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H I G H L I G H T S

The surrogate captures complex particle 
dynamics in a high-energy ball mill.
Runs with a timestep 100× larger than 
DEM.
Predicts cumulative energy dissipation, 
a relevant mechanochemical metric.
Strong transferability to unseen motions 
and moderate jar geometry alterations.
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 A B S T R A C T

While the Discrete Element Method (DEM) provides high-fidelity insights into granular processes like high-
energy ball milling, its computational cost can become prohibitive when exploring extensive parameter 
spaces required for scale-up. This limitation hinders the rapid design and optimization cycles crucial for 
emerging applications, like mechanochemistry. Surrogate modeling offers a promising path to overcome 
these computational barriers, yet existing approaches often struggle to accurately represent the complex, 
moving boundary conditions typical of milling equipment. In this work, we leverage a Signed Distance 
Function Graph Neural Network (SGN) surrogate tailored to the high-energy, moving-boundary regime of 
the Emax mill. Trained on DEM data, the SGN jointly predicts particle kinematics for recursive roll-out 
and a mechanochemistry-relevant global quantity, the global dissipated energy. The model exhibits strong 
generalization to unseen motion trajectories and moderate jar-shape edits without retraining, while operating 
with a timestep over 100x larger than required by DEM. In a CPU-only comparison, it achieves a minimum 
of  6.6× wall-clock speedup. This approach provides a powerful and promising technique for the simulation, 

analysis, and design optimization of high-energy ball milling equipment. 
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1. Introduction

The rapid advancement of artificial intelligence can enable signifi-
cant progress in scientific computing. In particular, surrogate models 
can approximate complex physical phenomena, such as particle in-
teractions in granular systems or particle-based fluid representations, 
at much lower computational cost than traditional methods like the 
discrete element method (DEM) or smoothed particle hydrodynamics 
(SPH) [1–3].

Such surrogates are especially appealing in high-energy ball milling, 
where DEM is a well-established method for a wide range of appli-
cations, such as mechanochemistry [4–6], mechanical alloying [7], 
ultra-fine milling, and particle breakage [8,9]. Although each of these 
application fields faces its own set of distinct challenges for producing 
a valuable model, they share some critical commonalities, namely 
they require a combination of a large number of particles (discrete 
elements), a very small timestep to accurately numerically integrate 
the underlying equations of motion, or possibly a combination of 
both [10,11]. These conditions may be manageable when reproducing 
well-defined granular flows on lab-scale. However, as attention shifts 
towards industrial-scale applications, the computational cost needed to 
resolve numerous particle–particle and particle–wall contacts at small 
timesteps can become prohibitively expensive. This is especially prob-
lematic for emerging technologies such as mechanochemistry, where 
there are no clear connections to larger-scale machinery [12]. The 
intensive iterative design and implementation required slows the adop-
tion of mechanochemistry, delaying its potential contributions to sus-
tainability goals as defined by green chemistry principles [13]. Conse-
quently, surrogate models are an appealing alternative in this context, 
offering a potential pathway to accelerate progress.

Among data-driven surrogates, graph neural networks (GNNs) have 
rapidly become a compelling paradigm for learned particle simulators, 
representing particles as nodes and interactions as edges, and rolling 
out dynamics via message passing [14]. The seminal Graph Network-
based Simulator (GNS) demonstrated accurate, long-horizon roll-outs 
over fluids, rigid bodies, and simple granular settings, with strong 
generalization in particle count and initial conditions. [1]. Building on 
this, Choi & Kumar developed GNN surrogates specifically for granular 
flows (e.g., column collapse), reporting hundreds-fold speedups relative 
to high-fidelity solvers while preserving key flow features and scaling 
to larger domains than seen in training [15]. There is also emerging 
work coupling GNS with inverse design/optimization to tune DEM 
parameters or device settings efficiently [16].

A persistent challenge in learned granular simulators is bound-
ary handling in complex geometry while preserving accurate physics. 
Early approaches either encoded distances to simple box-like bound-
aries or introduced virtual/ghost entities in so-called boundary GNNs 
to approximate walls. While these approaches have improved model 
generality, the introduction of virtual entities brings additional com-
plexity and potential inaccuracies in wall-interaction physics [17–24]. 
To address these limitations, Li and Sakai proposed a signed distance 
function-based GNN (SGN) that encodes arbitrarily shaped boundaries 
as continuous distance fields, allowing the network to handle complex 
geometries without virtual particles [2]. In parallel, physics-informed 
GNN architectures have been introduced to embed hard constraints 
from mechanics. For instance, Sharma and Fink enforce conservation 
of linear and angular momentum at individual collisions via a special 
message-passing scheme, yielding stable long-term predictions for 3D 
granular systems with inelastic impacts [25].

Despite these advances, no prior work has applied GNN-based sur-
rogates to the extreme dynamic regime of high-energy ball milling. In 
such systems, particles collide violently under rapidly evolving bound-
ary conditions (e.g. tumbling jars and moving reactor walls). Existing 
surrogate models have yet to demonstrate they can capture this highly 
dynamic, dissipative environment. In fact, prior data-driven studies 
have focused on macro-scale performance metrics of low-speed mills, 
2 
such as predicting particle size distribution, bed height, or mixing qual-
ity, rather than simulating the detailed collision dynamics [17,24,26]. 
Related SDF-GNN work (e.g., Li & Sakai, 2024 [2]) has also targeted 
static or low-speed boundaries. Thus, this gap motivates the present 
work to develop a surrogate approach that can faithfully emulate the 
physics of a high-energy milling process.

To achieve this, we develop a surrogate model capable of handling 
complex dynamic boundaries, involving oscillatory and translational 
motion, characteristic of high-energy ball milling equipment used in 
powder processing. Specifically, we adapt a SGN to accurately capture 
complex energy input mechanisms and intense, high-energy dynamics 
and collisions, beyond the low-velocity regimes of prior studies. We 
extend the model by introducing moving boundaries and a secondary 
output for cumulative energy dissipation alongside local particle kine-
matics, enabling a dual prediction that is critical for mechanochemistry. 
Furthermore, our approach shows promising generalization to unseen 
motions and modified geometries, facilitating systematic study and de-
sign. Although our primary focus is on mechanochemical applications, 
this methodology can be adapted to virtually any high-energy ball 
milling scenario. Because the boundary kinematics and regimes differ 
compared to previous studies, we do not pursue a numerical head-
to-head comparison; our contribution is complementary, extending 
SDF-based surrogates to time-varying, fast-moving wall regimes.

All associated code is freely available, including scripts for data 
extraction, transformation, and loading, as well as those used for model 
construction, training, and generative simulations, at the following lo-
cation: github.com/sgarridonunez/SGN_ball_milling. In 
the subsequent sections, we detail the specific SGN architecture and 
training procedure using DEM simulation data, present validation 
results comparing surrogate predictions against ground truth values 
for particle dynamics and energy dissipation, and discuss the model’s 
performance and generalization capabilities.

2. Methodology

2.1. Discrete Element Method (DEM) and simulation setup

The Discrete Element Method (DEM) is used to generate the data 
needed for training the surrogate model and serves as ground truth. 
In this study, Altair® EDEM™ 2021.2 was used as the DEM solver, 
and Python 3.9.12 was used for data post-processing. EDEM™ follows 
a soft sphere approach by calculating the contact forces for each 
particle interaction using Hertz and Mindlin’s contact model, which can 
capture the non-linear interactions that arise when particle–particle or 
particle–wall collisions occur [27,28].

