## From resource draining to maintaining:

## A research on improving urban metabolism

with urban farming methods.

Author: S. van Stralen svanstralen@tudelft.nl

Delft University of Technology Julianalaan 134, 2628BL Delft

## Acronyms

| CEA =                                                                        | Controled Environment Agriculture                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MFA =                                                                        | Material Flow Analysis                                                                                                                                                                                                                                                                  |
| WTE =                                                                        | Waste To Energy                                                                                                                                                                                                                                                                         |
| WWTP =                                                                       | Waste Water Treatment Plant                                                                                                                                                                                                                                                             |
| CHP =                                                                        | Combined Heat and Power                                                                                                                                                                                                                                                                 |
| HVAC =                                                                       | Heat, Ventilation and Air-Conditioning                                                                                                                                                                                                                                                  |
| MSW =                                                                        | Municipal Solid Waste                                                                                                                                                                                                                                                                   |
| OFMSW =                                                                      | Organic Fraction of Municipal Solid Waste                                                                                                                                                                                                                                               |
| SW =                                                                         | Sewage Waste                                                                                                                                                                                                                                                                            |
|                                                                              |                                                                                                                                                                                                                                                                                         |
| NPK =                                                                        | Nitrogen (N), phosphorus (P), and potassium (K), macro-nutrients                                                                                                                                                                                                                        |
|                                                                              | used by plants to grow.                                                                                                                                                                                                                                                                 |
| PPM =                                                                        | Parts Per Million                                                                                                                                                                                                                                                                       |
|                                                                              |                                                                                                                                                                                                                                                                                         |
|                                                                              |                                                                                                                                                                                                                                                                                         |
| J =                                                                          | Joules                                                                                                                                                                                                                                                                                  |
| J =<br>GJ =                                                                  | Joules<br>Gigajoules (J x 10º)                                                                                                                                                                                                                                                          |
| J =<br>GJ =<br>TJ =                                                          | Joules<br>Gigajoules (J x 10º)<br>Terajoules (J x 10'²)                                                                                                                                                                                                                                 |
| J =<br>GJ =<br>TJ =<br>PJ =                                                  | Joules<br>Gigajoules (J x 10°)<br>Terajoules (J x 10 <sup>12</sup> )<br>Pentajoules (J x 10 <sup>15</sup> )                                                                                                                                                                             |
| J =<br>GJ =<br>TJ =<br>PJ =<br>W =                                           | Joules<br>Gigajoules (J x 10°)<br>Terajoules (J x 10 <sup>12</sup> )<br>Pentajoules (J x 10 <sup>15</sup> )<br>J / s                                                                                                                                                                    |
| J =<br>GJ =<br>TJ =<br>PJ =<br>W =<br>kW =                                   | Joules<br>Gigajoules (J x 10°)<br>Terajoules (J x 10 <sup>12</sup> )<br>Pentajoules (J x 10 <sup>15</sup> )<br>J / s<br>Kilowatt (W x 10 <sup>3</sup> )                                                                                                                                 |
| $J =$ $GJ =$ $TJ =$ $PJ =$ $W =$ $kW =$ $MW_{th} =$                          | Joules<br>Gigajoules (J x 10°)<br>Terajoules (J x 10 <sup>12</sup> )<br>Pentajoules (J x 10 <sup>15</sup> )<br>J / s<br>Kilowatt (W x 10 <sup>3</sup> )<br>Megawatt (W x 10 <sup>6</sup> ) thermal energy                                                                               |
| $J =$ $GJ =$ $TJ =$ $PJ =$ $W =$ $kW =$ $MW_{th} =$ $MW_{e} =$               | Joules<br>Gigajoules (J x 10°)<br>Terajoules (J x 10 <sup>12</sup> )<br>Pentajoules (J x 10 <sup>15</sup> )<br>J / s<br>Kilowatt (W x 10 <sup>3</sup> )<br>Megawatt (W x 10 <sup>6</sup> ) thermal energy<br>Megawatt (W x 10 <sup>6</sup> ) electric energy                            |
| $J =$ $GJ =$ $TJ =$ $PJ =$ $W =$ $kW =$ $MW_{th} =$ $MW_{e} =$ $KWh =$       | Joules<br>Gigajoules (J x 10°)<br>Terajoules (J x 10 <sup>12</sup> )<br>Pentajoules (J x 10 <sup>15</sup> )<br>J / s<br>Kilowatt (W x 10 <sup>3</sup> )<br>Megawatt (W x 10 <sup>6</sup> ) thermal energy<br>Megawatt (W x 10 <sup>6</sup> ) electric energy<br>Kilowatt hour (3600 KJ) |
| $J =$ $GJ =$ $TJ =$ $PJ =$ $W =$ $kW =$ $MW_{th} =$ $MW_{e} =$ $KWh =$       | Joules<br>Gigajoules (J x 10°)<br>Terajoules (J x 10 <sup>12</sup> )<br>Pentajoules (J x 10 <sup>15</sup> )<br>J / s<br>Kilowatt (W x 10 <sup>3</sup> )<br>Megawatt (W x 10 <sup>6</sup> ) thermal energy<br>Megawatt (W x 10 <sup>6</sup> ) electric energy<br>Kilowatt hour (3600 KJ) |
| $J =$ $GJ =$ $TJ =$ $PJ =$ $W =$ $kW =$ $MW_{th} =$ $MW_{e} =$ $KWh =$ $T =$ | Joules<br>Gigajoules (J x 10°)<br>Terajoules (J x 10 <sup>12</sup> )<br>Pentajoules (J x 10 <sup>15</sup> )<br>J / s<br>Kilowatt (W x 10 <sup>3</sup> )<br>Megawatt (W x 10 <sup>6</sup> ) thermal energy<br>Megawatt (W x 10 <sup>6</sup> ) electric energy<br>Kilowatt hour (3600 KJ) |

## Abstract

The area of Amstel III will drastically change by 2040 into a lively urban district. This change allows for the rethinking of the urban metabolism of the area, to shorten the material cycles and by better utilization of resources. Through estimation and calculations on potential flows related to energy, water, and organic material the potential impact of urban farming is given with a plausible configuration for the 2040 scenario. Organic waste flows are significant enough to provide the necessary nutrition for about 4250 tonnes of food yearly, which is a large portion of the diet consumed in Amstel III. To enable this food production urban farms of 70 ha of arable land and 80 ha of CEA need to be integrated into the urban plan, and additional engines such as a local biodigester, CHP and simple WWTP are necessary. Furthermore, there is much potential in the harnessing of solar, wind and thermal energy in the district, potentially making the district for nearly 75% independent on energy. The impact of the proposed configuration of the metabolism could save valuable depletable mineralized fertilizers, for example about 12 tonnes of phosphorus and 29 tonnes of nitrogen can be recovered each year in the form of digestate, as well can 15000 tonnes of carbon dioxide be captured from the organic waste to be utilized for food production in CEA.

## Introduction

This paper explores the potential of the development of urban farming methods in the Amstel III area as a means to improve the circularity and self-sufficiency of its urban metabolism. This as the groundwork for the development of strategy and design intervention for the area. Currently, the Amstel III area is starting to transform from an entertainment, vacant office and business area to a lively mix of different kinds of functions with the introduction of housing, a transformation with the characteristics of a small city. One of the ambitions set by the municipality is to develop the area into a sustainable district. An honorable ambition which should also be a necessity these days. (ZO!City, & Gemeente Amsterdam. (2015)) The existing plans look at the utilization of excess heat for housing and there are plans for the harnessing of wind energy, but an all-inclusive plan is not been made on the overall sustainability of the district.

The scale and program of Amstel III offer a new approach to the topic of sustainability, more according to the concept of urban metabolism and with a broader range of topics. Looking beyond the built environment and think about the use of the area becomes a new chapter in sustainability. Could for instance Amstel III not only become an example of sustainable energy, but also a front runner on the topic of nutrition management? This as a way to extract more from waste streams and save valuable nutritional resources from exhaustion (Fixen, P. E. (2010)).

It is proven that since the industrialization

modern cities have become absorbers of resources extracted from elsewhere, became detached from their hinterlands and the natural cycle of resources. They developed an urban metabolism that is characterized as being linear. Exemplary, Amsterdam, unfortunately, incinerates most of its waste, including most organic waste, with it a large fraction of depletable nutritions still present in the matter (Kool, A., Marinussen, M. & Blonk, H. (2012)). At the same time, the world becomes more and more urbanized, a trend that brings with it the rise of food-illiteracy. The first purpose of this paper is to visualizes the energy, water and organic material flows of Amstel III, secondly it researches the potential impact of urban farming and thereby aims to give an alternative strategy in which urban farming can be used to improve the metabolism. Furthermore, a potential configuration of urban farming is made including the essential engines to set up the scheme.



Research Framework

## **|** Metabolism of Amstel III 2040

The purpose of this research is to determine the hypothetical role of different methods of urban farming in its urban metabolism and to deliver a strategy, the research will focus on the flows related to urban farming. Therefore it extends to three different topics that are affected by urban farming. This way the MFA is narrowed down to the topics energy, water, and organic material flows. Conclusions made out of the total of the three MFA's are on the scale of Amstel III as a single system, this done because three different fields have different subsystems to take into account which cannot be compared directly with one another. This scale is chosen since the area exist out of many different actors and is based on a prognosis of Amstel III in 2040, a thorough research on for example on building scale would not only surpass the goal for an overall strategy of the area but it would be a task too complex with too many uncertainties to deliver hard conclusions. Therefore the different subsystems of Amstel III are simplified into a maximum of four to six elements for each MFA when the data is not available for this scale an area sized estimation is given on the total of Amstel III based on comparable researches. Also, subsystems who are not directly related to urban farming such as traffic and indirect flows that pass through the system but do not interact are not included in the final MFA's.

## 1.1 Energy

For the input, the different energy flows analyzed are electricity, natural gas, thermal (cold/heat) and potential local renewable energy sources. Biomass as an energy source will be handled in the organic MFA. The function analysis of the area (Appendix I.II & II.II) shows the most important actors in the area in the field of energy. These are summarized as the industry and offices of the area of Amstel III, the Medical Center (AMC), the multiple data centers and the entertainment boulevard (Bijlmerpoort West). For the situation of 2040, an extra subsystem is included, which is the addition of 15,000 households (ZO!City, & Gemeente Amsterdam. (2015))





Figure A, Appendix I.II Program map

Figure B, Appendix II.II Energy network

## 1.1.1 Natural gas

It is clear that the current situation is still heavily dependent on natural gas, the MFA (Appendix II.VIII) shows the drastic changes that need to take place to make Amstel III 2040 proof.



Figure C, Appendix II.VIII current energy MFA

Amsterdam wants to get rid of its dependence on fossil fuels for the energy of the city by 2050 (Gemeente Amsterdam, (n.d.)). Amstel III consumes 4% of the total natural gas of Amsterdam, which has a caloric value of 1105TJ. (Appendix II.I) In the current situation, the largest consumer of natural gas is the AMC. The city block it is part of (city block 22656) consumes nearly halve the natural gas demand of the area. (Appendix II.I), as it is partly being used to generate electricity for the building. Natural gas is now primarily being used for heating of buildings. (Choi, C., & Van Heeswijk, T. (2014)) The municipality's strategy is to replace natural gas by district heating in combination with better insulation of buildings as an alternative. (Voskamp, I. M. (2017))

## 1.1.2 Electricity

Currently, Amstel III is responsible for 6% of the total electrical energy consumption of Amsterdam, about 1006 TJ (Appendix II.I). According to Choi, only 6% of this energy is considered sustainable,

furthermore, about three quarters comes from a Waste To Energy (WTE) plant (AEB). Which makes the label sustainable energy for the mentioned flow disputable. Specifically, Amstel III requires relatively more electricity as opposed to natural gas probably due to the 4 data centers in this area. (Appendix II.II) Locally the renewable electrical energy is delivered by a collection of PV-pannels, most of them are positioned on the roof of the J.C. ArenA. (Appendix II.II) As by now, only a small fraction of the solar power in the area is being used delivering about 4 TJ in 2017. If all of the 85 ha rooftop (Appendix III.IV) would be covered with PV-pannels with an efficiency of 15% about 410 TJ yearly would be reachable. (Appendix II.III)



The western part of Amstel III is suitable for the harnessing of wind energy as seen in figure B, Appendix II.II. According to maps.amsterdam.nl, it has the potential of generating 389 TJ yearly. In the future, the demand for electrical energy for the area will probably increase due to the coming of a fifth data center and the addition of housing to the area. (Restwarmte datacenters voor nieuwbouwproject Amstel III. (n.d.)) (Voskamp, I. M. (2017)) On the other hand, the average energy demand per function will drop due to better building physical properties, such as isolation, ventilation, more efficient equipment, and heat recovery units.

## 1.1.3 District heating

Underneath the ground of Amstel III, there is a network of tubes for heat and cold energy distribution. (Appendix II.II) The area is one of the first in Amsterdam to have received district heating. Its network is connected to the districting heating of Amsterdam Zuid, Zuid-Oost and Amstelveen. The Diemercentrale is the main provider with 1.8 PJ to 19 thousand users of the total network in 2018, this number is expected to grow to 33k users with a capacity of 2.3 PJ in 2023. Currently, this thermal energy is a product of natural gas as Diemercentrale is a Combined Heat and Power plant (CHP), however, policy is to move to renewable sources in the future (ECN & TNO (2019)). Vattenfall, the owner of the plant, had plans to built a new biomass-fueled power plant to deliver heat energy and electrical energy, however, these plans are in jeopardy due to critique on the sustainability and local environmental impact of the plant. In Amstel III numerous office buildings on the eastern side are connected to the district heating and using the warmth, the amounts they use are not given. According to maps.amsterdam.nl there are two local suppliers of heat energy; the J.C. ArenA and the AMC, together with good for 8 TJ of thermal energy in 2017 (figure C, Appendix II.VI). The data centers in the area do not seem to provide thermal energy to the net, this is an opportunity still to be utilized. According to an article on this topic on the data centers in Amstel III, it can provide for thermal heat of about 30 C°. From data on heat production by data centers and the total surface area it is estimated in Appendix I.III to be that these facilities could provide for 163 TJ of heat energy in 2040. (Netherlands Data Centers & Colocation (n.d.)).



Figure E, Appendix II.VI Thermal energy

## 1.1.4 District cooling

South-west from Amstel III lies the Ouderkerkerplas, a man-made lake that is now being used to extract cold thermal energy due to its dept. The lake cools down in the winter, creating a buffer for cold energy in the summer as cold as 12°C. This method of cold extraction can be regarded as an efficient and nearly passive way to supply for the cold demand of the area. Through a system of tubes, a large area of the Amstel III area is covered. (Appendix II.II) Plans for the system were set up by energy company NUON in 2007 and the system was put in use in 2010. Users of the system would be the AMC, office buildings in Amstel III in Bullewijk and Amsterdam Poort. (Appendix II.IV) It was estimated that the area would demand 54 MWth average, this amount of thermal actual energy would translate to saving about 68TJ yearly of electrical energy compared to a standard Energy Recovery Ventilation systems used in offices with an efficiency of 2.5. (Eilering, J. A. M., & N.V., N. W. (2007) ) Interesting is that only about 36% of an average year's cold capacity of Ouderkerkerplas was being utilized in this plan. Furthermore the use of Gaasperplas, which lies further to the east of Amstel III, as cold source was taken into account, however, the website of www. amsterdam.maps does not show a cold-net including Gaasperplas in the system. In an article from 2016 a representative of NUON mentions that the demand for cold energy was lesser than expected in 2007 due to the canceling of the construction of new offices during that time and less utilization of the cold energy by the connected buildings. (Bouw en Uitvoering (2016)) This implies that there is still huge potential for using the cold capacity of Ouderkerkerplas, probably about 80% which is untapped.

