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Abstract
Subsurface firn processes play a crucial role in ice sheet mass lossmechanisms. OnGreenland surface
meltwater percolates to deeper layers where porous firn retains it, directly inhibiting runoff. However,
secondary effects such as the formation of impermeable ice slabs may indirectly and irreversibly accel­
erate runoff and with it global sea level rise. Microwave remote sensing offers opportunities to monitor
these processes, but due to the simplicity of their underlying snow models retrieval methods fail over
areas subject to melt and refreezing ­ areas where the firn’s (in)ability to buffer meltwater is critical.
This study presents a new forward model which given initial conditions and atmospheric forcing first
solves for the firn state through a full­complexity snow model (SNOWPACK) and then simulates mul­
tifrequency brightness temperature (𝑇𝑏) time series (using radiative transfer model SMRT). As part of
a comprehensive sensitivity analysis three ensembles of multi­decade 𝑇𝑏 time series (19 and 37 GHz)
were modelled for the DYE­2 site in the percolation area of the Greenland Ice Sheet. Model perfor­
mance based on RMSE w.r.t. independent 𝑇𝑏 satellite observations was found to be sensitive to biases
introduced in the atmospheric forcing record (with air temperature, precipitation and relative humidity
controlling variance) and snow model settings (new snow grain size and albedo settings) and not to
initial profile conditions. However, computed RMSEs were high (min. 17.8 K at 37V and 19.4 K at
19V) due to trends in modelled 𝑇𝑏 consistently underestimating observed trends when taken over an
accumulation season. It is shown that this can only be explained by the constant­with­time stickiness
assumption used to link the snowmodel’s microstructure representation to the sticky hard sphere model
employed for the radiative transfer scheme. A seasonal stickiness signal is made evident for the con­
ditions at DYE­2 and linked to its yearly melt­refreeze­accumulation cycle. These results demonstrate
that earlier approaches to forward model microwave satellite observations based on a constant­with­
time stickiness assumption (or that lack a third snow microstructure parameter altogether) are not valid
for ice sheet areas prone to melt. This study is expected to be the starting point for a more sophisti­
cated implementation that estimates a snow layer’s stickiness from microstructure information already
available in the snow model. If successful it would be the first of its kind and open the door to satellite­
based retrieval of subsurface firn properties and processes from areas where observations are currently
lacking, greatly reducing uncertainty in ice sheet mass loss and global sea level rise projections.

Cover image: micrograph of rounded snow grains, courtesy of the Agricultural Research Service USDA.
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1
Introduction

1.1. Sea Level Rise and Firn
The climate is warming, glaciers and ice sheets are losing mass and global sea level is rising. The
1993­2010 contribution of glaciers and ice sheets is estimated at 1.4 mm/year, which makes it the
dominant source of global mean sea level rise. Measured rates are accelerating and pose a variety
of societal challenges. Sea level rise projections are used to plan adaptation and mitigation efforts but
come with great uncertainty (IPCC, 2014).

“Tipping elements” of global climate change form one such source of uncertainty. When a tipping el­
ement reaches a critical threshold rapid change becomes irreversible. Both the Greenland and Antarc­
tica ice sheets are considered such elements: on Greenland there is feedback between increased melt
water runoff and polar amplification (Robinson et al., 2012), while on Antarctica uncontrolled solid ice
discharge poses a danger. Although an Antarctic ice shelf collapse alone could lead to 1 m extra sea
level rise by 2100 (DeConto and Pollard, 2016), the thresholds and timing of these mechanisms are
uncertain forcing the IPCC to exclude these effects from its projections (IPCC, 2019). An important
source of uncertainty here is the understanding and model representation of subsurface firn processes
in our changing climate (Machguth et al., 2016).

Seasonal snow and perennial firn conditions play a crucial role in mass loss mechanisms. Directly,
their properties affect melt rates by controlling how much incoming solar radiation is absorbed. Addi­
tionally, due to latent heat release the density and thermodynamic structure of glaciers and ice sheets
are heavily affected by refreezing processes (Colgan et al., 2015, Lüthi et al., 2015, Phillips et al.,
2010). When melt occurs at the surface liquid water percolates to deeper layers where porous firn re­
tains it ­ in liquid or refrozen form ­ inhibiting runoff (fig. 1.1). Initially a buffer against mass loss (Pfeffer
et al., 1991), secondary effects after refreezing further affect the net mass balance (van Pelt et al.,
2016). When enough water refreezes near the surface low­permeability ice slabs can be formed which
prevent additional meltwater from reaching retention capacity in deeper layers, effectively halting the
buffering effect (MacFerrin et al., 2019). With runoff being the prime mass loss mechanism for Green­
land (Fettweis et al., 2017, Mottram et al., 2019, van den Broeke et al., 2016) but only slightly more
than half of the surface melt actually running off (Steger et al., 2017), the significance of this buffer­
ing mechanism is not to be belittled. It is estimated that by 2100 runoff over Greenland’s expanding
ice slabs will have doubled compared to a situation without ice slabs. This equates to an additional
17 to 74 mm of sea level rise given a high­emission scenario (MacFerrin et al., 2019). On Antarctica
subsurface buffering capacity controls the expansion of meltwater streams and lakes which threaten
ice shelf stability, potentially triggering disintegration, accelerating surrounding glaciers and solid ice
discharge leading to another case of rapid sea level rise (Bell et al., 2017, Kuipers Munneke et al.,
2014, Lenaerts et al., 2017, Pollard et al., 2015). All this illustrates that it is essential to monitor firn
processes to anticipate future sea level rise.

1.2. Assessing the State of Firn
It is difficult to make in situ observations of subsurface firn properties. Traditionally this is done by
drilling and measuring the properties of retrieved firn core sections: a labour intensive and expensive

1



1.2. Assessing the State of Firn 2

Figure 1.1: Pecrolation and retention of surface “meltwater” visualized by applying 0.5 mg/L of erioglaucine as blue dye to the
snow surface. Picture taken after 45 min of percolation, preferential flow paths and ice layers clearly visible. Source: Lazzaro
et al. (2015).

task. Even with recent advances in pneumatic measurements and ground penetrating radar, due to
our ice sheets’ inaccessibility and challenging conditions efforts generally focus on specific areas that
are revisited on an annual basis at best, which fails to fully capture spatio­temporal variations of firn
conditions (van As et al., 2016). This means that our current understanding is largely dependent on
a combination of microwave remote sensing (Fettweis et al., 2011) and snow models (Lenaerts et al.,
2017, Obleitner and Lehning, 2004, Reijmer et al., 2012, van Pelt et al., 2016).

Remote sensing in the microwave spectrum offers possibilities to study snow properties not only at
the surface but also several meters below it. This is true because microwave radiation is able to signifi­
cantly penetrate the snowpack and interact with it while doing so (fig. 1.2). A snowpack’s temperature,
density, liquid water content and grain size profile or the presence of ice lenses continuously affects
its emissivity and scattering characteristics at different frequencies and polarizations. As a result both
active and passive microwave instruments can detect (sub)surface melt and radar (terrestrial, airborne
or from a satellite platform) can be used to map snow pack layering (Forster et al., 2014). Another case
is the use of multi­frequency passive microwave (brightness temperature, 𝑇𝑏) satellite series observa­
tions to constrain and validate snow models that in combination with radiative transfer models are used
to assess subsurface firn properties. Using this technique Brucker et al. (2010) have demonstrated that
observed emissivities in Antarctic dry­snow zones can only be explained through an increasing grain
size with depth. Similarly, ratios between horizontally and vertically polarized 𝑇𝑏 have been used as
indicator of near­surface density changes (Brucker et al., 2011). However, the use of these techniques
is limited by the simplicity of the underlying snow models. E.g. Brucker et al. (2010) assumed a sim­
ple analytical relationship for the grain size profile based on a near surface grain radius and vertical
gradient. This works for dry­snow zones where grain growth follows an Arrhenius­type relationship but
will fail in areas with melt where grain growth is dominated by melt­refreezing cycles. Likewise, Picard
et al. (2009) used a physically based snow dynamic and emission model to forward model 𝑇𝑏 time se­
ries over Antarctica and found the model to be inadequate in the melt zones. The model was relatively
simple and, for example, assumed a vertically constant and spatially uniform snow density. This proved
sufficient in dry snow zones but failed where melt events complicated the snowpack structure and its
temporal variations ­ areas where the firn’s (in)ability to buffer melt water is pivotal.

To retrieve firn properties from these areas more complex, physical snow models are required. An
example of a “full­complexity” snow model is SNOWPACK (Bartelt and Lehning, 2002, Lehning et al.,
2002a,b). Given atmospheric forcing it solves the coupled energy and mass balance of the snowpack
to simulate how its properties evolve over time (fig. 1.3). Originally developed for seasonal snow and
in operational use as avalanche forecasting tool it is skilful in modelling stratigraphy and the formation
of thin layers such as surface hoar and melt­freeze crusts, which are known to affect microwave scat­
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Figure 1.2: Example illustration of how microwave radiation propagates through a snowpack, which scatters away upwelling
radiation. When a snowpack starts melting it also increases its emissivity, resulting in an increase of observed radiation at the
sensor. Source: The COMET Program.

tering and emission properties (Montpetit et al., 2013). SNOWPACK has also been applied to polar
and perennial firn conditions where thanks to its advanced hydrological, metamorphosis and feedback
processes it can adequately deal with melt and refreezing (Steger et al., 2017, Wever et al., 2014).
Another way in which this model sets itself apart is through its advanced snow microstructure repre­
sentation. Four parameters are used to describe the complex texture of snow: grain size, bond size,
dendricity and sphericity. Throughout a simulation these parameters evolve per snow layer according
to rate equations, which are functions of the local environmental conditions that were based on both
theory and empirical relations (Lehning et al., 2002a). The resulting microstructure is used to determine
global properties of the snowpack, be it optical (e.g. albedo), mechanical (e.g. strength) or physical
(e.g. thermal conductivity) properties. This is promising within the context of radiative transfer mod­
elling because the snow microstructure also determines the scattering and emission properties of a
snowpack in the microwave spectrum.

Figure 1.3: Density profile evolution of a seasonal snowpack as modelled by SNOWPACK. Layering (horizontal streaks of higher
density) and onset of spring melt (step increase in density at the beginning of May) clearly visible. For this seasonal example
only atmospheric forcing is required as input for the model ­ no initial snowpack. Source: Bartelt and Lehning (2002).

1.3. Snow Model Uncertainty
However, given this complexity the use of SNOWPACK comes with its own uncertainties: in input
data (errors in initial snow pack or atmospheric forcing record), model settings and solution (errors
in input parameters, different possible model configurations and the discretizations/algorithms used
to compute output), and as a result in output (the precision and accuracy with which SNOWPACK
can reproduce snowpack properties). Because it can be applied to a wide variety of conditions the
number of model settings and parameterizations available in SNOWPACK is naturally expected to be
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high. As a process­based model its different configurations depend on input parameters that have
physical meaning but are in practice difficult to infer from measurements, for example the grain size
of fresh snow or local aerodynamic roughness length. In other applications observations of these
parameters or of initial snowpack conditions might be missing altogether. Also the atmospheric forcing
record contains errors, which can be significant when variables have to be interpolated from sparsely
distributed weather stations or come from climate model output. The usefulness of any model depends
on the accuracy and reliability of its results. In order to quantify uncertainty in output and to focus
measurement and modelling efforts on areas where they have the greatest impact it is important to
understand how these different sources of uncertainty interact and propagate through the model.

Snow models have been the subject of studies assessing the relationship between model structure
and model performance (Magnusson et al., 2015) and how forcing error propagates through different
models (Raleigh et al., 2015). The work discussed here applies to the setting of hydrological modelling
of seasonal snowpacks. Magnusson et al. (2015) compared the performance and behaviour of three
different model types with varying complexity (including SNOWPACK) by generating an ensemble of
model outputs and comparing it to snow mass and runoff observations at two sites in the European
Alps. Although no clear relation between model complexity and performance could be identified, it
was demonstrated that an appropriate combination of process representations is required to achieve
high model performance. Raleigh et al. (2015) employed a global sensitivity analysis to investigate
how different error types (biases/random), probability distributions and magnitudes introduced in the
forcing record affect performance of a physical snow model. The authors found a high sensitivity to
biases in the forcing (less so for random errors) and that model output uncertainty due to forcings can
be comparable to or larger than model uncertainty due to model structure.

Günther et al. (2019) recognised that earlier efforts focused on either the impact of different model
configurations or forcing errors, but not their possible interactions or the robustness of results given
model parameter uncertainty. They undertook a global variance­based sensitivity analysis of their own,
investigating the impact of these uncertainty sources simultaneously. Performance was based on a
medium­complexity snowmodel’s ability to simulate snowwater equivalent observations at amonitoring
station in the Austrian Alps. Within this context it was found that snow models are most sensitive to
input data errors, then to model structure and last to model parameters. Significant interaction effects
were discovered and the authors conclude that for a representative assessment these must be included
in future analyses. The Sobol’ sensitivity analysis framework proved an excellent tool to come to these
conclusions: it can quantify the sensitivity of model performance to changes in input data and settings,
include interaction effects and allow for grouping of input factors. The latter is crucial because it means
that both scalar and non­scalar factors can be considered simultaneously, and grouping reduces the
dimensionality of the problem and thus computational costs. Inspired by Günther et al. (2019) in this
study a similar analysis is performed for perennial firn conditions, using a combined snow and radiative
transfer model and satellite 𝑇𝑏 observations to evaluate model performance.

1.4. Radiative Transfer Modelling of Snow
Radiative transfer models based on the understanding of how snow and electromagnetic waves inter­
act can, given snowpack properties, be used to forward model a satellite signal. In case of passive
microwave observations radiometers carried on board satellites measure thermal radiation emitted by
the snowpack, which is expressed as 𝑇𝑏. 𝑇𝑏 is the product of snow temperature and emissivity, with
emissivity a function of snowpack density, liquid water content, grain size and microstructure. In or­
der to be able to apply a radiative transfer scheme the snowpack is assumed to be made up out of a
number of discrete layers whose properties come either from in situ snow measurements (e.g. Brucker
et al., 2011) or snow models (e.g. Wiesmann et al., 2000). Additionally, different models have differ­
ent approaches to the snow microstructure representation which determines a layer’s electromagnetic
properties required to solve the radiative transfer equation. Two theories are of particular interest to
this study. Firstly, the Improved Born approximation (IBA, Mätzler, 1998) which expresses the scatter­
ing coefficient in terms of the Fourier transform of the two point correlation function. In the Microwave
Emission Model of Layered Snowpacks (MEMLS, Wiesmann and Mätzler, 1999) this is simplified fur­
ther by assuming an exponential function form for the correlation function and as a result only a single
parameter is needed as microstructure model input (exponential correlation length ­ no grain size). The
second theory of interest is the Dense Media Radiative Transfer Theory (DMRT, Picard et al., 2013)
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where microstructure is based on approximating snow grains by spheres. However, it was found that
the sphere diameter (“snow grain size”) and volume fraction (“snow density”) do not fully characterise
the snow medium and that an extra parameter is required to do so: the stickiness parameter, resulting
in the sticky hard sphere (SHS) microstructure model. The stickiness parameter is used to change the
relative position of snow grains (the spheres) without changing their diameter or volume fraction and
can be regarded as controlling the amount of snow grain clustering, with clusters showing different scat­
tering properties than single well separated grains. Recent advances have proven the electromagnetic
approaches of IBA/MEMLS and DMRT to be equivalent (Löwe and Picard, 2015) and by reformulating
their microstructural models in a common framework, the Microwave Radiative Transfer model (SMRT,
Picard et al., 2018) now allows the IBA electromagnetic theory to be used with five different microstruc­
ture models, including SHS. This setup was chosen for this study as it allows for using snow modelled
grain sizes directly as input for the radiative transfer modelling chain.

