

Delft University of Technology

Impact of Data Pre-Processing Techniques on Deep Learning Based Power Attacks

Aljuffri, A.A.M.; Reinbrecht, Cezar; Hamdioui, S.; Taouil, M.

DOI
10.1109/DTIS53253.2021.9505051
Publication date
2021
Document Version
Final published version
Published in
2021 16th International Conference on Design & Technology of Integrated Systems in Nanoscale Era
(DTIS)

Citation (APA)
Aljuffri, A. A. M., Reinbrecht, C., Hamdioui, S., & Taouil, M. (2021). Impact of Data Pre-Processing
Techniques on Deep Learning Based Power Attacks. In 2021 16th International Conference on Design &
Technology of Integrated Systems in Nanoscale Era (DTIS)
https://doi.org/10.1109/DTIS53253.2021.9505051
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/DTIS53253.2021.9505051
https://doi.org/10.1109/DTIS53253.2021.9505051

Impact of Data Pre-Processing Techniques
on Deep Learning Based Power Attacks

Abdullah Aljuffri, Cezar Reinbrecht, Said Hamdioui, Mottaqiallah Taouil
Computer Engineering

Delft University of Technology
Delft, The Netherlands

{a.a.m.aljuffri,c.r.wedigreinbrecht,s.hamdioui,m.taouil}@tudelft.nl

Abstract—Power-based side channel attacks (SCAs) are recog-
nized as a powerful type of hardware attacks. Recently, attacks
based on deep learning (DL) neural networks have become
popular due to their high efficiency. However, even these attacks
face problems when sophisticated countermeasures exist. Pre-
processing the input data is an effective way to improve the
performance of such neural networks. Currently, only limited
research has focused on exploring pre-processing techniques for
DL-based attacks. In this paper, we propose to the best of our
knowledge for the first time the usage of data transformation,
data concatenation and stacked auto-encoder (encoder only) as
pre-processing methods. Thereafter, we compare them with the
existing techniques, namely data augmentation and stacked auto-
encoder techniques. Our results show that the data transfor-
mation technique achieves the best results from the evaluated
methods; it improves the validation accuracy from 75% to
95% and 23% to 26% for the RSA and AES implementations,
respectively.

Index Terms—Side channel attacks, profiled-based attacks,
deep learning, pre-proccessing techniques

I. INTRODUCTION

The importance of cybersecurity grows more and more
every year. Future projections foresee a total market value of
231.94 billion US dollars by 2021 [1]. The main reason relies
on the deployment of new technologies like Internet-of-Things
(IoT) and 5G communication. These technologies significantly
increase the quantity of devices and their connectivity [2].
As a result, such conditions create new opportunities for
cyberattacks. For example, IoT edge nodes are placed in the
field which could be accessible to the public. Hence, attackers
may perform power attacks on them known as Side-Channel
Attacks (SCAs) [3]. SCAs can retrieve secret information
of devices by just observing their physical behavior under
operation (e.g., power consumption, radiation, dissipated heat).
Both symmetric (i.e., systems that use same key for encryption
and decryption) and asymmetric cryptography (i.e., systems
that use different keys for encryption and decryption) are
vulnerable against SCAs. Consequently, SCAs have been
gaining great popularity and their methods have been improved
continuously over time.

Paul Kocher [4] introduced the concept of Simple Power
Attack (SPA) and Differential Power Attack (DPA). These
methods observe the relation of the performed operation in
the power traces. In a further work, a statistical method was
proposed to correlate hypothetical power estimations with the
real consumption. This attack is called Correlation Power
Attack (CPA) [5]. In CPA, leakage models like hamming