## 1.1.5 Future waste energy and energy saving

The efficiency in which the energy is utilized is influenced by the insulation, use, equipment and installations of the buildings. According to Dirk Sijmons (2014) in his book Landscape and Energy, in the current situation, about 20 % of the energy is unused in utility building. This is factor resembles the data analysis of ECN & TNO. (2019) in Rapport Monitoring Warmte 2017. This mostly escapes as excess heat. For the scenario of 2040, energy demand for heating is taken to be reduced with 20% due to better utilization of heat and better isolation. (Figure C and F, Appendix II.VIII and II.VIV)



Figure F, Appendix II.VIV energy MFA 2040

## 1.2 Water

On the topic of water two flows are analyzed, these are the flows of precipitation and that of drinking water. The scope of this study is to first know the quantities of water and secondly to discover where these lead to.

#### 1.2.1 Precipitation

According to www.climate-data.org the average amount of precipitation in the area of Amsterdam is 805 mm yearly. For the total 377ha of the area researched (figure D, appendix III.IV) this about 3 hm<sup>3</sup> of water, equivalent of 600 Olympic pools. It is interesting to know where this amount ends up to know what can be done with it. There is no clear data on the flows of water in the area of Amstel III. So it estimated based on research on infiltration rates of precipitation in urban areas and hardscapes. (Markovič, 2014)(Butt, 2014) The research makes a distinction between three types of surfaces, natural, 50% impervious and 75-100% impervious. As to be expected the water ends up in different percentages in different flows, that are:

-Evapotranspiration, which is a combination of evaporation and transpiration by plants that end up in the atmosphere.

-Infiltration into the soil, in the paper of Butt a distinction is made between deep infiltration and shallow, for the scope of this research, this distinction is not made.

-Runoff, this is water that does not infiltrate or evapotranspirates, mostly ends up in storm drains or open water.

These infiltration rates are seen in Appendix III.III (figure G).

| surface infiltration |           |        |                    |
|----------------------|-----------|--------|--------------------|
|                      | Into soil | runoff | evapotranspiration |
| Hard                 | 15%       | 55%    | 30%                |
| Natural              | 50%       | 10%    | 40%                |
| Mixed / half hard    | 35%       | 30%    | 35%                |
|                      |           |        |                    |

Figure G, Appendix III.III surface infiltration

These are quantified over analyses on surface types in the area Appendix III.IV. The outcome of the type of infiltration is depicted in a Sankey diagram in figure H.



Figure H, Appendix III.IV water MFA in Amstel III in 2040 (in m<sup>3</sup>)

Hardscapes such as building roofs normally are problematic for the existing infrastructure that deals with rainwater. Due to the ambitions of the developers on a higher building density, this could become a problem for the area. Expectations for 2040 on the amount of precipitation are unsure, it is hard to say if the average yearly amount is going to change, however, it is sure that the weather will get more extreme with more heavy rain and longer periods of droughts. (KNMI - Hoeveel meer regen gaat de toekomst brengen? (n.d.). ) Therefore, in the water MFA of 2040, the input of precipitation is taken the same as in 2019, however, it can be expected that the climatic changes influence the flow of the water when it hits a surface. But since it is too speculative to assume how, this is neither changed in the diagram of 2040.

### 1.2.2 Drinking water

The drinking water use is also based on the average use of water by inhabitants. Most drinking water ends up in the sewer, it is being used for practices within buildings such as cleaning which leads it to become grey-water or to flush the toilet which makes it black-water. Only a small fraction of Amsterdam's drinking water, about 4%, does not end up in the sewer, this is lost. (Van der Hoek (2017)) (Appendix III.II)

In Amstel III the total amount of grey- and blackwater produced is about 89,000 m<sup>3</sup> and 346,000 m<sup>3</sup>, by 2040 this is expected to rise to 120,000 m<sup>3</sup> and 467 m<sup>3</sup>. (figure H)(Appendix III.IV)

## 1.3 Organic

As mentioned earlier, the current waste management system revolves around the use of the waste-toenergy plant, which incinerates the organic with the inorganic providing for electricity and heat energy. However, in this process resources are lost. In this MFA (Appendix IV.XV) the organic waste streams of Amstel III are analyzed for a couple of reasons, firstly to determine the nutritional value it contains for agricultural purposes and secondly the amount which is consumed in the area. Lastly to see what amount of energy it could provide for.

## 1.3.1 Organic flows related users Amstel III

Figure C shows the amount of food consumed currently in Amstel III. In Appendix I.II the different actors are shown which are analyzed to give an estimation of the current situation and the future, these are summarized in Appendix IV.I. Currently, nearly 10 million kg of solid food and about 20 million kg of liquid food is consumed in Amstel III yearly. Most of this is consumed by the workers and recreational visitors to the area. With the coming of 15000 households, the amount of solid and liquid food consumed in 2040 is estimated to increase with about 1/3. (Figure I and Appendix IV.I)



Figure I, estimated food consumption in Amstel III in 2040

Per person, we consume about 3.1 kg of food daily and we throw away about 62 kg of solid food and 57 kg of liquid food yearly. (Inname alle macronutriënten | Voedselconsumptiepeiling. (n.d.).), (Milieu Centraal, 2017) Solid food waste makes up for the largest part of the Organic Fraction of Municipality Waste (OFMSW). In Amsterdam, only a relatively small fraction of the organic waste comes from households gardens, this is about 1/7 of the OFMSW per inhabitant. Liquid food waste ends up in the sewer system. Per person we defecate about o.1 kg feces and 1.5 kg of urine daily, this is flushed down the sewer. (Ons dagelijks (afval)water - NEMO Kennislink. (n.d.)). The other 1.5 kg is mostly lost through transpiration. (Figure J, Appendix IV.III)



Figure J, Appendix IV.III organic MFA of Amstel III in 2040.

## 1.3.2 Potential energy extraction from organic waste

The calorific value of the biomass determines the amount of energy it contains. Theoretically, this can be by looking for organic carbon in the organic structure (43. Frijns, J., Hofman, J., & Nederlof, M. (2013)). Especially high amounts of fatty-acids imply a high calorific value, cellulose like organic material such as fibers also contain energy. However, these are harder to obtain.

Extracting energy from biomass can be done in

multiple ways. The most straight forward method is by burning the matter, this is already done by the WTE plant in Amsterdam West (AEB). About half the input for this waste to energy plant is OFMSW. Burning organic matter releases all the energy. However, it requires the waste to dry at first, this requires additional energy. Especially for sewage sludge, this is a problem. According to Frijns, this requires nearly as much as it generates.

If all organic waste would be treated separately from other MSW. It could be more efficient to make use of anaerobic digestion instead of the current WTE plant. Anaerobic digestion is a biotechnological process by which a complex organic feedstock is first converted into a range of simpler water-soluble organic compounds that are subsequently converted into methane-containing biogas. (Kleerebezem, R. (2014). ) The process of anaerobic digestion has the advantage to separate the organic carbon into gasses (biogas) from the organic matter. Biogas consists of 50 to 70% vol.% of methane, 30 to 50vol. % carbon dioxide as well as small amounts of water, hydrogen, and hydrogen sulfide. Biogas can be upgraded to greengas (~90% methane) and be used as natural gas replacement for households or can be used directly in for example CHP plant for heat and electrical energy. In Appendix III.VII (figure K) a calculation of the potential for anaerobic digestion is shown according to the research paper of R. Kleerebezem and J. Frijns.



Figure K, Appendix IV.XII, Calculation Gas, Electricital and Carbon Dioxide potential from organic waste stream Amstel III 2040 through anaerobic digestion and gas turbine.

Higher amounts of food waste result in higher amounts of biogas, sewage contains less organic carbon per kg thus has a lower calorific value. With the expected amount of waste produced in 2040, a total maximum of 14.5 TJ of energy can be obtained compared to the current natural gas demand would be about 2% of the demand, converted with an efficient CHP (40% efficiency) this would be 5.8 TJ of electrical energy which is not even 1% of the demand.

## 1.3.3 Potential nutritions extraction from OFMSW and SW

Another, and for the case of urban farming more profound argument for the processing of organic waste is based on resources management. The processing of organic matter through anaerobic digestion and using the residue for agricultural practice is advocated by Wageningen University and Research PHDer Meino Smit. From the perspective of sustainable agriculture, she argues for the use of all organic waste streams to counter the nutritional depletion of our food system. (Trouw, 2018) The primary nutrients for plants are NKP (Nitrogen, Phosphorus, Potassium), most crops need all or most of these nutrients added in the form of fertilizer to be able to grow. In our current global food system these nutritions come mostly from fossil fuel or are mined minerals, they are delivered in the as mineralized fertilizer. 80% of N in the form of ammonia (NH<sub>3</sub>) is obtained from natural gas. It costs huge amounts of energy to produce, 35 GJ/ton ammonia. The phosphate in P-fertilizers originates from mined phosphate rock and/or synthetically produced phosphoric acid, Potassium (K-fertilizer) comes from different forms of minerals. Especially phosphate reserves are getting more scarce. (Kool, A., Marinussen, M. & Blonk, H. (2012)). Currently, the municipality of Amsterdam recovers a fraction of the phosphate and smaller fraction of Nitrogen from the SW. This is done in an installation called Fosfaatje in Amsterdam West. According to van der Hoek sewage sludge is to some extent digested in a biodigester to extract biogas, the residual sludge is afterward been reacted in the installation to extract the Phosphorus and some Nitrogen in the form of struvite (NH4MgPO4·6H2O), used as fertilizer. Unfortunately, only a small part of the nutritions are recovered (16% of the Phosphorus). Also, most organic matter is not been digested, plausible due to the lack of organic carbon in the feedstock, and ends up in the incinerator of the WTE and is therefore not recoverable. (van der Hoek, J. P., Struker, A., & de Danschutter, J. E. M. (2017)) (figure L, Appendix IV.VI)



Nutrition recovery by using the sludge more directly would be an interesting alternative. By taking the same values as the calorific value of the biomass from the paper of Kleerebezem. The amount of usable Nitrogen can be calculated in the mix of feedstock by calculating the amount of ammonia (NH4) (figure M, Appendix IV.XIII t/m/ IV.X), which is about 4 tonnes of N yearly.

|                           |            |                  |              | NH4 sha  | re (%   |          |         | k20       |
|---------------------------|------------|------------------|--------------|----------|---------|----------|---------|-----------|
| form                      | DM (%)     | N(total) (kg/m3) | NH4 (kg/m3)  | of N)    |         | P205 (kg | /m3)    | (kg/m3)   |
| Liquid digestate          | 6.5        | 5.1              | 3.2          | 2        | 62.7    |          | 2.3     | 5.5       |
| Liquid separated fraction | 5.7        | 4.9              | 3.           | 1        | 63.3    |          | 2       | 5.4       |
| Solid separated fraction  | 24.3       | 5.8              | 2.5          | 1        | 46.5    |          | 5       | 5.8       |
|                           |            |                  |              |          |         |          |         |           |
| NITROGEN                  | N (g*kg-1) | amount daily (k  | (g*d) yearly | (kg) 1   | N(total | ) (kg)   | N(absor | bed) (kg) |
| Garden (OFMSW)            |            | 3                | 1299         | 473960   |         | 1422     |         | 89        |
| Food                      |            | 2.5              | 8258         | 3014228  |         | 7536     |         | 472       |
| Sewage sludge             |            | 1.2              | 92762 338    | 358134.9 |         | 40630    |         | 2547      |
| iotal                     |            |                  | 102319 37    | 346324   |         | 49587    |         | 3109      |

|                           | % in mass |               |          | NH4 share (% |              |         |
|---------------------------|-----------|---------------|----------|--------------|--------------|---------|
| form                      | (m3)      | N(total) (kg) | NH4 (kg) | of N)        | P205 (kg/m3) | k2O(kg) |
| Liquid digestate          | 100       | 49587         | 31091    | 62.7         | 22363        | 53476   |
| Liquid separated fraction | 95.7      | 49391         | 31265    | 63.3         | 24611        | 52124   |
| Solid separated fraction  | 4.3       | 1875          | 872      | 46.5         | 9421         | 46442   |
|                           |           |               |          |              |              |         |

Figure M, Appendix IV.XIII t/m/ IV.X

According to Fachverband Biogas in their magazine, Biogas Know-how on an issue on the use of digestate from biodigester data is given on the absorption of Nitrogen by crops. Direct absorption within a year's time frame is about 50% for liquid digestate and 30% for solid digestate, however, following years about 10% of the total is delivered in subsequent years. (Wilken, D., Rauh, S., Fruhner-Weiss, R., Strippel, F., & Bontempo, G. (2018, November)) This means the effective use of Nitrogen is about 2.6 tonnes. Amounts of P and K values in the feedstock are not given in the paper of Kleerebezem. Therefore it is assumed that the digestate in the issue of Biogas Know-How is similar in consistency of N and KP values, the consistency of liquid digestate in the issue is:

5.1 N = 3.2 NH4 (62.7% share) 3.2 (NH4) - 2.3 (P205) - 5.5 (K2O)

The total amount of N in the calculated digestate of Amstel III would be 32.7 T yearly. This would translate to 23.5 T of P205 and 56.3 T of K2O. According to the same source the total amount of PK is being absorbed by the crops and thus has a 100% use:

NPKdigestate = 32.7 TN, 23.5 TP, 56.3 TK

In the calculation of Appendix IV.XII on the potential energy, the amount of carbon dioxide (CO<sub>2</sub>) produced is also given. CO<sub>2</sub> is in large demand in the horticultural industry and worth to be utilized in the scheme, as an extra benefit it means that carbon emission of the organic material cycle can be reduced. By upgrading biogas into greengas and the burning of the methane, the gas can be obtained and usable for commercial purposes. Every year the organic MFA could account for 14,000 tonnes of CO<sub>2</sub>.

# 2 Flows of Urban Farming

Within this chapter, a distinction has been made between the different forms of (urban) farming. The first part of this chapter briefly explores some variations and secondly generalizes these to be able to determine the related flows and restrictions.

## 2.1 Agricultural methods

A distinction is made between different methods of agriculture based on their potential crop output and physical demands. These methods are later-on related to the diet of Amstel III and simplified to determine the related flows and relate the methods of farming to the urban metabolism of the area. The three main methods are:

- Arable farming, a method of farming more related large scale farming. It requires plowing of the land and produces staple crops such as grains, potatoes, flax, sugar beets, rapeseeds and some types of beans.

- Horticulture, originally the practice of garden cultivation. Since horticulture also includes the cultivation of decorative plants this research will only narrow down on the cultivation of edible plants. Horticulture ranges from open gardening and orchards to Controlled Environment Agriculture (CEA). When thinking about urban farming, this practice is most commonly done. The main edible outputs are fruits, vegetables, and nuts.

- Animal husbandry includes all breeding of animals for products for consumption such as meat, dairy, and eggs.

## 2.1.1 Categorization

To be able to calculate the flows, required surfaces and food production possible in Amstel III. These different methods are generalized into two categories, first is CEA (controlled environment agriculture), which implies greenhouses, indoor farming, and vertical farming, and the second is open agriculture, meaning all arable agriculture and exposed horticulture. Animal husbandry is been calculated by feedstock (maiz) required per kg of meat, thus been seen as arable agriculture.