Newton’s equations of motion are solved numerically to predict the 
evolution of the (angular) velocity of each particle:

𝑚𝑖
𝑑𝐕𝑖
𝑑𝑡

= 𝐅𝑐,𝑖 + 𝑚𝑖𝐠 (1)

𝐼𝑖
𝑑𝝎𝑖
𝑑𝑡

= 𝝉 𝑖 (2)

where 𝑚𝑖, 𝐼𝑖, 𝐕𝑖 and 𝝎𝑖 are the mass, moment of inertia, velocity, and 
angular velocity, respectively, of particle 𝑖. 𝐅𝑐,𝑖 and 𝝉 𝑖 represent the 
total contact force and total contact torque (relative to the particle’s 
center of mass), respectively. The total force and torque are determined 
by summing over all neighbors in contact with particle 𝑖.

Each discrete element has its own radius 𝑅, mass 𝑚, Young’s mod-
ulus 𝑌 , shear modulus 𝐺, coefficient of restitution 𝑒, and Poisson ratio 
𝜈. The contact force 𝐅𝑐,𝑖𝑗 on a particle 𝑖 due to its interaction with 
another particle 𝑗 (or wall) is the vector sum of a normal force 𝐅𝑛,𝑖𝑗
and tangential force 𝐅𝑡,𝑖𝑗 : 

𝐅𝑐,𝑖𝑗 = 𝐅𝑛,𝑖𝑗 + 𝐅𝑡,𝑖𝑗 = (𝐾𝑛𝜹𝑛,𝑖𝑗 − 𝛾𝑛𝐕𝑛,𝑖𝑗 ) + (𝐾𝑡𝜹𝑡,𝑖𝑗 − 𝛾𝑡𝐕𝑡,𝑖𝑗 ) (3)

with:

𝐾 = 4𝑌 ∗√𝑅∗𝛿 (4)
𝑛 3 𝑛

https://github.com/sgarridonunez/SGN_ball_milling
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𝛾𝑛 = −2
√

5
6
𝛽
√

𝑆𝑛𝑚∗ ≥ 0 (5)

𝐾𝑡 = 8𝐺∗√𝑅∗𝛿𝑛 (6)

𝛾𝑡 = −2
√

5
6
𝛽
√

𝑆𝑡𝑚∗ ≥ 0 (7)

𝑆𝑛 = 2𝑌 ∗√𝑅∗𝛿𝑛 (8)

𝑆𝑡 = 8𝐺∗√𝑅∗𝛿𝑛 (9)

𝛽 =
ln(𝑒)

√

ln2(𝑒) + 𝜋2
(10)

1
𝑌 ∗ =

(1 − 𝜈21 )
𝑌1

+
(1 − 𝜈22 )
𝑌2

(11)

1
𝐺∗ =

2(2 − 𝜈1)(1 + 𝜈1)
𝑌1

+
2(2 − 𝜈2)(1 + 𝜈2)

𝑌2
(12)

1
𝑅∗ = 1

𝑅1
+ 1
𝑅2

(13)

1
𝑚∗ = 1

𝑚1
+ 1
𝑚2

(14)

Here, 𝐕𝑛,𝑖𝑗 and 𝐕𝑡,𝑖𝑗 denote the relative velocities in the normal and 
tangential directions between particles 𝑖 and 𝑗 at the point of contact. 
The vectors 𝜹𝑛,𝑖𝑗 and 𝜹𝑡,𝑖𝑗 represent the normal and tangential overlaps 
between the particles, with the tangential overlap obtained by integrat-
ing the relative tangential velocity over time and projecting it onto the 
current tangential direction. The constants 𝐾𝑛 and 𝐾𝑡 are the elastic 
coefficients for normal and tangential contacts, respectively, while 𝛾𝑛
and 𝛾𝑡 correspond to the viscoelastic damping coefficients for these 
contacts.

On the right-hand side of Eq.  (3), the expression within the first set 
of parentheses represents the normal force, and the expression in the 
second set corresponds to the tangential force. Specifically, the normal 
force comprises two components: a spring force and a normal damping 
force 𝐅𝑛,𝑑 , while the tangential force is made up of a shear force and a 
tangential damping force 𝐅𝑡,𝑑 . The magnitude of the tangential force 𝐹𝑡
is limited according to the Coulomb friction law: if 𝐹𝑡 ≥ 𝜇𝑓𝐹𝑛, where 𝜇𝑓
is the friction coefficient and 𝐹𝑛 the magnitude of the normal force, then 
𝐹𝑡 is set equal to 𝐹𝑛 (while still oriented in the tangential direction).

Additionally, the contact torque, 𝝉 𝑖𝑗 , acting on particle 𝑖 as a result 
of its interaction with particle (or wall element) 𝑗 is determined by 
the cross product of the vector 𝐑𝑖𝑗—which extends from the center of 
mass of particle 𝑖 to the contact point with particle 𝑗—and the tangen-
tial contact force 𝐅𝑡,𝑖𝑗 . Given that the particles experience continuous 
rolling motion, particularly in interactions with a wall, it is essential 
to account for any slight deviations from perfect sphericity. This is 
achieved by introducing a rolling torque, 𝝉𝑟,𝑖𝑗 , which is computed 
using the coefficient of rolling friction 𝜇𝑟, the magnitude of the normal 
contact force 𝐹𝑛,𝑖𝑗 , the distance 𝑅𝑖𝑗 from the center of mass to the 
contact point, and the orientation of the particle’s relative angular 
velocity, 𝝎𝑟𝑒𝑙. These relationships are described by:
𝝉 𝑖𝑗 = 𝐑𝑖𝑗 × 𝐅𝑡,𝑖𝑗 + 𝝉𝑟,𝑖𝑗 (15)

𝝉𝑟,𝑖𝑗 = −𝜇𝑟𝐹𝑛,𝑖𝑗𝑅𝑖𝑗
𝝎𝑟𝑒𝑙
𝜔𝑟𝑒𝑙

(16)

Finally, the energy dissipated over the time interval from 𝑡1 to 𝑡2, 
due to the damping effects characterized by 𝛾𝑛 and 𝛾𝑡, is calculated as 
follows:

𝐸𝑛 = ∫

𝑡2

𝑡1
𝐅𝑛,𝑑 ⋅ 𝐕𝑛,𝑖𝑗 d𝑡 (17)

𝐸𝑡 = ∫

𝑡2

𝑡1
𝐅𝑡,𝑑 ⋅ 𝐕𝑡,𝑖𝑗 d𝑡 (18)

The DEM model has been calibrated and validated for the
mechanochemical regeneration of sodium borohydride NaBH4 in the
Emax high-energy ball mill produced by the German company Retsch. 
We refer to our previous work for more details [4,29]. The crucial 
properties relevant to this work can be found in Table  1.
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Table 1
Properties used for the milling balls and jar obtained from Retsch, correspond-
ing to steel X46Cr13 while accounting for the presence of NaBO2 ⋅4H2O (≥99%
- Sigma-Aldrich) and MgH2 (≥99.9% - Nanoshel).
 Parameter Value  
 Particle diameter 0.01 m  
 Restitution coefficient 0.3  
 Friction coefficient 0.3  
 Rolling friction coefficient 0.045  
 Density 7700 [kg/m3] [30] 
 Young’s modulus 2.05 [GPa] [30]  
 Poisson’s ratio 0.235 [30]  
 Simulation time step 9.5 × 10−7 [s]  
 Total simulation time 15 [s]  
 Time integration method Euler  

The machine can allocate proprietary grinding jars with 125 ml 
of volume that follow a circular motion with a rotational speed 𝑛 up 
to 2000 revolutions per minute with an amplitude (radius) 𝐴 of 1.7 
cm, see Fig.  1. The movement of the jar has been replicated in our 
simulations. An STL file was built and imported into EDEM™ to repre-
sent the geometry of the milling jar accurately. The STL was validated 
as watertight to ensure an unambiguous SDF sign (inside/outside); 
closed internal cavities would be handled correctly under the same 
assumption.