weight and hamming distance are used to correlate guessed
keys with the power traces. Both models can be used to
estimate the power behavior of a specific operation, for
instance, the result of the first round of the popular AES
cipher. On the other hand, countermeasures have been pro-
posed to make DPA and CPA attacks less effective [6–8].
In 2002, the concept of profiled attacks was proposed by
Chari et al. [9]. Their attack is referred to as Template Based
Attack (TBA). TBA builds a customized power model of a
device similar to the target device, and correlates the power
measurements of the target device of the victim with the
customized power model. TBA uses the multivariate gaussian
distribution function to build the power profile. However, its
mathematical complexity limits the attack accuracy [10]. To
overcome this drawback, Martinasek et al. [11] proposed in
2013 the usage of machine learning to enhance the profiling
attacks on AES. They used a multilayer perceptron (MLP)
neural network. Initially, they obtained an 80% accuracy
only, but after further optimizations reached a 100% ac-
curacy [12] using a pre-processing technique consisting of
averaging of power traces. Thereafter, Gilmore et al. [13]
presented a profiled attack using MLP model that focused
on symmetric cryptographic algorithms. In 2016, Maghrebi
et al. [10] proposed the usage of Deep Learning in profiled
Side-Channel Attacks. They successfully attacked different
symmetric encryption implementations using a Convolution
Neural Network (CNN). DL-based SCA improved the amount
of traces required to accomplish the attack on both protected
and unprotected symmetric cryptographic algorithms. In 2017,
Cagli et al. [14] used data augmentation (i.e., generating new
input samples to the neural network from the existing power
traces) to further improve the accuracy of DL-based SCAs.
They proposed two strategies to perform data augmentation,
one by using random re-alignment of existing traces and the
other by adding random noise. Note that profiled based side-
channel attacks are less powerful when countermeasures like
power obfuscation and randomized keys are used [15]. Some
of the above deep learning based attacks used pre-processing
techniques to enhance the accuracy. However, a systematic
approach that compares the pre-processing techniques for both
symmetric and asymmetric algorithms is missing, and hence
it is not clear under which circumstances they are useful.

This paper provides a comparison analysis of several pre-
procesing techniques, including three pre-processing tech-
niques which have not been studied yet for DL-based SCAs.

978-1-6654-3654-0/21/$31.00 ©2021 IEEE

	

20
21

 1
6t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
es

ig
n

&
 T

ec
hn

ol
og

y
of

 In
te

gr
at

ed
 S

ys
te

m
s i

n
N

an
os

ca
le

 E
ra

 (D
TI

S)
 |

97
8-

1-
66

54
-3

65
4-

0/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
D

TI
S5

32
53

.2
02

1.
95

05
05

1

Authorized licensed use limited to: TU Delft Library. Downloaded on March 24,2022 at 14:16:10 UTC from IEEE Xplore. Restrictions apply.

Hence, five different methods are explored: i) Data augmen-
tation [12, 14], ii) data transformation [16, 17], iii) data
concatenation [18], iv) stacked auto-encoder [19]; and v)
stacked auto-encoder with encoder only [20]. Note that data
augmentation and stacked auto-encoder are already applied in
the literature. Data transformation has been explored in some
power attacks like CPA [16] and MLP-based [17], but not
yet in DL-based attacks. The other two techniques come from
the image processing field due to their outstanding results. To
our best knowledge, this three methods are for the first time
applied in DL-based SCAs. The main contributions of this
work are:

• Proposal of data transformation using wavelet transform
to improve DL-based SCAs.

• Proposal of data concatenation by augmenting the orig-
inal trace with its fast Fourier transformation (FFT) to
improve DL-based SCAs.

• Proposal of stacked auto-encoder using the encoder only
to improve DL-based SCAs.

• Comparison of the proposed techniques with the state-of-
the-art for both symmetric and asymmetric ciphers.

This paper is organized as follows. Section II provides a
background on DL-based SCAs. Section III describes the pre-
processing techniques. Section IV provides the experiments
and their results. Section V discusses and concludes this paper.

II. DEEP LEARNING BASED SIDE CHANNEL ATTACKS

DL-based SCAs follow the same steps used in the conven-
tional profiled-based attacks [9], i.e., they consist of a profiling
and extraction phase [10]. Both phases are explained next.

