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One of the main elements for creating an optimal operating room schedule is an accurate 
surgery duration estimation. Currently, this estimation is only done preoperatively. However, 
multiple factors during the surgery itself could influence the duration, for example bleeding. 
Literature showed the possibility of intraoperatively estimating a surgery duration based on 
surgical progress. However, one of the main concerns was the usability of such a system in the 
operating room workflow. Therefore, this research was focused on two parts: (1) the creation of 
an automatic intraoperative remaining surgery duration estimation system and (2) the evaluati-
on of such a system for the operating room workflow. Two types of surgeries were used for the 
estimation, the Laparoscopic Cholecystectomy and the Total Laparoscopic Hysterectomy. The 
estimation was created using multiple statistical regressor methods, such as linear regression 
and random forest, and progress-based methods based on the nearest-neighbors algorithm 
and Dynamic Time Warping method. The evaluation was done on two levels: the system le-
vel based on the error of the estimation, and the operating room workflow based on surgical 
data from 2016 to 2019 and interviews with the operating room program coordinators. Results 
showed that an intraoperative remaining surgery duration estimation system based on surgical 
phases was able to re-estimate the duration with an error of about 10 minutes, an acceptable 
error for the operating room workflow. Moreover, the third quarter of the surgery showed to be 
the essential part where an accurate estimation is needed. Furthermore, an automatic system 
showed additional benefits such as being unbiased, continuous, and reducing unnecessary 
disturbance in the operating rooms. Overall, this research showed that an intraoperative re-
maining surgery duration system based on surgical phases is promising for the operating room 
workflow. Future research is needed to understand how to implement such a system in the 
operating room workflow. 
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Hospitals have many disciplines working together for one main goal: healing patients. Each 
department has its protocols, and they work almost independently of each other. However, 
there is one place where many disciplines meet, the operating room. The operating rooms are 
used by many departments, where each department has specialized types of surgeries. This 
varies from microscopic surgery in Neurology, to hip surgery in Orthopaedics. To be able to 
work together with all departments within the operating rooms, hospitals work with an opera-
ting room schedule. The operating room schedule indicates which surgeon needs to perform 
what type of surgery on which patient. It indicates where to perform the surgery, but also the 
time to start. It is the thread that links everything together. Therefore, an optimal operating 
room schedule is of great importance.

As all scheduling problems [1–4], the duration of a task is the main factor that influences the 
creation of a schedule. As some problems can restrict the duration of tasks, such as school 
scheduling [5] or the classical traveling-salesperson problem [6], surgeries always need to 
finish with no restrictions on time. The planning of the operating room should not influence the 
surgeon and the staff decision making regarding healthcare. They should have the freedom to 
operate in the time and speed they deem necessary for the care of the patient. So the following 
problem arises; how to create an operating room schedule without predefining the duration of 
the surgeries. This is done by a surgery duration estimation.

Currently, hospitals estimate the surgery duration preoperatively. This is done with different 
methods, usually using historical surgical times to estimate the duration [7] or sometimes pa-
tient characteristic based estimation [8–10]. Based on an analysis of the Spaarne Gasthuis 
hospital in the Netherlands, as can be seen in Table 1.1, the real surgery duration still dif-
fers significantly compared to the preoperative estimated duration. Surgeries deviate from the 
preoperative estimated surgery duration with on overall a standard deviation of 36 minutes. 
This shows that using preoperative surgery duration estimation is challenging, as one of the 
reasons may be that the duration changes during the course of the surgery itself. The speed 
of the surgeon could be a factor, but also events occurring in the surgery such as bleeding or 
a change in protocol due to new findings.

The use of intraoperative surgery duration estimation could give a better indication of the pro-
gress of the surgery and eventually result in a better operating room schedule. Intraoperative 
estimation is currently done manually. The operating room staff asks the surgeon to estimate 
the surgery duration during the surgery. However, this has disadvantages. First, surgeons 
could be biased [11], as the estimation is only based on the opinion of the surgeon. Another 
issue is that manual estimation is based on one moment. The operating room staff retrieves 
the estimation from a surgeon at a specific time by entering or calling the operating room. 
This could be a moment just before an event, such as bleeding, that influences the duration 
significantly. Furthermore, entering or calling the operating room for an estimation causes un-
necessary interruptions that could have negative consequences on the surgery [12, 13]. These 
disadvantages of manual intraoperative estimation could be solved by using an automatic 
intraoperative estimation system.

Research showed that progress based systems could improve the estimation of the remaining 
surgery duration [14–17]. This progress can be described in phases, where each phase is a 



In
tro

d
u

c
tio

n

12

specific part of the surgical procedure, such as the ”closing” phase. However, a problem with 
an automatic system is that it needs the current phase of the surgery as input. Some research 
was done in using tool detection to predict the phase or progress, such as using the activation 
pattern of electrosurgical devices [18], or operating room sensor data [19]. However, using 
such recognition data alteration or addition of systems in the operating room or in the tools are 
needed to be able to detect these signals.

Meij [20] created in collaboration with COSMONiO a recognition network that uses endoscopic 
video to predict the tools used in the video, which is based on the RSDnet neural network of 
Twinanda et al. [17]. Using these tools as input, the network could predict the phase of each 
frame in a video. However, it was not known how these predicted phases could be used to 
estimate a remaining surgery duration. Furthermore, questions were raised concerning how to 
evaluate such a system, on a system level, but also on a more practical level for the operating 
room workflow. For example, what kind of accuracy is needed so that a system would be useful 
for the operating room workflow? For that reason this graduation thesis focussed on two parts:

 1. The creation of an intraoperative surgery duration estimation system based on  
  surgical phases.

 2. The evaluation of such a system for the use in the operation room workflow.

The goal of this thesis was to understand if an automatic intraoperative surgery duration esti-
mation system could be created using predicted phases from the recognition network and to 
evaluate the benefit of such a system for the operating room workflow. For that reason, the 
system was created as explained in chapter 2 with existing methods (section 2.3) and a no-
vel method for this field (section 2.4) to discover the possibility of developing such a system. 
Furthermore, the system was evaluated as described in section 2.5 on a systematic level 
(subsection 2.5.1) and the potential added value of the system in the operating workflow (sub-
section 2.5.2) based on a data analysis and expert interviews. The results of these methods, 
the operating room data analysis and the interviews are shown in chapter 3. Chapter 4 discus-
ses these results and the potential addition of an automatic intraoperative remaining surgery 
duration estimation system for the operating room workflow.

Table 1.1: Descriptive statistics of the surgeries at the Spaarne Gasthuis hospital from 2016 to 2019. It contains 
the number of surgeries, actual surgery durations and the error deviation for the estimated surgery duration using 
current estimation calculation, grouped by specialism. A positive number represents a delayed surgery and a 
negative represents less time needed for a surgery

2 1. Introduction

Table 1.1: Descriptive statistics of the surgeries at the Spaarne Gasthuis hospital from 2016 to 2019. It contains
the number of surgeries, actual surgery durations and the error deviation for the estimated surgery duration using
current estimation calculation, grouped by specialism. A positive number represents a delayed surgery and a
negative represents less time needed for a surgery

Total duration Estimation error
N Mean Std Mean Std

Overall 56396 59.85 44.51 3.73 36.23
General Surgery 22745 66.46 48.45 6.96 42.56
Gynaecology 5730 47.17 32.26 1.04 28
Otorhinolaryngology 3979 37.9 39.95 -0.98 25.08
Oral and Maxillofacial Surgery 1629 58.33 46.3 -3.14 35.37
Neurosurgery 1634 61 33.21 2.86 30.83
Ophthalmology 303 37 19.11 -4.02 23.52
Orthopaedic Surgery 11074 59.08 34.24 2.91 23.78
Plastic Surgery 4576 70.03 51.48 0.14 42.23
Urology 4641 56.09 48.18 4.1 39.07

ing room. This could be a moment just before an event, such as a bleeding, that influences
the duration significantly. Furthermore, entering or calling the operating room for an estima-
tion causes unnecessary interruptions that could have negative consequences on the surgery
[12, 13]. Theses disadvantages of manual intraoperative estimation could be solved by using
an automatic intraoperative estimation system.
Research showed that progress based systems could improve the estimation of the remaining
surgery duration [14–17]. This progress can be described in phases, where each phase is a
specific part of the surgical procedure, such as the ”closing” phase. However, a problem with
an automatic system is that it needs the current phase of the surgery as input. Some research
was done in using tool detection to predict the phase or progress, such as using the activation
pattern of electrosurgical devices [18], or operating room sensor data [19]. However, using
such recognition data alteration or addition of systems in the operating room or in the tools are
needed to be able to detect these signals.
Meij [20] created in collaboration with COSMONiO a recognition network that uses endoscopic
video to predict the tools used in the video, which is based on the RSDnet neural network of
Twinanda et al. [17]. Using these tools as input, the network could predict the phase of each
frame in a video. However, it was not known how these predicted phases could be used to
estimate a remaining surgery duration. Furthermore, questions were raised concerning how
to evaluate such system, on a system level, but also on a more practical level for the operat-
ing room workflow. For example, what kind of accuracy is needed so that a system would be
useful for the operating room workflow? For that reason this graduation thesis focussed on
two parts:

1. The creation of an intraoperative surgery duration estimation system based on surgical
phases.

2. The evaluation of such system for the use in the operation room workflow.

The goal of this thesis was to understand if an automatic intraoperative surgery duration
estimation system could be created using predicted phases from the recognition network and
to evaluate the benefit of such system for the operating room workflow. For that reason,
the system was created as explained in chapter 2 with existing methods (section 2.3) and
a novel method for this field (section 2.4) to discover the possibility of developing such sys-
tem. Furthermore, the system was evaluated as described in section 2.5 on a systematic
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The following chapter explains the methods that were used for this research concerning the 
estimation of the remaining surgery duration and the evaluation of such a system. Section 2.1 
explains the datasets that were used for this research, and the properties of these datasets. 
Section 2.2 explains the architecture of the system. Section 2.3 defines the current statistical 
methods that were used and provides an explanation of these methods. Section 2.4 describes 
a new methodology used for the estimation of the remaining surgery duration, which is based 
on multiple statistical approaches. Section 2.5 describes how the methods were evaluated on 
a system level, and the evaluation of the operating room workflow.

2.1. Dataset
The data that was used in this thesis was partly retrieved from the previous research of Meij 
[20] and further gathered during this thesis. The data consisted of videos with two types of 
surgeries: the Total Laparoscopic Hysterectomy and the Laparoscopic Cholecystectomy pro-
cedure. The videos of these surgeries were retrieved from the database of the Spaarne Gast-
huis hospital in the Netherlands. The set consists 33 Laparoscopic Cholecystectomy and 36 
Total Laparoscopic Hysterectomy videos, with a variety of five and three different surgeons 
respectively. The data also varies in surgery duration (Figure 2.1). Each video consists of 
manual annotated phases and tools, and predicted phases based on the neural network as 
described by Meij [20]. The phase prediction network was a convolution neural network cre-
ated by COSMONiO, which is an adaptation of the network created by Twinanda et al. [17]. 
Each video was split into frames, starting from first incision to closing. A frame is a moment 
in the video. Normally a video consists of about 20 to 60 frames per second, but for this re-
search one frame is used for one second. This reduction of frames was necessary due to the 
otherwise large amount of data and computation time. This was done however without losing 
a significant amount of information. The phase detection neural network predicted the phase 
of the current frame. The phases for the Laparoscopic Cholecystectomy and Total Laparo-
scopic Hysterectomy are described in Table 2.1 and Table 2.2 respectively. No phase can be 
performed simultaneously, except the bleeding phase. The phases should occur in sequential 
order, however, it is possible to have surgeries where a surgeon returns to a previous phase. 

Figure 2.1: Frequency table for the Laparoscopic Cholecystectomy and Total Laparoscopic Hysterectomy videos 
based on surgery duration indicating the 25th and 75th percentile

(a)  Laparoscopic Cholecystectomy (b)  Total Laparoscopic Hysterectomy
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Each frame consisted of the properties as described in Table 2.3. The properties were based 
on information from the video data and the output of the phase detection neural network. The 
performance of the network was assessed in terms of recall and precision. The average recall 
and precision were weighted in respect to the number of frames of the specific phase. It had a 
weighted recall of 0.77 and weighted precision of 0.79 for the phase detection of the Laparo-
scopic Cholecystectomy, and a weighted recall of 0.79 and weighted precision of 0.78 for the 
Total Laparoscopic Hysterectomy.
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Table 2.1: Surgical phases for the Laparoscopic Cholecystectomy procedure

Table 2.2: Surgical phases for the Total Laparoscopic Hysterectomy procedure

Table 2.3: Video frame properties
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MONiO, which is an adaptation of the network created by Twinanda et al. [17]. Each video
was split into frames, starting from first incision to closing. A frame is a moment in the video.
Normally a video consist of about 20 to 60 frames per second, but for this research one frame
is used for one second. This reduction of frames was done due the otherwise large data
and computation time needed, and without losing a significant amount of information. The
phase detection neural network predicted the phase of the current frame. The phases for the
Laparoscopic Cholecystectomy and Total Laparoscopic Hysterectomy are described in Ta-
ble 2.1 and Table 2.2 respectively. No phase can be performed simultaneously, except the
bleeding phase. The phases should occur in sequential order, however, it is possible to have
surgeries where a surgeon returns to a previous phase. Each frame consist of the properties
as described in Table 2.3. The properties are based on information from the video data and the
output of the phase detection neural network. The performance of the network was assessed
in terms of recall and precision. The average recall and precision were weighted in respect to
the number of frames of the specific phase. It had a weighted recall of 0.77 and weighted pre-
cision of 0.79 for the phase detection of the Laparoscopic Cholecystectomy, and a weighted
recall of 0.79 and weighted precision of 0.78 for the Total Laparoscopic Hysterectomy.