The system is initially set up by generating all the discrete media 
over a five-second interval, which allows them to settle into their 
resting positions within the jar before any motion begins. After this 
initialization phase, the simulation runs for an additional 10 s with 
a rotational speed of 300 rpm to capture the dynamic behavior of 
the system. A fill ratio of 10% is used, corresponding to a total of 
24 milling balls. To reduce computational complexity, the model is 
simplified by including only milling balls as discrete elements. This sim-
plification is justified because the influence of the processed material 
can be effectively represented by calibrating the friction and restitution 
coefficients [5,31,32].

2.2. Graph neural network and surrogate model

A graph is a representation composed of a set of nodes and a set 
of edges that connect pairs of these nodes [33]. This structure models 
relationships or interactions between objects in various domains, such 
as computer networks, social networks, biological systems, and, in 
the context of this paper, granular systems (see Fig.  2). Moreover, 
graphs provide a natural framework for message passing, where nodes 
exchange information with their neighbors along the edges [34]. This 
capability is fundamental in graph neural network architectures, en-
abling iterative aggregation of local information to capture complex, 
global patterns within the graph.

2.2.1. Architecture
In this study, node and edge features encode the dynamic state 

and geometric context of the system. Specifically, the dynamic state is 
encoded through particle velocity, and the geometric context is dictated 
by a Signed Distance Function (SDF), leading to the definition of an 
SDF-based graph neural network (SGN) as proposed by Li et al. [2]. 
As such, we follow the same terminology for consistency.  The SDF is 
a fixed field computed from the watertight, triangulated jar STL (see 
Fig.  3). It provides a per-particle distance channel for node features 
and a proximity vector on particle–wall edges. The mill’s boundary 
motion is applied to the wall: for each time step the STL is rigidly 
translated in space by the time-dependent center of mass (CoM), and 
the SDF is evaluated relative to the moved wall. Particle states are 
not directly forced by this motion; they are updated by integrating 
predicted smooth accelerations. Conditioning on the moving bound-
ary allows inference under unseen motion trajectories, provided the 
training data spans comparable kinematic/energy regimes.
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Fig. 1. (a) Schematic of jar movement (A = 1.7 cm, n = 300 rpm) (b) 3D model of the milling jar [4].

Fig. 2. (a) DEM connectivity example, (b) Graph representation of DEM timestep. Note that each particle has an individual ID used to define connectivity at any 
given timestep.
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Fig. 3. Geometry’s SDF field slices (a) XZ plane, (b) XY plane. In our system, negative values indicate positions inside the jar. Thus, the most negative values 
represent positions furthest away from the wall.
For closed (watertight) surfaces, the inside/outside sign is unam-
biguous and internal cavities are supported; open holes or non-manifold 
seams can introduce sign ambiguity and should be repaired before SDF 
generation. For new jar shapes, we simply recompute the SDF field 
for the new STL; no retraining is required for inference, whereas new 
training datasets require regenerating the SDF-derived features.

The granular system at a given time is represented as a graph 
 = ( , ). The set of nodes  includes nodes 𝑣𝑝 representing each 
individual particle (𝑝 = 1,… , 𝑁𝑝) and a single, dedicated node 𝑣𝑤
representing properties of the wall boundary. Note that the node 𝑣𝑤
does not dictate any spatial context information for the particles; it is 
simply established to define variables relevant to the geometry, such as 
its center of mass, and to be able to keep track of collisions between 
particles and the wall, which are crucial in ball milling.

The set of edges  comprises two subsets: particle–particle edges 
𝑝𝑝 = {𝑒𝑖𝑗} and particle–wall edges 𝑝𝑤 = {𝑒𝑖𝑤}. For generating the 
graphs used during offline training, the edge sets 𝑝𝑝 and 𝑝𝑤 are 
constructed directly from the contact pairs reported by the source 
high-fidelity DEM simulation (i.e. from Altair® EDEM™) at each corre-
sponding time step. This implicitly defines the interaction range learned 
by the model from the training data.

To capture temporal dependencies, features for particle and wall 
nodes incorporate information over a history window covering the 
current and 𝜏 preceding time steps, giving a total window size (W) of 
𝜏 + 1. For a particle node 𝑣𝑖 at time step 𝑡𝑛, the input node feature 
vector 𝝐𝑣𝑖 (𝑡𝑛) is constructed by concatenating features related to particle 
kinematics and boundary interactions: 

𝝐𝑣𝑖 (𝑡𝑛) = concat
(

{𝐕𝑝(𝑣𝑖, 𝑡𝑗 )}𝑛𝑗=𝑛−𝜏 , {𝜙𝑆𝐷𝐹 (𝑣𝑖, 𝑡𝑗 ),∇𝜙𝑆𝐷𝐹 (𝑣𝑖, 𝑡𝑗 )}
𝑛
𝑗=𝑛−𝜏

)

(19)

where 𝐕𝑝(𝑣𝑖, 𝑡𝑗 ) is the translational velocity of particle 𝑖 at time 𝑡𝑗 . 
Crucially, the SDF value 𝜙𝑆𝐷𝐹 (𝑣𝑖, 𝑡𝑗 ) and its gradient ∇𝜙𝑆𝐷𝐹 (𝑣𝑖, 𝑡𝑗 )
are calculated for all particle positions relative to the time-dependent 
boundary geometry (since the geometry is in oscillatory motion) at 
each time step 𝑡𝑗 in the history window. This provides a continuous 
geometric and contact context to every particle node. The feature 
vector for the wall node, 𝝐𝑣𝑤 (𝑡𝑛), includes information about the wall’s 
state over the time window, such as its Center of Mass (CoM) position 
and rotational velocity, padded with zeros to match the dimensionality 
of particle node features for each snapshot in the window.

Edge features encode the relative spatial configuration or inter-
action properties between connected nodes identified by the DEM 
simulation during data generation. For particle–particle edges 𝑒𝑖𝑗 ∈ 𝑝𝑝, 
the features 𝝐𝑒𝑖𝑗 (𝑡𝑛) include the relative distance vector: 

𝝐 (𝑡 ) = {𝒓 (𝑡 )} where 𝒓 (𝑡 ) = 𝑿 (𝑡 ) −𝑿 (𝑡 ) (20)
𝑒𝑖𝑗 𝑛 𝑖𝑗 𝑛 𝑖𝑗 𝑛 𝑗 𝑛 𝑖 𝑛
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For particle–wall edges 𝑒𝑖𝑤 ∈ 𝑝𝑤, the features 𝝐𝑒𝑖𝑤 (𝑡𝑛) represent the 
particle–wall interaction, using the SDF distance vector derived from 
the particle’s SDF features: 

𝝐𝑒𝑖𝑤 (𝑡𝑛) = 𝜙𝑆𝐷𝐹 (𝑣𝑖, 𝑡𝑛)
∇𝜙𝑆𝐷𝐹 (𝑣𝑖, 𝑡𝑛)

‖∇𝜙𝑆𝐷𝐹 (𝑣𝑖, 𝑡𝑛)‖
(21)

These specific input features (velocity history, SDF history, relative 
positions) are chosen because they can be readily updated or recalcu-
lated during the recursive simulation phase using only the model’s out-
puts (acceleration integrated to velocity and position) and the known 
boundary motion, enabling a closed-loop prediction while sliding the 
history window (W). This contrasts with features like contact forces 
or tangential overlaps, which are outputs of the DEM simulation but 
cannot be directly calculated during the surrogate’s recursive loop 
without making further assumptions or predictions of unknown future 
contacts. All input node (particle and wall) and edge (particle–particle 
and particle–wall) features are normalized using the mean and standard 
deviation derived from the training dataset prior to being processed 
by the network. Separate normalization statistics are maintained for 
particle nodes, wall nodes, particle–particle edges, and particle–wall 
edges. Additionally, Gaussian noise with a standard deviation of 0.005 
(𝜎 = 0.005) is added to the normalized velocity features during training 
to enhance robustness during recursive inference.

