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i 

Abstract 
 
Reservoir characteristics such as size and permeability are often non-trivial, which is why 
sophisticated yet often time-intensive numerical models are commonly used in the Closed-Loop 
Reservoir Management of subsurface reservoirs in order to maximize profit from oil production. For 
certain reservoirs, however, simple analytical models can accurately compete with such numerical 
models at lower computational efforts. Analytical linear and radial displacement models as well as 
various pressure models are derived and combined in this thesis, and are shown to be accurate 
approximations of one- and two-dimensional two-phase flow in a multi-layered, rectangular, and 
horizontal reservoir. Assuming among other that each layer is operated by a single injector-producer 
pair as well as that each layer is homogeneous and isolated from other layers, simplifies the equations 
and prevents cross-layer flow. If cross-layer flow does occur, however, then the considered analytical 
models are unable to accurately describe the reservoir flow. 
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1  
Introduction 

When a production well in a reservoir can no longer produce sufficient amounts of oil on its own 
because the subsurface pressure is too low to push oil to the surface, a phase such as liquid water can 
be injected into the reservoir by means of an injector well. The idea behind this part of the oil 
production process, known as secondary recovery, is that the injected phase increases the reservoir 
pressure such that the oil production rates increase and more oil is extracted from the reservoir.  
 
Although secondary recovery leads to an increased amount of produced oil and, more importantly, to 
more profit, injecting a phase such as liquid water into a reservoir also costs money. Moreover, at 
some point in the life span of the reservoir, the injected water will reach the producer well and be 
produced alongside oil and thus slow the increase of profit over time. Consequently, maximizing profit 
is not simply achieved by injecting as much water as required to replace all the oil in the reservoir with 
water. The amount of water produced alongside the oil will additionally increase over time, resulting 
in a significant drop in the oil production rate. Hence, the financial benefits of injecting into the 
reservoir decrease and it becomes evermore costly to continue doing so. Therefore, at a certain time it 
is no longer profitable to inject water into the reservoir. 
 
Smart management of the reservoir is required in order to maximize profit. This entails taking into 
account, for example, reservoir properties, pressure measurements in the injector and producer, 
estimates of the remaining oil in the reservoir, and of course a function that relates the costs and profit 
of injecting water into and producing oil and water from the reservoir. Controlling the reservoir in 
such a way in order to maximize profit is known as Closed-Loop Reservoir Management. 
 

1.1 Problem description 

The Closed-Loop Reservoir Management (CLRM) in this thesis comprises three main pillars and is 
depicted in Figure 1.1. The first is known as the Virtual Asset, because it generates synthetic 
production data using Sintef's Matlab Reservoir Simulation Toolbox (MRST). MRST has to be 
provided with reservoir properties, boundary conditions as well as well locations and properties, after 
which it functions as a black box. Well pressures and/or flowrates are its only controllable input, and it 
subsequently calculates the resulting flow inside the reservoir. Consequently, saturation levels and 
pressures change over time. A (white Gaussian) noise is then added to the well pressures and the 
resulting pressures are labeled as the measured pressures. 
 One or more models then attempt to approximate the 'true' reservoir state by assimilating these 
measured pressures. This data assimilation step (i.e. updating the models) is, in this thesis, limited to 
estimating saturations and pressures in the reservoir as well as the reservoir permeability.  
 Next, an optimization algorithm uses the updated model in order to determine new optimal 
control settings (e.g. well pressures, injection rates) that maximizes future profit predictions. This 



       

 
 

2 

optimal configuration then serves as input to the virtual asset as well as the analytical model, which 
closes the loop of smart management of the reservoir. 
 

 
Figure 1.1 - Closed-Loop Reservoir Management  

 
Maximizing profit with CLRM therefore greatly depends on the model choice and its accuracy in 
approximating the 'true' reservoir. In order to choose between complex and simplistic models, one has 
to consider their tradeoff, which foremost lies in accuracy and required computation time. For 
example, analytical models allow for fast computing but may be too simplistic and inaccurate under 
certain conditions, while more complex models might be more accurate but at the same time require 
more computation time.  
 

1.2 Research objective 

Little research was found on the use of one-dimensional analytical models during Closed-Loop 
Reservoir Management, although Weijermars et al. (2016) showed that analytical models of reservoir 
flow can produce results nearly identical to those of sophisticated numerical simulators. The analytical 
model, used to prevent premature water breakthrough, considered in that study was a two-dimensional 
two-phase (with equal viscosities and no relative permeability influences) description of reservoir flow 
between a direct-line-drive of injectors and producers.  
 
A first objective was to familiarize myself with MRST in an autodidactic fashion. Secondly, I had to 
implement the analytical displacement model in Matlab in order to fulfill the main research objective. 
 
The main research objective of this thesis is to assess the applicability and accuracy of various one-
dimensional two-phase analytical models, whilst including relative permeability influences and non-
equal viscosities, in approximating the (true) one- and two-dimensional reservoir flow during Closed-
Loop Reservoir Management.  
 
In this assessment two types of well orientations will be tested. The first concerns horizontal injector 
and producer wells that span the full width of the reservoir and are located at opposing sides halfway 
the height of the reservoir. The second considers vertical wells spanned across the height of the 
reservoirs, located halfway the width of the reservoir at again opposing sides. 
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1.3 Thesis outline 

In order to fulfill the main research objective, this thesis starts with considering relevant aspects of 
reservoir flow. To this end the basic (differential) equations and (analytical) solutions thereof are 
derived in chapter 2. At the end of chapter 2, the two analytical solutions are combined to form a new 
and slightly more sophisticated analytical model.  
 
Chapter 3 treats the derivation of reservoir pressure drop models and briefly describes choke valve 
pressure drop models, which are to be used conjointly with the displacement models of chapter 2. 
Chapter 3 also considers one of the reservoir pressure drop models for controlling two-dimensional 
flow, and additionally briefly investigates asymptotic flowrate and pressure behavior of an analytical 
pressure drop model.  
 
Next, chapter 4 introduces the key-aspects of CLRM and looks into the behavior of the virtual asset, 
both at maximum as well as below maximum flowrate conditions. Subsequently, chapter 4 shows 
CLRM results for horizontal as well as vertical well orientations using the models treated in the 
preceding chapters.  
 
Conclusions and discussion then follow in chapter 5, which leads to the chapter concerning 
recommendations (chapter 6). References regarding the for this thesis relevant literature, as well as an 
appendix with additional but less relevant CLRM results, are given at the end of this thesis 
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2  
Reservoir flow & analytical solutions 

This chapter covers the theoretical background of the necessary equations for reservoir flow. In section 
2.1 the relevant concepts of phase flow through a porous medium are explained and are subsequently 
combined in section 2.2 into the well-known Buckley-Leverett equation. Next, the method of 
characteristics is employed and a solution to the Buckley-Leverett equation is given for one-
dimensional (linear) displacement in the x-direction. Section 2.4 briefly touches upon the flow 
equations and the solution to the Buckley-Leverett equation for radial flow in a circular reservoir. 
Lastly, in section 2.5, the two Buckley-Leverett solutions are combined into a model describing one-
dimensional radial-linear-radial flow along the (straight) inter-well axis. 
 

2.1 General equations 

The following subsections contain six important general concepts of phase flow. First, a general mass 
balance equation is derived, describing the flow in and out of a control volume in terms of mass 
flowrates. Next Darcy's law, an expression relating a phase's flowrate to its mobility and pressure, is 
shown. Thirdly phase mobility is explained, describing its dependency on viscosity as well as on 
absolute and relative permeability. Subsequently relative permeability, specifically the (modified) 
Brooks-Corey model, is treated. Next to last, capillary pressure is discussed; linking a difference in 
phase pressure to relative permeability. Lastly, the concept of state equations is briefly mentioned. 
 

2.1.1 Mass balance 

The assumption of total mass balance is one of the important concepts in the derivation below. Given a 
rectangular control volume, multiple phases can flow in and out over time and change the total mass 
inside. To maintain mass balance for each phase, the difference in a phase's mass rate at the 
boundaries of a control volume over a small time period ∆t should equal the control volume's change 
in mass over the same time. 
 

 
Figure 2.1 - Control volume 

 
Using qα to denote the phase volumetric flowrate with unit [m3 s-1], ρα the phase density [kg m-3], φ  the 

control volume's porosity [-] and Sα the phase saturation [-], a three-dimensional mass balance of the 
control volume depicted above leads to the following equation: 
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( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( )
mass rates at the boundaries of the control volume

Change in mass over time t

x x x y y y z z z

t t t

q q q q q q t

x y z S S

α α α α α α α α α α α α

α α α α

ρ ρ ρ ρ ρ ρ

φ ρ φ ρ

+∆ +∆ +∆

+∆
∆

 − + − + − ⋅ ∆ 

= ∆ ⋅ ∆ ⋅ ∆ ⋅ −

�������������������������������

���������������
.

  (2.1.1) 

 
The phase saturation is a number between 0 and 1, representing the percentage of the control volume 
occupied by that phase. Of course, the sum of all saturations should equal one: 
 1Sα

α
=∑   (2.1.2) 

 
Recognizing that the influx at each of the control volume's boundaries is equal to the flow velocity 
times the cross-sectional area at the boundary, that is � ,q q Aα α= ⋅  the left hand side of equation (2.1.1) 

can be written as 

 
�( ) �( ) �( ) �( )
�( ) �( )

...

.

x x x y y y

z z z

y zq y zq x zq x zq

x yq x yq t

α α α α α α α α

α α α α

ρ ρ ρ ρ

ρ ρ
+∆ +∆

+∆

 ∆ ∆ − ∆ ∆ + ∆ ∆ − ∆ ∆ +

∆ ∆ − ∆ ∆ ⋅ ∆

  (2.1.3) 

 
Substituting (2.1.3) in (2.1.1), dividing by ∆x, ∆y, ∆z, ∆t, and taking the limit as ∆x, ∆y, ∆z and ∆t all 
tend to zero, results in 

 
� � �

.q q q S
x y z t

α α α α α α α αρ ρ ρ φ ρ∂ ∂ ∂ ∂− − − =∂ ∂ ∂ ∂   (2.1.4) 

 
A source term can be added to equation (2.1.4), which is written in a more compact form as 

 ,s
mq
t
αα α

∂−∇ + = ∂mi ɺ    (2.1.5) 

 
where �a aα ρ=m qɺ  is the three-component (x, y, z) mass flux vector with unit [kg m-2 s-1], m Sα α αφ ρ=  

the mass per unit volume [kg m-3], and qsα the source term [kg m-3 s-1]. The source term simply adds 
(qsα > 0) or subtracts (qsα < 0) mass from the reservoir.   
 

2.1.2 Darcy's law 

A standard expression that relates a phase's flowrate to its mobility and its pressure gradient is Darcy's 
law. Derived through experiments and published by Henry Darcy in 1856, the equation describes the 
conservation of momentum for flow through a porous medium. Inertia effects cause deviations from 
Darcy's law to occur at higher velocities, however due the low velocities in a porous medium these 
effects are small and can be ignored (Bear, 1972). If high velocities are encountered, one way of 
dealing with those effects is adding an inertial term, called the Forchheimer term. However, including 
the Forchheimer term is outside of the scope of this thesis and will therefore be neglected. 
 
Neglecting the previously mentioned inertial effects, Darcy's law reads: 
 � ( )α .p g hα αρ= − ∇ − ∇αq λ  (2.1.6) 

 
Or, for one-dimensional flow with a constant cross-section ,A  
 ( ) ,q A p g hα α α αλ ρ= − ∇ − ∇   (2.1.7) 

 
where λα is the phase mobility [m2 Pa-1 s-1], pα the pressure [Pa], g the gravitational constant [m s-2] and 
h the height of the reservoir [m].  
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Darcy's law basically states that a higher mobility, pressure gradient and/or cross-section leads to a 
higher outflow. 
 

2.1.3 Phase mobility 

The phase mobility introduced in the previous subsection describes the ease with which a phase moves 
through the reservoir. The two main concepts of mobility are viscosity and permeability, which are 
respectively a phase's resistance to flow and how well fluids can flow through the reservoir. Phase 
mobility is defined by the its viscosity µα [Pa s-1] and relative permeability krα [-], as well as the 
reservoir's absolute permeability matrix k [m2]: 

 αλ .rk α
αµ= k   (2.1.8) 

 
Often it is possible to align the coordinate system with the geological layering of the reservoir, which 
turns k into a diagonal matrix (Jansen, 2013). 
 
Equation (2.1.8) expresses that a higher permeability of the phase or reservoir leads to a higher 
mobility of the phase. On the other hand, there is an inverse relationship between mobility and 
viscosity: the less viscous a phase is, the more mobile it is. 
 

2.1.4 Relative permeability 

The (dimensionless) relative phase permeability mentioned in the previous subsection is usually 
modeled through the experimentally derived (modified) Brooks-Corey model, which is given by 
 ,0 , ,n

r r effk k S α
α α α=  (2.1.9) 

 
where krα,0 is the phase end-point relative permeability, nα the Corey exponent and Sα,eff the effective 
saturation of phase α. 
 
The reason for introducing the effective saturation is that in practice it may be impossible to 
completely extract certain phases, leaving behind immovable residuals Sαr. The effective saturation is 
simply the real saturation scaled on the movable saturation, meaning it takes on values between 0 and 
1. The value 0 is attained at a phase's residual saturation (Sα = Sαr), whereas 1 is attained at a phase's 
maximum saturation ( 1 rS Sα β

β α≠
= − ∑ ): 

 ,
1

r
eff

r

S SS
S

α αα
β

β

−=
−∑

  (2.1.10) 

 

2.1.5 Capillary pressure 

Capillary pressure is defined as the difference in pressure between a wetting and a non-wetting phase, 
i.e. c nw wp p p= − , and often has a strong effect on very low wetting phase saturations and a weak 

effect on higher saturations. When water is used to displace oil (called imbibition), water is the wetting 
face. Just as pressure depends on saturation, so does capillary pressure. Therefore the question arises if 
it is possible to characterize capillary pressure as a function of wetting phase saturation explicitly. One 
well known model is the empirical Brooks-Corey capillary pressure model (Brooks and Corey, 1966), 
but over the years also theoretical models have been derived.  
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Li (2004b) reports that many natural porous media are fractals (e.g. reservoir rock) and thus can be 
modeled with a fractal model. An example of a fractal model, is the relationship between the number 
of pores and the radius of the pores (Li, 2010). According to Li, other authors "have derived the 
empirical Brooks-Corey capillary pressure model theoretically from fractal modeling of a porous 
medium" (Li, 2010), but Li derived a new and more general capillary pressure and relative 
permeability model. For details on the derivation, see for instance Li (2004a,b) and Li (2010). The 
capillary pressure model reads 

 ( )
1

max max , ,c e w effp p p p Sλ λ λ λ
−

− − − = − −    (2.1.11) 

 
where Sw,eff is the effective wetting phase saturation, pmax is the capillary pressure at the injected 
phase's maximum saturation, pe is the entry capillary pressure, i.e. the pressure when the injected 
phase is at its residual saturation level, and λ is the pore size distribution index.  
 
The pore size distribution index is a number that characterizes the heterogeneity of the pore size. In the 
case of drainage, if λ > 0 and maxp → ∞ , (2.1.11) reduces to the Brooks-Corey capillary pressure 

model: 

 ( )
1

, .c e w effp p S λ
−

=   (2.1.12) 

 
When considering an imbibition process expression (2.1.11), with λ > 0 but this time ep → ∞ , 

simplifies to the empirical Li-Horne capillary pressure model suggested by Li and Horne (2001): 

 ( )
1

max ,1 .c w effp p S λ
−

= −   (2.1.13) 

 
Obviously when introducing a new, or in this case more generalized, model it should be validated with 
experimental data. Li and Horne (2006) reported that the general capillary pressure model can match 
the experimental data obtained from various rock core samples, therefore validating their model. 
 