Table 2.1: Surgical phases for the Laparoscopic Cholecystectomy procedure

Phase Start cue End cue
1. Trocar & tools insertion First frame with a view of the inside

of the body
First frame with a tool in view

2. Preparation & dissection Frame after first tool in view Frame before the clipper is in view
3. Clipping & cutting First frame with the clipper in view Last frame with the scissors in view
4. Gallbladder dissection Frame after the last scissors in view Frame before the bag is in view
5. Gallbladder packaging & retrieval First frame with the bag in view Last frame with the bag in view
6. Liver bed coagulation First frame where the grasper is

used to coagulate
Last frame the grasper is used to co-
agulate

7. Final check & irrigation Frame after the last frame of coagu-
lating or the last frame with the bag
in view

Last frame before removing the tro-
cars or leaving the body

8. Closing & desufflation First frame of removing the trocars
or leaving the body

First frame outside the body or the
end of the video

Additional: Bleeding First frame with blood and the irriga-
tor or gauze

Last frame with blood and the irriga-
tor or gauze

2.1.1. Smoothing phases
The main property that was used for the prediction is the phase. The neural network predicts
a probability for each phase based on the data of the frame, where the phase with the highest
probability is used as the label for the frame. However, some frames are hard to classify to
a specific phase, such as a frame where a tool is out of view for a second. To be able to
classify the frame correctly, smoothing can be used to use previous predictions to estimate
the current phase. As can be seen in Figure 2.2 (green is the ground truth phase, orange the
predicted phase), the addition of smoothing reduces wrongly classified jumps. It was based
on the probabilities and the mode of the previous 𝑁𝑁 window of frames, information that would
also be available in a real-time setting. The pseudocode is described in algorithm 1. For
each frame, the probability of the phase prediction was evaluated. If it was higher than the
predefined 0.8, the network was confident enough about the phase. Otherwise, it would take
the mode of the last 𝑁𝑁 window of predictions. The use of 0.8 as the confidence threshold, and
𝑁𝑁 number of frames for the mode, was based on cross validation of multiple settings. The
𝑁𝑁 was defined for the Laparoscopic Cholecystectomy on 15 and for the Total Laparoscopic
Hysterectomy on 27. As seen in Figure 2.2, a double smoothing was used for this dataset.

2.2. System architecture 7

Table 2.2: Surgical phases for the Total Laparoscopic Hysterectomy procedure

Phase Start cue End cue
1. Trocar & tools insertion First frame with a view of the inside

of the body
First frame with a tool in view

2. Uterus dissection Frame after first tool in view Frame before the hook is used on
the vaginal cuff

3. Uterus separation from the vagina First frame the hook is used on the
vaginal cuff

First frame the uterus is fully sepa-
rated from the vagina

4. Uterus retrieval: transvaginal First frame after the uterus is fully
separated from the vagina

Last frame with the bag in view

5. Uterus retrieval : morcellation First frame after the uterus is fully
seperated from the vagina

Last frame with the bag in view

6. Vaginal cuff closure First frame the uterus and/or bag is
not in view

Last frame the needle feeder and/or
needle with thread are in view

7. Final check & irrigation First frame after the needle feeder
and/or needle with thread are in view

Last frame before removing the tro-
cars or leaving the body

8. Closing & desufflation First frame of removing the trocars
or leaving the body

First frame outside the body or the
end of the video

Additional: Bleeding First frame with blood and the irriga-
tor or gauze

Last frame with blood and the irriga-
tor or gauze

Table 2.3: Video frame properties

Frame property Description
Frame number The index of the frame, which is also the total elapsed duration
Phase The phase that the frame is currently in
Elapsed phase duration The elapsed duration in the specific phase
Bleeding If there is bleeding in that specific frame or not

The second smoothing was used to remove outlier peaks that were still in the dataset. The 𝑁𝑁
used for the second smoothing was set for the Laparoscopic Cholecystectomy on 11 and for
the Total Laparoscopic Hysterectomy on 15.

Algorithm 1: Phase smoothing pseudocode
for (probability, prediction) in network_output do
if probability < 0.8 then
prediction = mode(previous 𝑁𝑁 predictions)

else
prediction = prediction

end if
predictionlist.append(prediction)

end for
return Smooth predictionlist with mode

2.2. System architecture
The remaining surgery duration estimation system was created in the Python programming
language [21]. The main packages used were the NumPy and Pandas package for data
retrieval and manipulations, and the open source Scikit-learn package [22] for the regression
analysis methods as described in section 2.3. Furthermore, the code was run on a MacBook
Pro 2013 with a 2,6 GHz Dual-Core Intel Core i5 processor.

2.2. System architecture 7
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2.1.1. Smoothing phases
The phase was the main property used for the prediction. The neural network predicted a 
probability for each phase based on the data of the frame, where the phase with the highest 
probability was used as the label for the frame. However, some frames were hard to classify to 
a specific phase, such as a frame where a tool is out of view for a second. To be able to clas-
sify the frame correctly, smoothing could be applied to use previous predictions to estimate the 
current phase. As shown in Figure 2.2 (green is the ground truth phase, orange the predicted 
phase), the addition of smoothing reduced wrongly classified jumps. It was based on the pro-
babilities and the mode of the previous � frames, information that would also be available in a 
real-time setting. The pseudocode is described in algorithm 1. For each frame, the probability 
of the phase prediction was evaluated. If it was higher than the predefined 0.8, the network 
was confident enough about the phase. Otherwise, it would take the mode of the last window 
of size � from the predictions. The use of 0.8 as the confidence threshold and � number of 
frames for the mode, was based on cross validation of multiple settings.  The � was defined for 
the Laparoscopic Cholecystectomy on 15 and for the Total Laparoscopic Hysterectomy on 27.  
As seen in Figure 2.2, a double smoothing was used for this dataset. The second smoothing 
was used to remove outlier peaks that were still in the dataset. The � used for the second 
smoothing was set for the Laparoscopic Cholecystectomy on 11 and for the Total Laparoscopic 
Hysterectomy on 15.

Figure 2.2: Example of smoothing of phases as created by COSMONiO, with the time-step on the x-axis and pha-
se on the y-axis. The green line is the ground truth phase and the orange line is the predicted phase. This figure 
depicts a double smoothing, with the first N for the window set on 15 and the second on 11.

2.2. System architecture 7
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the Total Laparoscopic Hysterectomy on 15.

Algorithm 1: Phase smoothing pseudocode
for (probability, prediction) in network_output do
if probability < 0.8 then
prediction = mode(previous 𝑁𝑁 predictions)

else
prediction = prediction

end if
predictionlist.append(prediction)

end for
return Smooth predictionlist with mode

2.2. System architecture
The remaining surgery duration estimation system was created in the Python programming
language [21]. The main packages used were the NumPy and Pandas package for data
retrieval and manipulations, and the open source Scikit-learn package [22] for the regression
analysis methods as described in section 2.3. Furthermore, the code was run on a MacBook
Pro 2013 with a 2,6 GHz Dual-Core Intel Core i5 processor.
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analysis methods as described in section 2.3. Furthermore, the code was run on a MacBook 
Pro 2013 with a 2,6 GHz Dual-Core Intel Core i5 processor. Also, the computation time an 
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2.3. Current estimation methods
Existing methods were implemented to be able to compare the performance of the estimation. 
The methods are described in Table 2.4 and in more detail in the following subsections. All 
methods were implemented with benchmarking as main intention. Settings, if possible, were 
optimised to find the best results for each method.

2.3.1. Naive approach
The naive approach is based on the predefined surgery duration, which is estimated preope-
ratively. The remaining surgery duration (RSD) was calculated as following:

   
where 𝑡el is the current elapsed time, and 𝑡p is the predefined total duration of the surgery. It is 
limited to zero, as the remaining duration can never be negative. The naive approach is the 
basic method used in most systems currently in practice. An estimation is made preoperati-
vely, and is not changed during the duration of the surgery. Each second the elapsed time is 
substracted from the predefined surgery duration. This method could only perform well if the 
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which could influence the surgery duration significantly, are not taken into account with the 
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Figure 2.2: Example of smoothing of phases as created by COSMONiO, with the time-step on the x-axis and and
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Frame based estimation us-
ing perceptron layers.

[16]

Decision Tree Regressor All frame properties
(Table 2.3)
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naive approach. The naive approach is commonly used as a baseline to evaluate the perfor-
mance of an estimation system, as the data is always available for each surgery and simple 
to calculate. For this research, the preoperative estimated duration was retrieved from the 
Spaarne Gasthuis hospital database and was based on five past surgeries of the same type 
and surgeon [9].

2.3.2. Phase-Inferred method
The phase-inferred method, as described by Twinanda et al. [17], uses the information availa-
ble in the current frame to estimate the remaining surgery duration (RSD), where: 

with 𝑝 defining the current phase of the frame, t p
ref the mean or median duration for the current 

phase 𝑝, t p
el the elapsed time in the current phase 𝑝, and the sum of the mean or median durati-

ons of all other phases t m
ref . The phase-inferred method makes use of other surgeries and their 

phases to estimate the remaining surgery. The mean or median is calculated based on the 
durations of the phases of the training set. These durations are then used as reference for the 
remaining surgery duration. The calculation re-evaluates the progress, so that if for example 
phase one is finished, it only uses the durations of phase two untill the end. The right choice of 
using the mean or median differs for the type of dataset, where the mean represents an equal 
average for all videos, and the median disregards or filters outliers. This comes with the cost 
that some outliers will be unused which could cause a loss of information. An advantage of the 
phase-inferred method is that it uses intraoperative information to estimate the remaining sur-
gery duration. When the phase changes it will automatically change the estimation. However, 
the disadvantage is that the method needs to know the current phase of the surgery and the 
annotations of all the previous surgeries. For this research, this information is available (see 
section 2.1). Another disadvantage is that this method uses the statistical description of all 
surgeries of the same type, which will result in using the same average for each phase for all 
the estimations. This phase-based method has been researched in the past, as for example 
Franke et al. [14], who showed promising results. The main issue was the need to manually 
recognize the current phase, which had been solved due to the phase prediction network.

2.3.3. Linear Regression
A commonly used statistical approach for regression problems is linear regression [24]. Linear 
regression tries to determine constant weights for each predictor to be able to find the nearest 
optimal. Basically, linear functions are created for each predictor to determine the positive or 
negative influence on the target. In this case this was the remaining surgery duration (RSD). 
The linear regression model will create a function, such as:

where 𝑐 is the intercept (constant) variable, 𝑎 the weight for predictor 𝑥1, and 𝑏 the weight for 
predictor 𝑥2. In this research, the predictors for the linear regression were the frame properties 
as described in Table 2.3. One of the main advantages of linear regression is the ability to use 
weighted linear correlations between features (or predictors). Also, the weights clearly define 
the influence of a predictor, so in practice it is a simple method to explain which predictors are 
influencing the remaining surgery duration positively or negatively. However, this is only useful 
if there is a linear correlation, since the final result will only increase or decrease in a linear 
structure [25], as can be seen in Equation 2.3. Furthermore, the method is only based on the 
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the preoperative duration estimation is optimal. However, events occurring during the surgery,
which could also influence the surgery duration significantly, are not taken into account with
the naive approach. The naive approach is commonly used as baseline to evaluate the per-
formance of the estimation result, as the data is always available for each surgery and simple
to calculate. For this research, the preoperative estimated duration was retrieved from the
Spaarne Gasthuis hospital database and was based on five past surgeries of the same type
and surgeon [9].

2.3.2. Phase-Inferred method
The phase-inferred method, as described by Twinanda et al. [17], uses the information avail-
able in the current frame to estimate the remaining surgery duration, where:
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with 𝑝𝑝 defining the current phase of the frame, 𝑅𝑅���� the median or mean duration for the cur-
rent phase 𝑝𝑝, 𝑅𝑅��� the elapsed time in the current phase 𝑝𝑝, and the sum of the median or mean
durations of all other phases 𝑅𝑅����. The phase-inferred method makes use of other surgeries
and their phases to estimate the remaining surgery. The mean or median is calculated based
on the durations of the phases of the training set. These durations are then used as reference
for the remaining surgery duration. The calculation re-evaluates the progress, so that if, for
example, phase one is finished, it only uses the durations of phase two till the end. The right
choice of using the mean or median differs for the type of dataset, where the mean represents
an equal average for all videos, and the median disregards or filters outliers. This comes with
the cost that some outliers will be unused which could cause a loss of information. An ad-
vantage of the phase-inferred method is that it uses intraoperative information to estimate the
remaining surgery duration. Changing from phases will automatically change the estimation.
However, the disadvantage is that the method needs to know the current phase of the surgery
and the annotations of all the previous surgeries. For this research, this information is available
(see section 2.1). Another disadvantage is that this method uses the statistical description of
all surgeries of the same type of surgery, which will result in using the same average for each
phase for all the estimations. This phase based method has been researched in the past, as
for example Franke et al. [14], whow showed promising results. The main issue was the need
to manually recognise the current phase, which is due to the phase prediction network solved.

2.3.3. Linear Regression
A common used statistical approach for regression problems is linear regression [24]. Linear
regression tries to determine constant weights for each predictor to be able to find the nearest
optimal. Basically, linear functions are created for each predictor to determine the positive or
negative influence on the target, which was in this case the remaining surgery duration. The
linear regression model will create a function, such as:
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where 𝑅𝑅 is the intercept (constant) variable, 𝑅𝑅 the weight for predictor 𝑅𝑅�, and 𝑏𝑏 the weight for
predictor 𝑅𝑅�. In this research, the predictors for the linear regression were the frame properties
as described in Table 2.3. One of the main advantages of linear regression is the ability to use
weighted linear correlations between features (or predictors). Also, the weights are clear, so in
practice it is a simple method to explain which predictors are influencing the remaining surgery
duration positively and which are creating a delay. However, this is only useful if there is a
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features of one frame. This causes the method to disregard previous frames and only calculate 
a remaining surgery duration based on the current frame. The frame properties did include the 
frame number and elapsed duration which gave an indication of the progress. However, the 
method does not use the results of previous predictions. For the implementation of the linear 
regression model this research used the 𝑠𝑘𝑙𝑒𝑎𝑟𝑛.𝑙𝑖𝑛𝑒𝑎𝑟_𝑚𝑜𝑑𝑒𝑙 package, which is part of the 
Sci-kit package.