1.5. Proposed Firn Retrieval Workflow
A novel workflow to retrieve information on the processes occurring in the firn layer is proposed here.
An integrated modelling­remote sensing approach it combines a snow model with a radiative trans­
fer model to simulate ensembles of satellite observations. Fig. 1.4, from left to right: given an area
and time frame of interest, multiple snow model output realisations (time series of firn properties) are
generated by forcing SNOWPACK with a range of atmospheric input variables that account for the un­
certainties in climate model output (accounting for uncertainties in model forcing). At the same time,
different model configurations using the settings/parameterizations available in SNOWPACK are used
(accounting for uncertainties in model settings and parameters). The resulting ensemble of possible
but uncertain time series of snow and firn properties serves as input for a radiative transfer model
(here SMRT) which outputs the ensemble of modelled satellite observation time series. In a final step
the last ensemble is compared to actual satellite observations and ensemble members that are not in
agreement are excluded, leaving a reduced set of candidates. While this will likely not lead to a single
best ensemble member (i.e. a unique solution), if the modelling chain proves successful it will certainly
allow for quantification of the uncertainty in firn time series by analysing the spread in properties of the
reduced set of candidates. Additionally, by looking at which model inputs and settings lead to realistic
modelled satellite observations atmospheric forcing and SNOWPACK model uncertainties can be re­
duced. When for example a certain model configuration is found to consistently underperform it seems
reasonable to assume it inappropriate for the conditions and exclude it from future efforts ­ effectively
reducing model uncertainty.

Figure 1.4: Proposed workflow that uses an integrated modelling­remote sensing approach to assess subsurface processes
occurring in the firn layer. An ensemble of firn time series is generated accounting for model uncertainties, translated into
satellite observed series and compared with independent observations to make a subset of possible candidates.
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1.6. Research Objectives
In a first step towards inverse firn retrieval, the work presented in this report concerns the forward
modelling aspect of the proposed workflow of fig. 1.4. The main objective reads:

Main Objective: demonstrate the feasibility of using snow model SNOWPACK in combination
with radiative transfer modelSMRT to forwardmodel ensembles of multi­frequency 𝑇𝑏 time series,
for comparison with independent satellite observations.

With a particular interest in ice sheet percolation areas, where the buffering mechanism of firn is both
fragile and crucial but where earlier retrieval methods fall short. It aims to answer the following research
questions:

RQ1 ­ What is the impact of the different SNOWPACK input variables and model settings on
modelled 𝑇𝑏 time series?

RQ2 ­ How do SNOWPACK­SMRT modelled 𝑇𝑏 time series compare to independent satellite
observations?

RQ3 ­ What is the added value of using 𝑇𝑏 time series when constraining SNOWPACK ensem­
bles?

Answering these questions will prove essential in the development of a combined snow and radiative
transfer model to evaluate subsurface firn processes using microwave remote sensing observations,
currently being worked on at TU Delft’s Geoscience and Remote Sensing department.

1.7. Research Approach
This study presents a combined forward model which given initial conditions and atmospheric forcing
first solves for the snow and firn state (through snow model SNOWPACK) and then simulates multi­
frequency 𝑇𝑏 observations (using radiative transfer model SMRT). As part of a comprehensive sensitiv­
ity analysis three ensembles of multi­decade 𝑇𝑏 time series at 19 and 37 GHz and V and H polarizations
are modelled for a study site in the percolation area of the Greenland Ice Sheet. Model performance is
assessed by comparing SNOWPACK­SMRT modelled 𝑇𝑏 to satellite observations and by comparing
the SNOWPACK modelled density profiles directly to in situ profiles from firn cores. The impact of er­
rors in atmospheric forcing variables, initial snowpack conditions and SNOWPACK model settings as
well as their interaction effects are evaluated within the Sobol’ sensitivity analysis framework, for model
performance based on both 𝑇𝑏 and density. Differences in sensitivity and discrepancies between mod­
elled and observed 𝑇𝑏 series are discussed, the latter linked to snow microstructure assumptions made
while combining SNOWPACK with SMRT. Lastly the forward modelling approach presented here is
compared with earlier efforts: while measured profiles from dry snow zones and physically modelled
seasonal snowpacks have been used to model microwave emission time series before, several aspects
are new. This includes the ensemble approach, the application of a model with full­complexity snow
component to the percolation area of an ice sheet and modelling of multi­decade time series.



2
Models, Methods, and Data

2.1. Study Site and Data
The analysis was performed at DYE­2 (also known as Camp Raven), a site located on the Greenland
Ice Sheet at 66.48°N, 46.28°W (fig.2.1). The local surface is elevated 2165 m above sea level and
has a slope of 0.2°. Mean air temperature over the simulation period (June 1998 to December 2017)
was measured at ­17.4°C and mean annual precipitation at 424 mm water equivalent. This site was
selected for two main reasons. Firstly, located in the so­called percolation area of the ice sheet, DYE­2
experiences yearly melt seasons during and after which surface melt water percolates through the firn
layer. Here it can refreeze forming ice lenses and releasing latent heat ­ the processes at the basis
of ice slab formation. From field campaigns we know that thick impermeable ice slabs are as of now
not present at DYE­2 but they have been observed at nearby stations at lower elevations (MacFerrin
et al., 2019). Secondly, DYE­2 is the site of a Cold War era military installation and is a well established
landmark on the ice sheet. It has been and continues to be frequently revisited and as a result there is
ample in­situ data available to serve as model input and for calibration/validation purposes.

2.1.1. Atmospheric Forcing
Atmospheric forcing was taken from Vandecrux et al. (2020) and is based on the GC­Net Automatic
Weather Station (AWS) record at DYE­2. Vandecrux et al. (2020) carried out the following steps:

1. Outliers were rejected according to Vandecrux et al. (2018).

2. Gaps were filled by interpolation, through adjusting data from nearby KAN_U AWS (Charalam­
pidis et al., 2015) or by using RACMO2.3p2 climate model output (Noël et al., 2018).

3. Gaps in upward shortwave radiation were filled using a MODIS daily albedo product by Box et al.
(2017).

4. Shortwave radiation was corrected for AWS tilt according to Wang et al. (2016).

5. Downward longwave radiation (not measured) was taken entirely from RACMO2.3p2 model out­
put.

6. Measurements of surface height were converted to hourly snow accumulation (from here onward
“precipitation”), using a site­specific calibration factor such that the derived winter accumulation
matches in­situ snow pit observations. For more information on this routine, see Vandecrux et al.
(2018).

The result is a gap­free hourly meteorological data set that runs from 1 June 1998 to 31 December
2017. An overview of the variables that were used to force our model are presented in table 2.1.
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Figure 2.1: Map of Greenland showing the GC­Net Automatic Weather Station locations, with the DYE­2 study site within the
ice sheet’s percolation area highlighted in red. Source: modified from the Cooperative Institute for Research in Environmental
Science at UCB (Steffen et al., 1996).

Table 2.1: Atmospheric forcing Variables that were taken from the meteorological record at DYE­2, as presented in Vandecrux
et al. (2020).

Variable Symbol Units Comment

time 𝑡 [days] since 1900­1­1 0:0:0 UTC
air temperature 𝑇𝑎 [K] at 2 m
relative humidity 𝑅𝐻 [%] at 2 m
wind speed 𝑈 [m/s] at 10 m
incoming shortwave radiation 𝑄𝑠𝑖 [W/m2] ­
outgoing shortwave radiation 𝑄𝑠𝑜 [W/m2] ­
incoming longwave radiation 𝑄𝑙𝑖 [W/m2] ­
precipitation 𝑃 [m/hr] water equivalent

2.1.2. Snow Density Profiles
Snow density at the beginning of the simulation period comes from a Program for Arctic Regional
Climate Assessment (PARCA) core drilled at DYE­2 in 1998, with a 10 cm resolution and total depth
of 60 m (Mosley­Thompson et al., 2001). Repeat observations for comparison with snow modelled
densities come from the SUMup dataset (Montgomery et al., 2018) which was filtered on observations
from the DYE­2 area corresponding to our simulation period. Five firn core records were found, all from
2013 onwards (table 2.2).

2.1.3. Satellite Observed Tb
Independent satellite observations of 𝑇𝑏 at 37 and 19.35 GHz come from the Special Sensor Microwave
Imager (SSM/I) and the Special Sensor Microwave Imager/Sounder (SSMIS) sensors carried on board
a series of Defense Meteorological Satellite Program (DMSP) satellites. Here data from the F13 (op­
erational from 1995 until end of 2008) and F17 (operational from end of 2006 onwards) platforms was
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Table 2.2: Firn core density observations used for model evaluation, retrieved from the SUMup dataset (Montgomery et al.,
2018). Note that cores 2013A and 2013B were drilled on the same day and henceforth only the 2013 core is referred to, whose
density profile was computed as the mean of cores 2013A and 2013B.

Core Date Depth range [m] Reference

2013A 05 May 2013 0.00 ­ 16.64 Machguth et al. (2016)
2013B 05 May 2013 0.00 ­ 16.45 Machguth et al. (2016)
2015 21 May 2015 0.81 ­ 19.27 MacFerrin et al. (tion)
2016 06 May 2016 0.00 ­ 17.37 MacFerrin et al. (tion)
2017 11 May 2017 0.00 ­ 22.97 MacFerrin et al. (tion)

used, allowing for daily observations over our entire simulation period. Daily images were downloaded
for both vertically and horizontally polarized channels (Maslanik and Stroeve, 2018), which had spatial
resolutions of 25 km. The values of the single pixel containing the study site were extracted and for
days were both F13 and F17 data was available the mean value was taken to arrive at time series of
daily 𝑇𝑏 observations for four channels: 37V, 37H, 19V and 19H.

2.2. Models
2.2.1. Snow Model
SNOWPACK was chosen as snow model for this study. It is a one­dimensional, physical model driven
by atmospheric forcing (Bartelt and Lehning, 2002) and implemented in C++. It is skilful in modelling
the formation of thin layers (Lehning et al., 2002a), has a proven track record of dealing with melt and
refreezing in polar environments (Steger et al., 2017, Wever et al., 2014) and sets itself apart from
other models by its advanced snow microstructure and metamorphism representation (Lehning et al.,
2002b), which makes it an excellent candidate for the combined snow and radiative transfer model.

For initial snow conditions the 1998 observed density profile was supplemented by assumed grain
size and temperature profiles from (Vandecrux et al., 2020), resulting in the same set up as the “DYE­
2_long” experiment presented by those authors and ensuring comparability of results. However, given
the advanced microstructure representation SNOWPACK required some additional parameters. In
case of an undisturbed model run, the bond radius (rb, [mm]) was assumed as 0.5 times the grain size,
dendricity (dd, [­], between 0 and 1) was set to 0.2 and sphericity (sp, [­], between 0 and 1) to 0.8.
These variables were assumed constant with depth and any other parameters or markers were set to
0. To speed up computational times the resolution of the initial profile was adjusted with depth. For the
top 10 m the original resolution of 10 cm was preserved, between 10 and 20 m this was reduced to
20 cm, between 20 and 30 m to 50 cm and below 30 m to 100 cm. This reduced the total number of
initial snow layers from 600 to 200 while maintaining fine snow layer resolution at the top of the profile
where strong gradients in properties are expected due to interaction with the atmosphere. Below the
final depth of 60 m 10 insulating ice layers were added to prevent heat escaping from the bottom of the
domain. These had a thickness of 10 m each and were set to the study site’s mean air temperature.

Table 2.3 contains an overview of the SNOWPACK model settings considered in this study. Over
the years different groups have experimented with their own implementations of SNOWPACK and as
a result many options are available in the model. Most of the processes can be represented by a num­
ber of different parameterizations, other options can be turned on or off, increasing or decreasing the
model’s complexity or changing its working altogether. An extended list of used SNOWPACK settings
as well as an explanation on the non­standard RACMO albedo parameterization can be found in ap­
pendix A. For a comprehensive overview of the model’s workings the reader is kindly referred to Bartelt
and Lehning (2002), Lehning et al. (2002a,b).
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Table 2.3: SNOWPACK model settings and parameters considered in this study. Appendix A contains a list of the other model
settings (that were kept fixed) as well as an explanation on the RACMO albedo parameterization.

Available setting Options considerd Comment

SW_MODE BOTH, INCOMING measured or SNOWPACK albedo
SNOW_ALBEDO FIXED, PARAMETERIZED SNOWPACK albedo: fixed value or parameterized
ALBEDO_FIXEDVALUE range of values [­], only when SNOW_ALBEDO is set to FIXED
ALBEDO_PARAMETERIZATION LEHNING_0­2, SCHMUCKI_1­2, “RACMO” 6 options total, only when SNOW_ALBEDO is set to PARAM.
ALBEDO_AGING TRUE, FALSE snow age taken into account for albedo, only some param.
SW_ABSORPTION_SCHEME MULTI_BAND, SINGLE_BAND single or multi band shortwave radiation absorption scheme
HN_DENSITY FIXED, PARAMETERIZED sixed or parameterized new snow density
HN_FIXEDVALUE range of values [kg/m3], only when HN_DENSITY is set to FIXED
HN_PARAMETERIZATION LEHNING_NEW­OLD, ZWARTE, BELLAIRE, PAHAUT 5 options in total, only when HN_DENSITY is set to PARAM.
ATMOSPHERIC_STABILITY RICHARDS, NEUTRAL, MO_MICHLMAYR atmospheric stability correction scheme
ROUGHNESS_LENGTH range of values [m], aerodynamic roughness length
NEW_SNOW_GRAIN_SIZE range of values [mm], grain size of new snow (diameter)
ENABLE_VAPOUR_TRANSPORT TRUE, FALSE whether mass transport by vapour flow is enabled

2.2.2. Radiative Transfer Model
SMRT (Picard et al., 2018) was used to translate SNOWPACK output into multi­frequency 𝑇𝑏 obser­
vations. It uses the discrete ordinate and eigenvalue method to solve the radiative transfer equation,
or how radiative energy propagates through the multilayered medium. In our passive case this en­
ergy comes from thermal emission of the snow itself (opposed to also from the sky in case of active
mode/radar). Implemented in Python, SMRT differentiates itself from other models by offering a high
degree of flexibility in switching between different electromagnetic theories and snow microstructure
representations which together determine the exact electromagnetic behaviour of snow. In this study
IBA electromagnetic theory was used in combination with SHS microstructure representation.

This IBA­SHS configuration was chosen for a couple of reasons. One, of the two electromagnetic
theories of interest ­ being DMRT (Picard et al., 2013, Tsang et al., 2007) and IBA (Mätzler, 1998)
­ IBA proved to produce results most reliably. This is related to the way in which DMRT is currently
implemented in SMRT (using a short­range approximation which requires small grain size compared to
wavelength) and the large grain sizes encountered at DYE­2. That being said, exceptionally large grain
sizes still had to be capped when using IBA but not to the same extent as with DMRT. Two, in SMRT
IBA is not limited to a particular microstructure model but DMRT is only compatible with SHS. The IBA­
SHS configuration therefore provided a good starting point as potential follow up work can change the
microstructure representation independently from the electromagnetic theory and vice versa.

The SHS representation had an extra advantage in that it uses two parameters to characterize
snow microstructure: grain size and a stickiness parameter, while the exponential representation that
IBA is traditionally associated with (as implemented in MEMLS by Wiesmann and Mätzler, 1999) only
uses a correlation length. It might seem advantageous to have one less parameter, but this has been
found inadequate to fully characterize the microstructure of snow (Mätzler, 2002, Picard et al., 2018).
Additionally, when using SHS SNOWPACK grain size could be used directly as input for SMRT. The
stickiness parameter is then used to change the relative position of snow grains without changing their
diameter or volume fraction, effectively controlling the clustering of snow grains. This has an effect on
radiative transfer because sticky or clustered snow shows different scattering behaviour compared to
uniformly distributed snow grains. Stickiness is not explicitly present in SNOWPACK and was assumed
vertically and temporally constant.