Linking capillary pressure and relative permeability 
Burdine (1953) suggested a method for inferring relative permeability from capillary pressure data for 
wetting as well as non-wetting phases: 

 

( )

( )

2
w2 0

, 1 2
w

0

1 2
w2

, 1 2
w

0

dS ( )

dS ( )

dS ( )

dS ( )

w

w

S
c

rw w eff

c

c
S

rnw nw eff

c

p
k S

p

p
k S

p

=

=

∫
∫

∫

∫

  (2.1.14) 

 
Following Li (2004b), combining (2.1.11) with the above Burdine model this results in 

 

( )

( )

2

2
, 2

2 2

2
, 2

1 ( )

1

( )1
1

we
rw w eff

we
rnw w eff

Sk S

Sk S

λ
λ

λ
λ

λ λ
λ λ

λ
λ

α

α

α

+

+

+ +

+

−=
−

−= −
−

  (2.1.15) 

 
where ( )maxep p λα −=  and ( ) ,1 1we w effS Sα= − − . 
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Under the same conditions that resulted in (2.1.12) (i.e. the Brooks-Corey capillary pressure model), 
the Burdine model for relative permeabilities (2.1.15) reduces to 

 
( ) ( )

( ) ( )

22
, ,

22
, ,1 1

rw w eff w eff

rnw w eff w eff

k S S

k S S

λ
λ

λ
λ

+

+

 =  

 = − −  

  (2.1.16) 

 
The relative permeability model (2.1.16) is well known as the Brooks-Corey relative permeability 
model. When pe = pmax, (2.1.15) is reduced to the modified Brooks-Corey model with nα = 3 
 3

, .r effk Sα α=   (2.1.17) 

 

2.1.6 Equations of state 

In the first three subsections the density, permeability, viscosity and porosity all played a part in the 
equations and just as fluid flow is dependent on pressure, these parameters themselves are dependent 
on pressure. Even more so, some of these parameters can also be dependent on temperature. Equations 
describing the relationship between these parameters and pressure and temperature are commonly 
known as equations of state. Certain assumptions, however, render these parameters constant, which is 
why the equations of state will receive no further consideration. 
 

2.2 Reservoir flow equations 

As the, for this thesis, most important concepts of fluid flow have been addressed, this next section 
focuses on combining all subsections of section 2.1 into a single equation that describes two phase 
flow. A sketch of the reservoir considered is shown below in Figure 2.2. 
 

 
Figure 2.2 - Reservoir model 

 

2.2.1 Reservoir characteristics and assumptions 

As the reservoir, the phases and the flow that have to be modeled have certain characteristics, it is 
important to incorporate them into the model. This subsection lists the characteristics and assumptions. 
 
The reservoir is considered to be: 

• horizontal with constant height h 
• thin enough, i.e. small h, such that it is reasonable to assume a constant saturation over the 

reservoir height 
• rectangular shaped with length l h>>  and width ,w h>>  meaning the cross-section is constant 

• perforated by an injector at 0x =  and a producer at x l=   
• incompressible 
• homogeneous 
• isotropic 
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The displacement is considered to be: 
• one-dimensional  
• immiscible 
• laminar 

 
Each phase is assumed to be: 

• incompressible 
• homogeneous 
• isothermal 

 

2.2.2 Mass balance & total flowrate 

The assumption of horizontal flow reduces the three-dimensional mass balance equation (2.1.4) to the 
one-dimensional form 

 
�

,q S
x t

α α α αρ φ ρ∂ ∂− =∂ ∂   (2.1.18) 

 
where �qα  is the phase flowrate in [m s-1].  

 
Due to the assumption of a constant cross-section the above equation can also be written as 

 q SA
x t

α α α αρ φ ρ∂ ∂− = ⋅∂ ∂   (2.1.19) 

 
where �q q Aα α= ⋅  is the volumetric flow in [m3 s-1]. 

 
Since each phase is assumed to be incompressible, homogeneous and isothermal, both the density and 
viscosity of each phase are constant, i.e. ρα (T, p) = ρα and µα (T, p) = µα. The assumptions of an 
incompressible, homogeneous and isotropic reservoir imply that the porosityφ and absolute 

permeability k are constant. These assumptions lead to a simplification of equation (2.1.19): 

 q SA
x t
α αα αρ φ ρ∂ ∂− ⋅ = ⋅ ⋅∂ ∂   (2.1.20) 

or  

 q SA
x t
α αφ∂ ∂− = ⋅ ⋅∂ ∂   (2.1.21) 

 
As stated in equation (2.1.2), an obvious though important equation is that the sum over all saturations 
is constant over space and time. Moreover, this means that the change in saturation over time is equal 
to zero: 

 1    and    0.SS
t
αα

α α

∂= =∂∑ ∑   (2.1.22) 

 
Summing over all phases in equation (2.1.21) and using (2.1.22) reveals the important property of 
constant total flow qt: 

 0tq q SA
x x t

α α

α α
φ∂ ∂ ∂− = − = ⋅ ⋅ =∂ ∂ ∂∑ ∑  (2.1.23) 

 
This is, of course, in agreement with the incompressibility assumption of each of the phases and the 
reservoir. However, it is important to note that qt is only constant in the spatial dimension and 
therefore does not need to be constant in time. 
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2.2.3 Fractional flow 

Another key-feature is that liquid water is used to displace the oil in the reservoir. Therefore the type 
of displacement considered is that of imbibition, i.e. a non-wetting phase (oil in this case) is displaced 
by a wetting phase (water).  
 
Continuing from equation (2.1.21) and using (2.1.23), write the left-hand side as 

 
( )

,

t

t
t

qq
q q fq
x x x

α
α α

∂∂ ∂− = − = −∂ ∂ ∂   (2.1.24) 

 
where : tf q qα α=  is the (dimensionless) fractional flow. 

 
Since fα is only dependent on qα, which in turn depends only on Sα, the right-hand side of (2.1.24) can 
be rewritten. Substitution into equation (2.1.21) yields 

 
α

d
dSt

f S Sq A
x t

α α αφ∂ ∂− = ⋅ ⋅∂ ∂   (2.1.25) 

 
As there are only two phases in the reservoir, the choice is made to write all the equations in terms of 
water saturation. The next step is rewriting fw such that it no longer depends on qw, for which the first 
step is using the one-dimensional form of Darcy's law (see (2.1.7)). The use of Darcy's law is 
congruent with the assumption of laminar flow. Since additionally the reservoir is thin and quite 
stretched out, gravity effects are considered negligible. Using Darcy's law leads to the expression 

 1: 1 .w t o o
w o

t t t

q q q pf A
q q q x

λ− ∂= = = + ∂   (2.1.26) 

 
Recalling that the capillary pressure is defined as the pressure difference of the non-wetting and 
wetting phase, that is ,c o wp p p= − expression (2.1.26) is rewritten to 

 

( )

( )
11

11

11

c w
w o

t

c w
o

t w

c o
o w

t w

p p
f A

q x

p qA
q x A

pA f
q x

λ

λ λ
λλ λ

∂ += + ∂
∂= + −∂

∂= + −∂

  (2.1.27) 

 
Using that the total mobility is given by λt = λo + λw, rewriting (2.1.27) leads to 

 ( )11 .cw
w o

t t

pf A
q x

λ λλ
∂= + ∂   (2.1.28) 

 
Or alternatively, as the capillary pressure depends only on water saturation, 

 ( )
w

d11 .
dS

cw w
w o

t t

p Sf A
q x

λ λλ
∂= + ∂   (2.1.29) 

 
Substitution of the previous expression for the fractional water flow into equation (2.1.25) with α = w 
results in 

 ( )( )
w

dd 11
dS dS

cw w w w
t o

w t t

p S S Sq A A
q x x t

λ λ φλ
∂ ∂ ∂− + = ⋅ ⋅∂ ∂ ∂   (2.1.30) 

 

2.3 Buckley-Leverett - linear displacement 

This section will simplify (2.1.30) further and subsequently solve the resulting Buckley-Leverett 
equation. In the last subsection, the concept of a shock front is used to obtain saturation profiles. 
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2.3.1 The Buckley-Leverett equation 

In order to derive the Buckley-Leverett equation another assumption is required, namely that of zero 
capillary pressure: 
 : 0.c o wp p p= − =   (2.1.31) 

 
This assumption simplifies (2.1.29) to  

 w
w

t
f λ

λ=   (2.1.32) 

and therefore (2.1.30) to  

 ( )d ,
dS

w w w
t

w t

S Sq A
x t

λ φλ
∂ ∂− = ⋅ ⋅∂ ∂   (2.1.33) 

or, 

 d .
dS

w w w
t

w

f S Sq A
x t

φ∂ ∂− = ⋅ ⋅∂ ∂   (2.1.34) 

 
This last equation is known as the Buckley-Leverett equation, named after the authors who were first 
to present and analyze it (Buckley and Leverett, 1942).  
 
For this hyperbolic partial differential equation, initial and boundary conditions need to be specified. 
The residual water saturation level is chosen as the initial condition, denoted by Swi. Residual water 
saturation is also known as connate water saturation (Swc), however throughout this thesis Swi is used. 
The initial condition thus reads  
 ( ,0)w wiS x S=  (2.1.35) 

 
This means that initially the reservoir is completely filled with oil, minus some residual water.  
 
The boundary condition will be specified at the injector location (x = 0), as this is the only place in the 
reservoir where the water saturation can be explicitly controlled. The saturation level will be the 
maximum water saturation possible, because the only injected phase is water and a smaller value 
would mean that also oil is injected into the reservoir. The boundary condition thus reads 
 (0, ) 1w orS t S= −   (2.1.36) 

 

2.3.2 Saturation propagation 

Because equation (2.1.34) is a hyperbolic equation it is possible to use the method of characteristics to 
find relationships between independent variables for which the dependent ones do not change. In 
equation (2.1.34) the independent variables are x and t, whereas the dependent variable is Sw. In order 
to find a level of constant saturation, �

w wS S= , the material derivative of saturation should equal zero, 
i.e. 

 
� � � �

d dx 0
dt dt w ww w w w w w

w w w

S SS S S S S S

S S S
x t== = =

∂ ∂= + =∂ ∂   (2.1.37) 

 
Rewriting equation (2.1.37) leads to an equation that describes the propagation speed for a specific 
saturation level:  

 
�

�

�

dx
dt

w w

w w

w w

w

S S

wS S

S S

S
t

S
x

=

=
=

∂
∂= − ∂
∂

  (2.1.38) 
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By combining equations (2.1.38) and (2.1.34), the propagation speed can be expressed as 

 
� �

ddx
dt dSw w w w

t w

wS S S S

q f
A φ= =

= ⋅   (2.1.39) 

 
Integrating this equation results in an expression for the position of a saturation level 

 �
�

0
( )

( )
w w

w w

t
t

w
S S w S S

q t dt dfx t
A dSφ=

=
= ⋅
∫ ɶ ɶ

  (2.1.40) 

 
Dividing (2.1.40) by the total length of the reservoir, l, results in the dimensionless expression 

 �
�

( ) ,
w w

w w

w
D D DS S w S S

dfx t t
dS=

=
=   (2.1.41) 

 

where ( )( )D
x tx t
l

=  and 0
(t)dt( )

t
ti

D
p

qV tt
V A l φ= = ⋅ ⋅

∫ ɶ ɶ
.  

 
In this notation Vi(t) is the total injected volume (with unit [m3]) at time t  and Vp is the pore volume, 
i.e. the volume of the reservoir that is available for flow. 
 
Expression (2.1.41) formulates the dimensionless position of a certain saturation value for every 
dimensionless time. While originally the phase saturation was a function of position and time, now 
position is a function of saturation and time.  
 
An example of the fractional flow derivative is given below in Figure 2.3, for which the corresponding 
parameters are given in Table 2.1. Part of calculating the fractional flow derivative is calculating phase 
and total mobility, both of which are for the most part determined by the underlying relative 
permeability model. The relative permeability model used in this thesis is the Brook-Corey relative 
permeability model (see (2.1.9)). 
 

 
Figure 2.3 - Fractional flow derivative 
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Parameter Symbol Value SI unit 
Initial water saturation Swi 0.25  - 
Residual oil saturation Sor 0.1  - 

End-point water rel perm1 krw,0  0.5  - 
End-point oil rel perm kro,0 0.9 - 
Corey exponent water nw  3 - 

Corey exponent oil no  3  - 
Viscosity water µw  0.35  cp 

Viscosity oil µo  1.9  cp 
Permeability k 300  mD 

Table 2.1 - Parameters for Figure 2.3 
 

2.3.3 Shock front solution 

From Figure 2.3 it becomes clear that a new problem has arisen: for all except one of the fractional 
flow derivative's possible values, there are two saturation values. This means that for any given point 
in space and time (see (2.1.41)), there are two corresponding saturation values. This physical 
impossibility is a consequence of the zero capillary pressure assumption. In practice capillary pressure 
creates a quick increase of water saturation when the saturation level is still low. In other words, 
capillary pressure attains higher values for lower saturations.  
 
The quick increase can be emulated through a shock front. Buckley and Leverett (1942) came up with 
the idea of a front formed by a real and imaginary solution, the existence of which was subsequently 
proven by Terwilliger et al. (1951). They proved that a discontinuity exists between a zone in front of 
the shock front where all saturations move with the same speed and a zone behind the shock front 
where all saturations have a different speed that is lower than that of the shock front.  
 
The question that remains, is what the saturation value of the shock front is. Welge (1952) proposed a 
procedure where the speed of the front is assumed to be proportional to the slope of a tangent to the 
fractional flow curve fw. The tangent goes through the point (Swi, 0) and touches the fractional flow 
curve at the point (Swf, fw(Swf)) where Swf is the shock front saturation. The tangent must have the 
largest possible gradient, as the change in saturation is the biggest at the shock front where the 
saturation level jumps from the initial level to a certain higher saturation level. 
 
If y(Sw) = a(Sw + b) is the aforementioned tangent, then the first criteria, y(Swi) = 0, reduces the 
expression to y(Sw) = a(Sw - Swi). The second criteria implies that y(Swf) = fw(Swf ) and thus the formula 
of the tangent is 

 ( )( ) ( ).
( )

w wf
w w wi

wf wi

f S
y S S S

S S
= −−  (2.1.42) 

  
 
Since the slope of the tangent y(Sw) should be the maximum possible value, the shock front saturation 
hence is given by  

 { }( ): | max
( )w

w w
wf w

S w wi

f SS S
S S

= −   (2.1.43) 

 

                                                 
1 The term 'rel perm' is an abbreviation for relative permeability 
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Moreover, the slope of the tangent and the slope of the fw curve are the same at the shock front 
saturation: 

 
w

( )d
dS ( )

w wf

w wfw

wf wiS S

f Sf
S S=

= −  (2.1.44) 

 
Hence, the front saturation might also be found by solving the equation below (where Swi < Sw < 1−Sor): 

 
w

d ( ) .
dS ( )

w w w

w wi

f f S
S S

= −   (2.1.45) 

 
The shock front solution to equation (2.1.41) can now be expressed for all saturation values: 

 

d ,    1
d

( , )
d ,      
d

w wf

w
D wf w or

w
D D w

w
D wi w wf

w S S

ft S S S
S

x t S
ft S S S
S =

 ≤ ≤ −


= 
≤ ≤



  (2.1.46) 

 
Figure 2.4 illustrates that (2.1.43) as well as (2.1.45) could be used to determine the shock front 
saturation. Also shown below is an example of a Buckley-Leverett profile and its propagation through 
time, where dimensionless values are used for both the spatial and temporal dimensions. The 
parameters corresponding to these two figures can be found in Table 2.2. The dimensional time 
between profiles is 50 days and since the water injection rate is also constant (750 m3/day), the shock 
front propagates at a constant pace through the reservoir.  
 

      
Figure 2.4 - Determining shock front saturation 
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Figure 2.5 - Buckley-Leverett profiles 

 
Parameter Symbol Value Unit 

Initial water saturation Swi 0.25  - 
Residual oil saturation Sor 0.1  - 

End-point water rel perm krw,0  0.5  - 
End-point oil rel perm kro,0 0.9 - 

Permeability k 300  m2 

Corey exponent water nw  3 - 
Corey exponent oil no  3  - 

Viscosity water µw  0.35  cp 
Viscosity oil µo  1.9  cp 

Reservoir length l 1000 m 
Reservoir width w 250 m 
Reservoir height h 10 m 

Porosity φ   0.25 - 
Injection rate qt 750  m3/day 

Total time t 500  days 

Table 2.2 - Parameters for Figure 2.4 and Figure 2.5 
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2.4 Buckley-Leverett - Radial displacement 

In case of radial flow, such as in a circular reservoir with a vertical injector or producer at its centre 
(Figure 2.6), the derivation of the flow equations is similar to those in the preceding three sections and 
has been considered before by many authors (among others Matthews and Russell (1967), and more 
recently by Ling (2015)). Therefore, this section only explains the most relevant equations. 
 