2.3.4. Multilayer Perceptron Regression
The basic idea of the multilayer perceptron regressi-
on is the use of neurons that can be activated if the 
predefined activation threshold is achieved [27]. Each 
neuron has a specific weight for each input and com-
bined with these inputs, the activation function results 
in either a one or a zero, depending if the activation 
threshold was achieved. The neurons are aligned in a 
layered network, where each layer is input for the next 
layer. If there would be only an input and output layer, 
the multilayer perceptron regression model functions 
the same as a linear regression model. However, a mul-
tilayer perceptron regression model can have multiple 
hidden layers, which creates a more complex network 
as can be seen in Figure 2.3. For the estimation of the 
remaining surgery duration, the multilayer perceptron regression model was trained on the 
training set. By the use of gradient descent [28], the weights for each neuron were calculated. 
A disadvantage of multilayer perceptron regression models, the same as the linear regression 
model, is that they are not able to make use of time varying sequences [29], which is an es-
sential part for the remaining surgery duration estimation. 

The method that was used in this thesis made use of the functions available in the 𝑠𝑘𝑙𝑒𝑎𝑟𝑛.
𝑛𝑒𝑢𝑟𝑎𝑙_𝑛𝑒𝑡𝑤𝑜𝑟𝑘 package, with the following settings:

The full explanation of each attribute can be found in the Scikit-learn documentation [22]. The 
inputs used for this method were the frame properties as described in Table 2.3.

class sklearn.neural_network.MLPRegressor(hidden_layer_si-
zes=(100, ), activation=’relu’, *, solver=’adam’, alpha=0.0001, 
batch_size=’auto’, learning_rate=’constant’, learning_rate_
init=0.001, power_t=0.5, max_iter=200, shuffle=True, random_sta-
te=None, tol=0.0001, verbose=False, warm_start=False, mo-
mentum=0.9, nesterovs_momentum=True, early_stopping=False, 
validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08, 
n_iter_no_change=10, max_fun=15000

         Figure 2.3: A hypothetical example of a  
         Multilayered perceptron network [26]
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2.3.5. Decision Tree Regression
A decision tree is a more simplistic method 
which is based on conditional choices. A tree is 
constructed with nodes. At each node, the deci-
sion is made to either take the left or right node 
in the next layer, based on the condition of that 
node. This results in a final output (as can be 
seen in the example tree in Figure 2.4). A tree 
is constructed by taking a random predictor and 
condition and retraining it with the next frame 
from the training set, until the evaluation criteria 
converges. The advantage of decision trees is 
similar to that of the linear regression method; it 
creates explainable conditions for the remaining 
surgery duration. The tree can have the same 
result as a linear regression model if the predic-
tors are linearly correlated to the remaining sur-
gery duration. However, decision trees have the benefit that they do not need to confine the 
conditions on linearity, as conditions could reoccur in the tree causing the addition of non-linear 
correlations. The disadvantage of decision trees is that during the training, a random predic-
tor is chosen as first condition. This could negatively influence the possibility of creating an 
optimal tree, because this sets the starting point for the tree [30]. The tree is trained, but will 
always retain this starting point. Another disadvantage is overfitting. Decision trees have the 
tendency to overfit, as the training algorithm has the ability to replicate the conditions in the 
tree [31]. This could show a better result than actually possible in practice. Lastly, decision 
tree regressors do not have the ability to use temporal information, so it is only able to use the 
information of the current frame.

The decision tree regressor for this research was used from the 𝑠𝑘𝑙𝑒𝑎𝑟𝑛.𝑡𝑟𝑒𝑒 package with the 
following settings:

The full explanation of each attribute can be found in the Scikit-learn documentation [22].
The inputs used for this method were the frame properties as described in Table 2.3.

 Figure 2.4: Graphical representation for an  
 example of a decision tree

class sklearn.tree.DecisionTreeRegressor(*, criterion=’mse’, 
splitter=’best’, max_depth=None, min_samples_split=2, min_sam-
ples_leaf=1, min_weight_fraction_leaf=0.0, max_features=No-
ne, random_state=None, max_leaf_nodes=None, min_impurity_de-
crease=0.0, min_impurity_split=None, presort=’deprecated’, 
ccp_alpha=0.0



M
eth

o
d

22

2.3.6. Random Forest Regression
The random forest regression model is a combination of multiple decision trees as explained 
in subsection 2.3.5. However, instead of using the result of one tree, the average of multiple 
trees is used. This solves the problem of decision trees where the starting point for construc-
ting a decision tree could create a biased tree for specific types of datasets, as multiple trees 
are created with each a different starting value [30]. However, the other disadvantages of a 
decision tree still apply, such as the tendency to overfit and the inability of the use of temporal 
information.

The random forest regressor was retrieved from the 𝑠𝑘𝑙𝑒𝑎𝑟𝑛.𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 package with the follo-
wing settings:

The full explanation of each attribute can be found in the Scikit-learn documentation [22].
The inputs used for this method were the frame properties as described in Table 2.3.

2.4. Novel method: Phase-Inferred with Nearest 
Neighbours and Dynamic Time Warping

The phase-inferred method described in subsection 
2.3.2 uses all the training videos to estimate a me-
dian or mean. However, this is not desirable as not all 
the videos are the same. As can be seen from Figure 
2.5, the total duration of the videos differ. Some vi-
deos have a duration of 1000 seconds (≈16 min), whi-
le others videos have a duration of over 6000 seconds 
(≈100 min). If the average is used of all the videos, the 
total duration of the predictions will be around 3000 
seconds (≈ 50 min).  Instead of using all the videos as 
N in Equation 2.2, a more effective approach would 
be by comparing the videos and only using the mean 
or median of similar videos (also called ‘nearest neig-
hhbours‘). However, to compare datasets correctly, a 

similarity metric is needed to be able to determine similar videos. Commonly used measures 
are Euclidian, Manhattan or Cosine distances [32–34]. But these distances only compare one 
frame to another frame at the same time index. The issue for time serie problems is that some 
videos can still be similar, but have a small shift in the starting points (or other key points) [35]. 
For that reason a different similarity measurement approach was used: Dynamic Time War-
ping [36]. Dynamic Time Warping is a dynamic approach used to compare time series and to 
find patterns between these series [36]. The main concept with Dynamic Time Warping is that 
all frames are used to measure the distance, instead of only the frame at the same time index. 

class sklearn.ensemble.RandomForestRegressor(n_estimators=100, *, 
criterion=’mse’, max_depth=None, min_samples_split=2, min_sam-
ples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’, 
max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_
split=None, bootstrap=True, oob_score=False, n_jobs=None, random_
state=None, verbose=0, warm_start=False, ccp_alpha=0.0, max_sam-
ples=None)
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class sklearn.ensemble.RandomForestRegressor(n_estimators=100,
criterion=’mse’, max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0,
max_features=’auto’, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None, boot-
strap=True, oob_score=False, n_jobs=None, random_state=None,
verbose=0, warm_start=False, ccp_alpha=0.0, max_samples=None)

The full explanation of each attribute can be found in the Scikit-learn documentation [22].
The inputs used for this method were the frame properties as described in Table 2.3.

2.4. Novel method: Phase-Inferred with Nearest Neighbours and
Dynamic Time Warping

The phase-inferred method described in subsection 2.3.2 uses all the training videos to esti-
mate a median or mean.

Figure 2.5: Boxplot with the total duration for
each video in the Laparoscopic Cholecystec-
tomy dataset in seconds

However, this is not desirable as not all the videos
are the same. As can be seen from Figure 2.5, the
total duration of the videos differ. Some videos have
a duration of a 1000 seconds (≈16 min), while other
have a duration over 6000 seconds (≈100 min). If the
average is used of all the videos, the total duration of
the predictions will be around the 3000 seconds (≈
50 min). Instead of using all the videos as for 𝑡𝑡���� in
Equation 2.2, a more effective approach is comparing
the videos and only using the mean or median of sim-
ilar videos. However, to compare datasets correctly,
a similarity metric is needed to be able to determine
similar videos. Common usedmeasurements are Eu-
clidian, Manhattan or Cosine distances [32–34]. But
these distances only compare one frame to another

frame at the same time index. The issue for time series problems is that some videos can
still be similar, but have a small shift in the starting points (or other key points) [35]. For that
reason a different similarity measurement approach was used; Dynamic Time Warping [36].
Dynamic Time Warping is a dynamic approach used to compare time series and to find pat-
terns between these series [36]. The main concept with Dynamic Time Warping is that all the
frames are used to measure the distance, instead of only the frame at the same time index.
Using a dynamic algorithm, the shortest path can be found. This is done by aligning similar
like points of the time series, so that the distance of each of these points can be calculated
(as can be seen in Figure 2.6). The type of the measurement between these distances can
be any type of distance measurement, depending on the data and the usage. In this case,
the Euclidian distance was used for all the frame properties as explained in section 2.1. The
Dynamic Time Warping algorithm used in this research was based on FastDTW [37].

The four videos with the smallest distances were used as reference points for the mean
or median durations for the phases. instead of all videos. The choice of four videos instead
of more or less videos was based on the results of multiple runs with different numbers (k=4,
5, .. 10) and the mean absolute error as evaluation metric (as explained in subsection 2.5.1).
The pseudocode for retrieving the k-nearest neighbors is shown in algorithm 2. This method is
called the novel method for the remainder of this thesis. While combining the nearest neight-
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Using a dynamic algorithm, the shortest path can be found. This is done by aligning similar-like 
points of the time series, so that the distance of each of these points can be calculated (as can 
be seen in Figure 2.6). The type of measurement between these distances can be any type of 
distance measurement, depending on the data and the usage. In this case, the Euclidian dis-
tance was used for all the frame properties as listed in section 2.1. The Dynamic Time Warping 
algorithm used in this research was based on FastDTW [37]. The k videos with the smallest 
distances were used as reference points for the mean or median durations for the phases 
instead of all videos. The choice was made of four videos, which was based on the results of 
multiple runs with different numbers (k=4, 5, .. 10) and the mean absolute error as evaluation 
metric (as explained in subsection 2.5.1). The pseudocode for retrieving the four similar videos 
using k-nearest neighbors is shown in algorithm 2. This method is called the novel method for 
the remainder of this thesis. While combining the nearest neighbour algorithm with Dynamic 
Time Warping is not new, it has however never been used for the estimation of the remaining 
surgery duration, to the authors knowledge. It is a novel method for this field.
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Figure 2.6: Euclidian distance alignment compared to Dynamic Time Warping [38]
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Algorithm 2: 𝑘𝑘-nearest neighbours with Dynamic Time Warping
𝑖𝑖 = current frame number
distance_list = ∅
for Video 𝑣𝑣� in videolist_trainingset do
distance = dtw(testvideo, 𝑣𝑣�, 𝑖𝑖)
distance_list.add((distance,𝑣𝑣�))

end for
distance_list.sortOnDistance()
return First 𝑘𝑘 videos from distance_list.values()

2.5. Evaluation
There are two part for the evaluation; the evaluation of the technical aspects of the estima-
tion model on a system level (subsection 2.5.1), and an evaluation of the added value of the
intraoperative remaining surgery duration estimation system in the operating room workflow
(subsection 2.5.2) based on past operating room data and expert interviews.

2.5.1. System level evaluation
The system level was evaluated using themean absolute error (MAE), mean absolute percent-
age error (MAPE), and root mean squared error (RMSE). Each method was evaluated using
these measurements and compared based on a leave-one-out cross validation [39], were the
training set used the manual annotated phases for the estimation and the test video used the
predicted phases. The evaluation was based on three parts; the complete dataset, grouped
by surgery length, and split into quarters based on the duration. The grouping was done in
short, medium and long surgeries, which contained respectively 25%, 50%, and 25% of the
data. As seen in Figure 2.1, the short surgeries are videos which fall in the 25th percentile;
the long surgeries are videos from the 75th percentile to the 100th percentile. The rest was
grouped as medium surgeries. The split of the data for each video based on surgery duration
was done into quarters. The quarters were based on dividing the surgery duration for each
video in four and calculating the error of that part of the surgery. For example, for a video of
1000 seconds, the mean absolute error of the first quarter is the sum of the error of second 0
to second 250, divided by this duration. Using quarters to evaluate the estimation system has
been used in previous research [17, 19], as it gives a clear distinction between the different
parts of a surgery and simple to use for creating a comparison between surgeries.
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2.5. Evaluation
There are two parts for the evaluation; the evaluation of the technical aspects of the estima-
tion model on a system level (subsection 2.5.1), and an evaluation of the added value of the 
intraoperative remaining surgery duration estimation system in the operating room workflow 
(subsection 2.5.2).

2.5.1. System level evaluation
The system level was evaluated using the mean absolute error (MAE), mean absolute percen-
tage error (MAPE), and root mean squared error (RMSE). Each method was evaluated using 
these measures and compared based on a leave-one-out cross validation [39], where the 
training set used the manual annotated phases for the estimation and the test video used the 
predicted phases. The evaluation was based on three parts; the complete dataset, grouped by 
surgery length, and split into quarters based on the duration. The grouping was done in short, 
medium and long surgeries, which contained respectively 25%, 50%, and 25% of the data. 
As seen in Figure 2.1, the short surgeries are videos which fall in the 25th percentile; the long 
surgeries are videos from the 75th percentile to the 100th percentile. The rest was grouped as 
medium surgeries. The split of the data for each video based on surgery duration was done 
into quarters. The quarters were based on dividing the surgery duration for each video in four 
and calculating the error of that part of the surgery. For example, for a video of 1000 seconds, 
the mean absolute error of the first quarter is the sum of the error of second 0 to second 250, 
divided by this duration. Using quarters to evaluate the estimation system has been used in 
previous research [17, 19], as it gives a clear distinction between the different parts of a surge-
ry and simple to use for creating a comparison between surgeries.