The SGN architecture follows the established Encoder-Processor-
Decoder paradigm. First, the Encoder employs independent Multi-Layer 
Perceptrons (MLPs), MLP𝑣 and MLP𝑒, with ReLU activations to map the 
input node and edge features to initial latent embeddings, 𝒉0𝑣 and 𝒉0𝑒 , 
respectively:

𝒉0𝑣 = MLP𝑣(𝝐𝑣) ∀𝑣 ∈  (22)

𝒉0𝑒 = MLP𝑒(𝝐𝑒) ∀𝑒 ∈  (23)

Note that while a single MLP𝑣 is shown, distinct initial layers or feature 
handling could be applied to particle vs. wall nodes if necessary. Sim-
ilarly, MLP𝑒 processes both edge types. Second, the Processor consists 
of 𝐿𝑝 interaction layers, performing iterative message passing to refine 
node representations by propagating information through the graph. 
Within each layer 𝑙:

1. An edge-update MLP, 𝜓𝑒, computes messages based on the em-
beddings of connected nodes and the edge itself: 
𝒎𝑙
𝑒𝑖𝑗

= 𝜓𝑒(𝒉𝑙𝑣𝑖 ,𝒉
𝑙
𝑣𝑗
,𝒉𝑙𝑒𝑖𝑗 ) (24)

2. An aggregation function, ⨁ (specifically, element-wise mean in 
our implementation), pools incoming messages for each node 𝑣𝑖
(including the wall node 𝑣𝑤) from its neighborhood  (𝑖): 

𝒎̄𝑙
𝑣𝑖
=

⨁

𝒎𝑙
𝑒𝑖𝑗

(25)

𝑗∈ (𝑖)
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Table 2
Summary of SGN graph inputs and targets. Per-snapshot node features are 
concatenated over a window 𝑊 = 𝜏 + 1.
 Component Value  
 Node features
 Particle (per snapshot) [𝐕, 𝜙SDF , ∇𝜙SDF] (Dim. 7) 
 Wall (per snapshot) [𝐂𝐨𝐌, RPM] (zero-padded) (Dim. 7) 
 Edge features
 PP edge (particle–particle) 𝒓 (Dim. 3) 
 PW edge (particle–wall) 𝜙SDF ⋅ ∇̂𝜙SDF (Dim. 3) 
 Targets
 Node (per particle) 𝐀𝑛𝑜𝑟𝑚 (Dim. 3) 
 Global (per graph) 𝛥𝐸𝑛𝑜𝑟𝑚 (Dim. 1) 
Symbols: 𝐕 = [𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧] (velocity); 𝜙SDF (signed distance to wall surface); ∇𝜙SDF =
[𝜕𝑥𝜙SDF , 𝜕𝑦𝜙SDF , 𝜕𝑧𝜙SDF] (SDF gradient); ∇̂𝜙SDF = ∇𝜙SDF∕‖∇𝜙SDF‖ (unit normal); 𝐂𝐨𝐌 =
[CoM𝑥 ,CoM𝑦 ,CoM𝑧] (jar center-of-mass position); 𝒓 = 𝑿𝑗 − 𝑿𝑖 (PP separation vector); 
𝐀𝑛𝑜𝑟𝑚 = [𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧] (normalized acceleration); 𝛥𝐸𝑛𝑜𝑟𝑚 (per-step normalized dissipated 
energy).

3. A node-update MLP, 𝜓𝑣, updates the node embedding using its 
previous state and the aggregated message: 
𝒉𝑙+1𝑣𝑖

= 𝜓𝑣(𝒉𝑙𝑣𝑖 , 𝒎̄
𝑙
𝑣𝑖
) (26)

Third, the Decoder utilizes an MLP, MLP𝑑 , to map the final node 
embeddings from the processor, 𝒉𝐿𝑝𝑣 , to the target outputs. For particle 
nodes 𝑣𝑝, the primary target is the normalized particle acceleration 
𝑨norm(𝑣𝑝, 𝑡𝑛), as this allows the model to drive the system’s dynamics 
through integration. The output for the wall node 𝑣𝑤 is also computed, 
but disregarded for the primary task. 
𝑨norm(𝑣𝑝, 𝑡𝑛) = MLP𝑑 (𝒉

𝐿𝑝
𝑣𝑝 ) (27)

Additionally, a Global Readout branch aggregates the final node em-
beddings 𝒉𝐿𝑝𝑣  (via mean pooling across all particle nodes with an edge 
(i.e. particles undergoing a collision)) and passes the result through a 
separate MLP to predict a normalized global system property, specifi-
cally for this work, the incremental energy dissipation 𝛥𝐸norm(𝑡𝑛) (result 
from adding Eqs.  (17) and (18)). Because 𝛥𝐸norm is learned from 
DEM targets, calibration across operating regimes depends on training 
coverage of dissipation magnitudes and collision statistics (e.g., RPM, 
amplitude, fill ratio, materials). This global variable was selected due 
to its established relevance in characterizing the potential outcomes of 
mechanochemical processes [4]. Table  2 summarizes the graph inputs 
and targets used in this work.

2.2.2. Training
The network’s learnable parameters 𝜃 are trained offline using su-

pervised learning on data generated by high-fidelity DEM simulations, 
which are sampled at a fine time resolution (𝛥𝑡𝐷𝐸𝑀 ). Accurately defin-
ing 𝛥𝑡𝐷𝐸𝑀  is essential for enabling the model to capture the dynamics 
effectively. In this work, because the median collision duration is 
approximately 0.0005 s, we selected a 𝛥𝑡𝐷𝐸𝑀  of 0.0001 s to ensure that 
the model can accurately learn the evolution of collisions. Although this 
parameter can be fine-tuned depending on the application, in systems 
where individual collisions are critical for realistic granular flow, it 
is advisable not to exceed the median collision duration. It is also 
important to note that the training data utilized comprises snapshots 
taken only after the initial particle generation phase is complete and 
the motion of the milling jar has commenced, focusing the model on the 
relevant dynamic interactions. Then, the first 4.5 s are used for training, 
resulting in a total of 45,000 snapshots.