 
Figure 2.6 - Circular reservoir with a well at the centre 

 
More specifically, fractional flow equation (2.1.32) remains the same. The only two differences in 
equation (2.1.34) are that the dimensional derivative is taken with respect to radial coordinate r instead 
of x and that the cross-section A is dependent on r as it is cylindrical (instead of rectangular). 
Measuring the radius r positive in the direction of the flow, equation (2.1.34) for an injector well 
becomes: 

 

d
dS

2 .

w w w
t

w

w

f S Sq A
r t

Srh
t

φ

π φ

∂ ∂− = ⋅ ⋅∂ ∂
∂= ⋅ ⋅ ∂

  (2.1.47) 

 
Hence, equation (2.1.39) similarly changes to 

 
� �

ddr
dt 2 dSw w w w

t w

wS S S S

q f
rhπ φ= =

= ⋅   (2.1.48) 

or, 

 
( )

�
� �

2d 0.5 ( ) dd
dt dt 2 dSw w w ww w

t w

wS S S SS S

r t q frr
hπ φ= ==

= = ⋅   (2.1.49) 

 
Integrating over time yields 

 
( )

� �

2

0 0

d 0.5 ( , ) d
dt 2 dS

w ww w

t tw t w

w S SS S

r t S q fdt dt
hπ φ ==

= ⋅∫ ∫
ɶ

ɶ ɶ
ɶ

  (2.1.50) 

 
The solution for an injector well, employing that at 0t =  each saturation level is located at the well 
location (i.e. �(0, )w wr S r= ), is therefore given by 

 �
�

2

0

d1( , )
dS

w w

t w
w w t

w S S

fr t S r q dt
hπ φ =

= + ⋅∫ ɶ   (2.1.51) 

 
For a producer well with its centre at the origin, however, the direction of flow is inwards towards the 
well and the radius is measured positive in opposite direction of the flow. Considering that at 

0t = each saturation level is still at the external radius of the radial flow regime (i.e. �(0, )w er S r= ), the 

derivation results in 

 �
�

2

0

d1( , )
dS

w w

t w
w e t

w S S

fr t S r q dt
hπ φ =

= − ⋅∫ ɶ   (2.1.52) 
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Note that qt 0≥  in all. 
 
Lastly, since the fractional flow expression is unchanged, the shock front saturation can again be 
found as described in section 2.3.3. 
 

2.5 Buckley-Leverett - Combining radial and linear displacement 

While some reservoirs might be governed (and sufficiently described) by one-dimensional linear or 
radial flow, others can be governed by two-dimensional flow in a rectangular reservoir. Figure 2.7a 
below depicts such a rectangular reservoir with two wells: an injection well located at the left side of 
the reservoir and a producer well located at the right side of the reservoir. Consequentially, when 
neglecting gravity and assuming equal injection over the height of the reservoir, the fluid flow is two-
dimensional and flows along streamlines such as shown in Figure 2.7b (adapted from Jansen (2016)). 
The lines tangential to the streamlines are equipotential lines of equidistant magnitude, i.e. lines along 
which the pressure is constant (i.e. equipotential) and between which the pressure change is constant 
(equidistant magnitude). 
 

 

 

 
Figure 2.7 - Schematic representation of two-dimensional flow 

a) rectangular reservoir with vertical injector and producer. 

b) streamlines and equipotential lines for figure a. 

Both representations are not to scale. 

 
The middle part of Figure 2.7b indicates that reservoirs with a very small width (w) or large length to 
width ratio (l/w) are predominantly governed by linear flow in the x-direction. For such reservoirs the 
saturation distribution is given by equation (2.1.40).  
 
On the other hand, near both wells (Figure 2.7b) the streamlines and equipotential lines display radial 
flow characteristics, which means that reservoirs with a relatively small length are more strongly 
influenced by radial flow.  
 
Between the radial flow regime and the linear flow regime, there is an area in which the streamlines 
have to converge from radial to linear flow (near the injector) and vice versa (near the producer). The 
convergence is strongest near the reservoir's front and back (y = 0 and y = w), where streamlines need 
to make an almost 90° angle. Hence the convergence is considered weakest along the inter-well axis 
(i.e. y = w/2) as the streamline that coincides with it does not need to make any angle. Therefore it can 
be considered that this specific streamline, as an approximation, only experiences radial and linear 
displacement. This consideration gives rise to idea of Radial-Linear-Radial (RaLiRa) flow at the inter-
well axis, where the saturation displacement changes at a certain x,y-coordinate (xra, w/2) from a radial 
to a linear regime and at another x,y-coordinate (xar, w/2) back to a radial regime. 
 
The first step in finding coordinates xra and xar is realizing that for the symmetric reservoir in question 
(Figure 2.7a) there is a simple relation between the two coordinates, i.e. xar = l − xra. Secondly, in order 
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to maintain continuity of the displacement, the time-derivative in (2.1.39) and (2.1.48) have to be 
equal to each other at these coordinates: 

 
� � � �, ,

d ddr dx
2 dS dt dt dSra w ww w w wra w w

t w t w

ra w wr x S SS S S Sx x S S

q f q f
x h whπ φ φ= == == =

= = =⋅ ⋅   (2.1.53) 

 
Hence, the left radial regime ends at xra = w/(2π) and the right radial regimes starts at xra = l − w/(2π). 

The entire saturation distribution for �w wfS S≥ along the inter-well axis then follows from combining 

expressions (2.1.40), (2.1.51) and (2.1.52).  
 
Firstly, the location of saturation levels in the left radial regime is given by 

 �
�

� �2
,

0 0

d1( , ) ,   for all  s.t. ( )
dS

w w

t tw
w w t w t p ra w

w S S

fx t S x q dt S q dt V S
hπ φ =

= + ≤⋅∫ ∫ɶ ɶ   (2.1.54) 

 
where � �2 2 '

, ( ) ( ) / ( )p ra w ra w w wV S h x x f Sπ φ= −  is the injected pore volume required to displace saturation level 
�

wS from the injector well to xra (i.e. from xw to w/(2π)). 

 
Secondly, for the linear regime, the location of a saturation level can be expressed as 

 �( )
�

�

� � �
,

0
, ,

0

( ) d , for all  s.t. ( ) ( ), d
w w

t
t p ra w tw

ra w p ra w t p ar ww
w S S

q dt V S fx x S V S q dt V St S wh Sφ =

−
= + ≤ ≤⋅

∫
∫

ɶ
ɶ   (2.1.55) 

 
where � � �'

, ,( ) ( ) ( 2 ) / ( )p ar w p ra w ra w wV S V S l x wh f Sφ= + −  is the injected pore volume required to displace 

saturation level �wS from the xw to l − xra. 

 
Lastly, the saturations in the right radial regime are given by 

 �
�

�

� � �
,2 0

, ,end
0

( ) d( , ) ,   for all  s.t. ( ) ( )
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w w
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t p ar w tw
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= − − ≤ ≤⋅

∫
∫

ɶ
ɶ  (2.1.56) 

 
where � � �,end , ,( ) ( ) ( )p w p ar w p ra wV S V S V S= +  is the injected pore volume required to displace saturation level 
�

wS from the xw to l − xw (i.e. from injector to producer). 

 
It is important to note that the presented flow solution is devised for the inter-well axis only. 
Consequently, the model can be expected to be more accurate in determining the moment of water 
breakthrough in comparison to using only the linear displacement model. On other hand, the actual 
water saturation value at the producer well (after water breakthrough has occurred) is always lower 
than that of the RaLiRa model, because all other streamlines -along which it takes more time for the 
water to reach the producer- are not taken into account by the RaLiRa model. 
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3  
Pressure drop models 

This chapter covers models for pressure drop between the injector to producer wells, for which the 
general concept is treated in the first section. The second section introduces choke valves as a means 
to regulate the flowrate or pressure drop between the wells. The third section details the derivation of 
various formulae for pressure drop in the reservoir and additionally treats the numerical integration 
technique that is used to evaluate this pressure drop. Next to last, controllability of flowrates with the 
linear displacement model and associated pressure drop model is investigated. Lastly, section 3.5 
briefly investigates asymptotic behavior of the simplest pressure drop model. 
 

3.1 The reservoir model and pressure drop 

The Buckley-Leverett model enabled computation of the saturation distribution in the reservoir 
through time. A more interesting case where this model can be used is a multi-layered reservoir. The 
amount of Buckley-Leverett models needed is equal to the number of layers in the reservoir, though 
the basic model does not change: water still propagates from the left to the right (i.e. from injector to 
producer). Figure 3.1 below, which visualizes two types of reservoirs, shows the jth layer of the 
reservoir as well as the injector and producer running along the edge the reservoir.  
 
The first type that Figure 3.1 depicts is a vertical cross section of a layered reservoir where the layers, 
separated by thin horizontal impermeable layers, lie on top of one another in the z-dimension. In this 
case the (vertical) injector and producer are located halfway the width of the reservoir (i.e. y = w/2). 
For the linear displacement model it is assumed that the injected water is immediately equally 
distributed over the width of the reservoir, which is reasonable for narrow reservoirs. Furthermore, the 
assumption on the permeability of the pressure drop model has not changed: each layer has a constant 
permeability k.  
 
The second type concerns a horizontally layered reservoir, where Figure 3.1 depicts the top-view of 
the reservoir whose layers, separated by thin vertical impermeable layers, lie next to one another along 
the width of the reservoir. The (horizontal) injector and producer are located halfway the height of the 
reservoir (i.e. h/2) and run along the entire width of the reservoir. Injected water is assumed to be 
immediately equally distributed over the height of the reservoir and the permeability k within the 
pressure drop model is again assumed constant per layer. 
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Figure 3.1 - Multi-layered reservoir: four pressure locations per layer 

 
Water that flows from inside the injector into the reservoir pushes oil (and after breakthrough also 
water) into the producer and consequently changes the pressure distribution over time. In order to 
facilitate this flow, the injector and producer need to be supplied with a flowrate and/or pressure. 
However, a pressure assigned to a well may not necessarily be the same as that which the reservoir 
experiences just on the outside of that well because of a local loss of pressure. Choke valves 
(introduced in the next section) can mimic this behavior and at the same time provide a means to 
control flowrates. Therefore, choke valve models are used as inflow control valves (ICV). The 
pressure drop for layer j (∆pj) from injector to producer, i.e. 1 4

j jp p− , is then given by 

 j j j j
reschl chrp p p p∆ = ∆ + ∆ + ∆  (3.1.1) 

 
In (3.1.1), the reservoir pressure drop (2 3

j jp p− ) is denoted by j
resp , while the choke valve pressure 

drop on the left (1 2
j jp p− ) and on the right (3 4

j jp p− ) are respectively denoted by j
chlp∆  and j

chrp∆ . 

 

3.2 Choke valve pressure drop 

This section shortly touches upon flow through restrictions (e.g. a choke valve) and contains excerpts 
from chapter 5 of the book by Jansen (2016). A restriction in the production process is there either on 
purpose or not and a can be classified as either a fixed-size or variable-size restriction. When a fixed-
size restriction needs to be replaced by another one, the production cycle needs to be either partly or 
completely halted. Variable-size restrictions, on the other hand, are restrictions that, as the name 
suggests, can vary in size without halting the production. An example of a variable-size restriction is a 
choke valve and it deliberately, yet in a controlled fashion, causes a change in flowrate and/or pressure 
drop. Additionally, a restriction can be used to measure flowrates. 
 
When considering the pressure drop as a result of the left choke valve, there is only a single and 
(assumed to be) incompressible fluid flowing through it: water. A semi-empirical expression for the 
pressure drop in incompressible single-phase liquid flow through a (sudden) restriction such as a 
choke valve is given by the expression 

 
2

2 2
,

( ) 1
2

j
j w t

chl
chl j d

qp
A C

ρ∆ =  (3.2.1) 
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where 2
, ,chl j chl jA rπ=  is the throat area, and Cd is an empirical discharge coefficient often supplied by 

the manufacturer of the restriction. Note that qt,j is used instead of j
tq as the incompressibility 

assumption lead to a spatially constant flowrate (see (2.1.23)). 
 
Equation (3.2.1) can be modified to allow for two-phase flow through the restriction, resulting in a 
description for the pressure drop due to the choke valve at the producer side: 

 
2

, ,
2 2

, ,

( ) ( )1 1
2

j
j w j w o j o t

chr
t j chr j d

q q qp
q A C

ρ ρ+∆ =  (3.2.2) 

 
Or, in terms of fractional flow: 

 
2

, ,
2 2

,

( ) ( ) 1
2

j
j w j w o j o t

chr
chr j d

f f qp
A C

ρ ρ+∆ =  (3.2.3) 

 
Using the Buckley-Leverett fractional flow model for fw, expression (3.2.3) can also be expressed in 
terms of water saturation. 
 
Note that even though Cd is usually not determined for two-phase flow, this parameter is assumed to 
be the same for two-phase flow as it is for single phase flow. 
 

3.3 Reservoir pressure drop models 

In order to find the pressure distribution in the reservoir (or more specifically the pressure drop 
between the injector and producer well), a reservoir pressure drop formula is derived in this section. 
Due to the assumption of zero capillary pressure, oil pressure equals water pressure (po = pw) and 
therefore the subscripts o and w are dropped when considering pressure. 
 
Starting with the fundamental theorem of calculus, the pressure in the reservoir for time t and location 
x can be expressed as follows: 

 
( , ) ( , ) ( , )

( , ) d .ˆ
ˆinj

j j j
inj res

jxj
inj

x

p x t p x t p x t

pp x t x
x

= − ∆

∂= + ∂∫
  (3.3.1) 

 

3.3.1 Linear displacement model associated pressure drop 

Using Darcy's law for the water phase (equivalently the oil phase could have been used), (3.3.1) for 
(one-dimensional) linear displacement can be written as 

 
,

( , ) ( , ) d .ˆ
inj

jxj j w
inj

x w j

qp x t p x t x
whλ

−= + ∫   (3.3.2) 

 
As tq  is independent of the spatial dimension,x multiplying the integrand with t tq q  and using the  

fractional flow expression from equation (2.1.32) yields 

 
,

1( , ) ( , ) dˆ
inj

j xj j t
inj

x t j

qp x t p x t x
wh λ= − ∫   (3.3.3) 

 
The integral in (3.3.3) cannot be calculated analytically: while λt,j is a function of saturation and this in 
turn is a function of x (and t), the Buckley-Leverett solution (2.1.46) gives x as a function of saturation 
(and t). As this is may not be an invertible relation, the integral has to be evaluated numerically 
through the use of a numerical integration technique, which will be discussed in section 3.3.4. 
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However, since there is a discontinuity at the shock front, the above formula for pressure has to be 
manipulated further before it can be integrated numerically. The first and most crucial step is to split 
the integral in two: one calculating the pressure drop behind and the other ahead of the shock front (xf). 
This results in: 

 ( )min( , )

min( , ), ,

1 1( , ) ( , ) d dˆ ˆ
f

inj f

j x x xj j t
inj

x x xt j t j

qp x t p x t x x
wh λ λ= − +∫ ∫   (3.3.4) 

 
Remembering that the water saturation ahead of the shock front is at initial conditions, meaning λt is a 
constant and equal to
oλ (i.e. oil mobility for Sw = Swi), the pressure drop can be reformulated as 

follows: 

 
�

min( , )

, ,

1 1( , ) ( , ) d ( min( , ))ˆ
f

inj

j x xj j t
inj f

x t j o j

qp x t p x t x x x x
wh λ λ
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 
∫  (3.3.5) 

 
Hence the reservoir pressure drop for layer j is given by 
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 (3.3.6) 

 

Using the dimensionless coordinate ˆ
2

w
D

w

x xx
l x

−= − , with xinj = xw and xprod = l −  xw, leads to: 
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  (3.3.7) 

 

3.3.2 Radial-Linear-Radial displacement model associated pressure drop 

An approximation for two-dimensional saturation propagation along the inter-well axis has been given 
in section 2.5 and therefore the pressure (drop) model derived in the previous subsection needs to be 
adapted to the RaLiRa displacement model.  
 
First of all, Darcy's law as used in the previous section to describe the pressure change is still 
applicable, though over a smaller interval: 

 d , for 
d

t
ra ra

t

p q x x l x
x whλ

−= ≤ ≤ −   (3.3.8) 

 
Secondly, the radial form of Darcy's law for an injector located at x,y-coordinate (0,w/2) is needed. 
Assuming the radius direction is measured positive in the direction of the flow, means that the 
pressure change is negative. Since only pressure drop over the inter-well axis is considered, the radial 
coordinate r is reduced to the coordinate x and hence Darcy's law reads: 

 d , for 
d 2

t
w ra

t

p q x x x
x hxλ π

−= ≤ ≤   (3.3.9) 

 
The radial form of Darcy's law is also required for a producer located at (l,w/2). At the inter-well axis, 
the pressure change is still negative for increasing x and therefore Darcy's law is easily found to be: 

 d , for 
d 2 ( )

t
ra w

t

p q l x x l x
x h l xλ π

−= − ≤ ≤ −−   (3.3.10) 
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Note that in (3.3.8), (3.3.9) and (3.3.10) qt ≥ 0 and that the pressure derivatives are continuous at the x-
coordinates xra and l - xra. 
 