Mean Absolute Error
The mean absolute error (MAE) describes the average error of the estimated remaining dura-
tion compared to the real duration of the surgery, with:

where 𝑡p is the predicted remaining duration, 𝑡r the real remaining duration, and 𝑛 the number of 
surgeries in the dataset. It gives an indication of the error margin of the estimation system. The 
MAE is the most common used evaluation metric for intraoperative remaining surgery durati-
on estimation systems [14, 16, 17], at it is a more natural and unambiguous error metric than 
other error metrics, like for example the root mean squared error [40]. However, the accuracy 
also depends on the total duration of the surgery, as a small MAE with a relative long surgery 
is significantly better than the same MAE with a short surgery. Also, the standard deviation of 
the MAE defines the reliability of system, as a small deviation defines an on average reliable 
prediction system. This, however, can only be used as a comparative metric for methods that 
use the same dataset, as it is independent of the surgery duration.

Mean Absolute Percentage Error
Another measurement method is the mean absolute percentage error (MAPE). As the MAE is 
independent of the surgery duration, the MAPE gives a mean error relative to the total surgery 
duration. The MAPE is defined as following:
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The MAPE shows the percentage of error relative to the real duration, giving an easier metric
to compare different datasets with different durations.

Root Mean Squared Error
A common used evaluation metric which is comparable to the MAE is the mean squared error
(MSE), with:

𝑀𝑀𝑀𝑀𝑀𝑀 𝑀 1
𝑛𝑛 ∑(𝑡𝑡� − 𝑡𝑡�)� (2.6)

The difference of the MSE compared to the MAE is that instead of taking the absolute value
of the error, it takes the squared error. Outliers have a bigger influence on the MSE than in
the MAE [40]. The MSE reports a better indication for the reliability of the system, while the
MAE shows a more accurate overall performance as it does not take outliers into account as
significantly as the MSE.

𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 𝑀 √1𝑛𝑛 ∑(𝑡𝑡� − 𝑡𝑡�)� (2.7)

2.5.2. Operating room workflow evaluation
The operating room workflow evaluation was based on two parts: an analyses of available
data of the Spaarne Hospital, and interviews done with current operating room staff, specifi-
cally the operating room program coordinators (ORPCs).
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2.5.2. Operating room workflow evaluation
The operating room workflow evaluation was based on two parts: an analyses of available
data of the Spaarne Hospital, and interviews done with current operating room staff, specifi-
cally the operating room program coordinators (ORPCs).

The MAPE shows the percentage of error relative to the real duration, giving an more straight-
forward metric to compare different datasets with different durations.

Root Mean Squared Error
A common used evaluation metric which is comparable to the MAE is the mean squared error 
(MSE), with:

The difference of the MSE compared to the MAE is that instead of taking the absolute value 
of the error, it takes the squared error. Outliers have a bigger influence on the MSE than in the 
MAE [40]. The MSE reports a better indication for the reliability of the system, while the MAE 
shows a more accurate overall performance as it does not take outliers into account as signi-
ficantly as the MSE. As the MSE does not return a scaled error relative to the actual error, the 
root mean squared error (RMSE) was used, with:

2.5.2.	 Operating	room	workflow	evaluation
The operating room workflow evaluation was based on two parts: an analysis of available data 
of the Spaarne Gasthuis hospital, and interviews done with current operating room staff, spe-
cifically the operating room program coordinators (ORPCs).

The available data contained all the surgeries from 2016 to 2019 of the Spaarne Gasthuis hospital. The Spaarne Gasthuis has 
three locations, Hoofddorp, Haarlem-North and Haarlem- South. They are abbreviated to HO, HAN, and HAZ respectively for the 
remainder of this report. The data contained timestamps for each surgery for multiple moments, such as the start and end of each 
surgery. This was used to analyse the following parts of the operating room workflow, specifically regarding the operating room 
schedule:

 • Turnover time: The time from end of surgery for one patient and start surgery 
  for the next patient.

 • Overtime: The time an operating room is utilized after 16:30.

 • Undertime: The time an operating room is not utilized before 16:30, after an 
  existing surgery in the operating room.

The timestamps used for the analysis were the start and end surgical time. However, the 
turnover time included other durations such as intubation time. This increased the turnover 
time, however, this was due to the fact the start and end surgical times were the only available 
data for the analysis. Furthermore, only elective surgeries were included in the analysis for 
the undertime and the overtime. Non-elective surgeries do not follow the standard scheduling 
process and were therefore excluded.

The interviews were performed with current users of the scheduling system, the operating 
room program coordinators (ORPCs). The ORPCs are responsible for the daily schedule and 
changes this schedule according to any events occurring during the day. If a remaining du-
ration estimation system would be used in practice, the ORPCs would be the main users of 
the system. The interviews were conducted to retrieve information from the current creators 
of an operating room schedule, information that would give more in-depth details about the 
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usefulness of an intraoperative estimation system in practice. The focus of the interview was 
understanding the current workflow and how an intraoperative remaining surgery duration sys-
tem would be beneficial in this workflow. The results were also used to be able to discuss the 
results of the operating room data (turnover time, overtime, undertime) as previously descri-
bed. The results of this interview were subjective, as they were based on the experience and 
opinion of each individual. However, it gave an initial starting point to better understand the 
usefulness and the requirements for such a system in the operating room workflow.

Each interview was conducted using the questions as shown in Table 2.5. A total of three parti-
cipants were included in the interview process. The participants first received a brief explanati-
on about this research and the main goal of the automatic remaining surgery duration system. 
Afterward, the questions were asked and recorded.
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Table 2.5: Interview questions for the operating room program coordinators which evaluated the operating room
schedule and the addition of an automatic intraoperative remaining surgery duration estimation system

Interview question

Current operating room workflow

Q1 How do you make sure that the schedule is correct during the day? What do you change?

Q2 Which information do you need during the day to be able to change the schedule properly?

Q3 How do you retrieve information about the progress of current surgeries?

Q4 Based on your experience, is the remaining surgery duration estimation of the surgeon
during the surgery correct?

Q5 Are there types of surgeries where the surgery duration are more difficult to predict than
others?

Q6 Do you change the schedule during a surgery? If so, in which part of the surgery? (Q1,
Q2, Q3, or Q4)

Q7 In your experience, how much is the turnover time?

Q8 Is this necessary/needed, or too much/too little?

Q9 Is there a high occurrence of overtime for the operating room staff? (Daily, once a week,..
etc)

Q10 What is the reason for overtime?

Q11 Is there a high occurrence of undertime for the operating rooms? (Daily, once a week,..
etc)

Q12 What is the reason for undertime?

Addition intraoperative remaining surgery duration estimation system

Q13 Would you want to use an automatic surgery duration estimation system, and why (not)?

Q14 How would such a system help your daily work?

Q15 If you would use an automatic remaining surgery duration estimation system, what should
the accuracy be to be acceptable?

Q16 When during the surgery do you need the estimation? (Q1, Q2, Q3, Q4)
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This chapter shows the results of the methods as explained in chapter 2. Section 3.1 describes 
the results of the methods on a systematical level, as described more in detail in subsection 
2.5.1. It used the results of the different methods to show the similarities and differences to 
compare the performance. Section 3.2 shows the results of the operating room workflow ana-
lyses; the data analysis and the expert interview results.

3.1. System level
Table 3.1 and Table 3.2 show the mean absolute error, root mean squared error and the mean 
absolute percentage error for each method for the Laparoscopic Cholecystectomy and To-
tal Laparoscopic Hysterectomy dataset respectively, split into quarters based on the surgery 
duration and for the full duration. The best score, which is the methods with the lowest error, 
for each quarter is indicated in bold. These tables give an indication of the accuracy of the 
methods, as the goal for each method was to have the smallest error as possible. The naive 
method has been used in literature as baseline, as this is the current method used in practice. 
All methods had a smaller error for all the quarters compared to the naive method. As obser-
ved in Table 3.1 the naive method had the highest mean absolute percentage error of 107% ± 
109%, while the next highest error was the decision tree with 57% ± 44% in the first quarter. 
Considering the full duration of the surgeries, the difference was even bigger, with the decision 
tree having a mean absolute percentage error of 42% ± 31%. This relative large difference 
is also seen in the Total Laparoscopic Hysterectomy dataset in Table 3.2. This shows that all 
methods performed better than the current method (the naive method) based on the mean 
absolute error, root mean squared error and mean absolute percentage error.

Based on the full duration, for both datasets the phase-inferred method using the median re-
sulted in the smallest error with, for example, a mean absolute error of 10.5 ± 10 for the Lapa-
roscopic Cholecystectomy and 9.6 ± 6.5 for the Total Laparoscopic Hysterectomy. However, 
looking at each quarter, the novel method has a smaller mean absolute error in the second 
quarter for the Laparoscopic Cholecystectomy and in the third quarter for the Total Laparosco-
pic Hysterectomy. It was a small difference, with both less than one minute. The similar results 
is understandable, as both relatively used the same method for estimating the remaining sur-
gery duration.
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Table 3.1: Themean absolute error (MAE) and root mean squared error (RMSE) with standard deviation in minutes
and mean absolute percentage error (MAPE) with standard deviation as percentage for each method split into
quarters of the total duration of each video for the Laparoscopic Cholecystectomy dataset

Method First Quarter Second Quarter Third Quarter Fourth Quarter Full Duration

MAE (min)

Naive method 31.8 ± 18.8 31.8 ± 18.8 31.8 ± 18.8 31.8 ± 18.8 31.8 ± 18.8

Phase-Inferred Mean 17.8 ± 15.6 15.1 ± 12.8 8 ± 7 5 ± 2.9 11.5 ± 9.6

Phase-Inferred Median 16.7 ± 17.1 14.1 ± 13.5 7.4 ± 7.1 3.7 ± 2.2 10.5 ± 10

Linear Regression 17.3 ± 15.8 14.4 ± 8.1 12.8 ± 6.6 10.5 ± 4.2 13.8 ± 8.7

Multilayer Perceptron 18 ± 15.7 15 ± 8.1 12.8 ± 7 8.2 ± 5.4 13.5 ± 9

Decision Tree 22.1 ± 15.5 19.7 ± 11.8 15.6 ± 11.6 9.4 ± 8 16.7 ± 11.7

Random Forest 21.2 ± 15.4 18.3 ± 10.3 15.3 ± 11.1 9.4 ± 8.4 16 ± 11.3

Novel method Mean 19.1 ± 14.5 16.1 ± 9.5 14.2 ± 10.9 5.9 ± 5.4 13.9 ± 10.1

Novel method Median 19.5 ± 15.1 13.2 ± 8.8 11.1 ± 7.6 4.6 ± 4 12.1 ± 8.9

RMSE (min)

Naive method 31.8 ± 18.8 31.8 ± 18.8 31.8 ± 18.8 31.8 ± 18.8 31.8 ± 18.8

Phase-Inferred Mean 18 ± 15.6 15.5 ± 13 8.6 ± 7.2 5.4 ± 3 11.9 ± 9.7

Phase-Inferred Median 16.8 ± 17.1 14.5 ± 13.7 7.9 ± 7.4 4.1 ± 2.4 10.8 ± 10.1

Linear Regression 18.7 ± 15.9 15.4 ± 8 14.2 ± 6.4 12.3 ± 5.1 15.2 ± 8.8

Multilayer Perceptron 19.2 ± 15.7 16.2 ± 8 14.4 ± 6.9 10.5 ± 7 15.1 ± 9.4

Decision Tree 24.8 ± 15.9 22.2 ± 13.5 19.8 ± 13.1 15 ± 11.1 20.5 ± 13.4

Random Forest 23.1 ± 15.5 19.9 ± 11.3 18.9 ± 11.5 14.8 ± 11.4 19.2 ± 12.4

Novel method Mean 20.3 ± 14.3 17.2 ± 9.7 15.7 ± 11.3 6.9 ± 6.5 15 ± 10.5

Novel method Median 20.7 ± 14.8 14.2 ± 9 12.3 ± 8 5.5 ± 4.8 13.2 ± 9.2

MAPE (%)

Naive method 107% ± 109% 107% ± 109% 107% ± 109% 107% ± 109% 107% ± 109%

Phase-Inferred Mean 54% ± 54% 45% ± 46% 23% ± 25% 15% ± 13% 34% ± 35%

Phase-Inferred Median 44% ± 41% 36% ± 33% 18% ± 17% 11% ± 9% 27% ± 25%

Linear Regression 47% ± 42% 44% ± 38% 37% ± 27% 30% ± 19% 40% ± 31%

Multilayer Perceptron 50% ± 45% 46% ± 38% 35% ± 25% 23% ± 17% 38% ± 31%

Decision Tree 57% ± 44% 51% ± 35% 37% ± 26% 24% ± 21% 42% ± 31%

Random Forest 55% ± 43% 48% ± 31% 36% ± 25% 24% ± 22% 41% ± 30%

Novel method Mean 54% ± 47% 48% ± 40% 37% ± 29% 16% ± 14% 39% ± 33%

Novel method Median 54% ± 46% 37% ± 31% 27% ± 18% 12% ± 10% 33% ± 26%
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Table 3.2: Themean absolute error (MAE) and root mean squared error (RMSE) with standard deviation in minutes
and mean absolute percentage error (MAPE) with standard deviation as percentage for each method split into
quarters of the total duration of each video for the Total Laparoscopic Hysterectomydataset

Method First Quarter Second Quarter Third Quarter Fourth Quarter Full Duration

MAE (min)

Naive method 29.1 ± 20.7 29.2 ± 20.8 29.2 ± 20.8 29.2 ± 20.8 29.2 ± 20.8

Phase-Inferred Mean 15.2 ± 9 12.3 ± 7.8 8.5 ± 5.3 6 ± 3.4 10.5 ± 6.4

Phase-Inferred Median 15 ± 11 12 ± 7.9 7 ± 5.1 4.5 ± 2.2 9.6 ± 6.5

Linear Regression 15.9 ± 9 13.2 ± 5.9 12 ± 4.5 9.9 ± 4.2 12.7 ± 5.9

Multilayer Perceptron 16.3 ± 8.4 12.4 ± 6.2 9.7 ± 4.1 9.8 ± 4.3 12 ± 5.8

Decision Tree 19.8 ± 8.2 16.2 ± 5.3 10.4 ± 4 11.3 ± 5.6 14.4 ± 5.8

Random Forest 18.4 ± 8.7 15.3 ± 5.6 9.9 ± 3.8 11.1 ± 5.6 13.7 ± 5.9

Novel method - Mean 18.1 ± 10.5 13.9 ± 7.9 7.8 ± 3.8 6.5 ± 4 11.6 ± 6.6

Novel method - Median 16.5 ± 9.1 12.7 ± 7.2 6.4 ± 4.3 5.7 ± 3.8 10.3 ± 6.1

RMSE (min)

