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Abstract

Determining protein subcellular location is important for understanding cellular
functions and biological processes of underlying diseases. High throughput fluorescence
images can be used in combination with convolutional neural networks to predict this
location. In this work we propose a hierarchical model which uses prior knowledge
of proteins to divide the samples in general groups before predicting the subcellular
location. Results show mixed results with significant improvements for some labels
and a decline in results for others.

1 Introduction
Knowing the subcellular location of proteins within human cells can help in determining
and understanding protein functions. This helps researchers in the understanding of com-
plex diseases like cancer and Alzheimer’s [1]. With the help of the human cell atlas [2]
a large amount of data has become available. This data consists of microscopy images of
human cells where the proteins and some reference locations are highlighted with the use
of immunofluorescence. An example of such an image is shown in Figure 1. The classical
method to examine these images is tedious and time-consuming. There are other methods to
predict protein localization, these methods usually work with amino acid sequences instead
of microscopy images. To the best of our knowledge there currently is no sufficiently good
automatic system available to predict protein localization based on microscopy images.

The research of the use of Convolutional Neural Networks (CNNs) to predict protein
location in cells is a new and ongoing research subject. There are a few examples of CNNs
being used to predict the protein location in human cells [3, 4], a few more for predicting
in yeast cells [5, 6, 7, 8] and recently there has been a kaggle competition [9] to spark
interest and increase the amount of attention focused on this issue. So far all the research
has been into improving a single network to fit the main challenges of the data. These
are underrepresented classes, weakly annotated data and the variance of protein locations.
These challenges will be discussed in depth in a later section.

The microscopy images of the human cell atlas have up to 33 different labelled locations
where the protein could localize to. These locations are correlated, they have a very clear
property which can be used: the locations can be grouped in three general locations: Cyto-
plasm, Secretory and Nucleus (Figure 1). This grouping is based on the general areas in a
human cell according to the protein atlas [10]. These locations are a very simple but useful
way of grouping the data and the correlation between locations is a important form of prior
knowledge.
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Nucleus Cytoplasm Secretory
Nuclear membrane
Nucleoli
Nucleoli fibrillar center
Nuclear bodies
Nuclear speckles
Nucleoplasm

Actin filaments
Focal adhesion sites
Centrosome
Microtubule organizing center
Aggresome
Cytoplasmic bodies
Cytosol
Rods & rings
Intermediate filaments
Cleavage furrow *
Cytokinetic bridge
Microtubule ends
Microtubules
Midbody *
Midbody ring *
Mitotic spindle
Mitochondria

Endoplasmic reticulum
Golgi apparatus
Cell junctions
Plasma membrane
Secreted proteins
Endosomes
Lipid droplets
Lysosomes
Peroxisomes
Vesicles*

Table 1: All the labels from the cell atlas, grouped in the three larger locations: Nucleus,
Cytoplasm and Secretory. The locations with a star (*) are not in the kaggle dataset.

To the best of our knowledge no one has tried to incorporate the prior knowledge of
protein localization in combination with the immunofluorescence images. The use of prior
knowledge in Neural Networks is an active research area and it has been shown that it some-
times can be effective at improving the results [11]. An advantage of using prior knowledge is
that it can reduce the data dependency of CNNs. The prior knowledge will help in detecting
patterns where there is not enough data for the network to find these by itself.

The aim of this research is to investigate whether the predicted protein location can be
improved with the use of prior knowledge. The way this will go is by using the grouping to
train different CNNs for the sub classes. An advantage of using specialized networks is that
these networks can focus on the small difference between similar classes. A large network
that has to predict for all classes will be worse in distinguishing small differences between
similar classes. Specialized networks can train specifically on the differences between the
similar classes and will therefore be better at distinguishing them. An illustration of this
idea can be seen in figure 3

In this paper we propose a model that uses a Hierarchical CNN structure to incorporate
prior knowledge. The results are mixed with some classes performing better and other
performing worse.