The biggest distinction in the application of the

methods within the urban situation is the difference between earthbound and methods which are more applicable in a flexible manner such as a rooftop, vertical or indoor farming. Arable agriculture and orchards are for example unlikely to be placed in or on buildings. But CEA with the use of hydroponics or drip irrigation requires not a lot of soil and can be placed nearly anywhere for example. CEA can be done with or without the use of artificial lighting. When placed within buildings, artificial lighting is required of course.

## 2.2 Energy flows of farming methods

Gas and electricity are being used for growing in CEA. It is primarily being used for artificial heating and installations such as lighting, ventilation, IT and pumps. Arable agriculture generally does not demand direct artificially applied energy. Natural gas is been used in large quantities in the greenhouse industry, it is used for heating and the production of CO<sub>2</sub>. In standard greenhouses in the Netherlands use about 31 m<sub>3</sub>/m<sub>2</sub> of natural gas yearly, more modern greenhouses could reduce the use to 12 m<sub>3</sub>/m<sub>2</sub> by implementing isolated glazing and screens and making use of other sources of CO<sub>2</sub>. (Gasverbruik in onderzoekskassen onder 40% van praktijkgemiddelde. (n.d.))

Electrical in CEA differentiates a lot per method. It is estimated to be about 50 KW/ha average. (Figure N, Appendix II.VII)

| Amount rooftop GH                                          | 38 ha                      |                                                                     |                                                      |
|------------------------------------------------------------|----------------------------|---------------------------------------------------------------------|------------------------------------------------------|
| Gass                                                       |                            |                                                                     |                                                      |
| type                                                       | nat gas /m2                | energy / m2                                                         | total energy                                         |
| Modern greenhouse                                          | 12 m3/m2                   | 380 MJ/m2                                                           | 144 TJ                                               |
| Standard greenhouse                                        | 3125 m3/m2                 | 989 MJ/m2                                                           | 376 TJ                                               |
| https://www.opderglas                                      | nl/gasverbruik-in-ong      | erzoekskassen-40-pro                                                | cent-van-praktijkgemid                               |
| https://www.onderglas                                      | s.nl/gasverbruik-in-ond    | erzoekskassen-40-pro                                                | cent-van-praktijkgemid                               |
| https://www.onderglas<br>EL<br>Greenhouse                  | av. demand per ha          | erzoekskassen-40-pro<br>av. demand total<br>1900 KW                 | total energy * y<br>60 TJ                            |
| https://www.onderglas<br>EL<br>Greenhouse                  | av. demand per ha          | erzoekskassen-40-pro<br>av. demand total<br>1900 KW                 | ocent-van-praktijkgemid<br>total energy * y<br>60 TJ |
| https://www.onderglas<br>EL<br>Greenhouse<br>Passive Solar | av. demand per ha<br>50 KW | erzoekskassen-40-pro<br>av. demand total<br>1900 KW<br>total rad GH | ocent-van-praktijkgemid<br>total energy * y<br>60 TJ |

Figure N, Appendix II.VII CEA energy demand

## 2.3 Nutritional flows of farming

The key factor in knowing the potential impact of urban farming within the framework of the urban metabolism is by calculating the nutritional demand of farming methods in order to relate these to the organic material flows present in the area.

## 2.3.1 NPK flow and agricultural demand

To estimate what could potentially be produced with the supply of organic material in Amstel III, it is necessary to know the nutritional demands of different types of crops. In a report from 1995 of Agrarisch Telematica Centrum (ATC) key numbers on NPK usage for crops are given per tonne of fresh produce (Figure O, Appendix V.I).

What is clear is that the NPK flow of Amstel III will not be sufficient to fertilize the demanded crops to feed the users. Especially not if the diet is continuing to be largely consisting out of animal products. See figure D. (inname alle macronutriënten | Voedselconsumptiepeiling. (n.d.)). In the last chapter, it was estimated that NH4, P205, and K2O values are 2663 kg, 1915 kg and 4580 kg. The NPK values of the Amstel III 2040 with the same diet as now would be 608 T, 217 T, and 741 T. This is largely due to the meat, dairy, and other animal products. Compared to the vegetable demand Amstel III (3511 kg, 2809 kg and 8953 kg) the amount of NPK available in the area has more impact. It is to be noted that in the NPK flow of waste for animal products are not calculated, this accounts for a significant fraction of nutritions in the form of manure that can be reclaimed.

### 2.3.2 CEA

Controlled Environment Agriculture (CEA) has pros and cons compared to open horticulture and agriculture. Horticulture was historically being done to extend the growing season by trapping the heat of the sun under glass. Due to the competitive agri- and horticultural market it evolved into hightech greenhouses we have nowadays. (Viljoen, A., & Howe, J. (2005)) Greenhouses are characterized by their high yield rates in a partly or completely sealed off environment. Arguments for CEA opposed to arable or open horticulture are the management of resources which in most (modern) greenhouses is being done with hydroponics. It allows for better control of fertilizer and less spilling into the environment. Unfortunately, nearly all hydroponic farming is nowadays being done with mineralized fertilizer, thus unsustainable nutrients, this because it is more convenient to dose with mineralized fertilizers. But it is possible to grow with hydroponics system and the liquid fraction of digestate as a study on the growing of a type of lettuce shows in 2019 with a combination of solid and liquid digestate. (Ronga, D (2019)) A better understanding of the nutritional and microbiological consistency of digestate will make it even more commercially feasible in the future.

### 2.3.3 CEA and CO<sub>2</sub> dosing

Just as with humans in a closed-off and crowded room, plants can suffocate. For plants, this is the case by a lack of CO<sub>2</sub>. Therefore it is necessary to ventilate with outside air or dose CO<sub>2</sub> in CEA's, the latter is done by most commercial greenhouses to even stir up the amounts of CO2 above the amounts found in outside air. This to increase yield rates. In natural air, the amount of CO<sub>2</sub> is about 350 ppm, but it is common to increase the amount to 500 ppm or even 1500 ppm, in this case, yield rates can go up by 30% depending on the type of crops, light, humidity and other nutritions. Keeping such high ppm is necessary for a competitive market such as the Dutch horticultural industry. It is a practice that is highly disputable as the primary resource for CO<sub>2</sub> for a lot of greenhouses is the burning of natural gas. Extracting the CO<sub>2</sub> from biomass is a way more sustainable option as it uses the carbon already in the cycle. (RSFGV (1999)) According to RSFGV a greenhouse with a dosing of 40 - 80 m3 of CO2 and a height of 5 meters, would use about 32.3 kg of CO<sub>2</sub> per m<sub>2</sub> per year. This would mean that with the earlier calculated supply of 1500 tonnes CO<sub>2</sub> a year, about 4.6 ha of greenhouse area could be supplied.

### 2.4 Suggested set up

In Figure P, a plausible configuration is given of different types of crops that could be produced within Amstel III. The set up is determined by the utilization of NPK and the diet demands of the area, with the urban context in mind.

It consists of 35ha of orchard for fruits and nuts. 77 ha of CEA for the production of beans and vegetables. 106 ha of arable agriculture for potatoes, animal feed, and grains. Producing about 4829 tonnes of food yearly.

This has been calculated by taking into account the nutritional and biomass energy recovery of waste produced by farming.

|                              | PP in | Tot. Amstel III | Feed per |         | P205   |          |             |             |                                                                                                  |
|------------------------------|-------|-----------------|----------|---------|--------|----------|-------------|-------------|--------------------------------------------------------------------------------------------------|
| Demand                       | grams | in tonnes       | kg       | N (kg)  | (kg)   | K2O (kg) | kCal (10^6) | ha required | notes                                                                                            |
| Meat, dairy, animal products | 305   | 4087            | 22       | 409976  | 142600 | 534751   | 10538       | 2469        | estimation based on 1/2 chicken, 1/4 pork, 1/4 cow meat, area is estimated as factor 0.1 of feed |
| fish                         | 16    | 214             | -        | -       | -      | -        | -           | -           |                                                                                                  |
| Grain products               | 194   | 2600            | -        | 51992   | 22097  | 13258    | 8553        | 325         | based on grain                                                                                   |
| Potato                       | 72    | 965             | -        | 3184    | 1061   | 4921     | 801         | 21          |                                                                                                  |
| vegetables                   | 131   | 1755            | -        | 3511    | 2809   | 8953     | 509         | 61          | based on brocolli                                                                                |
| fruits and nuts              | 130   | 1742            | -        | 6968    | 3484   | 3484     | 1655        | 18          | based on apple from orchard                                                                      |
| beans                        | 5     | 67              | -        | 2814.02 | 643    | 871      | 48          | 4           | beans grown with CEA                                                                             |
| other                        | 119   | 1595            | -        | -       | -      | -        | -           | -           |                                                                                                  |
| Total                        | 972   | 13025           |          | 478445  | 172694 | 566238   | 22103       | 2898        |                                                                                                  |

Average diet nutritional needs

Figure O, Appendix V.IV, NPK and ha demands of producable food of the diet of Amstel III.

|                     | Meat,  |          |        |          | orchard |       |       | available |
|---------------------|--------|----------|--------|----------|---------|-------|-------|-----------|
|                     | dairy, | Grain    |        | vegetabl | (fruit/ |       |       | in Amstel |
| Possible production | animal | products | Potato | es       | nuts)   | beans | TOTAL | III       |
| tonnes              | 100    | 200      | 965    | 1755     | 1742    | 67    | 4829  |           |
| N(kg)               | 10031  | 4000     | 3184   | 3511     | 6968    | 2814  | 30508 | 31091     |
| P2O5 (kg)           | 3489   | 1700     | 1061   | 2809     | 3484    | 643.2 | 13186 | 22363     |
| K2O (kg)            | 13084  | 1020     | 4921   | 8953     | 3484    | 871   | 32332 | 53476     |
| land (ha)           | 60     | 25       | 21     | 73       | 35      | 4     | 219   |           |

Figure P, Appendix V.IV, Possible production based on the available nutritiens.

## **3** Configuration of the Metabolism

In this chapter, the MFA's of Amstel III are related to the flows and methods of farming. The strategic implementation is given based on the boundaries and potentials given in chapter 1 and the conclusions on requirements of urban farming methods in chapter 2. Furthermore, the additional engines and other requirements that are necessary to close the scheme are being highlighted.

## 3.1 Arguments on the strategic implementation of urban farming in Amstel III

To what extent the Amstel III area can provide the necessary input for its metabolism to become more self-sufficient on the topic of food is being determined by the resourcefulness and spatiality of the area. Furthermore, the NPK nutrients, CO2 and excess heat could provide for numerous ha of agriculture and greenhouse but cannot fulfill the complete demand of the area. The goal is not to make the area completely self-sufficient on the topic of food production but should be focused on utilizing available biomass and space to the full extent for farming and energy production. This enables a closed-loop and less loss of valuable resources in the different MFA's.

## 3.1.1 Selection of Urban Farming

Many different combinations of food production methods are possible. However, some restrictions and demands set the boundaries for a possible configuration. Based on diet and NPK availability a plausible selection of several crops and methods is given. (Figure P)

Looking at the different current organic and energy MFA's it becomes clear that there is an opportunity in the excess heat energy (30 C°) of the data centers in the area in combination with a large amount of potential CO<sub>2</sub> obtainable from the produced biomass, this is good for 43 ha of greenhouse.

## 3.2 Additional Technical Engines

## 3.2.1 Biogas plant

Converting the organic waste streams to biogas or greengas purely as a source for sustainable energy does not have a fairly significant impact (14TJ) as opposed to the harnessing of potential wind (389 TJ) and solar energy on roofs (413 TJ) in Amstel III. However, it is beneficial to implement an anaerobic biodigester for the argument of maintaining NPK nutrients in the urban metabolism of the district and as a source of carbon dioxide for greenhouses. The organic waste flow through this medium could potentially provide for about 77 ha and 128 ha of fertilizer for CEA and arable land and is good for valuable CO<sub>2</sub> supply for 42 ha of CEA. Although its potential ecological footprint is not been calculated compared to current practice, it can be expected that implementing this system has a significant impact on the overall direct and indirect carbon emission of the area due to the saving of natural gas as source for nitrogen, the energydemanding acquiring of potassium and phosphorus and the burning of methane combined with the direct use of exhaust carbon dioxide. To make use of anaerobic digestion a digester plant is of course necessary. The question rises where to place this facility. The processing of waste is normally not been done within the urban boundaries due to reachability, nuisance by smells and the necessity of flaring. Anaerobic digestion plants normally are a hindrance due to the leaching of ammonia, however, modern biodigester plants are being equipped with exhaust air washers which filter the ammonia. Furthermore, it is most common to have a mesophilic digester, this means a temperature of about 35° C for the bacteria to thrive in. (Kleerebezem, R. (2014).)



Figure Q, biogas plant Groengas Gelderland (source: www.nextgarden.nl)



Figure R, bio-bed of 1000m2 of Groengas Gelderland. (source: own image)

An example plant is Groen Gas Gelderland plant figure Q. A plant that processes 72,000 Tonnes biomass yearly into greengas, thick and thin digestate and carbon dioxide for agricultural purposes. The exhaust air is being washed and the ammonia and other smells are biologically filtered by a bio-bed. (figure R) This is done by blowing in the air underneath the bed, the bacteria living on the surface of the wooden substance of the filter consume and process the smells. (Groengas Gelderland (2019))

When too much biogas is being produced due to for example errors made in the feeding of the plant, it might be necessary to flare excessive biogas. It is probable that by 2040 technology to reduce the nuisance of biogas plants is even better and could be placed within the city boundaries. Still, it will be not likely that a biogas plant can be placed in the near proximity of housing for safety reasons. Carbon dioxide extracted from the biogas and from the exhaust of a potential CHP or boiler would need to be transported and buffered before utilizing it. This can be achieved by liquidizing the CO2 and / or with piping.

## 3.2.2 Other source for CO

The total demand if all 77ha ČEA needs to be dosed requires about 25 kT CO,. (Figure S, Appendix V.V)

| Average C          | Greenhouse |          |              |
|--------------------|------------|----------|--------------|
| Demand             | 32.3       | kg/m2    | (RSFGV, 1999 |
| CEA in /           | Amstel III |          |              |
| Surface area doced | 77         | ha       |              |
| Demand             | 24978      | T(CO2)*y | 1            |
| Available          |            |          | _            |
| Bioga              | s plant    |          |              |
| OFMSW + SW         | 1391       | T(CO2)*y | 1            |
| percentage use     | 100%       | CO2      | ]            |
| Users A            | mstel III  |          | 1            |
| Occupation         | 125381     | рр       | 1            |
| Av. CO2 human      | 1          | kg/day   | 1            |
| CO2 produced       | 45764      | T(CO2)*y | 1            |
| percentage use     | 52%        | CO2      | 1            |



About 4.6 ha can be supplied by the biogas plant. An option is to just ventilate the other 72.4 ha with outside air to ensure enough CO<sub>2</sub>. This is an option for crops that do not require much extra heating and would result in a lower yield. To utilize the conditions in a CEA to a higher extent, it is interesting to look for an extra source of CO2. In the urban context, it would be interesting to look at exhaust air from buildings, Amstel III has an average occupation of about 125000 people in 2040. An average human produces about 1 kg of CO2 daily, this would mean 46kT of CO2 gross is being produced by humans in Amstel III yearly. About half of this amount would need to be recovered through HVAC systems to supply the total food production within the CEA.

## 3.2.3 Waste water

Another facility is necessary to use the sewage for biomass. This would be for the dehydration of the sewage water. A way to reduce the amount of water mixed with the biomass is by using vacuum-toilets. Vacuum toilets use significantly less water. In the area, this would reduce the amount of flushed drinking water by about 300.000 m3. It is even possible to separate solid from liquid with a sorting toilet. (TU Hamburg, Vacuum toilet-biogas plant system) However, it is also possible to implement a simple WWTP with a sand filter as being proposed in the paper of van der Hoek.