The pressure can now be expressed, following the same procedure as before, as follows: 
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−
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Splitting each of the integrals to account for the location of the shock front results in the expression: 
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  (3.3.12) 

 
Since the saturation level in each of the right integrals is equal to the initial water saturation, the term 

tλ  is constant in those integrals and hence the integrals can be analytically evaluated. As the x-
coordinate of the producer is wx l x= − , the pressure drop model for the RaLiRa displacement is: 
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 (3.3.13) 

 
Just as in (3.3.6), the remaining integrals have to be evaluated numerically (see section 3.3.4). 
 

3.3.3 Analytical pressure for a bounded reservoir: a multi-phase approach 

While the RaLiRa displacement model of section 2.5 and the associated pressure drop model (3.3.13) 
might be an improvement for describing (along the inter-well axis) two-dimensional two-phase flow 
and pressure drop for a reservoir setup as shown in Figure 2.7b, an alternative to (3.3.13) comes from 
an analytical model for two-dimensional single-phase pressure that accounts for two no-flow 
boundaries. 
 
Adapting the derivation in Jansen (2016, chapter 7) to the situation depicted in Figure 2.7b, the single-
phase pressure in an oil reservoir with a producer well (located at coordinate (l,w/2)) and no-flow 
boundaries at 0y =  and y w=  is given by 

 ( )0
1( , , ) ln cosh cos2 224

o
wq yx lp x y t c

k h w w

µ π ππ
  −−= + −  
  

  (3.3.14) 

 
where q > 0 and c0 is a constant that can be used to define the reservoir pressure. 
  
Since (3.3.14) is a solution of the Laplace equation (a differential equation that is both linear and 
homogeneous), the principle of linear superposition is applicable and an injection well (located at 
coordinate (0,w/2)) can simply be added. Hence, (3.3.14) becomes: 
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  (3.3.15) 

Note that when calculating the pressure drop between two coordinates, c0 will cancel out and hence is 
of no importance. 
 
Taking the derivative of (3.3.15) with respect to x and simplifying the result, yields an expression that 
looks similar to the one-dimensional (linear) single-phase form of Darcy's law: 

 d 1 ( , )
d

op q f x y
x k wh

µ= −   (3.3.16) 

 
In (3.3.16) the function( , )f x y is given by 
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  (3.3.17) 

 
Therefore, for two-dimensional two-phase flow (3.3.16) can be written as 

 d 1 ( , )
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p q f x y
x wh
α α

αλ= −   (3.3.18) 

 
Equation (3.3.18) can be interpreted as a modified one-dimensional Darcy law that accounts for the 
influence of no-flow boundaries on the pressure change in a reservoir with two wells (i.e. see Figure 
2.7a). When used in the derivation of the fractional flow expression (equation (2.1.29)), it yields the 
same fractional flow formula w w tf λ λ=  (while, importantly, still assuming zero capillary pressure). 

Hence, also the linear displacement model and RaLiRa displacement model are left unaltered. 
Consequently, the pressure drop over the (one-dimensional) inter-well axis becomes 
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  (3.3.19) 

 
Obviously, the accurateness of (3.3.19) depends on the accuracy of the estimated displacement, i.e. on 
the accuracy of the (one-dimensional) linear displacement model and the (one-dimensional) RaLiRa 
displacement model.  
 

3.3.4 Numeric integration 

Because the integrands of the preceding pressure drop models can not be integrated analytically, a 
numeric integration technique has to be used. Calculating an integral numerically means that the 
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integrand has to be evaluated at certain points (abscissas) along the x-dimension. Preferably a high 
accuracy is achieved with as few function evaluations (ordinates) as possible. 
 
Classical techniques 
Classical techniques such as the trapezoidal rule, Simpson's rule, the five point Newton-Cotes formula, 
etc. are intuitive in the sense that the integrand is evaluated at equally spaced abscissas. Additionally, 
if the integrand is a polynomial, exact solutions of degree n may exist but often require n or n-1 
ordinates. However the integrand in (3.3.7) is not a polynomial and therefore a small number of 
ordinates would not be sufficient to achieve an accurate approximation of the expression. 
 
The reason that a small number of ordinates are insufficient is that the specified abscissas are not 
necessarily distributed in an optimal way. Optimally determined abscissas and associated weights 
(with which ordinates are to be multiplied), often include irrational numbers. Hildebrand (1987) gives, 
at the start of chapter 8, reasons for using methods that determine optimal abscissas over the classical 
methods, especially since the advent of computers.  
 
Another consideration while determining which numerical integration technique is to be used to 
evaluate the reservoir pressure drop is that classical techniques often are closed type formulas, which 
means they use the endpoints of the integration interval (e.g. the five point Newton-Cotes formula). 
Up to the moment of breakthrough one of the endpoints of the integration interval in (3.3.7) is the 
shock front location xf, where the water saturation is discontinuous. Since the integrand is integrated 
over x (and thus over the water saturation with a discontinuity at xf), selecting a method that uses this 
endpoint xf could potentially increase the error in calculating the integral. This is circumvented by 
choosing a method which does not use the endpoints of the integration interval. 
 
Legendre-Gauss Quadrature 
As mentioned in the previous section, a numerical integration technique is needed that does not make 
use of an interval's endpoints. Moreover, it is preferable if no large amount of abscissas and ordinates 
are required by the method while still being accurate. Only the bare essentials regarding the chosen 
numerical integration technique are reviewed here (for a detailed derivation see Hildebrand (1987), 
chapters 7 & 8). 
 
A Gaussian quadrature of order l attempts, by picking l optimally located abscissas, to obtain the best 
approximation of the integral through means of a weighted average. For an arbitrary function f and for 
a weight function w it is possible to write: 

 
1

( ) ( )dx ( )
lb

n n
a

n

w x f x w f x E
=

= +∑∫   (3.3.20) 

 
where nx  is the nth optimally located abscissas, nw  the corresponding weight and E  the error. 

 
The Legendre-Gauss Quadrature is a Gaussian quadrature over the interval [ 1,1]− , with the constant 
weighting function ( ) 1w x = . The abscissas for a quadrature of order l are the roots of the lth Legendre 

polynomial, Pl(x), for which the following differential recurrence formula holds (Szego, 1967) 
 2

1 1(1 ) '( ) ( ) ( ) ( 1) ( ) ( 1) ( )l l l l lx P x lxP x lP x l xP x l P x− +− = − + = + − +   (3.3.21) 

 
It follows from (3.3.21) that, since Pl(xn) = 0, 
 2

1 1(1 ) '( ) ( ) ( 1) ( ).n l n l n l nx P x lP x l P x− +− = = − +   (3.3.22) 
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The weights for the Legendre-Gauss Quadrature are given by 
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Using (3.3.22), expression (3.3.23) can be modified to, among others, the following forms 
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  (3.3.24) 

 
The error term in (3.3.20), though not further considered in this thesis, is given by 
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Matlab implementation 
In determining the abscissas, an initial guess is used as a starting point after which the abscissas are 
approximated with Newton-Raphson's iterative procedure: 
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f x
x x
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Alternatively, in terms of abscissas xn and the lth Legendre polynomial: 
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P x
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P x+ = −   (3.3.27) 

 
Given the first two Legendre polynomials, P0 = 1 and P1 = x, with initial guess xn,0, the iterative loop 
continues until the absolute difference between two consecutive iterations is less than or equal to a 
preset value. An initial guess for the nth root of the lth Legendre polynomial, which results in fast 
convergence (Davis and Rabinowitz, 1975) of Newton-Raphson's iterative procedure, is given by 

 ( ),0
0.25cos
0.5n

nx
l

π −= +   (3.3.28) 

 
The lth polynomial value for each of the abscissas,n jx is determined by rewriting the right-hand side 

equality of (3.3.21) in terms of Legendre polynomials of lower degree. Manipulation of this equality, 
i.e. − lxPl(x) + lPl− 1(x) = (l + 1)xPl(x) −(l + 1)Pl+1(x), results in the relationship 
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Additionally, reformulating the left-hand side equality of (3.3.21) yields an expression for Pl '(xn,j): 
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Combining (3.3.27) with (3.3.28), (3.3.29) and (3.3.30), a new approximate value for each of the 
abscissas (xn,j+1) is iteratively calculated until the convergence criteria, | xn,j+1 −  xn,j | ≤ ε, has been met. 

 
As the Legendre-Gauss quadrature is a Gaussian quadrature over the interval [−1,1], all abscissas lie 
in the interval (−1,1), whereas this should be (a, b). The values a and b depend on the model in 
question, the shock front position and on the dimensional/dimensionless formulation. For example for 
the dimensional formulation of the RaLiRa displacement model: a = xw and b = min(l −  xw, xf). The 
correct abscissas can be found by using the linear transformation 

 * ( 1) ( )
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xx a b a+= + ⋅ −  (3.3.31) 
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The weights are calculated through use of the left-hand side equality of (3.3.24). Since the weighting 
function w is equal to one, its integral equals the interval's length and therefore also the sum of the 
weights wn should equal the length of the interval. The length of the interval is determined by a and b, 
hence and the correct formulation of (3.3.24) is 

 *2 * 2 .
(1 ) '( )

n
n l n

b aw
x P x

−=
−

  (3.3.32) 

 

3.3.5 Preliminary results 

In this subsection a simulation is carried out to showcase the behavior of the flowrates and the 
reservoir pressure drop over time. The case considered is that of a two layered reservoir with 
horizontal wells, where the permeability of one of the layers is twice the permeability of the other (see 
Table 3.1 for parameters). There are two subcases investigated, subcase a and b, with subcase a using 
specified total flowrates (per layer) and subcase b using a specified reservoir pressure drop. 
Implementation of both subcases in Matlab is visualized below in Figure 3.2. 
 
For subcase a, the total flowrate for each layer is specified upfront and there are no pressure drop 
constraints imposed. Consequentially, it is always known where the shock front will be and therefore 
also what the reservoir pressure drop is. 
 

 
Figure 3.2 - Matlab computational flowchart for the analytical model 

 
In the solution structure for subcase b an additional step is required as it assumes that a reservoir 
pressure drop, dubbed the reference pressure drop (∆pref), has been specified. At the beginning of each 

Specify all parameters 

Specify reference pressure drop ∆pref 

Determine flowrates with fmincon  
according to (3.3.33) 

End of simulation 

Determine shock front saturation with (2.1.45) 

Specify flowrate for each of the layers 

Compute shock front location and the 
saturation distribution using (2.1.46) 

Determine flowrates with fmincon  
according to (3.3.33) 

Calculate pressure drop with (3.3.7) Is maximum simulation time reached? 

Given the initial saturation distribution, 
calculate pressure drop with (3.3.7) 
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time step, taking the current saturation distribution into account, flowrates are calculated such that the 
reservoir pressure drop in each layer at that specific moment satisfies ∆pres = ∆pref.  
 
However, since there is only one injector and one producer, also only one injector pressure and one 
producer pressure can be specified in reality. This in turn implies that the pressure drop of each layer 
should equal its neighbor's. Alternatively, given the injector pressure, this also means the producer 
pressures of the layers should be equal to one another. In this reactive approach to the fixed pressures, 
the flowrates are obtained through Matlab's minimization routine fmincon, with aid of its build-in 
interior-point algorithm. The Euclidean norm is used as the objective function to be minimized.  
 
Furthermore, since it is impossible to inject infinite amounts of water into the reservoir, a condition is 
added to the minimization problem stating that the sum of the flowrates is not allowed to exceed a 
certain value. Additionally, to prevent possible cross flow (i.e. flow from producer to injector), each of 
the flowrates has to be non-negative. Using ∆p0 = ∆pref, the minimization problem for a reservoir 
consisting of n layers mathematically comes down to 
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Parameter Symbol Value Unit 
Initial water saturation Swi 0.25  - 
Residual oil saturation Sor 0.1  - 

End-point water rel perm krw,0  0.5  - 
End-point oil rel perm kro,0 0.9 - 

Permeability k [600;300]  mD 

Corey exponent water nw  3 - 
Corey exponent oil no  3  - 

Viscosity water µw  0.35  cp 
Viscosity oil µo  1.9  cp 

Reservoir length l 1000 m 
Reservoir width w 500 m 
Reservoir height h 10 m 

Porosity φ   0.25 - 
Time step size dt  100 days 

Total time t  1000  days 
# Legendre-Gauss abscissas - 100 - 

Subcase a 
Injection rate tq  1500  m3/day 

Injection rate layer j j
tq  750  m3/day 

Subcase b 
Pressure drop reference ∆pref 20 MPa 

Maximum total injection rate qt,max 2000 m3/day 
Minimum injection rate layer j qt,j,min 0 m3/day 

Table 3.1 - Preliminary case: parameters 
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Subcase a - constant flowrates 
For the parameters displayed in the table above, the resulting saturation profiles and reservoir pressure 
drop are shown in Figure 3.3 and Figure 3.4. Since a constant injection rate (750 m3/day per layer, 
each 250m wide) is considered, the advance of the saturation profiles is constant over time. Moreover, 
as in both layers the water is injected at the same rate, the saturation profiles of both layers are 
identical. 
 
The pressure drop, on the contrary, is neither constant over time (because of the constant injection 
rate) nor the same for both layers. First of all, the pressure drop is not the same for both layers because 
the permeability of layer 1 is twice the permeability of layer 2 and because the injection rates are 
equal. Therefore, the reservoir pressure drop of layer 1 is exactly half the pressure drop of layer 2 (see 
expression (3.3.7)).  
 
Secondly, the pressure drop is linear over time up to the point of breakthrough (Figure 3.4) because of 
the constant water injection and the consequentially linear progression of the shock front. After 
breakthrough has occurred, however, the amount of water in the reservoir no longer increases linearly 
because evermore water is being produced which causes the pressure drop to no longer be linear. 
Moreover, as less and less of the lower water saturation values are attained (see Figure 3.3), the 
reciprocal of the total mobility attains less and less of its higher values, causing the pressure drop to 
decrease non-linearly over time once breakthrough has occurred. 
 

 
Figure 3.3 - Preliminary case subcase a: Saturation profiles over time (in days) 
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Figure 3.4 - Preliminary case subcase a: Reservoir pressure drop 

 
Subcase b - prescribed pressure drop 
The key aspect of this subcase is that a reference pressure drop is prescribed as well as that there exists 
a maximum total flowrate. In order to see the complete behavior of the model (i.e. (2.1.46) and (3.3.7) 
in combination with (3.3.33)) the values for ∆pres and qt,max are conveniently chosen, respectively 
20MPa and 2000m3/day.  
 
The saturation profiles (Figure 3.6) are no longer identical between layers, because the flowrates are 
different per layer. Moreover, as the flowrate of each layer is no longer constant, the saturation profiles 
move at different speeds over time. As the permeability of the two layers differ by a factor two, it 
comes as no surprise that water breakthrough times also differ by a factor two (± 500 days and ± 250 
days).  
 
Coincidentally, the maximum total flowrate of 2000m3/day is reached just after the second water 
breakthrough. Once this rate has been reached at around 600 days, the seemingly best way to keep the 
pressure drop of both layers equal (in accordance with (3.3.33)) is to keep the flowrates constant (see 
Figure 3.5). In subcase a the pressure drop behavior for constant flowrates was already investigated: 
after breakthrough the pressure drop starts decreasing non-linearly. This indeed happens once the 
maximum total flowrate is reached and the flowrates are kept constant. Moreover, the pressure drop, 
while equal for both layers, drops almost 25% in 400 days. 
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Figure 3.5 - Preliminary case subcase b: Reservoir pressure drop and flowrates 

 

 
Figure 3.6 - Preliminary case subcase b: Saturation profiles over time (in days) 

 

3.4 Controlling two-dimensional flow with the linear displacement model 

A prominent question in the use of the linear displacement and pressure model is how useful they are 
for describing and controlling flow in a reservoir that is being operated with two horizontal wells with 
flow occurring between the layers. Of course when the real reservoir consists of separate layers of 
(approximately) constant permeability, the models will work adequately as they were derived for just 
such a reservoir. Moreover, even if the permeability of a layer strongly varies in the x-dimension (i.e. 
the length of the reservoir) the models can still be used, as the water propagation model is one-
dimensional and therefore does not depend on the permeability. The reservoir pressure model, on the 
other contrary, does depend on the permeability and relies on an accurate estimate of it.  
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Consider therefore a reservoir existing of n isotropic layers that allow flow between the layers. As the 
flow in the reservoir is for the most part determined by the pressures2

jp and 3
jp  (see Figure 3.1), it is 

the linear reservoir pressure drop model (i.e. without choke valve pressure drop) that warrants further 
investigation. Therefore a wide range of reservoir configurations is tested by varying key parameters 
to see if two-dimensional flow between layers can be controlled with the (one-dimensional) linear 
model. 
 