2 Methodology

2.1 General Idea
The approach to incorporating prior knowledge will be by grouping the protein based on
labels that are related. The grouping can be seen in Table 1. First a network (stage 1)
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Figure 1: A sample from The Cell Atlas with the channels shown side-by-side. In green(A):
target protein; in red(B): microtubules; in blue(C): nucleus; In yellow(D): endoplasmic
reticulum.

will have to decide in which of the general locations (Nucleus, Cytoplasm or Secretory) the
protein of interest is localized. After this a different network (stage 2) that is trained on
only samples from the general location will be used to classify the more accurate subcellular
location. In the case where the the stage 1 network predicts multiple locations the labels
from the stage 2 networks will be added together to create a multi label prediction (Figure
3.

2.2 Data
The data used are the immunofluorescence images from the Cell Atlas [10]. The specific
samples were acquired from the kaggle competition page [9]. Every sample consists of 4
different images as can be seen in Figure 1. There is one image highlighting the protein
of interest (A). The other three are reference images highlighting the micro-tubules (B),
nucleus (C) and endoplasmic reticulum (D). In total, there are 31.072 samples, each one
consisting of the four different images, and a list of labels that belong the the sample. We
do not know the name of the protein that is being marked, so this can not be utilized in the
prediction.

The kaggle dataset does not have all the labels that are in the human cell atlas. They
only have 28 labels instead of the complete 33. The data set itself still has the same
difficulties as the data from the Cell Atlas, these challenges are: underrepresented classes,
weakly annotated data and the variance of protein locations.

Underrepresented classes: The locations and thus the labels are not evenly repre-
sented in the data. A plot of the location distribution can be seen in Figure 2A. This
class imbalance is problematic because the network will have many samples of the major-
ity classes to train on, it will however not have enough samples to train at classifying the
minority classes. This will cause the model to become biased towards the majority classes.
To combat this class imbalance, the samples which do not occur at least 1% are filtered.
This means removing seven (Rods & Rings, Microtubule ends, Lysosomes, Endosomes, erox-
isomes, Lipid droplets and Mitotic spindle) least occurring classes from the data set.

Weakly annotated data: The weak annotation in this setting is the fact that an
image contains multiple cells, and possibly has multiple labels. This is a challenge because
the subcellular localization of the protein in the cells in the same sample image might vary.
This means that some labels might only apply to a few cells and not all of them. This makes
it harder for the network to detect the correct patterns and classify the images correctly. As
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Figure 2: A. Label distribution in the kaggle data set. It shows a large class imbalance.
From 12885 samples for Nucleoplasm to 11 for Rods & Rings. B. Amount of labels for each
sample. More than half the samples have multiple labels.

a consequence of this, it is not suitable to apply some data augmentation methods such as
multiple cropping from input image since the cropped part might not include all the labels
of full image.

Varience in protein location: Proteins do not only localize to only one subcellular
location. Stadler et al. found that 60% of the proteins they were investigating localized to
multiple locations [12]. Because the proteins can move around and the images are single
snapshot of the cell it is possible for the same cell contains protein in multiple locations.
Therefore it is important to do a multi label prediction for the subcellular localization.
Figure 2B shows the number of labels for each sample in the kaggle dataset. It is clear that
only half of the proteins localize to only one location.

During the preprocessing phase the pixel values of the images were normalized to values
between 0 and 1, then the pictures were scaled down to a size of 256x256. Out of the data
set the labels with less than 1% representation were removed. This removed 7 labels to
result in 21 labels total. This resulted in a total of 30.560 samples, which are randomly
split into test, training and validation sets. 60% of the data is used for training, 20% for
validation and 20% for testing.

2.3 Models
To be able to compare the performance of the proposed model, there needs to be a baseline
to compare with. The main focus of this research is to improve the classification by using
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the prior knowledge. To be able to compare the influence of the prior knowledge, it means
that both the baseline and the proposed model need to be similar, with the only difference
being the added prior knowledge.

