences in the
magnitudes of the pressure coefficients, along with the locations where the leading and trailing edge and
minimum pressure coefficients occur. These differences are being introduced due to different methodologies
used (Euler vs. TSD equations) with their corresponding assumptions, and the way the equations have been
implemented in the associated programming languages.

6.2. VALIDATION
By verifying the algorithm, the validation is also indirectly done. The output of the algorithm is the pressure
coefficient distribution along the airfoil, which is the result aimed for. However, the modeling of the shock
wave is lacking in the algorithm. Thus, the model does not include all the physics to approximate reality (for
airfoils in flows with critical Mach numbers and beyond). The conclusion can be drawn that the right product
has been built for airfoils in flows with freestream Mach numbers below the critical Mach number. Though,
adding a shock wave contribution to the model will improve the algorithm, and would make it applicable to
airfoils in flows with Mach numbers equal to the critical Mach number and beyond.

7
CONCLUSIONS & RECOMMENDATIONS

The integral equation method has been successfully adapted to the solution of the steady TSD equation, and
applied to a symmetric, 6% thick, parabolic arc airfoil. The developed algorithm (within M atl ab) computes
three contributions to the perturbation velocity potential; thickness contribution, contribution due to lift,
and non-linear contribution. The thickness contribution is a non-iterative process, while the lifting and non-
linear contributions are being computed within loops. Two for-loops are created; an inner-loop and and an
outer-loop. The inner-loop computes the x-derivative of the perturbation velocity potential gx , and iterates
until a converged solution is reached. The outer-loop computes the perturbation velocity for the desired
airfoil thickness, by updating this velocity every iteration-step with gx resulting from the inner-loop and in-
crementing the airfoil thickness ratio ∆ε until the desired thickness is reached. Subsequently, the resulting
perturbation velocity (which was calculated along the mean chord z = 0) was multiplied by the factor − 2

b∗ν ,
outside the loops, to compute the pressure coefficient distribution along the mean airfoil chord. The incre-
menting index variables for the inner- and outer-loops are denoted by n and m, respectively. The optimal
values were found by increasing/decreasing the number of iterations of both the inner- and outer-loop, until
no (notable) differences in the pressure coefficient values were observed, and while an attempt was made to
keep these numbers as low as possible (since it results in a faster algorithm). These values turned out to be
n = 10 and m = 24. Thus, the initial thickness ratio is ε0 = 0.000125, and increases to εmax = 0.03 for both the
upper- and lower-side of the airfoil in increments of ∆ε = 0.000125. Adding up the thickness ratios of both
sides of the airfoil results in ε = 0.06, i.e. a 6% thick airfoil. Also, an under-relaxation factor of d = 0.1 was
introduced for stability purposes. This value was chosen, since it turned out that a small factor was satisfying.

With the algorithm, the pressure coefficient distributions were computed for the a symmetrical parabolic arc
airfoil immersed in two different free-stream Mach numbers, i.e. M∞ = 0.806 and M∞ = 0.86. Opting for
these Mach numbers will become apparent later on in this chapter. For each Mach number, three different
angles of attack were investigated; α = 0◦, α = 0.5◦, and α = 1◦. These data were then compared to data
obtained from Lamah’s masters thesis [5] and the data resulting from the CFD tool Numeca. Since Lamah
computes pressure coefficient distributions for a freestream Mach number of M∞ = 0.806, it was decided to
do that within this study too to compare the data with. The choice for M∞ = 0.86 was made to explore the
limitations of the algorithm and investigate the computational ability at Mach numbers where shock waves
start to appear. This Mach number was explored by examining the shock appearance within Numeca.
Subsequently, after comparing the data of the algorithm to the data of Lamah and Numeca, it was observed
that the overall shapes of the pressure coefficient distributions over the airfoil surfaces obtained with the
algorithm are in good agreement with the data resulting from Lamah’s code and Numeca. However, there
are some differences in the magnitudes of the pressure coefficients, along with the locations where the lead-
ing and trailing edge and minimum pressure coefficients occur. It is striking though, that for both the data
(algorithm vs. Lamah and algorithm vs. Numeca) the biggest discrepancies appear in the following order:
leading edge pressure coefficient (CPLE), trailing edge pressure coefficient (CPT E), minimum pressure coeffi-
cient (CPmi n). These discrepancies in the pressure coefficients between the three data will be declared next.
The most striking observation resulting from the quality assessment is that the discrepancies between the
data of the algorithm and Lamah’s code are more pronounced than the data of the algorithm and Numeca.
In the first place, this observation was found to be odd, since both the algorithm and Lamah solve the TSD

51

52 7. CONCLUSIONS & RECOMMENDATIONS

equations. However, the tools differ in the way the equations are implemented in the corresponding pro-
gramming languages, which most probably is parenting for the discrepancies between the data resulting from
these tools. The first difference regarding the way of implementing the equations, is regarding the way the
limits of the integrals are treated. Lamah doesn’t provide much information about the implementation but
for the algorithm resulting from this study, the lower limits of the integrals have been changed to −0.99. Thus,
the running parameter of the integrals within the algorithm run from −0.99 to 1 (

∫ 1
−0.99), rather than from −1

to 1 (
∫ 1
−1). This is done, because singularities were observed in the first place. This also explains the bigger

discrepancy at the leading edge, rather than the minimum pressure coefficient and the pressure coefficient
at the trailing edge. However, the fact that the trailing edge is associated with the upper limit of the integrals
(which is associated with singularities), causes the discrepancies in these values to be slightly larger than in
the minimum pressure coefficients. Another difference between the two tools is in the iterations. Lamah
only provides information about the number of iterations for updating the perturbation velocity u with in-
crements in the thickness ratio ∆ε. Starting with an initial thickness ratio of ε0 = 0.01, the thickness has been
increased to ε= 0.06 within six iterations (i.e. ∆ε= 0.01). However, nothing is stated about whether or not this
is the optimized number of iterations. Also, no information is provided at all about the convergence of the
x-derivative of the perturbation velocity potential gx , so it seems like there is only one loop in Lamah’s code.
The algorithm developed for this study,however consist of an inner-loop and outer-loop. The inner-loop, in
which gx is being computed until it reaches a converged value, consist of n = 10 iterations. The outer-loop,
in which the perturbation velocity is updated, consists of m = 24 iterations (i.e. ε0 = 0.00125, ∆ε = 0.00125,
εmax = 0.03, for both the upper and lower sides of the airfoil). Also, the algorithm treats the lower and upper
sides of the airfoil separately in updating gx and u and adds these values up at the end of the loops, while lit-
tle information regarding the way this is done in Lamah’s code is provided. However, since Lamah’s iteration
index runs from ε0 = 0.01 to εmax = 0.06 within six iterations, it seems like the upper and lower sides were
not treated separately. In addition to this, Lamah’s code doesn’t involve an under-relaxation factor, while the
algorithm uses an under-relaxation factor of d = 0.1. Also Lamah’s code uses a different value for the airfoil
semi-chord (b = 0.5) than the value used in the algorithm (b = 1). A difference in the number of mesh cells
is also a factor that influences the results. The algorithm uses 87 cells in both the x and z-directions, while
Lamah does not provide any information regarding this. Also, due to the semi-analytical, and thus semi-
numerical nature of the algorithm, the disturbance velocities in the flow field were calculated in addition to
the values on the airfoil surface. Accordingly, it differs from the standard integral equation method in that
the latter method only computes surface velocities and is less accurate. However, since little is known about
the mesh generated in Lamah’s code, and thus the way of computing, little can be said about whether and to
which extent the algorithm is causing discrepancies between the two data sets. Thus, to conclude, the com-
bination of these differences between the tools is most likely the origin of the discrepancies between the data.
It should be noticed that these are observed differences, and that there are probably more differences which
might be overlooked due to the lack of information about Lamah’s code.
The data obtained with Numeca also differ from the data resulting from the algorithm, with the most signif-
icant difference being the inability of the algorithm to capture shock waves. This is caused do to the fact that
the shock-wave effects have been assumed to be included in the non-linear contribution integral, while after
analysis it turned out that a separate shock-wave contribution integral is needed. However, in order to solve
this integral, the location of the shock wave should be predicted analytically without using an external tool,
which is a very challenging job. Another remarkable difference between these two data, other than the mag-
nitude of the pressure coefficients, is that the pressure coefficient distribution for the airfoil under zero angle
of attack obtained with Numeca is not symmetric, which is an expected result. The data resulting from the
algorithm on the other hand do show symmetry. The different methodologies (equation sets) used for these
tools are one of the reasons for the discrepancies in the two data sets. Numeca solves the Euler equations,
in which inviscid flow is assumed. However, the algorithm solves the TSD equations, for which irrotational,
isentropic flow and small-disturbances (i.e. thin airfoil considerations) have been assumed. In addition to
this, the algorithm computes the pressure coefficient distribution along the chord of the airfoil (z = 0). The
surface tangency condition is applied on the profile mean chord, rather then on the actual surface, due to
thin airfoil considerations in the formulation of the boundary conditions. Thus, the additional assumptions
due to the TSD equations, are probably causing the differences in the pressure coefficients resulting from the
two tools. Another difference between the tools is that Numeca solves PDEs, while the algorithm solves inte-
gral equations. These integral equations contain singularities at the lower limit of the integrals, due to which
this limit is slightly changed to −0.99 (from −1). This difference in the equation types, and the handling of
the singularities, are contributing to the discrepancies between the two data. Also, the quality of the meshes

53

of both tools differs very much, resulting in discrepancies in the results.

Rather than the factors causing the discrepancies between the data resulting from the algorithm and the
two validation tools (Lamah’s code and Numeca), the limitations of this algorithm were also identified. The
steady TSD formulation is valid for isentropic, irrotational flows in which viscous effects (flow separation
in particular) are negligible. When a shock wave contribution is added, the algorithm would get restricted
to flows containing weak shock waves (making it inapplicable to flows with strong shock waves). Thus, al-
lowable freestream conditions range from incompressible (M∞ ≈ 0) to supersonic (M∞ ≥ 1), providing weak
shock waves. The weak shock wave condition is approximately satisfied if the maximum normal shock Mach
number never exceeds 1.3. However, these are theoretical limitations. In reality, the current algorithm doesn’t
provide results when M∞ exceeds 0.92 (partly due to the way the equations have been implemented within
the programming language M atl ab). At this Mach number, the pressure coefficient values at the leading and
trailing edges in particular, fluctuate and become very high. Reliable results are generated up to a freestream
Mach number of M∞ = 0.86. The algorithm also doesn’t generate results for M∞ = 0, since all terms of the
governing equations and boundary conditions either become zero or infinite at this Mach number. Thus, this
algorithm is valid for Mach numbers ranging from M∞ = 0.01 to M∞ = 0.92, and provides reasonable results
for Mach numbers up till M∞ = 0.86 since it fails in capturing the shock waves.
Having explored the sources of the discrepancies between the algorithm and the two validation data originat-
ing from, together with the operational limitations of the algorithm, some recommendations can be given on
improving the algorithm and ways to decrease the dissimilarities between the data resulting from the algo-
rithm and Numeca (on the condition that the same methodology will be used, i.e. TSD integral equations).
First, a method for improving the results at the leading edge will be treated. As mentioned before, the lower
limit of the integral equations, which correspond to the leading edge of the airfoil, was slightly changed to
compensate for the singularities occurring in this region. In order to improve the quality of the results in this
region, the lower limit can be made smaller. In addition to this, the mesh in the region where the biggest
discrepancies were spotted can be made finer in these regions. Thus in addition to the three regions in which
the domain has been divided (the vicinity of the airfoil, an intermediate region, and the far field), three other
regions can be introduced (leading edge, center of airfoil, and trailing edge). However, a finer mesh will re-
sult in higher computation times (CPU), meaning that a trade-off has to be made then between accuracy and
speed.
Another significant improvement can be made by including a separate shock wave contribution integral to
the perturbation velocity potential, instead of assuming the shock to be included in the non-linear contribu-

tion integral

(
gS (ξ,ζ) = 1

2π

∫
Σ
δg
δn ln

[
(x −ξ)2 +ζ2

] 1
2 dΣ

)
. This would further expand the current predictive range

of the algorithm. However, in order to be able to solve this shock-wave integral the location of the shock-wave
should be predicted analytically first, which is a challenging job.
The algorithm developed for this study is applied to a symmetrical parabolic arc airfoil up to a thickness of
6%. In order to obtain a more accurate overview of the applicability and the limits of this algorithm, thicker
symmetrical parabolic arc airfoils should be tested and compared to the data resulting from Numeca. It
should also be applied to other airfoils of arbitrary shape, to test the capabilities of this algorithm in predict-
ing pressure coefficient distributions over the airfoil surfaces. Recalling that for the present study the steady
component of the unsteady TSD has been solved, the algorithm can be extended by including the unsteady
component of the TSD. By solving the unsteady disturbance velocity potentials, aeroelastic analysis in the
flutter critical transonic speed range can be carried out. The resulting algorithm can be used for educational
purposes, as well as for stand-alone analysis.

A
CLASSIFICATION OF PARTIAL DIFFERENTIAL

EQUATIONS

This appendix will treat the classification of the partial differential equations (PDEs). Classification is needed
to solve PDEs, since there are a lot of different types of PDEs and there is no general method providing great
solutions to all of them. Every PDE has to be treated separately. Therefore the first step in doing so is to
classify a PDE, since one should know the nature of the problem to be able to solve it. Before treating this
classification, an introduction to PDEs will be given first. The second step is to categorize these PDEs.

PARTIAL DIFFERENTIAL EQUATIONS
PDEs are equations with two or more independent variables, and one or more dependent variable(s). In order
to illustrate this, a function φ has been defined. This function depends on the variables x and z, which can
be noted as φ(x, z). Here, x andz are typically the independent variables, while f is the dependent variable.
A general partial differential equation, expressed in the x and z coordinates, can be formulated as:

a
δ2φ

δx2 +b
δ2φ

δxδz
+ c

δ2φ

δz2 +d
δφ

δx
+e

δφ

δz
+ f φ+ g = 0 (A.1)

where a, b, c, d , e, f , and g are coefficients. Although Equation A.1 is a second-order equation, the classifica-
tion which will be given below will be valid for higher-order PDEs too.

CLASSIFICATION
This section will treat the classification of PDEs, which can be done in several ways. The methods that will be
discussed here are the categorizations based on linearity and the roots of the PDEs, since this is what makes
treating the transonic equations complex. First the linearity of equations of the form given by Equation A.1
will be discussed, after which they will be divided in three categories based on the coefficients a, b, and c.

LINEAR VS. NON-LINEAR
Equation A.1 will be classified based on linearity in this section. A sufficient, but necessary condition for a
PDE to be linear is that the unknown function φ and its derivatives appear to the power of one. Another
condition is regarding the operators involved in the unknown function φ. If this function has a non-linear
operator, such as a sinus function (i.e., si n(φ)), the PDE itself becomes non-linear too. As an example, the
unsteady transonic small disturbance equation (that will be solved in this report for the prediction of the
aerodynamic loading on the airfoil) will be treated. This equation will be repeated here again:[

1−M∞2 −M∞2(γ+1)
δφ

δx

]
δ2φ

δx2 + δ2φ

δz2 −2M∞2 δ2φ

δxδt
−M∞2 δ

2φ

δt 2 = 0

where the bars have been removed for simplicity. It is worth mentioning that the unknown function in this
equation is again φ, but it depends on three variables (i.e., x, z, and t). This unsteady transonic small dis-
turbance equation turns out to be non-linear, because of the first term (indicated by red). Here, the first

55

56 A. CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS

derivative of φ with respect to x is being multiplied by the second derivative of φ with respect to x. Without
the first derivative of φ, this function would be linear since all terms other than φ are known values.
Another example is the steady component of the unsteady transonic small disturbance equation, which is
given by Equation 3.4a. This equation is formulated as follows:

(1−M∞2)
δ2φ0

δx2 + δ2φ0

δz2 = M∞2(γ+1)
δ

δx

(
1

2

(
δ2φ0

δx2

)2)

It turns out that this equation is non-linear as well. The term
(
δ2φ0

δx2

)2
(indicated in red) is not a first-power,

and causes this equation to become non-linear.

ELLIPTIC, PARABOLIC, AND HYPERBOLIC
This section treats the second way of categorizing PDEs as given by Equation A.1, which is based on the
coefficients a, b, and c. In studying higher-order equations, it has been shown that solutions of equations of
the form of Equation A.1 have different properties depending on the coefficients of the highest order terms
(i.e., second-order terms in Equation A.1 and the corresponding coefficients a, b, and c). This means that
Equation A.1 has a solution based on the Auxillary Equation A.2. The roots, and hence the number of real
characteristics of this equation, can be determined as follows:

am2 +bm + c = 0 (A.2)

m = −b ±
p

b2 −4ac

2a
(A.3)

The classification is performed, based on the term
(
b2 −4ac

)
, and can be divided in three categories:

Elliptic :
(
b2 −4ac

)< 0
Parabolic :

(
b2 −4ac

)= 0
Hyperbolic :

(
b2 −4ac

)> 0

The Transonic Small Disturbance (TSD) equation, which will be solved in this report to predict the loading on
the parabolic arc airfoil in consideration, has been derived from the Navier-Stokes (NS) equations as can be
seen in Chapter 3. The reader is referred to [13] for a detailed overview of this derivation. Since the computa-
tion of aerodynamic loading starts from the NS equations, the mathematical classification of the flow will be
done based on these equations. The NS equations embrace the time-dependent continuity equation (conser-
vation of mass), time-dependent momentum equation in three directions (spatial coordinates x,y ,z), and the
time-dependent energy equation. Those equations are a set of coupled differential equations and describe
how the velocity, pressure, temperature, and density of a moving fluid are related. The three-dimensional
unsteady form of the NS Equations are outlined below.

Continuity:
δρ

δt
+ δ(ρu)

δx
+ δ(ρv)

δy
+ δ(ρw)

δz
= 0

X-momentum:
δ(ρu)

δt
+ δ(ρu2)

δx
+ δ(ρuv)

δy
+ δ(ρuw)

δz︸ ︷︷ ︸
convection terms

=−δP

δx
+ 1

Re

(
δτxx

δx
+ δτx y

δy
+ δτxz

δz

)
︸ ︷︷ ︸

diffusion terms

Y-momentum:
δ(ρv)

δt
+ δ(ρuv)

δx
+ δ(ρv2)

δy
+ δ(ρv w)

δz︸ ︷︷ ︸
convection terms

=−δP

δy
+ 1

Re

(
δτx y

δx
+ δτy y

δy
+ δτy z

δz

)
︸ ︷︷ ︸

diffusion terms

Z-momentum:
δ(ρw)

δt
+ δ(ρuw)

δx
+ δ(ρv w)

δy
+ δ(ρw2)

δz︸ ︷︷ ︸
convection terms

=−δP

δz
+ 1

Re

(
δτxz

δx
+ δτy z

δy
+ δτzz

δz

)
︸ ︷︷ ︸

diffusion terms

Energy:
δ(E)

δt
+ δ(uE)

δx
+ δ(vE)

δy
+ δ(wE)

δz
=−δ(uP)

δx
− δ(vP)

δy
− δ(wP)

δz
− 1

RePr

(
δqx

δx
+ δqy

δy
+ δqz

δz

)
+ 1

Re

(
δ

δx
(uτxx + vτx y +wτxz)+ δ

δy
(uτx y + vτy y +wτy z)+ δ

δz
(uτxz + vτy z +wτzz)

)

57

where

u = velocity in x-direction
v = velocity in y-direction
w = velocity in z-direction
P = pressure
ρ = density
Re = Reynolds number
Pr = Prandtl number
qx ,qy , qz = heat flux components
E = total energy
τxx ,τx y ,τxz ,τy y ,τy z ,τzz = stress tensor components

58 A. CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS

The variables given above can be divided into independent and dependent variables. The independent vari-
ables consist of the spatial coordinates x, y , and z and the time t . The dependent variables, however, consist
of P , ρ, T (contained through E), u, v , and w . All six dependent variables are functions of the four indepen-
dent variables, which makes the differential equations given above PDEs. One can see that the momentum
equations consist of convective and diffusion terms. Those terms represent physical processes that occur in
a flow of gas in which some property is transported by the ordered motion of the flow and random motion of
the molecules of the gas, respectively. It is the diffusion in the flow that results in the generation of boundary
layers and turbulence. However, since the research treated in this report considers inviscid flow, those terms
disappear and won’t be elaborated on.