## 3.2.3 Thermal Energy Storage

The thermal energy demand and supply will have an imbalance between the summer and winter periods. As mentioned in chapter 1, the data centers are a source of thermal heat energy due to their need for the cooling of processors. Due to that the source medium for cooling for the centers is about the same temperature all year round (the Ouderkerkerplas), the outgoing thermal heat flow will be constant all year round. In the winter, this heat energy will be in high demand and be utilized by the greenhouses, biodigester, and buildings in the area. However, in the summer this heat will be in lesser demand and could be stored in a thermal-energy storage.

## 3.2.5 Heat pump and second heat grid

The temperature of the available residual heat energy is around 30°C by the data centers, which is enough for floor and wall heating in well-insulated houses but cannot provide for all utilities such as hot tap water (60°C) or to some of the demand of the heat energy by greenhouses (60-70°C). To reach this temperature efficiently a central heat pump needs to be implemented and a secondarily heat grid, or decentralized multiple heat pumps.

## 3.3 Comparing the MFA's

In figure T and U, the different MFA's are depicted based on previous chapters and the additional engines, these are compared with a MFA of the current situation.

## 3.3.1 Organic MFA

In the current management of organic material, much of the nutrients are lost in the WTE, only a part of the NPK from the wastewater is recovered (16% of the phosphorus and some nitrogen), none is recovered from the organic waste. In the suggested model, the gross amount of the nutritions available in both waste streams can be recovered, furthermore, the CO<sub>2</sub> released can be utilized for food production. In total 28.5 T, 12.4 T and 31.8 T of NPK can be reused.

By combining urban farming and a biogas plant, CO<sub>2</sub> repurposed in this model is about 25kT yearly, which will be absorbed by the crops. On top of that comes







Figure U, Energy MFA comparison

the carbon emission reduction by preventing the use of mineralized fertilizers and natural gas.

## 3.3.1 Energy MFA

With better use of excess heat of the CEA and Data Centers and capitalizing the available renewable energy sources, Amstel III could become largely selfsufficient. It would require thermal batteries/storage in the area. But could reduce the import amount of gas to zero and would require about 0.5 PJ electricity from elsewhere, which is half of the current electrical energy demand, it would be a remarkable outcome considering the data centers in the area.

## 3.4 Additional requirements

For this configuration to work it is not only necessary to look at the technical aspects, but it needs to be economically feasible and managed as well. Especially in the Netherlands, conventional agriculture is a highly competitive market with minimal margins for the farmer. In our industrialized agricultural practice terms such as; economies of scale, efficiency, optimization, risk, and yield are parameters that determine the feasibility of their business. It all leads back to the costs and revenue per hectare. Unfortunately, this is exactly one of the major causes restricting urban farming from breaking through. Exemplary is the reflection made on the bankrupted rooftop greenhouse, The New Farm, in Den Haag by established horticultural experts such as Bernadette Bijman Kroon and Rob Baan, in the newspaper Trouw they both highlight the high price of products coming from this particular project. (Trouw (2018)) Suggested is to look at a social and economically feasible business model for these projects. Successful (urban farming) projects hold a strong connection with their urban context and work differently from the standard food supply chain, capitalizing on local for local product and marketing it such. This farm-to-fork principle would mean higher feasibility, a good example of local for local is the Bijlmer success of Brewery Kleijburg (Appendix VI.V). Other aspects to look at are the required work, management and knowledge to set up urban food production. A possible solution to this model is the example of Herenboeren (Herenboeren - Samen duurzaam voedsel produceren. (n.d.)), where cooperations of customers hire a farmer which directly provides food for the costumers.



Figure V, Infographic of the proposed urban food system Amstel III 2040

## Appendix



From resource draining to maintaining: A reconfiguration of agricultural flows with the urban metabolism of Amstel III Amsterdam in 2040.

# **I** Program

I.I Researched area revered to as Amstel III in this paper



## I.II Program map of Amstel III



## Functions

- J.C. ArenA
   Ziggo Dome / AFASlive
- 3 Trainstation4 Plan:
- Hondrugspark 5 IKEA
- 6 AMC
- 7 Special Ed. instution
- 8 (3x)Drivethrough restaurant
- 9 Allotments
- **10** Highway A2
- 11 Highway A58

## Program

Culture -Leisure

Businesses

Mixed: office and housing

Social

## Numbers 2040

Office space: 720 000 m<sup>2</sup> Workers: 50 000

Households: 15 000

1) www. ruimtelijkplannen.nl

2) Google.maps.nl

3) gebiedsplan 2018

# II Energy

**Electricity Consumption (2017)** 

II.I Energy demand

| block nr | EL (KWh)  |     |
|----------|-----------|-----|
| 16098    | 3538010   |     |
| 16100    | 4688808   |     |
| 16101    | 818165    |     |
| 16103    | 6110850   |     |
| 16105    | 557940    |     |
| 16108    | 869946    |     |
| 16109    | 957555    |     |
| 16112    | 661674    |     |
| 18062    | 203844    |     |
| 18066    | 737855    |     |
| 18076    | 2672530   |     |
| 18077    | 469243    |     |
| 18078    | 184806    |     |
| 18079    | 284256    |     |
| 18080    | 503574    |     |
| 18081    | 544984    |     |
| 18082    | 160524    |     |
| 18084    | 6095060   |     |
| 18096    | 129768    |     |
| 18097    | 132072    |     |
| 18098    | 67176     |     |
| 18099    | 330946    |     |
| 18156    | 3464280   |     |
| 18158    | 11001780  |     |
| 18179    | 894928    |     |
| 21352    | 4031181   |     |
| 21354    | 598090    |     |
| 21356    | 337530    |     |
| 21357    | 194400    |     |
| 21359    | 43576740  |     |
| 21360    | 17569405  |     |
| 21368    | 4946767   |     |
| 21375    | 6355671   |     |
| 21377    | 2026130   |     |
| 21378    | 2016056   |     |
| 21379    | 6775620   |     |
| 21381    | 3614598   |     |
| 21382    | 220125    |     |
| 21383    | 3185262   |     |
| 21385    | 1974406   |     |
| 21388    | 915117    |     |
| 21389    | 10765096  |     |
| 21399    | 2048076   |     |
| 21499    | 122472581 |     |
| TOTAL:   | 279703425 | KWh |

| Gas Consumption | (2017) |
|-----------------|--------|
|-----------------|--------|

| block nr | Gas (m3) | KWh       |     |
|----------|----------|-----------|-----|
| 12808    | 34215    | 342150    |     |
| 12984    | 31260    | 312600    |     |
| 12990    | 93680    | 936800    |     |
| 12992    | 17478    | 174780    |     |
| 12999    | 36980    | 369800    |     |
| 13006    | 50507    | 505070    |     |
| 13007    | 27888    | 278880    |     |
| 13009    | 72471    | 724710    |     |
| 13010    | 59041    | 590410    |     |
| 13011    | 60400    | 604000    |     |
| 19100    | 14424    | 144240    |     |
| 19155    | 41587    | 415870    |     |
| 21681    | 5208     | 52080     |     |
| 21923    | 100710   | 1007100   |     |
| 21924    | 71875    | 718750    |     |
| 21925    | 124200   | 1242000   |     |
| 21926    | 374605   | 3746050   |     |
| 21927    | 167585   | 1675850   |     |
| 21928    | 381925   | 3819250   |     |
| 21929    | 343440   | 3434400   |     |
| 21930    | 142180   | 1421800   |     |
| 21931    | 188385   | 1883850   |     |
| 21932    | 828885   | 8288850   |     |
| 21939    | 132762   | 1327620   |     |
| 21940    | 783465   | 7834650   |     |
| 21941    | 113754   | 1137540   |     |
| 21942    | 171426   | 1714260   |     |
| 21944    | 186288   | 1862880   |     |
| 21945    | 212375   | 2123750   |     |
| 22541    | 190104   | 1901040   |     |
| 22542    | 81592    | 815920    |     |
| 22656    | 15927695 | 159276950 |     |
| 23118    | 3283595  | 32835950  |     |
| 23363    | 92680    | 926800    |     |
| 23364    | 110215   | 1102150   |     |
| 23365    | 292288   | 2922880   |     |
| 23366    | 1092828  | 10928280  |     |
| 23367    | 409938   | 4099380   |     |
| 23368    | 606294   | 6062940   |     |
| 23369    | 583443   | 5834430   |     |
| 23370    | 353691   | 3536910   |     |
| 23371    | 98940    | 989400    |     |
| 23372    | 52542    | 525420    |     |
| 23373    | 262644   | 2626440   |     |
| 23374    | 261120   | 2611200   |     |
| 23375    | 837970   | 8379700   |     |
| 23384    | 871370   | 8713700   |     |
| 23564    | 424207   | 4242070   |     |
| TOTAL:   | 30702155 | 307021550 | KWh |

Amsterdam Total\*

TOTAL:

4530000000 KWh

\*Staat van Amsterdam Energie- en grondstof transitie

. EL

1006932 GJ

#### Percentage of Amsterdam

6.1745 %

### TOTAL:

**1105278** GJ

Amsterdam Total\*

73000000 M3 Gas

\*Staat van Amsterdam Energie- en grondstof transitie

Percentage of Amsterdam

4.2058 %

1) https://maps. amsterdam.nl/ radar/?LANG=nl

2) Staat van Amsterdam Energieen grondstof transitie - gemeente Amsterdam (2018)

## II.II Energy network in Amstel III

1) MER StadskoelingAmsterdam Zuidoost: Ouderkerplas. NUON Warmte N.V. 5 oktober 2007 110623/CE7/215/000535 - Arcadis

2) https://maps.amsterdam.nl/radar/

3) https://maps.amsterdam.nl/zonnepanelen/?LANG=nl

4) https://maps. amsterdam.nl/energie\_zonwind/

5) https://bouwenuitvoering.nl/duurzaam/ nederlandse-koudenetten/

6) https://www. duurzaamplus.nl/ energie/restwarmte/ restwarmte-datacenters-voor-nieuwbouw-amstel-iii/

7) https://baxtel.com/ data-center/netherlands



## II.III Solar Energy

#### Solar Power Harvest (2017)

|    |        | Panels | peak (Wp) | yearly energy (kWh) |
|----|--------|--------|-----------|---------------------|
| 1  | AMC    | 517    | 132000    | 112200              |
| 2  |        | 6      | 1000      | 850                 |
| 3  |        | 63     | 16000     | 13600               |
| 4  |        | 31     | 8000      | 6800                |
| 5  |        | 126    | 32000     | 27200               |
| 6  |        | 9.4    | 2000      | 1700                |
| 7  |        | 106    | 26000     | 22100               |
| 8  |        | 61     | 15000     | 12750               |
| 9  |        | 206    | 50000     | 42500               |
| 10 | Arena  | 4156   | 1018000   | 865300              |
|    | TOTAAL | 5281.4 | 1300000   | 1105000             |

1)https://maps. amsterdam.nl/ energie\_zonwind/

https://maps.amsterdam.nl/zonnepanelen/?LANG=nl

#### Solar Energy Amsterdam

 1000
 W/m2
 During optimal solar

 900
 hrs
 optimal sun

 file:///C:/Users/SvanS/04%20Msc4/01%20Amstel%20III/Energy/3144\_defrapportAdB.pdf

| Potential total Amstel III                   |
|----------------------------------------------|
| Size Amstel III                              |
| 3770000 m2                                   |
| Bruto Solar Energy on Surface of Amstel III  |
| 12214800 GJ                                  |
| Harvestable solar Energy with 15% efficiency |
| 1832220 GJ                                   |
|                                              |
| Potential roofs Amstel III                   |
| Size Amstel III                              |
| 850000 m2                                    |
| Bruto Solar Energy on Surface of Amstel III  |
| 2754000 GJ                                   |
| Harvestable solar Energy with 15% efficiency |
| 413100 GJ                                    |

## II.IV Cold Net Ouderkerkerplas, Amstel III

|                         | Cold E demand | thermal yearly | Efficiency (ERV) | electrical energy yearly |
|-------------------------|---------------|----------------|------------------|--------------------------|
| AMC                     | 15 MW(th)     | 131400 MW(th)h | 2.5              | 52560000 KWh             |
| Bullewijk               | 35 MW(th)     | 306600 MW(th)h | 2.5              | 122640000 KWh            |
| Amsterdamse poort       | 10 MW(th)     | 87600 MW(th)h  | 2.5              | 35040000 KWh             |
| Gross total             | 60 MW(th)     | 525600 kW(th)h | 2.5              | 210240000 KWh            |
| correction factor (0.9) |               |                |                  |                          |
| Net total               | 54 MW(th)     | 473040 MW(th)h | 2.5              | 189216000 KWh            |
| Average capacity yearly |               |                |                  | 53000000 KW/b            |

MER StadskoelingAmsterdam Zuidoost: Ouderkerplas. NUON Warmte N.V. 5 oktober 2007 110623/ CE7/215/000535 - Arcadis

#### 5 1 55 5

## II.V Summary Energy use and potential in Amstel III

|                                            |         |         |              |             | capacity /      | capacity /     | percentage |
|--------------------------------------------|---------|---------|--------------|-------------|-----------------|----------------|------------|
|                                            | amount  | unit    | energy (kwh) | energy (GJ) | potential (kwh) | potential (GJ) | used       |
| Electricity                                |         |         |              |             |                 |                |            |
| Electricity Used                           | -       |         | 279703425    | 1006932     | -               | -              | -          |
| Electricity production (PV)                | 1300000 | kWp     | 1105000      | 3978        | 114750000       | 413100         | 1%         |
| Electricity production (Wind)              | 0       | GWh/y   | 0            | 0           | 10800000        | 388800         | 0%         |
|                                            |         |         |              | 4308        |                 |                |            |
| Fossil Energy                              |         |         |              |             |                 |                |            |
| Gas consumption                            | 3.1E+07 | m3      | 307021550    | 1105278     | -               | -              | -          |
|                                            |         |         |              |             |                 |                |            |
| Thermal                                    |         |         |              |             |                 |                |            |
| Cold energy production (as predicted 2007) | 473040  | MW(th)h | 189216000    | 681178      | 53000000        | 1908000        | 36%        |
| District heat energy production            | -       |         | 2206800      | 7944        | 182206800       | 655944         | 1%         |
|                                            |         |         |              |             |                 |                |            |

### II.VI Heat energy

#### Heat energy produced

| production | <u>ht</u> | <u>:tps://maps.amsterdam.</u> | nl/energie_restafval/ |
|------------|-----------|-------------------------------|-----------------------|
| АМС        |           | 1576800 KWh                   |                       |
| ArenA      |           | 630000 KWh                    |                       |
|            | total     | 2206800 KWh                   | _                     |
|            |           | 7944.48 GJ                    |                       |

| Electrical Energy Usage Data Centers |       |     |        |        |       |           |            |
|--------------------------------------|-------|-----|--------|--------|-------|-----------|------------|
|                                      | 3.5   | MWh | /m2/y  |        |       |           |            |
| Current Situation                    |       |     |        |        |       |           |            |
|                                      |       | ft2 |        | m2     | MWh/y | тј/у      |            |
| EQUINIX AMSTERDAM AM5                |       |     | 64,583 | 6000.0 | 21000 | 75.599426 |            |
| EQUINIX AMSTERDAM AM1 AM2            |       |     | 90,956 | 8450.1 | 29575 | 106.47107 |            |
| INAP AMS LUTTENBERGWEG 4             |       | -   |        | 4000.0 | 14000 | 50.4      | *estimatec |
| EQUINIX AMSTERDAM AM7                |       |     | 36,597 | 3400.0 | 11900 | 42.839636 |            |
|                                      | Total |     |        | 21850  | 76475 | 275       | 1          |