The baseline model uses the ResNet18 [13] model adapted for multi label classification.
ResNet is chosen because it is allows to train deep networks with great success [14]. An-
other advantage of using ResNet is that the model trains relatively fast. This input layer was
adapted to fit the 4 layer input images. The loss function used was MultiLabelSoftMargin-
Loss in combination with a multi label binary output format. This loss function creates
a criterion that optimizes a multi-label one-versus-all loss based on max-entropy, between
input x and target y.

l(x, y) = −
i∑
n

(yilog(
exp(xi)

1 + exp(xi)
) + (1− yi)log(

1

1 + exp(xi)
(1)

To generate predictions the output of the network was fed into a sigmoid function. A
sigmoid function maps the input x to a value between 0 and 1. The final predictions where
then made by applying a threshold of 0.5 to the output of the sigmoid: Every label with a
value above 0.5 was classified as present and every label below was classified as not present.

S(x) =
ex

ex + 1
(2)

The proposed model (Figure 3) consists of a multiple ResNet models. First the model
(Stage 1) will distinguish between the three general labels: Nucleus, Cytoplasm and Secre-
tory. Important to note is that because the classification problem is multi label, it has to
be possible that a sample will classify into multiple of these three classes. After the general
class is determined the sample image is fed into (at least) one of the three specialized mod-
els (Stage 2) corresponding to the correct class. These stage 2 models are again ResNet18
models but they are trained on the subset of samples where at least one of the labels fits
within the general class. For example the stage 2 Nucleus network. This network will train
on all the samples from the training set that contain at least one label (e.g. Nucleoli fibrillar
center) that belongs to the general class of nucleus. The output of the stage 2 models is
added together to give the final multi label prediction for the sample.

For the stage 1 network there are two different approaches. Approach one where the
general locations are translated into 7 different outputs, one class for each combination of
large locations (Nucleus, Cytoplasm, Secretory, Nucleus & Cytoplasm, Nucleus & Secretory,
Cytoplasm & Secretory, Nucleus & Cytoplasm & Secretory). This network does a single
label prediction, so it can be trained with the cross entropy loss function.

−
M∑
c=1

yo,c log(po,c) (3)

Where:

• M is the number of classes.

• y is a binary indicator (0 or 1) if class label c is the correct classification for sample o

• p is the predicted probability sample o is of class c
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Figure 3: The baseline model and the proposed model. The baseline consists of one ResNet18
with a sigmoid function after the last fully connected layer. The proposed model consists of
multiple ResNet18 classifiers.

The second approach is to have the stage 1 network do multi label classification, this
network again uses the MultiLabelSoftMarginLoss and the sigmoid function as described
above.

The stage 2 network will have to do multi label prediction, so it will use MultiLabelSoft-
MarginLoss as loss function. The stage 2 network has two approaches as well; Approach one
is to train these networks on the specific samples that belong to that network. Approach
two does the same but also includes an additional label ’other’. This ’other’ label has the
purpose to allow for corrections when the stage 1 network makes a mistake. To be able
to train the ’other’ class, new samples were added to the training set. These samples were
randomly chosen out of all the samples that did not contain any of the current network’s
labels. For example when training the stage 2 Nucleus network, a sample with labels Cyto-
plasmic bodies and Cytosol would be added as a sample with label ’other’. For every stage 2
network the amount of ’other’ samples was determined by taking the average of the number
of samples.

To increase traing speed, the stage 2 networks are trained with the use of transfer learn-
ing. Transfer learning is a technique used to speed up training. Instead of training the stage
2 networks from scratch, they started with the weights of the stage 1 network. The last fully
connected layer was adapted to suit the required amount of labels.