The categorization of PDEs in elliptic, parabolic, and hyperbolic equations can also be applied to the NS
equations. The steady and unsteady NS equations are formally elliptic and parabolic, respectively [14]. How-
ever, the classification of inviscid equations is different than the classification of the full NS equations, due
to the absence of the viscous higher order terms. Therefore, this classification depends on the role of com-
pressibility, and hence the free stream Mach number. The physical meaning of each category of the inviscid
equations will be treated here.
For elliptic equations information at a certain point in the (x,z)-plane influences all other regions of the do-
main. Therefore, the solution at that certain point must be carried out simultaneously with the solution at
all other points in the domain [15]. The solution of elliptic problems depend solely on the boundary condi-
tions (e.g., boundary value problem). Disturbances int he interior of the solution influence all other points,
and the signals of disturbances travel in all directions. This results in only smooth solutions, even though
the boundary conditions are discontinuous. Consequently, the numerical solution becomes easier. The ac-
tion of pressure is what causes the elliptic nature of inviscid flows at Mach numbers below 1. For flows with
freestream Mach numbers below 1, disturbances can be propagated by the pressure at the speed of sound
(i.e. this is greater than the speed of the flow). However, if the free stream Mach number is greater than 1
the pressure will not be able to affect events in the upstream direction, since fluid velocity is greater than the
propagation speed of disturbances in this case [14].
For parabolic equations information at a certain point in the (x,z)-plane influences the entire region of the
plane to one side of that certain point only. The solution to parabolic equations can thus be marched in the
main flow direction [14]. For hyperbolic equations information at a certain point in the (x,z)-plane influences
those regions between the advancing characteristics. The reader is referred to the concept of the method of
characteristics for a more detailed description of advancing characteristics.
It was mentioned above that the classification of compressible flow depends on the parameter M∞. This is
also the case for the Transonic Small Disturbance (TSD) equation (i.e. which is the governing equation of the
problem in consideration), since this equation is derived from the NS equations by assuming inviscid (i.e.
no diffusion terms), irrotational flow with small perturbation velocities. For unsteady, inviscid, compressible
flows the system of equations is always hyperbolic, no matter whether the flow is locally subsonic or super-
sonic. In case of a steady motion the classification of the system depends on the fluid speed; hyperbolic if its
supersonic and elliptic if its subsonic. Therefore, if the flow is steady and subsonic in one region and super-
sonic elsewhere, the inviscid compressible flows can be of mixed type. Especially flows with Mach numbers
close to 1 are complicated to solve, since such flows may contain shock wave discontinuities and regions of
subsonic (i.e. elliptic) and supersonic (i.e. hyperbolic) flow, whose exact locations are not known before-
hand. Considering the totally different mathematical behavior of elliptic and hyperbolic equations, one can
imagine the difficulties facing the solution of this type of mixed equations.

B
DERIVATION TSD AND BOUNDARY

CONDITIONS

UNSTEADY TRANSONIC SMALL DISTURBANCE EQUATION
This section is concerned with the derivation of the non-linear two-dimensional unsteady TSD equation, as
given by Equation 3.1. When a body is immersed in two-dimensional, irrotational, isentropic flow perturba-
tion velocities arise. The uniform flow has a velocity V∞ and is oriented in the x-direction, as can be seen in

Figure B.1. At an arbitrary point P in the flow field, the velocity is
−→
V with the x and z-components given by u

and w , respectively. This velocity
−→
V can be visualized as the sum of the uniform flow velocity V∞ plus some

extra increment in velocity. Thus, the x-component of velocity u in Figure B.1 can be visualized as V∞ plus an
increment in velocity û. Similarly, the z-component of velocity w can be visualized as simple increment itself,
because the uniform flow has zero component in the z-direction. These increments are called perturbations,
where û and ŵ are perturbation velocities:

u =V∞+ û (B.1a)

w = ŵ (B.1b)

Figure B.1: Perturbation velocities induced by an airfoil immersed in a uniform flow [1]

As mentioned in Chapter 3.1, the TSD is derived by assuming irrotational flow. For irrotational flow, there
exists a scalar function φ such that the velocity is given by the gradient of φ, as denoted in Equation B.3. This
φ is denoted as the velocity potential and is a function of the spatial coordinates (i.e. φ= (x, z)), whereas φ̂ is
defined as the perturbation velocity potential, such that:

φ=V∞x + φ̂ (B.2)

Also, due to the condition of irrotationality, and thus the concept of a potential:

59

60 B. DERIVATION TSD AND BOUNDARY CONDITIONS

−→
V =∇−→φ (B.3)

where

−→
V = ui+wk (B.4a)

∇φ= δφ

δx
i+ δφ

δz
k (B.4b)

By substituting equations into Equation B.3, the following relations can be obtained:

ui+wk = δφ

δx
i+ δφ

δz
k (B.5a)

u = δφ

δx
(B.5b)

w = δφ

δz
(B.5c)

By assuming V∞ = 1 the expressions for u and w become [16]:

u =φx = 1+ φ̂x (B.6a)

w =φz = φ̂z (B.6b)

From equations B.5b and B.5c it is observed that the flow-field velocities are obtained by differentiation φ

in the same direction as the velocities. It should also be noted that the velocity potential is defined for irro-
tational flow only. When a flow field is irrotational, hence allowing a velocity potential to be defined, there
is a tremendous simplification. Instead of dealing with the two velocity components as unknowns (u and
w), there is dealt with the velocity potential φ as one unknown. Due to this, only one equation for the flow
field is required for the solution, which makes the analysis of irrotational flows simpler than rotational flows.
These type of flows, where the flow field can be described by a potential, are called potential flows. Since the
present study deals with inviscid and compressible flow over a body immersed in a uniform stream, there is
no mechanism to start rotating the fluid elements. Subsequently, the assumption of irrotational flow can be
made.

It is important to note that the TSD will be derived with the help of the two-dimensional (specific to this
study) continuity equation, which is given by:

δρ

δt
+∇· (ρ

−→
V︸︷︷︸

perturbations to freestream mass fluxes

) = 0

δρ

δt︸︷︷︸
net mass flow out of control volume

+ δ(ρu)

δx
+ δ(ρw)

δz︸ ︷︷ ︸
time rate of change of mass inside control volume

= 0 (B.7)

which upon differentiation by parts becomes:

δρ

δt
+ρδu

δx
+u

δρ

δx
+w

δρ

δz
+ρδw

δz
= 0 (B.8)

Substituting equations B.6 into B.8, and ignoring the hat in φ̂ for future computations, the continuity equation
becomes:

δρ

δt
+ρδ

2φ

δx2 + δφ

δx

δρ

δx
+ δφ

δz

δρ

δz
+ρδ

2φ

δz2 = 0

δρ

δt
+ρ

(
δ2φ

δx2 + δ2φ

δz2

)
+ δφ

δx

δρ

δx
+ δφ

δz

δρ

δz
= 0 (B.9)

61

Since this equation contains two unknowns (φ and ρ), instead of only φ, ρ will be eliminated next through
the energy equation. The energy equation for unsteady flows can be derived with the x and z-components of
the momentum equation, respectively:

δ(ρu)

δt
+∇· (ρu

−→
V) =−δP

δx
+ρ fx + (Fx)vi scous (B.10)

δ(ρw)

δt
+∇· (ρw

−→
V) =−δP

δz
+ρ fz + (Fz)vi scous (B.11)

In equations B.10 and B.11 the first terms on the left side of the equals signs represents the time rate of change
of momentum. This change is caused by unsteady fluctuations of the flow properties inside the control vol-
ume. The second term on the left side of the equals sign depicts the net flow of momentum out of the control
volume across the surface. Moving to the right side of the equals sign, the pressure force, body force, and total
viscous force exerted on the control surface emerge respectively. However, in this study the body and viscous
forces have been disregarded, which simplifies equations B.10 and B.11 to:

δ(ρu)

δt
+ δ(ρu2)

δx
+ δ(ρuw)

δz
=−δP

δx
(B.12)

δ(ρw)

δt
+ δ(ρuw)

δx
+ δ(ρw2)

δz
=−δP

δz
(B.13)

Upon differentiation by parts Equation B.12 turns into:

ρ
δu

δt
+u

δρ

δt
+ (ρu)

δu

δx
+u

δ(ρu)

δx
+ (ρw)

δu

δz
+u

δ(ρw)

δz
+ δP

δx
= 0

ρ
δu

δt
+ (ρu)

δu

δx
+ (ρw)

δu

δz
+ δP

δx
+u

δρδt
+ δ(ρu)

δx
+ δ(ρw)

δz︸ ︷︷ ︸
continuity equation = 0

= 0 (B.14)

The term between the brackets is the continuity equation, and therefore vanishes. By assuming irrotational
flow (δu

δz = δw
δx) and rewriting the remaining terms in Equation B.14, the momentum equation transforms

into:

δu

δt
+u

δu

δx
+w

δu

δz
+ 1

ρ

δP

δx
= 0

δu

δt
+ δ(1

2 u2)

δu

δu

δx
+ δ(1

2 w2)

δw

δw

δx
+ 1

ρ

δP

δx
= 0 (B.15)

The first term in this equation can be written in terms of φx by differentiation B.5b with respect to time t :

δu

δt
= δφx

δt
= δφt

δx
(B.16)

Substituting this equation into Equation B.15 results in:

δφx

δt
+ δ(1

2 u2 + 1
2 w2))

δx
+ 1

ρ

δP

δx
= 0 (B.17)

Also, for irrotational and inviscid flows, the following isentropic relations in a calorically perfect gas hold:

ρ

ρ∞
=

(
P

P∞

) 1
γ

(B.18a)

P = cργ (B.18b)

where c is a constant. Using relation B.18a the third term in Equation B.17 can be rewritten as follows:

62 B. DERIVATION TSD AND BOUNDARY CONDITIONS

ρ = ρ∞
(

P

P∞

) 1
γ

1

ρ
= 1

ρ∞
(

P
P∞

) 1
γ

= 1

ρ∞

(
P

P∞

)− 1
γ = P

1
γ
∞

ρ∞
P− 1

γ (B.19)

Equation B.19 can be written in the 1
ρ
δP
δx form as follows:

1

ρ

δP

δx
= P

1
γ
∞

ρ∞
1(

− 1
γ +1

) δ
(
P− 1

γ+1
)

δx
= P

1
γ
∞

ρ∞
1
γ−1
γ

δ
(
P− 1

γ+1
)

δx
= γ

ρ∞
P

1
γ
∞

γ−1

δ
(
P 1− 1

γ

)
δx

(B.20)

Subsequently, substituting Equation B.20 into Equation B.17 results in:

δ

δx

[
δφ

δt
+ 1

2

(
u2 +w2)+ γ

γ−1

(P∞)
1
γ

ρ∞
P (1− 1

γ)

]
= 0 (B.21)

ρ = ρ∞
(

P

P∞

) 1
γ = ρ∞P

1
γ P

− 1
γ

∞ = ρ∞

P
1
γ
∞

P
1
γ

ρ∞

P
1
γ
∞

= ρ

P
1
γρ∞

P
1
γ
∞

−1

= P
1
γ
∞

ρ∞
= P

1
γ

ρ
(B.22a)

Next, this equation is substituted into Equation B.21. That is:

δ

δx

[
δφ

δt
+ 1

2

(
u2 +w2)+ γ

γ−1

P
1
γ

ρ
P

(
1− 1

γ

)]
= 0

δ

δx

δφ
δt

+ 1

2

(
u2 +w2)+ γ

γ−1

P

(
1
γ+1− 1

γ

)
ρ

= 0

δ

δx

[
δφ

δt
+ 1

2

(
u2 +w2)+ γ

γ−1

P

ρ

]
= 0

which is satisfied if the term between the brackets is an arbitrary function of z or a constant in x. That is:

δφ

δt
+ u2

2
+ w2

2
+ γ

γ−1

P

ρ
= F (z) (B.23)

where F (z) is an arbitrary function of z or a constant in x. Executing similar manipulations with the z-
component of the momentum equation leads to:

δφ

δt
+ u2

2
+ w2

2
+ γ

γ−1

P

ρ
= F (x) (B.24)

Here, F (x) is an arbitrary function of x. Comparing equations B.23 and B.23 it can be concluded that:

F (z) = F (x) =C1 (B.25)

where C1 is an arbitrary constant. Subsequently, the energy equation becomes:

δφ

δt
+ u2

2
+ w2

2
+ γ

γ−1

P

ρ
=C1 (B.26)

63

At the freestream φt is zero, which reduces Equation B.26 to:

u2∞
2

+ w2∞
2

+ γ

γ−1

P∞
ρ∞

=C1 (B.27)

In order to eliminate the constant C1 from equations B.26 and B.27, the following relations have been used:

u2
∞+w2

∞ =V 2 = 1 (B.28a)

γ
P∞
ρ∞

= γRT∞ = a2
∞ = 1

M∞2 (B.28b)

where the first relation in Equation B.28 results from the fact that uniform flow has zero component in z-
direction (normalization). Thus, the only component is in the x-direction. This can be seen in Figure B.1.
By equating equations B.26 and eq:energyequationfreestream to each other and inserting the isentropic rela-
tions given by equations B.18 and B.28b, the following equation is constructed:

δφ

δt
+ u2

2
+ w2

2
+ 1

M∞2(γ−1)
ργ−1 = 1

2
+ 1

M∞2(γ−1)
(B.29)

which can be rewritten as:

ρ =
[

1+ γ−1

2
M∞2 {

1−2φt −u2 −w2}] 1
γ−1

(B.30)

By inserting equations B.5b and B.5c into Equation B.30, the desired energy equation becomes:

ρ =
[

1+ γ−1

2
M∞2 {

1−2φt −φ2
x −φ2

z

}] 1
γ−1

(B.31)

This energy equation in combination with Equation eq:continuitydiffbyparts, gives two equations and two
unknowns (φ and ρ), and provides a complete set of equations for solving the unsteady potential flow prob-
lem. The density can be eliminated from the continuity equation by taking the derivative of ρ with respect to
t , x, and z and subsequently substituting these into the continuity equation given by Equation B.8:

δρ

δt
= 1

γ−1

[
1+ γ−1

2
M∞2 {

1−2φt −φ2
x −φ2

z

}](
1

γ−1 −1
) [
γ−1

2
M∞2 {−2φt t −2φxφxt −2φzφzt

}]
(B.32)

(B.33)

where the second derivatives of the potentials in the second term between brackets in Equation B.33 are
obtained by:

φ2
x =

(
δφ

δx

)2

→ δ

δt

[(
δφ

δx

)2]
= 2

δφ

δx

δ2φ

δxδt
= 2φxφxt

φ2
z =

(
δφ

δz

)2

→ δ

δt

[(
δφ

δz

)2]
= 2

δφ

δz

δ2φ

δzδt
= 2φzφzt

Equation B.33 can be further simplified by observing that ρ is given by Equation B.31. Thus, the first term
between brackets can be written as ρ2−γ, because:[

1+ γ−1

2
M∞2 {

1−2φt −φ2
x −φ2

z

}]−1

= ρ−(γ−1)

This results in: [
1+ γ−1

2
M∞2 {

1−2φt −φ2
x −φ2

z

}]−1

= ρ

(
1

γ−1 −1
)
= ρρ−(γ−1) = ρ(1−γ+1) = ρ(2−γ) (B.34)

Inserting Equation B.34 into Equation B.33 gives:

64 B. DERIVATION TSD AND BOUNDARY CONDITIONS

ρt =− 1

γ−1
ρ(2−γ) (

γ−1
)

M∞2 (
φt t +φxφxt +φzφzt

)
(B.35)

Further simplification is possible by using equations B.5b, B.5c, B.18, and B.28b. This reduces Equation B.35
to:

ρt =− ρ

a2

(
φt t +uφxt +wφzt

)
(B.36)

Similarly:

ρx =− ρ

a2

{
φxt +uφxx +wφxz

}
(B.37a)

ρz =− ρ

a2

{
φzt +uφxz +wφzz

}
(B.37b)

By inserting equations B.36, B.37a, and B.37b into Equation B.8, the continuity equation becomes:

ρ

[
− 1

a2φt t −2u
1

a2φxt −2w
1

a2φzt −2uw
1

a2φxz −u2 1

a2φxx −w2 1

a2φzz +ux +wz

]
= 0

Multiplying this equation by
(

a2

ρ

)
and noting that ux = φxx and wz = φzz , the following equation has been

obtained: (
φt t +2uφxt +2wφzt

)︸ ︷︷ ︸
unsteady part

= (
a2 −u2)φxx +

(
a2 −w2)φzz −2uwφxz︸ ︷︷ ︸

steady part

(B.38)

Equation B.38 can be further simplified by using the small disturbance assumptions. These assumptions are
given by:

u =φx
∼=O (1) (B.39a)

w =φz ¿ 1 (B.39b)

First, the steady part of Equation B.38 will be examined. By equating the energy equations given by equations
B.26 and B.27, and using the isentropic relations given by Equation B.28b, a2,

(
a2 −u2

)
,
(
a2 −w2

)
, and (2uw)

can be computed to insert into Equation B.38:

φt + u2

2
+ w2

2
+ a2

γ−1
= 1

2
+ 1

M∞2(γ−1)
(B.40)

Thus:

a2 =−φt (γ−1)+ (γ−1)

2
− u2

2
(γ−1)− w2

2
(γ−1)+ 1

M∞2 (B.41)

Inserting equations B.6 into Equation B.41 results in:

a2 =−φt (γ−1)+ (γ−1)

2
−

(
1+φx

)2

2
(γ−1)− φ2

z

2
(γ−1)+ 1

M∞2 (B.42)

By eliminating second-degree terms, assuming low-frequency, and applying the small-disturbance assump-
tions given by Equation B.39 transforms Equation B.42 into:

a2 ≈−φt (γ−1)− (γ−1)φx + 1

M∞2 (B.43)

Similarly:

a2 −u2 ∼= 1

M∞2 − (
γ−1

)
φt −

(
γ−1

)
φx −

(
1+2φx +φ2

x

)
∼= 1

M∞2 + (
γ+1

)
φx −1 (B.44a)

65

a2 −w2 ∼= 1

M∞2 − (
γ−1

)
φt +

(
γ−1

)
φx −φ2

z

∼= 1

M∞2 (B.44b)

2uw = 2
(
1+φx

)
φz

∼= 0 (B.44c)

Substituting these equations in the steady part of Equation B.38 transforms the right hand side of this equa-
tion, to first order accuracy, into:

1

M∞2

[
1−M∞2 − (

γ+1
)

M∞2φx
]
φxx + 1

M∞2φzz (B.45)

This equation is first order accurate, because φ2
x and similar second-degree terms have been neglected in the

derivation process. Continuing with the unsteady part of the continuity equation given by Equation B.38,
results in:

φt t +2uφxt +2wφzt =φt t +2
(
1+φx

)
φxt +2φzφzt

∼=φt t +2
(
1+φx

)
φxt (B.46)

Subsequently, implementing the small disturbance approximations and combining equations B.45 and B.46
gives the unsteady TSD:

M∞2φt t +2M∞2φxt =
[
1−M∞2 −M∞2 (

γ+1
)
φx

]
φxx +φzz

[
1−M∞2 −M∞2 (

γ+1
)
φx

]
φxx +φzz −2M∞2φxt −M∞2φt t = 0 (B.47)

which is equal to Equation 3.1.

STEADY TANGENCY CONDITION
The flow tangency boundary condition for a typical thin airfoil will be derived in this section. The standard
tangency condition [17] can be implemented at the airfoil surface using:

(
φz ′

u

)±
z ′=h′

=
(

φz ′

φx′ +u∞

)±
z ′=h′

= δh′±

δx ′ (B.48)

The subscript z ′ = h′ indicates that the boundary condition is enforced on the actual surface of the airfoil.The
functions h′+ and h′− define the upper and lower airfoil surfaces respectively. This boundary condition is
converted to the small disturbance version by applying two simplifications. The first simplification involves
neglecting φx relative to u∞. Second, the flow tangency boundary condition is applied at the airfoil slit (i.e.
z ′ = 0) instead of at the actual airfoil surface. By applying these simplifications to Equation B.48, the small
disturbance boundary condition forms:

φ′
z (x,0±) = u∞

δh′±

δx ′ (B.49)

By rewriting u∞ in terms of the parameters and variables given in Section 3.2 the small disturbance tangency
condition is transformed into:

(φ′
z)z ′=0 =µh′

x′ (B.50)

This is equal to the tangency condition given by 3.9.