A. Profiling Phase

In this phase, the attacker creates a behavioral model of the
selected target device using a similar or identical device that
he/she fully controls. This phase works as follows:
Step 1: In this step, the attacker searches for a sample device
that is similar to the target device.
Step 2: The attacker chooses and locates an intermediate
point of attack (e.g., SubByte operation in AES or exponent
operations in RSA).
Step 3: The attacker records multiple power traces of the
selected target operation.
Step 4: The attacker designs a deep learning neural network
and trains it to characterize the traces. To be able to train the
deep learning neural network, the attacker needs to associate
each collected trace during Step 3 with a label. The label
can be calculated differently based on the used cryptographic
algorithm. For example, the common label for AES is the
hamming weight of the SubByte operation’s output [10], while
RSA typically uses the main operations as labels, namely
square and multiply [21].
Step 5: Finally, the attacker constructs a neural network
and trains it. The attacker first needs to define the structural
parameters (e.g., depth, width, activation function) of the
neural network. Thereafter, training is performed on the traces
collected during Step 3 with the associated labels calculated
in Step 4. To train the neural network, the attacker divides the

Fig. 1. Baseline CNN with its hyper-parameters

dataset (i.e., traces and their labels) into a training set (nor-
mally 80% to 90% of the complete dataset) and a validation
set. The training and validation phases are completed when
the attacker achieves an acceptable accuracy level.

B. Extraction Phase
The attacker aims to recover the secret information from the

target device during this phase using the following steps:
Step 1: The attacker identifies the target device. This device
has to be similar to the profiled one.
Step 2: The attacker locates the intermediate operation, i.e.,
the operation used to train the neural network during the
profiling phase. For instance, the SubByte of AES algorithm.
Step 3: The attacker generates a new set of traces on the target
device for the intermediate operation. Note that in asymmetric
algorithms, traces are divided based on their main operations
(i.e., square and multiply for RSA), while such a partitioning
is not needed for symmetric algorithms.
Step 4: The attacker predicts the key of the newly generated
traces using the previously trained neural network. The result
of this step is the label of the intermediate operation. This
label is a binary value for the RSA algorithm or the leakage
model value (i.e., hamming weight) for AES algorithm.
Step 5: Finally, the attacker reveals the secret key information.
In asymmetric algorithms, the key is recovered bit by bit
based on the predicted operations. In order to recover the full
key, the retrieved bits have to be concatenated either from
left to right or right to left based on the algorithm used.
Symmetric algorithms require more steps, as the predicted
leakage model value has to be converted from the hamming
weight to a sub-key value. This extra task is shown in Algo-
rithm 1. After calculating the probability of the target traces
and knowing the plaintext/ciphertext used in the algorithm
encryption/decryption process, the subkey is retrieved next.
To guess a subkey value, for every plaintext/ciphertext in pt
array we loop over all possible subkey scenario subkey = 0
to 255 and calculate the leakage model results of that subkey.
Based on the output of the leakage model, we select the
corresponding probability from the prediction array and add
it to the probability array. The key probability results are
accumulated for each element in the pt and Prediction arrays.
The subkey with highest probability is selected as subkey. The
previous process is repeated for each subkey.

III. PRE-PROCESSING TECHNIQUES

This section describes first our reference deep neural net-
work. We refer to this reference DL model as baseline CNN.
Thereafter, it describes the five pre-processing techniques

!

!

Authorized licensed use limited to: TU Delft Library. Downloaded on March 24,2022 at 14:16:10 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Symmetric Extract Key bytes
1: procedure KEY EXTRACT(Predictionset, ptarray)
2: Pk[0, 255] = key probability
3: Prediction = the results of the trained model on the

attack traces
4: pt = is the plaintext used in the encryption process.
5: for each sub-key do
6: Pk[0, 255] = 0
7: for j in trace-set do
8: X0,255 = predict(trace)
9: for k=0 to 255 do

10: HWk = HW (SBOX[pt[j]
⊕

k])
11: Pk[k] = Pk[k] + log(Predictionj [HWk])
12: end for
13: end for
14: guesssubkey = max(Pk)
15: end for
16: end procedure

which we divide into two types: traditional pre-processing
techniques and neural network based approaches.