The model was trained on one Nvidia A100 [35] with a batch size 
of 2 and a learning rate initially set to 1e−4, managed by an Adam 
optimizer and an exponential scheduler targeting a final rate of 1e−6 
with a maximum of 2000 training epochs.
6 
The objective is to minimize a suitable loss function between the 
SGN’s predictions (𝑨norm, 𝛥𝐸norm) and the corresponding ground truth 
values derived from the DEM data. Specifically, the total loss function 
𝑡𝑜𝑡𝑎𝑙 is a weighted sum of the loss calculated for the primary task (node 
acceleration prediction, 𝑛𝑜𝑑𝑒) and the loss for the auxiliary global 
prediction task (energy dissipation, 𝑔𝑙𝑜𝑏𝑎𝑙) as seen in Eq.  (28): 

total = 𝛼node + global (28)

with 

node =
1
𝑁

𝑁
∑

𝑘=1
𝐻𝛿

(

𝐀prednorm,𝑘 − 𝐀gtnorm,𝑘
)

, (29a)

global =
1
𝐵

𝐵
∑

𝑏=1
𝐻𝛿

(

𝛥𝐸prednorm,𝑏 − 𝛥𝐸
gt
norm,𝑏

)

. (29b)

where 𝐵 is the number of graphs in the mini-batch, 𝑁 is the total 
number of particle-node acceleration components in the batch (wall 
node excluded), 𝐀prednorm and 𝐀gtnorm are the predicted and ground-truth 
normalized per-particle accelerations (the index 𝑘 runs over all particle 
components), and 𝛥𝐸prednorm and 𝛥𝐸gtnorm are the predicted and ground-
truth normalized per-step dissipated-energy increments (the former 
produced by the global head from pooled node embeddings over par-
ticle nodes with at least one incident edge). We use the Huber penalty 
(Eq.  (30)) with threshold 𝛿 = 2: 

𝐻𝛿(𝑒) =

⎧

⎪

⎨

⎪

⎩

1
2𝛿
𝑒2, |𝑒| < 𝛿,

|𝑒| − 𝛿
2
, |𝑒| ≥ 𝛿.

(30)

The weighting factor 𝛼 (set to 3.0 in our implementation) allows 
for prioritizing the accuracy of the particle dynamics prediction during 
training relative to the global energy prediction. In this work, both 
𝑛𝑜𝑑𝑒 and 𝑔𝑙𝑜𝑏𝑎𝑙 utilize the Huber loss function. Due to the high-
energy collisions inherent in ball milling, the ground truth acceleration 
distribution can exhibit large spikes relative to median values. This 
occurs not only because of the large contact forces during impacts 
but also because sampling the DEM simulation at 𝛥𝑡𝐷𝐸𝑀  can alias 
high-frequency events. Collision dynamics occurring at the DEM’s finer 
internal timestep might not be fully resolved between samples, leading 
to apparent discontinuities or spikes in the calculated acceleration 
used for training. Consequently, the Huber loss is employed for its 
robustness to such outliers, combining the benefits of L2 loss (mean 
squared error, MSE) for small errors and L1 loss (mean absolute error, 
MAE) for large deviations. Specifically, for errors below a predefined 
threshold 𝛿, it penalizes deviations quadratically, ensuring smooth 
convergence, while for errors above the threshold, it applies a linear 
penalty, thereby reducing the influence of extreme values on the overall 
training process.

2.2.3. Recursive stage
Once trained, the SGN model enables efficient online recursive 

simulation. The process (Fig.  5) starts by initializing a state window 
with 𝜏 + 1 snapshots from DEM data. Then, for each subsequent time 
step 𝑡𝑛+1:

1. Input features are constructed from the current window ending 
at 𝑡𝑛.

2. The SGN predicts normalized acceleration 𝑨norm(𝑡𝑛) and energy 
increment 𝛥𝐸norm(𝑡𝑛).

3. Predictions are denormalized to physical units 𝑨(𝑡𝑛) and 𝛥𝐸(𝑡𝑛).
4. Particle states are advanced using a numerical integrator (e.g.,
Euler) with the surrogate simulation time step 𝛥𝑡:

𝑽 (𝑡𝑛+1) = 𝑽 (𝑡𝑛) +𝑨(𝑡𝑛)𝛥𝑡 (31)

𝑿(𝑡𝑛+1) = 𝑿(𝑡𝑛) + 𝑽 (𝑡𝑛)𝛥𝑡 (32)
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The definition of 𝛥𝑡 is critical for ensuring stability during the 
recursive simulation stage. We adopt a timestep equal to the 
training dataset’s sample frequency (0.0001 s). Using larger 
timesteps leads to stability issues, as collisions may be missed 
or excessive penetration between particles and the wall may 
occur, resulting in exponential error accumulation. This limi-
tation primarily arises from the high-energy dynamics, which 
inherently involve high velocities and accelerations that make 
spatial definition overly sensitive to small changes. Nonetheless, 
this surrogate solving timestep represents a 104× relaxation 
compared to the DEM solving timestep used in Altair® EDEM™ 
(see Table  1).

5. The wall boundary CoM for 𝑡𝑛+1 is obtained via extrapolation 
(using pre-calculated periodic splines).

6. New SDF values are recomputed from the updated particle posi-
tions 𝑿(𝑡𝑛+1) and the updated wall geometry. The graph connec-
tivity is then rebuilt: particle–particle edges 𝑒𝑖𝑗 ∈ 𝑝𝑝 are added 
if ‖𝑿𝑗 (𝑡𝑛+1) − 𝑿𝑖(𝑡𝑛+1)‖ ≤ 𝑟𝑐 (we recommend 𝑟𝑐 ≤ 1.5𝑅), and 
particle–wall edges 𝑒𝑖𝑤 ∈ 𝑝𝑤 are added if 𝜙SDF(𝑣𝑖, 𝑡𝑛+1) ≥ 𝜙pw
with 𝜙SDF < 0 representing zones inside the surface. The choice 
of 𝜙pw is guided by the DEM contact distribution (e.g., capturing 
≥90% of ground-truth PW contacts; see Fig.  4). In this work, we 
set the value at −0.0052 m, but it will vary according to the ball’s 
kinetic energy and physical properties, as they will dictate the 
depth of penetration. At sharp edges/vertices the nearest-point 
direction can be ambiguous; since edge creation uses only 𝜙SDF, 
this does not rely on normals, which are used to compute edge 
features. Residual near-wall noise is handled in Step 7.

7. Optional correction (snap-back) is applied only for shallow, 
near-wall penetrations: if 𝜙SDF(𝑣𝑖, 𝑡𝑛+1) ≥ 𝜙sb with 𝜙pw < 𝜙sb < 0, 
we project to the threshold value:
𝐱𝑖(𝑡𝑛+1) ← 𝐱𝑖(𝑡𝑛+1) −

(

𝜙𝑖 − 𝜙sb
)

𝐧𝑖, where 𝜙𝑖 = 𝜙SDF(𝑣𝑖, 𝑡𝑛+1),

𝐧𝑖 = ∇𝜙𝑖∕‖∇𝜙𝑖‖.

For deeper overlaps (𝜙SDF < 𝜙sb) no snap-back is used; the 
contact dynamics resolve the interaction (parameters 𝜙pw and 
𝜙sb are listed in Table  3). The optional correction’s sole purpose 
is to prevent nonphysical interpenetration from accumulating 
due to prediction error or integration overshoot. 

8. A new snapshot dictionary for 𝑡𝑛+1 is assembled using the up-
dated states and recalculated geometric features (including the 
re-determined contacts/edges).

9. The time window is advanced by removing the oldest snapshot 
and adding the new one.

This iterative process can be visualized in Fig.  5 and allows the sur-
rogate model to generate the system’s stable evolution over extended 
periods, driven solely by its own predictions after initialization. A 
summary of the parameters used for the architecture of the SGN and 
the recursive stage is presented in Table  3. The SGN was implemented 
using Pytorch 2.1.