#### 2040 Situation

|                           | ft2    | m2     | MWh/y | тЈ/у      | TJ recovery (50%) |            |
|---------------------------|--------|--------|-------|-----------|-------------------|------------|
| EQUINIX AMSTERDAM AM5     | 64,583 | 6000.0 | 21000 | 75.599426 | 38                |            |
| EQUINIX AMSTERDAM AM1 AM2 | 90,956 | 8450.1 | 29575 | 106.47107 | 53                |            |
| INAP AMS LUTTENBERGWEG 4  | -      | 4000.0 | 14000 | 50.4      | 25                | *estimated |
| EQUINIX AMSTERDAM AM7     | 36,597 | 3400.0 | 11900 | 42.839636 | 21                |            |
| NEW DATA CENTER           | -      | 4000.0 | 14000 | 50.4      | 25                | *estimated |
| Total                     |        | 25850  | 90475 | 326       | 163               | Ì          |

https://baxtel.com/data-center/netherlands

## II.VII Greenhouse Energy use

| Amount rooftop GH       | 38 ha                                                                                      |             |              |  |  |  |  |
|-------------------------|--------------------------------------------------------------------------------------------|-------------|--------------|--|--|--|--|
| Gass                    |                                                                                            |             |              |  |  |  |  |
| type                    | nat gas /m2                                                                                | energy / m2 | total energy |  |  |  |  |
| Modern greenhouse       | 12 m3/m2                                                                                   | 380 MJ/m2   | 144 TJ       |  |  |  |  |
| Standard greenhouse     | 31.25 m3/m2                                                                                | 989 MJ/m2   | 376 TJ       |  |  |  |  |
| https://www.onderglas.r | https://www.onderglas.nl/gasverbruik-in-onderzoekskassen-40-procent-van-praktijkgemiddelde |             |              |  |  |  |  |

| EL         | av. demand per ha | av. demand total | total energy * y |
|------------|-------------------|------------------|------------------|
| Greenhouse | 50 KW             | 1900 KW          | 60 TJ            |
|            |                   |                  |                  |

| Passive Solar      | rad per/m2 | total rad GH |
|--------------------|------------|--------------|
| Gross Solar Energy | 3.24 GJ    | 1231 TJ      |

https://www. onderglas.nl/ gasverbruik-inonderzoekskassen-40-procent-vanpraktijkgemiddelde/



(

22

# III Water and land usage



III.II Water metabolism of Amsterdam





## III.III Precipitation and infiltration

| surface infiltration |           |        |                    |
|----------------------|-----------|--------|--------------------|
|                      | Into soil | runoff | evapotranspiration |
| Hard                 | 15%       | 55%    | 30%                |
| Natural              | 50%       | 10%    | 40%                |
| Mixed / half hard    | 35%       | 30%    | 35%                |
| Mixed / half hard    | 35%       | 30%    | 35%                |

Figure X, infiltration rate of percipitation (source 2): Butt, A. A, (2018))

| Calculation flows pro        | Calculation flows precipitation |             |                |             |                    |  |
|------------------------------|---------------------------------|-------------|----------------|-------------|--------------------|--|
|                              | type                            | amount (m3) | into soil (m3) | runoff (m3) | evapotranspiration |  |
| roads and public<br>-parking | hard                            | 660100      | 99015          | 363055      | 198030             |  |
| building                     | hard                            | 684250      | 102637.5       | 376337.5    | 205275             |  |
| green                        | Naturo                          | ıl 539350   | 269675         | 53935       | 161805             |  |
| water                        | Naturo                          | ıl 193200   | 96600          | 19320       | 57960              |  |
| Other                        | Mixed                           | 957950      | 335282.5       | 287385      | 287385             |  |
| Total:                       |                                 | 3034850     | 903210         | 1100032.5   | 910455             |  |

Figure X, calculation of stormwater flows based on average precipitation of 805 mm per year (source 3: climate-data.org)

## III.IV surface types

82 ha (21%) road and public parking 85 ha (22%) building 67 ha (17%) green 4 ha (6%) water .... 119 ha (31%) other & # non public **3**77 ha

 Enhanced Performance of the Eurostat Method for Comprehensive Assessment of Urban Metabolism A Material Flow Analysis of Amsterdam Ilse M. Voskamp, Sven Stremke, Marc Spiller, Daniela Perrotti, Jan Peter van der Hoek, and Huub H. M. Rijnaarts

2)Butt, A. A, Harvey, J. T, Kendall, A., Li, H., & Zhu, Y. (2018). Framework for Urban Metabolism and Life Cycle Assessment of Hardscape. UC Davis: National Center for Sustainable Transportation. Retrieved from https://escholarship. org/uc/item/77g742tq

3) https://nl.climate-data.org/europa/ koninkrijk-der-nederlanden/noord-holland/ amsterdam-3330/

## III.IV Water MFA of Amstel III

|                            | roads and public parking: 660,100<br>atmosphere: 1,031,60 |                        |  |  |  |
|----------------------------|-----------------------------------------------------------|------------------------|--|--|--|
|                            | building roofs: 684,251                                   |                        |  |  |  |
| Average precipitation: 3,0 | 4,850                                                     | runoff: 1,100,033      |  |  |  |
|                            | other: 957,951                                            |                        |  |  |  |
|                            |                                                           |                        |  |  |  |
|                            | greenery: 539,350                                         | soil: 903,211          |  |  |  |
|                            | water: 193,200                                            | household loss: 45,572 |  |  |  |
|                            | flush water: 361,171                                      |                        |  |  |  |
| drinking water: 1,298,847  | users: 1,299,387<br>grey water: 892,644                   | sewer: 1,236,886       |  |  |  |

# IV Organic

## IV.I Summary table

|                     |          |                    |           |            |           |               |               | output         |                  |                |             |                |          |             |            |
|---------------------|----------|--------------------|-----------|------------|-----------|---------------|---------------|----------------|------------------|----------------|-------------|----------------|----------|-------------|------------|
|                     |          | type user quantity |           |            |           | consumption   |               |                | organic waste    |                |             |                | Sewage   |             |            |
|                     |          |                    | average   | active nrs |           |               |               | 1              |                  |                | liquia toba |                | _        |             | -          |
|                     |          |                    | occupance | spend per  | awake hrs | Liquid        | Food consumed | Waste produced | Solid Food Waste | Garden         | wasted in   |                | Faeces   | Flush water | Grey water |
| Amstel III now      | Amount   | type               | per day   | type       | per year  | consumed (kg) | (kg)          | (kg)           | (kg)             | waste(kg/year) | sewage (kg) | Urine (L/year) | (kg/year | (L/year)    | (L/year)   |
| Bijlmerpoort West   | 16000000 | visitors           | 43836     | 3          | 48000000  | 6144000       | 3006000       | 3131507        | 673274           | 106471         | 468493      | 4500000        | 328767   | 105000000   | 270000000  |
| IKEA                | 2500000  | visitors           | 6849      | 2.5        | 6250000   | 520833        | 260417        | 407748         | 87666            | 13863          | 61002       | 585938         | 42808    | 13671875    | 35156250   |
| Workplaces          | 50000    | workerspaces       | 32192     | 7.2        | 84600000  | 10828800      | 5298075       | 551928         | 1186645          | 187656         | 825719      | 7931250        | 579452   | 185062500   | 475875000  |
| AMC staff           | 7000     | workers / students | 4507      | 7.2        | 11844000  | 1516032       | 741731        | 772699         | 166130           | 26272          | 115601      | 1110375        | 81123    | 25908750    | 66622500   |
| AMC patients        | -        | patients           | 960       | 16         | 5606400   | 717619        | 351101        | 365760         | 78638            | 12436          | 54720       | 525600         | 38400    | 12264000    | 31536000   |
| Drive Throughs (3x) | 2021053  | visitors           | 5537      | 1          | 2021053   | 606316        | 303158        | 131853         | 45474            | 4483           | 19726       | 189474         | 13843    | 4421053     | 11368421   |
| current situation:  |          |                    | 93881     |            | 158321453 | 20333600      | 9960481       | 10328848       | 2237828          | 351181         | 1545261     | 14842636       | 1084394  | 346328178   | 890558171  |
|                     |          |                    |           |            |           |               |               |                |                  |                |             |                |          |             |            |
| Amstel III 2040     |          |                    |           |            |           |               |               |                |                  |                |             |                |          |             |            |
| 15000 Households    | 31500    | inhabitants        | 31500     | 4.8        | 55352250  | 7085088       | 3466435       | 3611166        | 776401           | 122780         | 540253      | 5189273        | 379125   | 121083047   | 311356406  |
| Bijlmerpoort West   | 16000000 | visitors           | 43836     | 3          | 48000000  | 6144000       | 3006000       | 3131507        | 673274           | 106471         | 468493      | 4500000        | 328767   | 105000000   | 270000000  |
| IKEA                | 2500000  | visitors           | 6849      | 2.5        | 6250000   | 520833        | 260417        | 407748         | 87666            | 13863          | 61002       | 585938         | 42808    | 13671875    | 35156250   |
| Workplaces          | 50000    | workerspaces       | 32192     | 7.2        | 84600000  | 10828800      | 5298075       | 551928         | 1186645          | 187656         | 825719      | 7931250        | 579452   | 185062500   | 475875000  |
| AMC staff           | 7000     | workers/students   | 4507      | 7.2        | 11844000  | 1516032       | 741731        | 772699         | 166130           | 26272          | 115601      | 1110375        | 81123    | 25908750    | 66622500   |
| AMC patients        | -        | patients           | 960       | 16         | 5606400   | 717619        | 351101        | 365760         | 78638            | 12436          | 54720       | 525600         | 38400    | 12264000    | 31536000   |
| Drive Throughs (3x) | 2021053  | visitors           | 5537      | 1          | 2021053   | 606316        | 303158        | 131853         | 45474            | 4483           | 19726       | 189474         | 13843    | 4421053     | 11368421   |
| future situation:   |          |                    | 125381    |            | 2.14E+08  | 27418688      | 13426916      | 13940014       | 3014228          | 473960         | 2085514     | 20031910       | 1463519  | 467411224.5 | 1201914577 |





## IV.II Organic MFA of Amstel III circa 2019



## IV.III Organic MFA of Amstel III circa 2040



## IV.IV IKEA food consumed and wasted

#### visitors IKEA amstel III:

2500000 https://www.stadszaken.nl/?thema=2&ow=26&article=1566

#### visitors IKEA world wide:

936,000,000 https://www.ikea.com/ms/en\_US/this-is-ikea/ikea-highlights/2017/facts-and-figures/index.html

| GLOBALLY IKEA                  |                     |                 |                        |                            |                                            |            |
|--------------------------------|---------------------|-----------------|------------------------|----------------------------|--------------------------------------------|------------|
| https://flwprotocol.org/case-s | tudies/ikea-food-fo | od-precious-fo  | ood-waste-initiative/  |                            |                                            |            |
| Food saved from Decer          | mber 2016 until     | end of Janu     | uary 2019 in 247 sto   | ores of ikea, according    | to the source it is 20% of its food        | l waste.   |
| Aim is to go to 50% by 2       | 2020 in all resta   | urants          |                        |                            |                                            |            |
| meals saved                    |                     | kg              |                        |                            |                                            |            |
|                                | 4,003,896           |                 | 1,786,605              |                            |                                            |            |
| Meals served                   |                     | kg served       |                        |                            |                                            |            |
|                                | 650000000           |                 | 292500000              |                            |                                            |            |
| IKEA Amstel III                |                     |                 |                        |                            |                                            |            |
| Meals served                   | kg served           |                 |                        |                            |                                            |            |
|                                | 1736111.111         |                 | 781250                 | 14.864                     | 0.3125                                     |            |
| Average time spend in          | ikea                | https://eu.com  | mercialappeal.com/sto  | ory/money/business/develop | oment/2016/12/11/five-tips-best-ikea-trips | /95198234/ |
| per person                     |                     |                 | 2.5 hrs                |                            |                                            |            |
| Total visitors                 |                     |                 | 6250000 hrs            |                            |                                            |            |
| Food waste per restaur         | ant / hotel         | https://doi.org | /10.1016/0734-2428(83) | 90034-4                    |                                            |            |
| 20% - 38%                      |                     |                 |                        |                            |                                            |            |
| food waste reduction b         | v IKEA in 2020':    | ļ               |                        |                            |                                            |            |
|                                | 50%                 | 1               |                        |                            |                                            |            |
| Assumed food waste:            |                     |                 |                        |                            |                                            |            |
|                                | 15%                 |                 |                        |                            |                                            |            |

## IV.V Drive Through food customers and food

Mac Donalds in NL

3200000 weekly visitors

247 restaurants

12955.466 weekly per average restaurant

673684.21 yearly per average restaurant

Average meal 0.45 kg \* Average consumption of food per restaurant 303157.89 kg

https://www.snackkoerier.nl/bedrijfsvoering/nieuws/2018/02/mcdonalds-nederland-groeit-naar-recordomzet-101295532?vakn

#### Food and liquids per person

## Average Diet Amount consumed 3.1 kg/day Tabel van grafiek: Gemiddelde consumptie in grammen per dag - VCP 2012-2016, 1-79-jarigen

| Categ | ;ory alco<br>dra | Niet-<br>coholisc<br>he<br>ranken | Zuiveldra<br>nken | Alcoholisc<br>he<br>dranken | Brood,<br>granen,<br>rijst,<br>pasta | Zuivel-<br>niet<br>dranken | Groente | Fruit,<br>noten en<br>olijven | Vlees(pro<br>ducten) | Aardappel<br>en | Bouilon | Koel en<br>gebak | Sauzen en<br>smaakma<br>kers | Suiker en<br>snoepgoe<br>d | Vetten en<br>olien | Hartige<br>snacks | Vis, schaal<br>en<br>schelpdier<br>en | Eieren | Peulvruch<br>ten | Total g | Total kg | Total kg<br>per hour<br>awake |
|-------|------------------|-----------------------------------|-------------------|-----------------------------|--------------------------------------|----------------------------|---------|-------------------------------|----------------------|-----------------|---------|------------------|------------------------------|----------------------------|--------------------|-------------------|---------------------------------------|--------|------------------|---------|----------|-------------------------------|
| dran  | ken              | 1708                              | 201               | 139                         |                                      |                            |         |                               |                      |                 |         |                  |                              |                            |                    |                   |                                       |        |                  | 2048    | 2.048    | 0.128                         |
| voed  | sel              |                                   |                   |                             | 194                                  | 151                        | 131     | 130                           | 98                   | 72              | 43      | 41               | 35                           | 30                         | 22                 | 21                | 16                                    | 13     | 5                | 1002    | 1.002    | 0.062625                      |

arb Protein Other 45.1% 15.1% 5 Carb 34.7% 4 Fat 5.1%

#### food waste per person

| Amount food wasted per person |                 |  |  |  |  |  |  |  |  |
|-------------------------------|-----------------|--|--|--|--|--|--|--|--|
| inavoidable                   | 21 kg/year      |  |  |  |  |  |  |  |  |
| avoidable                     | 41 kg/year      |  |  |  |  |  |  |  |  |
| Total                         | 62 kg/year      |  |  |  |  |  |  |  |  |
|                               | 0.010616 kg/hrs |  |  |  |  |  |  |  |  |
|                               |                 |  |  |  |  |  |  |  |  |