The general parameter investigated is of course the flowrate and for each layer j a distinction is made 
between the simulated flowrate and the measured flowrate. The simulated flowrate is defined as the 
injection rate and the measured flowrate is defined as the production rate at the producer side of the 
reservoir. The measured flowrate, equal to the simulated flowrate in the eyes of the linear model, are 
different for the real reservoir as flow between layers occurs. The (beta) ratio of the measured and 
simulated flowrates (or the production and injection rates), is defined as  

 sim

meas sim

,1 ,1

,2 ,2

meast t

t t

q q
q q

β =   (3.4.1) 

 

3.4.1 Permeability 

Starting off the analysis is one of the most important and non-controllable aspects of reservoir flow: 
the reservoir's absolute permeability. The real reservoir, simulated with Sintef's MRST, is assumed to 
be as simplistic as possible: it exists out of two layers, each with its own constant isotropic 
permeability that allows flow into the other layer. Another simplification is that each layer is modeled 
with only one grid cell in the y- and z-dimension. Almost all parameters of Table 3.1 stay the same; 
those changed or new are displayed in Table 3.2 below.  
 

Parameter Symbol Value Unit 
Time step size dt  10 days 

Injection rate layer j qt,j 1000  m3/day 
Number of grid cells in x-direction nx 500 - 

Number of grid cells in y-dimension ny 2 - 

Number of grid cells in z-dimension nz 1 - 

    
Absolute permeability in all directions [layer 1; layer 2] 

Scenario 1 k [600;100] mD 
Scenario 2 k [600;120] mD 
Scenario 3 k [600;150] mD 
Scenario 4 k [600;200] mD 
Scenario 5 k [600;300] mD 
Scenario 6 k [600;600] mD 
Scenario 7 k [600;1200] mD 
Scenario 8 k [600;2400] mD 

Table 3.2 - Permeability analysis parameters 
 
The beta ratio, which simplifies to the ratio of measured flowrates because the simulated flowrate is 
equal for both layers, corresponding to the table above is shown in Figure 3.7 from which four phases 
can be identified. 
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First of all, the beta ratio in the early production stage is more or less equal to the permeability ratio. 
Considering that inside the real reservoir a pressure balance is maintained and that in the early 
production stage there is mostly oil in the reservoir, a production ratio roughly equal to the 
permeability ratio is congruent with (3.3.7). 
 
Secondly, when the high permeability layer is about to experience water breakthrough, that layer is 
experiencing a stronger pressure buildup. Consequentially, this causes a drop in the production rate of 
that layer and therefore a decrease (if k1/k2 > 1) or an increase (if k1/k2 < 1) in the beta ratio. 
 
Thirdly, after water breakthrough has occurred in the first layer, the water flows in the direction of 
least resistance which is the high permeable layer. As more and more water flows in that direction, the 
beta ratio increases again (decreases if k1/k2 < 1) and surpasses the initial beta ratio value. More 
noticeable is that this increase (or decrease) is approximately linear. 
 
Lastly, water breakthrough in the second layer occurs, causing the beta ratio to decreasingly decrease 
(k1/k2 > 1) or increase (k1/k2 < 1). The beta ratios also start heading towards an equilibrium value. In 
particular, each curve slowly converges back towards its initial value. The reason for this is that if the 
reservoir is produced for an infinite amount of time, then all the oil will be replaced by water. 
Consequentially, there is no difference in relative permeability throughout the reservoir, meaning the 
only difference in flowrates at the producer side is caused by absolute permeability differences. 
 

 
Figure 3.7 - Beta ratio versus dimensionless time for varying permeability ratios 

 
Additionally, the water breakthrough times in Figure 3.7 as well as the time between breakthroughs 
are different for different permeability ratios. This makes sense when considering that fluid in the low 
permeability layer flows into the high permeability layer and the stronger the permeability ratio, the 
stronger this effect. Moreover, as can be seen by comparing permeability ratios 600/300 and 600/1200, 
breakthrough times are the same for two permeability ratios that are each others reciprocal. 
 
While one might suspect a linear relationship between the permeability ratio and the beta ratio, 
especially during the early production stage, this is not the case. The figure below exemplifies that 
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only during the early production process (blue curve) there is a linear relation ship between the two 
ratios. Once water injection has been going on for quite a while (e.g. 1000 days), that linear 
relationship is no more. 
 

 
Figure 3.8 - Beta ratio versus permeability ratio 

 
For the remainder of section 3.4, the permeability of the two layers are respectively 600mD and 
300mD. 

3.4.2 Reservoir length & width 

The reservoir considered in the previous subsection was rectangular with width w = 500m and length l 
= 1000m. The next parameter considered is the reservoir length-to-width ratio, by varying l from 
100m to 2500m with increments of 400m. The result is shown below in Figure 3.9. 
 
For a reservoir with length-to-width ratio l/w << 1, the beta ratio (with simulated flowrate ratio of 1, 
i.e. equal injection rates per layer) is close to 1. On the other hand, for l/w values larger than 1.4 the 
beta ratio starts of close to 2, just as one would expect based on the permeability ratio and Figure 3.7. 
For these larger values the same pattern as before emerges: there is a drop in the beta ratio when 
approaching the first water breakthrough, whereas between breakthroughs it swiftly increases again up 
to the point of second breakthrough. After the second breakthrough the beta ratio will slowly go back 
towards its initial value, though it will require an infinite amount of time.  
 
The difference in results for small and large length-to-width ratios can be explained in a simple way: 
the larger values, i.e. small values for w and/or large values for l, imply that the layer volume is 
relatively small compared to the cross-sectional area between the layers, which means that there is 
ample opportunity for fluid to flow from one layer to another. 
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Figure 3.9 - Beta ratio versus dimensionless injected pore volume for length-to-width ratios 

 
While the lower values of the length-to-width ratio in Figure 3.9 above already displayed a non-linear 
behavior, this is also true for the higher values as can be seen in the figure below. Figure 3.10 below 
shows the beta ratio for early and late production stages. While in the early stage (10 days) the beta 
ratio is constant for length-to-width ratios larger than 2, this is no longer the case in the late stage 
(25.000 days) nor is it linear. 
 

 
Figure 3.10 - Production ratio versus length-to-width ratios for early and late production stage 

 

3.4.3 Injection rates 

Another important, but this time controllable, concept of reservoir flow is the injection rates. In the 
previous subsection it was held at the arbitrarily chosen value of 1000m3/day per layer. The general 
idea is to see if changing this value has any effect on the beta ratio )shown below in Figure 3.11). 
However, it is no surprise that injecting a different but still equally distributed amount of water has no 
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effect on the permeability ratio, as it only changes the speed with which the water is injected and 
distributed over the reservoir. 
 

 
Figure 3.11 - Beta ratio versus dimensionless time for a variety of equal injection rates 

 
A logical extension in trying to understand the flow behavior inside a reservoir, while still focusing on 
the injection rates, is to keep the injection rate of one layer constant while varying the other (the result 
of which is shown in Figure 3.12 below). The curve with equal injection rates (purple) starts off at a 
beta ratio of 2, due to the permeability ratio (see also Figure 3.11). All other curves are a linear scaling 
of the purple curve due to the different simulated flowrate ratios, meaning that different injection rates 
barely have an effect on the production rates qt,1meas and qt,2meas. Hence, varying the injection rates per 
layer also does not provide control the reservoir's interior. 
 

 
Figure 3.12 - Beta ratio versus dimensionless time for a variety of injection rates 
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3.4.4 Reservoir pressure drop - Linear displacement 

Since choke valves are ignored for the moment, the entire production process is controlled by 
specifying injection/production rates and/or pressures. Therefore, while keeping the permeabilities of 
layer 1 and 2 at respectively 600mD and 300mD, the reservoir pressure drop is the next controllable 
parameter to be analyzed by keeping it at constant levels.  
 
As observed earlier, a constant pressure drop leads to injection rates that are no longer constant over 
time. Since the flowrates into and out of the reservoir will therefore be different not only over time but 
also from each other, the focus shifts to the production ratio qt,1meas/qt,2meas (which can be seen as a beta 
ratio with equal injection rates) in order to keep the analysis as simple as possible. 
 
The figure below shows the production ratio for different levels of constant pressure drop. Comparison 
with Figure 3.11 reveals that the production ratio is the same in shape as the beta ratio with equal 
injection rates. The only real difference is in the values attained around and after the second 
breakthrough (i.e. at τ ≈ 0.15).  
 
Because the production ratio is similar for different pressure drop levels, fixing the reservoir pressure 
drop does not provide control over the flow in the reservoir. Since different flowrates also did not give 
control over flow inside the reservoir, there is no way to control what happens inside the reservoir 
while the injector and producer allow flow into and out of every layer in the reservoir. If there is 
control over which injector/producer sections allow fluid flow, then control over flow in the reservoir 
becomes possible (e.g. by incorporating ICV's or on-off switches, see Brouwer (2004)). 
 

 
Figure 3.13 - Production ratio versus dimensionless injected pore volume for a variety of pressure drops 

 

3.5 Analysis of the pressure drop model for linear displacement 

The previous section focused on the reservoir pressure drop model and concluded in Subsection 3.4.4 
that the reservoir pressure drop model does not provide control over flow inside the reservoir. The aim 
of this section is to briefly analyze the (entire) pressure drop model described in Sections 3.1, 3.2 and 
3.3. In the first subsection an analytical formula is derived for the flowrates by assuming a prescribed 
reference pressure drop. The second subsection derives the asymptotic flowrate for the linear 



       

 
 

38 

displacement and pressure model and visualizes the asymptotic behavior of the flowrates and the 
pressures. 
 

3.5.1 Analytical flowrates 

In Subsection 3.3.5 (subcase b), a reference pressure drop was supplied and Matlab's fmincon 
determined the appropriate flowrate for each layer. However, if the maximum total flowrate (qt,max) has 
not yet been reached, then these numerically determined flowrates can also be obtained analytically. 
Alternatively, the analytically determined flowrates can serve as initial guess for the numerical solver.  
 
Starting from (3.1.1) and using (3.2.1), (3.2.3) and (3.3.7), the pressure drop for the jth layer is given 
by (considering linear displacement and pressure drop): 
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Every time when new flowrates are to be calculated, all elements of (3.5.1) are already known. This in 
turn, since the pressure drop has to equal the reference pressure drop (i.e. ∆pj = ∆pref), makes equation 
(3.5.1) a quadratic equation in jtq and therefore easy to solve. However, as the solution will look rather 

tedious the exact solution is left out of the thesis. 
 
It is important to remark that once ,maxtq is reached, one must choose to either keep the flowrates 

constant (which was the result of the previously mentioned subcase b) or to rely again on a numerical 
solver such as Matlab's fmincon routine.  
 
While keeping flowrates constant seems a good way to keep equal pressure drop between layers, it 
only works when considering reservoir pressure drop. If one or multiple choke valve pressure drop 
models at the producer side or other complex models are used, then keeping the flowrates constant 
will most likely not result in nearly identical pressure drops between injector and producer. Hence one 
might want to use a numerical solver once more. Though it may not be the ideal flowrate guess, since 
there might no longer be an analytical flowrate solution at this point in the simulation, one could opt to 
use the previous' iteration flowrates as initial guess for the numerical solver. 
 

3.5.2 Asymptotic pressure and flowrate limit 

Producing all the oil from a reservoir (with the exception of the irreducible oil) will take an infinite 
mount of time because the maximum water saturation (1−Sor) has zero velocity (see (2.1.46)), making 
it economically unwise to produce a reservoir ad infinitum. Nevertheless, a still interesting question is 
what the flowrate of each layer would be ad infinitum.  
 
Assuming that the reservoir is completely filled with water means that the total mobility in the 
integrand in equation (3.5.1) is constant, i.e. �t wλ λ= . Additionally, the fractional water flow fw in the 
expression equals one, further simplifying it to yet again a quadratic equation in j

tq : 
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The parameters shown below in Table 3.3 replace some of and are supplementary to the parameters of 
Table 3.1. Figure 3.14 below shows the oil and water production through the lifetime of the reservoir 
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and Figure 3.15 displays the pressures from injector to producer, with the injector pressure set at 
30MPa and the producer pressure set at 20MPa.  
 

Parameter Symbol Value Unit 
Water density ρw 1014 kg m-3 

Oil density ρo 859 kg m-3 

Discharge coefficient Cd 0.7 - 
Left choke throat area Achl,j π(0.01/2)2 m2 

Right choke throat area Achr,j π(0.01/2)2 m2 
Time step size dt  10 days 

Total time t  1.000.000  days 

Table 3.3 - Asymptotical case: parameters 

 
Breakthrough occurs in the early production stage and causes the oil production rate in Figure 3.14 to 
drop early on. Correspondingly, the water production rate increases rapidly in the early production 
stage. However, at one tenth of the total simulation time (i.e. at 100.000 days) both layers are already 
strongly saturated with water, causing the increase of the water production rate to decrease 
significantly. Another striking observation is that, due to including choke valve pressure models, the 
layer limits of water production are close to one another and do not differ by a factor 2, which would 
be the case if only the reservoir pressure drop model was taken into account. 
 

 
Figure 3.14 - Asymptotical case: production rates 

 
When in subcase b the maximum total flowrate of 2000m3/day was reached, the reservoir pressure 
drop consequentially declined (see Figure 3.5). In the new setup (i.e. with choke valve pressure 
models included, see Figure 3.1), however, the reference pressure drop of 10MPa is maintained in 
each of the layers during the entire simulation which additionally lasts 1000 times longer (Figure 
3.15). The reason that reference pressure drop is now maintained, is that the maximum total flowrate 
of 2000m3/day is not reached because the incorporated choke valve pressure drop models capture large 
portions of the prescribed reference pressure drop. 
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As the water flowrates quickly increased towards their equilibrium in the early simulation time, also 
the reservoir pressure drop and both the choke valve pressure drops swiftly approach their equilibrium. 
Moreover, in each layer the asymptotical choke valve pressure drops are equal as their throat areas and 
discharge coefficients are equal (see (3.5.2)). Lastly, one can conclude from Figure 3.15 below that the 
reservoir pressure drop decreases asymptotically. 
 

 
Figure 3.15 - Asymptotical case: pressures 
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4  
Closed-Loop Reservoir Management  

In this chapter the analytical propagation and pressure drop models are used during the Closed-Loop 
Reservoir Management (CLRM) of a reservoir. In the first section CLRM is introduced and briefly 
explained. The second section investigates the behavior of pressures in the reservoir (i.e. the virtual 
asset), whereas sections 4.3 up to 4.7 show results for a varying array of CLRM simulations. The last 
section briefly touches upon computation times. 
 

4.1 Introduction 

This section discusses the main concepts of CLRM consecutively: first the virtual asset is treated, 
followed by data assimilation and finished by net present value optimization. 
 

4.1.1 Virtual asset 

The first pillar in CLRM (Figure 1.1) is the measurement of state parameters (e.g. flowrates, 
pressures). Since no field production data is available, such measurements need to be generated by 
simulating a real reservoir with Sintef's MRST, i.e. a virtual asset is used to generate measurements. 
The virtual asset consists of four pressures per layer (labeled the 'truth'), defined as: 
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  (4.1.1) 

 
While (4.1.1) holds for each layer, in reality there is only one injector and producer. However, the 
virtual asset requires as many injectors/producers as there are layers, since choke valve models are not 
included in MRST's options. The pressure supplied to each wellbore pair of the virtual asset hence will 
be p2,true and p3,true.  
 
The pressure drops ∆p12,true and ∆p34,true are given by ∆pchl and ∆pchr as defined in section 3.2. For 
∆p23,true, however, no formula is available. Therefore, pressures p2,true and p3,true are obtained by solving 
minimization problem (3.3.33) for qt,j, with the total pressure drop of a layer given by: 
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However, as a measurement is rarely 100% accurate, an error is added to each of the true pressures of 
(4.1.1). Error vector jε  is assumed to be Gaussian white noise, hence the the jth layer measured are: 

 with, ~ (0, )j j j j
meas true yp p N Pε ε= +   (4.1.3) 
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where for j
truep is a row vector containing1,

j
truep up to 4,

j
truep and yP the covariance matrix of layer j. The 

variance of eachtruep is assumed to be equal, i.e. Py is a constant times the identity matrix. 