2.2.3. Combined Model
Snow model SNOWPACK and radiative transfer model SMRT were linked together to form the “com­
bined model” as implemented on the VRLAB cluster of the GRS department (fig. 2.2). From left to right:
initial snow and firn conditions and atmospheric forcing serve as input for SNOWPACK, that depending
on the chosen settings models how the profile of snow and firn properties evolves over time. This inter­
mediate output (daily snow and firn properties) is saved on the server. In the “layer merging” step this
is prepared as input for SMRT, that translates it to time series of modelled 𝑇𝑏 ­ the final output of the
combined model. This comprises the forward modelling chain of the proposed firn retrieval workflow of
fig. 1.4.

Practically, the layer merging step is made up of custom Python functions that start off with reading
the SNOWPACK output data, to turn it into daily profiles of snow density, temperature, liquid water
content and grain radius suitable for use as input with SMRT. This involves the following steps:
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1. The 10 insulating ice layers were removed again from the bottom the record.

2. All variables were converted to have units appropriate for SMRT : layer thickness [m], snow tem­
perature [K], density [kg/m3], volumetric ratio of liquid water [­] and grain radius [m].

3. The total depth of the profiles was limited to the first 4 m for simulations at 37.00 GHz and to 15
m for 19.35 GHz and a semi­infinite final layer was added to the bottom of the record. This was
done to limit computational times. The 4 and 15 m values were chosen such that increasing the
profile depths any further did not change the modelled 𝑇𝑏 values anymore.

4. The number of snow layers was limited to 80 for simulations at 37.00 GHz and to 200 at 19.35
GHz, again to limit computational times. When more layers were present the thinnest layer was
merged with the layer below it and the physical properties of the merged layer were determined
as the thickness­weighted average of the properties of the individual layers. This was continued
until a maximum of 80 or 200 layers were left. The maximum number of layers was determined
such that increasing these numbers did not significantly change modelled 𝑇𝑏 values anymore.

5. Snow densities were capped at 916 kg/m3 to avoid erroneous volume fractions greater than unity
in SMRT, which would lead to an error. SNOWPACK densities max out at the generally accepted
pure ice density of 917 kg/m3 and the effect of the capping was assumed negligible.

6. Grain radii were capped at 1.5 mm (equivalent to a grain size of 3.0 mm) to avoid exceptions in
SMRT. Contrary to the density capping when large grain sizes are present in the SNOWPACK
output capping these might significantly affect modelled 𝑇𝑏, but this was preferred over gaps in
the output time series. Details on the amount of capping can be found in appendix B.

7. A constant (with depth and time) stickiness parameter was set (section 2.5). This is a snow
variable not explicitly present in the SNOWPACK output but required to run SMRT with the SHS
microstructure model.

Figure 2.2: Schematic of the combined snow (SNOWPACK) and radiative transfer (SMRT) model at the basis of this study.
Left: model input (initial snow and firn properties and a record of atmospheric conditions), right: model output (modelled 𝑇𝑏 time
series).

2.3. Sensitivity Analysis Framework
2.3.1. Sobol’ Global Variance­based Method
The Sobol’ sensitivity analysis framework is a global variance­basedmethod, where the sensitivity of the
model’s performance to a certain change in input or model setting is quantified using sensitivity indices
(Sobol, 1993). These indices range from zero to one and represent the fraction of output variance
explained, i.e. the first­order sensitivity index 𝑆𝑖 is defined as the variance in model prediction (𝑌) from
a change in one particular parameter (𝑋𝑖). Or, in the form of an equation:

𝑆𝑖 =
𝑉[𝐸(𝑌|𝑋𝑖)]
𝑉(𝑌) (2.1)

where 𝑉 is the variance operator, 𝐸 the exception operator and 𝑋∼𝑖 stands for all parameters except
𝑋𝑖. Contrary to the first­order sensitivity index, the total­order sensitivity index 𝑆𝑇𝑖 also includes the
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interaction effects of all other parameters:

𝑆𝑇𝑖 = 1 −
𝑉[𝐸(𝑌|𝑋∼𝑖)]

𝑉(𝑌) (2.2)

note that as interaction effects are attributed to all parameters involved the sum of all total­order sen­
sitivity indices can exceed one. Previous studies dealing with complex snow models have revealed
considerable interaction effects between different uncertainty sources (Günther et al., 2019), hence
these effects need to be taken into account in order to arrive at a representative sensitivity analysis.
This was an important consideration when deciding on the method presented here.

In practice three sampling matrices are constructed to be able to to evaluate equations 2.1 and 2.2
for a single parameter: 𝐴, 𝐵 and 𝐴(𝑖)𝐵 , where 𝐴 and 𝐵 are of size 𝑁 ∗ 𝑘 (number of samples * number
of parameters). Each row corresponds to one model realisation, with its elements representing the
state of the considered model parameters (the different columns). Typically the latter are picked quasi­
randomly in order to optimally sample the input space. 𝐴(𝑖)𝐵 is then made up out of a combination of 𝐴
and 𝐵 by taking 𝐴 but replacing the 𝑖th column by the 𝑖th column of 𝐵 (Saltelli et al., 2010). The first
and total­order sensitivity indices are then determined as (Günther et al., 2019, Jansen, 1999, Saltelli
et al., 2010):

𝑆𝑖 = 1 −

1
2𝑁

𝑁

∑
𝑗=1
(𝑓(𝐵)𝑗 − 𝑓(𝐴(𝑖)𝐵 )𝑗)2

𝑉(𝑌) (2.3)

𝑆𝑇𝑖 =

1
2𝑁

𝑁

∑
𝑗=1
(𝑓(𝐴)𝑗 − 𝑓(𝐴(𝑖)𝐵 )𝑗)2

𝑉(𝑌) (2.4)

Where 𝑓 denotes the model performance operator, e.g. 𝑓(𝐴)𝑗 is the model skill when setting the model
parameters according to the 𝑗th row of sampling matrix 𝐴. Important to stress is that within the context of
the presented sensitivity analysis one dimensional model performance is the final output of the system.
This means that this study estimated the sensitivity to different input parameters and model settings
not on modelled 𝑇𝑏 directly, but on the ability of the combined snow­radiative transfer model to simulate
realistic 𝑇𝑏 time series according to defined performance measures.

2.3.2. Uncertainty Sources and Grouping
Parameters were grouped into uncertainty classes to limit computational costs and ease interpretation.
Given the total number of input parameters and model settings and that simultaneous assessment of
𝑆𝑖 and 𝑆𝑇𝑖 requires 𝑁(𝑘 + 2) model runs it was computationally infeasible to estimate these indices
on an individual level. Additionally, when computing total­order sensitivity indices these would include
interaction effects of possibly all other factors making the results exceedingly difficult to interpret. The
solution was to group parameters into wider uncertainty classes following the approach of the General
Probabilistic Framework (Baroni and Tarantola, 2012).

Three main classes presented themselves naturally: atmospheric forcing, initial snow conditions
and SNOWPACK model settings. These three distinct groups of uncertainty served as the basis for
three different experiments in which the precise definition of these classes was varied (fig. 2.3). For
each identified class 𝑛 independent realisations were generated that reflect the uncertainty inherent
to that class. Rather than the state of a single parameter the elements of sampling matrices 𝐴 and 𝐵
contained integer numbers picked quasi­randomly from the range 0 to 𝑛, each corresponding to one of
the generated uncertainty class realisations.

Note that the model settings available in SMRT were kept fixed throughout the sensitivity analysis
and considered beyond the scope of this study. There are twomain reasons for this: one, the extra layer
of model uncertainty originating from radiative transfer modelling wouldmake results difficult to interpret,
as it would be challenging to discern between effects from the snow model vs. the radiative transfer
model. Two, model configurations available in SMRT that would give reliable results for the conditions
at DYE­2 without heavily altering the SNOWPACK output were found to be limited. The decision was
made to stick to a single promising configuration, hence the focus of the sensitivity analysis is on the
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SNOWPACK component of the combined model. This is in line with the research objectives (notably
RQ1).

Grouping of uncertainty sources per experiment

Figure 2.3: Schematic showing the different degrees of freedom for the main (a), meteo (b) and undisturbed (c) experiments. The
meteo experiment considered the atmospheric forcing variables individually rather than as a group and combined the initial profile
and SNOWPACK model settings as a single degree of freedom. For the undisturbed experiment uncertainty in atmospheric
forcing and initial profile were excluded from the analysis and only model settings were varied, grouped into four degrees of
freedom.

2.4. Description of Experiments
2.4.1. Main Experiment
The first experiment, dubbed the main experiment, has three degrees of freedom: atmospheric forcing,
initial profile and SNOWPACK settings, with each of these three uncertainty classes consisting of a
collection of individual parameters (fig. 2.3a). The goal of the main experiment was to investigate the
sensitivity of model performance to biases in the atmospheric forcing and initial profile parameters,
changing of the SNOWPACK settings and their interaction effects.

Disturbance Distributions
Uncertainty distributions were defined for every individual parameter and were then used to generate
a collection of 𝑛 inependent realisations per uncertainty class. Table 2.4 shows an overview of the
assumed distrubutions for the atmospheric forcing variables. The notion was that they represent a
realistic range of forcing errors that could be present in the input data, allowing for assessment of
the impact that an uncertain variable has on model performance. It has to be acknowledged that
deciding on these distributions involves a high degree of arbitrarity and decisions made here will have
affected the results of the sensitivity analysis. Wherever possible earlier studies were followed to ensure
comparability of results, where needed new assumptions were introduced.

Uncertainty distributions for the second degree of freedom (the initial snow profile properties) re­
quired new assumptions (table 2.5), with earlier studies dealing with seasonal snowpacks (no initial
profile) and simpler snow models (less parameters). Apart from the profile variables themselves also
the temperature of the insulating ice layers at the bottom of the record were disturbed (with the default
being mean air temperature) and the profile resolution was varied (default resolution, fine = double
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resolution or coarse = half resolution) to include possible effects that different initial layer thicknesses
might have on model performance.

SNOWPACK model settings and parameters formed the third and last main experiment degree
of freedom. An overview of the considered settings is shown in table 2.3. Most are discrete options
and thus no distributions had to be assumed, with the exception of the new snow grain size, fixed
albedo value, new snow fixed density and aerodynamic roughness length (table 2.6). Please note
that some settings are incompatible: for example, when setting SW_MODE to ”BOTH” SNOWPACK is
using measured albedo from the atmospheric forcing record and ALBEDO_PARAMETERIZATION or
ALBEDO_FIXEDVALUE will go unused. Similarly, when specifying HN_DENSITY as “FIXED”, the new
snow fixed density value under HN_FIXEDVALUE will be used and the HN_PARAMETERIZATION key
becomes obsolete.

Table 2.4: Distributions used to sample atmospheric forcing errors from. Note: rather than disturbing the measured outgoing
shortwave radiation, “measured” albedo (𝛼 = 𝑄𝑠𝑜/𝑄𝑠𝑖) was disturbed. Symbols correspond to those in table 2.1.

Variable Units Distribution Parameters 1st, 99th perc. Type Reference

𝑇𝑎 [K] normal 𝜇 = 0, 𝜎 = 1.3 ­3, +3 additive Raleigh et al. (2015)
𝑅𝐻 [%] normal 𝜇 = 0, 𝜎 = 10.7 ­25, +25 additive Raleigh et al. (2015)
𝑈 [m/s] normal 𝜇 = 0, 𝜎 = 1.3 ­3, +3 additive Raleigh et al. (2015)
𝑄𝑠𝑖 [W/m²] normal 𝜇 = 0, 𝜎 = 43 ­100, +100 additive Raleigh et al. (2015)
𝛼 [­] normal 𝜇 = 1, 𝜎 = 0.05 0.88, 1.12 multiplicative own assumption
𝑄𝑙𝑖 [W/m²] normal 𝜇 = 0, 𝜎 = 10.7 ­25, +25 additive Raleigh et al. (2015)
𝑃 [m/hr] normal 𝜇 = 1, 𝜎 = 0.107 0.75, 1.25 multiplicative Raleigh et al. (2015)

Table 2.5: Distributions used to represent uncertainty in the initial profile. Note that temperature, density and grain size profiles
were disturbed, while bond radius to grain radius ratio (𝑟𝑏/𝑟𝑔), dendricity (𝑑𝑑) and sphericity (𝑠𝑝) were simply set and assumed
constant with depth (marked “absolute” under type).

Variable Units Distribution Parameters 1st, 99th perc. Type Reference

𝑇𝑠𝑛𝑜𝑤 [K] normal 𝜇 = 0, 𝜎 = 2.5 ­5.8, +5.8 additive own assumption
𝜌 [kg/m³] normal 𝜇 = 0, 𝜎 = 40 ­93, +93 additive based on Fausto et al. (2018)
𝑟𝑔 [mm] normal 𝜇 = 1, 𝜎 = 0.3 ­0.7, +0.7 multiplicative own assumption
𝑟𝑏/𝑟𝑔 [­] uniform min = 0.1, max = 0.9 ­ absolute own assumption
𝑑𝑑 [­] uniform min = 0, max = 0.5 ­ absolute own assumption
𝑠𝑝 [­] uniform min = 0.5, max = 1.0 ­ absolute own assumption
𝑇𝑖𝑛𝑠𝑢 [K] normal 𝜇 = 0, 𝜎 ­ 2.5 ­5.8, +5.8 additive own assumption
resolution [­] uniform fine, default or coarse ­ absolute own assumption

Table 2.6: Distributions used to represent uncertainty in SNOWPACK model parameters (not measured).

Variable Units Distribution Parameters 1st, 99th percentile Reference

ALBEDO_FIXEDVALUE [­] normal*
*capped

𝜇 = 0.8, 𝜎 = 0.1*
*max = 0.99 0.57, 0.99 own assumption, based on

Riihelä et al. (2019)

HN_FIXEDVAUE [kg/m³] normal 𝜇 = 320, 𝜎 = 44 218, 422 own assumption, based on
Fausto et al. (2018), Vandecrux et al. (2018)

NEW_SNOW_GRAIN_SIZE [mm] normal 𝜇 = 0.25, 𝜎 = 0.1 0.017, 0.483 own assumption
ROUGHNESS_LENGTH [m] custom ­ ­ refer to appendix A

Uncertainty Class Realisations
For each of the three uncertainty classes an ensemble of realisations was generated. This was done
quasi­randomly using Sobol sequences, with the number of realisations determined as 𝑛 = 𝑁(𝑘 + 2)
with 𝑁 set to 100 and 𝑘 the number of parameters in that class. Conveniently, the grouping of two of the
three classes aligned with the input files required for SNOWPACK: the atmospheric forcing parameters
are captured in *.smet files and the initial profile in *.sno files. With seven and eight variables apiece
(tables 2.4 and 2.5), 900 *.smet and 1000 *.sno files were created (each containing one uncertainty
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class realisation) and assumed to represent the uncertainty inherent to the atmospheric forcing and
initial profile classes, respectively. Each file was assigned an ID, and it was this ensemble of files (or
uncertainty class realisations) that was eventually sampled to generate model realisation.

Sampling realisations for the third class was less trivial because it consisted of a mix of continuous
parameters (table 2.6) and discrete settings (table 2.3), some of which were mutually exclusive. The
continuous settings (four in total) were combined and sampled quasi­randomly as before, resulting in
600 realisations. For the discrete settings, all combinations were considered and incompatible configu­
rations were subsequently excluded. Because this heavily favoured configurations using parameterized
as opposed to measured albedo, the configurations using measured albedo were repeated until this
was balanced out. Model runs were sampled from the virtual ensemble of all possible combinations of
the 600 continuous setting realisations and the albedo­balanced collection of discrete settings.