#### Amount liqued wasted per person 57 kg/year 57 kg/year avoidable Total

0.00976 kg/hrs

### IV.VII Sewage per person

#### Waste water per person

grey water (I/hrs(active)) 5.625

|   | Black Water      |               |               |  |  |  |  |  |  |  |  |  |
|---|------------------|---------------|---------------|--|--|--|--|--|--|--|--|--|
|   | urine (I/d)      | fecies(l/d)   | water (I/d)   |  |  |  |  |  |  |  |  |  |
|   | 1.5              | 0.109589      | 35            |  |  |  |  |  |  |  |  |  |
| ĺ | urine (l/hrs)    | fecies(l/hrs) | water (l/hrs) |  |  |  |  |  |  |  |  |  |
|   | 0.09375          | 0.0068493     | 2.1875        |  |  |  |  |  |  |  |  |  |
|   | Other            |               |               |  |  |  |  |  |  |  |  |  |
|   | grey water (l/d) |               |               |  |  |  |  |  |  |  |  |  |
|   | 90               |               |               |  |  |  |  |  |  |  |  |  |

#### van der Hoek

| The organic matter content in wastewater, Chemical Oxygen Deman (COD) |                                 |          |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------|---------------------------------|----------|--|--|--|--|--|--|--|--|
| greywater                                                             | 36%                             |          |  |  |  |  |  |  |  |  |
| faeces                                                                | 34%                             |          |  |  |  |  |  |  |  |  |
| Urine                                                                 | 7%                              |          |  |  |  |  |  |  |  |  |
| Toilet Paper                                                          | 23%                             |          |  |  |  |  |  |  |  |  |
|                                                                       |                                 |          |  |  |  |  |  |  |  |  |
| Total organi                                                          | c matter in Ar                  | nsterdam |  |  |  |  |  |  |  |  |
| 41.9                                                                  | kton COD                        |          |  |  |  |  |  |  |  |  |
| Waste wate                                                            | Waste water without storm water |          |  |  |  |  |  |  |  |  |
| 53.8                                                                  | 53.8 mil m3                     |          |  |  |  |  |  |  |  |  |
|                                                                       |                                 |          |  |  |  |  |  |  |  |  |

0.078% percentage organic in waste water

https://www.snelverder.nl/v/wetenschap/tijd-en-meetkunde/hoeveel-werkdagen-in-een-jaar https://www.nemokennislink.nl/publicaties/ons-dagelijks-afval-water/ **STOWA 2005** 

## IV.VII Household occupation and active hours per person

#### Household

| Average amount of ppl        | 2.1 ppl          |
|------------------------------|------------------|
|                              |                  |
| Average free time spend home | 32 hrs/weekly    |
| Average time working at home | 1.7 hrs/weekly   |
| active hrs total per person  | 33.7 hrs/weekly  |
|                              | 4.814286 hrs/day |
|                              |                  |

total per household 70.77 hrs/weekly

source:

https://www.volksgezondheidenzorg.info/onderwerp/bevolking/cijfers-context/huishoudens

## IV.VIII Nutrions in waste water Amsterdam



IV.IX Phospurus in Amsterdam SW (J.P. van der Hoek, 2016)



Stoichiometry of anaerobic digestion of biodegradable organic substrate. IV.X (Kleerebezem 2015)

$$C_{c}H_{h}O_{o}N_{n} \rightarrow \left(\frac{c}{2} + \frac{h}{8} - \frac{3n}{8} - \frac{o}{4}\right)CH_{4} + \left(\frac{c}{2} - \frac{h}{8} - \frac{5n}{8} + \frac{o}{4}\right)CO_{2}$$
$$+ nNH_{4}HCO_{3} + \left(\frac{h}{4} - c - \frac{7n}{4} + \frac{o}{2}\right)H_{2}O$$

#### Properties of feedstock for anaerobic digestion. (Kleerebezem 2015) IV.XI s (Batstone et al., 2002: Nasir et al., 2012a: Nasir et al., 2012 TABLE 14.3 Properties of typical feedstocks for the anaerobic digestio

| TABLE 14.3     | Properties of ty             | pical feedstoc               | ks for the ana             | erobic digesti               | on process (Bats | tone et al., 2002; Nasir                                | et al., 2012                  | a; Nasır et al.                 | , 2012D)            |
|----------------|------------------------------|------------------------------|----------------------------|------------------------------|------------------|---------------------------------------------------------|-------------------------------|---------------------------------|---------------------|
| Feedstock      | TDM<br>(g.kg <sup>-1</sup> ) | ODM<br>(g.kg <sup>-1</sup> ) | N<br>(g.kg <sup>-1</sup> ) | COD<br>(g.kg <sup>-1</sup> ) | Biodeg (%)       | Composition                                             | $k_h^b$<br>(d <sup>-1</sup> ) | Biogas<br>(L.kg <sup>-1</sup> ) | $CH_4^{\ c}$<br>(%) |
| Pig manure     | 200                          | 160                          | 7.0                        | 176                          | 20               | CH2.27O0.91 N0.094                                      | 0.05                          | 23                              | 57                  |
| MSW            | 300                          | 240                          | 1.8                        | 264                          | 25               | CH2.08O0.97 N0.016                                      | 0.20                          | 48                              | 52                  |
| OFMSW          | 300                          | 270                          | 3.0                        | 297                          | 50               | CH2.10O0.96 N0.024                                      | 0.20                          | 106                             | 53                  |
| Slaughterhouse | 200                          | 180                          | 6.0                        | 260                          | 80               | CH2.59O0.74 N0.065                                      | 0.10                          | 118                             | 66                  |
| Maize silage   | 400                          | 360                          | 1.2                        | 396                          | 80               | CH <sub>2.05</sub> O <sub>0.97</sub> N <sub>0.007</sub> | 0.20                          | 231                             | 51                  |
| Grass          | 350                          | 315                          | 1.1                        | 347                          | 60               | CH2.05O0.97 N0.007                                      | 0.15                          | 151                             | 52                  |
| Sewage sludge  | <sup>a</sup> 50              | 45                           | 1.2                        | 50                           | 35               | CH2.18O0.94 N0.057                                      | 0.07                          | 12                              | 55                  |
| Food waste     | 300                          | 270                          | 2.5                        | 351                          | 75               | CH2.32O0.85 N0.019                                      | 0.25                          | 169                             | 58                  |
|                |                              |                              |                            |                              |                  |                                                         |                               |                                 |                     |

The reported values have been compiled from a wide range of literature sources and should be considered as indicative, since reported values may vary by a

factor of two at least.

<sup>a</sup> A mixture of primary and secondary sludge is assumed. <sup>b</sup> Indicative hydrolysis rate constants reported are for mesophilic digestion; typically, thermophilic rate constants are a factor of two higher. <sup>c</sup> It is assumed that the biodegradable and nonbiodegradable fractions of organic carbon have the same elemental composition.

### IV.XII Calculation Gas, Electricital and Carbon Dioxide potential from organic waste stream Amstel III 2040 through anaerobic digestion and gas turbine.

ACRONYMS OFMSW

organic fraction of municipal solid waste

#### SYMBOLS

Е

| ODM |  |
|-----|--|

energy content of gas organic dry matter (g/kg)

| DATA (Paper, Kleerebezem)         |        |   | molaire mass |
|-----------------------------------|--------|---|--------------|
| Normal volume of 1kmol gas (m3)   | 22.4   | С | 12.011       |
| E (n,CH4) (MJ*m^3)                | 36.5   | н | 1.0079       |
| Efficienty electricity generation | 40.00% | 0 | 15.999       |
| MJ*kmol^-1                        | 818    | Ν | 14.0067      |

| DATA properties waste | biodeg % | Н   | 0    | Ν    | (     | ODM (g / kg) | Biogas (L/k ِ C | CH(%) |
|-----------------------|----------|-----|------|------|-------|--------------|-----------------|-------|
| OFMSW                 |          | 50% | 2.1  | 0.96 | 0.024 | 270          | 106             | 53%   |
| Food                  |          | 75% | 2.32 | 0.85 | 0.019 | 270          | 169             | 58%   |
| Sewage sludge         |          | 35% | 2.18 | 0.94 | 0.057 | 45           | 24              | 55%   |

| INPUT         | yard/garden (OFMSW) | food (%) | sewage sludge (%) | other (OFMSW) | amount (kg/d) | ODM (kg) | Biodeg(%)     |
|---------------|---------------------|----------|-------------------|---------------|---------------|----------|---------------|
| Garden        | 100.00%             | 0.00%    | 0.00%             | 0.00%         | 1299          | 350.60   | 50.00%        |
| Food waste    | 0.00%               | 100.00%  | 0.00%             | 0.00%         | 8258          | 2229.70  | 75.00%        |
| Sewage sludge | 0.00%               | 0.00%    | 100.00%           | 0.00%         | 92762         | 4174.29  | 35.00%        |
|               |                     |          |                   | Total:        | 102319        | 6755     | <b>38.42%</b> |

| Properties feedstock | С | Н | 0     | Ν     |       | Molaire Mass |
|----------------------|---|---|-------|-------|-------|--------------|
| Resort organic       |   | 1 | 2.1   | 0.96  | 0.024 | 29.8227908   |
| Local organic        |   | 1 | 2.32  | 0.85  | 0.019 | 28.2146053   |
| Greenhouse waste     |   | 1 | 2.18  | 0.94  | 0.057 | 30.0456639   |
| Total feedstock      |   | 1 | 2.190 | 0.933 | 0.054 | 29.89505037  |

| Substrate | CH4        | CO2                | NH4HCO3              | H20          |
|-----------|------------|--------------------|----------------------|--------------|
| Produced  | 0.         | 56 O. <del>/</del> | <mark>43</mark> 0.05 | -0.08        |
| kmol/day  | 48.6632503 | 29 36.98017        | 4.645287568          | -6.908258667 |
| kg/day    | 780.68505  | 92 1627.460        | 47 362.5475071       | -124.4508982 |

| Quantity | kmol/day    | kg/day     | m^3/day    | CH4 | CO2    |        |
|----------|-------------|------------|------------|-----|--------|--------|
| Biogas   | 85.64342403 | 2408.14553 | 1918.41269 | 98  | 56.82% | 43.18% |

| OUTPUT EL                 | hour |             | Daily      | Weekly      | Yearly      |
|---------------------------|------|-------------|------------|-------------|-------------|
| biogas (m^3)              |      | 80          | 1918       | 13429       | 700221      |
| MJ (bruto)                |      | 1658        | 39787      | 278510      | 14522282    |
| kWh (bruto)               |      | 460         | 11052      | 77364       | 4033967     |
| kWh (netto)               |      | 184         | 4421       | 30946       | 1613587     |
| OUTPUT CO2                | hour |             | Daily      | Weekly      | Yearly      |
| CO2 (in biogas) (m^3)     |      | 34.51482882 | 828.355892 | 5798.491242 | 302349.9005 |
| CO2 (due combution) (m^3) |      | 45.41903361 | 1090.05681 | 7630.397646 | 397870.7344 |
| total CO2 (m^3)           |      | 79.93386243 | 1918.4127  | 13428.88889 | 700220.6349 |
| total CO2 (kg)            |      | 158.7486508 | 3809.9676  | 26669.77333 | 1390638.181 |

### IV.XIII Ingredients in typical digestate

|                           |        |                  |             | NH4 share (% |              | k20     |
|---------------------------|--------|------------------|-------------|--------------|--------------|---------|
| form                      | DM (%) | N(total) (kg/m3) | NH4 (kg/m3) | of N)        | P205 (kg/m3) | (kg/m3) |
| Liquid digestate          | 6.5    | 5.1              | 3.2         | 62.7         | 2.3          | 5.5     |
| Liquid separated fraction | 5.7    | 4.9              | 3.1         | 63.3         | 2            | 5.4     |
| Solid separated fraction  | 24.3   | 5.8              | 2.7         | 46.5         | 5            | 5.8     |

(Fachverband Biogas e.V., 2018)

II.XIV Gross amount and absorbable amount of nitrogen of digestate of OFMSW and SW Amstel III

| NITROGEN       | N (g*kg-1) | amount daily (kg*d) | yearly (kg) | N(total) (kg) | N(absorbed) (kg) |
|----------------|------------|---------------------|-------------|---------------|------------------|
| Garden (OFMSW) | 3          | 1299                | 473960      | 1422          | 892              |
| Food           | 2.5        | 8258                | 3014228     | 7536          | 4725             |
| Sewage sludge  | 1.2        | 92762               | 33858134.9  | 40630         | 25475            |
| total          |            | 102319              | 37346324    | 49587         | 31091            |

(Nitrogen amount is calculated with key figures on feedstock of IV.VI, absorbed amount is based on issue Digestate as Fertilizer, Wilken, D., (2018))

II.XV P and K amounts based on N values in comparison with Fachverband Biogas e.V., 2018

| PHOSPHORUS AND POTESSIUM | factor    | kg yearly |
|--------------------------|-----------|-----------|
| P2O5                     | 0.4509804 | 22363     |
| K2O                      | 1.0784314 | 53476     |

II.XVI Solid and liquid fraction by comparison with Fachverband Biogas e.V., 2018

|                           | % in mass |               |          | NH4 share (% |              |         |
|---------------------------|-----------|---------------|----------|--------------|--------------|---------|
| form                      | (m3)      | N(total) (kg) | NH4 (kg) | of N)        | P205 (kg/m3) | k2O(kg) |
| Liquid digestate          | 100       | 49587         | 31091    | 62.7         | 22363        | 53476   |
| Liquid separated fraction | 95.7      | 49391         | 31265    | 63.3         | 24611        | 52124   |
| Solid separated fraction  | 4.3       | 1875          | 872      | 46.5         | 9421         | 46442   |

Notes figure IV.XII Calculation Gas, Electricity and Carbon Dioxide potential from organic waste stream Amstel III 2040 through anaerobic digestion and gas turbine. Input data is taken from appendix II.I and matched with the closed type of feedstock from the paper of Kleerebezem depicted in II.III. Take note that the paper of Kleerebezem describes the Total Dry Matter (TDM) to be 50g \*kg, from the total amount of sewage coming from Amstel III in appendix II.I results in a TDM of 1 g\*kg, this partly due the fact that standard municipal sewage include other solids such as toilet-paper, dirt and sand. But more importantly, Kleerebezem uses a mixture of primary and secondary sludge as input. Primary and secondary sludge is pre-treated with the removal of toxic (fluids) and has a reduced weight by removing water. The mixture of his paper has a higher amount of solid then domestic sewage water.