3. Results and discussion

In this section, the performance of the SGN surrogate model is 
evaluated using three distinct assessment methods. First, we measure 
how accurately the model predicts the bulk dynamics of the standard 
high-energy ball milling process in the Emax machine. Second, we 
assess performance using a mechanochemistry-specific variable: the 
global energy dissipation of the system, which continuously increases 
as collisions occur. Our previous work has shown that this variable can 
effectively characterize a mechanochemical process from a mechanical 
standpoint [4]. Third, we evaluate the model’s generalization by testing 
its ability to handle unseen motions and modifications to the base 
geometry. These evaluations are crucial to demonstrate the potential of 
the method in the iterative design processes required to scale up and 
7 
Table 3
Key parameters for SGN model architecture and recursive simulation loop.
 Parameter Value Unit/Description 
 Model architecture
 History window Size (𝜏 + 1) 7 Time steps  
 Hidden dimension 256 –  
 MLP layers 4 –  
 Interaction layers (𝐿𝑝) 1 –  
 Huber loss threshold (𝛿) 2 –  
 Loss weighting factor (𝛼) 3 –  
 Recursive simulation loop
 Time step (𝛥𝑡) 1 × 10−4 s  
 Integration type Euler –  
 PP contact threshold (𝑟𝑐 ) 0.0015 m  
 PW contact threshold (𝜙𝑝𝑤) −0.0052 m  
 Snap-back threshold (𝜙𝑠𝑏) −0.0049 m  
Contact rules: We adopt 𝜙SDF < 0 inside the geometry. PP edges are added when 
‖𝛥𝐱‖ ≤ 𝑟𝑐 . PW edges are added when 𝜙SDF ≥ 𝜙𝑝𝑤. Snap-back is applied only when 
𝜙SDF ≥ 𝜙𝑠𝑏, with 𝜙𝑝𝑤 < 𝜙𝑠𝑏 < 0.

Fig. 4. Distribution of SDF values for particle–wall contacts. Values closer to 
zero indicate proximity to the wall. The defined threshold of −0.0052 covers 
over 90% of all particle–wall contacts.

optimize processes.  A sensitivity analysis of critical hyperparameters 
in Table  3, together with an ablation study on the relevance of the 
global loss global, can be found in Appendix, where we show how the 
predictive capacity and stability of the model are affected.

3.1. Standard high-energy milling process

The model was trained on 4.5 s of high-resolution data generated 
by a DEM simulation, which also serves as the initial benchmark (Fig. 
6). To evaluate the accuracy and stability of the model when predicting 
the bulk motion of particles in the system, it is run recursively (online) 
for 15 s. At each available time step 𝑡, we compare the predicted 
ball positions 𝐗̂𝑡 to the ground-truth reference 𝐗𝑡 (see Fig.  7), and 
compute spatial MSE according to Eq.  (33). We report the MSE because, 
while the Huber loss was used during training to reduce the influence 
of occasional high-frequency acceleration spikes, MSE provides a sin-
gle, widely understood scalar that directly quantifies average squared 
deviations in particle positions for straightforward benchmarking of 
bulk-dynamics accuracy. 

MSE𝑡 = 1
𝑁

𝑁
∑

𝑖=1

‖

‖

‖

𝐗̂(𝑖)
𝑡 − 𝐗(𝑖)

𝑡
‖

‖

‖

2
(33)

Although this is the simplest objective of the model, it is crucial to 
ensure stability and accurate global predictions, which rely on accurate 
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Fig. 5. SGN recursive loop flowchart.
Fig. 6. Standardized loss history for the SGN surrogate model. Note that the 
MSE loss is shown for comparison purposes.
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bulk dynamics and proper collision identification. Looking at Fig.  7, 
it is possible to visualize the oscillatory motion of the system and its 
effect on the predictions. The peaks of these curves coincide with the 
moments where the milling jar changes direction in the 𝑥-axis. Then, 
the predicted global energy dissipation can be compared in Fig.  8.

Thus, the combination of Figs.  7 and 8 shows that the SGN model is 
capable of accurately representing the bulk motion of the high-energy 
system and maintaining an accurate track of the energy dissipation that 
occurs in the system with a stable relative error of 2.78% while using 
a solving timestep 104× larger than the original DEM simulation.

To provide a more intuitive representation of the accuracy of the 
predictions, we used Blender 4.3.2 to reproduce the motion of the 
milling balls predicted by the SGN and compare them to the original 
DEM visualization. This can be seen in Fig.  9.

3.2. Unseen motions

Upon establishing that the model can accurately represent the orig-
inal bulk dynamics and energy dissipation, we now test the model with 
two new, unseen motions that have a direct effect on the dynamics 
of the milling balls. To define these arbitrary motions, we use two 
different Lissajous curves as they operate under the cyclic behavior that 
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Fig. 7. MSE loss history for the recursive (online) stage of the SGN. Here, time is measured from 𝑡 = 5 s, marking the start of motion in the DEM simulation, 
which provides reference data only up to 𝑡 = 10 s. Beyond this point, the model is let run recursively until 𝑡 = 15 s.

Fig. 8. Cumulative energy dissipation: comparison of SGN-predicted versus DEM ground-truth energy dissipation. Note that DEM simulation stops at 𝑡 = 10 s.

Fig. 9. Comparison grid of DEM and SGN simulation results.

Powder Technology 468 (2026) 121653 
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Fig. 10. Lissajous motions used for testing the SGN.

a typical high-energy ball mill experiences. The trajectories of the two 
tested motions are shown in Fig.  10, and where implemented in Altair®
EDEM™ according to Eqs.  (34) and (35).

Motion 1 
𝑥1(𝑡) = 1.7 sin

(

10𝜋 𝑡
)

− 0.85 cos
(

20𝜋 𝑡
)

,

𝑧1(𝑡) = 1.7 cos
(

10𝜋 𝑡
)

− 0.85 sin
(

20𝜋 𝑡
)

.
(34)

Motion 2 
𝑥2(𝑡) = 1.7 sin

(

10𝜋 𝑡
)

,

𝑧2(𝑡) = 1.7 cos
(

20𝜋 𝑡
)

.
(35)

The model is capable of reproducing accurate and stable predictions 
of the bulk dynamics for both unseen motions, with MSE errors com-
parable to those of the standard case presented in the previous section, 
as per Fig.  11 and can be visualized in Figs.  12 and 13.

The model’s ability to predict energy dissipation is substantially 
weaker than its performance on bulk dynamics. For Motion 1, the 
predictions maintain a constant relative error of 23.84%. For Motion 
2, the error rises to a steady 46.62%. Nonetheless, the shape of the 
time series is captured remarkably well. In both cases, the simulation 
follows not only the overall trend but also the short-time-scale wiggles 
(i.e., the small, rapid oscillations super-imposed on the mean growth, 
so the predicted and reference curves rise and fall almost in lock 
step). This can be quantified by the Pearson correlation coefficient 
(𝑟 = 0.9998 for both cases). Pearson’s 𝑟 measures linear association 
between two variables: an 𝑟 of 1 means every peak, dip, and inflection 
in one series occurs at exactly the same relative level in the other 
(perfect synchrony of the wiggles), while an 𝑟 of 0 would indicate no 
consistent linear pattern. Because 𝑟 is insensitive to uniform scaling 
or offsets, the coefficient can be close to 1 even when the absolute 
magnitudes are biased, as we see here. In other words, the model 
slightly underestimates the magnitude of each dissipation event, but 
it gets the timing and relative spacing of those events almost perfectly 
right. This can be visualized in Figs.  14 and 15. To address this scaling 
bias, one could expand the training set to cover a broader spectrum 
of dissipation magnitudes, introducing both lower and higher energy 
cases. This would encourage the network to learn appropriate scaling 
factors across broader operational ranges, reducing systematic bias and 
improving calibration of its outputs. Finally, by exposing the surrogate 
to diverse collision magnitudes and scenarios, its transferability to new 
systems should improve, potentially eliminating the need for manual 
post-processing adjustments. We intend to explore this in a future 
study.
10 
3.3. Modifications to original geometry

To test the hypothesis that the underestimation of energy dissipation 
magnitude in unseen motions arises from a mismatch in the distribution 
of known collision and velocity features, and at the same time probe 
the model’s ability to handle unseen geometric features, we introduce 
a slightly tweaked design to boost the collision frequency. Specifically, 
we insert a cylindrical barrier at the center of the jar (see Fig.  16) and 
drive the system with Motion 1 (see Fig.  10).