A. Baseline CNN

The baseline CNN is the reference neural network used for
comparison when the pre-processing techniques are applied.
The baseline itself does not use any pre-processing technique,
which means that its inputs are the raw data values obtained
from the collected power traces. As observed in Figure 1, the
baseline CNN consists of 9 layers in total. The number of
neurons in the first layer matches the trace length. Thereafter,
it contains six convolutional layers, ReLU activation functions,
and pooling layers. Note that for simplicity that several layers
are presented together in the figure. Each of these layers
contains a filter whose size is depicted on the top of the
respective layer. For example, the first layer presents 64 filters.
In the sequence, the pooling layer reduces the data width by a
factor of 3. Note that the minimum layer width is equal to or
greater than one. As the data goes through the network, more
filters are added. Although the 7th layer in the figure comprises
much more filters than the first layer, its width is much less
due to the pooling layers involved in the process. The last
part of the CNN consists of a flatten and a Softmax layer.
The flatten layer converts the tensor representation (i.e., multi-
dimensional matrix) of the data used in the previous layers to
a single dimension vector representation. The Softmax layer
is the final layer of the neural network and consists of 9
output neurons used to distinguish between the 9 classes for
AES. These 9 classes represent the prediction probabilities of
different hamming weights or hamming distances. A similar
neural network is constructed for RSA that contains 2 output
neurons.

The training parameters are shown in Table I. Glorot [22]
is the first parameter. Glorot is a sophisticated technique (as
compared to e.g., random initialization) that initializes weights
based on the width of its preceding and successive layers.
Thereafter, the loss function is defined by the categorical

TABLE I
TRAINING RELATED HYPER-PARAMETERS USED FOR CLASSIFICATION

Training hyper-parameters Baseline CNN SdAE + CNN SdAE v2 + CNN
Initialization Glorot Glorot Glorot
Loss Function categorical binary and binary and

categorical categorical
Optimization Adam Adam Adam
Regularization Dropout (0.5) Dropout (0.5) Dropout (0.5)

entropy technique to compute the error function. The third
parameter applies Adam optimization [23], which is a special
technique that uses adaptive learning rates for each parameter
and typically gives good results. Lastly, dropout is used to
regularize the neural network; a dropout ratio of 50% is
selected. Note that other dropout ratio values may be used.
However, 50% typically provides good results [24].

B. Traditional Pre-Processing Techniques

Three traditional pre-processing techniques are described in
this subsection. They are data augmentation, data transforma-
tion and data concatenation.

1) Data Augmentation: This technique was already pro-
posed by the authors in [12, 14]. It uses the average of traces
to improve the extraction of the most meaningful features. All
traces belonging to the same group, i.e., with the same ham-
ming weight, are averaged to remove noise and misalignment
between them and hence a cleaner version can be obtained.
The traces that contain the average values for each hamming
weight are replicated in such a way that they form half of the
total number of traces for each hamming weight. Subsequently,
random noise is added to those clean traces. Finally, the
baseline CNN is trained using both the original traces (50%
of the total traces) and the newly generated traces (the other
50% of the total traces). Note that the newly generated traces
have the same label classifier (i.e. the same hamming weight)
as the traces they were based on. The training phase is stopped
when the accuracy of the model does not increase anymore.

2) Data Transformation: This technique aims to provide
the CNN with a different data representation of the training
set [25]. Our method applies a wavelet transformation for each
power trace. The neural network is subsequently trained with
only the wavelet samples with its associated labels calculated
from their original counterparts. The model is trained until the
accuracy saturates.

3) Data Concatenation: This technique aims to expand the
data provided to the CNN [18]. By mixing different data
representations of the same training set, improvements in
prediction accuracy are expected. Our technique combines the
FFT representation and the original trace to be represented
as a single input. The model is trained until no further
improvements are observed with respect to the accuracy.

C. Hybrid Neural Networks

In this subsection, two hybrid neural networks are presented.
Each contains the baseline CNN preceded with another neural
network; they are referred to as the SdAE + CNN and SdAE
v2 + CNN. SdAE refers to the Stacked Denoising Autoen-
coder [26], while the SdAE v2 to the same SdAE but with

!

!

Authorized licensed use limited to: TU Delft Library. Downloaded on March 24,2022 at 14:16:10 UTC from IEEE Xplore. Restrictions apply.

the encoder part only. The Stacked Denoising Autoencoder
consists of an encoder and decoder and one of its main purpose
is to filter input samples to enhance the quality. For example,
SdAE has been used successfully to solve problems related to
image colorization and noise reduction [26]. Another benefit
of SdAE is that the encoding results in a lower dimension
data, i.e., a compressed format of the input sample with a
smaller number of points. On the other hand, the decoding
part reconstruct the information to its original dimensions.
This method has two main benefits. First, the encoding part
compresses the data and extracts the most meaningful points
in the trace. Note that the decoder decompress the compressed
features to the full trace. Second, the SdAE can constructed
in such a way that it restores missing parts or remove noise of
traces. Next, we describe both hybrid networks in more detail.