Primary sludge is only 6 - 7% of the total sewage. (van der Hoek, 2016)





# V Nutrional demand

V.I NPK Demand of different arable crops per tonne ( Aendekerk, T., van Himste, R., & Hopman, M. (1995))

| ARREIDOUW-/groenteleen vone                               | sionaproduk          | len               |                               |                    |
|-----------------------------------------------------------|----------------------|-------------------|-------------------------------|--------------------|
|                                                           |                      | gem.              | kg per to                     | on vers            |
|                                                           | gewasdeel            | N                 | P <sub>2</sub> O <sub>5</sub> | K <sub>2</sub> O   |
| Aardappel, Consumptie-                                    | knollen              | 3,3               | 1,1                           | 5,1                |
| Aardappel, Poot-                                          | knollen              | 3,3               | 1,1                           | 5,1                |
| Aardappel, Vroege consumptie                              | knollen              | 3,0               | 0,9                           | 5,1                |
| Aardappel, Zetmeel-                                       | knollen              | 3,7               | 0,9                           | 5,2                |
| Andijvie                                                  | Diad                 | 2,5               | 0,7                           | 4,0                |
| Asperge                                                   | asperges             | 3.5               | 0,5                           | 2.5                |
| Augurk                                                    | loof                 | 20                | 3.4                           | 5.1                |
| Augurk                                                    | vrucht               | 1.5               | 0.9                           | 3.0                |
| Bietenstaartjes                                           | staartjes            | 2,5               | 0,0                           | 0,0                |
| Bladkool                                                  | plant                | 3,3               | 0,5                           | 2,8                |
| Bladrammenas                                              | plant                | 3,0               | 0,0                           | 0,0                |
| Blauwmaanzaad                                             | zaad                 | 34,0              | 20,0                          | 10,0               |
| Blauwmaanzaad                                             | stro                 | 13,0              | 8,0                           | 22,0               |
| Bloemkool                                                 | kool                 | 2,9               | 0,9                           | 3,5                |
| Bloemkool                                                 | oogstrest            | 3,3               | 1,1                           | 4,9                |
| Boerenkool                                                | oogstrest            | 4,4               | 0,9                           | 6,5                |
| Boerenkool                                                | plant                | 4,0               | 1,6                           | 5,1                |
| Broccoli                                                  | kool                 | 2,0               | 1,6                           | 5,1                |
| Broccoli                                                  | oogstrest            | 4,7               | 1,6                           | 7,0                |
| Chinese kool                                              | krop                 | 1,5               | 0,9                           | 3,0                |
| Com Cob Moio                                              | oogstrest            | 2,0               | 0,7                           | 4,6                |
| Com Cob Mais                                              | KOIT                 | 9,3               | 4,4                           | 3,1                |
| Donerwiten                                                | zaad                 | 5,0               | 1.6                           | 7,0                |
| Epst Ronde groene                                         | stro                 | 21.0              | 4.6                           | 23.1               |
| Erwt, Ronde groene                                        | zaad                 | 33.6              | 9,6                           | 14.1               |
| Graszaad                                                  | zaad                 | 18,0              | 8,0                           | 7,0                |
| Graszaad                                                  | stro                 | 11,0              | 3,0                           | 18,9               |
| Haver                                                     | zaad                 | 17.0              | 8.0                           | 5.1                |
| Haver                                                     | stro                 | 5,0               | 2,1                           | 18,1               |
| Karwij                                                    | zaad                 | 32,0              | 15,1                          | 18,1               |
| Karwij                                                    | stro                 | 5,0               | 3,0                           | 24,1               |
| Klaver, Alexandrijnse                                     | plant                | 4,9               | 1,4                           | 4,3                |
| Klaver, Witte                                             | hooi                 | 17,6              | 5,7                           | 27,2               |
| Klaver, Witte                                             | vers                 | 5,6               | 1,1                           | 3,7                |
| Knolvenkel                                                | knol                 | 2,0               | 0,5                           | 6,0                |
| Koolraap, Consumptie                                      | knol                 | 1,5               | 0,9                           | 2,5                |
| Koolrabi                                                  | knol                 | 2,0               | 0,9                           | 4,6                |
| Korrelmaïs                                                | korrels              | 13,9              | 6,7                           | 4,3                |
| Korrelmaïs                                                | stro                 | 2,9               | 0,9                           | 7,2                |
| Lupinen                                                   | plant                | 4,5               | 0,9                           | 4,6                |
| Luzerne                                                   | plant                | _5,8              | 1,4                           | 8,0                |
| Peen, Bos-                                                | plant                | 1,5               | 0,7                           | 3,5                |
| Peen, Fijne                                               | wortel               | 1,5               | 0,7                           | 3,5                |
| Peen, Grove (Winter-)                                     | wortel               | 2,4               | 0,9                           | 4,3                |
| Prei                                                      | plad                 | 4,5               | 1,6                           | 8,6                |
| Prei                                                      | plant                | 3,0               | 0,9                           | 4,0                |
| Padichio rotto                                            | lkron                | 3,0               | 0,7                           | 4,1                |
| Radiis                                                    | niant                | 3,0               | 0,9                           | 3.5                |
| Rode hiet                                                 | wortel               | 25                | 0,0                           | 4.6                |
| Rode Kool                                                 | kool                 | 3.0               | 0,9                           | 3.5                |
| Rode Kool                                                 | oogstrest            | 3.7               | 0.9                           | 4.0                |
| Rogge                                                     | zaad                 | 14.0              | 7.1                           | 6.0                |
| Rogge                                                     | stro                 | 3.8               | 1.8                           | 10.1               |
| Savooiekool                                               | kool                 | 4,0               | 0,9                           | 4,0                |
| Savooiekool                                               | oogstrest            | 3,9               | 1,1                           | 5,3                |
| Schorseneren                                              | wortel               | 3,5               | 1,6                           | 4,0                |
| Selderij, Blad/Snij                                       | plant                | 1,6               | 0,9                           | 8,4                |
| Selderij, Bleek-                                          | plant                | 2,4               | 0,9                           | 3,5                |
| Selderij, Groen-                                          | plant                | 1,0               | 0,5                           | 3,5                |
| Selderij, Knol-                                           | knol                 | 2,0               | 1,6                           | 5,5                |
| Selderij, Knol-                                           | oogstrest            | 2,8               | 0,9                           | 6,7                |
|                                                           | plant                | 4,3               | 1,1                           | 6,0                |
| Serradelle                                                |                      |                   |                               |                    |
| Serradelle<br>Serradelle                                  | stro                 | 0,0               | 5,7                           | 28,7               |
| Serradelle<br>Serradelle<br>Sla, Batavia-                 | stro<br>krop         | 0,0<br>0,0        | 5,7<br>0,7                    | 28,7<br>3,7        |
| Serradelle<br>Serradelle<br>Sla, Batavia<br>Sla, Eikeblad | stro<br>krop<br>krop | 0,0<br>0,0<br>0,0 | 5,7<br>0,7<br>0,7             | 28,7<br>3,7<br>4,6 |

| Akkerbouw-/groenteteelt vollegrondprodukten |           |           |         |                  |  |  |  |  |
|---------------------------------------------|-----------|-----------|---------|------------------|--|--|--|--|
|                                             | gem.      | kg per to | on vers |                  |  |  |  |  |
|                                             | gewasdeel | N         | P2O3    | K <sub>2</sub> O |  |  |  |  |
| Sla, Krop-                                  | krop      | 2,0       | 0,7     | 3,5              |  |  |  |  |
| Snijgerst                                   | plant     | 4,5       | 1,1     | 5,2              |  |  |  |  |
| Snijhaver                                   | plant     | 4,0       | 1,1     | 5,3              |  |  |  |  |
| Snijmaïs                                    | plant     | 4,6       | 1,6     | 6,0              |  |  |  |  |
| Snijrogge                                   | plant     | 4,5       | 2,1     | 6,5              |  |  |  |  |
| Spinazie                                    | blad      | 3,5       | 0,9     | 6,5              |  |  |  |  |
| Spinazie                                    | oogstrest | 2,3       | 1,1     | 7,7              |  |  |  |  |
| Spitskool                                   | kool      | 4,0       | 0,9     | 3,5              |  |  |  |  |
| Spruitkool                                  | spruiten  | 5,5       | 2,1     | 6,0              |  |  |  |  |
| Spruitkool                                  | stammen   | 5,4       | 1,6     | 5,7              |  |  |  |  |
| Stam-sperzie/slaboon                        | oogstrest | 5,0       | 1,1     | 6,7              |  |  |  |  |
| Stam-sperzie/slaboon                        | peulen    | 2,2       | 0,9     | 3,0              |  |  |  |  |
| Stoppelknol                                 | blad+knol | 3,0       | 1,1     | 4,0              |  |  |  |  |
| Suikerbieten                                | loof      | 3,4       | 0,7     | 4.8              |  |  |  |  |
| Suikerbieten                                | wortel    | 1,8       | 0,9     | 2,5              |  |  |  |  |
| Theunisbloem                                | zaad      | 23.5      | 16,5    | 11.1             |  |  |  |  |
| Theunisbloem                                | stro      | 3,0       | 3,0     | 23,1             |  |  |  |  |
| Triticale                                   | stro      | 5.8       | 4,6     | 9.4              |  |  |  |  |
| Tuinboon                                    | bonen     | 42.0      | 9,6     | 13.0             |  |  |  |  |
| Veldboon                                    | zaad      | 40.0      | 13.1    | 14.8             |  |  |  |  |
| Veldboon                                    | plant     | 4.2       | 1.4     | 3.4              |  |  |  |  |
| Veldboon                                    | stro      | 10.9      | 2.8     | 16.7             |  |  |  |  |
| Vias                                        | zaad      | 33.0      | 15.1    | 9.0              |  |  |  |  |
| Vlas                                        | stro      | 4.0       | 4.1     | 11.1             |  |  |  |  |
| Voederbieten                                | plant     | 1.9       | 0.5     | 3.4              |  |  |  |  |
| Voederwikken                                | plant     | 6.8       | 1.6     | 6.6              |  |  |  |  |
| Winterperst                                 | zaad      | 17.0      | 8.0     | 6.0              |  |  |  |  |
| Wintergerst                                 | stro      | 5.4       | 2,1     | 14.9             |  |  |  |  |
| Winterkoolzaad                              | zaad      | 35.0      | 15.1    | 10.0             |  |  |  |  |
| Winterkoolzaad                              | stro      | 6.0       | 3.0     | 20.1             |  |  |  |  |
| Wintertarwe                                 | zaad      | 20.0      | 8.5     | 5.1              |  |  |  |  |
| Wintertarwe                                 | stro      | 5.8       | 1.6     | 14.9             |  |  |  |  |
| Witlof                                      | krop      | 1.9       | 0.7     | 2.3              |  |  |  |  |
| Witlofwortelen                              | na trek   | 1.4       | 0.7     | 4.2              |  |  |  |  |
| Witlofwortelen                              | voor trek | 2.1       | 0.9     | 4.5              |  |  |  |  |
| Witte Kool                                  | kool      | 2.5       | 0.7     | 3.0              |  |  |  |  |
| Witte Kool                                  | oogstrest | 2.8       | 0,9     | 4,0              |  |  |  |  |
| Zaaiui (incl Picklers)                      | ui        | 2.2       | 0.7     | 1.8              |  |  |  |  |
| Zomergerst                                  | zaad      | 15.0      | 8,0     | 6,0              |  |  |  |  |
| Zomergerst                                  | stro      | 5,4       | 2,1     | 14,9             |  |  |  |  |
| Zomertarwe                                  | zaad      | 17.0      | 8,5     | 5.1              |  |  |  |  |
| Zomertarwe                                  | stro      | 5.8       | 1,6     | 14,9             |  |  |  |  |
| Zonnebloem                                  | plant     | 3,5       | 0.9     | 4,0              |  |  |  |  |

| Gewas                                                                            | gewasdeel                        | gem. k             | g per to  | n vers           |
|----------------------------------------------------------------------------------|----------------------------------|--------------------|-----------|------------------|
|                                                                                  |                                  | N                  | P2O3      | K <sub>2</sub> O |
| Eiwithoudende gewassen                                                           | plant                            | 4,2                | 1,4       | 3,4              |
| Hakvruchten *                                                                    | plant                            | 3,0                | 1,1       | 5,1              |
| Loof                                                                             | loof                             | 3,5                | 1,1       | 3,6              |
| Oliehoudende zaden *                                                             | zaad                             | 32,0               | 16,1      | 9,6              |
| Overige vollegrondsgroenten *                                                    | produkt                          | 5,0                | 1,1       | 3,6              |
| Overige vollegrondsgroenten*                                                     | rest                             | 3,0                | 1,1       | 6,0              |
| Overige zaden                                                                    | zaad                             | 18,0               | 8,0       | 7,2              |
| Overige zaden '                                                                  | stro                             | 3,5                | 0,9       | 4,0              |
| <ul> <li>Voor een groot aantal produi<br/>volledig. De genoemde getal</li> </ul> | kten ontbreker<br>Ien zijn aanna | n forfaita<br>mes. | ire getal | len              |

#### NPK Demand of different arable crops per tonne ( V.II Aendekerk, T., van Himste, R., & Hopman, M. (1995))

|                    |                 | (NKP)Average KG per tonne |      |      | yield rates                 |                 |                       | nutrion          |        |
|--------------------|-----------------|---------------------------|------|------|-----------------------------|-----------------|-----------------------|------------------|--------|
|                    | crop type       | N                         | P205 | K20  | (fresh)tonne/<br>ha*harvest | nmbr<br>harvest | (fresh)ton<br>ne/ha*v | kCal<br>(100 qr) | source |
| Direct consumption | Potato          | 3.3                       | 1.1  | 5.1  | -                           | -               | 46                    | 83               | 1      |
|                    | Cauliflower     | 2.9                       | 0.9  | 3.5  | 14                          | 3               | 42                    | 23               | 3      |
|                    | Broccoli        | 2                         | 1.6  | 5.1  | 8                           | 3               | 24                    | 29               | 2      |
|                    | Chinese cabbage | 1.5                       | 0.9  | 3    | 40                          | 2               | 80                    | 19               | 9      |
|                    | Corn            | 13.9                      | 6.7  | 4.3  | -                           | -               | 15                    | 354              | 1      |
|                    | Pea             | 33.6                      | 9.6  | 14.1 | -                           | -               | 5                     | 86               | 8      |
|                    | Beans           | 42                        | 9.6  | 13   | -                           | -               | 12                    | 71               | 5      |
|                    | Beans (CEA)     | 42                        | 9.6  | 13   | 4                           | 4               | 16                    | 71               | 4      |
|                    | Oats            | 17                        | 8    | 5.1  | -                           | -               | 5                     | 374              | 1      |
|                    | Orchard (apple) | 4.0                       | 2.0  | 2.0  | -                           | -               | 50                    | 95               | 10&11* |
|                    | Grain           | 20                        | 8.5  | 5.1  | -                           | -               | 8                     | 329              | 1      |

Feed Maiz 4.6 1.6 6 -40 sources did not provide exact value for yield rates and NPK, therefor an estimation is made on the values

|      |         | animal feed      |              | real animal |
|------|---------|------------------|--------------|-------------|
|      |         | [kg]/live weight |              | feed [kg]/  |
|      |         | [kg]             | Edible share | weight [kg] |
| Meat | Beef    | 25               | 40%          | e           |
|      | Pork    | 9.1              | 55%          | 1           |
|      | Chicken | 4.5              | 55%          |             |

1 https://opendata.cbs.nl/statline/#/CBS/nl/dataset/7100oogs/table?from

- 2 https://edepot.wur.nl/282860
- 3 https://edepot.wur.nl/252740
- 4 http://edepot.wur.nl/252306
- https://cdepot.wur.nl/252731 https://www.voedingscentrum.nl/nl/service/vraag-en-antwoord/gezonde-voeding-en-voedingsstoffen/hoeveel-calorieen-zitten-

1

- 6 erin-/caloriechecker/gekookte-aa en.aspx
- 7 https://edepot.wur.nl/249750 8 https://edepot.wur.nl/254841
- 9 https://edepot.wur.nl/255027
- 10 https://edepot.wur.nl/211400