By combining this geometry modification with Motion 1, we can 
also verify whether the surrogate still generates physically plausible 
particle trajectories and remains numerically stable when both jar 
shape and motion lie outside its training reference. To illustrate our 
hypothesis in action, we compare the model’s predicted cumulative 
energy dissipation for the modified geometry + Motion 1 case against 
the original geometry + Motion 1 ground-truth curve (see Fig.  17). 
Although this reference no longer corresponds to the actual physics 
of the modified geometry, it serves as a controlled experiment: if the 
barrier boosts collision frequency, thus increasing the net impact statis-
tics, then, when we compare its predictions to the original geometry 
baseline, the underestimation bias should shrink.

Indeed, we observe a substantial drop in relative error to 5.97%, 
confirming that the original dissipation bias stems from a mismatch 
in feature distributions. The numerical agreement of this comparison 
has no physical validity; it exists solely to validate our distribution-
matching hypothesis. Furthermore, the snapshots in Fig.  18 are pre-
sented solely for illustration; they demonstrate that the model accu-
rately handles modifications to the original geometry while remaining 
stable over time.

3.4. Runtime

On an Apple M1 Max (10-core CPU; CPU-only to match the DEM 
run requirements), an SGN rollout of the Emax case (15 s physical time, 
𝛥𝑡 = 10−4 s) completed in 3443 s (∼57min), whereas the corresponding 
DEM simulation to solver completion took 22,734 s (∼379min). Thus, 
the SGN was about 6.6× faster with an 84.9% shorter runtime. This 
comparison excludes the subsequent post-processing of DEM data re-
quired to compute the dissipation target 𝛥𝐸; including it would further 
increase the DEM wall clock as it requires manual processing, so we 
report the solver time only. We observe similar speedups across all our 
tested cases. In profiling, SDF re-evaluation dominates SGN runtime 
due to the rapidly moving boundary; this cost is hard to avoid because 
accurate particle–wall spatial information must be maintained each 
step for stability. Additionally, increasing 𝛥𝑡 leads to missed contacts 
or boundary escapes given the high rotational speed.

4. Conclusions

In this work, we developed and validated a Signed-Distance-
Function Graph Neural Network (SGN) that serves as a faithful sur-
rogate for Discrete Element Method (DEM) simulations of high-energy 
ball milling. By embedding the jar geometry directly through an SDF 
field that supports dynamic translational motion, the model overcomes 
the static, non-translational boundary limitations of previous surro-
gates. When coupled with a message-passing graph network, it captures 
both particle–particle and particle–wall interactions effectively. In con-
trast with previous surrogates, the SGN is also specifically designed to 
handle the high-impact velocities and collision frequencies characteris-
tic of high-energy milling processes. Training on 45,000 high-resolution 
DEM snapshots, the SGN simultaneously learns local accelerations and 
a global energy dissipation metric, providing a physics-aware descrip-
tion that goes beyond purely kinematic fits. This secondary metric 
is especially informative for mechanochemistry because cumulative 
dissipated energy directly tracks the mechanical work that activates 
solid-state reactions, but it could be changed to accommodate other 
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Fig. 11. MSE loss history comparison for (a) Motion 1 and (b) Motion 2.
Fig. 12. Comparison grid of DEM and SGN simulation results for unseen Motion 1.
Fig. 13. Comparison grid of DEM and SGN simulation results for unseen Motion 2.
applications. For instance, in fluidized bed reactors the model could 
instead output granular temperature to monitor mixing efficiency; in 
hopper or silo flows, it could report stress accumulation to predict 
clogging by swapping the global target from 𝛥𝐸norm to a wall-region 
stress (e.g., von Mises stress in a region of interest) and time-integrating 
it over the rollout; and in continuous granulation processes it could 
track particle residence time to optimize throughput.

Benchmarking against a reference DEM simulation of the Emax
mill revealed that the surrogate reproduces bulk motion with a mean 
11 
squared error plateau of ∼2 × 10−4 m2 and tracks cumulative energy 
dissipation with a stable 2.8% relative error. Importantly, these results 
are obtained with a time step of 1 × 10−4 s, equivalent to a 104×
relaxation over the DEM solver step (9.5×10−7 s). The ability to function 
with such relaxed temporal resolution while remaining numerically 
stable makes the SGN a promising drop-in replacement for exploratory 
studies, sensitivity scans and digital-twin applications.  On runtime, 
the CPU-only rollout was ∼6.6× faster than the DEM solver, and this 
comparison excludes the additional DEM post-processing required to 
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Fig. 14. Cumulative energy dissipation for unseen Motion 1: comparison of SGN-predicted versus DEM ground-truth energy dissipation. Note that we plot until 
𝑡 = 7 s to facilitate the observation of the dissipation’s evolution.
Fig. 15. Cumulative energy dissipation for unseen Motion 2: comparison of SGN-predicted versus DEM ground-truth energy dissipation. Note that we plot until 
𝑡 = 6 s to facilitate the observation of the dissipation’s evolution.
Fig. 16. Modification to original geometry by adding a cylinder at its center.
12 
compute 𝛥𝐸𝑡𝑜𝑡𝑎𝑙. Profiling shows that SDF evaluation dominates cost be-
cause fast boundary motion requires maintaining accurate per-particle 
spatial context each step, and increasing 𝛥𝑡 to reduce these calls proved 
unviable at high RPM due to missed contacts and boundary escapes; 
further wall-clock gains are therefore most likely from SDF-derived 
calculation optimization

The surrogate also exhibits strong generalization when driven by 
two previously unseen motions. It preserved stable dynamics and kept 
trajectory errors within the same bounds observed for the trained 
motion. Although the absolute scale of energy dissipation was under-
predicted (about 24% and 47%, respectively), the temporal evolution 
was captured with near perfect correlation (𝑟 ≈ 0.9998), indicating 
that the model internalizes the underlying physics but needs broader 
training data to calibrate energy magnitudes outside of its original set.

Geometric robustness was tested by inserting a cylindrical obstacle, 
absent from the training set, and combining it with an unseen driving 
motion. The surrogate remained numerically stable under this com-
bined distribution and, once the barrier increased the ball’s collision 
frequency, its energy-dissipation error (measured against the original-
geometry baseline used for hypothesis testing) fell to roughly 6%. While 
this comparison is not physically meaningful for the altered jar, it 
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Fig. 17. Cumulative energy dissipation distribution-matching experiment: comparison of SGN-predicted energy versus the DEM baseline reference (original 
geometry + Motion 1). Note that this ground-truth comparison has no physical validity but serves to illustrate how slowing particle kinematics reduces the 
under-prediction bias.
Fig. 18. SGN simulation results for modified geometry and Motion 1.
supports the idea that the earlier under-prediction stemmed from a 
distribution shift rather than a fundamental limitation of the model.