1) SdAE + CNN: : In this strategy, the goal is to remove
noise and misalignment of the input samples by training the
SdAE. Two steps are required to achieve such results. First,
the data-set is divided into groups (i.e., classes) based on
their hamming weight. Second, the average of the traces is
taken for the all input samples within the same group. The
assumption here is that these average traces are much cleaner.
Subsequently, the SdAE is trained with the normal input
samples, but the error at the output is calculated using the
average trace values. Once the training is completed, the result
of the SdAE is classified using the CNN model. The overall
training procedure of this approach consists of the following
two phases:
Phase 1 - Training the SdAE model: In this phase, the SdAE
is trained to reconstruct the power trace without noise and
misalignment issues. This is achieved by using the data (i.e.,
recorded power traces) as input data-set to the train model,
while using the average trace to calculate the loss function.
After this training step reaches an acceptable accuracy, the
next phase can start.
Phase 2 - Training the CNN model: In this phase, the output
of the trained SdAE is connected as an input to the CNN
model. Subsequently, the training mode of the weights and
biases is switched off for the SdAE part of the hybrid network.
Finally, the hybrid model (SdAE + CNN) is trained (i.e., only
the CNN part) using the recorded power traces as input, while
their hamming weights are used as the labels to calculate the
error. The training stops when the accuracy saturates.

2) SdAE v2 + CNN:: This approach aims at exploring the
usefulness of the encoded version of SdAE; note that this
encoded version holds the most important characteristics of
the input trace. In this phase, the pre-processing based on trace
averaging is not needed. Instead, the SdAE is trained based
on the original data. After the training is completed, only the
encoder part of the SdAE is connected to the CNN as shown
in Figure 3. The training process is also performed using two
phases:
Phase 1 - Training the SdAE model: In this phase, the
SdAE is trained similarly to the previous approach. However,
the input data (i.e., the power traces) is used to compute the
error at the output during training. After the training reaches
an acceptable accuracy, the encoder part is removed from the
SdAE.

Fig. 2. SdAE + CNN and their hyper-parameters

Fig. 3. SdAE v2 + CNN and their hyper-parameters

Phase 2 - Training the CNN model: In this phase, the trained
encoder part is connected to the input layer of the CNN.
Subsequently, the training for the SdAE encoder is switched
off, i.e., their weights and biases are fixed to make sure that
they are not adjusted during the training process of the hybrid
model. After that, the hybrid model is trained (i.e., only the
CNN part is being updated).

The structural related hyper-parameters of both approaches
SdAE + CNN and SdAE v2 + CNN are illustrated in Figure
2 and Figure 3, respectively. Note that the CNN in Figure 2
is exactly the same as the one used in Figure 1, as the output
layer in the SdAE has the same width as its input layer. The
CNN in the hybrid neural network of Figure 3 is based on
the same concept as the one in Figure 1, but its input width
is smaller as the encoder of the SdAE compressed the data.
More properties of both hybrid neural networks can be found
in Table I.

IV. EXPERIMENTAL RESULTS

This section presents the experimental setup, performed
experiments and the results.

A. Setup
The experiments are conducted in two parts. In the first

part, we evaluate the pre-processing techniques based on the
mathematical approaches described in Subsection III-B. In the
second part, we test the accuracy of the hybrid neural networks
described in Subsection III-C. Both parts are evaluated using
four different power traces; two are from AES cryptographic
algorithms and two from RSA cryptographic algorithm. Their
key characteristics are summarized in Table II and explained
next:

1) DPA Contest V2 [27]: The traces in this training set are
based on AES using a 128-bit key size. These traces are
provided by DPA Contest V2; an open source framework

!

!

Authorized licensed use limited to: TU Delft Library. Downloaded on March 24,2022 at 14:16:10 UTC from IEEE Xplore. Restrictions apply.