66 B. DERIVATION TSD AND BOUNDARY CONDITIONS

PRESSURE COMPUTATION
This section covers how the pressure is obtained from the definition of the pressure coefficient CP , once the
disturbance velocities in x-direction have been computed. Therefore, the definition of CP is recalled first:

CP ≡ P −P∞
q∞

(B.51)

where q∞ is the dynamic pressure, and can be expressed in terms of M∞ as follows:

q∞ = 1

2
ρ∞V 2

∞ = 1

2

γP∞
γPi n f t y

ρ∞V 2
∞ = γ

2
P∞

(
ρ∞
γP∞

)
V 2
∞ (B.52)

From the isentropic relations B.28b, the speed of sound is expressed as a2∞ = γP∞
ρ∞ . Hence, Equation B.52

becomes:

q∞ = γ

2
P∞

V 2∞
a2∞

= γ

2
P∞M∞2 (B.53)

Substituting Equation B.53 into B.51 gives:

CP = 2

γM∞2

(
P

P∞
−1

)
(B.54)

To obtain a linearized form of the pressure coefficient, it should be recalled that this study deals with an
adiabatic flow of a calorically perfect gas; hence from a special form of the energy equation [1]:

T +
−→
V 2

2cp
= T + V 2∞

2cp
(B.55)

where cp is the specific heat at constant pressure and can be expressed as [1]:

cp = γR

γ−1
(B.56)

Substituting Equation B.56 into B.55 results in:

T −T∞ = V 2∞−−→
V 2

2γ R
(γ−1)

(B.57)

Also, recalling from Equation B.28b that a∞ =√
γRT∞, Equation B.57 becomes:

T

T∞
−1 = γ−1

2

V 2∞−−→
V 2

γRT∞
= γ−1

2

V 2∞−−→
V 2

a2∞
(B.58)

In terms of the perturbation velocities B.1:

−→
V 2 = (V∞+ û)2 + ŵ2

Equation B.58 can be written as:

T

T∞
= 1− γ−1

2a2∞

(
2ûV∞+ û2 + ŵ2) (B.59)

Since the flow is isentropic, the following relation holds:

P

P∞
=

(
T

T∞

) γ

(γ−1)
(B.60)

Equation B.59 becomes:

P

P∞
=

[
1− γ−1

2a2∞

(
2ûV∞+ û2 + ŵ2)] γ

(γ−1)

or

67

P

P∞
=

[
1− γ−1

2a2∞
M∞2

(
2û

V∞
+ û2 + ŵ2

V 2∞

)] γ

(γ−1)
(B.61)

When assuming small perturbations, that is:

û

V∞
¿ 1

û2

V 2∞
≪ 1

ŵ2

V 2∞
≪ 1

In this case, Equation B.61 is of the form:

P

P∞
= (1−ε)

γ

(γ−1) (B.63)

where ε is small. From the binomial expansion, neglecting higher-order terms, Equation B.63 becomes:

P

P∞
= 1− γ

2
M∞2

(
2û

V∞
+ û2 + ŵ2

V 2∞

)
+ ... (B.64)

Substituting Equation B.64 into the expression for the pressure coefficient, Equation B.51, results in:

CP = 2

γM∞2

[
1− γ

2
M∞2

(
2û

V∞
+ û2 + ŵ2

V 2∞

)
+ ...−1

]
=− 2û

V∞
− û2 + ŵ2

V 2∞
(B.65)

Since û2

V 2∞
≪ 1 and ŵ2

V 2∞
≪ 1:

CP =− 2û

V∞
(B.66)

In the first section of this appendix, it was assumed that V∞ = 1. Therefore:

CP =−2û (B.67)

where û = φ̂x . Rewriting this equation in terms of the parameters and variables introduced in Chapter 3 gives:

CP =− 2

νb
û(x,0±) (B.68)

TRANSFORMATION OF GOVERNING EQUATIONS TO ε-SPACE
Recalling the partial differential equation that governs transonic flow, as given by Equation 3.1:[

1−M∞2 −M∞2(γ+1)φx
]
φxx +φzz −2M∞2φxt −M∞2φt t = 0 (B.69)

where the bars over the spatial coordinates have been ignored for simplicity. The flow is assumed to be un-
steady, inviscid, and compressible past a thin wing at small angle of attack. The wing lies in the x − z-plane,
with the wind axis parallel to the x-axis. The thickness ratio ε of the wing section is used as the parameter for
the parametric differentiation. The transformation of Equation B.69 to the ε-space with

g = δφ

δε
(B.70a)

u = δφ

δx
(B.70b)

68 B. DERIVATION TSD AND BOUNDARY CONDITIONS

results in the linear equation:

M∞2φt t +2M∞2φxt −φzz −
(
1−M∞2)φxx =−M∞2 (

γ+1
)
φxφxx (B.71)

which upon inserting Equation B.70b becomes:

M∞2φt t +2M∞2φxt −φzz −
(
1−M∞2)φxx =−M∞2 (

γ+1
)

uφxx (B.72)

The uφxx term on the right hand side of Equation B.72 can be written as:

uφxx = u
δ2φ

δx2 = u
δ

δx

(
δφ

δx

)
= δ

δx

(
u
δφ

δx

)
= (

ugx
)

x (B.73)

Substituting Equation B.70a into B.73 gives:

M∞2g t t +2M∞2gxt − gzz −
(
1−M∞2)gxx =−M∞2 (

γ+1
)(

ugx
)

x (B.74)

It is assumed that g (x, z, t) may be written as the sum of a steady component ĝ (x, z) and an unsteady com-
ponent g̃ (x, z, t), and g̃ ¿ ĝ . Consistent with the latter assumption, the velocity component parallel to the
x-axis may be decomposed into a steady component û and an unsteady component ũ, where ũ ¿ û. Thus:

g (x, z, t) = ĝ (x, z)+ g̃ (x, z, t) g̃ ¿ ĝ
u(x, z, t) = û(x, z)+ ũ(x, z, t) ũ ¿ û

These approximations simplify Equation B.74 to the following form:

ĝzz +
(
1−M∞2) ĝxx = M∞2 (

γ+1
)(

ûĝx
)

x (B.75)

M∞2 g̃ t t +2M∞2 g̃xt − g̃zz −
(
1−M∞2) g̃xx =−M∞2 (

γ+1
)(

ûg̃x
)

x (B.76)

These steady and unsteady equations for ĝ and g̃ are weakly coupled, û being the coupling variable. The
steady equation must be solved first to obtain û, before solving the unsteady equation.

The focus in this study is limited to two-dimensional steady flows. Next, Green’s theorem will be introduced
to convert the PDEs to integral equations. Green’s theorem may be written as:Ï

S

(
ψ∇2Ω−Ω∇2ψ

)
dS =−

∫
C

(
ψ
δΩ

δn
−Ωδψ

δn

)
dC − lim

σ→0

∫
σ

(
ψ
δΩ

δn
−Ωδψ

δn

)
dC (B.77)

where

S = The region bounded by a sectionally smooth curve C
σ = Circular cavity surrounding a point P in S
Ω = Function with continuous first and second derivatives in S
ψ = Function with continuous first and second derivatives in S, and satisfies Laplace’s equation except

possibly at the point P
n = The inward normal to C

Equation B.75 and the equation for ψ may be combined to give [11]:

ψ∇2 ĝ − ĝ∇2ψ=ψ
(
ûĝx

)
x (B.78)

Green’s theorem B.77 can be applied to the left hand side of Equation B.78 if ĝ corresponds toΩ, i.e.,

−
∫

C

(
ψ
δĝ

δn
− ĝ

δψ

δn

)
di − lim

σ→0

[∫
σ

(
ψ
δĝ

δn
− ĝ

δψ

δn

)
dσ

]
=

Ï
S
ψ

(
ûĝx

)
x dS (B.79)

The contour C consists of segments C∞, CW , CB , and Σ, where

69

C∞ = contour at infinity
CW = contour along wake
CB = contour over the body
Σ = contour over the shock surface

Next, ψ will be identified with the elementary solution of ∇2ψ= 0, where

ψ (x −ξ, z −ζ) = ln
[

(x −ξ)2 + (
2−ζ2)2

] 1
2

(B.80)

and where (ξ,ζ) is the observation point. The integral equation for ĝ (ξ,ζ) takes the form [18]

ĝ (ξ,ζ) = ĝB + 1

2π

∫
Σ
ψ
δĝ

δn
dΣ+ 1

2π

∫
Σ
ψûĝx dz − 1

2π

Ï
S
ψx ûĝx dxdz (B.81)

The term ĝB (ξ,ζ) is the classical linearized subsonic solution. This term remains the same not only for all
iterations, but also for all ε-levels. the double integral is the contribution due to the nonlinearities of the
transonic equation. The integrals along the shock surface represent the jump in û and in the derivatives of ĝ
across the shock.

C
DERIVATIONS FOR NUMERICAL

IMPLEMENTATION OF THE GOVERNING

EQUATIONS

STREAM-WISE DERIVATIVE OF PERTURBATION POTENTIAL
The stream-wise derivative of the perturbation potential is obtained by differentiating Equation ?? with
respect to the stream-wise direction ξ, that is:

δg

δξ
(ξ,ζ) =− 1

2π

∫ 1

−1

[
∆
δg

δz

]
z=0

(x −ξ)

(x −ξ)2 +ζ2 d x

+ 1

2π

∫ 1

−1

[
∆
δg

δx

]
z=0

ζ

(x −ξ)2 +ζ2 d x

− 1

2πb

δ

δξ

[Ï
S

(x −ξ)

(x −ξ)2 + (z −ζ)2

(
u
δg

δx

)
d xd z

]
(C.1)

VORTEX STRENGTH
The surface distribution of the vortex strength, such that the surface tangency condition satisfies on the
plane ζ, is determined by differentiating ?? with respect to ζ and taking the limits of both sides of the
equation as ζ approaches ±0. This results in:

δg

δζ
(ξ,0+) = 1

2

[
∆
δg

δζ

]
ζ=0

+ 1

2π

∫ 1

−1
∆
δg

δx

1

x −ξd x − 1

2πb

Ï
S

2z(x −ξ)

[(x −ξ)2 + z2]2

(
u
δg

δx

)
d xd z (C.2a)

δg

δζ
(ξ,0−) =−1

2

[
∆
δg

δζ

]
ζ=0

+ 1

2π

∫ 1

−1
∆
δg

δx

1

x −ξd x − 1

2πb

Ï
S

2z(x −ξ)

[(x −ξ)2 + z2]2

(
u
δg

δx

)
d xd z (C.2b)

Adding equations C.2a and C.2b to each other gives:[
δg

δζ
(ξ,0+)+ δg

δζ
(ξ,0−)

]
+ 1

πb

Ï
S

2z(x −ξ)

[(x −ξ)2 + z2]2

(
u
δg

δx

)
d xd z = 1

πb

∫ 1

−1
∆
δg

δx

1

x −ξd x (C.3)

This equation can be inverted using the steady surface tangency condition given by Equation 3.14b, and
assuming that the surface integral on the left-hand-side of Equation C.3 is a known function of ξ. The result
is given by Equation C.4:

∆
δg

δξ
(ξ,0±) = 2

π

√
1−ξ
1+ξ

∫ 1

−1

I (x)

ξ−x

√
1+x

1−x
d x (C.4)

Here, I (x) represents the surface integral on the left-hand-side of Equation C.3, thus:

71

72 C. DERIVATIONS FOR NUMERICAL IMPLEMENTATION OF THE GOVERNING EQUATIONS

I (x) =
Ï

S

2z(x −ξ)

[(x −ξ)2 + z2]2

(
u
δg

δx

)
d xd z (C.5)

INTEGRATION SCHEME
The numerical technique used to evaluate the integral equations on the mesh will be outlined in this
section. The treatment of the line integrals appearing in the computation of the perturbation velocity u(ξ,ζ)
and the thickness and lift contribution terms, as can be seen in equations 4.8 and 4.4 respectively, is carried
by the numerical integration function of M AT L AB . That is, first the integrand, thus the function that has to
be integrated, is defined by:

f un = @(x)F (C.6)

where F represents the integrand, and the symbol within the brackets (x in this case) represents the variable
the function F depends on. Once this function f un and the variable are defined, the syntax to numerically
integrate the function F from the lower limit xmi n to the upper limit xmax is defined as:

q = i nteg r al (f un, xmi n, xmax) (C.7)

The double integrals however, also known as surface integrals, have to be treated using another technique.
This technique consists of dividing the flow field into two-dimensional computational rectangular boxes,
which can be seen in Figure C.1a.
Those boxes will then be used to perform the calculations on. A single box is shown in Figure C.1b to
demonstrate this calculation process. Before delving into those computations the flow domain is cut into an
upper an lower domain by introducing a cut at z = 0, indicated by S+ and S−1 respectively. This is done
because of the jump in velocity potential across the plane z = 0 downstream of the leading edge, which is a
feature of inviscid, lifting flows. Since the potential g appears as a multiplying factor in the integrand of the
surface integral in Equation C.1, the integrand also experiences a jump. An effective way of incorporating
this jump in the integration procedure is by introducing a cut along z = 0, explained before. This is shown in
Figure C.2.
The computation process then starts with computing the value of the integrand of the surface integral
(which will be denoted by F from now on) at the intersection points of the domain. Those values are

indicated by F j+1
i−1 , F j+1

i , F j+1
i+1 , F j

i−1, F j
i , F j

i+1, F j−1
i−1 , F j−1

i , F j−1
i+1 and so on, which is shown in Figure C.3.

The integral
Î

F d xd z over the area of this single rectangular element can then be written as:Ï
r ect ang le

F d xd z = 1

36

[
F j+1

i−1 +F j+1
i+1 +F j−1

i+1 +F j−1
i−1 +4

(
F j

i−1 +F j+1
i +F j

i+1 +F j−1
i

)
+16F j

i

]
∆x∆z (C.8)

where ∆x and ∆z denote the horizontal and vertical sides of the rectangular box, as can be seen in Figure
C.1b. This integration process is also known as Simpson’s one-third rule. The surface integral over the entire
flow field can then be obtained by summation over individual rectangles, that is:Ï

x,z
F d xd z = ∑

al lr ect ang les

[Ï
oner ect ang le

F d xd z

]
(C.9)

The upper S+ and lower S− surfaces are treated separately in doing this, because the values of the integrands
at both surfaces (F+ and F−) are affected by the values of the potential below and above the cut((

δg
δx

)+
and

(
δg
δx

)−)
. That is:

• F+ has a contribution from
(
δg
δx

)+
and

(
δg
δx

)−
(M AT L AB code lines 366 - 424)

• F− has a contribution from
(
δg
δx

)+
and

(
δg
δx

)−
(M AT L AB code lines 483 - 514)

The upper and lower domains, S+ and S− respectively, are indexed according to the indexing system shown
in Figure C.4.

73

(a) Flowfield divided into two-dimensional rectangular boxes

(b) Single two-dimensional rectangular box

Adapting Equation C.8 to this indexing system results in equations C.10a and C.10b for the upper S+ and
lower S− domains respectively:

Ï
r ect ang leS+

F d xd z = 1

36

[
F j+2

i−1 +F j+2
i+1 +F j

i+1 +F j
i−1 +4

(
F j+1

i−1 +F j+2
i +F j+1

i+1 +F j
i

)
+16F j+1

i

]
∆x∆z (C.10a)

Ï
r ect ang leS−

F d xd z = 1

36

[
F j−2

i−1 +F j−2
i+1 +F j

i+1 +F j
i−1 +4

(
F j−1

i−1 +F j−2
i +F j−1

i+1 +F j
i

)
+16F j−1

i

]
∆x∆z (C.10b)

Once the integrals are computed, they have to be differentiated with respect to ε, as can be seen in the third
term of Equation C.1. This differentiation scheme will be treated in the next section.

74 C. DERIVATIONS FOR NUMERICAL IMPLEMENTATION OF THE GOVERNING EQUATIONS

Figure C.2: Flow domain dividid into upper (S+) and lower (S−) surface

Figure C.3: Integrand computed at intersection points of the flow field domain

DIFFERENTIATION SCHEME
The differentiation process is carried out with a centered formula of order Ox4, also known as a forth order
accurate finite difference scheme:[

δF

δx

]
i j
=− 1

12∆x

[
F j

i−2 +8
(
F j

i+1 −F j
i−1

)
−F j

i+2

]
(C.11)

where ∆x is given by (xi+2 −xi−2). However, this equation can only be used for the middle region, meaning
that for the intersection points of the two cells at the left edge of the domain and two cells at the right edge of

75

Figure C.4: Indexing of the upper and lower flow field domains

the domain different equations are needed. This is because for those points F j
i−2, F j

i−1, F j
i+1, and F j

i+2 do not
exist. Therefore, the differentiation process will be performed in five parts, according to Figure C.5.

The values of
[
δF
δx

]
i j

on the intersection points of the red and green lines on the left side of the mesh are

calculated with equations C.12a and C.12b respectively:[
δF

δx

]
i j
= 1

(xi+1 −xi)

[
F j

i+1 −F j
i

]
(C.12a)

[
δF

δx

]
i j
= 1

(xi+1 −xi−1)

[
F j

i+1 −F j
i−1

]
(C.12b)

The same process is carried out on the right side of the mesh, resulting in equations C.13a and C.13b for the

values of
[
δF
δx

]
i j

on the red and green lines respectively:[
δF

δx

]
i j
= 1

(xi −xi−1)

[
F j

i −F j
i−1

]
(C.13a)

[
δF

δx

]
i j
= 1

(xi+1 −xi−1)

[
F j

i+1 −F j
i−1

]
(C.13b)

The computations of
[
δF
δx

]
i j

for the different regions can be found in the following lines of the M AT L AB

code:

• Values on the red line on the left side of the mesh: code lines 445−448 and 527−530 for the upper side
of the airfoil and lower side of the airfoil respectively.

• Values on the green line on the left side of the mes: code lines 451−454 and 533−536 for the upper
side of the airfoil and lower side of the airfoil respectively.

76 C. DERIVATIONS FOR NUMERICAL IMPLEMENTATION OF THE GOVERNING EQUATIONS

Figure C.5: Flow field domain split up into five regions for differentiation process

• Values in the middle region of the mesh: code lines 427−441 and 517−523 for the upper side of the
airfoil and lower side of the airfoil respectively.

• Values on the red line on the right side of the mesh: code lines 460−463 and 542−545 for the upper
side of the airfoil and lower side of the airfoil respectively.

• Values on the green line on the right side of the mes: code lines 469−472 and 551−554 for the upper
side of the airfoil and lower side of the airfoil respectively.

D
EQUATION FORM OF ALGORITHM

This appendix serves as an extension of Chapter 4.2 and outlines the algorithm developed to predict the
loading on a symmetric parabolic arc airfoil immersed in an inviscid, irrotational, compressible flow in
equation form.

77

78 D. EQUATION FORM OF ALGORITHM

ui (ξ,ζ) = 4µε0
π

∫ 1
−1

x(x−ξ)
(x−ξ)2+ζ2 d x + αµ

π

∫ 1
−1

√
(1−x)
(1+x)

ζ

(x−ξ)2+ζ2 d x

(
δg
δξ

)
j

(ξ,ζ) = 4µ
π

∫ 1
−1

x(x−ξ)
(x−ξ)2+ζ2 d x

I j (ξ) = 1
πb

Î
S

2z(x−ξ)
[(x−ξ)2+z2]2

(
ui

(
δg
δx

)
j

)
d xd z

(
∆
δg
δξ

)
j

(ξ,0±) = 2
π

√
1−ξ
1+ξ

∫ 1
−1

Ii
ξ−x

√
1+x
1−x d x

(
δg
δξ

)
j+1

(ξ,ζ) = 4µ
π

∫ 1
−1

x(x−ξ)
(x−ξ)2+ζ2 d x + 1

2π

∫ 1
−1

[(
∆
δg
δξ

)
j

]
ζ

(x−ξ)2+ζ2 d x − 1
2πb

δ
δξ

[Î
S

(x−ξ)
(x−ξ)2+(z−ζ)2

(
ui

(
δg
δξ

)
j

)
d xd z

]

I j+1(ξ) = 1
πb

Î
S

2z(x−ξ)
[(x−ξ)2+z2]2

(
ui

(
δg
δx

)
j+1

)
d xd z

(
∆
δg
δξ

)
j+1

(ξ,0±) = 2
π

√
1−ξ
1+ξ

∫ 1
−1

I j+1

ξ−x

√
1+x
1−x d x

(
δg
δξ

)
j+2

(ξ,ζ) = 4µ
π

∫ 1
−1

x(x−ξ)
(x−ξ)2+ζ2 d x + 1

2π

∫ 1
−1

[(
∆
δg
δξ

)
j+1

]
ζ

(x−ξ)2+ζ2 d x − 1
2πb

δ
δξ

[Î
S

(x−ξ)
(x−ξ)2+(z−ζ)2

(
ui

(
δg
δξ

)
j+1

)
d xd z

]

∆u =
(
δg
δξ

)
n
∆ε

ui+1 = ui +∆u

Cp (x,0±) =− 2
bνum

j = j +1
1 ≤ j ≤ n

i = i +1
1 ≤ i ≤ m

79

Here, the red line represents the inner-loop (indexed by n), which loops until
(
δg
δξ

)
reaches a converged value

while keeping the perturbation velocity u constant. In this study it has been found that
(
δg
δξ

)
converges after

n = 120 iterations (with an under-relaxation factor d = 0.1 incorporated). This converged value of
(
δg
δξ

)
is

then being used in the perturbation velocity u computations. These perturbation velocity computations
depend on the thickness ratio ε, and are being looped until the desired thickness ratio is reached (ε= 0.03 in
this study for both the upper and lower side of the airfoil, so a total airfoil thickness of ε= 6%). This
outer-loop (indexed by m) is indicated by the blue line. The thickness ratio is each loop increased in uniform
increments ∆ε. Since the desired thickness for this study is ε= 0.03 for the upper and lower side of the airfoil,
and the increment in thickness ratio is ∆= 0.005 starting from a value of ε0 = 0.005, six loops will be required
to reach the desired total airfoil thickness of ε= 6%. Finally, the outcome of the outer-loop (i.e. the
perturbation velocity u) will be used to determine the pressure coefficient CP distribution along the upper
and lower side of the airfoil.