4.1.2 Data assimilation 

Next, the measured pressures are used to update the predicted pressures of the analytical models by 
estimating for each layer the permeability and the flowrate of the preceding time step. Additionally, 
the Net Present Value (see section 4.1.3) is updated from the predicted value to an estimated value 
based on the newly updated analytical models. 
 
Since the reservoir considered exists of two layers, there are only four parameters to be estimated. 
Such a small number of parameters can be efficiently estimated with Matlab's fmincon routine, hence 
there is no need for intricate data assimilation techniques. At the end of time step n, the parameters can 
be found by minimizing for each layer: 

 ,

1 0 1 0

min

( ) ( ) ( ) ( )

t

n

k q

n n n T n n n T n
y k

J

J d y P d y k k P k k− −= − − + − −
  (4.1.4) 

 
The vectors dn and yn in expression (4.1.4) are respectively the measured and estimated pressures, 
whereas Py is the covariance matrix from expression (4.1.3) that describes the uncertainty in the 
measured pressures. Parameters k and k0 are the current and initial permeability estimate, while Pk is 
the variance matrix describing the uncertainty in the initial permeability estimate of a layer. 
 

4.1.3 Net Present Value maximization 

The last pillar of CLRM concerns maximizing the profit, i.e. maximizing the Net Present Value 
(NPV). NPV is defined as the sum of all (discounted) future cash flows, i.e. the NPV of a reservoir is 
today's value of future money.  
 
The NPV depends on the monetary value of oil (p

or ), the cost of water injection and production 
( i

wr , p
wr ), and on the flowrates in each producer and injector ( ,p i

o wq q and p
wq ). Since no gas resides in the 

reservoir oil, the oil volume at reservoir conditions is approximately equal to the volume at surface 
conditions, hence the oil formation volume factor ( , ,o o res o surfB V V= ) is taken equal to one. The size of 

a time step (∆tn) as well as the discount factor influence the NPV. The discount factor depends on the 
discount rate (b), i.e. the rate with which the value of money changes over a reference time period, and 

on the time factor 
1

n
n k refk

tτ τ
=

= ∆∑  (with refτ  the reference time period of b). 

 
The estimated Net Present Value at the end of time step n can be expressed as 
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  (4.1.5) 

 
Therefore, at the start of time step n (with 1 ≤ n ≤ N), the predicted Net Present Value at the end of the 
final time step (N) can be expressed as: 
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Note that due to incompressible flow and one injector-producer pair per layer (j) it is possible to write 
i p p j
w o w wq q q q= + = . Also assuming constant time step sizes (mt t∆ = ∆ ), reduces (4.1.6) to: 
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1
1 , ,

1 1
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1 100
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j jNN
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r q r q
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−
−

= − =

⋅ +
= + ∆

+
∑ ∑   (4.1.7) 

 
where p i

o o wr r r= +  is the net oil revenue, p i
w w wr r r= +  is the net water cost, m refm tτ τ= ⋅ ∆ , and qo and 

qw are the producer flowrates. 
 
Moreover, maximizing (4.1.7) for the remaining N −  (n −1) time steps is equivalent to minimizing 
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∑ ∑   (4.1.8) 

 
In order to minimize expression (4.1.8), the choice once again falls to Matlab's fmincon routine, as the 
number of variables is relatively small. If, however, multiple injector and producer wells are used to 
produce a reservoir or if the reservoir consists of a large number of layers, the routine can easily 
become computationally intensive. Hence other methods to minimize (4.1.8) will then need to be 
considered, such as gradient-based optimization methods (e.g. adjoint-based gradient computation). 
For example, Suwartadi (2012) applied gradient-based optimization to address output constraint 
problems (e.g. limiting water production), whereas Brouwer (2004) used gradient-based optimization 
to, among other, optimize the NPV of a reservoir operated by an array of injectors and producers that 
could be switched on and off at any time. 
 
Minimizing (4.1.8) is achieved by maximizing the total flowrate of each layer (j j j

t o wq q q= + ), which in 

turn is accomplished by fully opening the injector and producer inflow control valves (i.e. the choke 
valves) and, if adjustable, setting the producer pressure to the lowest possible value. After 
breakthrough, the inflow control valves can be used to reduce a layer's production until it is no longer 
profitable and a layer should be closed off (i.e. as soon as , ,

j j
o wo pred w predr q qr≤  or , ,

j j
o o est w estwr q qr≤ ). 

 
Note that if there is a restriction on the maximum flowrate ( ,max

j
t t tq q q= ≤∑  ), then expression (4.1.8) 

should be used to maximize the NPV. On the other hand, when there is no restriction on ,tq the 

aforementioned considerations imply that (4.1.8) can be further reduced to 
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Maximizing the NPV by controlling the flowrates of each layer as described above is known as 
predictive (or proactive) control. An alternative approach is reactive control, which entails a simple 
on-off approach to oil production: the entire producer is shut down once the economic threshold is 
exceeded (i.e. , ,

j j
o o est w estwj j

r q qr≤∑ ∑  as there are no ICV's).  

 
While reactive control may be reasonably effective for a reservoir being operated by multiple injector 
and producer wells, it is not the best strategy for the reservoir under consideration. The reason is that it 
can lead to a situation where it is still profitable to continue the production process, while the 
economic threshold has already been reached in some layers. Consequentially, potential profit is lost 
since either all layers are continued to be produced from (including the no longer profitable ones) or 
production is completely halted. 
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4.2 Virtual asset simulations 

Supplying a constant injector/producer pressure and constant choke valve settings to the virtual asset, 
this section investigates the behavior of the resulting (true) pressures. The (rectangular) reservoir is 
being operated by either horizontal or vertical wells. 
 

4.2.1 Horizontal wells 

The reservoir consists of two layers positioned next to one another along the width of the reservoir, 
implying a horizontal injector/producer pair (see Table 4.1 for parameters). As each layer is located at 
a depth of 3000m, resulting in an injector pressure of 30MPa. The producer pressure is set at 20MPa, 
resulting in the ∆pref of 10MPa. The standard deviation of the (white Gaussian) measurement noise 
(see (4.1.3)) for each of the true pressures is set at 5% of the injector pressure, i.e. 1.5MPa.  
 
Although Table 4.1 includes the number of Legendre-Gauss abscissas, this section does not consider 
data assimilation and NPV optimization. Moreover, as there are only two grid cells in the y-direction 
and the reservoir is 500m wide, each layer contains one grid cell in the y direction with width 250m. 
 

General parameters 
Parameter Symbol Value Unit 

Water density ρw 1014 kg m-3 

Oil density ρo 859 kg m-3 

Initial water saturation Swi 0.25  - 
Residual oil saturation Sor 0.1  - 

End-point water rel perm krw,0  0.5  - 
End-point oil rel perm kro,0 0.9 - 

Permeability k [600;300]  mD 

Corey exponent water nw  3 - 
Corey exponent oil no  3  - 

Viscosity water µw  0.35  cp 
Viscosity oil µo  1.9  cp 

Reservoir length l 1000 m 
Reservoir width w 500 m 
Reservoir height h 10 m 

Porosity φ   0.25 - 
Time step size dt  10 days 

Total time t  1000  days 
Pressure drop model specific parameters 

# Legendre-Gauss abscissas - 100 - 
MRST specific parameters 

Number of grid cells in x-direction nx 100 - 

Number of grid cells in y-dimension ny 2 - 

Number of grid cells in z-dimension nz 1 - 

Choke parameters 
Discharge coefficient Cd 0.7 - 
Left choke throat area Achl,j π(0.01/2)2 m2 

Right choke throat area Achr,j π(0.01/2)2 m2 
fmincon conditions 

Pressure drop reference ∆pref 10 MPa 
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Maximum total injection rate ,maxtq  2000 m3/day 

Minimum injection rate layer j ,min
j

tq   0 m3/day 

Measurements 
Noise mean j

iµ  0 MPa 

Noise standard deviation j
iσ  1.5 MPa 

Table 4.1 - Virtual asset simulation for horizontal wells: parameters 

 
Figure 4.1 below shows for each layer both the resulting producer flowrates and the reservoir total 
flowrate, as well as the (theoretical) maximum layer and reservoir flowrate. The flowrates are almost 
linear with exception of water breakthrough and initial moments. At breakthrough, water and oil 
production rates suddenly in- and decrease respectively and can even be detected in the reservoir total 
rate (a sudden yet small decrease). However, the more layers there are in reservoir, the smaller the 
impact of a single breakthrough on the reservoir total rate.  
 

 
Figure 4.1 - Horizontal wells: flowrates 

 
Both true and measured pressures corresponding to the above flowrates are shown in Figure 4.2. As 
the maximum flowrate is not reached, the reference pressure drop of 10MPa is easily maintained, 
meaning p4,true stays equal to 20MPa. While pressure p3,true behaves similar to the flowrates, p2,true does 
the exact opposite: with the exception of initial and water breakthrough moments, it increases linearly 
up to the point of breakthrough and decreases again afterwards.  
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Figure 4.2 - Horizontal wells: true & measured pressures 

 
The definition of the true pressures (see (4.1.1)) always ensures that p1,true ≥ p2,true ≥ p3,true ≥ p4,true. 
Contrarily, as there are no conditions on the measurement noise, there are multiple occurrences where 
the measured pressures are inconsistent with one another (e.g. p1,meas ≤ p2,meas and/or p3,meas ≤ p4,meas 
while also p2,meas ≥ p3,meas). These inconsistencies are more likely to occur in low permeability layers 
(see Figure 4.2). Considering the total pressure drop expression (4.1.2), one can explain this: 
compared to a high permeability layer with an identical reference pressure, a lower permeability layer 
should experience lower flowrates (Figure 4.1) and a higher reservoir pressure drop (due to the choke 
valve expressions). This in turn causes pressures p1,true and p2,true as well as p3,true and p4,true to be closer 
to one another, making it likelier for inconsistencies to occur once the measurement error is added. 
 
Reaching maximum total flowrate 
In order to understand the behavior of flowrates and pressures under maximum flowrate conditions, 
the maximum flowrate is adjusted (based on Figure 4.1) such it is already reached in the early 
production stage (see Table 4.2). Note that the theoretical flowrate limits do not change. 
 

fmincon conditions 
Maximum total injection rate qt,max 550 m3/day 

Table 4.2 - Attaining maximum flowrate (horizontal wells): adjusted parameters 

 
Figure 4.3 below shows the resulting flowrates and it is immediately clear that the reservoir total 
flowrate is equal to the maximum flowrate of 550m3/day. Simultaneously, the production rate during 
this stage is nearly constant per layer. After 200 days the maximum flowrate is no longer attained and 
the flowrates are similar to those in Figure 4.1. Comparing Figure 4.1 with Figure 4.3 even reveals that 
there is hardly any difference between the moment of water breakthrough because of the small 
difference in the production rate. 
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Figure 4.3 - Attaining maximum flowrate (horizontal wells): flowrates 

 
Due to the way the pressures are calculated (expression (4.1.1)), the pressure p1,true always equals its 
prescribed value of 30MPa. Additionally, pressure p2,true of each layer is initially constant due to the 
constant total flowrate of each layer. Pressures p3,true and p4,true, however, start off at a higher value 
than their counterparts in Figure 4.2 due to having reached the flowrate limit. The constant flowrates 
result in a constant choke valve pressure drop, causing p3,true and p4,true to differ only by a constant. 
Consequently, pressures p4,true can not maintain their preset value of 20MPa. Once the flowrates drop 
below maximum, however, the pressure profiles are again similar to those in Figure 4.2. 
 

 
Figure 4.4 - Attaining maximum flowrate (horizontal wells): true pressures 

 

4.2.2 Vertical wells 

The other configuration (Figure 3.1) consists of layers on top of one another (separated by a horizontal 
impermeable layer). Hence, the wells in the reservoir are now vertical and located at x,y,z-coordinates 
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(0, w/2, z) and (l, w/2, z). Realistically, such a situation allows two-dimensional flow to occur within 
each layer (in the x and y direction) and requires a change in the virtual asset's parameters. Those 
parameters that need to be adapted are displayed below, while all others are as in Table 4.1. 
 

General parameters 
Parameter Symbol Value Unit 

Reservoir length l 500 m 
Reservoir width w  210 m 
Reservoir height h  20 m 

MRST specific parameters 
Number of grid cells in x-direction nx 50 - 

Number of grid cells in y-dimension ny 21 - 

Number of grid cells in z-dimension nz 2 - 

Table 4.3 - Virtual asset simulation for vertical wells: parameters 

 
Another change is that the pressure boundary conditions, p1,true and p4,true of each layer, are no longer 
necessarily equal nor constant. First of all, the height difference of layers increases the pressure p1,true 
of all layers below the top one. Accounting for the changing fluid composition, the same principal can 
be applied to the pressures p4,true, yielding for layer j the true pressures: 
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where pinj and ppro are the top layer's injector and producer pressure, (1 )w w

k k k
m w of fρ ρ ρ= + −  the water-

oil mixture density of layer k, g is the gravitational constant, and dz(k) is the height of layer k. 
 
The pressure drop in layer j is still given by 12, 23, 34,
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However, due to the adjusted pressure boundary conditions the difference between two layers' pressure 
drop is no longer zero: 
 1 1( ) ( 1)j j j

true true w mp p g dz jρ ρ− −∆ − ∆ = ⋅ − ⋅ −   (4.1.12) 

 
Therefore, minimization problem (3.3.33) changes to 
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with 0 ref

true inj prop p p p∆ = ∆ = − , 12, 23, 34,
j j j j

true true true truep p p p∆ = ∆ + ∆ + ∆  and dz(0) = 0. 

 
In Figure 4.5 the resulting flowrates are shown. The new well orientation and reservoir configuration 
result in a brief nonlinear increase of the flowrates, though they soon start decreasing as seen in 
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previous simulations. The two-dimensional flow inside each layer, however, results in more 
significant and less sudden flowrates changes in the oil, water and reservoir flowrates. 
 

 
Figure 4.5 - Vertical wells: flowrates 

 
The true pressures consequently also show slightly different results (see Figure 4.6). The new well 
orientation and reservoir configuration (allowing two-dimensional flow) results in a more significant 
and less sudden change in pressure once breakthrough occurs. Additionally, after breakthrough, the 
pressures p2,true and p3,true respectively de- and increase nonlinearly (in contrast to in Figure 4.2).  
 
The new pressure boundary conditions for layer 2 can be seen in p1,true and p4,true, but are negligible as 
for this layer the added pressure to p1,true is ∆p1,true = g · ρw · 10 ≈ 0.099MPA and for p4,true the value is 
given by: 0.0843MPA ≤ g · ρm · 10 ≤ ∆p4,true ≤ g · ρw · 10 ≈ 0.099MPA. 
 

 
Figure 4.6 - Vertical wells: true & measured pressures 
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Reaching maximum total flowrate 
In the simulation above the maximum total flowrate was again not reached. The maximum flowrate is 
therefore again lowered, such that the two-dimensional flow aspects under maximum flowrate 
conditions can be understood. However, this time the maximum flowrate is set so low that it almost 
always is at maximum flowrate conditions (see Table 4.4).  
 

fmincon conditions 
Maximum total injection rate qt,max 500 m3/day 

Table 4.4 - Attaining maximum flowrate (vertical wells): adjusted parameters 

 
Just as in the previous section's maximum flowrate investigation, the theoretical flowrate limit of each 
layer as well as the reservoir flowrate limit do net change. Just as before (and as intended), the 
maximum total flowrate limit is never violated. Moreover, only two times does the flowrate drop 
below the maximum value: both times just after a water breakthrough has occurred.  
 
Additionally, the total flowrate of each layer barely changes as can be concluded from the near 
constant oil flowrates before any breakthrough has happened. More interestingly, however, are the 
breakthrough moments: breakthrough in one layer leads to a sudden increase in the (oil and/or water) 
flowrate of the other layer. 
 
The resulting pressures behave correspondingly, as can be seen in Figure 4.8. First of all, pressures 
p1,true always equals the prescribed value by definition. In the pre-breakthrough phase, pressures p2,true 
are again constant due to constant flowrates, whereas pressures p4,true and p4,true follow the actual 
flowrate behavior. Due to attaining maximum flowrate, however, p4,true can not attain their prescribed 
value. 