TABLE II
UTILIZED POWER TRACES AND THEIR CHARACTERISTICS

Traces Crypto (key size) Platform Trace length
DPA Contest V2 Unprotected AES (128) Hardware 3250 points
ChipWhisperer 1 Unprotected AES (128) Software 3000 points
ChipWhisperer 2 Protected RSA (512) Software 3000 points
Pinata Protected RSA (512) Software 8000 points

that allows developers to compare their implementation
attacks using a common benchmark. The traces represent
a hardware implementation of the decryption process.
In these traces, no countermeasures against side channel
attacks have been used. Each trace consists of 3250 data
points.

2) ChipWhisperer 1 [28]: Similar to the previous data
set, the traces here are also based on a non-protected
AES encryption implementation with a 128-bit key size.
However, here a software implementation is used in-
stead. The data has been recorded using ChiphWhisperer
tool which is an open-source tool for side-channel power
analysis and glitching attacks. ChipWhisperer-Lite kit-
board is used to measure the traces. The length of each
recorded trace equals 3000 points.

3) ChipWhisperer 2: Unlike the first two types of traces,
the traces in this training set are based on an asymmetric
algorithm. Here traces are used of a 512-bit key soft-
ware implementation of the asymmetric cryptographic
algorithm RSA. The traces are collected on the same
platform used for the ChipWhisperer 1 data set. The
trace length is 3000 points.

4) Pinata [29]: A similar RSA software implementation
has been used for this data set as ChipWhisperer 2. The
difference is that the Pinata board from Riscure [30] is
used for collecting the traces. Each trace contains 8000
sample points.

The ChipWhisperer data sets are measured in a controlled
environment and hence provides cleaner traces. The other two
data sets have been gathered from an uncontrolled environment
which might come with certain restrictions.

B. Results of Traditional Pre-Processing Techniques
Table III provides the accuracy analysis results of the

traditional based pre-processing techniques. The techniques
are applied on both symmetric and asymmetric data sets.

For the symmetric data sets, the table shows the training
accuracy, validation accuracy, and the maximum rank. The
rank specifies how close the guessed key is to the correct key.
A key rank of 0 means that the correct key has been guessed,
while a key rank of 255 means that the correct key has the
lowest guess probability. The lower the key rank, the more
successful the attack is. From the table it can be observed that
for DPA contest V2 the pre-processing techniques significantly
improve the results. The data transformation technique (i.e.,
wavelet transformation) does not only improve the training
and validation accuracy but more importantly, reduces the key
rank from 17 to 2. The data augmentation also improved the
neural network accuracy but ended up in a slightly higher
rank (i.e., 5). The third pre-processing technique, i.e., data

TABLE III
PRE-PROCESSING TECHNIQUES COMPARISON AND RESULTS.

Evaluated
Technique Step AES Evaluation (15 byte) RSA Evaluation

DPA Contest v2 CW 1 Pinata CW 2

Baseline
CNN

Training 33.7% 98.62% 99.9% 100%
Validation 23.5% 80% 75% 100%
Final Rank 17 Rank 0 80% 100%

Data
Augmentation

Training 41.14% 98.78% 98.9% 100%
Validation 27.5% 60% 75% 100%
Final Rank 5 Rank 0 70% 100%

Data
Transformation

Training 40.17% 99.3% 99% 100%
Validation 26.02% 85% 95% 100%
Final Rank 2 Rank 0 94% 100%

Data
Concatenation

Training 30.1% 98.12% 33% 100%
Validation 25.7% 70% 34% 100%
Final Rank 32 Rank 0 33% 100%

SdAE
Training 37% 90% 99.8% 100%
Validation 29.5% 80% 95% 100%
Final Rank 80 Rank 0 90.1% 100%

SdAE v2
Training 28.1% 90% 98.6% 100%
Validation 24.6% 70% 94.3% 100%
Final Rank 58 Rank 0 92.3% 100%

0 2000 4000 6000 8000 10000 12000
Number of traces

0

50

100

150

200

250
Co

rre
ct

 k
ey

 c
an

di
da

te
 ra

nk
Baseline
Data augmentation
Data concatenation
Data transformation

Fig. 4. AES key rank analysis for pre-processing techniques

concatenation, actually worsened the results.The rank analysis
results of the four techniques on DPA contest V2 data set
are shown in Figure 4. The figure shows clearly that the data
transformation has a strong positive impact on the accuracy
of the attack. Note that it was difficult to see the effect of the
pre-processing techniques on the ChipWhisperer 1 data-set, as
the results of the baseline was already good.