It should also be mentioned that at the end of the inner-loop an under-relaxation constant has been

introduced for stability purposes. This constant is implemented in the computation of δg
δξ as follows:(

δg̃

δξ

)
j+1

=
(
δg

δξ

)
j
+d

[(
δg

δξ

)
j+1

−
(
δg

δξ

)
j

]

Thus,
(
δg
δξ

)
j+1

in the overview above is actually
(
δg̃
δξ

)
j+1

, and is the value of δg
δξ which is being used as the

starting value of the next iteration step. This hold for every iteration step.
(
δg
δξ

)
j

is the value of δg
δξ at the

beginning of an iteration step, while
(
δg
δξ

)
j+1

is the value of δg
δξ determined at the end of every iteration step.

Thus, this means that when no under-relaxation factor is applied, the value of δg
δξ taken to the next level is

computed as follows: (
δg̃

δξ

)
j+1

=
(
δg

δξ

)
j+1

Applying an under-relaxation factor subsequently means that a fraction of the difference of the value of δg
δξ

at the start of an iteration step, and the value of δg
δξ determined at the end of the inner-loop, are being added

to the value of δg
δξ at the start of the iteration step. This fraction of the difference added to the value of δg

δξ at
the beginning of the iteration step is being set by the under-relaxation factor d . A stability constant of d = 0.1
has been used for this study.

E
M AT L AB CODE

1 % Steady problem - Application to a Parabolic Arc Airfoil
2 clc; clear all; close all
3

4 tic
5 %% Parameters
6 rho_inf = 1.1751; % [kg/m^3]
7 P_inf = 101325; % [Pa]
8 R = 8.314510; % [J/(mol K)]
9 M_air = 0.0289645; % [kg/mol]

10 R_a = R/M_air;
11 T = 300; % [K] (=27 deg)
12 gamma = 1.4; % [-]
13 minf = 0.86; % [-]
14 beta = sqrt(1-minf^2); % [-]
15 mu = ((gamma+1)*minf^2)/beta^3; % [-]
16 mu_inf = 1.789E-5; % [(kg/m)*s]
17 nu = beta*mu; % [-]
18 C = 2; % Chord length [m]
19 B = C/2; % Span [m]
20 e0 = 0.00125; % Thickness ratio [-]
21 de = 0.00125; % [-]
22 A = 1; % [degrees]
23 aoa = ((A*pi)/180); % [radians]
24 a = sqrt(gamma*R_a*T);
25 V_inf = minf*a;
26 q_inf = 0.5*rho_inf*V_inf^2; % Dynamic pressure [Pa],[N/m^2],[kg/(m*s^2)]
27

28 %% Mesh generation
29 N = 25; % Number of mesh points/volumes
30 Delta = 1/N; % Uniforme ruimte stap / Equidistant paneling distance
31 uniform = true; % Uniform grid or not
32

33 % Vicinity of airfoil
34 for i=1:N+1
35 xmeshi1 = (i-1)*Delta;
36 if uniform
37 xmesh1(i) = xmeshi1; % Set up list of coordinates for uniform...

grid
38 else
39 xmesh1(i) = 0.5*(1. - cos(pi*xmeshi1)); % Set up list of coordinates for non-...

uniform grid (according cosine rule)
40 end
41 end
42 ymesh1 = xmesh1';
43

44 % Intermediate region
45 for i=1:(N/2)
46 xmeshi2 = i*2*Delta;

81

82 E. M AT L AB CODE

47 if uniform
48 xmesh2(i) = 1+xmeshi2; % Set up list of coordinates for ...

uniform grid
49 else
50 xmesh2(i) = 0.5*(1. - cos(pi*xmeshi2)); % Set up list of coordinates for non-...

uniform grid (according cosine rule)
51 end
52 end
53 ymesh2 = xmesh2';
54

55 % Far field
56 for i=1:(N/4)
57 xmeshi3 = i*4*Delta;
58 if uniform
59 xmesh3(i) = 2+xmeshi3; % Set up list of coordinates for ...

uniform grid
60 xmesh4(i) = xmesh3(end)+xmeshi3;
61 else
62 xmesh3(i) = 0.5*(1. - cos(pi*xmeshi3)); % Set up list of coordinates for non-...

uniform grid (according cosine rule)
63 end
64 end
65 ymesh3 = xmesh3';
66

67 xmesh = [xmesh1 xmesh2 xmesh3];% xmesh4];
68 ymesh = xmesh';
69

70 xmesh_tot = [flip(-xmesh(2:end)) xmesh];
71 ymesh_tot = xmesh_tot';
72

73 x = zeros(N+1,1);
74

75 % Set up coordinates for the middles of the cells.
76 xm = [xmesh(1) 0.5*(xmesh(2:N+1)+xmesh(1:N)) xmesh(end)];
77 xm_tot = [flip(-xm(2:end)) xm];
78 ym = [ymesh(1); 0.5*(ymesh(2:N+1)+ymesh(1:N)); ymesh(end)];
79 ym_tot = [flip(ym(2:end)); -ym];
80

81 % Set up the cell withs and heights
82 dmesh = xmesh(2:end)-xmesh(1:end-1);
83 dx_tot = xmesh_tot(2:end)-xmesh_tot(1:end-1);
84 dy = ymesh(2:end)-ymesh(1:end-1);
85 dy_tot = ymesh_tot(2:end)-ymesh_tot(1:end-1);
86

87 % Plot mesh
88 z = zeros(length(xmesh),length(ymesh_tot));
89 z2 = zeros(length(xmesh(19:end)),length(ymesh_tot));
90 %% Parabolic arc airfoil
91 xL = flip(-xmesh1);
92 xR = xmesh1;
93 x = [xL(1:end-1) xR];
94

95 %% Base solution for distrubation velocity u
96 % Numeric integration
97 xmesh = xmesh_tot;
98 ymesh = [0.01; ymesh(2:end)];
99 xmesh_modified2 = transpose(xmesh);

100 ymesh_modified2 = transpose(ymesh);
101 for i=1:length(ymesh)
102 xmesh_modified(:,i) = xmesh_modified2;
103 end
104 for i=1:length(xmesh)
105 ymesh_modified(i,:) = ymesh_modified2;
106 end
107 ymesh_l = -ymesh;
108 ymesh_l_modified = -ymesh_modified;
109

110 % u_base upper side airfoil
111 for i=1:length(xmesh) %xi
112 for j=1:length(ymesh) %zeta
113 fun = @(x) ((4*mu*e0)/pi)*((x.*(x-xmesh(i)))./((x-xmesh(i)).^2+ymesh(j).^2))+...

83

114 ((mu*aoa)/pi)*(sqrt((1-x)./(1+x)).*(ymesh(j)./((x-xmesh(i)).^2+ymesh(j).^2)));
115 u_base(i,j) = integral(fun,-0.9999,1);
116 end
117 end
118

119 xmesh_transpose = transpose(xmesh);
120 for i=1:length(u_base(1,:))
121 xmesh_int(:,i) = xmesh_transpose;
122 end
123

124 ymesh_transpose = transpose(ymesh);
125 for i=1:length(u_base(:,1))
126 ymesh_int(i,:) = ymesh_transpose;
127 end
128

129 v = zeros(length(u_base(:,1)),length(u_base(1,:)));
130

131 % u_base lower side airfoil
132 for i=1:length(xmesh) %xi
133 for j=1:length(ymesh_l) %zeta
134 fun = @(x) ((4*mu*e0)/pi)*((x.*(x-xmesh(i)))./((x-xmesh(i)).^2+ymesh_l(j).^2))+...
135 ((mu*aoa)/pi)*(sqrt((1-x)./(1+x)).*(ymesh_l(j)./((x-xmesh(i)).^2+ymesh_l(j)....

^2)));
136 u_base_l(i,j) = integral(fun,-0.9999,1);
137 end
138 end
139

140 xmesh_transpose = transpose(xmesh);
141 for i=1:length(u_base_l(1,:))
142 xmesh_int(:,i) = xmesh_transpose;
143 end
144

145 ymesh_l_transpose = transpose(ymesh_l);
146 for i=1:length(u_base_l(:,1))
147 ymesh_l_int(i,:) = ymesh_l_transpose;
148 end
149

150 v_l = zeros(length(u_base_l(:,1)),length(u_base_l(1,:)));
151

152 %% Thickness contribution
153

154 % Upper side airfoil
155 for i=1:length(xmesh)
156 for j=1:length(ymesh)
157 for k=1:length(x)
158 g_e_t_2(i,j,k) = ((4*mu)/pi)*((x(k).*(x(k)-xmesh(i)))./((x(k)-xmesh(i)).^2+...

ymesh(j)^2));
159 end
160 end
161 end
162

163 dx = x(2:end)-x(1:end-1);
164 dx2 = [dx, dx(end)];
165

166 dx3= zeros(length(g_e_t_2(:,1,1)),length(g_e_t_2(1,:,1)),length(g_e_t_2(1,1,:)));
167 for i=1:length(g_e_t_2(:,1,1))
168 for j=1:length(g_e_t_2(1,:,1))
169 dx3(i,j,:) = dx2;
170 end
171 end
172

173 g_e_t_3 = g_e_t_2.*dx3;
174

175 for i=1:length(xmesh)
176 for j=1:length(ymesh)
177 g_e_t(i,j) = sum(g_e_t_3(i,j,:));
178 end
179 end
180

181 % Lower side airfoil
182 for i=1:length(xmesh)

84 E. M AT L AB CODE

183 for j=1:length(ymesh)
184 for k=1:length(x)
185 g_e_t_2_l(i,j,k) = ((4*mu)/pi)*((x(k).*(x(k)-xmesh(i)))./((x(k)-xmesh(i)).^2+...

ymesh_l(j)^2));
186 end
187 end
188 end
189

190 g_e_t_3_l = g_e_t_2_l.*dx3;
191

192 for i=1:length(xmesh)
193 for j=1:length(ymesh)
194 g_e_t_l(i,j) = sum(g_e_t_3_l(i,j,:));
195 end
196 end
197

198 %% Looping
199

200 for i=1:2:length(xmesh)-2
201 dxi3(i) = xmesh(i+2)-xmesh(i);
202 end
203

204 dxi3 = [0,dxi3];
205

206 dxi4 = zeros(length(xmesh),length(xmesh)-1);
207 for i=1:length(xmesh)
208 dxi4(i,:) = dxi3;
209 end
210

211 for k=1:length(ymesh)-3
212 dxi5(:,:,k) = dxi4;
213 end
214

215 for i=1:2:length(ymesh)-2
216 dz(i) = ymesh(i+2)-ymesh(i);
217 end
218

219 for i=1:2:length(ymesh_l)-2
220 dz_l(i) = ymesh_l(i+2)-ymesh_l(i);
221 end
222

223 for i=1:length(xmesh)
224 for j=1:length(xmesh)-1
225 for k=1:length(dz)
226 dz2(i,j,:) = dz;
227 end
228 end
229 end
230

231 for i=1:length(g_e_t(:,1))
232 for j=1:length(g_e_t(:,1))-1
233 for k=1:length(dz_l)
234 dz_l2(i,j,:) = dz_l;
235 end
236 end
237 end
238

239 m = 24; % Index outer-loop
240 u_cell =cell(m+1,1);
241 u_cell{1,1} = u_base;
242 u_cell_l = cell(m+1,1);
243 u_cell_l{1,1} = u_base_l;
244

245 n = 10; % Index inner-loop
246 d = 0.1; % Onderrelaxatie constante/relaxation constant
247

248 g_x_cell = cell(n+1,1);
249 g_x_cell{1,1} = g_e_t;
250

251 g_x_cell_l = cell(n+1,1);
252 g_x_cell_l{1,1} = g_e_t_l;

85

253

254 dg_x_cell = cell(n,1);
255 dg_x_cell_pc = cell(n,1);
256

257 dg_x_cell_l = cell(n,1);
258 dg_x_cell_l_pc = cell(n,1);
259 for len2=1:m % Outer-loop, update for u with ∆ epsilon
260 u = u_cell{len2,1};
261 u_l = u_cell_l{len2,1};
262 for len=1:n % Inner-loop, update for ∆ gx
263 g_x = g_x_cell{len,1};
264 g_x_l = g_x_cell_l{len,1};
265

266 %% I(xi)
267 % Effect upper mesh on upper side airfoil
268 F_1_u_uu = zeros(length(xmesh),length(xmesh),length(ymesh));
269 for i=1:length(xmesh)
270 F_1_u_uu(i,:,:) = (((2*ymesh_modified.*(xmesh_modified-xmesh(i)))./((...

xmesh_modified-xmesh(i)).^2+ymesh_modified.^2).^2).*u.*g_x);
271 end
272

273 % Effect lower mesh on upper side airfoil
274 F_1_u_lu = zeros(length(xmesh),length(xmesh),length(ymesh));
275 for i=1:length(xmesh)
276 F_1_u_lu(i,:,:) = (((2*ymesh_l_modified.*(xmesh_modified-xmesh(i)))./((...

xmesh_modified-xmesh(i)).^2+ymesh_l_modified.^2).^2).*u_l.*g_x_l);
277 end
278

279 F_1_u_tot = F_1_u_uu + F_1_u_lu;
280

281 % Effect lower mesh on lower side airfoil
282 F_1_l_ll = zeros(length(xmesh),length(xmesh),length(ymesh));
283 for i=1:length(xmesh)
284 F_1_l_ll(i,:,:) = (((2*ymesh_l_modified.*(xmesh_modified-xmesh(i)))./((...

xmesh_modified-xmesh(i)).^2+ymesh_l_modified.^2).^2).*u_l.*g_x_l);
285 end
286

287 % Effect upper mesh on lower side airfoil
288 F_1_l_ul = zeros(length(xmesh),length(xmesh),length(ymesh));
289 for i=1:length(xmesh)
290 F_1_l_ul(i,:,:) = (((2*ymesh_modified.*(xmesh_modified-xmesh(i)))./((...

xmesh_modified-xmesh(i)).^2+ymesh_modified.^2).^2).*u.*g_x);
291 end
292

293 F_1_l_tot = F_1_l_ll + F_1_l_ul;
294

295 F_2_u_tot = zeros(length(xmesh),1);
296 for j=2:2:length(xmesh)-1
297 for k=1:2:length(ymesh)-3
298 F_2_u_tot = F_2_u_tot + (((1/36)*(F_1_u_tot(:,j-1,k)+F_1_u_tot(:,j+1,k)+...

F_1_u_tot(:,j-1,k+2)+F_1_u_tot(:,j+1,k+2)+4*(F_1_u_tot(:,j,k)+...
F_1_u_tot(:,j-1,k+1)+F_1_u_tot(:,j+1,k+1)+F_1_u_tot(:,j,k+2))+16*...
F_1_u_tot(:,j,k+1))).*dxi5(:,j,k).*dz2(:,j,k));

299 end
300 end
301

302 F_2_l_tot = zeros(length(xmesh),1);
303 for j=2:2:length(xmesh)-1
304 for k=1:2:length(ymesh)-3
305 F_2_l_tot = F_2_l_tot + (((1/36)*(F_1_l_tot(:,j-1,k)+F_1_l_tot(:,j+1,k)+...

F_1_l_tot(:,j-1,k+2)+F_1_l_tot(:,j+1,k+2)+4*(F_1_l_tot(:,j,k)+...
F_1_l_tot(:,j-1,k+1)+F_1_l_tot(:,j+1,k+1)+F_1_l_tot(:,j,k+2))+16*...
F_1_l_tot(:,j,k+1))).*dxi5(:,j,k).*dz_l2(:,j,k)); % dz2 = dz_l2?

306 end
307 end
308

309 I_u_tot = F_2_u_tot/(pi*B);
310 I_l_tot = F_2_l_tot/(pi*B);
311 I_ul_tot = I_u_tot + I_l_tot;
312 %% dgxi
313

86 E. M AT L AB CODE

314 % Upper +lower side airfoil (same)
315 for i=1:length(xmesh)
316 for j=1:length(x)
317 f(i,j) = ((1/(xmesh(i)-x(j))).*sqrt((1+x(j))./(1-x(j)))).*I_ul_tot(18+j);
318 end
319 end
320

321 f(isinf(f))=0;
322 f(isnan(f))=0;
323

324 dx_tot4 = zeros(length(xmesh),length(x));
325 for i=1:length(xmesh)
326 dx_tot4(i,:) = dx2;
327 end
328

329 f2 = f.*dx_tot4;
330

331 for i=1:length(xmesh)
332 f3(i) = sum(f2(i,1:end-1));
333 end
334

335 for i=1:length(xmesh)
336 dgxi(i) = (2/pi)*sqrt((1-xmesh(i))./(1+xmesh(i))).*f3(i);
337 end
338

339 dgxi(isinf(dgxi))=0;
340 dgxi(isnan(dgxi))=0;
341

342 %% Lift contribution
343

344 % Upper side airfoil
345 for i=1:length(xmesh)
346 for j=1:length(ymesh)
347 for k=1:length(x)
348 g_e_L(i,j,k) = (1/(2*pi))*(dgxi(18+k).*(ymesh(j)./((x(k)-xmesh(i)).^2+...

ymesh(j).^2)));
349 end
350 end
351 end
352

353 g_e_L_2 = g_e_L.*dx3;
354

355 for i=1:length(xmesh)
356 for j=1:length(ymesh)
357 g_e_l(i,j) = sum(g_e_L_2(i,j,:));
358 end
359 end
360

361 % Lower side airfoil
362 for i=1:length(xmesh)
363 for j=1:length(ymesh_l)
364 for k=1:length(x)
365 g_e_L_l(i,j,k) = (1/(2*pi))*(dgxi(18+k).*(ymesh_l(j)./((x(k)-xmesh(i))...

.^2+ymesh_l(j).^2)));
366 end
367 end
368 end
369

370 g_e_L_l_2 = g_e_L_l.*dx3;
371

372 for i=1:length(xmesh)
373 for j=1:length(ymesh_l)
374 g_e_l_l(i,j) = sum(g_e_L_l_2(i,j,:));
375 end
376 end
377

378 %% Non-Linear contribution
379

380 % Upper side airfoil
381 % Effect upper domain on upper side airfoil
382 g_e_NL = zeros(length(xmesh),length(ymesh),length(xmesh),length(ymesh));

87

383 for k=1:length(xmesh)
384 for l=1:length(ymesh)
385 g_e_NL(:,:,k,l) = ((xmesh(k)-xmesh_modified)./((xmesh(k)-xmesh_modified).^2+(...

ymesh(l)-ymesh_modified).^2)).*u.*g_x;
386 end
387 end
388

389 % Effect lower domain on upper side airfoil
390 g_e_NL_lower = zeros(length(xmesh),length(ymesh),length(xmesh),length(ymesh));
391 for k=1:length(xmesh)
392 for l=1:length(ymesh)
393 g_e_NL_lower(:,:,k,l) = ((xmesh(k)-xmesh_modified)./((xmesh(k)-xmesh_modified)...

.^2+(ymesh_l(l)-ymesh_modified).^2)).*u_l.*g_x_l; %*u.*g_x; (ymesh_l(l)-...
ymesh_l_modified).^2

394 end
395 end
396

397 g_e_NL(isnan(g_e_NL))=0;
398 g_e_NL_lower(isnan(g_e_NL_lower))=0;
399

400 dxi6 = zeros(length(xmesh),length(ymesh),length(xmesh)-1);
401 for i=1:length(xmesh)
402 for j=1:length(ymesh)
403 for k=1:length(xmesh)-1
404 dxi6(i,j,:) = dxi3;
405 end
406 end
407 end
408

409 dz3 = zeros(length(xmesh),length(ymesh),length(ymesh)-3);
410 for i=1:length(xmesh)
411 for j=1:length(ymesh)
412 for l=1:length(ymesh)-3
413 dz3(i,j,:) = dz;
414 end
415 end
416 end
417

418 dz3_l = zeros(length(xmesh),length(ymesh_l),length(ymesh_l)-3);
419 for i=1:length(xmesh)
420 for j=1:length(ymesh_l)
421 for l=1:length(ymesh)-3
422 dz3_l(i,j,:) = dz_l;
423 end
424 end
425 end
426

427 g_e_NL2 = zeros(length(xmesh),length(ymesh));
428 for k=2:2:length(xmesh)-1
429 for l=1:2:length(ymesh)-3
430 g_e_NL2 = g_e_NL2 + ((1/36)*(g_e_NL(:,:,k-1,l)+g_e_NL(:,:,k+1,l)+g_e_NL...