2.4 Training
In the training phase, early stopping was implemented. Every epoch the validation loss was
checked. If it was the lowest loss the model weights would be stored. If the validation loss
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was higher than a previous value a counter started. If the loss did not get to a new low in 6
epochs the model’s weights were reset back to the values that gave the lowest validation loss.
Then learning rate was reduced by a factor 10. If then in the next 6 epochs the validation
loss did not go lower than the current best the training was terminated and the model with
the lowest validation loss was stored.

2.5 Evaluation Metrics
Comparing the results of the baseline and the proposed model will be in recall, precision
and F1 score. Recall is a measure to calculate the fraction of a class that the network is able
to identify. Precision calculates the fraction of predictions that is correctly identified. The
F1 score combines these two values to give an overall insight in performance of the network

Recall =
TruePositive

TruePositive+ FalsePositive
(4)

Precision =
TruePositive

TruePositive+ FalseNegative
(5)

F1 =
2 · precision · recall
precision+ recall

(6)

The measures will be calculated per protein. An important thing to note is that because
of the multi label prediction the accuracy measure is not sufficient. The network has 28
possible classes to choose from but the sample only belong to at most 4 labels at the same
time. This means that when the network predicts no classes at all for every sample it will
have an accuracy of at least: (28 − 4)/28 = 0.857. This value might seem good but the
network itself is useless when it does not predict anything. Another problem with accuracy
is the large class imbalance. This causes a very high accuracy when the network is only
good at predicting the most occurring classes. This is why the recall, precision and F1 are
more important in measuring the performance.

There are flaws with using the F1 measure [15]. One of the flaws of F1 score is that it
is biased towards a class majority. If the network only predicts based on the frequency of
labels occurring, frequent occurring labels will have a higher chance of getting a high F1
score. This is certainly a problem with Nucleoplasm making up roughly 25% of the samples,
while some other labels barely make up 1%. To more accurately compare the results of this
imbalanced dataset we have to take the prediction advantage (PA) into account. To get a
more insightful metric El-Yaniv [16] proposes a new formula:

PA = 1− 1− F1

1− p
(7)

Where:

• F1 is the F1 score

• p the frequency of the label occurring

This new PA score corrects for class imbalance by giving a value between 0 and 1. Where
a value of 0 stands for the classifier is as good as guessing with class frequencies and a value
of 1 is a perfect classifier. A value of 0.35 can then be interpreted as the classifier is 35% on
the way between random with known class frequencies and a perfect classifier.
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Figure 4: Precision (blue), recall (red), F1 score (yellow) and PA (green) for every protein
predicted with the baseline method. Labels with a (N) belong the the Nucleus group, (C)
the Cytoplasm group and (S) the Secretory

3 Results
The baseline had an average precision of: 0, 6422, average recall of: 0, 3984 and an average
F1 score of: 0, 4749. The per protein results are visible in Figure 4. As can be seen there are
a some labels (Cytokinetic bridge, Cytoplasmic bodies, Actin filaments) that the baseline
has a lot of trouble with. It also shows that the classifier is actually predicting the labels
since only the three most occurring labels (Nucleoplasm, Cytosol and Plasma membrane)
have a reasonable drop in PA score vs F1 score.

The results from the stage 1 classifier, here there are two different models: The single
label network and the multi label network. To be able to compare the networks and also give
better insight in the results from the single label prediction, the output from the single label
is converted back to a multi label format. This is done by converting both the prediction and
label back to the original values. For example if the label Nucleus & Secretory gets predicted,
this gets converted back to the multi label binary format of Nucleus: yes, Cytoplasm: no,
Secretory: yes. The same happens to the labels. This way the results of both stage 1
networks are in a multi label format and can be compared. The single label and multi label
results are indicated with SL and ML respectively. As can be seen in Figure 5 the multi label
network performs roughly the same on Nucleus and Cytoplasm, but perform significantly
better on classifying the Secretory. Because of clear superiority the final predictions will be
made with only the multi label stage 1 network.