Taking Samples
The uncertainty class realisations were sampled to fill matrices 𝐴 and 𝐵 from section 2.3, which was
again done in a quasi­random manner using Sobol sequences. In the case of the main experiment
matrices 𝐴 and 𝐵 each contained three columns, one for each degree of freedom, and 𝑁 (the number
of rows) was kept at 250 to keep the number of model runs within computational feasibility. Columns
of 𝐴 and 𝐵 were used to create matrices 𝐴(1)𝐵 , 𝐴(2)𝐵 and 𝐴(3)𝐵 required for simultaneous assessment of
𝑆𝑖 and 𝑆𝑇𝑖 which resulted in a total of 𝑁(𝑘 + 2) = 1250 model runs for the main experiment, henceforth
referred to as the main experiment ensemble.

2.4.2. Meteo Experiment
The hypothesis for the main experiment was that model performance would be particularly sensitive to
the atmospheric forcing uncertainty class and the “meteo experiment” was designed to identify exactly
which atmospheric forcing parameters are important. As such it contains eight degrees of freedom:
the seven atmospheric forcing variables individually vs. all other uncertainties from the main experi­
ment (initial profile biases and SNOWPACK settings taken together in a single degree of freedom, fig.
2.3b). On an individual level the distributions (or options) from which realisations were drawn remain
unchanged from the main experiment (tables 2.4, 2.5, 2.6 and 2.3). However, this time realisations
were generated for the seven atmospheric forcing variables individually rather than as a group and the
earlier initial profile realisations were lumped together with the model setting realisations. Sampling
matrices 𝐴 and 𝐵 contain eight columns (one for each degree of freedom), which in turn were com­
bined into eight 𝐴(𝑖)𝐵 matrices. 𝑁 was kept at 250, for a total of 𝑁(𝑘 + 2) = 2500 model runs known as
the meteo experiment ensemble.

2.4.3. Undisturbed Experiment
While the model settings and parameters available in SNOWPACK were varied the atmospheric forc­
ing and initial profile were kept fixed for the “undisturbed experiment” (undisturbed ­ no biases were
introduced). The goal of the settings experiment was to gain more insight into exactly which model
settings are important for model performance and possibly which configurations perform well by elim­
inating some of the interaction effects that come with simultaneously disturbing the atmospheric and
initial profile records. Considered model settings were subdivided in four degrees of freedom (fig. 2.3c):

1. Grain size:
NEW_SNOW_GRAIN_SIZE only.

2. Albedo:
SW_MODE, SNOW_ALBEDO, ALBEDO_PARAMETERIZATION, ALBEDO_AGING,
SW_ABSORPTION_SCHEME, ALBEDO_FIXEDVALUE.

3. Density:
HN_DENSITY, HN_PARAMETERIZATION, HN_FIXEDVALUE.

4. Other:
ATMOSPHERIC_STABILITY, ENABLE_VAPOUR_TRANSPORT, ROUGHNESS_LENGTH.
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Compared to the main and meteo experiments, the undisturbed experiment only used the model
settings distributions and options from tables 2.3 and 2.6. For each of the four uncertainty classes quasi­
random realisations were generated in a similar fashion as for earlier experiments and subsequently
sampled using 𝐴 and 𝐵 matrices, this time containing four columns each. With an additional four 𝐴(𝑖)𝐵
matrices and𝑁 kept at 250, the ensemble contains𝑁(𝑘+2) = 1500model runs: the settings experiment
ensemble.

Table 2.7: Summary of the three experiment ensembles.

Name Size DoF Classes Remark

Main exp. 1250 3 atm. forcing, initial profile, model settings ­
Meteo exp. 2500 8 atm. forcing variables individually, all other 37 GHz only
Undisturbed exp. 1500 4 grain size, albedo, density, other settings undisturbed

2.5. Setting the Stickiness Parameter
The stickiness parameter was the last snow parameter required to run the radiative transfer scheme us­
ing the SHSmicrostructure representation and was effectively treated as a calibration parameter for the
combined snow and radiative transfer model. While most snow layer properties can be taken directly
from the SNOWPACK output and serve as SMRT input (temperature, density, liquid water content and
grain size) this is not the case for the stickiness parameter which is not modelled by SNOWPACK.
Instead it was assumed constant with snow depth and throughout time. Given that until recently meth­
ods to objectively estimate the stickiness parameter of natural snow were unknown (Löwe and Picard,
2015) this is not unlike the approach followed by earlier studies using the SHS microstructure model
(Picard et al., 2013, Tsang et al., 2007). The value of the stickiness parameter was determined using
an iterative procedure:

1. A guess for the stickiness parameter was made and the undisturbed experiment’s snow model
output was translated into 𝑇𝑏 time series using this stickiness parameter.

2. The “medianmodelled 𝑇𝑏 time series” was constructed by taking the ensemble’s medianmodelled
𝑇𝑏 value at every available data point of the time series.

3. The error between the mean of the satellite observed 𝑇𝑏 time series and the mean of the median
modelled 𝑇𝑏 series was computed.

4. A new guess for the stickiness parameter was made: if the modelled ensemble overestimated
𝑇𝑏, the stickiness parameter was lowered (corresponding to less sticky/less clustered snow con­
ditions). Vice versa, if the modelled ensemble underestimated 𝑇𝑏 the stickiness parameter was
increased.

The procedure was continued until the stickiness parameter was found that minimised the error
between the mean of the median modelled 𝑇𝑏 time series and the satellite observed signal. This was
done twice: once for the 37V channel (found stickiness parameter of 0.25 for 37 GHz) and once for
19V (stickiness parameter of 0.10 for 19 GHz, but only because it could not be lowered further). The
same stickiness values were then used to translate the main and meteo experiment’s snow model
output into modelled 𝑇𝑏 time series. So while this study presents results using a constant stickiness
parameter irrespective of the considered experiment, the assumed stickiness did change depending
on the considered 𝑇𝑏 frequency. The reasoning behind this approach is that 𝑇𝑏 at different frequencies
is sensitive to snow properties from different depth ranges and that older snow at deeper depths is
expected to show different microstructural properties when compared to fresh snow that has not yet
experienced any melt­refreeze cycles. Important to note is that given the size of the ensembles it
was computationally intensive to translate the SNOWPACK output into 𝑇𝑏 time series. Therefore the
iterative procedure outlined above was run on a subset of datapoints: while it did use each and every
ensemble member of the undisturbed experiment, to speed up run times only one in ten dates of every
time series was modelled and compared with observations. The full time series were only modelled
once an appropriate stickiness parameter was found.
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Another approach to the unknown stickiness parameter would be to treat it as a free parameter that
is allowed to evolve over the course of the simulation period to then solve for it using the independent
satellite observations. Although in theory it would be possible to model a range of 𝑇𝑏 time series cor­
responding to a range of stickiness parameter values (in order to invert for it using the observations)
the computational cost to do this for a whole experiment’s ensemble far exceeded the computational
resources available for this project. Additionally, if the stickiness was treated as a free parameter on a
per ensemble member basis it would compensate for any differences present in the snow model output
to maximally match every ensemble member’s time series to the observations, undermining the idea
behind the sensitivity analysis. To get around these two problems and still gain insight into a possible
seasonal stickiness signal one ensemble member’s snow model output was used as SMRT input for
a broad range of stickiness parameter values and the output of these model runs was used to invert
for the stickiness required to match the satellite observed signal. This was done for the 37V channel
using the main experiment’s ensemble member that showed minimum offset between the means of
the observed and modelled 𝑇𝑏 signal (when using the ensemble’s “standard” stickiness parameter of
0.25).

2.6. Quality Indicators
SMOWPACK model performance was evaluated directly by comparing modelled snow density profiles
to in­situ firn core observations and the SNOWPACK­SMRT combined model by comparing modelled
𝑇𝑏 time series to the satellite observed time series. Quality indicators include:

• Comparison of mean modelled snow and firn density taken over 0 ­ 1, 1 ­ 4 and 4 ­ 15 m depth
ranges compared to observations from firn cores.

• RMSE of modelled snow and firn density profiles for dates with firn core observations (depth
range of 0 ­ 15 m and 10 cm resolution). Within the SA framework an ensemble member’s
“density profile RMSE” is defined as the mean RMSE of the four RMSEs computed for the four
dates with in situ observations.

• RMSE of modelled 𝑇𝑏 time series compared to satellite observations (daily data points over June
1998 to December 2017). These were evaluated per modelled channel (37V, 37H, 19V, 19H) and
used as input for the SA framework.

• Comparison of the slopes of linear segments fitted to the modelled/observed 𝑇𝑏 signal when taken
over an entire accumulation season (October up to and including May).

For visual inspection ensemble spread of mean density evolution, modelled density profiles, 𝑇𝑏
time series and fitted accumulation season slopes were plotted together with observations and per
experiment ensemble. The median modelled series/profile/slope (constructed by taking the median
modelled value at every date/depth) was compared with observations and the 50 and 95% range in
modelled quantities is reported. Density is an interesting variable to quantify snow model performance
because it can and is regularly unambiguously measured in the field (it was therefore the only in­situ
validation data considered in this study). Additionally, density gives a good indication of available pore
space and thus potential for meltwater retention in firn. Given a certain profile, densities can vary from
just around 100 kg/m3 for fresh snow to the pure glacial ice density of 917 kg/m3. Under the assumption
that no liquid water is present the volumetric void fraction is simply unity minus the ratio of modelled to
pure ice density. In terms of modelled 𝑇𝑏 time series, in addition to time series RMSE the fitted slopes
were included in the analysis to see if modelled 𝑇𝑏 trends match well with observations when taken over
an entire accumulation season. The snow properties in the top layers of the snowpack are expected
to vary considerably over the course of the accumulation season at DYE­2, as the melt season leaves
an old, dense snowpack to be gradually buried under new layers of fresh snow.

Within the SA framework estimates for the sensitivity indices focus on density profile and 𝑇𝑏 time
series RMSE, for the latter RMSE was computed over the whole simulation period (June 1998 to De­
cember 2017) which gives one estimate for every considered sensitivity index based for the sample
size of 250. To gain insight into the uncertainty associated with these estimates a test was performed
where the time series were split up in yearly chunks running from June 1st to May 31st, which increased
the number of time series 19 fold allowing for 19 estimates per index (once for every year with 𝑇𝑏 data)
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without reducing the sample size or using data more than once. This does however come at a cost:
individual time series contain less data points than before and ensemble members are now correlated
as they are based on chunks coming from the same continuous snow state time series. The spread in
estimates was visualized by means of boxplots showing median estimates and their interquartile range
and used to confirm whether the original estimates (using the full time series) based on are robust in
the face of a limited sample size.

2.7. Comment on Runtimes
For each of the experiments, input data errors were introduced, model configurations were set and the
combined snow and radiative transfer model was run. This resulted in a total of 5250 model runs or
a total simulation period of just over 100.000 years. The SNOWPACK component of the combined
model took two weeks to complete using 64 CPUs on a modest cluster and resulted in 1.7 TB of daily
snow model output data. In terms of SMRT, both the 37 GHz (all three experiments) and 19 GHz (the
main and undisturbed experiments) observations each took another two weeks to model. Interesting
to note for future efforts is that for the SMRT component memory bandwidth seemed to be the bottle
neck, not CPU computational power. Results are presented per experiment.



3
Results

3.1. Main Experiment
3.1.1. Snow Densities
Fig. 3.1 shows a large spread in mean snow densities of the top 1, 1 to 4 and 4 to 15 metres of the main
experiment SNOWPACK output. For the top 1 m for example, the mean 95% range is equal to 447
kg/m3 taken over the entire simulation period. 22% of data points show a 95% range of at least 600
kg/m3 meaning that on those days conditions in the top 1 m vary from light snow to ice­like depending
on which ensemble member is considered. This is especially true for the ablation and very beginning of
the accumulation season with 72% of those days occurring in the months of June through September.
As surface melt is known to have a big impact on snow density this is likely a result of differences in
the amount of melt experienced by ensemble members, depending on the disturbances introduced
in the atmospheric record (e.g. positive bias in air temperature means more melt days) or applied
model settings (e.g. lower albedo means more energy available for melt). Later in the accumulation
season the mean modelled densities for the 1st metre and their 95% range shrink, a result of fresh
snow accumulating on top of the snowpack. Of the 24% of days with a 95% range of less than 300
kg/m3, 76% fall in the months of December through May. The 2002­2003 accumulation season forms
an exception: a consistently high range in 1st metre mean modelled density is maintained throughout.
This is a result of exceptionally little precipitation over that season (measured 0.133 m water equivalent
from October 2002 to May 2003 compared an average of 0.309 m for the other accumulation seasons),
meaning that mean densities at the end of the 2002 melt season stay largely preserved until the 2003
melt season comes along. Seasonal effects are muted when looking at deeper depth ranges (fig. 3.1b
and 3.1c) which is to be expected as deeper layers are buffered from the seasonal atmosphere by the
snow layers above. At these depths a trend for firn densification becomes obvious, the median mean
density for 4 ­ 15 m is equal to 563 kg/m3 at the beginning of the simulation (June 1998) and grows
to 684 kg/m3 by the end (December 2017). Spread however remains great with mean 95% ranges of
525 and 491 kg/m3 for the 1 ­ 4 and 4 ­ 15 m of SNOWPACK output, respectively. After the start of
the simulation period the spread in mean modelled density can be seen to increase steadily. E.g. for
1 ­ 4 m the mean 95% range for the first three years is equal to 321 kg/m3, compared to 561 kg/m3 for
the remainder of the simulation period. We can assume that ensemble members diverge due to the
different biases introduced in the atmospheric forcing record and/or model configuration.

The ensemble of mean modelled densities agrees reasonably well with the available firn core ob­
servations (confirmed visually from fig. 3.1). The spread in modelled densities and limited number
of observations makes it difficult to draw decisive conclusions but the median time series of modelled
snow densities tends to underestimate density for the 1st metre (on average by 80 kg/m3, three obser­
vations) and overestimate for deeper depth ranges (on average by 50 kg/m3 for 1 ­ 4 m and 35 kg/m3

for 4 ­ 15 m, four observations). It would be easy to blame this on shortcomings in SNOWPACK or
model input but could also be the result of a non­linear response to disturbances in the atmospheric
forcing. I.e. in case of air temperature the absolute increase in snow density caused by a positive 1 K
bias might be larger than the absolute decrease caused by a negative 1 K bias. Because the firn core
observations come from the end of the accumulation season (all from May, before the onset of melt)

19
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such an effect would be most pronounced at deeper depths, below last season’s accumulation.

Main experiment: mean density ensemble spread per depth

Figure 3.1: Ensemble spread of mean modelled densities for 0 ­ 1 m (a), 1 ­ 4 m (b) and 4 ­ 15 m (c) depth of main experiment
SNOWPACK output shows large spread (an average 95% range of 447, 525 and 491 kg/m3 respectively). Seasonal effects
clearly visible at shallow depths: modelled densities and spread are greatest at the end of the ablation season. In­situ observa­
tions come from firn cores and include 40 kg/m3 error bars. The median modelled time series were constructed by taking the
ensemble’s median value at every data point.