Overall, these findings demonstrate that SDF-based graph surrogates 
can compress high-fidelity DEM physics into a lightweight neural sim-
ulator that is both fast, transferable and can handle complex motions 
and geometries. Such capability opens avenues for iterative milling 
jar optimization, large-scale parameter sweeps for mechanochemical 
scale-up, and closed-loop control strategies.

Several challenges remain:

• Material diversity : the current network is trained on a single 
material system; extending the feature set to particle radius, fill 
ratio and restitution distributions is a logical next step.

• Energy calibration: the bias observed under out-of-distribution mo-
tions points to the need for data augmentation spanning a wider 
velocity and energy spectrum.

• Uncertainty quantification: ensemble or Bayesian message-passing 
variants would provide a direct performance indicator by relating 
the model’s predictive variance to deviations from ground-truth 
DEM data, yielding confidence intervals around mean predic-
tions. This is crucial because granular processes are inherently 
stochastic and sensitive to initial conditions, so quantifying pre-
dictive uncertainty helps detect out-of-distribution scenarios and 
supports risk-aware decision making in industrial deployment.
13 
The present study marks an advance toward data-driven acceler-
ation of granular-process simulations. By releasing all code and pre-
processing tools as open source, we hope to catalyze community adop-
tion, foster reproducibility, and ultimately shorten the innovation cycle 
for sustainable mechanochemical technologies.
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Appendix. Hyperparameter sensitivity and global-loss ablation

In this section, we analyze how the performance of the surrogate 
model is affected by a different selection of hyperparameters from 
those reported in Table  3, and an ablation of the global loss global
(see Eq.  (28)). Since the model has two objective predictions, we 
employ the following rationale: if the model maintains a stable error 
when predicting particle dynamics, then we test if the global energy 
dissipation is predicted accurately. We assess the influence of these 
hyperparameters based on the model’s capacity to predict the standard 
milling process in the Emax machine. 

History window (W)

The selection of the history window size is critical to allow the 
model to learn sufficient information about how a typical collision 
evolves in the system. Too long of a window will effectively introduce 
noise that the model will not be able to resolve and lead to unstable dy-
namic predictions (see Fig.  A.2). Our results also indicate that selecting 
a window size that covers less than the median collision duration can 
lead to stable dynamic prediction, but will result in less accurate energy 
dissipation predictions (see Fig.  A.1). Thus, we recommend selecting a 
window size that encompasses at least the median duration, and does 
not exceed this time by more than 40%. In the case of this work, 
the median collision duration is 0.0005 s, and each window frame 
contributes 0.0001 s.

Interaction layers (𝐿𝑝)

The number of interaction layers defines how many times node 
messages are passed and aggregated before making a prediction. Intu-
itively, deeper interaction modules allow the model to capture more 
complex multi-body effects, but given the small number of particles 
in the system, the number of collisions with more than 2 elements 
involved is relatively scarce. As a result, using more than 1 layer leads 
to unstable predictions. When using 2 interaction layers, the dynamic 
predictions of the particle manage to stay within the jar bounds, but 
they become chaotic, leading the energy dissipation predictions to 
grow without bound (see Fig.  A.3). Using even more layers (i.e. 4) 
leads to unstable dynamic predictions (see Fig.  A.4). Nonetheless, we 
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suspect that a system with significantly more multi-body interactions 
will necessitate more interaction layers. We recommend consulting the 
studies mentioned in the introduction since they cover systems where 
multi-body interactions are more prevalent.

Hidden dimension (neuron number)

The number of neurons in the model’s hidden layers defines its 
representational capacity for capturing the nonlinear dynamics of par-
ticle collisions. Too few neurons constrain the model’s ability to predict 
energy dissipation accurately, although the dynamics remain stable and 
precise (see Fig.  A.5).

Conversely, an excessively large hidden dimension increases the 
risk of overfitting to training noise, which can manifest as unsta-
ble long term predictions or reduced generalization capability. How-
ever, determining the precise network width at which overfitting first 
appears would require a broader hyperparameter sweep, which was 
unnecessary for this work.

MLP layer number

The number of MLP layers defines the depth of successive nonlinear 
transformations applied to each node’s aggregated features, thereby 
controlling the model’s capacity to approximate complex mappings 
between the current particle states and their future dynamics. Using too 
little hidden layers (i.e. 2) leads to highly unstable dynamic predictions 
(Fig.  A.6).

Similarly, using too many hidden layers can introduce vanishing or 
exploding gradient issues during training, increase the model’s suscepti-
bility to overfitting, and substantially raise computational cost. In our 
experiments, since four MLP layers achieved stable convergence and 
accurate predictions, we did not investigate deeper architectures.

PW contact threshold value (𝜙𝑝𝑤)

The PW contact threshold (𝜙pw) defines the near-wall region in 
which a particle–wall edge is created (edges added when 𝜙SDF ≥ 𝜙pw, 
with 𝜙SDF < 0 inside the jar). A shallower threshold (less negative, 
closer to zero) narrows this band and can miss near-wall interactions 
or lead to particle escape from the domain. A deeper threshold (more 
negative) widens the band, increasing PW edge density. We probe 
with two perturbations around the baseline −0.0052m: a shallower 
−0.0049m and a deeper −0.0055m, adjusting the snap-back level as 
𝜙sb = 𝜙pw + 0.0003m to maintain 𝜙pw < 𝜙sb < 0.

In both cases, the kinematics of the system remain stable, but the 
energy dissipation prediction behavior differs. With a PW threshold 
Fig. A.1. Cumulative energy dissipation for window size = 3.



S. Garrido Nuñez et al.

Fig. A.2. MSE loss history for window size = 9.

Fig. A.3. Cumulative energy dissipation for interaction layer size = 2.

Fig. A.4. MSE loss history for interaction layer size = 4.
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Fig. A.5. Cumulative energy dissipation for neuron number = 64.

Fig. A.6. MSE loss history for MLP layer size = 2.

Fig. A.7. Cumulative energy dissipation for shallower 𝜙𝑝𝑤 = −0.0049 m.
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Fig. A.8. Cumulative energy dissipation for shallower 𝜙𝑝𝑤 = −0.0055 m.
Fig. A.9. Ablation of the global loss global.
closer to zero, grazing contacts are minimized, and the active PW-
edge set shrinks to only the most wall-proximal, high-intensity events. 
This stronger set inflates the predicted per-step dissipation, so the 
cumulative energy overshoots the DEM ground truth; in this case, the 
relative error reaches 15.45% (see Fig.  A.7).

Conversely, when the PW threshold becomes more negative, more 
grazing interactions are detected, the active PW-edge set enlarges, and 
mean pooling over this larger, lower-intensity set reduces the predicted 
increment. It should be noted that deeper thresholds increase the risk 
of false positive detections. In this case, the prediction undershoots the 
DEM reference, with a relative error of 4.18% (Fig.  A.8). For a safe 
rollout, we recommend selecting a threshold that recovers ≥90% of 
DEM PW ground truth contacts.

Global-loss ablation (global)

Finally, we perform a ablation directly from Eq.  (28) by setting 
global = 0, so the objective reduces to total = 𝛼node (all other 
settings in Table  3 unchanged). Without supervision on the global head, 
the predicted per-step dissipation becomes severely miscalibrated: the 
cumulative curve overshoots DEM with a relative error 514.35% at the 
end of the rollout, even though the kinematics remain stable (see Fig. 
A.9). This confirms that global is necessary to calibrate the magnitude 
of dissipation; otherwise, its scale is unconstrained and drifts upward.
17 
Data availability

The data and code will be made available in the link mentioned in 
the paper.
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