For the asymmetric data set, instead of the key rank, the
percentage of the key recovery is used. We refer to it as
success rates. The results are similar to the symmetric data-
set; the data transformation technique showed a significant
improvement as compared to the baseline results, i.e., a
success rate improvement from 75% to 95% for the Pinata
traces. Here, the data augmentation has a marginal impact
on the results, and the data concatenation technique again
impacted the results negatively. Note that again no differences
have been observed for the ChipWhisperer 2 traces.

C. Results of Hybrid Neural Networks Pre-Processing Tech-
niques

Table III also provides the results analysis of the SdAE
and SdAE v2 pre-processing techniques. Similarly to the
traditional techniques, the results of both AES and RSA for the

!

!

Authorized licensed use limited to: TU Delft Library. Downloaded on March 24,2022 at 14:16:10 UTC from IEEE Xplore. Restrictions apply.

chipWhisperer platform did not provide distinguishable results
as the traces were already clean to start with. However, for
the DPA contest V2 and Pinata traces, both hybrid networks
were able to improve the validation accuracy. Despite this
improvement, the rank analysis shows that these techniques
did not improve the attack. In case the hyper-parameters of
these hybrid neural networks are changed they will most likely
perform better.

V. CONCLUSION AND DISCUSSION

This paper presented an investigation of different pre-
processing techniques on the accuracy of deep learning based
side channel attacks. Results showed that applying such tech-
niques could improve the attack accuracy considerably. From
the investigated techniques, data transformation and the hybrid
neural networks strategies showed the biggest improvement.
From this work, we conclude the following:
Impact of Pre-processing: As shown in the results, pre-
processing techniques are able to improve the results in many
cases. However, depending on the target device and attack
environment, different pre-processing may fit better. Overall,
pre-processing techniques could have a positive impact and
hence should be considered during attacks. Designers should
use this information to make stronger countermeasures.
Suitability in Uncontrolled Environments: It is very difficult
to guarantee that all conditions and equipment involved in a
side channel attack are optimal, with the exception of labo-
ratorial research experiments. Hence, it is natural to assume
that any practical attack will have limited controllability. Our
results showed that pre-processing techniques could have an
added benefit when the attacker does not control the attack
environment.
Non-profiled DL-based SCas: Recently, Benjamin
Timon [31] presented a successful non-profiled side channel
attack using deep learning. Non-profiled attacks are interesting
techniques as they do not require a similar/identical device
to build the profiles. Hence, it is expected that more novel
non-profile based attacks based on deep learning will be
proposed in the future. The pre-processing techniques applied
in this paper could also be considered in a similar manner for
the non-profiled neural networks.

Acknowledgments. This work was labelled by the EUREKA
cluster PENTA and funded by Dutch authorities under grant
agreement PENTA-2018e-17004-SunRISE.

REFERENCES

[1] Markets and Markets, “Cybersecurity Market worth
231.94 Billion USD by 2022,” Available at:
https://www.marketsandmarkets.com/PressReleases/cyber-security.asp,
Last access: 2019-09-23.

[2] Juniper Research, “Internet of Things Connected Devices to
Triple by 2021, Reaching Over 46 Billion Units,” Available at:
https://www.juniperresearch.com/press/press-releases/internet-of-things-
connected-devices-to-triple-b, Last access: 2019-09-23.

[5] E. Brier, C. Clavier, and F. Olivier, “Correlation Power Analysis with a
Leakage Model,” in CHES, 2004.

[3] A. A. Pammu et al., “Interceptive side channel attack on AES-128
wireless communications for IoT applications,” APCCAS, 2016.

[4] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in
CRYPTO’ 99, 1999.

[6] J.-S. Coron et al., “Higher-Order Side Channel Security and Mask
Refreshing,” in Fast Software Encryption, 2014.