(:,:,k-1,l+2)+g_e_NL(:,:,k+1,l+2)+4*(g_e_NL(:,:,k,l)+g_e_NL(:,:,k-1,l...
+1)+g_e_NL(:,:,k+1,l+1)+g_e_NL(:,:,k,l+2))+16*g_e_NL(:,:,k,l+1))).*...
dxi6(:,:,k).*dz3(:,:,l);

431 end
432 end
433

434 g_e_NL2_lower = zeros(length(xmesh),length(ymesh));
435 for k=2:2:length(xmesh)-1
436 for l=1:2:length(ymesh)-3
437 g_e_NL2_lower = g_e_NL2_lower + ((1/36)*(g_e_NL_lower(:,:,k-1,l)+...

g_e_NL_lower(:,:,k+1,l)+g_e_NL_lower(:,:,k-1,l+2)+g_e_NL_lower(:,:,k...
+1,l+2)+4*(g_e_NL_lower(:,:,k,l)+g_e_NL_lower(:,:,k-1,l+1)+...
g_e_NL_lower(:,:,k+1,l+1)+g_e_NL_lower(:,:,k,l+2))+16*g_e_NL_lower...
(:,:,k,l+1))).*dxi6(:,:,k).*dz3(:,:,l); %dz3_l

438 end
439 end
440

441 % Middle region
442 i=3:length(xmesh)-2;
443 j=1:length(ymesh);

88 E. M AT L AB CODE

444 g_e_NL6(i,j) = -(g_e_NL2(i-2,j)+8*(g_e_NL2(i+1,j)-g_e_NL2(i-1,j))-g_e_NL2(i+2,j));
445 g_e_NL6_lower(i,j) = -(g_e_NL2_lower(i-2,j)+8*(g_e_NL2_lower(i+1,j)-g_e_NL2_lower(...

i-1,j))-g_e_NL2_lower(i+2,j));
446

447 for i=3:length(xmesh)-2
448 d_xmesh(i) = xmesh(i+2)-xmesh(i-2);
449 end
450

451 for i=1:length(g_e_NL6(1,:))
452 d_xmesh3(:,i) = d_xmesh;
453 end
454

455 g_e_nl = (1/(2*pi*B))*(g_e_NL6./(12*d_xmesh3));
456 g_e_nl_lower = (1/(2*pi*B))*(g_e_NL6_lower./(12*d_xmesh3));
457

458 % Left boudary
459 i=1;
460 j=1:length(ymesh);
461 g_e_NL6_lb(i,j) = (1/(2*pi*B))*((g_e_NL2(i+1,j)-g_e_NL2(i,j))./(xmesh(i+1)-xmesh...

(1))); % g_e_NL2 = g_e_NL5
462 g_e_NL6_lb_lower(i,j) = (1/(2*pi*B))*((g_e_NL2_lower(i+1,j)-g_e_NL2_lower(i,j))./(...

xmesh(i+1)-xmesh(1)));
463

464 % Next to left boundary
465 i=2;
466 j=1:length(ymesh);
467 g_e_NL6_lb2(i,j) = (1/(2*pi*B))*((g_e_NL2(i+1,j)-g_e_NL2(i-1,j))./(xmesh(i+1)-...

xmesh(i-1)));
468 g_e_NL6_lb2_lower(i,j) = (1/(2*pi*B))*((g_e_NL2_lower(i+1,j)-g_e_NL2_lower(i-1,j))...

./(xmesh(i+1)-xmesh(i-1)));
469

470 g_e_NL6_lb2 = g_e_NL6_lb2(2,:);
471 g_e_NL6_lb2_lower = g_e_NL6_lb2_lower(2,:);
472

473 % Rigth boundary
474 i=length(xmesh);
475 j=1:length(ymesh);
476 g_e_NL6_rb(i,j) = (1/(2*pi*B))*((g_e_NL2(i,j)-g_e_NL2(i-1,j))./(xmesh(i)-xmesh(i...

-1)));
477 g_e_NL6_rb_lower(i,j) = (1/(2*pi*B))*((g_e_NL2_lower(i,j)-g_e_NL2_lower(i-1,j))./(...

xmesh(i)-xmesh(i-1)));
478

479 g_e_NL6_rb = g_e_NL6_rb(end,:);
480 g_e_NL6_rb_lower = g_e_NL6_rb_lower(end,:);
481

482 % Next to right boundary
483 i=length(xmesh)-1;
484 j=1:length(ymesh);
485 g_e_NL6_rb2(i,j) = (1/(2*pi*B))*((g_e_NL2(i+1,j)-g_e_NL2(i-1,j))./(xmesh(i+1)-...

xmesh(i-1)));
486 g_e_NL6_rb2_lower(i,j) = (1/(2*pi*B))*((g_e_NL2_lower(i+1,j)-g_e_NL2_lower(i-1,j))...

./(xmesh(i+1)-xmesh(i-1)));
487

488 g_e_NL6_rb2 = g_e_NL6_rb2(end,:);
489 g_e_NL6_rb2_lower = g_e_NL6_rb2_lower(end,:);
490

491 % Total computational domain
492 g_e_nl = [g_e_NL6_lb; g_e_NL6_lb2; g_e_nl(3:end,:); g_e_NL6_rb2; g_e_NL6_rb];
493 g_e_nl_lower = [g_e_NL6_lb_lower; g_e_NL6_lb2_lower; g_e_nl_lower(3:end,:); ...

g_e_NL6_rb2_lower; g_e_NL6_rb_lower];
494 g_e_nl_tot_u = g_e_nl + g_e_nl_lower;
495

496 % Lower side airfoil
497 % Effect lower domain on lower side airfoil
498 g_e_NL_l = zeros(length(xmesh),length(ymesh_l),length(xmesh),length(ymesh_l));
499 for k=1:length(xmesh)
500 for l=1:length(ymesh_l)
501 g_e_NL_l(:,:,k,l) = ((xmesh(k)-xmesh_modified)./((xmesh(k)-xmesh_modified)....

^2+(ymesh_l(l)-ymesh_l_modified).^2)).*u_l.*g_x_l;
502 end
503 end

89

504

505 % Effect upper domain on lower side airfoil
506 g_e_NL_l_upper = zeros(length(xmesh),length(ymesh_l),length(xmesh),length(ymesh_l)...

);
507 for k=1:length(xmesh)
508 for l=1:length(ymesh_l)
509 g_e_NL_l_upper(:,:,k,l) = ((xmesh(k)-xmesh_modified)./((xmesh(k)-...

xmesh_modified).^2+(ymesh(l)-ymesh_l_modified).^2)).*u.*g_x;%u_l.*g_x_l; (...
ymesh(l)-ymesh_modified).^2

510 end
511 end
512

513 g_e_NL_l(isnan(g_e_NL_l))=0;
514 g_e_NL_l_upper(isnan(g_e_NL_l_upper))=0;
515

516 g_e_NL2_l = zeros(length(xmesh),length(ymesh_l));
517 for k=2:2:length(xmesh)-1
518 for l=1:2:length(ymesh_l)-3
519 g_e_NL2_l = g_e_NL2_l + ((1/36)*(g_e_NL_l(:,:,k-1,l)+g_e_NL_l(:,:,k+1,l)+...

g_e_NL_l(:,:,k-1,l+2)+g_e_NL_l(:,:,k+1,l+2)+4*(g_e_NL_l(:,:,k,l)+...
g_e_NL_l(:,:,k-1,l+1)+g_e_NL_l(:,:,k+1,l+1)+g_e_NL_l(:,:,k,l+2))+16*...
g_e_NL_l(:,:,k,l+1))).*dxi6(:,:,k).*dz3(:,:,l);

520 end
521 end
522

523 g_e_NL2_l_upper = zeros(length(xmesh),length(ymesh_l));
524 for k=2:2:length(xmesh)-1
525 for l=1:2:length(ymesh_l)-3
526 g_e_NL2_l_upper = g_e_NL2_l_upper + ((1/36)*(g_e_NL_l_upper(:,:,k-1,l)+...

g_e_NL_l_upper(:,:,k+1,l)+g_e_NL_l_upper(:,:,k-1,l+2)+g_e_NL_l_upper...
(:,:,k+1,l+2)+4*(g_e_NL_l_upper(:,:,k,l)+g_e_NL_l_upper(:,:,k-1,l+1)+...
g_e_NL_l_upper(:,:,k+1,l+1)+g_e_NL_l_upper(:,:,k,l+2))+16*...
g_e_NL_l_upper(:,:,k,l+1))).*dxi6(:,:,k).*dz3(:,:,l);

527 end
528 end
529

530 % Middle region
531 i=3:length(xmesh)-2;
532 j=1:length(ymesh_l);
533 g_e_NL6_l(i,j) = -(g_e_NL2_l(i-2,j)+8*(g_e_NL2_l(i+1,j)-g_e_NL2_l(i-1,j))-...

g_e_NL2_l(i+2,j));
534 g_e_NL6_l_upper(i,j) = -(g_e_NL2_l_upper(i-2,j)+8*(g_e_NL2_l_upper(i+1,j)-...

g_e_NL2_l_upper(i-1,j))-g_e_NL2_l_upper(i+2,j));
535

536 g_e_nl_l = (1/(2*pi*B))*(g_e_NL6_l./(12*d_xmesh3));
537 g_e_nl_l_upper = (1/(2*pi*B))*(g_e_NL6_l_upper./(12*d_xmesh3));
538

539 % Left boudary
540 i=1;
541 j=1:length(ymesh);
542 g_e_NL6_lb_l(i,j) = (1/(2*pi*B))*((g_e_NL2_l(i+1,j)-g_e_NL2_l(i,j))./(xmesh(i+1)-...

xmesh(1)));
543 g_e_NL6_lb_l_upper(i,j) = (1/(2*pi*B))*((g_e_NL2_l_upper(i+1,j)-g_e_NL2_l_upper(i,...

j))./(xmesh(i+1)-xmesh(1)));
544

545 % Next to left boundary
546 i=2;
547 j=1:length(ymesh_l);
548 g_e_NL6_lb2_l(i,j) = (1/(2*pi*B))*((g_e_NL2_l(i+1,j)-g_e_NL2_l(i-1,j))./(xmesh(i...

+1)-xmesh(i-1)));
549 g_e_NL6_lb2_l_upper(i,j) = (1/(2*pi*B))*((g_e_NL2_l_upper(i+1,j)-g_e_NL2_l_upper(i...

-1,j))./(xmesh(i+1)-xmesh(i-1)));
550

551 g_e_NL6_lb2_l = g_e_NL6_lb2_l(2,:);
552 g_e_NL6_lb2_l_upper = g_e_NL6_lb2_l_upper(2,:);
553

554 % Rigth boundary
555 i=length(xmesh);
556 j=1:length(ymesh_l);
557 g_e_NL6_rb_l(i,j) = (1/(2*pi*B))*((g_e_NL2_l(i,j)-g_e_NL2_l(i-1,j))./(xmesh(i)-...

xmesh(i-1)));

90 E. M AT L AB CODE

558 g_e_NL6_rb_l_upper(i,j) = (1/(2*pi*B))*((g_e_NL2_l_upper(i,j)-g_e_NL2_l_upper(i-1,...
j))./(xmesh(i)-xmesh(i-1)));

559

560 g_e_NL6_rb_l = g_e_NL6_rb_l(end,:);
561 g_e_NL6_rb_l_upper = g_e_NL6_rb_l_upper(end,:);
562

563 % Next to right boundary
564 i=length(xmesh)-1;
565 j=1:length(ymesh_l);
566 g_e_NL6_rb2_l(i,j) = (1/(2*pi*B))*((g_e_NL2_l(i+1,j)-g_e_NL2_l(i-1,j))./(xmesh(i...

+1)-xmesh(i-1)));
567 g_e_NL6_rb2_l_upper(i,j) = (1/(2*pi*B))*((g_e_NL2_l_upper(i+1,j)-g_e_NL2_l_upper(i...

-1,j))./(xmesh(i+1)-xmesh(i-1)));
568

569 g_e_NL6_rb2_l = g_e_NL6_rb2_l(end,:);
570 g_e_NL6_rb2_l_upper = g_e_NL6_rb2_l_upper(end,:);
571

572 % Total computational domain
573 g_e_nl_l = [g_e_NL6_lb_l; g_e_NL6_lb2_l; g_e_nl_l(3:end,:); g_e_NL6_rb2_l; ...

g_e_NL6_rb_l];
574 g_e_nl_l_upper = [g_e_NL6_lb_l_upper; g_e_NL6_lb2_l_upper; g_e_nl_l_upper(3:end,:)...

; g_e_NL6_rb2_l_upper; g_e_NL6_rb_l_upper];
575 g_e_nl_tot_l = g_e_nl_l + g_e_nl_l_upper;
576 %% Total g_xi
577

578 % Upper side airfoil
579 g_e = g_e_t+g_e_l-g_e_nl_tot_u;
580

581 g_x_cell{len+1,1} = g_x_cell{len,1} + d * (g_e -g_x_cell{len,1});
582

583 % Lower side airfoil
584 g_e_ls = g_e_t_l+g_e_l_l-g_e_nl_tot_l;
585

586 g_x_cell_l{len+1,1} = g_x_cell_l{len,1} + d * (g_e_ls -g_x_cell_l{len,1});
587 end % ...

Inner-loop, update for g_xi till it converges
588

589 %% Increment in u
590

591 % Upper side airfoil
592 du_tot = g_x_cell{end,1}*de;
593

594 % Lower side airfoil
595 du_tot_l = g_x_cell_l{end,1}*de;
596

597 %% Final u
598

599 % Upper side airfoil
600 u_tot = u_cell{len2,1}+du_tot;
601

602 u_cell{len2+1,1} = u_tot;
603 g_x_cell{1,1} = g_x_cell{n+1,1};
604

605 % Lower side airfoil
606 u_tot_l = u_cell_l{len2,1}+du_tot_l;
607

608 u_cell_l{len2+1,1} = u_tot_l;
609 g_x_cell_l{1,1} = g_x_cell_l{n+1,1};
610 end
611

612 %% Pressure coefficient Cp
613 Cp_tot = (-((2)/(B*nu))*u_cell{m,1}(:,1));
614 Cp_tot_l = (-((2)/(B*nu))*u_cell_l{m,1}(:,1));
615 dCp = (Cp_tot - Cp_tot_l);
616

617 h_u = (2*(12*de)*(1-xmesh(19:69).^2)-0*xmesh(19:69))+1;
618 h_l = (- 2*(12*de)*(1-xmesh(19:69).^2)-0*xmesh(19:69))+1;
619

620 figure(1)
621 plot(xmesh(19:69),Cp_tot_l(19:69),'b--s') %20:68
622 grid on

91

623 hold on
624 plot(xmesh(19:69),Cp_tot(19:69),'r--s')
625 grid on
626 hold on
627 h = plot(xmesh(19),Cp_tot_l(19),'kd',xmesh(19),Cp_tot(19),'kd',xmesh(47),Cp_tot_l(47),'kd'...

,xmesh(40),Cp_tot(40),'kd',xmesh(69),Cp_tot_l(69),'kd');
628 set(h,'MarkerSize', 10, 'MarkerFaceColor','k')
629 grid on
630 hold on
631 plot(xmesh(19:69),h_u,xmesh(19:69),h_l)
632 axis ij
633 title('C_p distribution for M_{\infty} = 0.86 and \alpha=1^{\circ} ')
634 xlabel('x')
635 ylabel('C_p [-]')
636 t1 = text(xmesh(19)+0.1,Cp_tot_l(19), ['C_{P_{{LE}_l}} =' sprintf('%.02f',Cp_tot_l(19))]);...

%22
637 t2 = text(xmesh(19)+0.19,Cp_tot_l(19), ['x =' sprintf('%.02f',xmesh(19))]); %24
638 t3 = text(xmesh(69)-0.13,Cp_tot_l(69), ['C_{P_{TE}} =' sprintf('%.02f',Cp_tot_l(69))]); %...

66
639 t4 = text(xmesh(69)-0.12,Cp_tot_l(69), ['x =' sprintf('%.02f',xmesh(69))]); %66
640 t5 = text(xmesh(47),Cp_tot_l(47)+0.15, ['C_{P_{{min}_l}} =' sprintf('%.02f',Cp_tot_l(47))...

]);
641 t6 = text(xmesh(47)+0.05,Cp_tot_l(47)+0.15, ['x =' sprintf('%.02f',xmesh(47))]);
642 t7 = text(xmesh(19)-0.2,Cp_tot(19)-0.03, ['C_{P_{{LE}_u}} =' sprintf('%.02f',Cp_tot(19))])...

;
643 t8 = text(xmesh(19)-0.15,Cp_tot(19)-0.03, ['x =' sprintf('%.02f',xmesh(19))]);
644 t9 = text(xmesh(40),Cp_tot(40)-0.08, ['C_{P_{{min}_u}} =' sprintf('%.02f',Cp_tot(40))]);
645 t10 = text(xmesh(40)+0.05,Cp_tot(40)-0.08, ['x =' sprintf('%.02f',xmesh(40))]);
646 t1.HorizontalAlignment = 'left'; % set horizontal alignment to center
647 t1.VerticalAlignment = 'bottom'; % set vertical alignment to top
648 t1.FontSize = 11; % make the text larger
649 t1.FontWeight = 'bold';
650 t2.HorizontalAlignment = 'left'; % set horizontal alignment to center
651 t2.VerticalAlignment = 'top'; % set vertical alignment to top
652 t2.FontSize = 11; % make the text larger
653 t2.FontWeight = 'bold';
654 t3.HorizontalAlignment = 'right'; % set horizontal alignment to center
655 t3.VerticalAlignment = 'bottom'; % set vertical alignment to top
656 t3.FontSize = 11; % make the text larger
657 t3.FontWeight = 'bold';
658 t4.HorizontalAlignment = 'right'; % set horizontal alignment to center
659 t4.VerticalAlignment = 'top'; % set vertical alignment to top
660 t4.FontSize = 11; % make the text larger
661 t4.FontWeight = 'bold';
662 t5.HorizontalAlignment = 'center'; % set horizontal alignment to center
663 t5.VerticalAlignment = 'bottom'; % set vertical alignment to top
664 t5.FontSize = 11; % make the text larger
665 t5.FontWeight = 'bold';
666 t6.HorizontalAlignment = 'center'; % set horizontal alignment to center
667 t6.VerticalAlignment = 'top'; % set vertical alignment to top
668 t6.FontSize = 11; % make the text larger
669 t6.FontWeight = 'bold';
670 t7.HorizontalAlignment = 'center'; % set horizontal alignment to center
671 t7.VerticalAlignment = 'bottom'; % set vertical alignment to top
672 t7.FontSize = 11; % make the text larger
673 t7.FontWeight = 'bold';
674 t8.HorizontalAlignment = 'center'; % set horizontal alignment to center
675 t8.VerticalAlignment = 'top'; % set vertical alignment to top
676 t8.FontSize = 11; % make the text larger
677 t8.FontWeight = 'bold';
678 t9.HorizontalAlignment = 'center'; % set horizontal alignment to center
679 t9.VerticalAlignment = 'bottom'; % set vertical alignment to top
680 t9.FontSize = 11; % make the text larger
681 t9.FontWeight = 'bold';
682 t10.HorizontalAlignment = 'center'; % set horizontal alignment to center
683 t10.VerticalAlignment = 'top'; % set vertical alignment to top
684 t10.FontSize = 11; % make the text larger
685 t10.FontWeight = 'bold';
686 ylim([-0.6 1.1])
687 legend('C_p lower side airfoil','C_p upper side airfoil','Location','northeast');
688 OutputName = 'Cp_aoa1_M086_matlab';

92 E. M AT L AB CODE

689 saveas(figure(1), ['/Users/emelcankaya/Desktop/Thesis/Thesis/Pictures/' OutputName '.jpg'...
]);

690

691 toc

F
NumecaF i neT M/Open SETTINGS

This appendix serves as a manual for the application of NumecaF i neT M /Open to the study presented in
this report. All steps required in computing the pressure coefficient distribution along a symmetric
parabolic arc airfoil will be explained here.

The first window that opens up when Numeca is started is the ’Options’ window asking whether one wants
to import a mesh, create a mesh or open an existing project. Choosing for the second option, thus creating a
mesh, a folder has to be defined to which all files will saved together with the name of the project. After
having completed these steps, HE X PRESS will be started automatically. This is an unstructured, full
hexahedral, body fitted grid generator for arbitrary geometries. The first thing this generator asks for is to
import the object on which the computations have to be performed, as can be seen in Figure F.3a. This
object can be imported as a Parasolid model (< .xt >) or a CATIA V5 model (< .C AT Par t >). For the current
study, the symmetrical parabolic arc airfoil the computations will be performed on is created within C AT I A.
However, due to license restrictions it was not possible to import the object as a C AT I A model. Therefore,
the object had to be saved as a Parasolid model, but this is not possible within C AT I A. Therefore, another
design tool called Sol i dW or ks has been used to save the object which was created within C AT I A as a
Parasolid.
Once the object has been imported, a domain has to be created. For this study, two options were tested:
creating both the airfoil and domain within C AT I A, and creating the airfoil in C AT I A but the domain in
NU MEC A. For the second case, the computational domain around the airfoil has been created by first
drawing a box around it. This is done by selecting the ’Create box’ option from the ’Create/Edit’ window of
the CAD Manipulation menu on the top left corner of the screen, as can be seen in Figure F.3b. Then, the
airfoil has been subtracted from this box with the ’Subtract’ button from the same ’Create/Edit’ window, so
the domain on which the mesh will be created becomes one object (with the hole of the airfoil in it). This is
displayed in the ’Visualization/Selection’ window on the left side of the screen, below the ’Create/Edit’
window. The next step is to create the domain with the ’Create Domain’ button, which means that the
domain will be divided into triangles. However, before doing so the Faceting settings have to be set. For this
study, the following values have been used:

• Minimum length: 1e-007

• Maximum length: 1

• Curve chordal tolerance: 1e-007

• Surface plane tolerance: 1

• Curve resolution: 3.0

• Surface resolution: 3.0

• Export parameters
Merge tolerance: 1e-020

93

94 F. NumecaF i neT M /Open SETTINGS

After having chosen the faceting values, first the ’Apply’ and then the ’Create’ buttons have been pressed.
The created domain has to be saved to the folder defined before. HE X PRESS then asks whether or not to
import the domain, to which the answer should be ’yes’. Once the domain is imported, the boundary
conditions have to be set by selecting the cubic ’BC’ icon from the bar on the top of the screen. This can be
seen in Figure F.15c. The boundary conditions are set as follows:

• The upper and lower surfaces of the airfoil are set to be of ’Solid’ (SOL) face type.