Naive method 29.2 ± 20.7 29.2 ± 20.8 29.2 ± 20.8 29.2 ± 20.8 29.2 ± 20.8

Phase-Inferred Mean 15.3 ± 8.9 12.6 ± 7.8 8.9 ± 5.2 6.5 ± 3.4 10.8 ± 6.3

Phase-Inferred Median 15.1 ± 11 12.3 ± 7.8 7.3 ± 5.2 4.9 ± 2.3 9.9 ± 6.6

Linear Regression 18.3 ± 8.8 14.6 ± 5.2 13.9 ± 4.4 14.8 ± 6.2 15.4 ± 6.2

Multilayer Perceptron 18.3 ± 8.2 13.8 ± 6 11.4 ± 4 14.5 ± 6.3 14.5 ± 6.1

Decision Tree 23 ± 8.5 19.3 ± 5.7 13 ± 4.2 16.6 ± 7.2 18 ± 6.4

Random Forest 21.2 ± 8.7 18.2 ± 5.8 12.3 ± 4.2 16.3 ± 7.1 17 ± 6.5

Novel method - Mean 19.5 ± 10.3 15.1 ± 8.2 8.6 ± 3.9 6.9 ± 4.1 12.5 ± 6.6

Novel method - Median 17.6 ± 9.1 13.9 ± 7.4 7 ± 4.3 6.1 ± 4 11.2 ± 6.2

MAPE (%)

Naive method 61% ± 57% 61% ± 57% 61% ± 57% 61% ± 57% 61% ± 57%

Phase-Inferred Mean 31% ± 23% 26% ± 22% 18% ± 14% 13% ± 9% 22% ± 17%

Phase-Inferred Median 25% ± 14% 21% ± 12% 13% ± 8% 9% ± 6% 17% ± 10%

Linear Regression 29% ± 14% 27% ± 19% 24% ± 15% 19% ± 10% 25% ± 14%

Multilayer Perceptron 32% ± 22% 26% ± 19% 19% ± 10% 18% ± 9% 24% ± 15%

Decision Tree 38% ± 20% 32% ± 18% 19% ± 8% 21% ± 11% 28% ± 15%

Random Forest 35% ± 20% 31% ± 19% 18% ± 8% 20% ± 12% 26% ± 15%

Novel method - Mean 39% ± 32% 30% ± 25% 15% ± 11% 12% ± 8% 24% ± 19%

Novel method - Median 33% ± 25% 26% ± 22% 12% ± 10% 11% ± 8% 21% ± 16%
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Figure 3.1 and Figure 3.2 are boxplots for the methods for each quarter using the mean ab-
solute error of each video as data point. These show the range of the estimation error, to be 
able to see the deviation between the results for all the videos used in the datasets. It shows 
the number of outliers, and the range of these outliers. As can also be seen from Table 3.1 and 
Table 3.2, these box plots show that all the methods had a smaller error than the naive method. 
Specifically the fourth quarter, which is at the end of the surgery, the difference was relatively 
large. These figures also indicate that the range of the phase-inferred methods and the novel 
methods were smaller than the other methods.

Table 3.3 and Table 3.4 show the over- and underestimation for each method based on the 
same quarters. This describes the fraction of a quarter that had an underestimation and ove-
restimation. To understand the results of the methods, it is useful to know when there is an 
error, if it is an under or over estimation. For example, the naive method for the Laparoscopic 
Cholecystectomy set had 78% of the error as an overestimation. This shows that in practice, 
a surgery will probably finish earlier than estimated. The phase-inferred method using the 
median had, on the full duration, a relative evenly distributed over- and underestimation (45% 
to 55% respectively). It is unclear what an optimal division would be in practice, that depends 
on the operating room workflow and the users. However, these tables can be used to find the 
method that is more fitting for each situation based on the over- and underestimation.

Table 3.5 and Table 3.6 also use the Laparoscopic Cholecystectomy and Total Laparoscopic 
Hysterectomy datasets respectively, however the results are grouped by the surgery duration: 
short, medium, and long surgeries. The difference between these tables and Table 3.1 and 
Table 3.2 is that it shows the behaviours of the methods for the different duration lengths. For 
example, at the Total Laparoscopic Hysterectomy dataset, the phase-inferred method had a 
better result for the medium group of videos, while the novel approach resulted better with long 
surgeries. This is explainable, as the phase-inferred method used all the videos to estimate 
the remaining surgery duration, which resulted in an average estimated duration over all the 
data. The novel approach only used a smaller group of videos, but more similar to the test vi-
deo. Finding similarity in average videos is harder than longer videos, which are more kind of 
”outliers”. However, this is not the case at the Total Laparoscopic Hysterectomy dataset, where 
the phase-inferred method and novel method had a relative similar estimation error (10.1 ± 6.1 
and 10.2 ± 3 respectively).
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Figure 3.1 and Figure 3.2 are boxplots for the methods for each quarter using the mean
absolute error of each video as data point. These show the range of the estimation error, to be
able to see the deviation between the results for all the videos used in the datasets. It shows
the number of outliers, and the range of these outliers. As can also be seen from Table 3.1
and Table 3.2, these box plots show that all the methods have a smaller error than the naive
method. Specifically the fourth quarter, which is at the end of the surgery, the difference is
relatively large. These figures also indicate that the range of the phase-inferred methods and
the novel methods are smaller than the other methods.

(a) First Quarter (b) Second Quarter

(c) Third Quarter (d) Fourth Quarter

Figure 3.1: A boxplot representation of the mean absolute estimation error for the Laparoscopic Cholecystectomy
dataset with for each quarter all the methods, with the estimation error in minutes.

(a) First Quarter (b) Second Quarter

(c) Third Quarter (d) Fourth Quarter

Figure 3.2: A boxplot representation of themean absolute estimation error for the Total Laparoscopic Hysterectomy
dataset with for each quarter all the methods, with the estimation error in minutes.
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Table 3.5: Themean absolute error (MAE) and root mean squared error (RMSE) with standard deviation in minutes
and mean absolute percentage error (MAPE) with standard deviation as percentage for each method grouped by
surgery duration (see 2.1) for the Laparoscopic Cholecystectomy dataset. Short: 25th percentile. Medium: 25th
to 75th percentile. Long: 75th to 100th percentile

Method Short Medium Long Complete

MAE (min)

Naive method 46.9 ± 18.5 25.9 ± 15.6 25.7 ± 15.6 31.4 ± 18.8

Phase-Inferred Mean 15.1 ± 5 5.8 ± 3.4 22.2 ± 11.4 11.5 ± 9.6

Phase-Inferred Median 11 ± 3.3 4.7 ± 1.8 26.1 ± 11.5 10.5 ± 10

Linear Regression 15.1 ± 3.9 10.9 ± 3.8 19.9 ± 9 13.8 ± 8.7

Multilayer Perceptron 14.7 ± 2.7 10.2 ± 3.6 21 ± 10.7 13.5 ± 9

Decision Tree 12.3 ± 5.1 15 ± 9.5 28 ± 5.3 16.7 ± 11.7

Random Forrest 11.8 ± 5.2 14.3 ± 8.7 27.3 ± 5.7 16 ± 11.3

Novel method Mean 13.1 ± 6.7 12.2 ± 6 19.6 ± 6.9 13.9 ± 10.1

Novel method Median 11.5 ± 4.3 9.3 ± 3.4 20.7 ± 8.3 12.1 ± 8.9

RMSE (min)

Naive method 46.9 ± 19.2 25.9 ± 15.6 25.7 ± 15.6 31.8 ± 18.8

Phase-Inferred Mean 15.7 ± 4.9 6 ± 3.4 22.7 ± 11.6 11.9 ± 9.7

Phase-Inferred Median 11.5 ± 3.3 4.9 ± 1.9 26.7 ± 11.7 10.8 ± 10.1

Linear Regression 16.2 ± 4.1 12.3 ± 4.4 21.7 ± 9.2 15.2 ± 8.8

Multilayer Perceptron 16.3 ± 3.2 11.7 ± 4 23 ± 11 15.1 ± 9.4

Decision Tree 16.3 ± 8.2 19.1 ± 11.7 30.6 ± 5.4 20.5 ± 13.4

Random Forrest 15.8 ± 8.1 17.2 ± 9.8 29.8 ± 5.8 19.2 ± 12.4

Novel method Mean 14.2 ± 6.7 13.5 ± 6.5 20.7 ± 6.8 15 ± 10.5

Novel method Median 12.6 ± 4.1 10.5 ± 3.7 21.7 ± 8.3 13.2 ± 9.2

MAPE (%)

Naive method 238% ± 123% 65% ± 38% 29% ± 11% 107% ± 109%

Phase-Inferred Mean 76% ± 31% 15% ± 11% 24% ± 7% 34% ± 35%

Phase-Inferred Median 56% ± 23% 11% ± 4% 29% ± 7% 27% ± 25%

Linear Regression 76% ± 26% 27% ± 10% 22% ± 5% 40% ± 31%

Multilayer Perceptron 73% ± 21% 25% ± 10% 23% ± 7% 38% ± 31%

Decision Tree 62% ± 30% 35% ± 20% 33% ± 4% 42% ± 31%

Random Forrest 59% ± 30% 34% ± 19% 32% ± 4% 41% ± 30%

Novel method Mean 65% ± 33% 30% ± 16% 23% ± 5% 39% ± 33%

Novel method Median 57% ± 24% 23% ± 10% 24% ± 5% 33% ± 26%
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Table 3.6: Themean absolute error (MAE) and root mean squared error (RMSE) with standard deviation in minutes
and mean absolute percentage error (MAPE) with standard deviation as percentage for each method grouped by
surgery duration (see 2.1) for the Total Laparoscopic Hysterectomy dataset. Short: 25th percentile. Medium:
25th to 75th percentile. Long: 75th to 100th percentile

Method Short Medium Long Complete

MAE (min)

Naive method 38.3 ± 28 26.4 ± 13.7 22.4 ± 15.5 29.2 ± 20.8

Phase-Inferred Mean 14.9 ± 4 6.5 ± 3.7 10.1 ± 6.1 10.5 ± 6.4

Phase-Inferred Median 7.9 ± 3.3 5.7 ± 3 15.8 ± 6 9.6 ± 6.5

Linear Regression 14.1 ± 2.7 9.9 ± 2.4 14.4 ± 4.4 12.7 ± 5.9

Multilayer Perceptron 13.7 ± 3.3 9 ± 2.3 13.5 ± 3.2 12 ± 5.8

Decision Tree 14.4 ± 4.5 12.5 ± 2.2 16.5 ± 2.6 14.4 ± 5.8

Random Forest 13.9 ± 4.3 11.4 ± 2.1 15.9 ± 3 13.7 ± 5.9

Novel method - Mean 15.7 ± 5.2 8.7 ± 2.6 10.2 ± 3 11.6 ± 6.6

Novel method - Median 12.8 ± 5.2 7.5 ± 1.8 10.8 ± 4.8 10.3 ± 6.1

RMSE (min)

Naive method 35.7 ± 30.1 27.9 ± 13.2 22.4 ± 15.5 29.2 ± 20.8

Phase-Inferred Mean 15.3 ± 4.2 7 ± 3.7 10.6 ± 6.2 10.8 ± 6.3

Phase-Inferred Median 8.4 ± 3.3 5.8 ± 3.2 16.2 ± 6.2 9.9 ± 6.6

Linear Regression 16.3 ± 2.4 12.7 ± 3.1 17.6 ± 3.7 15.4 ± 6.2

Multilayer Perceptron 16.2 ± 3.3 11.9 ± 2.8 16.1 ± 2.5 14.5 ± 6.1

Decision Tree 18.7 ± 5.3 15.5 ± 3.1 20.2 ± 2.6 18 ± 6.4

Random Forest 17.9 ± 5 14.3 ± 3.1 19.4 ± 2.8 17 ± 6.5

Novel method - Mean 16.7 ± 5.4 9.8 ± 2.8 11.1 ± 3.2 12.5 ± 6.6

Novel method - Median 13.8 ± 5.5 8.3 ± 1.9 11.6 ± 4.9 11.2 ± 6.2

MAPE (%)

Naive method 95% ± 85% 53% ± 28% 30% ± 21% 61% ± 57%

Phase-Inferred Mean 40% ± 15% 13% ± 9% 12% ± 6% 22% ± 17%

Phase-Inferred Median 22% ± 11% 10% ± 4% 19% ± 5% 17% ± 10%

Linear Regression 39% ± 11% 18% ± 7% 18% ± 4% 25% ± 14%

Multilayer Perceptron 38% ± 13% 17% ± 6% 17% ± 3% 24% ± 15%

Decision Tree 40% ± 13% 23% ± 5% 21% ± 3% 28% ± 15%

Random Forest 38% ± 13% 21% ± 5% 20% ± 3% 26% ± 15%

Novel method - Mean 43% ± 19% 17% ± 7% 13% ± 2% 24% ± 19%

Novel method - Median 36% ± 19% 14% ± 4% 13% ± 5% 21% ± 16%



R
esu

lts

38

Based on one of the video results for each dataset, a visualization is provided for each method 
in Figure 3.3 and Figure 3.4. The phase-inferred methods were relatively similar to the novel 
method, which is trivial as the core of both methods are the same. The difference can be seen 
when comparing Figure 3.3c and Figure 3.3e, where the phase-inferred method is more stable 
and constant, while the novel method has more deviations. This was due to the fact that the 
phase-inferred method is static, while the novel method is more dynamic. The phase-inferred 
method always used the same duration for the estimation of the next phases, as it used the 
mean or median of all the previous videos. The novel approach only used the similar videos, 
and continuously for each frame re-estimated the similarity between the videos. This gave the 
novel approach the ability to change and use other videos for the estimation during the pro-
gress of the video. Comparing these methods to the other methods, for example the decision 
tree in Figure 3.3h, the phase-inferred and novel methods had less deviation. This was also 
noticable, for example, with the root mean squared error of the phase-inferred median method 
(10.8 ± 10.1), which was relatively similar to the mean absolute error (10.5 ± 10), while the 
decision tree root mean squared error (20.5 ± 13.4) was higher than the mean absolute error 
(16.7 ± 11.7). This was due to the fact that these methods estimation were only based on the 
current frame and did not use the results of the previous estimations, which was the case with 
the phase-inferred and novel methods. The only available data in a frame was the current 
phase of the frame, elapsed surgery duration on overall and in the current phase. This gave 
an indication on the progress, however it only used local information, and missed global data. 
On average, the error for these methods was relatively small, but the frequency of changes 
for an estimations was so large that it becomes questionable if the estimation could be used 
in practice.
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3.2.	Operating	room	workflow	level
The operating room workflow was evaluated in two ways: a data analysis and expert interview. 
The data analysis was done on data of the Spaarne Gasthuis hospital in the Netherlands with 
the available surgical data from 2016 to 2019. The experts interviewed were operating room 
program coordinators (ORPSs).