Comparison of modelled density profiles with firn core observations confirms the large spread in
modelled densities (fig. 3.2). This is most pronounced in the first few metres below the surface (mean
95% range of 595 kg/m3 for 1 ­ 4 m on 05.05.2013) after which with increasing depth the spread de­
creases steadily (mean 95% range of 448 kg/m3 for 4 ­ 15 m on 05.05.2013). Unlike the observations
which show clear layering the median profiles appear smooth. As can be seen from the best modelled
profiles (in yellow), on an individual level some ensemble members do show clear layering albeit not
necessarily as pronounced as in the observations. Given the fine resolution of 10 cm slight mismatches
in the depths at which certain stratigraphymanifests itself will naturally result in a smooth median profile.
This also affects the performance metric used to determine which ensemble member to plot in yellow
(min. RMSE), which is suspected of preferring an accurate smooth density profile over a precisely strat­
ified one with a depth mismatch compared to the observations. Taken over 0 ­ 15 m minimum RMSEs
of 104, 123, 119 and 105 kg/m3 were found for the 2013, 2015, 2016 and 2017 profiles respectively,
all corresponding to different ensemble members. Qualitatively the median modelled density profiles
follow the general trends of the observations well, e.g. in 2013 the step increase in density at a depth
of ca. 1 m (likely the result of the extreme 2012 melt season) is captured well (fig. 3.2a). For 2015 and
2017 the median modelled profiles visibly overestimate density, especially at depth. Taken over 0 ­ 15
m the mean error between the median modelled and observed profiles is equal to 7.72, 45.0, 15.6 and
46.5 kg/m3 for the 2013, 2015, 2016 and 2017 profiles respectively.

Remarkable is that a significant portion of ensemble members develop ice­like densities at shallow
depths, in 2013 at least 25% of profiles show a density of 917 kg/m3 between depths of 1 and 7 m. In
subsequent years this depth range grows, in the spring of 2017 it extends to well below 9 m depth. In
fact, further analysis has shown that on 05.05.2013 552 out of 1250 members contain an ice slab of at
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least 1 m thick and this number grows to 578 out of 1250 on 11.05.2017. It is clear from the observations
that no such ice slabs were present at DYE­2. A detailed investigation into ice slab development is
outside the scope of this study but would be interesting for follow­up work as impermeable ice slab
formation was identified as a tipping mechanism for Greenland Ice Sheet mass loss (MacFerrin et al.,
2019).

Main experiment: density profile ensemble spread per date

Figure 3.2: Comparison of modelled density profile ensemble spread with an actual firn core observations in May 2013 (a), 2015
(b), 2016 (c) and 2017 (d) confirms large spread in modelled densities in the top 15 m of SNOWPACK output. The median
modelled profiles were constructed by taking the ensemble’s median density value at every depth and follows the general trend
of the observed profile well, but does not show layering of individual ensemble members. Best ensemble members in terms of
min. RMSE plotted in yellow (RMSE of 104, 123, 119 and 105 kg/m3 respectively). All modelled and observed profiles were
converted to have a depth resolution of 10 cm.

3.1.2. Tb Time Series
Major events of the 37 GHz satellite observed signal are captured well in the median series of the
modelled ensemble, but when taken over a whole accumulation season the trend of the modelled
ensemble does not match with observations (fig. 3.3). With a mean 95% range of 100.6 K for the 37V
channel (96.1 K for 37H) modelled 𝑇𝑏 ensemble spread is substantial. Visually the timing of modelled
melt events (indicated by the major 𝑇𝑏 spikes in fig. 3.3a and 3.3b) match up well with observations.
The same can be said for the timing and amplitude of smaller accumulation season events occurring
on the scale of a couple of days or weeks. When looking at entire accumulation seasons however,
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a striking effect becomes apparent: where observed 𝑇𝑏 tends to start low after the melt season and
then steadily increases until the next, modelled time series show an opposite trend (high to low over
an accumulation season). This is true for both the V and H channels and will henceforth be referred
to as the “opposite slope effect”. Some years show greater modelled 𝑇𝑏 ensemble spread than others,
for example the 2002­2003 accumulation season (for whole of 2002 and 2003 mean 95% range at
37V is equal to 108.9 K). This is consistent with the ensemble spread for modelled snow densities (fig.
3.2a). At 37V the absolute error between the mean of the observed signal and the mean of the median
modelled series is only 0.06 K, but recall that this is by design as the stickiness parameter was set to
minimize this error at V polarisation. For 37H this error grows to 9.80 K, with themedianmodelled series
overestimating 𝑇𝑏. This difference is too great to be compensated by a realistic topography­induced
change in incidence angle and must be an effect of the modelling chain. RMSE of the median modelled
series vs. observations is 20.0 K at 37V and 20.6 K at 37H. On an individual basis ensemble member’s
RMSE ranges from 17.8 to 62.6 K for 37V and from 19.9 to 56.9 K for 37H. Comparison of the three
best performing (min. RMSE) ensemble members with observations at 37V (fig. 3.4) confirms that on
an individual basis modelled time series are capable of accurately reproducing small 𝑇𝑏 events (time
scale: couple of days to weeks) but that even for these good performers the opposite slope effect is
clearly visible over most accumulation seasons.

Main experiment: Tb ensemble spread at 37 GHz

Figure 3.3: Comparison of 37 GHz modelled 𝑇𝑏 ensemble spread with independent satellite observations at V (a) and H (b)
polarisations show that timing of melt events and smaller variations in observed 𝑇𝑏 are captured well, but taken over a whole
accumulation season the modelled series show an opposite trend (“opposite slope effect”). Spread in modelled 𝑇𝑏 is great (mean
95% range of 100.6 K at 37V, 96.1 K at 37H). The median modelled series were constructed by taking the ensemble’s median
𝑇𝑏 value at every data point (data points are daily).
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Figure 3.4: Comparison of the three best performing (min. RMSE)main experiment ensemblemembers with observations at 37V.
Small 𝑇𝑏 events are captured well in individual time series but the opposite slope effect is clearly visible over most accumulation
seasons. RMSE equal to 17.8, 18.3 and 18.5 K, respectively.

While at 19 GHz the timing of melt events is captured well in the median series of the modelled
ensemble, smaller high frequency variations in observed 𝑇𝑏 are poorly represented (fig. 3.5). When
they are the amplitudes of the observed variations appear muted. The opposite slope effect manifests
itself again: after a melt event the observed 𝑇𝑏 signal drops virtually instantly and the modelled series
fail to replicated this behaviour. Instead the median modelled series comes down gradually over the
course of the entire accumulation season. Modelled 𝑇𝑏 ensemble spread remains substantial with a
mean 95% range of 103.3 and 100.6 K at V and H channels respectively. The median modelled series
visibly overestimates 𝑇𝑏 at both 19V and 19H: the absolute error between the mean of the observed
signal and the mean of the median modelled series is 16.2 K for 19V (compared to 0.06 K at 37V) and
this grows to 30.9 K for 19H. The routine to set the stickiness tries to minimize the error for the vertically
polarized channel, but the stickiness parameter could not be lowered below 0.10 before running into
exceptions in SMRT ­ resulting in the offset between modelled and observed 𝑇𝑏. Not surprisingly
computed RMSEs are greater for 19 GHz than for 37 GHz. RMSE between median modelled series
and observations is 24.9 K for 19V and 37.1 K for 19H. On an individual basis ensemble member’s
RMSE range from 19.3 to 68.3 K for 19V and 21.8 to 80.3 K for 19H.

The mismatch in slopes fitted to the main experiment’s modelled 𝑇𝑏 and observed time series is ob­
vious from fig. 3.6. The slopes fitted to the observed accumulation season’s 𝑇𝑏 series show an upward
trend irrespective of the considered year or 𝑇𝑏 frequency (no exceptions). Slopes fitted to the modelled
series on the other hand show either a downward trend (all median slopes for 19V in fig. 3.6b, half of
the median slopes for 37V in fig. 3.6a) or underestimate the upward trend (remaining half of the median
slopes for 37V). Some years show stronger disagreement between modelled and observed slopes than
others. At 37V, the 2003­2004, 2006­2007 and 2008­2009 seasons show the strongest disagreement
with angles between the observed and median fitted slopes beyond perpendicular. Closer inspection
revealed that for some years the fitted slopes were affected by a particularly early onset of melt (in
the month of May, which was assumed accumulation season) making the slopes fitted through the
observed and modelled series falsely appear similar, in particular for 2011­2012.
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Main experiment: Tb ensemble spread at 19 GHz

Figure 3.5: 19 GHz modelled 𝑇𝑏 ensemble appears smooth compared to observations at V (a) and H (b) polarisations and fails
to reproduce the observed drop in 𝑇𝑏 immediately after the melt season (opposite slope effect). Modelled ensemble spread is
great (mean 95% range of 103.3 at 19V, 100.6 K at 19H) and the median modelled series overestimates observed 𝑇𝑏 (difference
in mean of 16.2 K at 19V, 30.9 K at 19H). The median modelled series was constructed by taking the ensemble’s median 𝑇𝑏
value at every data point (data points are daily).

Main experiment: ensemble spread of fitted slopes

Figure 3.6: The ensemble spread of linear segments fitted to yearly 𝑇𝑏 signals (at 37V (a) and 19V (b)) illustrate the mismatch
between observed (in green) and modelled (red) slopes when taken over an entire accumulation season. Accumulation seasons
were assumed to run from October up to and including May. Means were removed on an individual basis to plot all segments at
the same 𝑇𝑏 level. Original segments fitted to the observed signal are shown in appendix C.



3.2. Meteo Experiment 25

3.1.3. Sensitivity Indices
Model performance is sensitive to changes in atmospheric forcing, model settings and their interaction
but not to changes in the initial profile. This is true for the combined model when quantifying model
performance as RMSE of the modelled vs. observed time series at 37V (fig. 3.7a) and for the snow
model on its own when using modelled and observed density profiles to compute RMSE (fig 3.7a).
In case of 37V RMSE 40% of the main experiment’s variance in combined model performance is ex­
plained by biases introduced in the atmospheric forcing, 33% by changing SNOWPACK model settings
and parameters. The remaining variance in model performance (27%) comes from interaction effects
between these two, indicated by the difference in first and total­order sensitivity indices (fig. 3.7a). Im­
portant to keep in mind is that these are statistical estimates based on an ensemble with limited size:
sensitivity indices presented here come with their own uncertainty. Low sensitivity to the initial profile
can be explained by the fact that 𝑇𝑏 is most sensitive to the top layers of the snowpack and the long
simulation period, initial properties of the top layers are quickly “forgotten” due to interaction with the
atmosphere. In terms of modelled densities available firn core observations all come from the latter part
of the simulation period (2013 onwards) and it appears that by then also deeper layers are no longer
significantly affected by initial conditions, at least in terms of density. Model performance based on 𝑇𝑏
is more sensitive to changes in model settings compared to performance based on density, possibly a
result of the fact that model settings include the new snow grain size parameter which has a big effect
on the top layer’s snow microstructure and thus scattering behaviour but less on modelled densities,
especially at depth.

Results presented here focus on the 37V channel because unlike the other channels the modelled
𝑇𝑏 ensemble at 37V shows no offset with respect to observations (fig. 3.3a). That said, it is important
to keep the spread in modelled 𝑇𝑏 and opposite slope effect in mind. The performance metric at 37V is
therefore likely sensitive to variables that have a strong effect on the mean of modelled 𝑇𝑏 series (i.e.
variables that move the entire time series up or down) or the modelled accumulation season 𝑇𝑏 slope
behaviour (i.e. variables that cause more or less opposite slope effect), and only to a lesser extent to
variables that effect the model’s ability to accurately model smaller or shorter scale 𝑇𝑏 fluctuations.

Main experiment: sensitivity indices

Figure 3.7: Estimates for the main experiment first and total order sensitivity indices show that model performance is sensitive
to biases introduced in the atmospheric forcing, varying model settings and their interaction effects but not to uncertainty in the
initial profile. When moving from model performance based on 37V RMSE (a) to performance based on density profile RMSE
(b), input forcings become comparatively more important. Estimates are based on a sample size of 250.

3.2. Meteo Experiment
Biases and model settings of the meteo experiment come from the same distributions as the main
experiment and as a result the ensemble spread of modelled snow densities and 𝑇𝑏 time series are
similar. The figures are shown in appendix D, the findings are in line with those of the main experiment.
Only the sensitivity indices are presented here.
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3.2.1. Sensitivity Indices
At 37V combined model performance is sensitive to biases introduced in the air temperature, precipita­
tion and relative humidity record (and in that order, fig. 3.8a). 21% of the variance in model performance
is explained by air temperature disturbances, 11% by precipitation and 9 % by relative humidity. When
including interaction effects their order changes to air temperature, relative humidity and precipitation,
although the differences are small for the last two (19 and 17%) in the face of sensitivity analysis es­
timation uncertainty. The negative sensitivity indices for in and outgoing shortwave radiation must be
erroneous and are another reminder of uncertainties in Si estimation, especially when the indices are
small. The “all other” degree of freedom includes the main experiment’s initial profile and model set­
tings uncertainties combined and explains 43% of the variance in model performance at 37V (excl.
interaction effects). Virtually all of this must come from the model settings (from fig. 3.7: influence
of initial profile uncertainty negligible). Compared to 𝑇𝑏 at 37 GHz performance based on modelled
density profiles is more sensitive to air temperature and sensitivity to relative humidity, precipitation
as well as initial profile and model settings (combined) is reduced (fig. 3.8b). Also interaction effects
become more important when considering densities. These findings are in line with the results of the
main experiment.

It makes sense that air temperature has a large influence on model performance as it controls the
amount of melt(days) which is known to have a drastic effect on both snow microstructure (and thus
grain size) and snow density. As the amount of precipitation is equivalent to snow fall, it controls how
quickly older snowwith higher density and bigger grain sizes is buried under layers of light, small grained
snow. As a result it has a big influence on modelled 𝑇𝑏 which is sensitive to both grain size and density
of the top snowpack layers. The sizeable contribution of relative humidity disturbances to variance in
model performance might come as more of a surprise, but does make sense as it controls snowpack
ablation processes (evaporation and sublimation) and latent heat flux, physical processes that are
incorporated in SNOWPACK (Lehning et al., 2002a). SNOWPACK is also skilful in the modelling of
surface hoar formation, for which it uses latent heat flux and wind speed as input. This interaction might
explain the significant wind speed total­order sensitivity index of 6% compared to its first order effect
(1%, fig. 3.8a).

Meteo experiment: sensitivity indices

Figure 3.8: Estimates for the meteo experiment first and total order sensitivity indices show that at 37V (a) model performance
is most sensitive to biases introduced in air temperature, precipitation and relative humidity, respectively. When basing model
performance on density profiles (b) air temperature and interaction effects become comparatively more important. Please note:
the reported 𝑄𝑠𝑜 𝑆𝑇𝑖 of 0.0 was found to be erroneous (section 3.4). Estimates are based on a sample size of 250.

3.3. Undisturbed Experiment
3.3.1. Snow Densities
Fig. 3.9 reveals considerably less spread in mean modelled densities for the undisturbed experiment
compared to the main experiment ensemble (fig. 3.1), the result of no longer disturbing the initial profile
or atmospheric forcing record. For the top 1 m of SNOWPACK output the mean 95% range is reduced
from 447 kg/m3 for the main experiment to only 241 kg/m3 for the undisturbed case. However, spread
between ensemble members remains large for the ablation seasons (especially later in the simulation
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period) and for accumulation seasons with little precipitation (e.g. 2002­2003) where 95% ranges can
exceed 400 kg/m3. The steady increase in the spread of modelled densities over the course of the
simulation period (fig. 3.9b and 3.9c) reveals that ensemble members still diverge even when forced
by the same atmospheric record and only the model settings and parameters are varied. E.g. for
1 ­ 4 m the mean 95% range for the first three years is equal to 170 kg/m3 compared to 452 kg/m3

for the remainder of the simulation period. At depth there is still a trend of densification, albeit not as
pronounced as for the main experiment. The 4 ­ 15 mean density is equal to 548 kg/m3 at the beginning
of the simulation and the median mean density grows to 638 kg/m3 by the end (684 kg/m3 for the main
experiment). The median time series of modelled snow densities no longer overestimate density at
deeper depth ranges (average error of only +21 kg/m3 for 1 ­ 4 m and ­16 kg/m3 for 1 ­ 15 m, four
observations) which confirms that the overestimation observed for the main experiment was indeed a
result of non­linear responses to input forcing disturbances.