• The two planes in the same (x − z plane) as the chord of the airfoil are set to be of ’Mirror’ (MIR) type.

• The remaining four faces are set to be of ’External’ (EXT) face type.

Then , the Grid generation mode has to be set to 2D (since two-dimensional flow has to be solved for this
study). This mode is selected from the bar on top of the screen, to the right of the ’BC’ icon. The Mesh
wizard menu on the left of the screen will be finished off. This menu consists of five steps, can be seen in
Figure F.15c. These steps, and the according settings, are as follows:

• Initial mesh → Initial mesh parameters → Subdivide the domain bounding box → Set the number of
cells along Cartesian axes:

– X axis: 80

– Y axis: 80

– Nb of Cells: 6400

• Adapt to geometry:
Refinement and trimming parameters:

– Global
Refinement:
Maximum number of refinements:

– Curve refinement: set to be inactive

– Surface refinement
Refinement
Maximum nb of refinements: 7
Adaptation criteria
Target cell sizes:

¦ X axis: 0.01

¦ Y axis: 0.01

– Box refinement
Active: Draw boxes around the leading and trailing edges of the airfoil.

¦ Refinement
Max. nb of refinements: 7

¦ Target cell sizes
X axis: 0.005
Y axis: 0.005

– Trimming: inactive

• Snap to geometry

• Optimize

• Viscous layers: not selected

After completing all these steps the domain has been created. HE X PRESS can be closed at this point,
whereafter F i ne/Open will be opened automatically. This is the Navier-Stokes solver, and can be seen in
Figure F.16. Before starting the computations, the project parameters have to be set. The project parameter
menu is subdivided into seven parts, and will be run through now.

95

• Physical Configurations

– General Properties
Time configuration: Steady vs. Unsteady → Steady selected
Black properties: Fluid block vs. Solid block → Fluid block selected
Optional properties: Combustion, Radiation, Porous → not selected, since they are not
applicable to the current study

– Fluid Model: The fluid properties for the current study can be found in Figure F.1.

Figure F.1: Fluid Model: fluid properties used for this study

– Flow Model

¦ Mathematical Model
Flow model: Euler, Laminar Navier-Stokes, Turbulent Navier-Stokes → Euler selected
Gravity forces: inactive
Low speed Flow (M < 0.3): inactive

¦ Reference Parameters
Reference length: 2.0 [m] → which is the chord length
Reference velocity: [m

s] → depends on the freestream Mach number and can be calculated
with v = M∞∗a
Reynolds: 3.9142E+007 (not set by the user)

– Solid Model: There’s no block of solid type, so not applicable for this study

– Rotating Machinery: Not applicable

– Heat Source: No active heat source defined

– Harmonic fModel: The ’Non-linear Harmonic’ Module is not activated

• Optional Models: Combustion, Radiation, Porous Media, Coupling, Fluid-Particle Interaction,
Non-Deterministic Data → not activate, since they are not applicable to this study

96 F. NumecaF i neT M /Open SETTINGS

Figure F.2: Initial Solution settings

• Boundary Conditions: consists of ’Solid’ and ’External’, as set before. Both boundary condition types,
and their settings, can be seen in Figure F.17. The terms ar ct g (V y/V x) and ar ct g (V z/V x) in Figure
F.17b define the angle of attack of the airfoil.

• Initial Solution: the initial solution parameters have been set here, as can be seen in Figure F.2. The
same values of pressure and temperature as in Figure F.1 have been chosen. Also, it should be noted
there there’s only a velocity component (of the freestream flow) in the x-direction. The angles of attack
(when the airfoil is set under an angle of attack) have to be indicated in the ’Boundary Conditions’
settings, as can be seen in Figure F.17b.

• Numerical Parameters

– General Prameters → Multigrid Parameters
Number of grid(s):
Correction damping: active
Coarse grid initialization: active

– Numerical Schemes
Discretization scheme: Central
Scheme accuracy: 2nd order
CFL number: 3

– Mesh Adaptation
Number of adaptations: 0

• Computational Control:

– Outputs: this consists of the general outputs, external flow outputs, and advanced outputs. They
can be viewed in Figure F.18.

• Control Variables:
Parameters
Number of iterations: 1000

97

Convergence criteria: -6.0
Save solution every: 100

• Launching Mode: Serial vs. Parallel → Serial selected

• Ansys Output: inactive

• Non-Deterministic Results: inactive

domain
number of mesh cells setup simulation settings

98 F. NumecaF i neT M /Open SETTINGS

(a) HE X PRESS - Object importing options

(b) HE X PRESS - Domain creating options

99

(c) HE X PRESS - Meshing procedure

Figure F.15: HE X PRESS - Grid Generator

100 F. NumecaF i neT M /Open SETTINGS

Figure F.16: F i ne/Open - Solver

101

(a) BC - Solid

(b) BC - External

Figure F.17: Boundary Condition settings

102 F. NumecaF i neT M /Open SETTINGS

(a) Outputs - General

(b) Outputs - External Flow

103

(c) Outputs - Advanced

Figure F.18: Outputs

G
NumecaF i neT M/Open RESULTS

The pressure coefficient distributions resulting from NumecaF i neT M /Open, which are obtained for
different setups, will be shown in this section.

α= 0◦
This section treats the pressure coefficient distribution of the symmetric parabolic arc airfoil under zero
angle of attack. First, the results of the airfoil immersed in a flow with freestream Mach number M∞ = 0.806
will be elaborated on, followed by the results for M∞ = 0.86.

M∞ = 0.806
The computations with Numeca are performed for two different setups as explained in Appendix F. The
results corresponding to the first setup, thus creating both the airfoil and borders of the domain within
C AT I A, are displayed on the left side of Figure G.7. The results of the second setup, i.e. creating the airfoil in
C AT I A and the borders of the domain in NU MEC A, can be seen on the right side of Figure G.7. The lift and
drag values corresponding to those pressure distributions can be found in Table G.1.
Based on this figure, the following conclusions can be drawn:

• The shape and overall values of the CP distributions don’t change with changing amount of cells. The
minimum value of the pressure coefficient is CPmi n ≈−0.30 for all test cases, at the location x = 0. The
values of CP at the leading and trailing edges of the airfoil, i.e. x =−1 and x = 1 respectively, do
increase with increasing number of cells and converge to a value of CPLE ≈ 0.53 and CPT E ≈ 0.47 at the
leading and trailing edges respectively. Another changing feature of the pressure coefficient
distributions is that the plots seems to become thicker/darker when increasing the number of cells.
This is due to the increasing number of points on which CP is being calculated.

• The results of both setups are identical to each other, which means that it doesn’t matter whether the
domain is created within C AT I A or NU MEC A.

• The pressure distributions for the upper and lower side of the airfoil lie on top of each other. This is as
expected, since those pressure distributions are computed for a symmetric parabolic arc airfoil under
zero angle of attack, for which zero lift is expected. In order to achieve zero lift, the difference in CP

between the upper and lower sides of the airfoil must be zero according to

CL =
∫

(CPl −CPu)d
x

c

In terms of the pressure coefficient distribution curve, this means that the CP distributions of the
upper and lower side of the airfoil should be identical to each other, and thus must lie on each other.
Another remarkable feature is, as mentioned earlier, that the pressure coefficient increases from
CPLE ≈ 0.35 to CPLE ≈ 0.53 at the leading edge and from CPT E ≈ 0.25 to CPT E ≈ 0.47 at the trailing edge.
This increasing trend is an indication of reliable results, since typical CP at the stagnation point in
compressible flow is somewhat larger than unity [1]. Also, the lower CP at the trailing edge (compared

105

106 G. NumecaF i neT M /Open RESULTS

to the leading edge) is an indication of good performance. This is a result of the Kutta condition of
finite velocities, which means that on the trailing edge the flow on the upper surface (where the
velocities are higher than on the lower surface) decelerates and converge with the flow on the lower
surface. The pressure at the trailing edge is also related to the airfoil thickness and shape near the
trailing edge. For thick airfoils the pressure here is slightly positive, as in the current study.
However, it is remarkable that the CP values at the leading edge are far below unity. This could be due
to numerical issues related to the absence of a real nose of the airfoil in consideration. The parabolic
arc airfoil used to obtain the current results has a ’wedge’ shaped nose, instead of a ’real’ rounded
nose. A sketch of this airfoil can be seen in Figure G.1. The nose of the airfoil in this figure can be
found on the left side where the upper surface and lower surface coincide, meaning that it consists of
only one point instead of a ’surface’. This is illustrated with Figure G.1. It is very difficult to capture the
nose within the mesh and determine the velocity and CP at exactly this point, which is indicated by
the blue dot. The velocities slightly away from this point are being captured instead, which are
indicated by the red dots. Since the velocities V at those points aren’t zero, but a higher value (due to
the acceleration of the flow along the airfoil), the determined CP values are less than unity.

• The shape of the overall pressure distribution in all cases looks reasonable and is in accordance with a
typical α0◦ pressure distribution, which shows a decrease in pressure when moving away from the
stagnation point near the leading edge, and a minimum pressure (i.e. called the suction peak) which
depends on the airfoil shape and angle of attack. The thickest point of the airfoil mainly determines
where the suction peak occurs [19]. The suction peak is followed by an increase in pressure towards
the leading edge, which is called the pressure recovery [20].
This trend can also be seen in the CP distributions in Figure G.7. For now, this will be illustrated with
reference to the pressure coefficient distribution of Figure G.5g due to reasons that will be made clear
later on in this chapter. The CP distribution in this figure starts out at the value of CPLE ≈ 0.45 at the
nose, and drops as the flow expands around the nose. The pressure P decreases below P∞, yielding a
minimum value of CPmi n ≈−0.30 downstream of the nose. This happens at the thickest point of the
airfoil, which is at x = 0 for the parabolic arc airfoil under consideration. Further downstream the
pressure tries to recover and approaches a value of CPT E ≈ 0.37 at the trailing edge. Such a region of
increasing pressure in the direction of the flow is called an adverse pressure gradient. A too severe
adverse pressure gradient indicates boundary layer transition, and possibly separation. The value of
CP at the trailing edge is slightly smaller than the value at the leading edge due to the Kutta condition
of finite velocities, which is satisfied at the trailing edge. Because of this condition, the velocity V at
the trailing edge will always be slightly higher than the velocity at the stagnation point close to the
leading edge. This causes CP at the trailing edge to be slightly lower than CP at the leading edge.
However, the flow at the trailing edge is still attached, since the pressure coefficient of separated flow is
CP < 0. This is not the case for the current setup.

Figure G.1: Points on the airfoil where Cp is calculated

The values of the lift L, drag D , and computation time T corresponding to the CP distributions in Figure G.7
can be seen in the three columns on the left side of Tables G.1. For simplicity, those values are visualized by

107

inserting them into a graph with the number of the mesh cells on the horizontal axis, and the lift and drag on
the vertical axis. The values corresponding to the current setup are indicated by the red lines/symbols in
figures G.4a and G.4b. By focussing on Figure G.4a one can see that the values of the lift change abruptly and
oscillate till the number of mesh cells of 250. After this point, the lift still oscillates, but with a much lower
amplitude. It looks like the lift converges towards a certain value around L ≈ 666 [N]. The drag values are
analyzed in the same way, by focussing on Figure G.4b. From this figure it can be seen that the drag keeps
decreasing, and that this decrease consists of three parts; number of cells 20-80, number of cells 100-750,
and number of cells 750-1000. The slope coefficients corresponding to those regions are determined to be(

dL
d x

)
(#cel l s:20−80)

= 195.6−248.2
80−20 =−0.8767,

(
dL
d x

)
(#cel l s:100−750)

= 83.4−195.8
750−100 =−0.1729, and(

dL
d x

)
(#cel l s:750−1000)

= 61.73−83.4
1000−750 =−0.0867. The highest decrease slope corresponds to the first region, while

the lowest slope corresponds to the third region. Thus, from those results one can conclude that the drag
coefficient keeps decreasing, with a decreasing slope. However, it is hard to predict to which value the drag is
converging to, since there is no predictable and logical trend in the progression of the development of dL

d x , as
can be seen from Figure G.2.
When looking at the values of those lift and drag data, rather than at whether they are converging, one can
see that the values are striking. First of all, the lift values should be nearly zero for an airfoil under zero angle
of attack. The values shown in Table G.1 and the corresponding Figure G.4a are far above L = 0, except for a
number of cells equal to 20 and 80. Those high values are most likely caused by the asymmetrical meshes
created for the number of cells 40,60,100,250,500,750, and 1000. These meshes can be seen in Figure G.3.
Inspecting those figures, one can see in Figure G.3a that the meshes on the upper side and lower side of the
airfoil are identical. This is not true for the mesh in Figure G.3b, where the meshes for the upper and lower
side of the airfoil aren’t exactly the same. This probably causes nonzero lift. However, when converting those
lift values to lift coefficients, this situation becomes less dramatic. The lift coefficients CL have been
determined with Equation G.1, and the results are displayed in Table G.1. When looking at those CL values,
one can see that they are so small that they can be neglected. The same approach is applied for the
discussion of the drag values. The drag coefficient CD is determined with Equation G.2, and the values are
shown in Table G.1. Again, the CD turns out to be so small that they can be neglected.
Another parameter with which the performance of an airfoil can be assessed is the lift-to-drag ratio L

D .
Those values can be found in Table G.1. Since a symmetric mesh is important for a proper simulation, and at
the same time as many points on the airfoil have to be captured, the lift-to-drag ratio of the simulation
corresponding to a number of mesh cells of 80 will be reviewed. This value turns out to be L

D ≈−0.0047, and
is a reasonable value since the value of lift should be near zero for an airfoil under zero angle of attack.

108 G. NumecaF i neT M /Open RESULTS

D
o

m
ai

n
cr

ea
te

d
in

C
A

T
IA

D
o

m
ai

n
cr

ea
te

d
in

N
U

M
E

C
A

#
m

es
h

ce
lls

L
[N

]
C

L
[-

]
D

[N
]

C
D

[-
]

L D
[-

]
R

u
n

T
im

e
L

[N
]

C
L

[-
]

D
[N

]
C

D
[-

]
L D

[-
]

R
u

n
T

im
e

20
-2

.7
81

e+
00

0
-0

.0
00

0
2.

48
2e

+0
02

0.
00

13
-0

.0
11

2
0h

0m
50

.5
82

s
-3

.1
56

e+
00

0
-0

.0
00

0
2.

48
2e

+0
02

0.
00

13
-0

.0
12

7
0h

0m
41

.4
67

s
40

1.
25

8e
+0

03
0.

00
68

2.
19

1e
+0

02
0.

00
12

5.
74

17
0h

1m
15

.8
9s

-1
.2

56
e+

00
3

-0
.0

06
8

2.
19

1e
+0

02
0.

00
12

-5
.7

32
5

0h
1m

6.
38

4s
60

9.
91

7e
+0

02
0.

00
54

2.
05

0e
+0

02
0.

00
11

4.
83

76
0h

1m
46

.8
74

s
-9

.9
09

e+
00

2
-0

.0
05

4
2.

05
0e

+0
02

0.
00

11
-4

.8
33

7
0h

1m
35

.6
92

s
80

-1
.4

38
e+

00
0

-0
.0

00
0

1.
95

6e
+0

02
0.

00
11

-0
.0

07
4

0h
2m

9.
70

5s
-2

.1
56

e+
00

0
-0

.0
00

0
1.

95
6e

+0
02

0.
00

11
-0

.0
11

0
0h

2m
3.

83
4s

10
0

8.
67

3e
+0

02
0.

00
47

1.
95

8e
+0

02
0.

00
11

4.
42

95
0h

3m
21

.4
08

s
-8

.6
52

e+
00

2
-0

.0
04

7
1.

95
8e

+0
02

0.
00

11
-4

.4
18

8
0h

2m
46

.4
53

s
25

0
5.

87
3e

+0
02

0.
00

32
1.

76
8e

+0
02

0.
00

10
3.

32
18

0h
10

m
26

.3
15

s
-5

.8
58

e+
00

2
-0

.0
03

2
1.

76
8e

+0
02

0.
00

10
-3

.3
13

3
0h

10
m

2.
16

3s
50

0
5.

96
8e

+0
02

0.
00

32
1.

25
2e

+0
02

0.
00

07
4.

76
68

0h
37

m
53

.9
55

s
-5

.9
49

e+
00

2
-0

.0
03

2
1.

25
2e

+0
02

0.
00

07
-4

.7
51

6
0h

36
m

43
.6

76
s

75
0

4.
64

7e
+0

02
0.

00
25

8.
34

0e
+0

01
0.

00
05

5.
57

19
1h

42
m

11
.3

51
s

-4
.6

26
e+

00
2

-0
.0

02
5

8.
33

9e
+0

01
0.

00
05

-5
.5

47
4

0h
52

m
29

.2
85

s
10

00
6.

01
7e

+0
02

0.
00

33
6.

17
3e

+0
01

0.
00

03
9.

74
73

3h
11

m
46

.6
75

s
-5

.9
92

e+
00

2
-0

.0
03

3
6.

17
3e

+0
01

0.
00

03
-9

.7
06

8
3h

21
m

56
.8

65
s

Ta
b

le
G

.1
:L

if
t,

lif
tc

o
ef

fi
ci

en
t,

d
ra

g,
d

ra
g

co
ef

fi
ci

en
t,

lif
t-

to
-d

ra
g

ra
ti

o,
an

d
ru

n
ti

m
e

o
fs

im
u

la
ti

o
n

s
fo

r
α
=

0◦
an

d
M

∞
=

0.
80

6

109

Figure G.2: Progress of dL
d x

(a) Symmetric mesh for number of cells 20 and 80

(b) Asymmetric mesh for number of cells 40,60,100,250,500,750, and
1000

Figure G.3: Symmetric and asymmetric meshes

110 G. NumecaF i neT M /Open RESULTS

CL = L
1
2ρ∞V 2∞S

(G.1)

CD = D
1
2ρ∞V 2∞S

(G.2)

Although it was concluded that there were no differences between the pressure coefficient distribution
between the first and second setup, a remarkable difference has been identified in Figure G.4a. Here, the
values of the lift are mirrored with respect to the horizontal axis. This might be caused by the fact that the
orientation within NU MEC A is opposite to the orientation within C AT I A. The flow within NU MEC A goes
from right to left, meaning that positive flow points to the left. The opposite is true for C AT I A, that is that
positive flow is directed to the right. Due to this difference, the lift and drag coefficients as well as the
lift-to-drag ratios for the setup where the domain box has been created in NU MEC A are the same as for the
setup where the domain box is created in C AT I A, but with an opposite sign. The lift-to-drag ratio’s L

D , lift
coefficients CL , and drag coefficients CD for this setup can be seen on the right half of Table G.1.

M∞ = 0.86
The CP distributions for the airfoil under zero angle of attack immersed in a flow with freestream Mach
number M∞ = 0.86 are displayed in Figure G.8. The graphics on the left side have been computed on the
domain of which the surrounding box is created within C AT I A, and for an increasing number of mesh cells
(increasing from the top down). The right side of Figure G.8 contains the CP distributions for the domain of
which the surrounding box is created within NU MEC A, as well as for an increasing number of mesh cells.
The lift and drag values corresponding to those pressure distributions can be found in Table .

The conclusions drawn form this figure are outlined below:

• The shape and overall values of the CP distributions don’t change with changing amount of cells. The
suction peak is CPmi n ≈−0.50 for all test cases, at the location x ≈ 0.23. The values of CP at the leading
and trailing edges of the airfoil, i.e. x =−1 and x = 1 respectively, do increase with increasing number
of cells and converge to a value of CPLE ≈ 0.59 and CPT E ≈ 0.50 at the leading and trailing edges
respectively.

• The location of the suction peak is shifted further downstream with respect to M∞ = 0.806 (i.e. from
x = 0 to x ≈ 0.23), while the magnitude of the suction peak has decreased (i.e. from CPmi n =−0.30 to
CPmi n =−0.50.

• The CP distributions resulting from the domain box created in C AT I A and NU MEC A are identical to
each other, so this factor doesn’t influence the results.

• The appearance of shocks where the flow transitions from supersonic to subsonic is evident in the
data at the location x ≈ 0.23, which is identical to the location of the suction peak.

• The pressure distributions for the upper and lower side of the airfoil lie on top of each other. This is as
expected, since those pressure distributions are computed for a symmetric parabolic arc airfoil under
zero angle of attack, for which zero lift is expected. However, a negligible difference between the CP of
the upper and lower sides of the airfoil has been detected right after the location of the shock wave.