3.2.1. Turnover time
Table 3.7 and Figure 3.5 show the turnover time in minutes for the Spaarne Gasthuis hospital 
on overall and for each location. The turnover time is the time between two surgeries in the 
same operating room. However, as it was between end and start surgical time, the time inclu-
ded other parts such as intubation time. This means that the turnover time does not entirely 
indicate an unused operating room. The time after the last surgery was not included, as this 
would be an undertime or overtime. The turnover time is also grouped by specialism, which 
was done using the turnover time after each surgery. This, however, does not mean that the 
turnover time between two surgeries are both the same type of surgery, only the first surgery 
was used for the grouping. It shows the average turnover time after a specific specialism. 
This does not say that the type of surgery as said in the table directly was the cause of the 
turnover time, it could also be the next surgery. As can be seen, on overall Ophthalmology had 
on average the lowest turnover time (36 min) and General Surgery had the highest (119 min). 
Furthermore, location HAN had the shortest overall turnover time of 58 min minutes compared 
to the other locations, while HO and HAN had a similar number of surgeries. However, HAN 
had a smaller variety of types of surgeries, as they performed Ophthalmology surgeries more 
frequently (9262/19424 ≈ 47%). Figure 3.5 is a boxplot representation of the turnover time 
for each specialism, showing not only the mean time, but also the range. Noticeable was that 
Otorhinolaryngology and Ophthalmology had on average a much smaller turnover time com-
pared to the other surgeries.
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Table 3.7: Descriptive statistics for the turnover time in minutes for each specialism from 2016 to 2019 at the
Spaarne Gasthuis hospital locations and overall.

Overall HO HAN HAZ
N Mean N Mean N Mean N Mean

Overall 48107 95 19148 113 19424 58 9535 131
General Surgery 12875 119 5380 117 2387 84 5108 138
Gynaecology 3791 110 2313 96 612 73 866 172
Oral and Maxillofacial Surgery 1190 107 297 90 0 - 893 113
Neurosurgery 1162 116 146 105 0 - 1016 117
Ophthalmology 9355 36 8 78 9262 36 85 84
Orthopaedic Surgery 9087 113 5749 134 3134 73 204 132
Otorhinolaryngology 3793 65 1575 71 1726 56 492 74
Plastic Surgery 3521 116 1331 113 1383 117 807 121
Urology 3333 96 2349 104 920 75 64 115
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3.2.2. Overtime
The overtime was defined as the time after 16:30 used for surgery. The results only included 
elective surgeries, as non-elective surgeries do not follow the regular operating room sche-
dule. Table 3.8 shows the overtime for the Spaarne Gasthuis hospital on overall and for each 
location grouped by specialism and Figure 3.6 is a boxplot representation of this overtime. 
From 2016 to 2019, there was a total overtime of 101572 minutes (≈ 1692 hours). Overtime 
occured for approximately 15% (1710/10818) of the surgeries that were the last surgery of the 
day in an operating room. On average, Plastic Surgery had the highest average overtime of 84 
min. However, as General Surgery had significant more surgeries with overtime, it recounts for 
most of the overtime (852/1710 ≈ 50%). Another noticeable result was the frequency of surge-
ries that had overtime, where the HAN location was significant lower than the other locations. 
Also, the mean overtime for each specialism was significantly lower than the one of the HO 
and HAZ locations.

3.2.3. Undertime
Undertime was defined as the time after the last surgery in an operating room, but before 
16:30. This only included operating rooms that had at least one surgery that day. Table 3.9 
shows the undertime for each location of the Spaarne Gasthuis hospital grouped by each spe-
cialism and Figure 3.7 is a boxplot representation. Undertime was empty operating room time 
that could be used for surgeries, however, it does not directly mean that this time would have 
been useful for a surgery. Other factors could be in play that are not visible in the results, as 
these results only show the time after the end of the last surgery. The highest undertime was 
found after Gynaecology surgeries, with an overall mean of 191 min. The lowest undertime for 
the specialisms was at General Surgery and Ophthalmology, both having on overall undertime 
of 85 min. The HAN location had on average the lowest undertime of 89 min, 30 min lower than 
the location with the highest undertime (HAZ).

32 3. Results

3.2.2. Overtime
The overtime was defined as the time after 16:30 used for surgery. The results only include
elective surgeries, as non-elective surgeries does not follow the regular operating room sched-
ule. Table 3.8 shows the overtime for the Spaarne Gasthuis hospital on overall and for each
location grouped by specialism and Figure 3.6 is a boxplot representation of this overtime.
From 2016 to 2019, there was a total overtime of 101572 minutes (≈ 1692 hours). Overtime
occurs for approximately 15% (1710/10818) of the surgeries that are the last surgery of the day
in an operating room. On average, Plastic Surgery had the highest overtime of 84 min. How-
ever, as General Surgery had significant more surgeries with overtime, it recounts for most
of the overtime (852/1710 ≈ 50%). An explanation could be that other types of surgeries are
generally scheduled during the beginning of the day, as for example Neurosurgery. Another
noticeable results was the frequency of surgeries that have overtime, where the HAN location
was significant lower than the other locations. Also, the mean overtime for each specialism
was significantly lower than the one of the HO and HAZ locations.

Table 3.8: Descriptive statistics for overtime of elective surgeries in minutes for each specialism from 2016 to 2019
at the Spaarne Gasthuis hospital locations and overall.

Overall HO HAN HAZ
N Mean N Mean N Mean N Mean

Overall 1710 58 1014 57 107 20 589 65
General Surgery 852 58 409 58 35 26 408 61
Gynaecology 131 79 84 81 1 8 46 79
Oral and Maxillofacial Surgery 26 67 9 57 0 - 17 73
Neurosurgery 29 31 5 32 0 - 24 31
Ophthalmology 20 29 0 - 19 17 1 292
Orthopaedic Surgery 325 48 299 50 16 10 10 72
Otorhinolaryngology 61 35 33 34 10 22 18 45
Plastic Surgery 123 84 41 96 19 26 63 94
Urology 143 50 134 53 7 14 2 5

34 3. Results

3.2.3. Undertime
Undertimewas defined as the time after the last surgery in an operating room, but before 16:30.
This only included operating rooms that had at least one surgery for the day. Table 3.9 shows
the undertime for each location of the Spaarne Gasthuis hospital grouped by each specialism
and Figure 3.7 is a boxplot representation. Undertime was empty operating room time that
could be used for surgeries, however, it does not directly mean that this time would have been
useful for a surgery. Other factors could be in play that are not visible in the results, as these
results only show the time after the end of the last surgery. The highest undertime was found
after Gynaecology surgeries, with an overall mean of 191 min. The lowest undertime for the
specialisms was at General Surgery and Ophthalmology, both having on overall undertime of
85 min. The HAN location had on average the lowest undertime of 89 min, 30 min lower than
the location with the highest undertime (HAZ).

Table 3.9: Descriptive statistics for the elective surgery undertime in minutes for each specialism from 2016 to
2019 at the Spaarne Gasthuis hospital locations and overall.

Overall HO HAN HAZ
N Mean N Mean N Mean N Mean

Overall 9108 103 3756 100 3120 89 2231 129
General Surgery 2654 85 1221 84 598 80 835 92
Gynaecology 968 191 474 125 127 127 367 300
Oral and Maxillofacial Surgery 366 117 63 133 0 - 303 113
Neurosurgery 367 89 36 81 0 - 331 90
Ophthalmology 869 85 0 - 844 83 25 165
Orthopaedic Surgery 1598 89 872 87 653 93 73 94
Otorhinolaryngology 612 109 256 123 263 94 93 111
Plastic Surgery 987 111 354 159 443 89 190 72
Urology 687 91 480 84 192 108 14 125
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Figure 3.7: B
oxplot representations for the undertim

e grouped by specialism
 at the S
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3.2.4. Interview
The following results are a summary of each quastion for the interviews conducted as said in 
subsection 2.5.2. The results of each interview can be found in Appendix A. All the following 
results were based on their own opinion and experience.

Q1.  How do you make sure that the schedule is correct during the day? What do you 
change?
The operating room schedules are created preoperatively using a system of the hospital. The 
ORPCs tune this schedule based on their own experience, notes of the ambulatory depart-
ment, and information retrieved from and about the surgeon. Ambulatory is responsible for 
ordering the surgeries and indicates if the surgery would be different than an average surgery 
of that type. This gives the ORPCs information to be able to change the schedule accordingly. 
During the day, the ORPCs change the schedule based on the events happening in and at the 
operating room, such as delay or missing instruments.

Q2.  Which information do you need during the day to be able to change the schedule 
properly?
Mainly the progress of the surgeries, and if there is a delay or not. One ORPC indicated that 
she needed to know the whereabouts of everyone of the medical staff, as this gives an indica-
tion of the progress. For example if an operating room assistant is going to get a coffee, she 
knew that the surgery is finished. All ORPCs need to be noticed by the operating room staff if 
there is a complication.  

Q3. How do you retrieve information about the progress of current surgeries?
One ORPC tries to predict the durations of surgeries based on sight, while the other two use 
a more reactive method. The ORPC uses sight to understand the current progress, based on 
experience, to know if there could be a delay or not. All the ORPCs try to get an estimation of 
the surgeon and the operating room staff during the surgery but try to limit this to a maximum 
of once during a surgery, as this distracts the medical staff. 

Q4.  Based on your experience, is the remaining surgery duration estimation of the 
surgeon during the surgery correct?
All the ORPCs indicated to be hesitant about this estimation trustworthiness due to personal 
experience and knowledge. As the ORPCs know the surgeons and their ability to estimate the 
remaining duration (as some over or underestimate), they use the estimation of the surgeon 
more as an advice.

Q5.  Are there types of surgeries where the surgery duration is more difficult to pre-
dict than others?
There are surgeries that are harder to estimate, mostly the longer surgeries than average. 
These surgeries can deviate a lot and have impact on the final schedule. The shorter ones are 
simpler to schedule. However, all ORPCs indicated that the remaining surgery estimation is 
hard to predict, as there are many factors influencing this prediction.

Q6.  Do you change the schedule during a surgery? If so, in which part of the surge-
ry? (Q1, Q2, Q3, or Q4)
There was no specific part of a surgery that the ORPCs use where they change the schedule, 
it is mostly based on the events happening in the operating room. The changes are made con-
tinuously, at any moment. For example, if the surgery started later than scheduled, this delay 
is automatically added in the schedule and changed accordingly. 
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Q7.  In your experience, how much is the turnover time?
About 20 to 30 minutes, but they all indicated that the turnover time deviated significantly and 
frequently. It could be 15 min, but easily also a hour.

Q8.  Is this necessary/needed, or too much/too little?
The turnover time deviates significantly, where multiple reasons could be the cause of the 
deviation. One ORPCs opinion was that the key factor for this is the anesthesiologist, as he/
she needs to change between rooms. This causes delay for the change of patients. The other 
ORPCs had another opinion; the main reason for the deviation in turnover time are the pa-
tients. Especially calling the next patient and make sure the patient is ready for the surgery. 
The surgery duration was not the issue for the turnover time, it is the surgeons who most of the 
time need to wait on the patients to be ready. One of the main reasons of ending with a different 
schedule than preoperatively created is the turnover time.

Q9.  Is there a high occurrence of overtime for the operating room staff? (Daily, once 
a week,.. etc)
Overtime occurred to their knowledge frequently, but not for a long duration. About once a 
week.

Q10.  What is the reason for overtime?
The cause for overtime differed; it could be a delay in a surgery, but it could also be a logistic 
problem such as a missing instrument. It is an unavoidable issue that the ORPCs always anti-
cipated and were prepared for it. 

Q11.  Is there a high occurrence of undertime for the operating rooms?  (Daily, once a 
week,.. etc)
The ORPCs almost never observed undertime, no significant undertime where another surge-
ry could had been performed.

Q12.  What is the reason for undertime?
One ORPC explained that if there would be time for a surgery, a surgery would be scheduled. 
Another ORPC explained that undertime could occur when there is a cancellation and it would 
not be possible to call another patient.

Q13.  Would you want to use an automatic surgery duration estimation system, and 
why (not)?
One ORPC had no interest in an estimation system, as it would not be possible to create such 
a system. There would be too many factors that needed to be taken into account, something a 
machine would not be able to do correctly. The other ORPCs would think that they would use 
such a system, but did not know why and how it would be useful directly.

Q14.  How would such a system help your daily work?
It was not clear how such a system would help with the scheduling. Especially next to their 
current task, it seemed similar to check the current progress on a system compared to looking 
into the operating room. One of the concerns was the need to continuously check the estima-
tion system to be able to use it correctly.
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Q15.  If you would use an automatic remaining surgery duration estimation system, 
what should the accuracy be to be acceptable?
The desired accuracy of the ORPCs was about 10 to 15 minutes.