[7] K. Tiri et al., “A dynamic and differential CMOS logic with signal
independent power consumption to withstand differential power analysis
on smart cards,” in ESSCIRC, 2002.

[8] F. Durvaux et al., “Efficient Removal of Random Delays from Embedded
Software Implementations Using Hidden Markov Models,” in CARDIS,
2013.

[9] S. Chari, J. R. Rao, and P. Rohatgi, “Template Attacks,” CHES, 2003.
[10] H. Maghrebi, T. Portigliatti, and E. Prouff, “Breaking Cryptographic

Implementations Using Deep Learning Techniques,” 2016.
[11] V. Zeman and Z. Martinasek, “Innovative Method of the Power Analy-

sis,” in Radioengineering 22, 2013.
[12] Z. Martinasek, J. Hajny, and L. Malina, “Optimization of Power Analysis

Using Neural Network,” in CARDIS, 2014.
[13] R. Gilmore, N. Hanley, and M. Oneill, “Neural network based attack on

a masked implementation of aes,” HOST, 2015.
[14] E. Cagli, C. Dumas, and E. Prouff, “Convolutional Neural Networks

with Data Augmentation Against Jitter-Based Countermeasures,” in
Cryptographic Hardware and Embedded Systems – CHES 2017, 2017.

[15] H. Maghrebi, “Deep Learning based Side Channel Attacks in Practice,”
IACR Cryptol. ePrint Arch.

[16] N. Debande et al., “Wavelet transform based pre-processing for side
channel analysis,” 2012.

[17] P. Saravanan et al., “Power analysis attack using neural networks with
wavelet transform as pre-processor,” in 18th International Symposium
on VLSI Design and Test, 2014, pp. 1–6.

[18] N. Noreen et al., “A deep learning model based on concatenation
approach for the diagnosis of brain tumor,” IEEE Access, pp. 55 135–
55 144, 2020.

[19] L. Wu and S. Picek, “Remove some noise: On pre-processing of
side-channel measurements with autoencoders,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, pp. 389–415, Aug.
2020.

[20] L. Macas-Garca et al., “A study of the suitability of autoencoders for
preprocessing data in breast cancer experimentation,” J. of Biomedical
Informatics, p. 33–44, 2017.

[21] M. Carbone et al., “Deep learning to evaluate secure rsa implementa-
tions,” IACR Transactions on Cryptographic Hardware and Embedded
Systems, pp. 132–161, 2019.

[22] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in AISTATS, 2010.

[23] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
2014. [Online]. Available: http://arxiv.org/abs/1412.6980

[24] P. Baldi and P. J. Sadowski, “Understanding dropout,” in Advances in
Neural Information Processing Systems. Curran Associates, Inc., 2013.

[25] F. Xiao et al., “Maximal overlap discrete wavelet transform and deep
learning for robust denoising and detection of power quality distur-
bance,” IET Generation, Transmission Distribution, vol. 14, pp. 140–
147, 2020.

[26] S. Bigdeli and M. Zwicker, “Image restoration using autoencoding
priors,” 2017.

[27] VLSI Research Group – COMELEC Department of the
Telecom ParisTech, “DPA Contest v2,” Available at:
http://www.dpacontest.org/v2/index.php, Last access: 2019-09-23.

[28] NewAE Technology Inc, “Chipwhisperer-Lite two part board,” Available
at: http://store.newae.com/chipwhisperer-lite-cw1173-two-part-version/,
Last access: 2020-01-31.

[29] Riscure, “The CHES 2018 Challenge,” Available at:
https://chesctf.riscure.com/2018/news, Last access: 2020-02-15.

[30] Riscure, “Pinata board,” Available at:
https://www.riscure.com/product/pinata-training-target/, Last access:
2020-01-31.

[31] B. Timon, “Non-Profiled Deep Learning-based Side-Channel Attacks
with Sensitivity Analysis,” TCHES, 2019.

!

!

Authorized licensed use limited to: TU Delft Library. Downloaded on March 24,2022 at 14:16:10 UTC from IEEE Xplore. Restrictions apply.

		2021-08-06T17:10:37-0400
	Preflight Ticket Signature