• The CP distribution, beyond the shock wave appearance, is consistent with a typical pressure
coefficient distribution for a symmetrical parabolic arc airfoil under zero angle of attack, immersed in
a flow with freestream Mach number M∞ = 0.86 [20]. As it was the case for M∞ = 0.806, the pressure
coefficient distribution displayed in Figure G.8h will be interpreted here. The CP distribution in this
figure starts out at the value of CPLE ≈ 0.50 at the nose, and drops as the flow expands around the nose.
The pressure P decreases below P∞, yielding a minimum value of CPmi n ≈−0.42 downstream of the
nose, at the location x ≈ 0.23. This is also the location where a shock wave has been identified. Further
downstream the pressure stops with increasing abruptly, and starts recovering smoothly at the
location x ≈ 0.38. It finally converges to a value of CPT E ≈ 0.40 at the trailing edge. The value of CP at
the trailing edge is again slightly smaller than the value at the leading edge due to the Kutta condition

111

(a) Lift varying with the number of cells for α= 0◦ and M∞ = 0.806

(b) Drag varying with the number of cells for α= 0◦ and M∞ = 0.806

Figure G.4: Lift and drag varying with the number of mesh cells for α= 0◦ and M∞ = 0.806

of finite velocities, which is satisfied at the trailing edge. However, the flow at the trailing edge is still
attached, since the pressure coefficient of separated flow is CP < 0.
The same trend as for M∞ = 0.806 of increasing CP at the leading and trailing edges with an increasing
number of mesh cells can be seen here as well. The pressure coefficients at the leading and trailing
edges increase from CPLE ≈ 0.33 to CPLE ≈ 0.59 and from CPT E ≈ 0.27 to CPT E ≈ 0.50, respectively. This
increasing trend is an indication of reliable results, since typical CP at the stagnation point in
compressible flow is somewhat larger than unity [1]. Also, the lower CP at the trailing edge (compared
to the leading edge) is an indication of good performance. This is a result of the Kutta condition of
finite velocities.

• It is again remarkable that the CP values at the leading edge are far below unity, which can be

112 G. NumecaF i neT M /Open RESULTS

explained with the same reasoning as for M∞ = 0.806 (i.e. the pointy ’nose’ of the airfoil) .

113

D
o

m
ai

n
cr

ea
te

d
in

C
A

T
IA

D
o

m
ai

n
cr

ea
te

d
in

N
U

M
E

C
A

#
m

es
h

ce
lls

L
[N

]
C

L
[-

]
D

[N
]

C
D

[-
]

L D
[-

]
R

u
n

T
im

e
L

[N
]

C
L

[-
]

D
[N

]
C

D
[-

]
L D

[-
]

R
u

n
T

im
e

20
-5

.0
00

e+
00

0
-0

.0
00

0
6.

05
7e

+0
02

0.
00

29
-0

.0
08

3
0h

1m
13

.2
03

s
-5

.7
81

e+
00

0
-0

.0
00

0
6.

05
7e

+0
02

0.
00

29
-0

.0
09

5
0h

0m
48

.6
69

s
40

1.
79

5e
+0

03
0.

00
86

5.
74

1e
+0

02
0.

00
27

3.
12

66
0h

1m
17

.5
96

s
-1

.7
92

e+
00

3
-0

.0
08

6
5.

74
0e

+0
02

0.
00

27
-3

.1
22

0
0h

1m
9.

36
2s

60
1.

42
3e

+0
03

0.
00

68
5.

57
9e

+0
02

0.
00

27
2.

55
06

0h
1m

44
.3

19
s

-1
.4

22
e+

00
3

-0
.0

06
8

5.
57

9e
+0

02
0.

00
27

-2
.5

48
8

0h
1m

33
.6

80
s

80
-2

.3
13

e+
00

0
-0

.0
00

0
5.

48
8e

+0
02

0.
00

26
-0

.0
04

2
0h

2m
9.

41
7s

-2
.9

38
e+

00
0

-0
.0

00
0

5.
48

8e
+0

02
0.

00
26

-0
.0

05
4

0h
2m

0.
51

0s
10

0
1.

27
0e

+0
03

0.
00

61
5.

49
3e

+0
02

0.
00

26
2.

31
20

0h
2m

49
.6

64
s

-1
.2

67
e+

00
3

-0
.0

06
0

5.
49

3e
+0

02
0.

00
26

-2
.3

06
6

0h
2m

43
.2

10
s

25
0

9.
01

4e
+0

02
0.

00
43

5.
22

7e
+0

02
0.

00
25

1.
72

45
0h

10
m

38
.2

65
s

-8
.9

81
e+

00
2

-0
.0

04
3

5.
22

7e
+0

02
0.

00
25

-1
.7

18
2

0h
10

m
12

.8
85

s
50

0
9.

88
8e

+0
02

0.
00

47
4.

01
3e

+0
02

0.
00

19
2.

46
40

-9
.8

51
e+

00
2

-0
.0

04
7

4.
01

2e
+0

02
0.

00
19

-2
.4

55
4

75
0

8.
11

1e
+0

02
0.

00
39

2.
79

9e
+0

02
0.

00
13

2.
89

78
-8

.0
63

e+
00

2
-0

.0
03

8
2.

79
9e

+0
02

0.
00

13
-2

.8
80

7
10

00
1.

06
0e

+0
03

0.
00

51
2.

20
7e

+0
02

0.
00

11
4.

80
29

-1
.0

55
e+

00
3

-0
.0

05
0

2.
20

7e
+0

02
0.

00
11

-4
.7

80
2

Ta
b

le
G

.2
:L

if
t,

lif
tc

o
ef

fi
ci

en
t,

d
ra

g,
d

ra
g

co
ef

fi
ci

en
t,

lif
t-

to
-d

ra
g

ra
ti

o,
an

d
ru

n
ti

m
e

o
fs

im
u

la
ti

o
n

s
fo

r
α
=

0◦
an

d
M

∞
=

0.
86

114 G. NumecaF i neT M /Open RESULTS

α= 0.5◦
This section contains the pressure coefficient distributions for a symmetric parabolic arc airfoil under an
angle of attack of α= 0.5◦, immersed in flows with freestream Mach numbers M∞ = 0.806 and M∞ = 0.86.
Six setups have been tested with NU MEC A for each of the Mach numbers, as explained in Section 6.1.1.2.
First, the CP distributions of M∞ = 0.806 will be treated in Section G, followed by the results of M∞ = 0.86 in
Section G.

M∞ = 0.806
Figure G.7 contains the CP distributions of the setups for which the airfoil has been drawn in C AT I A under
zero angle of attack, after which it is given an angle of attack α= 0.5◦ in NU MEC A (i.e. setups 1 & 2 in
Section 6.1.1.2). On the left side of this figure the CP distributions resulting from the setup for which the
borders of the domain have been created in C AT I A are shown, while on the right side the CP has been
computed on a domain of which the borders have been created in NU MEC A. The discussion of these
figures is as follows:

• The CP distributions on both sides of the figure are the same, meaning that it doesn’t matter in which
program the borders of the domain are created.

• The simulations have only been performed for 20, 40, 60, 80, and 100 mesh cells, since from a number
of 80 mesh cells not a big difference of the CP at the leading and trailing edges was noticed (i.e.
converged solution reached).

• The overall values of the CP distribution don’t change with the number of mesh cells, except the
pressure coefficients at the leading and trailing edges. The pressure coefficient at exactly the leading
edge (i.e. x =−1) increases from CPLE ≈ 0.33 to CPLE ≈ 0.41, while the pressure coefficient at the trailing
edge increases from CPT E ≈ 0.25 to CPT E ≈ 0.39. The values of the location on the airfoil immediately
next to the leading edge, also change with an increasing number of mesh cells. Along the lower side of
the airfoil (i.e. upper curve) CP increases from CPLEl

≈ 0.50 to CPLEl
≈ 0.77, and along the upper side of

the airfoil (i.e. lower curve) it decreases from CPLEu
≈ 0.08 to CPLEu

≈ 0.06. This indicates that the
velocities along the upper side of the airfoil reach higher values than on the lower side of the airfoil.

• The overall shape of the CP distribution doesn’t change with the number of mesh cells. However, a
small cove arises at the leading edge along the upper side of the airfoil (i.e. the lower curve) for a
number of mesh cells of 80 and 100. This might be due to computational issues regarding the nose of
the airfoil. The symmetric parabolic arc airfoil in consideration doesn’t have a real nose, but a wedge
instead. Therefore it becomes difficult to catch this nose which basically consists of a point (since a
mesh node should be placed at exactly this point). Another possibility is that singularities could occur
at the leading edge.

• The pressure coefficient distributions along the upper and lower side of the airfoil have been
separated from each other starting at the leading edge, due to an increase in the angle of attack.
However, further downstream these CP distributions start to flock again. Since it doesn’t matter
whether the borders of the domain have been created in C AT I A or NU MEC A, Figure G.9g has been
picked to elaborate on. The pressure coefficient at the leading edge starts with CPLE ≈ 0.41, after which
it immediately reduces to CPLEu

≈ 0.06 on the upper side of the airfoil and increases to CPLEl
≈ 0.73 on

the lower side of the airfoil.
The pressure coefficient along the upper side of the airfoil starts with CPLEu

≈ 0.06 at the location
x ≈−0.94, and decreases to a minimum value of CPmi nu

≈−0.33 at the location x ≈−0.06. Then, it
starts increasing and reaches a value of CPT E ≈ 0.38 at the trailing edge.
Along the lower side of the airfoil, the pressure coefficient starts with CPLEl

≈ 0.73 at the location
x ≈−0.98. Subsequently it gradually decreases and reaches a minimum value of CPmi nl

≈−0.26 at the
location x ≈ 0.08, after which it increases and merges with the CP distribution along the upper side at
the trailing edge. Here it reaches a value of CPT E ≈ 0.38.

• The increase of the angle of attack from α= 0◦ to α= 0.5◦ has caused the suction peak to move forward
toward (toward the leading edge) on the upper side of the airfoil (i.e. from x = 0 to x ≈−0.06), and
further downstream (i.e. from x = 0 tot x ≈ 0.08) on the lower side of the airfoil. The magnitudes of the
CP values has also changed with an increasing angle of attack. On the upper side, the pressure

115

coefficient at the leading edge had decreased from CPLEu
≈ 0.45 to CPLEu

≈ 0.06, while it has increased
from CPLEl

≈ 0.45 to CPLEl
≈ 0.73 on the lower side of the airfoil. The magnitude of the suction peak has

decreased (i.e. more negative) on the upper side of the airfoil from CPmi n ≈−0.30 to CPmi n ≈−0.33, and
increased (i.e. more positive) on the lower side of the airfoil from CPmi n ≈−0.30 to CPmi n ≈−0.26. The
value of the pressure coefficient at the leading edge however, didn’t change (CPT E ≈ 0.38).

The results of setups 3 & 5 can be seen in Figure G.10. For this setup, the airfoil was created in C AT I A under
an angle of attack α0.5◦. It is remarkable that for the setup for which the borders of the domain have been
created in C AT I A, more simulations have been performed than for the setup for which the borders of the
domain have been created in NU MEC A. This was due to problems with NU MEC A, since the program was
crashing while performing simulations for a number of mesh cells starting from 100. However, since the CP

distributions of setup 3 and 5 up till a number of mesh cells of 80 are identical to each other as can be seen
from Figure G.10, this is not a big problem. Also, the same discussion as the discussion of Figure G.9 is valid
for Figure G.10, since the CP distributions are almost similar. The only difference occurs at the leading edge
of the airfoil, where higher CP values can be found. This might be due to the way the airfoil is put under an
angle of attack. Since the airfoil for this case is given an angle of attack in C AT I A, rather than in NU MEC A,
there might be slight differences in the mesh at the leading edge. However, this is not dramatic, since the rest
of the CP distributions are almost similar to the ones in Figure G.9. The pressure coefficient distribution in
Figure G.10g shows that the CP value at the leading edge starts with CPLE ≈ 0.42, after which it immediately
splits up along the upper and lower sides of the airfoil. The pressure coefficient distribution along the upper
side of the airfoil starts at CPLEu

≈ 0.06 at the location x =−0.94, after which it decreases to CPmi nu
≈−0.33 at

the location x ≈−0.06. Further downstream CP gradually increases and reaches CPT E ≈ 0.37 at the trailing
edge at the location x = 1.
The CP distribution along the lower side of the airfoil look similar as the upper side, but its level is higher. It
starts with CPLEl

≈ 0.75 at the leading edge (i.e.x =−0.98), decreases to CPmi nl
≈−0.26 at the location

x ≈ 0.08, and increases further downstream to CPT E = 0.37 at the trailing edge (i.e. x = 1).
Finally, the results of setups 4 & 6 are displayed in Figure G.11. The difference of these setups with setups 3 &
5 is that the aerodynamic forces (i.e. lift and drag) are decomposed in a x− and z-direction in NU MEC A.
However, it is striking that these results are similar to the results shown in Figure G.10, which means that
decomposition of the forces is not needed if the airfoil is already drawn under an angle of attack within
C AT I A. Since the CP distributions are similar to the ones of setups 3 & 5, the same discussion as the
discussion of Figure G.10 holds for Figure G.11.

M∞ = 0.86

This section covers the pressure coefficient distribution of the symmetric arc airfoil under an angle of attack
α= 0.5◦, immersed in a flow with freestream Mach number M∞ = 0.86. The simulations have been
performed for six different setups, as was the case for M∞ = 0.806. The results of setups 1 & 2, 3 & 5, and 4 &
6 are displayed in figures G.12, G.13, and G.14 respectively. It is clear that the results of the different setups
don’t differ much from each other.
Starting with Figure G.12g, one can see that the pressure coefficient at the leading edge starts with
CPLE ≈ 0.44. Subsequently, the pressure coefficient distributions of the upper and lower side of the airfoil
split up. On the upper side of the airfoil the pressure coefficient starts with CPLEu

≈ 0.10 at the location
x ≈−0.94. Then, it starts decreasing further downstream and reaches a minimum value of CPmi nu

≈−0.58 at
the location x ≈ 0.43. This is also the location where the shock wave on the upper side of the airfoil appears,
which is more evident than it is the case for α= 0◦. It should be noted that the location of the start of the
shock wave, which is also the location of the suction peak, is shifted towards the trailing edge with increasing
angle of attack (i.e. from x ≈ 0.23 to x ≈ 0.43). Also, the magnitude of the suction peak along the upper side
of the airfoil has decreased (became more negative) from CPmi n ≈−0.42 to CPmi n ≈−0.58. Another
remarkable feature is that the recovery phase of the shock wave (i.e. the distance between the start of the
shock wave and point where it merges with the CP distribution of the lower side of the airfoil) decreases with
increasing angle of attack. The shock wave along the upper side of the airfoil under zero angle of attack
starts at x ≈ 0.23 and ends at x ≈ 0.38 (∆x ≈ 0.15), while for the airfoil under angle of attack α= 0.5◦ these
locations are x ≈ 0.43 and x ≈ 0.48 (∆x ≈ 0.05).
Along the lower side of the airfoil, the pressure coefficient starts at CPLEl

≈ 0.76 at the location x ≈−0.98, and
reaches a minimum value of CPmi nl

≈−0.33 at the location x ≈ 0.14. This means that the suction peak of the
lower side of the airfoil has moved forward (towards the leading edge) with respect to the CP distribution of

116 G. NumecaF i neT M /Open RESULTS

the airfoil under zero angle of attack. Also, the magnitude of the suction peak has increased (became less
negative). The pressure coefficient distributions of the upper and lower side of the airfoil merge at the
trailing edge and reach a value of CPT E ≈ 0.40.
Figure G.13g is almost similar to Figure G.12g. The only difference is in the value of the pressure coefficient
at the leading edge along the lower side of the airfoil, which is CPLE ≈ 0.78 instead of CPLE ≈ 0.76. The other
values are similar to the values of CP in Figure G.12g. The same holds for Figure G.14g, which means that no
decomposition of the aerodynamic forces in NU MEC A is needed when the airfoil is drawn under an angle
of attack within C AT I A.

α= 1◦
The pressure coefficient distribution of the symmetric parabolic arc airfoil under α= 1◦ angle of attack,
immersed in a flow with freestream Mach numbers M∞ = 0.806 and M∞ = 0.86 will be covered in sections G
and G, respectively. Six different setups have been tested with NU MEC A for each Mach number. The results
can be found in the corresponding sections.

M∞ = 0.806
This section covers the CP distribution of the airfoil under α= 1◦ angle of attack, immersed in a flow with
freestream Mach number M∞ = 0.806. The results of setups 1 & 2 are displayed in Figure G.15. Figures G.16
and G.17 display the results of setups 3 & 5 and 4 & 6, respectively.
Starting with Figure G.15, the following conclusions can be drawn:

• The CP distributions on both the left and right side of the figure are the same. This indicates that the
tool with which the borders of the domain have been created doesn’t matter.

• The overall shape and values of the CP distributions don’t change with increasing number of mesh
cells, except the values at the leading and trailing edges. The pressure coefficient at exactly the leading
edge (i.e. x =−1) increases from CPLE ≈ 0.30 to CPLE ≈ 0.37, while the pressure coefficient at the trailing
edge increases from CPT E ≈ 0.23 to CPT E ≈ 0.39. The values of the location on the airfoil immediately
next to the leading edge, also change with an increasing number of mesh cells. Along the lower side of
the airfoil (i.e. upper curve) CP increases from CPLEl

≈ 0.66 to CPLEl
≈ 1.00, and along the upper side of

the airfoil (i.e. lower curve) it decreases from CPLEu
≈−0.18 to CPLEu

≈−0.41. This indicates that the
velocities along the upper side of the airfoil reach higher values than on the lower side of the airfoil.

• A cove has been identified between x =−1 and x ≈−0.97 along the upper side of the airfoil. In this
region, the values of the pressure coefficient along the upper side of the airfoil reach very low (i.e.
negative) values. From x ≈−0.97 on a reliable CP distribution starts to arise. The cove again might be
caused due to computational issues regarding the nose of the airfoil and singularities occurring at the
leading edge of the airfoil.

• Focussing on Figure G.15g, the pressure coefficient at the leading edge starts with CPLE ≈ 0.37, after
which it immediately reduces to CPLEu

≈−0.14 on the upper side of the airfoil and increases to
CPLEl

≈ 0.97 on the lower side of the airfoil.
The pressure coefficient along the upper side of the airfoil starts with CPLEu

≈−0.14 at the location
x ≈−0.94, and decreases to a minimum value of CPmi nu

≈−0.40 at the location x ≈−0.10. Then, it
starts increasing and reaches a value of CPT E ≈ 0.37 at the trailing edge.
Along the lower side of the airfoil, the pressure coefficient starts with CPLEl

≈ 0.97 at the location
x ≈−0.98. Subsequently it gradually decreases and reaches a minimum value of CPmi nl

≈−0.22 at the
location x ≈ 0.13, after which it increases and merges with the CP distribution along the upper side at
the trailing edge. Here it reaches a value of CPT E ≈ 0.37.

• When comparing Figure G.15g to Figure Figure G.9g, it turns out that increasing the angle of attack
from α= 0.5◦ to α= 1◦ causes the suction peak along the upper side of the airfoil to decrease (i.e. from
CPmi nu

≈−0.33 to CPmi nu
≈−0.40) and along the lower side of the airfoil to increase (i.e. from

CPmi nu
≈−0.26 to CPmi nu

≈−0.22). As a result, the CP distributions along the upper and lower side of
the airfoil move further apart. The location of the suction peaks also changes with increasing angle of
attack. This location moves forward towards the leading edge (i.e. from x ≈−0.06 to x ≈−0.10) along
the upper side of the airfoil, and further downstream towards the trailing edge (i.e. from x ≈ 0.08 to
x ≈ 0.13) along the lower side of the airfoil.

117

When examining Figure G.16, the similarity of the pressure coefficient distributions in this figure with the
ones in Figure G.15 is observed. The only difference is regarding to the pressure coefficient at the trailing
edge, which is negligibly small (CPT E ≈ 0.34 instead of CPT E ≈ 0.37 for 80 mesh cells). It also turns out that
Figure G.17 is similar to Figure G.16, which leads to the conclusion that when the airfoil is given an angle of
attack within C AT I A no decomposition of the aerodynamic forces is needed since this doesn’t make any
difference.

M∞ = 0.86
The results displayed in this section belong to the airfoil under α= 1◦ angle of attack, immersed in a flow
with freestream Mach number M∞ = 0.86. Six different setups have been tested. The results of setups 1 & 2,
3 & 5, and 4 & 6 are outlined in figures G.18, G.19, and G.20 respectively. Comparing these figures to each
other, it is observed that the pressure coefficients are similar to each other. Therefore, only Figure G.18g will
be elaborated on.
The following conclusions can be drawn after observing Figure G.18:

• The overall shape of the pressure coefficients in Figure G.18 doesn’t change with the increasing
number of mesh cells, except the values at the leading and trailing edges. The magnitude of CP at the
leading edge starts at CPLE ≈ 0.34 (for 20 mesh cells) and increases to CPLE ≈ 0.42 (for 100 mesh cells).
Also, the values next to the leading edge along the upper and lower side of the airfoil do change with
an increasing number of mesh cells. Along the upper side of the airfoil, the pressure coefficient at the
location x ≈−0.97 holds a value of CPLEu

≈−0.11 for 20 mesh cells, and decreases to CPLEu
≈−0.09

when the number of mesh cells increases to 100. Along the lower side of the airfoil the opposite trend
is observed. The pressure coefficient at the location x ≈−0.97 increases from CPLEl

≈ 0.67 to
CPLEl

≈ 0.99 with an increasing number of mesh cells (i.e. from 20 to 100). Finally, the value of the
pressure coefficient at the trailing edge increases from CPT E ≈ 0.27 to CPT E ≈ 0.41.