 
Figure 4.7 - Attaining maximum flowrate (vertical wells): flowrates 

 
When breakthrough occurs in a layer however, its total flowrate decreases and causes an increase of 
p2,true whereas p3,true and p4,true decrease. Meanwhile, the other layer experiences a decrease in pressures 
p2,true, p3,true and p4,true because its flowrate has increased. Additionally, Figure 4.8 shows that after both 
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breakthroughs the pressures p2,true go back to initial levels (e.g. see layer 1 as p2,true coincides with the 
28MPA gridline). 
 

 
Figure 4.8 - Attaining maximum flowrate (vertical wells): true pressures 

 

4.3 Horizontal well - Linear flow 

From here on out the entire process of CLRM is considered. The first scenario considers horizontal 
wells with linear displacement and pressure drop (i.e. expressions (2.1.40) and (3.3.6)) for which all 
parameters are displayed below in Table 4.5. For the NPV optimization the choke area is no longer 
constant (as in Table 4.1) because it changes whenever the diameter, maximally 50mm, is altered.  
 
Additionally, the discount rate is set at 15% per reference time of 365 days. Because there is only one 
injector and producer per layer and because the maximum flowrate is set at a high rate (1500m3/day), 
the discount rate will have no influence on determining the optimal choke valve settings and therefore 
no influence on the resulting  flowrates. Of course, the NPV will be different when compared to a 0% 
discount rate. 
 

General parameters 
Parameter Symbol Value Unit 

Water density ρw 1014 kg m-3 

Oil density ρo 859 kg m-3 

Initial water saturation Swi 0.25  - 
Residual oil saturation Sor 0.1  - 

End-point water rel perm krw,0  0.5  - 
End-point oil rel perm kro,0 0.9 - 

Permeability k [600;300]  mD 

Corey exponent water nw  3 - 
Corey exponent oil no  3  - 

Viscosity water µw  0.35  cp 
Viscosity oil µo  1.9  cp 

Reservoir length l 1000 m 
Reservoir width w 500 m 
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Reservoir height h 10 m 
Porosity φ   0.25 - 

Time step size dt  10 days 
Total time t  1000  days 

Pressure drop model specific parameters 
# Legendre-Gauss abscissas - 100 - 

MRST specific parameters 
Number of grid cells in x-direction nx 100 - 

Number of grid cells in y-dimension ny 2 - 

Number of grid cells in z-dimension nz 1 - 

fmincon conditions 
Maximum total injection rate ,maxtq  2000 m3/day 

Minimum injection rate layer j ,min
j

tq   0 m3/day 

Virtual asset specific parameters 
Meas. noise mean j

iµ  0 MPa 

Meas. noise standard deviation measσ  0.05·Pinj MPa 
Data assimilation specific parameters 

Initial permeability estimate k0 [600;300] mD 
Permeability sensitivity kP  (0.05·k0)2 mD 
Measurement sensitivity yP  ( measσ )2 MPa 

NPV optimization parameters 
Choke valve discharge coefficient Cd 0.7 - 

Left choke maximum diameter dchl,j 50 mm 

Right choke maximum diameter dchr,j 50 mm 
Minimum producer pressure Ppro 20 MPa 

Net oil revenue ro 45 $/m3 

Net water cost rw -5 $/m3 

Discount rate b 15 % 
Reference time tref 365 Days 

Table 4.5 - CLRM parameters (horizontal wells, linear model) 

 
Figure 4.9b depicts the true (virtual asset) and estimated (data assimilation) results for the CLRM for a 
reservoir operated by horizontal wells, whereas measurements of the pressures (Figure 4.9b) have been 
left out for clarity.  
 
Considering that maximum flowrate of 1500m3/day is not achieved within the simulated time, the 
choke valve diameters remain at their maximum value just as could be expected. Only when it 
becomes uneconomical to stay fully them open, are the diameters reduced to zero to close off the layer 
(e.g. layer 1 at approximately 650 days). A noteworthy observation is that the closing of choke valve 
diameters is gradual and not instantaneous: as the NPV is updated at each time step, new diameters 
can be found such that the (predicted) flowrates still lead to an increase in the NPV (even if it is just a 
dollar, or less). 
 
Since the choke valve diameters are fully open, the choke valve pressure drops are virtually 
nonexistent, which results in p2,true coinciding with p1,true and p4,true coinciding with p3,true. The 
exception, of course, is when layer 1 is gradually being closed off and p2,true drops towards p3,true.  
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The estimated pressure p1,est is per definition equal to p1,true. As the flowrate estimates (Figure 4.9c) 
seem accurate, p2,est is close to p2,true and the small choke valve pressure drop explains why p4,est lies 
close to p3,est. Due to the measurement error, however, the flowrate estimate is not perfect and this is 
reflected in pressure p3,est: in general an overestimation of flowrates causes an overestimation in the 
reservoir pressure drop (see expression (3.3.6)) and results in underestimation of p3,true. 
 

 
a) Choke valve diameter  

 

 
b) Pressures - true and estimated 

 

 
c) Producer flowrates - true and estimated 

 

 
d) Permeability - true and estimated 

 

 
e) Cumulative production - true and estimated 

 
f) NPV development - true and estimated 

Figure 4.9 - CLRM results (horizontal wells, linear model) - 15% discount 

 
Although the flowrate estimates are not perfect (see Figure 4.9c), they are fairly close the true rates 
and even the moment of breakthrough in layer 1 is almost perfectly captured. Additionally, also the 
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permeability estimates are spot on (except for the moment of closing layer 1), in part thanks to the 
perfect initial guess k0. Therefore, the (one-dimensional) linear propagation and pressure model are 
appropriate models for flow between two horizontal wells that fully penetrate the reservoir's opposing 
sides. Due to the seemingly accurately estimated flow rates, also the cumulative production and the 
NPV (Figure 4.9e,f) yield predictions and estimations close to the true values.  
 
Though this section considers a discount factor of 15%, the results are similar when a discount factor 
of 0% is used. The reason is that the maximum flowrate is not reached in the simulation above, which 
means that choke valves will be fully opened (except for closing off moments). Fully open choke 
valves in turn lead to identical true pressures, flowrates, and cumulative production. Consequently, 
this results in similar estimations of the aforementioned (see Appendix A for the results). The 
estimated NPV values for both the discounted and non-discounted scenarios are summarized in the 
table below. 
 

NPV (million $) Layer 1 Layer 2 Cumulative 

15% discount 10.7 10.0 20.7 

0% discount 11.9 11.8 23.7 

Difference -10.1% -15.3% -12.7% 

Table 4.6 - Estimated NPV: discounted versus non-discounted (horizontal wells, linear model) 

 
Lastly, verifying that the estimates are indeed accurate means considering the error between estimated 
and true flowrates (i.e. the true flowrate estimation error), as well as between estimated and predicted 
flowrates (model flowrate estimation error). Figure 4.10 below shows that (on average) the true 
flowrates are slightly overestimated, whereas the estimated flowrates are slightly lower than predicted. 
Additionally, in each layer the two errors exhibit a strong positive correlation (qualitatively speaking), 
indicating the appropriateness of the model. Moreover, as the conditions of the layers are identical 
(except for the permeability), there is also a positive correlation (qualitatively speaking) between the 
layers' flowrate errors. Hence, the model flowrate estimation error as well as its change over time 
could possibly be used to reduce the true flowrate estimation error. 
 

 
Figure 4.10 - CLRM results (horizontal wells, linear model) - Flowrate errors 
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4.4 Vertical well - Linear flow 

In this section two simulations are carried out using the same (linear) model as in the previous section. 
However, the reservoir is now operated by vertical wells meaning there is two-dimensional flow 
within each layer. The first simulation shows that the model still yields accurate estimates for 
reservoirs of small width, whereas the second one shows that for a realistic width the model fails to 
produce accurate estimates.  
 
Further more, from hereon out all parameters are equal to those in Table 4.5 and only the ones that are 
different will be specified. The parameters that change due to the vertical wells scenario are: 
 

General parameters 
Parameter Symbol Value Unit 

Reservoir length l 500 m 
Reservoir width w 210 m 
Reservoir height h 20 m 

MRST specific parameters 
Number of grid cells in x-direction nx 50 - 

Number of grid cells in y-dimension ny 21 - 

Number of grid cells in z-dimension nz 2 - 

Table 4.7 - CLRM parameters (vertical wells) 

 

4.4.1 Small width 

This section considers a reservoir of small width, for which the width is reduced by a factor 30 from 
210m to 7. The number of grid cells in the y-dimension is also reduced, from 21 to 7 (see the table 
below) and for accurate results the number of grid cells in the x-direction is increased to 500, resulting 
in grid cell dimensions of 1x1x10m (x,y,z). 
 

General parameters 
Parameter Symbol Value Unit 

Reservoir width w 7 m 
MRST specific parameters 

Number of grid cells in x-direction nx 500 - 

Number of grid cells in y-dimension ny 7 - 

Table 4.8 - CLRM (small width) parameters (vertical wells, linear model) 

 
The purpose of this simulation is to show that the linear model is still accurate for a reservoir with the 
aforementioned properties. The resulting choke valve diameters, (true and estimated) pressures, 
flowrates and permeability, and the flowrate errors are depicted in Figure 4.11. Note that the 
cumulative production and NPV are left out as they are of no interest at the moment.  
 
The results are (visually) similar to those in Figure 4.9, although the flowrates are smaller because of 
the smaller width. Additionally, some deviating behavior can be seen (e.g. choke valves and pressures 
of layer 2) around the closing off moment of layer 1. More importantly, the average flowrate errors 
and the standard deviation of the flowrate errors are again similar (just as in section 4.3 (Figure 4.10)), 
meaning the linear model is indeed accurate for a reservoir with small width. 
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a) Choke valve diameter  

 

 
b) Pressures - true and estimated 

 

 
c) Producer flowrates - true and estimated 

 

 
d) Permeability - true and estimated 

 

 
e) Flowrate errors 

Figure 4.11 - CLRM results (vertical wells, linear model) - small width 
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4.4.2 Realistic width 

This section investigates the use of the linear model for the vertical wells case, using the parameters 
given in Table 4.5. The reservoir parameters, however, are given in Table 4.7. 
 
First of all, no deviating behavior (compared to Figure 4.9) is detected with respect to the choke valve 
diameters, estimated permeability and estimated pressures other than that the closure occurs for both 
layers at earlier times. The cause for the (earlier) closure of both layers is the overestimation of the 
flowrates as can be seen in Figure 4.12c.  
 
The flowrate errors (see Figure 4.13) indeed show that there is a significant overestimation of the 
flowrates, with an average of approximately 60%. Consequently, the cumulative production (Figure 
4.12e) estimates are completely wrong: in truth no water breakthrough has occurred in either layer, but 
the model estimates a large amount of water has already been produced. From the moment the model 
estimates water is being produced, the oil production drops and mitigates its overestimation only 
partly. 
 
The overestimation of oil production obviously results in an overestimation of the NPV. In the early 
stage before (estimated) breakthrough (i.e. the first 100 days), the estimated and true NPV respectively 
are approximately 6.3 and 3.7 million dollars. This difference of approximately 70% is close to the 
mean flowrate error for the first 100 days (Figure 4.13). After 100 days, however, the water that is 
estimated to be produced reduces the increase in estimated NPV while the true NPV continues to 
increase at a constant rate. Hence, the overestimation in NPV at the end of the simulated time is 
significantly lower than the 60% average flowrate overestimation (see Table 4.9). Moreover, the vast 
overestimation of flowrates implies that the NPV can be significantly increased due to the fact that oil 
can still be produced without producing any water. 
 

NPV (million $) Layer 1 Layer 2 Cumulative 

Estimated 4.6 4.7 9.3 

True 4.0 3.9 7.9 

Estimation error 15% 20.5% 17.7% 

Table 4.9 - True and estimated NPV (vertical wells, linear model) - 15% discount 

 
Additionally, the flowrate errors within each layer are no longer close to one another, meaning that the 
model flowrate error no longer is a good indication of the true flowrate error (even though there still 
seems to be some (positive) correlation between flowrate errors). Therefore, the model flowrate 
estimation error can hardly reduce the true flowrate error. In other words, the linear model can not 
accurately describe this type of reservoir flow. 
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a) Choke valve diameter  

 

 
b) Pressures - true and estimated 

 

 
c) Producer flowrates - true and estimated 

 

 
d) Permeability - true and estimated 

 

 
e) Cumulative production - true and estimated 

 
f) NPV development - true and estimated 

Figure 4.12 - CLRM results (vertical wells, linear model) - 15% discount 
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Figure 4.13 - CLRM results (vertical wells, linear model): Flowrate errors  

 

4.5 Vertical well - Radial-Linear-Radial flow 

The previous section showed that the linear model can not accurately describe two-dimensional two-
phase flow in a bounded reservoir. Therefore, the RaLiRa model (expressions (2.1.54) up to (2.1.56), 
and (3.3.13)) is considered in this section, with all parameters again as in Table 4.5 and Table 4.7. 
 
Figure 4.14 below shows the simulation results for the RaLiRa model, of which the choke valve 
diameters, true and estimated pressures, and permeability estimates all behave as expected from earlier 
simulations. The choke valves remain fully open until it is no longer economical to produce from a 
layer, resulting in small choke valve pressure drops and therefore pressures are mainly governed by 
the reservoir pressure drop from p2,true and p3,true. At the same time permeabilities are estimated 
accurately, though there is a small deviation from the true value when a layer is being closed off. 
 
More importantly, the flowrate estimates have been improved upon significantly (Figure 4.14c and 
Figure 4.15) as the average flowrate error has been reduced to about 19%. Subsequently, the estimated 
moment of water breakthrough, even though still too early, is better approximated by the RaLiRa 
model. Of course the improvement in the flowrate estimates also results in more accurate cumulative 
production and NPV values.  
 
The overestimation in water production (Figure 4.14e) reduces the estimated NPV and results in a 
small estimation error (see Table 4.10). However, due to the flowrate overestimation and therefore the 
water production overestimation, the NPV can still be improved upon further.  
 
The RaLiRa model (qualitatively speaking) also leads to a strong positive correlation between the true 
and model flowrate estimation errors, i.e. the change over time in the model flowrate estimation error 
is indicative of the true flowrate estimation error's change over time. Additionally, the true flowrate 
estimation error of each layer spikes from the moment of water breakthrough (until the layer is closed 
off), while the model flowrate estimation error does not. This indicates that the model is not able to 
accurately capture the true flowrates after breakthrough.  
  

NPV (million $) Layer 1 Layer 2 Cumulative 

Estimated 4.5 4.4 8.9 

True 4.6 4.5 9.1 

Estimation error -2.2% -2.2% -2.2% 

Table 4.10 - True and estimated NPV (vertical wells, RaLiRa model) - 15% discount 
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a) Choke valve diameter  

 

 
b) Pressures - true and estimated 

 

 
c) Producer flowrates - true and estimated 

 

 
d) Permeability - true and estimated 

 

 
e) Cumulative production - true and estimated 

 
f) NPV development - true and estimated 

Figure 4.14 - CLRM results (vertical wells, RaLiRa model) - 15% discount 
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Figure 4.15 - CLRM results (vertical wells, RaLiRa model): Flowrate errors  

 

4.6 Vertical well - Linear flow & Bounded Reservoir Pressure 

While the RaLiRa model of the previous section definitely improved upon the flowrate errors 
(compared to the linear model, i.e. Figure 4.13), further improvement is still possible by considering 
the pressure drop model for two-dimensional two-phase flow in a bounded reservoir (see section 3.3.3, 
expression (3.3.19)). Therefore, the linear displacement model is combined with the bounded reservoir 
pressure drop model, abbreviated to 'the linear bounded reservoir pressure model' (Li-BoReP). Once 
again the parameters describing the reservoir in question can be found in Table 4.5 and Table 4.7.  
 
The choke valve diameters, the true and estimated pressures, as well as the estimated permeabilities 
yield no new results with respect to the previous section except for a slight delay in the closure of each 
layer (see Figure 4.16 below). 
 
Comparing Figure 4.16c&e with their counterparts in Figure 4.12 and Figure 4.14 immediately reveals 
that the flowrate estimate has been significantly improved upon by the Li-BoReP model. Subsequently 
the estimated cumulative production and NPV (see Table 4.11 below) have been improved as well 
(although the true NPV is only 0.1 million dollars higher than in Table 4.10).  
 
The moment of breakthrough, on the other hand, is now exceeded and coincides with the moment that 
the true water and oil production rates are equal. However, if the breakthrough moment is precisely 
estimated, the overestimation of the cumulative water production will be worse. 
 