Q16.  When during the surgery do you need the estimation? (Q1, Q2, Q3, Q4)
Idealistic the system would estimate this at the third quarter of a surgery, as the beginning and 
end of surgery are not useful.
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This chapter discusses the used methods and results. It reflects on the feasibility of using an 
automatic intraoperative remaining surgery duration estimation system in the operating room 
workflow, based on the technical aspects of such a system and how such a system could be 
useful. The main goal of this research was to create an intraoperative remaining surgery esti-
mation system to improve the operating room schedule. This was done by creating such a sys-
tem and evaluating the system in two ways; quantitatively (system level and operating room 
workflow analysis) and qualitatively (expert opinion). Section 4.1 discusses the system results. 
Section 4.2 examines the current operating room workflow based on the analysis of previous 
operating room schedules and the results of the interviews. Furthermore, Section 4.3 discus-
ses the system developed in this research based on all the results (system, operating room 
data analysis, and interviews) and how such a system could be implemented in the operating 
room workflow. Lastly, some future research suggestions are made to improve this research 
and to continue on in section 4.4.

4.1. System evaluation
Starting at the system level, the results show that multiple methods could be used to estimate 
the remaining surgery duration based on the surgical phases. The methods outperformed the 
naive approach based on the estimation error. The phase-inferred and novel method were 
the best performing methods compared to the other methods, and the performance difference 
between the phase-inferred and novel method was relatively small. Based on the large devia-
tion observed at the linear regression, multilayer perceptron, decision tree, and random forest 
methods, it could be said that these methods are not usable in practice. As this research was 
focussed on creating a system that is feasible in the operating room workflow, a continuous 
changing estimation with a large difference would make the system unusable. The phase-infer-
red and novel methods are therefore the only methods that showed potential for the operating 
room workflow.

Comparing the phase-inferred and novel methods, the phase-inferred method showed more 
promising results on the average surgeries, while the novel method gained strength in perfor-
ming better with outliers (e.g. longer surgeries than average). This is understandable, as the 
novel method tries to identify similar surgeries instead of using all the surgeries for the estima-
tion. The ability of only using similar surgeries has the advantage to create a more dynamic 
estimation, as each new estimation would recalculate the similarity and in this way being able 
to change the estimation if a significant event occurs. The phase-inferred method has a fixed 
duration for each phase, which causes the method to only use the current phase to change 
the estimation, while the deviation of the current phase could also influence the duration of 
the other phases. An example could be that a surgeon is slower than average, which would 
increase the duration of all the phases, not only the current phase. The novel method is situa-
tion-specific, while the phase-inferred method is more fixed.

However, only using similar surgeries for the estimation comes with a cost, as it uses a smaller 
number of surgeries to estimate the surgery. This means that the similarity distance is a key 
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factor. This distance will eventually dictate which surgeries are used for the estimation, which 
is not always possible to be calculated correctly. For example, at the beginning of the surgery, 
many surgeries will seem similar. Based on this, the method will use a ”random” group of sur-
geries for the estimation, which could cause a large error at the start of the surgery. As can be 
seen in Figure 3.4d, the fluctuation at the start of the surgery was large. It could be argued that 
this is an insignificant issue, as for scheduling purposes the remaining duration of the surgery 
at the beginning is less of an importance. However, it is something to be aware of, as this does 
influence the evaluation measurements as described in subsection 2.5.1.

Comparing the results of the two datasets, one notable point is the similar mean absolute error. 
The surgery duration of the Total Laparoscopic Hysterectomy was on average longer than the 
Laparoscopic Cholecystectomy. The Laparoscopic Cholecystectomy had an average duration 
of 70 min and the Total Laparoscopic Hysterectomy of 107 min. However, the mean absolute 
error was similiar for both procedures on the full duration of the surgeries, about 10 min. As can 
be seen from the mean absolute percentage error, the methods performed better on the Total 
Laparoscopic Hysterectomy dataset compared to the Laparoscopic Cholecystectomy dataset. 
One of the explanations could be that the distribution of the surgery durations in the datasets 
was more evenly distributed in the Total Laparoscopic Hysterectomy than the Laparoscopic 
Cholecystectomy. This caused the outliers to be closer to the average than that of an unevenly 
distributed dataset.

One of the benefits of the system is scalability. The system was created on the Laparoscopic 
Cholecystectomy dataset and reused for the Total Laparoscopic Hysterectomy dataset. In ge-
neral, no significant changes had to be made for the system to create an estimation for a new 
dataset, as the use of phases were the same. The Total Laparoscopic Hysterectomy dataset 
performed even better than the Laparoscopic Cholecystectomy dataset. However, the input 
has to be in the same structure, as it uses the phases to create an estimation. The phase-in-
ferred and novel methods need to have sequential phases to be able to create an estimation, 
while the other methods use the phases categorically. One issue occurred at the Total Laparo-
scopic Hysterectomy dataset with the morcellation retrieval and transvaginal retrieval phases, 
where only one of the phases can occur, both a the same sequence location. That was solved 
by giving both phases the same ”sequential” number. This caused the methods to have no dis-
tinction between the phases, creating a ”retrieval” phase. This resulted in a loss of information 
for the system, however, based on the results it did not create a relatively bad performance. It 
is not recommended to merge phases, as this decreases the ability of the phase-inferred and 
novel methods to estimate the remaining surgery duration correctly earlier on the surgery, and 
the other methods will decrease in estimation performance in overall. It could be argued that 
the system should, in this case, create two types of surgeries: a Total Laparoscopic Hysterec-
tomy with morcellation retrieval, and one with a transvaginal retrieval. However, this was not 
possible as the dataset was not large enough. Using a larger dataset, the novel method could 
dynamically use only videos that have the same phases, so only the one with for example the 
morcellation retrieval.

Furthermore, comparing the results to other systems and methods in literature based on the 
mean absolute percentage error, the system in this research performed similarly or better. 
Bodenstedt et al. [19] created a comparison with their methods and the methods of Twinanda 
et al. [17]. The best performing methods from Bodenstedt et al. and Twinanda et al. resulted 
on overall in a mean absolute percentage error of 23% and 25% respectively, and the pha-
se-inferred method using the median resulted in a mean absolute percentage error of 27% for 
the Laparoscopic Cholecystectomy dataset and 17% for the Total Laparoscopic Hysterectomy 
dataset. Comparing the mean absolute percentage error during the progress of the surgeries, 
Bodenstedt et al. resulted in 17% for Q3 and 12% for Q4. This showed that the methods in this 
research could perform similar or better to other known methods in literature, on overall and 
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for the second part of the surgeries. However, it was not tested on the same dataset, making 
a direct comparison rather difficult. 

Another noticeable point about the methods used in this research is the need for data in the da-
tasets. The novel method tries to find similar videos to be able to estimate a remaining surgery 
duration. The datasets used in this research consisted of about 35 videos each. Increasing the 
number of videos could increase the number of similar videos, making the method possibly 
more effective. As the novel method continuously re-evaluates the similarity between all the 
videos and only uses a k number of videos, the estimation will be more accurate if there are 
more similar videos in the dataset. This is not the case with the phase-inferred method, as this 
method uses all the videos to estimate a mean duration for each phase. Adding more videos 
will change the mean, however, that will converge to a certain point. This will result in a relative 
same estimation for all the surgeries, as the estimation for the next phases is fixed. The novel 
approach has the benefit to be able to estimate the remaining surgery duration for outliers 
and to be able to increase the accuracy of the system after every new surgery added in the 
dataset. The problem, however, with increasing the data, is the computation time needed for 
the method. As the novel method needs to calculate the similarity at each frame for each video, 
the computation time increases significantly when adding more data. This could be solved by 
changing the current DTW to a more scalable method. 

4.2.	The	current	OR	workflow
The current OR workflow was analyzed based on operating room data from 2016 to 2019, and 
interviews with experts. The analysis gave an indication of the current durations of the opera-
ting room workflow. It showed that there is room for improvement to decrease these durations, 
such as the turnover time. The interviews gave information about the scheduling process and 
what causes the non-surgical durations, such as overtime. It also assesed the acceptance of 
the ORPCs for using an estimation system, the need for such a system from a user perspec-
tive.

To start, the turnover time showed an average overall duration of 95 minutes, which differed for 
each specialism. One important notice in the results is that the turnover time in this research 
was defined as the time between the end of a procedure and the start of the next one. The 
turnover time therefore also included intubation time, cleaning the operating room, and other 
factors that made it not possible to use the operating room for a new surgery. For example, the 
average intubation time at the beginning of surgery was on average 9 minutes and at the end 
of a surgery 6 minutes, which is part of the turnover time as shown in the results. However, 
using start and end intubation time to analyze the turnover time was not possible, as not all the 
surgeries had an intubation time, and relatively much data was missing. Furthermore, other 
time stamps were missing such as cleaning the operating room, as these timestamps were 
not available in the dataset. This was also part of the turnover time as presented in the results. 
However, these results indicated the difference between the specialisms, the locations, and an 
estimate of the overall turnover time.

Furthermore, the turnover time between the locations showed a significant difference. Location 
HAN had on overall a turnover time of 58 min, while the others had a turnover time of more 
than 100 min. An explanation for this is that HAN performed many Ophthalmology surgeries, 
which are relatively short compared to the other specialisms. The turnover time for Ophthal-
mology was also significantly shorter than the other specialism, as can be seen in Figure 3.5. 
HAN also had a fewer variety of surgeries, while General Surgery, the specialism with the most 
types, had the highest overall turnover time. This could show that having only specific types 
of surgeries increases efficiency in the operating room and turnover time, as fewer changes 
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need to be performed in the operating room concerning for example the medical equipment.
The results showed an average overtime of about 58 minutes on overall, however, the num-
ber of surgeries that had overtime was not that much. About 15% of the surgeries which were 
scheduled at the end of the day had overtime. However, this only included elective surgeries, 
as the emergency surgeries could be scheduled at any moment. Furthermore, HAN had again 
a significant lower overtime on overall compared to the other locations. This could be due to 
the smaller variation in surgery duration of the type of procedures performed in HAN, or due 
to a different method of scheduling. For example, the scheduler of HAN could have focussed 
more on decreasing overtime, while the others had other priorities. This was not information 
that was directly extracted from the results.

Another observation of the overtime was the difference between specialisms. For example, 
Neurosurgery had almost no overtime at location HO. An explanation for this is that some sur-
geries are known to deviate a lot, especially the more complex and longer surgeries. Knowing 
this, the schedulers could always have chosen to schedule those surgeries at the beginning 
of the day instead of the end. This would give these surgeries the time needed if there would 
be a delay, and the ability to schedule a simpler and shorter surgery at the end if the surgery 
would go faster than expected.

The undertime has the same problem as the turnover time. It is higher than actual operating 
room time that can be used for surgeries, as it does not include for example the cleaning of 
the operating room. Furthermore, this only included the elective surgeries, it could be that the-
re were emergency surgeries scheduled after the last elective surgery. Hospitals commonly 
dedicate an operating room especially for emergency surgeries, which would mean that these 
surgeries would not influence the undertime as presented in the results. However, it could be 
that the emergency operating room was already used, making the other empty operating room 
more suitable for an emergency case.

Analyzing the operating room workflow based on the expert interviews, the ORPCs indica-
ted the difficulties of creating an optimal schedule. The ORPCs use a more reactive method 
to change the schedule, where changes are made after for example a delay had occurred. 
This showed that situations occurred where reacting creates an unnecessary delay, where for 
example the next patient needs time to be able to arrive at the surgical department. If an ORPC 
anticipated the delay earlier, he/she could have called the patient before the end of the surgery. 
Using an estimation system could add value to this part, by giving the ORPCs the possibility 
to communicate with the patient earlier than currently possible. This would decrease the delay, 
which would decrease the turnover time. Instead of reacting to the events, using such a system 
would give them the possibility to anticipate changes. However, to be able to know the real 
added value of this system, an analysis needs to be made in a real setting where a comparison 
is made between the schedule with and without such a system. 

Moreover, another addition of the estimation system is that it is automatic. As the surgeons’ 
progress estimation is not considered as accurate by the ORPCs, an automatic system would 
be unbiased and estimate the duration only based on subjective events. Also, the scheduler 
would not need to disturb the medical staff in the operating room to get an estimate, as the 
system would provide this. This would give the ORPCs the possibility to check the remaining 
duration at any moment, instead of asking the surgeon once during surgery. 

Another critical discussion point is based on the interviews performed and the results of those 
interviews. The interviews were performed with three operating room program coordinators 
(ORPCs), which is not a significantly large number of interviewees for making accurate con-
clusions. Furthermore, the hospital they work in could influence their perception of scheduling. 
However, the interviews gave merely a first indication of the current situation and how an esti-
mation system would be useful in an operating room workflow. 
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4.3.	Implementation	in	the	OR	workflow
Defining the implementation for an automatic intraoperative remaining surgery duration es-
timation system is key in creating a useful system. Based on the results of this research the 
following recommendations are made. First of all, on a system level, the main evaluation point 
of a system is the estimation accuracy. As indicated by the ORPCs, an estimation with a 
maximum error of 10 to 15 minutes would be valuable. Another measurement threshold that 
could be used would be an error of about 10% of the surgery duration, as this is relative to the 
duration instead of a fixed error. This would be about five minutes for a surgery of 50 min, and 
for the longer surgeries below the 15 min mark of the ORPCs. This needs, however, to be eva-
luated in a real-life setting, as this all depends on the scheduling method that would be applied 
in combination with an estimation system. Also, the systems estimation accuracy should be 
evaluated based on the error relative to the progress, as an estimation at the beginning is less 
important than in the middle. Currently, the methods described in literature are mostly intere-
sted in the accuracy overall. However, this research showed that the accuracy of Q3 could be 
more significant for the evaluation of the system than the other quarters.

Furthermore, another point that should be considered is who should have access to the esti-
mation. Possibly, the estimation should not be communicated to the surgeons and the opera-
ting room staff during surgery. This could create unintentionally unnecessary pressure for the 
medical staff to finish faster. For this reason, the choice could be made that only the schedulers 
should have access to be able to change the schedule. Also, the ORPCs indicated the need 
to continuously check the estimation system to be able to follow the progress, which would 
not be possible in the current workflow. Instead, the system could give a notification when the 
surgery duration would deviate from the schedule based on a range. This would make sure the 
schedulers are alerted, without the need of continuously checking the system.