For the stage 2 networks there were two options: Option one was the network with the
special label ’other’ that gives the networks an option to correct a mistake by the stage 1
network, option two was the network that did not have this ’other’ label. The results of the
stage 2 networks are shown in Figure 6. For every stage 2 network the results of the network
with ’other’ class, the network without the ’other’ class and the results that the baseline
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Figure 5: Precision, recall and F1 score for the three large location predicted with the
singlelabel (SL) network, transformed back to the location specific scores, and the multilabel
(ML) network.

predicted for these classes are shown. The stage 2 networks without the ’other’ category
scores better on almost every label compared to the baseline. Some classes (Actin filaments,
Focal adhesions sites) show significant improvements of a PA score from 0.08 to 0.45 and
0.27 to 0.53. respectively. The secretory also has significant improvements compared to
the baseline. The stage 2 network with the ’other’ category do not perform as good. Only
the Cytoplasm network manages to score similar to the baseline model. The Nucleus and
Secretory model make significantly worse predictions than the baseline.

The results of the proposed model are shown i7. The results show that the proposed
model improves significantly on some area’s such as Actin filaments, but it loses a lot on
the classes in the Secretory. What is visible is that the classes that did poorly in the stage
2 scores not always perform that much worse in the overall prediction. For example the
Cytosol PA score from the network without the ’other’ label is 0.64, where in the network
with the ’other’ label the PA score for Cytosol is 0.38. However in the proposed model both
networks score very similar for Cytosol: 0.56 and 0.58 respectively. The opposite is also
shown, Nucleoli fibrillar and Nuclear speckles scored very poorly in the ’other’ network in
stage 2 and this is clearly visible in the results when combining stage 1 and 2.

4 Discussion
In stage 1 network there is a clear winner. The multi label prediction performs equal or
better than the single label. The reason for this could be that the Secretory class, which
is already in a minority compared to the Nucleus and Cytoplasm, gets split into multiple
labels and because of that becomes even harder to identify correctly.

In the stage 2 networks it is clear that the networks without the ’other’ label classify
better in most cases. Specially in the Nucleus and the Secretory the ’other’ samples confuse
the network, resulting in very low scores. When training these two networks the loss did
not converge even when lowering the learning rate.

The results of the proposed model clearly show a difficulty of this hierarchical network
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Figure 6: Results of the stage 2 networks. Prediction Advantage score is shown. Baseline
results are shown in blue, the results of the network without the ’other’ label are shown in
red, the results of the network with the ’other’ label are shown in yellow.

Figure 7: PA score for: the Baseline (blue), the proposed model with stage 2 models trained
with out the ’other’ label, the proposed model with stage 2 models trained with an ’other’
label (yellow)
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approach: both the stage 1 and stage 2 need to be good in order to improve the results.
The results of the proposed model for the classes in the Secretory are explained by the
low score of the stage 1 model for Secretory. Since the scores between the ’other’ and ’No
other’ model in stage 2 are very different, but almost the same when using the proposed
model, the bottleneck is the stage 1 classifier. The other way around is also the case: The
stage 1 classifier is good at classifying samples that belong the the Nucleus. However the
results from the proposed model with the ’other’ label show that for the Nucleoli fibrillar
and Nuclear speckles the stage 2 model is the bottleneck. Those classes did not as good
in stage two and it is visible in the results. When both models are good it does show that
significant improvement of the baseline is possible (Actin filaments and Focal adhesion).

A suggestion for further research would be to compare this ResNet18 setup vs a deeper
network for example: ResNet50. Since the proposed model has twice the amount of layers
as the baseline it would be interesting to compare it with a model which has roughly equal
amount of layers. Another things that could be interesting to look into is to group the
Cytoplasm and Secretory into one category. This way the first stage classification becomes
a fairly simple problem, this can help in making the first stage become sufficiently good that
it might be possible to leave out the ’other’ category in stage 2. Since the results already
showed that the ’other’ category does make it more difficult for the stage 2 networks.

To conclude, the current proposed model shows mixed results. Some locations perform
significantly better with the proposed model, while others perform worse.
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