NPV (million $) Layer 1 Layer 2 Cumulative 

Estimated 4.8 4.7 9.5 

True 4.7 4.5 9.2 

Estimation error 2.1% 4.4% 3.3% 

Table 4.11 - True and estimated NPV (vertical wells, Li-BoReP model) - 15% discount 

 
Already revealed by Figure 4.16e, the new pressure model has decreased the error between the 
estimated and true flowrate significantly. Figure 4.17 shows that this error is reduced to below the 
approximate range of 7%-8%, while the standard deviation is of the same order of magnitude as in the 
previous simulation. Moreover, the flowrate errors once again have a strong positive correlation 
(qualitatively speaking). However, the spike at time of breakthrough still exists, which means that 
flowrates are still overestimated and further improvement is still possible. 
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a) Choke valve diameter  

 
b) Pressures - true and estimated 

 

 
c) Producer flowrates - true and estimated 

 

 
d) Permeability - true and estimated 

 

 
e) Cumulative production - true and estimated 

 
f) NPV development - true and estimated 

Figure 4.16 - CLRM results (vertical wells, Li-BoReP model) - 15% discount 

 
 



       

 
 

63 

 
Figure 4.17 - CLRM results (vertical wells, Li-BoReP model): Flowrate errors  

 

4.7 Vertical well - Radial-Linear-Radial flow & Bounded Reservoir Pressure 

While the previous section used the linear displacement model, it is already known that the RaLiRa 
displacement model better estimates the moment of breakthrough (see section 4.5). Therefore, the next 
simulation considers the bounded reservoir pressure drop model in combination with the RaLiRa 
displacement model (abbreviated to 'RaLiRa-BoReP model'). Note that the all parameters don't change 
(see Table 4.5 and Table 4.7). 
 
The results are shown in Figure 4.18 below and as before the choke valve diameters, the true and 
estimated pressures, and the estimated permeabilities are generally similar to those in Figure 4.16. The 
other three figures are of greater interest, as these show among other that the moment of breakthrough 
is almost perfectly estimated. Consequently, the estimated cumulative water production is worse than 
for the Li-BoReP model (Figure 4.16) because the water production is estimated to start earlier and the 
displacement model only accounts for flow along the inter-well axis. Another consequence of the near 
perfect breakthrough estimate is that the cumulative oil production is estimated more accurately than 
in the Li-BoReP model.  
 
As the RaLiRa-BoReP model uses the same displacement model as the RaLiRa model (section 4.5), it 
is no surprise that in both cases the simulation ends at the same estimated level of cumulative 
produced oil and water. Additionally, the flowrate estimates in the RaLiRa-BoReP are lower than 
those of the RaLiRa model (compare for instance the true flowrate estimation errors of Figure 4.15 
and Figure 4.19). Consequently, the RaLiRa-BoReP model finishes the production process (slightly) 
later than the RaLiRa model, yet this delay barely effects the estimated and true NPV (see Table 4.12). 
 

NPV (million $) Layer 1 Layer 2 Cumulative 

Estimated 4.5 4.4 8.9 

True 4.6 4.5 9.1 

Estimation error -2.2% -2.2% -2.2% 

Table 4.12 - True and estimated NPV (vertical wells, RaLiRa-BoReP model) - 15% discount 

 
While the Li-BoReP model better estimates cumulative water production and the RaLiRa-BoReP 
model better estimates cumulative oil production, the true NPV of both models only differs by 0.1 
million dollars. Moreover, the flowrate errors (Figure 4.19) again show (qualitatively speaking) a 
strong positive correlation. However, Figure 4.19 indicates that the Li-BoReP model is slightly better 
at estimating true flowrates, as its mean flowrate estimation errors are lower. On the other hand, the 
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standard deviations of the RaLiRa-BoReP model's true and model flowrate estimation errors are of the 
same order of magnitude as those of the Li-BoReP model. A possible extension is to use those models 
conjointly in order to more accurately predict both water and oil cumulative productions. However, 
this option is not investigated in this thesis. 
 

 
a) Choke valve diameter 

 

 
b) Pressures - true and estimated 

 

 
c) Producer flowrates - true and estimated 

 

 
d) Permeability - true and estimated 

 

 
e) Cumulative production - true and estimated 

 
f) NPV development - true and estimated 

Figure 4.18 - CLRM results (vertical wells, RaLiRa-BoReP model) - 15% discount 
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Figure 4.19 - CLRM results (vertical wells, RaLiRa-BoReP model): Flowrate errors  

 

4.8 Computation time 

As mentioned in the introduction of this thesis, the required computational effort of analytical models 
is low compared to that of numerical simulators. Although not the main focus of this thesis, a brief 
mentioning of approximate computation times should give an idea of the power of the analytical 
models under consideration. The table below lists these approximate computation times. 
 
 

                  CLRM 
                      phase 
Analytical 
  Model                       

Virtual 
Asset 

Data 
Assimilation 

NPV 
Optimization 

Cumulative 
time 

Linear (vertical wells) 316s 116s 404s 836s 

RaLiRa 363s 130s 518s 1011s 

Li-BoReP 374s 209s 467s 1050s 

RaLiRa-BoReP 420s 166s 390s 976s 

Table 4.13 - Approximate computation times 

 
The cumulative computation times listed above encompass the entire simulation. The total simulation 
times and time step size is equal for all cases and mentioned in each case's table in earlier sections. 
Important to mention is that whenever a layer is closed off, it no longer contributes to the computation 
time. Moreover, no clear statistics are drawn from the above table, although it is clear that data 
assimilation (i.e. matching estimated and measured pressures by estimating flowrates with the 
analytical model) is always faster than the virtual asset (i.e. the numerical model). 
 
For all analytical models, the NPV optimization computation time is small (on average less than two 
seconds per time step) if neither maximum flowrate nor layer closure time has been reached (i.e. if 
choke valves can remain open). If this does occur, however, the computation time easily increases to 
approximately seventy seconds, which could be further improved upon by supplying gradients to the 
algorithm. 
 
Similarly, data assimilation computation times for the analytical models are small (on average also 
less than two seconds per time step) unless a layer is at the moment of water breakthrough or at the 
closing off moment. However, data assimilation computation time can take approximately fifty 
seconds for breakthrough moments and could also possibly be improved upon by supplying gradients. 
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5  
Conclusion and discussion  

In this chapter, conclusions are drawn based on the results obtained in the previous chapters and are 
subsequently discussed. First the linear model for the horizontal well setup is treated, after which the 
focus shifts to the models for the vertical well case. Lastly, a conclusion is given with respect to the 
main research objective. 
 
The (one-dimensional) linear model has been of interest first and foremost because of its simplicity 
and analytic nature. Its limitations were tested early on for a horizontal well setup (section 3.3.5), 
which revealed that the model (without incorporating choke valves) is unable to provide control over 
the flow in a multi-layered reservoir when there is flow occurring from one layer into another. 
Therefore, the linear model (without choke valves) is unsuitable for most heterogeneous reservoirs. On 
the other hand, if each layer of a reservoir is homogeneous and produced by horizontal wells, then the 
model works adequately as evidenced by the near identical flowrate estimation errors (Figure 4.10).  
 
Even though the homogeneous requirement is a limitation, this model can possibly also be suitable for 
a heterogeneous reservoir where the permeability only varies perpendicular to the well direction (i.e. 
in the flow direction, x). The reason is that its one-dimensional displacement description (expression 
(2.1.40)) does not depend on the permeability and the pressure drop is only evaluated along the x-
direction. 
 
Unfortunately, the linear model is no longer appropriate in case of vertical wells and two-dimensional 
flow within each (still homogeneous) layer as indicated by the large true flowrate estimation error 
(Figure 4.13). The RaLiRa model, describing flow along the inter-well axis of two vertical wells as a 
Radial-Linear-Radial type of displacement, was subsequently introduced to better handle the two-
dimensional flow aspects. This was definitively a step in the right direction, as the cumulative oil 
production was estimated almost perfectly. However, the water production still could be improved 
upon. More importantly, the mean true flowrate estimation error (Figure 4.15) and its standard 
deviation were greatly reduced. However, a spike occurred in the errors around and after water 
breakthrough, meaning flowrates were being significantly overestimated. 
 
After improving the displacement description, the next step to further reduce the mean and standard 
deviation of the true flowrate estimation error was to improve the pressure description. This new 
description (section 3.3.3) was subsequently combined with both the Linear and RaLiRa 
displacements, which resulted in the Li-BoReP and RaLiRa-BoReP models. While the results of the 
models were mostly similar, the average true flowrate error was found to be smaller for the Li-BoReP 
model and this could be considered an advantage over the other model. On the other hand, if one's 
interest lies in accurately estimating the moment of water breakthrough,  the RaLiRa-BoReP model is 
definitely the better choice.  
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Interestingly, the RaLiRa-BoReP model estimated the cumulative oil production adequately, while the 
Li-BoReP model estimated the cumulative water production more accurately. However, the standard 
deviation was hardly reduced by either model because the flowrates were still significantly 
overestimated once breakthrough had occurred. Therefore, it is hard to draw a conclusion with respect 
to which of the two models is better and the model choice consequently depends on the user's end-
goal. 
 
For the accurately predicted horizontal well case (with an average true flowrate estimation error of 
approximately 2%), there was no spike after breakthrough and yet the standard deviation was still 
approximately 8%. Therefore the margin of improvement of the standard deviation of the true flowrate 
estimation error for the Li-BoReP and RaLiRa-BoReP models is most likely small.  
 
The spike occurring in the flowrate estimation error is caused by the simplicity of both the 
displacement models: once breakthrough occurred, the model's estimate of the water saturation at the 
producer is at least equal to the shock front saturation level because the models only consider the 
streamline along the inter-well axis. In truth, the saturation level at the producer is lower as it takes 
longer for the water to arrive at the wellbore via all other streamlines (Figure 2.7b). This spike, 
however, could likely be reduced by improving the flowrate estimates. Improving flowrate estimates 
after breakthrough, is most likely to be achieved by deriving an (accurate) two-dimensional 
description of Buckley-Leverett flow in a bounded reservoir. However, a two-dimensional flow 
description of the Buckley-Leverett solution (other than the radial form) is not known to exist yet, let 
alone for a bounded reservoir. 
 
Indications of the required computation times were given at the end of chapter 4 where each of the 
simulations in Table 4.13 consisted of 100 time steps, 2100 grid cells for the virtual asset, and 2 layers 
for the analytical model. The table seems to indicate a lack of large computational efforts for the 
analytical model, especially considering that no gradients and the like were supplied to the NPV and 
data assimilation algorithms which could speed up computations. Moreover, improvements of the 
analytical models' code might also be possible to reduce their computation times as well. 
 
In conclusion: with respect to the research objective it is concluded that the analytical models 
considered in this thesis can yield reasonably accurate estimates of the true reservoir flow, especially 
when incorporating the bounded reservoir pressure model. 
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6  
Recommendations 

Main results have been summarized and discussed in the previous chapters and already lead to some 
considerations for future research within the topic of analytical descriptions for subsurface reservoir 
flow in a Closed-Loop Reservoir Management setting. A number of recommendations for future 
research are listed in this chapter. 
 

1. First of all, both displacement models are limited in their usefulness due to the necessity of 
(near perfect) homogeneous absolute permeability. However, for the linear model, this 
necessity can be slightly weakened as its displacement and pressure formulae allow for 
incorporating a non-constant permeability in direction perpendicular to the well orientation 
(i.e. in the x-direction). In order to facilitate easy and accurate permeability estimations, 
accurate initial permeability estimates are recommended to be obtained beforehand. 

 
2. A different addition to the permeability model could be to include a skin factor that accounts 

for formation damage (e.g. a near well-bore reduction in permeability), which for example can 
occur during drilling and production processes. 

 
3. With respect to the Li-BoReP and RaLiRa-BoReP models considered in this thesis, one could 

consider to combine both models to accurately estimate both the breakthrough moment as well 
as cumulative productions. 

 
4. Also interesting could be the introduction of a gas phase to the subsurface reservoir flow and 

usage of an analytical three-phase description for one-dimensional flow. With respect to NPV 
optimization, addition of such a third phase also necessitates the incorporation of formation 
volume factors in order to account for gas that is retained within the oil. 

 
5. Yet another alternative is to attempt to incorporate gravitational effects (e.g. resulting from a 

pitch in the reservoir) or capillary pressure effects in the analytical model description. 
 
6. Especially interesting and useful would be to derive and incorporate a two-dimensional 

analytical Buckley-Leverett flow description, as this does not yet exist. 
 
7. In addition to such a two-dimensional flow model one could then try to incorporate multiple 

injectors and producers inside each layer, as is already possible for single phase flow (e.g.  
potential flow theory). This additionally leads to more complex and interesting NPV 
optimization, as wells will no longer necessarily be fully opened until an economic threshold 
is reached. 

 
8. Lastly, Model Predictive Control could possibly be applied to further reduce flowrate errors. 
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Appendix A  
Additional figures 

 
This appendix shows the results of the undiscounted horizontal well case which was briefly mentioned 
in Section 4.3. However, they are not discussed as they are similar to those of the discounted case. 
 

A.1 Horizontal well - Linear flow 0% discount 

 

 
a) Choke valve diameter  

 

 
b) Pressures - true and estimated 

 

 
c) Producer flowrates - true and estimated 

 

 
d) Permeability - true and estimated 
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e) Cumulative production - true and estimated 

 
f) NPV development - true and estimated 

Figure A.1 - CLRM results (horizontal wells, linear model) - 0% discount 
 
 

 
Figure A.2 - CLRM results (horizontal wells, linear model) - Flowrate errors 

 
 

NPV (million $) Layer 1 Layer 2 Cumulative 

Estimated 11.8 11.9 23.7 

True 11.8 11.7 23.5 

Estimation error 0% 1.7% 0.9% 

Table A.1 - True and estimated NPV (horizontal wells, linear model) - 0% discount 
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A.2 Vertical well - Radial-Linear-Radial flow 0% discount 

 

 
a) Choke valve diameter  

 

 
b) Pressures - true and estimated 

 

 
c) Producer flowrates - true and estimated 

 

 
d) Permeability - true and estimated 

 

 
e) Cumulative production - true and estimated 

 
f) NPV development - true and estimated 

Figure A.3 - CLRM results (vertical wells, RaLiRa model) - 0% discount 
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Figure A.4 - CLRM results (vertical wells, RaLiRa model) - Flowrate errors 

 
 

NPV (million $) Layer 1 Layer 2 Cumulative 

Estimated 4.4 4.7 9.1 

True 4.8 4.8 9.6 

Estimation error -8.3% -2.1% -5.2% 

Table A.2 - True and estimated NPV (vertical wells, RaLiRa model) - 0% discount 
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A.3 Vertical well - Linear flow & Bounded Reservoir Pressure 0% discount 
 

 
a) Choke valve diameter  

 

 
b) Pressures - true and estimated 

 

 
c) Producer flowrates - true and estimated 

 

 
d) Permeability - true and estimated 

 

 
e) Cumulative production - true and estimated 

 
f) NPV development - true and estimated 

Figure A.5 - CLRM results (vertical wells, Li-BoReP model) - 0% discount 
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Figure A.6 - CLRM results (vertical wells, Li-BoRep model) - Flowrate errors 

 
 

NPV (million $) Layer 1 Layer 2 Cumulative 

Estimated 4.9 4.8 9.7 

True 4.8 4.7 9.5 

Estimation error 2.1% 2.1% 2.1% 

Table A.3 - True and estimated NPV (vertical wells, Li-BoReP model) - 0% discount 
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A.4 Vertical well - Radial-Linear-Radial flow & Bounded Reservoir Pressure 

0% discount 
 

 
a) Choke valve diameter  

 

 
b) Pressures - true and estimated 

 

 
c) Producer flowrates - true and estimated 

 

 
d) Permeability - true and estimated 

 

 
e) Cumulative production - true and estimated 

 
f) NPV development - true and estimated 

Figure A.7 - CLRM results (vertical wells, RaLiRa-BoReP model) - 0% discount 
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Figure A.8 - CLRM results (vertical wells, RaLiRa-BoReP model) - Flowrate errors 

 
 

NPV (million $) Layer 1 Layer 2 Cumulative 

Estimated 4.6 4.6 9.2 

True 4.8 4.8 9.6 

Estimation error -4.2% -4.2% -4.2% 

Table A.4 - True and estimated NPV (vertical wells, RaLiRa-BoReP model) - 0% discount 
 