• When examining Figure G.18g more closely, it can be observed that the pressure coefficient starts with
CPLE ≈ 0.41 at the leading edge (i.e. x =−1). Subsequently, it splits up in pressure coefficient
distributions along the upper and lower side of the airfoil.
The pressure coefficient along the upper side of the airfoil starts with CPLEu

≈−0.09 at the location
x ≈−0.97, after which it decreases to a minimum value of CPmi nu

≈−0.75 at the location x ≈ 0.53. This
is also the location where the shock wave arises. The recovery of the shock wave takes place, and ends
at x ≈ 0.63 (i.e. ∆x ≈ 0.10). From this point on, the pressure coefficient distribution gradually increases
towards a value of CPT E ≈ 0.40 at the trailing edge.
Along the lower side of the airfoil, the pressure coefficient distribution starts with CPLEl

≈ 0.97 at the
location x ≈−0.97, whereafter it decreases towards a minimum value of CPmi nl

≈−0.27 at the location
x ≈ 0.16. At this point, the pressure coefficient distribution along the lower side of the airfoil merges
with the pressure coefficient distribution along the upper side of the airfoil and increases towards a
value of CPT E ≈ 0.40 at the trailing edge.

• As the angle of attack increases further from α= 0.5◦ to α= 1◦, the location of the shock wave moves
aft (i.e. from x ≈ 0.43 to x ≈ 0.53).

118 G. NumecaF i neT M /Open RESULTS

(a) Number of cells in x and z direction: 20,
domain created in C AT I A

(b) Number of cells in x and z direction: 20,
domain created in NU MEC A

(c) Number of cells in x and z direction: 40,
domain created in C AT I A

(d) Number of cells in x and z direction: 40,
domain created in NU MEC A

(e) Number of cells in x and z direction: 60,
domain created in C AT I A

(f) Number of cells in x and z direction: 60,
domain created in NU MEC A

(g) Number of cells in x and z direction: 80,
domain created in C AT I A

(h) Number of cells in x and z direction: 80,
domain created in NU MEC A

(i) Number of cells in x and z direction: 100,
domain created in C AT I A

(j) Number of cells in x and z direction: 100,
domain created in NU MEC A

119

(k) Number of cells in x and z direction: 250,
domain created in C AT I A

(l) Number of cells in x and z direction: 250,
domain created in NU MEC A

(m) Number of cells in x and z direction: 500,
domain created in C AT I A

(n) Number of cells in x and z direction: 500,
domain created in NU MEC A

(o) Number of cells in x and z direction: 750,
domain created in C AT I A

(p) Number of cells in x and z direction: 750,
domain created in NU MEC A

(q) Number of cells in x and z direction: 1000,
domain created in C AT I A

(r) Number of cells in x and z direction: 1000,
domain created in NU MEC A

Figure G.7: Cp distribution for α= 0◦ and M∞ = 0.806.The left side contains the CP distributions corresponding to the domain created
in C AT I A, while on the right side the CP distributions corresponding to the domain created in NU MEC A are displayed.

120 G. NumecaF i neT M /Open RESULTS

(a) Number of cells in x and z direction: 20,
domain created in C AT I A

(b) Number of cells in x and z direction: 20,
domain created in NU MEC A

(c) Number of cells in x and z direction: 40,
domain created in C AT I A

(d) Number of cells in x and z direction: 40,
domain created in NU MEC A

(e) Number of cells in x and z direction: 60,
domain created in C AT I A

(f) Number of cells in x and z direction: 60,
domain created in NU MEC A

(g) Number of cells in x and z direction: 80,
domain created in C AT I A

(h) Number of cells in x and z direction: 80,
domain created in NU MEC A

(i) Number of cells in x and z direction: 100,
domain created in C AT I A

(j) Number of cells in x and z direction: 100,
domain created in NU MEC A

121

(k) Number of cells in x and z direction: 250,
domain created in C AT I A

(l) Number of cells in x and z direction: 250,
domain created in NU MEC A

(m) Number of cells in x and z direction: 500,
domain created in C AT I A

(n) Number of cells in x and z direction: 500,
domain created in NU MEC A

(o) Number of cells in x and z direction: 750,
domain created in C AT I A

(p) Number of cells in x and z direction: 750,
domain created in NU MEC A

(q) Number of cells in x and z direction: 1000,
domain created in C AT I A

(r) Number of cells in x and z direction: 1000,
domain created in NU MEC A

Figure G.8: Cp distribution for α= 0◦ and M∞ = 0.86.The left side contains the CP distributions corresponding to the domain created
in C AT I A, while on the right side the CP distributions corresponding to the domain created in NU MEC A are displayed.

122 G. NumecaF i neT M /Open RESULTS

(a) Number of cells in x and z direction: 20,
domain created in C AT I A

(b) Number of cells in x and z direction: 20,
domain created in NU MEC A

(c) Number of cells in x and z direction: 40,
domain created in C AT I A

(d) Number of cells in x and z direction: 40,
domain created in NU MEC A

(e) Number of cells in x and z direction: 60,
domain created in C AT I A

(f) Number of cells in x and z direction: 60,
domain created in NU MEC A

(g) Number of cells in x and z direction: 80,
domain created in C AT I A

(h) Number of cells in x and z direction: 80,
domain created in NU MEC A

(i) Number of cells in x and z direction: 100,
domain created in C AT I A

(j) Number of cells in x and z direction: 100,
domain created in NU MEC A

Figure G.9: Cp distribution for α= 0.5◦ and M∞ = 0.806.The left side contains the CP distributions corresponding to the domain
created in C AT I A, while on the right side the CP distributions corresponding to the domain created in NU MEC A are displayed. The

airfoil is created in C AT I A under zero angle of attack, and is set under an angle of attack α= 0.5◦ in NU MEC A.

123

(a) Number of cells in x and z direction:
20, domain created in C AT I A

(b) Number of cells in x and z direction:
20, domain created in NU MEC A

(c) Number of cells in x and z direction:
40, domain created in C AT I A

(d) Number of cells in x and z direction:
40, domain created in NU MEC A

(e) Number of cells in x and z direction:
60, domain created in C AT I A

(f) Number of cells in x and z direction:
60, domain created in NU MEC A

(g) Number of cells in x and z direction:
80, domain created in C AT I A

(h) Number of cells in x and z direction:
80, domain created in NU MEC A

(i) Number of cells in x and z direction:
100, domain created in C AT I A

Figure G.10: Cp distribution for α= 0.5◦ and M∞ = 0.806.The left side contains the CP distributions corresponding to the domain
created in C AT I A, while on the right side the CP distributions corresponding to the domain created in NU MEC A are displayed. The

airfoil is created in C AT I A under α= 0.5◦.

124 G. NumecaF i neT M /Open RESULTS

(a) Number of cells in x and z direction:
20, domain created in C AT I A

(b) Number of cells in x and z direction:
20, domain created in NU MEC A

(c) Number of cells in x and z direction:
40, domain created in C AT I A

(d) Number of cells in x and z direction:
40, domain created in NU MEC A

(e) Number of cells in x and z direction:
60, domain created in C AT I A

(f) Number of cells in x and z direction:
60, domain created in NU MEC A

(g) Number of cells in x and z direction:
80, domain created in C AT I A

(h) Number of cells in x and z direction:
80, domain created in NU MEC A

(i) Number of cells in x and z direction:
100, domain created in C AT I A

Figure G.11: Cp distribution for α= 0.5◦ and M∞ = 0.806.The left side contains the CP distributions corresponding to the domain
created in C AT I A, while on the right side the CP distributions corresponding to the domain created in NU MEC A are displayed. The

airfoil is created in C AT I A under α= 0.5◦, and the aerodynamic forces are decomposed in a x− and z-direction.

125

(a) Number of cells in x and z direction: 20,
domain created in C AT I A

(b) Number of cells in x and z direction: 20,
domain created in NU MEC A

(c) Number of cells in x and z direction: 40,
domain created in C AT I A

(d) Number of cells in x and z direction: 40,
domain created in NU MEC A

(e) Number of cells in x and z direction: 60,
domain created in C AT I A

(f) Number of cells in x and z direction: 60,
domain created in NU MEC A

(g) Number of cells in x and z direction: 80,
domain created in C AT I A

(h) Number of cells in x and z direction: 80,
domain created in NU MEC A

(i) Number of cells in x and z direction: 100,
domain created in C AT I A

(j) Number of cells in x and z direction: 100,
domain created in NU MEC A

Figure G.12: Cp distribution for α= 0.5◦ and M∞ = 0.86.The left side contains the CP distributions corresponding to the domain
created in C AT I A, while on the right side the CP distributions corresponding to the domain created in NU MEC A are displayed. The

airfoil is created in C AT I A under zero angle of attack, and is set under an angle of attack α= 0.5◦ in NU MEC A.

126 G. NumecaF i neT M /Open RESULTS

(a) Number of cells in x and z direction:
20, domain created in C AT I A

(b) Number of cells in x and z direction:
20, domain created in NU MEC A

(c) Number of cells in x and z direction:
40, domain created in C AT I A

(d) Number of cells in x and z direction:
40, domain created in NU MEC A

(e) Number of cells in x and z direction:
60, domain created in C AT I A

(f) Number of cells in x and z direction:
60, domain created in NU MEC A

(g) Number of cells in x and z direction:
80, domain created in C AT I A

(h) Number of cells in x and z direction:
80, domain created in NU MEC A

(i) Number of cells in x and z direction:
100, domain created in C AT I A

Figure G.13: Cp distribution for α= 0.5◦ and M∞ = 0.86.The left side contains the CP distributions corresponding to the domain
created in C AT I A, while on the right side the CP distributions corresponding to the domain created in NU MEC A are displayed. The

airfoil is created in C AT I A under α= 0.5◦.

127

(a) Number of cells in x and z direction:
20, domain created in C AT I A

(b) Number of cells in x and z direction:
20, domain created in NU MEC A

(c) Number of cells in x and z direction:
40, domain created in C AT I A

(d) Number of cells in x and z direction:
40, domain created in NU MEC A

(e) Number of cells in x and z direction:
60, domain created in C AT I A

(f) Number of cells in x and z direction:
60, domain created in NU MEC A

(g) Number of cells in x and z direction:
80, domain created in C AT I A

(h) Number of cells in x and z direction:
80, domain created in NU MEC A

(i) Number of cells in x and z direction:
100, domain created in C AT I A

Figure G.14: Cp distribution for α= 0.5◦ and M∞ = 0.86.The left side contains the CP distributions corresponding to the domain
created in C AT I A, while on the right side the CP distributions corresponding to the domain created in NU MEC A are displayed. The

airfoil is created in C AT I A under α= 0.5◦, and the aerodynamic forces are decomposed in a x− and z-direction.

128 G. NumecaF i neT M /Open RESULTS

(a) Number of cells in x and z direction: 20,
domain created in C AT I A

(b) Number of cells in x and z direction: 20,
domain created in NU MEC A

(c) Number of cells in x and z direction: 40,
domain created in C AT I A

(d) Number of cells in x and z direction: 40,
domain created in NU MEC A

(e) Number of cells in x and z direction: 60,
domain created in C AT I A

(f) Number of cells in x and z direction: 60,
domain created in NU MEC A

(g) Number of cells in x and z direction: 80,
domain created in C AT I A

(h) Number of cells in x and z direction: 80,
domain created in NU MEC A

(i) Number of cells in x and z direction: 100,
domain created in C AT I A

(j) Number of cells in x and z direction: 100,
domain created in NU MEC A

Figure G.15: Cp distribution for α= 1◦ and M∞ = 0.806.The left side contains the CP distributions corresponding to the domain created
in C AT I A, while on the right side the CP distributions corresponding to the domain created in NU MEC A are displayed. The airfoil is

created in C AT I A under zero angle of attack, and is set under an angle of attack α= 1◦ in NU MEC A.

129

(a) Number of cells in x and z direction:
20, domain created in C AT I A

(b) Number of cells in x and z direction:
20, domain created in NU MEC A

(c) Number of cells in x and z direction:
40, domain created in C AT I A

(d) Number of cells in x and z direction:
40, domain created in NU MEC A

(e) Number of cells in x and z direction:
60, domain created in C AT I A

(f) Number of cells in x and z direction:
60, domain created in NU MEC A

(g) Number of cells in x and z direction:
80, domain created in C AT I A

(h) Number of cells in x and z direction:
80, domain created in NU MEC A

(i) Number of cells in x and z direction:
100, domain created in C AT I A

(j) Number of cells in x and z direction:
100, domain created in NU MEC A

Figure G.16: Cp distribution for α= 1◦ and M∞ = 0.806.The left side contains the CP distributions corresponding to the domain created
in C AT I A, while on the right side the CP distributions corresponding to the domain created in NU MEC A are displayed. The airfoil is

created in C AT I A under α= 1◦.

130 G. NumecaF i neT M /Open RESULTS

(a) Number of cells in x and z direction:
20, domain created in C AT I A

(b) Number of cells in x and z direction:
20, domain created in NU MEC A

(c) Number of cells in x and z direction:
40, domain created in C AT I A

(d) Number of cells in x and z direction:
40, domain created in NU MEC A

(e) Number of cells in x and z direction:
60, domain created in C AT I A

(f) Number of cells in x and z direction:
60, domain created in NU MEC A

(g) Number of cells in x and z direction:
80, domain created in C AT I A

(h) Number of cells in x and z direction:
80, domain created in NU MEC A

(i) Number of cells in x and z direction:
100, domain created in C AT I A

(j) Number of cells in x and z direction:
100, domain created in NU MEC A

Figure G.17: Cp distribution for α= 1◦ and M∞ = 0.806.The left side contains the CP distributions corresponding to the domain created
in C AT I A, while on the right side the CP distributions corresponding to the domain created in NU MEC A are displayed. The airfoil is

created in C AT I A under α= 1◦, and the aerodynamic forces are decomposed in a x− and z-direction.

131

(a) Number of cells in x and z direction: 20,
domain created in C AT I A

(b) Number of cells in x and z direction: 20,
domain created in NU MEC A

(c) Number of cells in x and z direction: 40,
domain created in C AT I A

(d) Number of cells in x and z direction: 40,
domain created in NU MEC A

(e) Number of cells in x and z direction: 60,
domain created in C AT I A

(f) Number of cells in x and z direction: 60,
domain created in NU MEC A

(g) Number of cells in x and z direction: 80,
domain created in C AT I A

(h) Number of cells in x and z direction: 80,
domain created in NU MEC A

(i) Number of cells in x and z direction: 100,
domain created in C AT I A

(j) Number of cells in x and z direction: 100,
domain created in NU MEC A

Figure G.18: Cp distribution for α= 1◦ and M∞ = 0.86.The left side contains the CP distributions corresponding to the domain created
in C AT I A, while on the right side the CP distributions corresponding to the domain created in NU MEC A are displayed. The airfoil is

created in C AT I A under zero angle of attack, and is set under an angle of attack α= 1◦ in NU MEC A.

132 G. NumecaF i neT M /Open RESULTS

(a) Number of cells in x and z direction:
20, domain created in C AT I A

(b) Number of cells in x and z direction:
20, domain created in NU MEC A

(c) Number of cells in x and z direction:
40, domain created in C AT I A

(d) Number of cells in x and z direction:
40, domain created in NU MEC A

(e) Number of cells in x and z direction:
60, domain created in C AT I A

(f) Number of cells in x and z direction:
60, domain created in NU MEC A

(g) Number of cells in x and z direction:
80, domain created in C AT I A

(h) Number of cells in x and z direction:
80, domain created in NU MEC A

(i) Number of cells in x and z direction:
100, domain created in C AT I A

(j) Number of cells in x and z direction:
100, domain created in NU MEC A

Figure G.19: Cp distribution for α= 1◦ and M∞ = 0.86.The left side contains the CP distributions corresponding to the domain created
in C AT I A, while on the right side the CP distributions corresponding to the domain created in NU MEC A are displayed. The airfoil is

created in C AT I A under α= 1◦.

133

(a) Number of cells in x and z direction:
20, domain created in C AT I A

(b) Number of cells in x and z direction:
20, domain created in NU MEC A

(c) Number of cells in x and z direction:
40, domain created in C AT I A

(d) Number of cells in x and z direction:
40, domain created in NU MEC A

(e) Number of cells in x and z direction:
60, domain created in C AT I A

(f) Number of cells in x and z direction:
60, domain created in NU MEC A

(g) Number of cells in x and z direction:
80, domain created in C AT I A

(h) Number of cells in x and z direction:
80, domain created in NU MEC A

(i) Number of cells in x and z direction:
100, domain created in C AT I A

(j) Number of cells in x and z direction:
100, domain created in NU MEC A

Figure G.20: Cp distribution for α= 1◦ and M∞ = 0.86.The left side contains the CP distributions corresponding to the domain created
in C AT I A, while on the right side the CP distributions corresponding to the domain created in NU MEC A are displayed. The airfoil is

created in C AT I A under α= 1◦, and the aerodynamic forces are decomposed in a x− and z-direction.

BIBLIOGRAPHY

[1] J. John D. Anderson, Fundamentals of Aerodynamics (McGraw-Hill, Avenue of the Americas, New York,
NY, 10020, 2001).

[2] S. S. Ray, R. K. Bera, A. Kiliçman, O. P. Agrawal, and Y. Khan, Analytical and numerical methods for
solving partial differential equations and integral equations arising in physical models 2014, Abstract
and Applied Analysis 2015, 2 (2015).

[3] J. Flores, J. Barton, T. Holst, and T. Pulliam, Comparison of the full-potential and euler fomrulations for
computing transonic airfoil flows, NASA TM (1984).

[4] C. Raymond, Definition of a continuum, Earth & Space Sciences, University of Washington, Course
Notes Glaciology ESS511 (2002).

[5] C. A. Lamah, Application of the Method of Parametric Differentiation to the Solution of the Transonic
Integral Equation, Master of science thesis, Massachusetts Institute of Technology (1982).

[6] Navier-stokes equations, https://www.grc.nasa.gov/www/k-12/airplane/nseqs.html.

[7] S. Koziel and X.-S. Yang, Computational Optimization, Methods and Algorithms (Springer - Verlag
Berlin Heidelberg, 2011).

[8] R. Levicky, Potential flow, NYU Tandon School of Engineering - Handout Bio-interfacial Engineering &
Diagnostics Group.

[9] Applied aerodynamics: A digital textbook,
http://docs.desktop.aero/appliedaero/fundamentals/equations.html.

[10] G. Strang, Calculus (Wellesley - Cambridge Press, Box 82-279 Wellesley MA 02181, 1991).

[11] N. T. Sivenari and W. L. Harris, Numerical soltuion of transonic flows by parametric differentiation and
integral equation techniques, AIAA 18 (1980).

[12] A. Bakker, Applied computational fluid dynamics - meshing, http://www.bakker.org.

[13] L. N. Sankar, Small disturbance equation derivation, Georgia Tech Lecture Notes High Speed
Aerodynamics.

[14] H. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics - The Finite
Volume Method, 2nd ed. (Pearson Education Limited, 2007).

[15] V. K. Garg, Applied Computational Fluid Dynamics (Marcel Dekker, Inc., 270 Madison Avenue, New
York, NY 10016, 1998).

[16] L.N.Sankar and M.J.Smith, Unsteady transonic potential flow, Advanced Compressible FLow II (1995).

[17] T. L. Holst, Transonic flow computations using nonlinear potential methods, Progress In Aerospace
Sciences 1-61 (2000).

[18] N. Sivenari, Transoninc Flows by Parametric Differentiation and Integral Equation Techniques, Master’s
thesis, Massachusetts Institute of Technology (1978).

[19] R. Vos and S. Farokhi, Introduction to Transonic Aerodynamics (Springer, 2015).

[20] D. McLean, Understanding Aerodynamics - Arguing From the Real Physics (John Wiley & Sons, Ltd.,
2013).

135

	Acronyms
	List of Symbols
	Introduction
	Physical Model
	Flow Characteristics
	Airfoil
	Potential Flow

	Mathematical Model
	Transonic Small Disturbance Equation
	Differential Equations
	Integral Equations
	Thickness effect contribution
	Lifting contribution
	Non-linear contribution
	Total set of equations

	Numerical Implementation
	Mesh Structure
	Cell type
	Grid type

	Implementation of Equations
	Summary

	Results
	= 0
	= 0.5
	= 1
	Conclusions
	Limitations

	Verification & Validation
	Verification
	Tools
	Lamah
	Numeca FineTM/Open

	Results

	Validation

	Conclusions & Recommendations
	Classification of Partial Differential Equations
	Derivation TSD and Boundary Conditions
	Derivations for Numerical Implementation of the Governing Equations
	Equation Form of Algorithm
	MATLAB code
	Numeca FineTM/Open Settings
	Numeca FineTM/Open Results
	Bibliography