Undisturbed experiment: mean density ensemble spread per depth

Figure 3.9: Enemble spread of mean modelled densities for 0 ­ 1 m (a), 1 ­ 4 m (b) and 4 ­ 15 m (c) depth of undisturbed
experiment output shows a reduced spread compared to the disturbed experiments (an average 95% range of 241, 409 and
224 kg/m3 respectively). At shallow depths the spread in modelled densities remains large at the end of the ablation season. In
situ observations come from firn cores and include 40 kg/m3 error bars. The median modelled time series were constructed by
taking the ensemble’s median value at every data point.

When comparing modelled density profiles of the undisturbed experiment (fig. 3.10) to those of the
main experiment (fig. 3.2) findings are in line with the discussion above: there is considerably less
spread in modelled snow densities (true over the entire depth range) and the median profiles no longer
visibly overestimate densities at depth. For the 2013 profile (fig. 3.10a) the mean 95% range between
1 ­ 4 m is equal to 448 kg/m3 (595 kg/m3 for the main experiment) and between 4 ­ 15 m this shrinks
to 358 kg/m3 (448 kg/m3). Median profiles still appear smooth compared to the stratified observations
but the best individual profiles (min. RMSE, plotted in yellow) do show realistic layering in the first 8 m
below the surface. Min. RMSEs of 115, 115, 134 and 95 kg/m3 were found for the four profile dates
respectively (all corresponding to different ensemble members). A portion of the ensemble members
develop ice slabs at shallow depths, but the depth range in which they manifest and the number of
ensemble members with ice slabs is significantly reduced from the main experiment. In 2013 at least
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25% of profiles develop densities of 917 kg/m3 between depths of 1 and 4 m, compared to between 1
and 7 m for the main experiment. On 05.05.2013 22.6% of ensemble members contain a continuous
ice slab of at least 1 m thick, which grows to 28.3% on 11.05.2017 (compare to 44.2 and 46.2% for the
main experiment).

Undisturbed experiment: density profile ensemble spread per date

Figure 3.10: Comparison of modelled density profile ensemble spread with an actual firn core observations in May 2013 (a),
2015 (b), 2016 (c) and 2017 (d) confirms reduced spread in modelled densities in the top 15 m of SNOWPACK output for
the undisturbed experiment. Best ensemble members in terms of min. RMSE plotted in yellow (RMSE of 115, 115, 134 and 95
kg/m3 respectively) show realistic stratigraphy until depths of 8 m. Themedian profiles were constructed by taking the ensemble’s
median density value at every depth. All modelled and observed profiles were converted to have a depth resolution of 10 cm.

3.3.2. Tb Time Series
As expected visualisation of the spread in undisturbed modelled 𝑇𝑏 (fig. 3.11) reveals a reduction in
mean 95% range when compared to the main experiment: 74.3 and 71.6 K at 37V and 19V respectively
(compared to 100.6 and 103.3 K for the main experiment). The remaining spread is the result of
changing the SNOWPACK settings only. Other findings are in line with the main experiment’s ensemble
of modelled 𝑇𝑏 observations. Worth noting is the opposite slope effect which reappears just as strong
(fig. 3.12) and can therefore not be the result of disturbing the atmospheric forcing record and instead
must be inherent to the modelling chain. RMSE between the median modelled vs. observations is
equal o 21.6 and 23.8 K at 37V and 19V, respectively. On an individual basis ensemble member’s
RMSE range from 19.4 to 59.0 and 20.4 to 62.0 K at 37V and 19V. Figures and statistics for 37H and
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19H are shown in appendix E.

Undisturbed experiment: Tb ensemble spread (V channels)

Figure 3.11: The undisturbed experiment’s 37V (a) and 19V (b) ensemble spread is reduced when compared to the main exper­
iment but remains considerable with a mean 95% range of 74.6 (37V) and 71.6 (19V) K. The opposite slope effect still appears
strong in the modelled ensemble. The median modelled series were constructed by taking the ensemble’s median 𝑇𝑏 value at
every data point (data points are daily).

Undisturbed experiment: ensemble spread of fitted slopes

Figure 3.12: The ensemble spread of linear segments fitted to yearly 𝑇𝑏 signals illustrate the mismatch between observed (in
green) and modelled (red) slopes when taken over an entire accumulation season. Accumulation seasons were assumed to run
from October up to and including May. Means were removed on an individual basis to plot all segments at the same 𝑇𝑏 level.
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3.3.3. Sensitivity Indices
Model performance based on 37V RMSE is most sensitive to the new snow grain size and albedo
settings, while variance in model performance based on snow density profiles is dominated solely by
albedo settings (fig. 3.13a and 3.13c). It makes sense that the new snow grain size (45% of first order
variance) and albedo (23% of variance) settings are important at 37V, as logically the new snow grain
size has a fundamental effect on the grain sizes encountered in the top layers of the snowpack ­ the
layers which affect modelled 𝑇𝑏. Albedo determines how much energy gets absorbed by the snowpack
which in turn is available for melt and melt is known to have drastic effects on both snowpack density
and grain size. For density the new snow grain size is not important, instead density profile RMSE
is dominated almost solely by the settings that govern SNOWPACK albedo (86% excl. interaction
effects). This can at least in part be explained by the different depth ranges considered to compute
model performance based on 37V 𝑇𝑏 on the one hand and firn density profiles on the other: 37V 𝑇𝑏
only uses the top 4 m of SNOWPACK output and is most sensitive to the very top snowpack layers,
while the density profiles cover a depth range of 0 ­ 15 m. It is expected that the new snow grain size
setting has a big effect on grain sizes encountered in the top layers (and thus the SNOWPACK physical
properties of these layers), while grain sizes in deeper layers are mainly controlled by melt­refreeze
cycles (in turn affected by how much energy is absorbed by the snowpack through SNOWPACK ’s
albedo settings). Indeed, when comparing sensitivity indices based on higher frequency 37 GHz to
lower frequency 19 GHz model performance (fig. 3.13a and 3.13b) one can see that albedo settings
become comparatively more important at lower frequencies (from 0.23 to 0.44% first order effect for
37V and 19V RMSE respectively). 19 GHz 𝑇𝑏 is sensitive to snow properties of deeper layers as lower
frequency microwave radiation is able to propagate further through the snowpack.

Undisturbed experiment: sensitivity indices

Figure 3.13: Estimates for the undisturbed experiment first and total order sensitivity indices show that at 37V (a) model perfor­
mance (RMSE) is most sensitive to new snow grain size then to settings related to albedo. At 19V (b) albedo settings become
more important for model performance than new snow grain size, based on firn density profiles finally performance is dominated
by albedo settings (86% of first order variance explained). Estimates are based on a sample size of 250.

3.4. Uncertainty in Sensitivity Index Estimates
Estimates for sensitivity indices based on yearly 37V time series show that estimates vary depending
on which year is considered (fig. 3.14) and give insight into the uncertainty associated with the earlier
reported estimates. Although splitting 1998­2017 time series up in 19 yearly chunks means that no
data is used more than once, estimates are still correlated: the 1999­2000 time series will begin with
the snow and firn state where 1998­1999 left off, and so on. However, given the low sensitivity to initial
profile disturbances it seems reasonable to assume they are not in order to get an idea of sensitivity
index estimate uncertainty. While results vary depending on which year is considered (boxplots report
the median and interquartile ranges of yearly estimates), the general order and relative magnitudes
appear reasonably well established. In order to limit the variance in estimates experiments with a
sample size greater than 250 are recommended (here limited due to computational costs). Please not
that sensitivity indices are not normalized and results of the undisturbed experiment (fig. 3.14c) should
not be compared with those of the main and meteo experiments (fig. 3.14a and 3.14b). Also worth
noting are the estimates for the outgoing shortwave radiation total order sensitivity index which were
all found to be equal to zero. Closer inspection revealed that for a small part of the meteo experiment
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ensemble members the outgoing shortwave radiation disturbance was not introduced correctly and this
result (𝑆𝑇𝑖 for 𝑄𝑠𝑜 = 0) should be disregarded, also in fig. 3.8.

Sensitivity indices based on yearly time series (RMSE at 37V)

Figure 3.14: Sensitivity index estimates vary depending on which yearly chunk of the original time series is considered (here for
RMSE between modelled and observed time series at 37V for the main (a), meteo (b) and undisturbed (c) experiments) but their
relative order of magnitude appears well established. Note: indices are not normalized and only the first order sensitivity indices
of the main and meteo experiments are comparable (others should be compared within their respective experiment only). The
𝑄𝑠𝑜 total order sensitivity index was found to be erroneous and should be disregarded.

3.5. Effect of Individual Parameters on Tb
Comparison of the 100 most positively and 100 most negatively disturbed meteo experiment ensem­
ble members show that the air temperature disturbance has an impact on the opposite slope effect:
warmer ensemble members show visibly more opposite slope compared to colder ones that fail to ade­
quately replicate melt events (fig. 3.15a). When making the same comparison in terms of precipitation
disturbance (fig. 3.15b) it becomes obvious that ensemble members with more snowfall show higher
modelled 𝑇𝑏 values. This makes sense as more snowfall means that old, large­grained snow layers
(low 𝑇𝑏) are more effectively covered by fresh small­grained snow layers (high 𝑇𝑏). Lower precipitation
ensemble members also show greater spread in modelled 𝑇𝑏 (as the ensemble spread in top snow­
pack properties at the end of the ablation season is preserved rather than buried under fresh snow),
but regarding the opposite slope effect no differences can be observed when comparing high to low
precipitation time series. When considering parameters with lower sensitivity indices such as relative
humidity (3.15c, others not shown) differences in modelled time series become too nuanced to make
meaningful conclusions based on an ensemble where other parameters are disturbed simultaneously.
New snow grain size was identified as the most important SNOWPACK setting for model performance
at 37V and fig. 3.15d confirms a huge 𝑇𝑏 offset between the 100 meteo experiment ensemble members
with the greatest new snow grain size and the 100 members with the smallest. A greater new snow
grain size generally means a colder modelled 𝑇𝑏 time series that is more sensitive to individual precip­
itation events (instead 𝑇𝑏 signals from ensemble members with a small new snow grain size appear
much smoother).
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Meteo eperiment: effect of individual parameters on 37V modelled time series

Figure 3.15: Median time series and 50% range of the 100 most positive and 100 most negative disturbed meteo experiment
ensemble members for air temperature (a), precipitation (b) and relative humidity (c). Colder (negative air temperature distur­
bance) ensemble members show less opposite slope effect but fail to replicate melt events. Great influence of the SNOWPACK
new snow grain size setting visualized by comparing greatest new snow grain size ensemble members with smallest (d).

Analysis of the undisturbed experiment ensemble’s model performance reveals a clear relationship
between an ensemble member’s new snow grain size or albedo setting and RMSE between modelled
and observed 𝑇𝑏 at 37V (fig. 3.16). New snow grain size appears optimal at just over 0.2 mm, but
this comes with a disclaimer: this is for a stickiness parameter of 0.25. This stickiness parameter was
assumed 0.25 to minimise the offset between the modelled ensemble and 37 GHz observations. Given
the great offsetting effect of the new snow grain size (fig. 3.15d) it is safe to assume that if a different
input distribution was assumed for this SNOWPACK setting (e.g. favouring larger new snow grains,
lowering the ensemble’s 𝑇𝑏) a different stickiness parameter would have been selected and the optimal
new snow grain size would shift accordingly to compensate. The albedo setting is the only discrete snow
model setting for which a clear relationship with 37V RMSE can be observed: ensemble members using
a parameterized albedo scheme (median RMSE of 24.7 K) perform better when compared to members
using constant (26.1 K) or measured (28.7 K) albedo. It is remarkable that a simple solution like a fixed
albedo value performs better than using albedo based on outgoing shortwave radiation as measured
by the AWS. The conlusion is that the measurements are not accurate, which is not hard to imagine:
these instruments experience harsh conditions and little maintenance, measure localised albedo which
might not be representative for the albedo when taken over the general area at DYE­2 and have to deal
with very low solar incidence angles due to the high geographical latitude. All of the considered albedo
parameterizations showed similar performance ­ no winners or losers could be identified.
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Undisturbed experiment: model settings vs. 37V RMSE

Figure 3.16: 3rd degree polynomial fitted to the new snow grain size value vs. RMSE at 37V (a) shows an optimum new snow grain
size of just over 0.2 mm (undisturbed experiment at a stickiness of 0.25). In (b): using measured albedo from the atmospheric
forcing record (SW_MODE = BOTH) generally leads to poorer model performance when compared to using a SNOWPACK
albedo paremeterization or even a simple fixed albedo value (SW_MODE = INCOMING).

3.6. Inverting for the Stickiness Parameter
Fig. 3.17a shows the effect that varying the stickiness parameter has on the modelled 𝑇𝑏 series for
a single ensemble member of the main experiment. Time series appear offset from each other, with
a lower stickiness parameter (higher stickiness) corresponding to lower 𝑇𝑏. For one season signals
appear closer to each other (data points 1500­2000), this corresponds to the 2002­2003 accumulation
season with exceptionally little precipitation (high average densities in the upper snowpack layers).
When inverting for the stickiness that best matches the satellite signal (fig. 3.17b) a seasonal cycle
becomes apparent: after every melt season the required stickiness parameter starts low (highly sticky
snow) to then gradually grow over the course of the accumulation season (evolving towards a non­sticky
situation). It is speculated that this is related to fresh snow accumulating on top of the old, melt affected
snow layers. During actual melt episodes a very high stickiness parameter seems to be suggested,
although closer inspection reveals that at these times the modelled time series using variable stickiness
appear very close to each other resulting in a noisy signal for the required stickiness parameter. In
contrast, over most accumulation seasons the signal looks smooth and relatively free of noise (2002­
2003 being an an exception again). By jumping from one time series to another according to the
stickiness found in fig. 3.17b it is possible to construct a composite time series that closely matches
the observed signal nearly everywhere and shows no opposite slope effect (fig. 3.17c). One should of
course keep in mind that in this situation the stickiness is compensating for any other shortcomings in
order to maximally match the observed signal, but given that the required stickiness parameter signal
looks so smooth for most years the match between composite and satellite signal is still remarkable.
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ID 0186: inverting for the stickiness parameter

Figure 3.17: Main experiment’s ensemble member ID 0186 modelled for a range of stickiness parameter values (a, lowest
stickiness parameter corresponds to lowest 𝑇𝑏 time series and vice versa) and the stickiness parameter that leads to the best
match with the observed signal at 37V (b) indicates a seasonal stickiness cycle. Over the course of an accumulation season the
stickiness parameter needs to gradually increase (corresponding to a decrease in stickiness) in order to match observations. In
c: discrete combination of the “best” time series using the stickiness from b. The composite time series is mostly able to match
the observed signal, showing no opposite slope effect.



4
Discussion

4.1. Origin of the Opposite Slope Effect
Themost striking observation coming from this study is the opposite slope effect: the trends in modelled
𝑇𝑏 time series consistently underestimate those of observations when taken over an accumulation
season, revealing inadequacies in the modelling chain. What is the cause of this effect? Here it is
argued that the constant­with­time stickiness assumption is the culprit. To discuss this it is helpful to
break down the 𝑇𝑏 parameter. On the most basic level 𝑇𝑏 is equal to the product of a snowpack’s actual
temperature and its emissivity, with emissivity representing the effectiveness with which the snowpack
emits thermal radiation. Temperature speaks for itself, emissivity is a function of a snowpack’s density,
liquid water content and (within the SHS microstructure model) grain size as well as the stickiness
parameter.