4.4. Future research
The main sources for the estimation of the remaining surgery duration are the phases of the 
surgery. The methods described in this research are highly dependent on the phases, as the-
se indicate the progress. As described by Meij [20], a neural network could be used to predict 
the phases of the system. However, to be able to do so, the system needs training data which 
was created manually. This is time consuming, as this would have to be done for every type of 
surgery. As described in section 2.1, each type of surgery had different phases. Another possi-
bility could be to create generic phases, which a system could predict automatically. Instead of 
creating phases that are specific for a type of surgery, a prediction could be made for phases 
without labeling the phases. By using a large number of videos as training data, an unsuper-
vised classification system could create generic phases for the training data. Using a method 
such as the novel method, the system would automatically find similar videos to estimate the 
remaining surgery duration, without knowing which type of surgery it is. The similarity measu-
rement could use the type of surgery as an estimation factor, but it is not necessarily needed 
for the phases. This would solve the issue for non-sequential phases, such as the morcellation 
and transvaginal retrieval in the Total Laparoscopic Hysterectomy dataset, as these would be 
automatically grouped in a different group of videos. This would give the possibility to increase 
the data drastically, as any surgery done in the past could be automatically added. The defini-
tion of surgeries and calling the surgery for example a Laparoscopic Cholecystectomy surgery 
was created by experts in this field but could be grouped for a machine more efficiently in an 
entirely different way, such as possible a Simple Laparoscopic Cholecystectomy and another 
group called Complex Laparoscopic Cholecystectomy. Especially for the estimation of the re-
maining surgery duration, it would be useful to find similar surgeries not necessarily based on 
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a name but the similarity of the duration. However, the downfall of such a system is that it must 
use a dynamic method, such as the novel method, to estimate the remaining surgery duration. 
A fixed method, such as the phase-inferred method, would not be possible as the method is not 
able to distinguish between different types of surgeries and would eventually use all the videos 
to estimate the remaining duration. Furthermore, to the authors’ knowledge, no research has 
been done in automatic creating generic phases. Research will have to be done to the type of 
method to create these phases, and how to define for example the number of phases. 

Also, to be able to use methods such as the novel method as described in this research, defi-
ning the right similarity measurement and the features for this measurement are key for an op-
timal system. Therefore, more extensive research has to be done to which features to be used 
and what type of similarity measurement is optimal. The current similarity measurement is the 
Dynamic Time Warping method combined with the Euclidian distance, a method frequently 
used in time-series forecasting. However, little research had been done to the right similarity 
measurement that would be useful for this field. As surgery progress is a kind of time-series, 
DTW is a right approach, but other methods could be more optimal for this system. Also, the 
features used were selected as these features were available. It could be beneficial to do more 
extensive research on which features would identify similar surgeries as, for example, preope-
rative data such as BMI and ASA score could be useful for the estimation of the remaining 
surgery duration.

Furthermore, the current scheduling process possibly needs to change to make an automatic 
estimation more beneficial. For example, the current schedule is changed manually during the 
day. However, if an automatic estimation system would have the right performance, an auto-
matic scheduling system could be created so that there would be no need for manual changes 
(or only small necessary changes). 

4.5. Conclusion
This research was focussed on the creation and evaluation of an automatic intraoperative 
remaining surgery duration estimation system based on surgical phases to improve the opera-
ting room workflow. It showed that such a system was possible to be created with an accuracy 
of about 10 minutes; an accuracy that would be acceptable based on expert interviews. It 
demonstrated different methods that could create an estimation system, and how these me-
thods performed. Using similar videos in combination with phase statistics could outperform 
known state-of-the-art methods. The analysis and interviews about the operating room work-
flow gave an impression on where such a system could benefit the operating room workflow. 
For example, continuous surgery progress analysis could decrease the turnover time as this 
system would allow anticipating surgery duration diversion in the schedule. Also, the surge-
ons’ estimation bias could be avoided using such a system. Overall, this research showed the 
feasibility and usefulness of an intraoperative remaining surgery duration system based on 
surgical phases for the operating room workflow. The next step would be to understand how 
to implement such a system in the operating room workflow. Who should be allowed to access 
the estimation, and how do you communicate this estimation to the user? An automatic intra-
operative remaining surgery duration estimation system showed to be promising for improving 
the operating room workflow, however, which changes are needed in the OR workflow to be 
able to use such a system?
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Interview 1
• Interviewee: ORPC 1
• Location: Haarlem-South (HAZ)
• Date: 11th of June, 2020

Q1. How do you make sure that the schedule is correct during the day? What do you 
change?
The operating room scheduling system continuously changes itself, when for example the 
surgery started later than expected or has a delay. In this case, the system pushes the next 
surgery so that the start time of the next surgeries is later. Based on the changing schedule, I 
try to rearrange the schedule so that all the surgeries can still be performed.

Q2. Which information do you need to during the day to be able to change the schedule 
properly?
Everything. I try to communicate with everybody to know their status. And check regularly the 
current progress by sight.

Q3.How do you retrieve information about the progress of current surgeries?
I continuously communicate with the OR staff the current progress and look into the opera-
ting room. Based on my own experience, I can see the current progress of the surgery and 
anticipate the duration. Furthermore, I communicate with everybody to know their current non- 
surgical task, to be able to estimate the progress. If someone is getting coffee, that means a 
surgery is over. I also get an estimation of the surgeon.

Q4. Based on your experience, is the remaining surgery duration estimation of the sur-
geon during the surgery correct?
I know the people. With some surgeons I do trust their estimation, but with others I know that 
they sometimes underestimate it. So, it is not always correct, but I can judge the progress my-
self based on the current events in the operating room.

Q5. Are there types of surgeries where the surgery duration is more difficult to predict 
than others?
Of course, but those surgeries are labeled in the system as longer. I always call the surgeons 
of the next day to ask if it will be longer or shorter than on average, and preventively change 
the schedule accordingly.

Q6. Do you change the schedule during a surgery? If so, in which part of the surgery? 
(Q1, Q2, Q3, or Q4)
Never at the beginning. Continuously, mostly at the end. I ask the surgeon only once for an 
estimation, as this is creating disturbance in the operating room. It would be useless to ask it 
at the beginning and cause unnecessary frustrations. But by looking through the window, I can 
see the current situation and that way know the progress.
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Q7. In your experience, how much is the turnover time?
On average about 30 minutes between each surgery. But it deviates a lot.

Q8. Is this necessary/needed, or too much/too little?
Yes, it all depends on the patient. He/she needs to change between rooms and that could take 
more time. Currently it takes even longer due to Covid-19, because of the change of sterile 
gloves and masks.

Q9. Is there a high occurrence of overtime for the operating room staff? (Daily, once a 
week,.. etc)
Every day, but it is not a lot of overtime.

Q10. What is the reason for overtime?
A lot of reasons. For example, surgeries are longer than expected.

Q11. Is there a high occurrence of undertime for the operating rooms?  (Daily, once  a 
week,.. etc)
Never, if it could be empty at the end of the day, I will schedule another surgery.

Q12. What is the reason for undertime?
-

Q13. Would you want to use an automatic surgery duration estimation system, and why 
(not)?
No, such a system won’t work. There are too many factors to be able to estimate the duration. 
I need to know everything of every person, and a system is not able to do that.

Q14. How would such a system help your daily work?
-

Q15. If you would use an automatic remaining surgery duration estimation system, what 
should the accuracy be to be acceptable?
-

Q16. When during the surgery do you need the estimation? (Q1, Q2, Q3, Q4)
-
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Interview 2
• Interviewee: ORPC 2
• Location: Hoofddorp (HO)
• Date: 11th of June, 2020

Q1. How do you make sure that the schedule is correct during the day? What do you 
change?
We continuously check the progress of the operating rooms. There are three rooms allowed 
to have overtime, two for the elective surgeries and one for the emergency surgeries. For 
example, if there is a surgery with a delay, we try to rearrange for example the next surgery in 
another room.

Q2. Which information do you need to during the day to be able to change the schedule 
properly?
The progress of the patient, so where the patient is. Is he/she in the holding area, or still on his/
her way? And the progress of the surgeries.

Q3.How do you retrieve information about the progress of current surgeries?
We use the timestamps to check the progress, such as start incision, start closing etc. We can 
use these timestamps to understand where the delay is, and this way change the schedule 
accordingly. Furthermore, we continuously check the surgeries by looking into the operating 
room and know the progress. And if there is a complication, we get noticed by the OR staff.

Q4. Based on your experience, is the remaining surgery duration estimation of the sur-
geon during the surgery correct?
It is just an indication; it is hard for them to estimate. It is just an indication on a certain moment. 
But a complication could be just after that.

Q5. Are there types of surgeries where the surgery duration is more difficult to predict 
than others?
Yes, those are categorized as a different surgery.

Q6. Do you change the schedule during a surgery? If so, in which part of the surgery? 
(Q1, Q2, Q3, or Q4)
Continuously, based on the delays in the system. It is based on the surgery progress, but when 
something happens such as a delay or a surgery that is finished earlier.

Q7. In your experience, how much is the turnover time?
On average 30 min.

Q8. Is this necessary/needed, or too much/too little?
It is necessary, it is not possible to change the patients directly. There are multiple factors that 
could influence the turnover time, such as more time needed for the cleaning, or a delay in 
change of surgeon or anesthesiologist. Also, if a surgery is finished earlier than expected, the 
next patients need to be informed and could possibly be not at the hospital yet. In that situation 
we call, and try to ask the patient to come earlier, but we are fully dependent on them.

Q9. Is there a high occurrence of overtime for the operating room staff? (Daily, once a 
week,.. etc)
Not a lot after 16.30 no. On average once a week.
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Q10. What is the reason for overtime?
Could be anything. For example, a surgery was delayed because of an instrument that was 
dropped.

Q11. Is there a high occurrence of undertime for the operating rooms?  (Daily, once  a 
week,.. etc)
Almost never, overtime more frequently.

Q12. What is the reason for undertime?
A cancellation of surgery because for example the patient needed something or instrument 
that is not available.

Q13. Would you want to use an automatic surgery duration estimation system, and why 
(not)?
It sounds useful, but it does not show the progress of the total workflow. This also influences 
the schedule. Also, I will have to continuously check the system, which would take a lot of time 
next to my current work. I would not think that it would add a lot of information.

Q14. How would such a system help your daily work?
If I continuously check the system, it could be useful. But that is not possible next to my current 
tasks.

Q15. If you would use an automatic remaining surgery duration estimation system, what 
should the accuracy be to be acceptable?
10 min.

Q16. When during the surgery do you need the estimation? (Q1, Q2, Q3, Q4)
Q3
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Interview 3
• Interviewee: ORPC 3
• Location: Hoofddorp (HO)
• Date: 11th of June, 2020

Q1. How do you make sure that the schedule is correct during the day? What do you 
change?
We use the Epic System to know the average durations for each surgery. Furthermore, we 
check if the scheduled duration of each surgery is right. For example, If Surgeon A is going 
to perform a cholecystectomy and the scheduled surgery duration is 2 hours, but we know he 
is always faster than average, we change the schedule accordingly. We check the reliability 
of the schedule. Also, ambulatory is the department that schedules the surgeries. Sometimes 
it is a different surgery than an average surgery of that type, which is added as a note in the 
surgery request. Based on that we can change the schedule to make sure it is kind of correct. 
During the day it is difficult, there is no one way. We react on the events happening, such as 
delay or faster surgery. And if there is a large turnover, we ask the staff what is happening and 
the reason of this turnover. But it is all reacting, no predicting/preventive changes in the sche-
dules. There are too much factors to be able to have a good prediction.

Q2. Which information do you need to during the day to be able to change the schedule 
properly?
The notes of ambulatory, so patient/surgery specific information. And if there is a complication 
during a surgery. And the current progress.

Q3.How do you retrieve information about the progress of current surgeries?
If there is for example a change of surgery, or complication, I get noticed by the OR staff. And 
I can see if the surgery is currently taking more time than scheduled.

Q4. Based on your experience, is the remaining surgery duration estimation of the sur-
geon during the surgery correct?
Mostly, but I use my personal experience. Some surgeons are correct, others for example 
always underestimate.

Q5. Are there types of surgeries where the surgery duration is more difficult to predict 
than others?
Yes, especially the longer surgeries than average. That can deviate a lot. It could easily be an 
hour longer than estimated or finish really fast. This influences the schedule significantly, while 
the shorter surgeries are more standard.

Q6. Do you change the schedule during a surgery? If so, in which part of the surgery? 
(Q1, Q2, Q3, or Q4)
Continuously, but it is based on for example a delay. So, when I see the surgery is still in pro-
gress, longer than scheduled, than I can change the next schedule.

Q7. In your experience, how much is the turnover time?
It differs a lot, but about 20 minutes. But It could easily be an hour.
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Q8. Is this necessary/needed, or too much/too little?
There are multiple reasons for a turnover time. Sometimes the people are faster than normal. 
For example, a patient needs to be called. Sometimes it takes one person more time to do so 
than the other. Or what also happens sometimes is that we forget to call the next patient. So, 
we are waiting and remember that we did not call yet. Furthermore, the department that needs 
to bring the patient could be slower or faster. That could differ from 15 min to 45 min. Or the 
holding is busy, which could create a longer turnover time. So, it is mostly because we need to 
wait on the patient to be ready.

Q9. Is there a high occurrence of overtime for the operating room staff? (Daily, once a 
week,.. etc)
Not that much.

Q10. What is the reason for overtime?
Most of the time due to a longer turnover time.

Q11. Is there a high occurrence of undertime for the operating rooms?  (Daily, once  a 
week,.. etc)
Not that much, maybe a little bit, but not enough time for a new surgery.

Q12. What is the reason for undertime?
-

Q13. Would you want to use an automatic surgery duration estimation system, and why 
(not)?
Yes, it would be useful, but I do not know how. Maybe it would make it possible to change the 
schedule earlier, but I do not think it would change the total schedule at the end.

Q14. How would such a system help your daily work?
I don’t know.

Q15. If you would use an automatic remaining surgery duration estimation system, what 
should the accuracy be to be acceptable?
About 10 to 15 minutes is acceptable.

Q16. When during the surgery do you need the estimation? (Q1, Q2, Q3, Q4)
Q3, but I would prefer it more at the beginning of Q3.
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