Possible seasonal biases in modelled snow density, temperature or liquid water content are the eas­
iest to disregard as main drivers behind the opposite slope effect. Modelled snow density profiles were
compared with in situ observations from firn cores and general trends were found to agree reasonably
well. As atmospheric temperatures are cold over the accumulation season no liquid water is expected
to be present at those times, definitely not in the upper layers of the snowpack where heat is quickly
lost to the atmosphere. In terms of temperature I argue that the discrepancy in modelled and observed
𝑇𝑏 slopes is too great to be caused by biases in modelled snow temperatures alone. When using their
mean values to align modelled and observed 𝑇𝑏 series on a per accumulation season basis (as was
effectively done for the fitted slopes in e.g. fig. 3.12) the mismatch in modelled and observed 𝑇𝑏 can
easily exceed 10 K at the beginning and end of the accumulation season (and often much more). If this
were to originate from biases in snow temperature it is impossible to imagine that SNOWPACK would
be capable of modelling melt events with any form of accuracy. From comparing the timing of melt
events in the modelled and observed 𝑇𝑏 time series (easily recognisable by the liquid water induced
step increase in 𝑇𝑏) it is known that SNOWPACK did model the timing with reasonable accuracy, giving
confidence in the snow temperature modelled for the top snowpack layers.

It is difficult to say how realistic the modelled grain size evolution is for the conditions at DYE­2.
Over the course of the simulation period grain sizes grow large in SNOWPACK which models seem­
ingly unbridled grain growth, in particular at depth (fig. B.1 and B.2). By the end of the undisturbed
experiment it is common to encounter grain radii of 2 mm for the top 4 m and 3.5 mm for the top 15 m
of snow model output (sometimes greater) and at that point grain growth shows no signs of stopping.
SNOWPACK was originally developed for seasonal snowpacks and grain growth was validated using
laboratory data of up to 40 days (Lehning et al., 2002b) but it is unclear how realistic its growth mecha­
nisms are for perennial firn conditions. I was unable to find suitable in situ measurements of grain size
profiles from the area at DYE­2 and even if they were to come available comparison is predicted to be
difficult. Given the complex nature of natural snow grain size measurements are quantified by a range
of dimensions which are often subjective or the link to a straightforward grain radius representation (as
in SNOWPACK) is not clearly defined (Linow et al., 2012), hampering quantitative comparison. It is
however well known that on the ice sheets grain size generally increases with depth (Brucker et al.,
2010, Linow et al., 2012) and there is anecdotal evidence that snow grains do indeed grow very large

35
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at DYE­2 (Max Stevens, personal communication, fig. 4.1). Grain size is known to have a great effect
on snow emissivity with larger grains corresponding to lower 𝑇𝑏 values but even if grain size at depth
is overestimated this mechanism fails to explain an opposite slope effect: the impact of older large
grained snow is expected to be greatest at the beginning of the accumulation season, before old layers
are buried under fresh accumulation. If the older grain sizes are overestimated this would lower 𝑇𝑏
observations at the beginning of the accumulation season ­ counteracting any opposite slope effect.

Figure 4.1: Pictures from a snowpit at DYE­2 showing an increase in grain size with depth and stratigraphy (near­infrared
photograph, left) as well as a close up of large, clustered grain sizes living side by side with smaller structures (right). Photo’s
correspond to the end of the simulation period (spring of 2016 or 2017). Source: Max Stevens, University of Maryland (not
published).

Harder to disregard is the impact that capping of large SNOWPACK grain sizes has had on the
modelled 𝑇𝑏 time series. The largest grain sizes caused the SMRT code to fail (likely because they
lead to unrealistically large scattering coefficients compared to the absorption coefficient (Picard et al.,
2018)) which caused problems especially in the latter half of the simulation period. To keep scatterers
small compared to the wavelength and avoid gaps in time series SNOWPACK grain radii were capped
at 1.5 mm before being used as input for SMRT. It is difficult to say exactly what impact this capping on a
per­layer basis has had on the characteristics of modelled 𝑇𝑏 time series. It is conceivable that capping
would artificially lower modelled 𝑇𝑏 more so at the beginning of the accumulation season (when old
large grained snow near the surface might have to be capped) than at the end (largest grains obscured
by layers of fresh snow), possibly favouring an opposite slope effect. However, in the first few years of
model output virtually no capping was required (e.g. appendix B for the undisturbed ensemble). As the
opposite slope manifests itself right from the start of the modelled series it is concluded that capping of
large grain sizes was not the main driver behind the opposite slope effect.

Instead it is argued that the constant­with­time stickiness parameter assumption is is the main cause
of the opposite slope effect. Within the SHS microstructure model the stickiness parameter effectively
controls the relative position of snow grains without changing their radius or volume fraction (Löwe and
Picard, 2015). A high stickiness parameter means well separated, non­clustered snow grains (“not
sticky”), a low stickiness parameter means a highly clustered snow medium (”sticky”). This is relevant
within the context of radiative transfer because clustered snow grains will scatter microwave radiation
more effectively compared to well separated grains of the same size, impacting emissivity and thus the
𝑇𝑏 signal. As the difference in 𝑇𝑏 caused by a certain change in stickiness is greater for larger grain
sizes (fig. 4.2) 𝑇𝑏 at DYE­2 (with its large grain sizes, modelled and confirmed in situ) is suspected
of being particularly sensitive to this effect. Under natural circumstances melt (as well as pressure
from snowpack weight) causes sintering of snow particles and old snow that has experienced one
or more melt­refreeze cycles is expected to appear more clustered (sticky, low stickiness parameter)
than freshly fallen snow with well separated grains (not sticky, high stickiness parameter) (Colbeck,
1997). The proposed theory behind the opposite slope effect is illustrated using the grain size vs.
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stickiness plane of fig. 4.3 and goes as follows: at the beginning of the accumulation season the top
layers of a natural snowpack consist of large grained highly clustered particles left behind after the most
recent melt­refreeze cycle ­ this corresponds to very low emissivities. As the season progresses fresh
snow with well separated, small grain sizes accumulates on top of these old layers which makes the
mean properties of the top snowpack layers gradually shift towards the small grained, low stickiness
situation corresponding to very high emissivities (double effect: decrease in grain size and increase
in stickiness parameter). As a result, observed 𝑇𝑏 time series show a decisively positive trend. In
contrast, in this study grain size evolution was modelled by SNOWPACK but the stickiness (not present
in SNOWPACK) was assumed constant. Only a single effect (grain size evolution) is captured and the
increase in emissivity over the course of the accumulation season is underestimated, giving rise to the
mismatch in observed and modelled 𝑇𝑏 trends. The results presented in fig. 3.17 attest to this story,
showing a seasonal cycle in the stickiness parameter required to match the observed 𝑇𝑏 signal and that
over the course of an accumulation season the required stickiness decreases (so increase in stickiness
parameter).

Figure 4.2: Change in modelled 37 GHz V pol 𝑇𝑏 as function of stickiness parameter, for grain radii ranging from 0.05 to 1.50
mm. Stickiness effect is greatest for large grain sizes, increase in stickiness parameter corresponds to decrease in stickiness.
Density and temperature constant at 700 kg/m3 and 260 K.

Figure 4.3: Figure illustrating how stickiness and grain size in the top few metres of snowpack evolve over the course of an
accumulation season, in case of natural circumstances and in case of the constant stickiness parameter assumption. In this
figure highest emissivities are found in the top left corner (non­clustered small grains) and lowest in the bottom right (large
clustered grains).
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The conclusion to this section is that to use SNOWPACK in combintation with SMRT and SHS
microstructure to model microwave satellite observations from ice sheet areas prone to melt, the stick­
iness needs to be taken into account explicitly and treated as a variable snow parameter. Even though
SNOWPACK is a full­complexity snow model, the combined model presented here fails to capture
seasonal microstructure evolution essential for modelling 𝑇𝑏 observations from these areas.

4.2. Comparison with Earlier Efforts
4.2.1. Stickiness Assumption
Setting appropriate microstructure parameters for microwave radiative transfer modelling from in situ
measurements or snow model output is known as a tricky problem and as a result nearly every study
uses a different approach. While snow density (“ice volume fraction”) and snow specific surface area
(m2/kg, directly relatable to sphere radius) can be measured or predicted by models with little or no am­
biguity, studies have shown that these two parameters are not sufficient to fully characterize the snow
microstructure for microwave propagation modelling and within the context of the SHS microstructure
representation high sensitivity to the third parameter, the stickiness parameter, has been demonstrated
(Picard et al., 2018 and fig. 4.2). Stickiness values for natural snow are as of now not known because
direct measurements are lacking and quantitative relationships between grain types observed in the
field and a corresponding stickiness parameter have not yet been established (Löwe and Picard, 2015).
While studying microwave emission from dry Alpine snowpacks Liang et al. (2008) reverted to a fixed
stickiness parameter of 0.10 “because it yields 2.8 for the frequency dependence of the extinction coef­
ficient which corresponds to the experimental values (Hallikainen et al., 1987)” but also acknowledged
that there were no studies indicating how it varies with depth and that other values can be used if war­
ranted by new information. Picard et al. (2018) noted that simply setting the stickiness to 0.10 does
not fully capture the power dependence as it is also influenced by grain size and density. A series of
other studies used an infinitely large stickiness parameter, i.e. non­sticky spheres in combination with
a grain size scaling factor (Brucker et al., 2010, Dupont et al., 2014, Picard et al., 2014a, Roy et al.,
2013). The grain size scaling factor was determined empirically by fitting model results to observa­
tions. Over­fitting was prevented by applying a single scaling factor per study, determined by fitting
observations at different frequencies, polarizations and incidence angles. Picard et al. (2018) showed
that the scaling factors found (2.1 to 3.5) are near­equivalent to stickiness parameter values of 0.10
to 0.13 in combination with non­scaled grain sizes. This is at the lower end of stickiness parameter
values estimated by (Löwe and Picard, 2015) based on microtomography images of a variety of snow
types, who suggested stickiness parameter values of 0.1 to 0.2 (although stickiness parameter values
for some individual samples exceeded 0.4).

None of the earlier studies considered time series spanning melt seasons under perennial firn con­
ditions and as far as I am aware this study is the first to demonstrate the need for a variable stickiness
with time. The important implication is that under these conditions earlier approaches based on a fixed
stickiness parameter or constant grain size scaling (or that lack a third parameter altogether) are not
valid when modelling time series spanning multiple seasons. Regarding the constant­with­time stick­
iness assumption, for this study a fixed stickiness parameter of 0.25 was required at 37 GHz to best
match the mean of the modelled ensemble with observations which is a slightly higher value than sug­
gested by earlier studies. Here SNOWPACK modelled grain sizes were used as input for SMRT directly
but SNOWPACK also provides optical equivalent grain sizes in its output files, which are smaller. It is
speculated that if the optical equivalent grain sizes were used the mean modelled 𝑇𝑏 time series would
be greater and a lower stickiness parameter would have been selected, potentially in line with earlier
reported values.

4.2.2. Modelling of Tb Observations over Ice Sheets
Two earlier studies dealing with the forward modelling of 𝑇𝑏 observations from ice sheets are shortly
discussed here. Brucker et al. (2011) modelled two year long time series at 18.7 and 36.5 GHz at
Dome C in Antarctica’s dry snow zone, driven by in situ measurements of snow temperature, density
and grain size. Grain size profiles were established by relating near­infrared reflectence of a snow pit
wall to specific surface area from stereological measurements based on three different relationships
and kept constant throughout the simulation. Using multi­layered DMRT with non­sticky spheres to
forward model 𝑇𝑏 observations, 𝑇𝑏 time series were overestimated for all the considered relationships
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(RMSE of ca. 28 K) and grain size scaling was applied to match the satellite observations, after which
results improved significantly (RMSE of ca. 1.5 K) although 𝑇𝑏 in summer was still overestimated. In the
conclusion the authors recommend to use a stickiness factor to consider the various shapes of snow
grains. Picard et al. (2009) on the other hand used a physically based snow dynamic and emission
model (SDEM) driven by atmospheric forcing (ERA­40 re­analysis) to forward model 𝑇𝑏 time series
at 19 and 37 GHz over the whole of the Antarctica Ice Sheet over several years. Model parameters
were optimized for every 50 by 50 km pixel. The underlying snow model was relatively simple and,
for example, assumed a vertically constant and spatially uniform snow density. This proved to perform
well in dry snow zones (RMSE between 1.4 and 3.0 K) but failed where melt events complicated the
snowpack structure and its temporal variations. Several studies have implemented more sophisticated
snow models for seasonal snowpacks (e.g. Kontu et al., 2017, Wiesmann et al., 2000) but due to that
context none dealt with multi­year time series where and old melt­affected snowpack is covered by fresh
snow over the course of a new accumulation season. Several aspects of the study presented here are
new. This includes, the application of a combined full­complexity snow and radiative transfer model to
the percolation area of an ice sheet, the ensemble approach of the SA and modelling of continuous
multi­decade time series.

4.3. Linking SNOWPACK to Sticky Hard Spheres
In light of the eventual goal of inverting observed microwave observations for the underlying firn prop­
erties (fig. 1.4), treating the stickiness parameter as a free variable on a per ensemble member basis is
undesired. Solving for the stickiness by matching modelled time series to the observations would de­
feat the original aim of looking at which ensemble members correspond well to observations and which
do not. At the same time it was shown that a model based on a constant stickiness fails to capture
essential processes taking place in the snow and firn column. The main recommendation coming from
this thesis is to instead link the snow microstructure representation of SNOWPACK to the SHS model
such that stickiness can be taken directly from the snow model output, or be estimated from it.

In SNOWPACK four primary parameters are used to describe the complex texture of snow: grain
size, bond size, dendricity and sphericity which are allowed to evolve per snow layer according to rate
equations (functions of the local environmental conditions based on both theory and empirical rela­
tions, Lehning et al., 2002b). Of particular importance is the bond size, expressed by the bond radius
rb of the necks that connect snow grains. Within SNOWPACK the bond size is allowed to grow not
only through metamorphism but also pressure sintering and is the single most important parameter for
determining snow viscosity and thermal conductivity in SNOWPACK. The SHS microstructure model
in SMRT on the other hand is defined by grain size and the stickiness parameter and has its roots in
molecular fluid theory (Baxter, 1968). The spherical particles interact through hard­core repulsion and
surface adhesion and in the equilibrium state of these attractive and repulsive forces microstructures
with interesting structural properties arise, with the stickiness parameter (inversely proportional to the
contact adhesion) controlling clustering of the spheres. Both microstructure models are a severely sim­
plified representation of reality (required to be able to apply theory), only mimicking the highly complex
and variable texture of real snow. Yet at the same time, both models have been used in physical mod­
els capable of producing realistic output. This suggests that at least within their respective contexts
the models are capable of compensating for microstructure nuances not explicitly represented by ad­
ditional parameters. Assuming that grain sizes of both models are interchangeable, could there be a
relationship between bond size and stickiness?

Not based on any theory, fig. 4.4 indicates there could be, with 1/𝑟𝑏2 (mean 𝑟𝑏 of the top 1 m of
SNOWPACK output in this case) suggesting correlation with the evolution of the required stickiness
parameter of fig. 3.17. Finding a robust methodology of estimating stickiness from parameters readily
available in SNOWPACK output is left for future work but is considered a promising route to resolve the
opposite slope effect. It would not only allow to set a snowmodel estimated stickiness per date (variable
stickiness with time), but also per snow layer (variable stickiness with depth). Such an approach has not
been attempted in the literature before and a successful model would be the first of its kind. Alternatively
it has been suggested that the SHS representation could be implemented in models as SNOWPACK
in lieu of their current microstructure implementations (Löwe and Picard, 2015) but considering how
integral its microstructure is to SNOWPACK ’s model physics this is expected to be a very involved
undertaking.
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Figure 4.4: 1/𝑟𝑏2 (scaled) plotted with the required stickiness parameter of main experiment’s ID 0186 (from fig. 3.17) suggests
that bond size, a variable readily available from the SNOWPACK output, might eventually be used to estimate a snow layer’s
stickiness parameter before input in SMRT (future work). 𝑟𝑏 corresponds to the mean bond radius taken over the upper 1 m of
SNOWPACK output. Low stickiness/high bond radius season between datapoints 1500 and 2000 corresponds to the 2002­2003
accunulation season with exceptionally little precipitation (relatively dense and old snowpack).

4.4. Other Limitations and Recommendations
It is acknowledged that the results presented here and their interpretation are subject to some additional
limitations:

• Lack of atmosphere in radiative transfer model: the impact of the atmosphere on 𝑇𝑏 observations
is expected to be limited at 37 and 19 GHz and given the high RMSE’s of modelled time series
the lack of an atmosphere was not a limiting factor. SMRT allows for the inclusion of a simple
atmospheric layer which would be an interesting addition to the model once the opposite slope
effect is dealt with.

• Low sample size for SA: the sample size of 250 is relatively small for a Monte Carlo style SA for
which sample sizes an order of magnitude larger are common. Computational power was a bottle
neck here and for future work it might be interesting to model shorter or sparser time series or to
upgrade to a more powerful cluster.

• Model output vs. satellite observation time of day: daily SNOWPACK output was collected at the
end of the afternoon in an attempt to match the overpass time of DMSP satellite platforms F13
and F19, but satellite swaths overlap considerably near the poles and the 𝑇𝑏 value extracted from
Maslanik and Stroeve (2018) is made up of an average of multiple observations from the same
day. 𝑇𝑏 can be sensitive to time of day because of the snowpack’s daily temperature evolution
although daily temperature fluctuations at high latitudes are expected to be limited due to low
solar incidence angles.

• Spatial resolution of imager vs. spatial variations in firn properties: firn properties are known to
show lateral heterogeneity, originally created by uneven deposition of snow due to the local wind
field and thereafter subsurface conditions continuously evolve where an important contribution to
local spatial variations comes from the flow and refreezing of meltwater (Bell et al., 2008, Sturm
and Benson, 2004). It has been shown that measured 𝑇𝑏 can fluctuate with local properties on
the meter­scale even in dry snow zones (Picard et al., 2014b). The satellite observations used
here however have a spatial resolution of 25 km and are affected by properties as integrated over
the general area rather than the local DYE­2 situation. The influence of lateral variations in firn
properties on 𝑇𝑏 observations needs investigating.

• Only one location: this study only considered DYE­2 and the question is how representative the
results are for the percolation area in general and by extension for other areas of the Greenland
Ice Sheet. For example, is less opposite slope modelled for areas in the dry snow zone? Forcing
data presented by Vandecrux et al. (2020) means that it would be relatively straighforward to
expand the analysis to areas marked by ice slabs, firn aquifers or the dry snow zone.

• Not all SNOWPACK model configurations included: over the years different groups have imple­
mented a range of SNOWPACK model options and parameterizations and to limit the number
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of possible configurations not all available implementations were considered here. One model
option of particular interest for future efforts is the water transport scheme based on the Richards
Equation as implemented by Wever et al. (2014). Here it was excluded (only the standard bucket
scheme was used) because of unreliable runtimes, a consequence of the variable time step im­
plementation.

• Only one SMRT configuration: SMRT facilitates easy experimentation with different microstruc­
ture representations and electromagnetic theories. For the situation at DYE­2 however large
grain sizes posed a problem, limiting the options which produced results reliably. Nevertheless,
the current configuration (IBA­SHS) allows for changing the electromagnetic theory or microstruc­
ture representation independently from the other and further experimentation with this is recom­
mended, as well as the modelling of observations at additional frequencies. Ideally the theories
available in SMRT get expanded upon so that in the future large scatterers (compared to the
wavelength) no longer pose a problem.

4.5. Added Value of 𝑇𝑏 Time Series
Estimated sensitivity indices showed that model performance based on 𝑇𝑏 time series can be sensitive
to different input parameters and model settings compared to performance based on in situ measure­
ments. Compared to density profiles (the only in situ measurement considered in this study) this was
most evident from the sensitivity indices of the undisturbed experiment where model performance at
37V was mostly controlled by the new snow grain size (45% of variance explained) while the density
profile metric was dominated by SNOWPACK ’s albedo settings (86%). This suggests that when the
goal is to maximally constrain an ensemble of possible but uncertain SNOWPACK realisations and
both density profile and 𝑇𝑏 observations are available, one would benefit from considering both. Be­
cause of the sensitivity to different parameters the subset of likely candidates is expected to be different
depending on the validation metric considered, but true candidates can of course only come from the
overlap of the two subsets leading to a further reduction.

Additionally and importantly, as discussed in the introduction to this report in situ measurements are
not nearly available everywhere on the ice sheets and where they are measurements tend to have poor
temporal resolution and often a bias towards being sampled at the end of the accumulation season (all
the density profiles considered here came from May, for example). The true value of the microwave re­
mote sensing observations lies in the fact that they are available over the entire ice sheet and on a daily
basis, year­round. The cost is that while in situ measurements can be very explicit themicrowave obser­
vations are hard to interpret, given the coarse resolution and layers of uncertainty added by modelling
(as again demonstrated here). In order to fully open the door to satellite based retrieval of subsurface
firn properties and processes from areas where observations are currently lacking, work on a combined
snow and radiative transfer model should be continued.



5
Conclusion

In a first step towards inverse firn retrieval from microwave remote sensing observations this study
presented a new forward model which given initial conditions and atmospheric forcing first solves for
the firn state through full­complexity snow model SNOWPACK and then simulates multifrequency 𝑇𝑏
time series using radiative transfer model SMRT. As part of a comprehensive sensitivity analysis three
ensembles of multi­decade 𝑇𝑏 time series (19 and 37 GHz) were modelled for the DYE­2 site in the
percolation area of the Greenland Ice Sheet and compared to independent satellite observations.

RQ1 ­ What is the impact of the different SNOWPACK input variables and model settings on
modelled 𝑇𝑏 time series?

Model performance (RMSE w.r.t. daily satellite observations at 37V) was sensitive to errors introduced
in the atmospheric forcing record (with air temperature, precipitation and relative humidity directly con­
trolling 21, 11 and 9% of the variance) and model settings (33%) but not initial firn conditions. In an
undisturbed experiment new snow grain size and albedo settings were shown to be the most impor­
tant SNOWPACK settings, directly explaining 45 and 23% of variance in model performance at 37V.
At 19V however the albedo settings (44%) surpassed the new snow grain size (38%), explained by
19 and 37 GHz observations being sensitive to different snowpack depth ranges. Variables showing
the highest sensitivity indices were found to have a big impact on the mean modelled 𝑇𝑏 value or mod­
elled 𝑇𝑏 trends over the accumulation seasons. SNOWPACK parameterized albedo schemes generally
performed better than albedo as measured by an automatic weather station.

RQ2 ­ How do SNOWPACK­SMRT modelled 𝑇𝑏 time series compare to independent satellite
observations?

The most striking observation was that modelled 𝑇𝑏 consistently underestimated observed trends when
taken over the course of an accumulation season, dubbed the “opposite slope effect”. It was shown that
this can only be explained by the constant­with­time stickiness assumption used to link SNOWPACK ’s
microstructure representation to the SHS model used with SMRT, as a seasonal stickiness signal was
made evident for the conditions at DYE­2 and linked to its yearly melt­refreeze­accumulation cycle. As
a result RMSEs were high (min. 17.8 K at 37V and 19.4 K at 19V) although individual 𝑇𝑏 events were
well captured in the 37 GHz modelled series. 19 GHz ensembles lacked such detail, appearing smooth
next to and overestimating the satellite signal (because of a lower stickiness parameter limit of 0.1) but
still capturing the timing of melt events.

RQ3 ­ What is the added value of using 𝑇𝑏 time series when constraining SNOWPACK ensem­
bles?

Sensitivity indices of model performance based on in situ density profile observations were shown
to differ to those based on 𝑇𝑏 (with 𝑇𝑏 generally more sensitive to microstructure development in the
upper snowpack layers and density to the net energy absorbed) suggesting additional constraining
power when both in situ and 𝑇𝑏 observations are available. However, in situ observations are scarce

42



43

and the real power from microwave satellite observations comes from the availability of daily and year­
round data giving a synoptic and historical overview of both ice sheets. Coarse spatial resolution vs.
spatial variations in firn properties as well as the layers of uncertainty added by modelling aggravate
interpretation.

Future Work

The link between the opposite slope effect and a seasonal stickiness signal at DYE­2 implies that
earlier approaches to forward modelling microwave satellite observations based on a constant­with­
time stickiness parameter (implicitly or explicitly) are not valid for ice sheet areas prone to melt­refreeze
cycles. This study is expected to be the starting point for a more sophisticated implementation of
the combined model that estimates a snow layer’s stickiness from microstructure information already
present in the snowmodel, and SNOWPACK ’s bond size was presented as an interesting place to start.
If successful such a model would be the first of its kind and open the door to satellite­based retrieval of
subsurface firn properties and processes from areas where observations are currently lacking, greatly
reducing uncertainty in ice sheet mass loss and global sea level rise projections.



A
SNOWPACK Settings

A.1. SNOWPACK Configuration
For this study SNOWPACK version 3.50 was used in “default” variant, compiled in conjunction with
Libsnowpack 3.50 and MeteoIO 2.80. Fig. A.1 shows a SNOWPACK produced ­.ini file containing as­
sumed model settings. Worth noting is that THRESH_RAIN was set to 350 K to force solid precipitation
(the only precipitation measured in the atmospheric forcing record).

Example ­.ini file containing SNOWPACK configuration

Figure A.1: An example ­.ini file illustrates the assumed SNOWPACK configuration. The settings that were varied throughout
the experiments (table 2.3) have been marked with an asterisk, leaving the settings that were kept fixed throughout the study.
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A.2. RACMO Albedo Parameterization
The “RACMO” albedo parameterization does not come standard with SNOWPACK 3.50 and was added
to the program before compiling it. It is based on the broadband parameterization proposed by Gard­
ner and Sharp (2010) and implemented by Kuipers Munneke et al. (2011) in regional climate model
RACMO2.1, albeit in a simplified form: for this study cloud optical depth was assumed 0 and soot
contamination 0.2 ppm throughout.

A.3. Aerodynamic Roughness Length
Unlike the other continuous model settings (table 2.6), uncertainty in aerodynamic roughness length
was not represented directly through a normal distribution but included additional steps. First, samples
were taken from the normal distribution around 0 with standard deviation 75 and the absolute value of
all samples was taken. For samples greater than 1 the aerodynamic roughness length was taken as
10e­5*sample, while for samples smaller than 1 it was assumed 10e­5/sample. The resulting ensemble
of assumed roughness lengths is visualised in fig. A.2 for the main experiment. Roughness lengths for
the other two experiments were drawn from the same distribution.

Figure A.2: Histogram showing the distribution of aerodynamic roughness lengths used as SNOWPACK input for the main
experiment. Values for the meteo and undisturbed experiments were drawn from the same distribution.



B
Layer Merging Routine

Output from SNOWPACK was processed before being used as input for SMRT : the number of layers
was limited to speed up runtimes and grain sizes had to be capped to avoid exceptions. The figures
here illustrate the extent to which the number of layers had to be limited or grain radii capped in case
of the undisturbed experiment.

Figure B.1: Main experiment: ensemble spread of the number of layers present in the top 4 m of SNOWPACK output (relevant
for 37 GHz simulations). Number of layers for input in SMRT was limited at 80 layers, excess layers were merged with adjacent
layers.

Figure B.2: Undisturbed experiment: ensemble spread of the number of layers present in the top 4 m of SNOWPACK output
(relevant for 37 GHz simulations). Number of layers for input in SMRT was limited at 200 layers, excess layers were merged
with adjacent layers.
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Figure B.3: Undisturbed experiment: ensemble spread of the maximum grain radius present in the top 4 m of SNOWPACK
output (relevant for 37 GHz simulations). Grain radius for input in SMRT was capped at 1.50 mm.

Figure B.4: Undisturbed experiment: ensemble spread of the maximum grain radius present in the top 15 m of SNOWPACK
output (relevant for 19 GHz simulations). Grain radius for input in SMRT was capped at 1.50 mm.

Figure B.5: Undisturbed experiment: ensemble spread of the number of layers present in the top 4 m of SNOWPACK output
(relevant for 37 GHz simulations) for which grain radius exceeded 1.50 mm. Grain radius for input in SMRT was capped at 1.50
mm.

Figure B.6: Undisturbed experiment: ensemble spread of the number of layers present in the top 15 m of SNOWPACK output
(relevant for 19 GHz simulations) for which grain radius exceeded 1.50 mm. Grain radius for input in SMRT was capped at 1.50
mm.



C
Fitting of Slopes

Figure C.1: Linear segments (red) fitted to the observed 𝑇𝑏 signal at 37V, per accumulation season (assumed to run fromOctober
up to and including May). Slopes are upward without exception.

Figure C.2: Linear segments (red) fitted to the observed 𝑇𝑏 signal at 19V, per accumulation season (assumed to run fromOctober
up to and including May). Slopes are upward without exception.
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D
Meteo Exeriment Ensemble Spread

Meteo experiment: mean density ensemble spread per depth

Figure D.1: Ensemble spread of mean modelled densities for 0 ­ 1 m (a), 1 ­ 4 m (b) and 4 ­ 15 m (c) depth of meteo experiment
SNOWPACK output. In­situ observations come from firn cores and include 40 kg/m3 error bars. The median modelled time
series were constructed by taking the ensemble’s median value at every data point.
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Meteo experiment: density profile ensemble spread per date

Figure D.2: Comparison of modelled density profile ensemble spread with an actual firn core observations in May 2013 (a),
2015 (b), 2016 (c) and 2017 (d). The median modelled profiles were constructed by taking the ensemble’s median density value
at every depth. Best ensemble members in terms of min. RMSE plotted in yellow. All modelled and observed profiles were
converted to have a depth resolution of 10 cm.
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Meteo experiment: Tb ensemble spread at 37 GHz

Figure D.3: Comparison of 37 GHz modelled 𝑇𝑏 ensemble spread with independent satellite observations at V (a) and H (b)
polarisations. The median modelled series were constructed by taking the ensemble’s median 𝑇𝑏 value at every data point (data
points are daily). Only 37 GHz 𝑇𝑏 observations were modelled for the meteo experiment (no 19 GHz).



E
Undisturbed Exeriment at H Pol

Complementary to the 37V and 19V ensemble spread of fig. 3.11. At 37H the mean 95% spread is
equal to 71.5 K, RMSE of the median modelled series vs. observations 32.2 K and on an individual
basis ensemble member’s RMSE range from 20.3 to 53.4 K. At 19H the mean 95% spread is equal
to 69.8 K, RMSE of the median modelled series vs. observations 36.1 K and on an individual basis
ensemble member’s RMSE range from 24.0 to 77.22 K.

Undisturbed experiment: Tb ensemble spread (H channels)

Figure E.1: Comparison of modelled 𝑇𝑏 ensemble spread with independent satellite observations at 37H (a) and 19H (b) for the
undisturbed experiment. The median modelled series were constructed by taking the ensemble’s median 𝑇𝑏 value at every data
point (data points are daily).
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