11 http://www.fao.org/3/ac681e/ac681e08.htm

#### V.III Average consumption in the Netherlands (

### Gemiddelde consumptie in grammen per dag



## V.IV NPK and ha demand for producable food of diet of Amstel III

|                              | PP in | Tot. Amstel III | Feed per |         | P205   |          |             |             |                                                                                                  |
|------------------------------|-------|-----------------|----------|---------|--------|----------|-------------|-------------|--------------------------------------------------------------------------------------------------|
| Demand                       | grams | in tonnes       | kg       | N (kg)  | (kg)   | K2O (kg) | kCal (10^6) | ha required | notes                                                                                            |
| Meat, dairy, animal products | 305   | 4087            | 22       | 409976  | 142600 | 534751   | 10538       | 2469        | estimation based on 1/2 chicken, 1/4 pork, 1/4 cow meat, area is estimated as factor 0.1 of feed |
| fish                         | 16    | 214             | -        | -       | -      | -        | -           | -           |                                                                                                  |
| Grain products               | 194   | 2600            | -        | 51992   | 22097  | 13258    | 8553        | 325         | based on grain                                                                                   |
| Potato                       | 72    | 965             | -        | 3184    | 1061   | 4921     | 801         | 21          |                                                                                                  |
| vegetables                   | 131   | 1755            | -        | 3511    | 2809   | 8953     | 509         | 61          | based on brocolli                                                                                |
| fruits and nuts              | 130   | 1742            | -        | 6968    | 3484   | 3484     | 1655        | 18          | based on apple from orchard                                                                      |
| beans                        | 5     | 67              | -        | 2814.02 | 643    | 871      | 48          | 4           | beans grown with CEA                                                                             |
| other                        | 119   | 1595            | -        | -       | -      | -        | -           | -           |                                                                                                  |
| Total                        | 972   | 13025           |          | 478445  | 172694 | 566238   | 22103       | 2898        |                                                                                                  |

|                     | Meat,  |          |        |          | orchard |       |       | available |
|---------------------|--------|----------|--------|----------|---------|-------|-------|-----------|
|                     | dairy, | Grain    |        | vegetabl | (fruit/ |       |       | in Amstel |
| Possible production | animal | products | Potato | es       | nuts)   | beans | TOTAL | ш         |
| tonnes              | 100    | 200      | 965    | 1755     | 1742    | 67    | 4829  |           |
| N(kg)               | 10031  | 4000     | 3184   | 3511     | 6968    | 2814  | 30508 | 31091     |
| P2O5 (kg)           | 3489   | 1700     | 1061   | 2809     | 3484    | 643.2 | 13186 | 22363     |
| K2O (kg)            | 13084  | 1020     | 4921   | 8953     | 3484    | 871   | 32332 | 53476     |
| land (ha)           | 60     | 25       | 21     | 73       | 35      | 4     | 219   |           |

https://wateetnederland.nl/resultaten/energie-en-macronutrienten/inname/alle-macronutrienten

## V.V CO<sub>2</sub> demand and supply

#### CO2 for CEA

| Average Gre        |                |          |               |
|--------------------|----------------|----------|---------------|
| Demand             | and 32.3 kg/m2 |          | (RSFGV, 1999) |
| CEA in Am          |                |          |               |
| Surface area doced | 77             | ha       |               |
| Demand             | 24978          | T(CO2)*y |               |

#### Available

| Biogas plant   |      |          |  |  |  |
|----------------|------|----------|--|--|--|
| OFMSW + SW     | 1391 | T(CO2)*y |  |  |  |
| percentage use | 100% | CO2      |  |  |  |
|                |      |          |  |  |  |

| Users Amstel III |        |          |  |  |  |
|------------------|--------|----------|--|--|--|
| Occupation       | 125381 | рр       |  |  |  |
| Av. CO2 human    | 1      | kg/day   |  |  |  |
| CO2 produced     | 45764  | T(CO2)*y |  |  |  |
| percentage use   | 52%    | CO2      |  |  |  |

#### V.VI Flows of conventional and organic arable farming according to Vilijoen

| Organic food production: energy expenditu    | e in terms of energy ratios | (after Leach, 1976)         |
|----------------------------------------------|-----------------------------|-----------------------------|
| INPUTS                                       | CONVENTIONAL PRODUCTION     | ORGANIC PRODUCTION          |
| Fartilizar N. 175 kg                         | 14.00                       |                             |
| Fertiliser N, 175 kg.                        |                             |                             |
| Fertiliser K 250 kg                          | 2.45                        |                             |
| Field Work fuels for tractors (to baryest)   | 2.25                        | 2.85                        |
| fuels for harvester transport                | 3.38                        | 3.38                        |
| Field Work, tractors depreciation and repair | 1.14                        | 1.14                        |
| harvesters depreciation and rep              | airs 6.70                   | 6.70                        |
| Sprays, 13kg                                 |                             |                             |
| Seed shed fuels (620 MJ/t seed)              |                             |                             |
| Storage (1,65 kWh/net t)                     |                             | 0.57                        |
|                                              | TOTAL 36.15                 | TOTAL 16.21                 |
| OUTPUTS                                      |                             |                             |
| Gross vield                                  | t                           |                             |
| Net yield (less 2.5t seeds)                  | t                           |                             |
| Edible yield                                 | t17.9                       | at 66% of conventional 11.9 |
| Energy output (17.9t x 3.18 MJ/kg) GJ/l      | naTOTAL 56.9                | TOTAL 37.95                 |
| Protein output (17.9t x 2.1% protein) kgP    | 'ha                         |                             |
| BATIOS                                       |                             |                             |
| Energy out/in                                | 1.57                        | 2.34                        |

An energy ratio is defined as the edible energy output of food divided by the energy input necessary to produce it.



V.V Proposed organic MFA 2040

Organic Material Flow 2040 proposed model



# VI Examples

## VI.I Organoponicos



(image: www.foodurbanism.org)



(image: www.theguardian.com)

https://www.theguardian.com/environment/2008/ apr/04/organics.food Ed Ewing (2008) Cuba – organoponicos – urban intensive agriculture – selfreliant organic farming

Cuba needed to become self-reliant after collapse Soviet Union in 1990/91. Calorie intake dropped from 2600 in the late 1980's to 1000 – 1500 in 1993 daily due to 80% decrease in import. As result of an embargo by the USA, there was no chemical fertilizer, pest control and fuel for machinery available. A consequence was that people were forced to start cultivating close to where they were living in an organic fashion to prevent soil depletion and with biological pest control. During this time 25,000 allotments popped up and dozens larger scale organoponicos. On a national scale 3.4% of urban land was used for these purposes and 8% in Havana was being used. In 2002 this was good for 3.2m tonnes of food and the total calorie intake is back at 2600 kCal. Now, this cultivation culture is in decline / under threat since the embargo is weaker and Cuba is losing its isolated position.

Organoponics, supported through

governmental control. Business Model; growers earn 50% of the sales.

- Direct link to a shop or farmers market. (In Cuba only open once a week.)

Benefits: organic, self reliant, health benefits

- Cons: financial constraints not choice, labour intensive

## VI.II Urban farming in Rotterdam, DakAkker



(image: www.daktuinen.nu)

On top of the Schieblock office building in the center of Rotterdam the largest rooftop-farm in Europe is situated: "the DakAkker". Here fruits, vegetables and herbs are grown and honey bees are kept. (https://www. luchtsingel.org/en/locaties/roofgarden/)

- Space efficiency
- Low yield
- Organic farming
- Combined with restaurant



(image: www.trouw.nl)

https://www.nrc.nl/nieuws/2018/08/09/dakboeren-issexy-acht-euro-voor-een-kilo-tomaten-niet-a1612629

Maren Schoormans (Priva), Andreas Graber (Urban Farmers), Peter Jens (Koppert) The New Farm – Analysis -

"Of ze hadden een ander verdienmodel nodig, zegt Van der Schans. "Leveren aan de Makro doen tuinders al. Een community rondom de boerderij bouwen niet."

Arguments:

- A. Too much attention for technical innovation, no regard for neighbourhood.

B. Idea of the project was to show innovation.

Supposed to be PR-project, not commercial.

- No professional grower, due to mismatch investors and sector.

- Produce of gh was matching to the demand of restaurants and supermarket. However, the produce was not standard. Exclusive products thus more expensive.

- Gamble on more lucrative selling of fish, due to EU-regulations. Gamble failed.

- Business model existed at one point for 2/3 out of hospitality (tours and weddings). This was not the initial plan.

- Use of not proven technology, risk on risk on risk. Technocratic.

- Too much food production in the NL. Hard to compete with existing market. Should look for exclusivity in NL. (Camel milker???)

- Different business model, look at community building.

- Restaurants only bought 5% of their tomatoes from the gh, due to price difference.

Positive: future growers would like to live in city.

#### VI.III Bruwery Kleiburg



Local brewery in Amstel III.

- Marketable concept
- Local production
- Well known product
  - Utilizing residue heat of brewery

## sources

- 1) Inname alle macronutriënten | Voedselconsumptiepeiling. (n.d.). Retrieved November 20, 2019, from https://wateetnederland.nl/resultaten/energie-en-macronutrienten/inname/alle-macronutrienten
- 2) Ons dagelijks (afval)water NEMO Kennislink. (n.d.). Retrieved November 20, 2019, from https://www.nemokennislink.nl/publicaties/ons-dagelijks-afval-water/
- 3) » Hoeveel werkdagen in een jaar | SnelVerder.nl. (n.d.). Retrieved November 20, 2019, from https://www.snelverder.nl/v/wetenschap/tijd-en-meetkunde/hoeveel-werkdagen-in-een-jaar/
- 4) Vragen en antwoorden over transpiratie | Mens en Gezondheid: Diversen. (n.d.). Retrieved November 25, 2019, from https://mens-en-gezondheid.infonu.nl/diversen/12963-vragen-en-antwoorden-over-transpiratie.html
- 5) Inname alle macronutriënten | Voedselconsumptiepeiling. (n.d.). Retrieved November 25, 2019, from https://wateetnederland.nl/resultaten/energie-en-macronutrienten/inname/alle-macronutrienten
- 6) Ons dagelijks (afval)water NEMO Kennislink. (n.d.). Retrieved November 25, 2019, from https://www.nemokennislink.nl/publicaties/ons-dagelijks-afval-water/
- 7) De toekomst van het Nederlandse boerenbedrijf ligt in de jaren vijftig | Trouw. (n.d.). Retrieved November 27, 2019, from https://www.trouw.nl/duurzaamheid-natuur/de-toekomst-van-het-nederlandse-boerenbedrijf-ligt-in-de-jaren-vijftig~bc1dae39/
- 8) Klimaatverandering in Nederland: wat merken we er hier eigenlijk van? (n.d.). Retrieved November 29, 2019, from https://www.scientias.nl/klimaatverandering-nederland-merken-we-er-hier-eigenlijk/
- 9) KNMI Hoeveel meer regen gaat de toekomst brengen? (n.d.). Retrieved November 29, 2019, from https://www. knmi.nl/over-het-knmi/nieuws/hoeveel-meer-regen-gaat-de-toekomst-brengen
- 10) Compost Utilization In Horticultural Cropping Systems Google Boeken. (n.d.). Retrieved December 3, 2019, from https://books.google.nl/books?id=F6VeWD5ewK4C&printsec=frontcover&source=gbs\_ViewAPI&redir\_esc=y#v=onepage&q&f=true
- 11) NEXTgarden | Lingewaard. (n.d.). Retrieved December 9, 2019, from https://www.nextgarden.nl/Duurzame-energiemix.htm
- 12) Aanpassingen in opslag biomassa. (n.d.).
- 13) ILIAS 3. (n.d.). Retrieved December 9, 2019, from https://cgi.tu-harburg.de/~awwweb/wbt/emwater/lessons/lesson\_b1/Im\_pg\_1204.html
- 14) Op grote schaal voedsel produceren in de stad is een naïef idee | Trouw. (n.d.). Retrieved December 10, 2019, from https://www.trouw.nl/nieuws/op-grote-schaal-voedsel-produceren-in-de-stad-is-een-naief-idee~bb9ac836/
- 15) Stadslandbouw klinkt prachtig, maar levert geen geld op | Trouw. (n.d.). Retrieved December 10, 2019, from https://www.trouw.nl/duurzaamheid-natuur/stadslandbouw-klinkt-prachtig-maar-levert-geen-geld-op~bb-41da77/?referer=https%3A%2F%2Fwww.google.com%2F
- 16) Restwarmte datacenters voor nieuwbouwproject Amstel III. (n.d.). Retrieved December 20, 2019, from https://www.duurzaamplus.nl/energie/restwarmte/restwarmte-datacenters-voor-nieuwbouw-amstel-iii/
- 17) Gasverbruik in onderzoekskassen onder 40% van praktijkgemiddelde. (n.d.). Retrieved January 10, 2020, from https://www.onderglas.nl/gasverbruik-in-onderzoekskassen-40-procent-van-praktijkgemiddelde/
- 18) StatLine Akkerbouwgewassen; productie naar regio. (n.d.). Retrieved January 11, 2020, from https://opendata. cbs.nl/statline/#/CBS/nl/dataset/7100oogs/table?fromstatweb
- 19) Hoeveel calorieën zitten er in gekookte aardappelen? | Voedingscentrum. (n.d.). Retrieved January 11, 2020, from https://www.voedingscentrum.nl/nl/service/vraag-en-antwoord/gezonde-voeding-en-voedingsstoffen/hoev-eel-calorieen-zitten-erin-/caloriechecker/gekookte-aardappelen.aspx

- 20) 6. ORCHARD MANAGEMENT AND PLANT HUSBANDRY. (n.d.). Retrieved January 11, 2020, from http://www.fao. org/3/ac681e/ac681e08.htm
- 21) Afvalmonitor Nieuw. (n.d.). Retrieved January 11, 2020, from https://afvalmonitor.databank.nl/Jive
- 22) Afvalketen in Beeld Grondstoffen uit Amsterdam. (2015).
- 23) Netherlands Data Centers & Colocation. (n.d.). Retrieved January 11, 2020, from https://baxtel.com/data-center/ netherlands
- 24) Herenboeren Samen duurzaam voedsel produceren. (n.d.). Retrieved January 12, 2020, from https://www. herenboeren.nl/
- 25) Aendekerk, T., van Himste, R., & Hopman, M. (1995). Kengetallen Mineralenmanagement Akker-en Tuinbouw. Wageningen.
- 26) Afman, M. R. (2014). Energiegebruik Nederlandse commerciële datacenters 2014-2017 Nieuwbouwplannen en ontwikkeling energiegebruik. Retrieved from https://www.ce.nl/publicaties/download/2136
- 27) Alblas ing Hylkema CP de Moei BP Meeldijk ir HHH Titulaer J Jonkers ing R Meier A Ester ir LPG Molendijk ir CFG Kramer CP de Moei H Bosch en S Zwanepol, J. H. (1993). teelt van bloemkool.
- 28) AMC. (2016). Milieubeleid amc 2016 2020. 1-5.
- 29) Amsterdam, G. (n.d.). Staat van Amsterdam. 80–92.
- 30) Bouw en Uitvoering. (2016). Nederlandse koudenetten Bouw en Uitvoering Bouw en Uitvoering. Retrieved November 27, 2019, from https://bouwenuitvoering.nl/duurzaam/nederlandse-koudenetten/
- 31) Buck, A. A. De, & Benner, J. H. B. J. (2009). Duurzame Energie in Amsterdam : kansen aan de horizon Update raming zonne-energie Colofon. (december).
- 32) Butt, A. A., Harvey, J. T., Kendall, A., & Org, E. (2018). UC Davis White Papers Title Framework for Urban Metabolism and Life Cycle Assessment of Hardscape Permalink https://escholarship.org/uc/item/77g742tq Publication Date. Retrieved from https://escholarship.org/uc/item/77g742tq
- 33) Centre, F. (n.d.). Voedsel en Amsterdam Voorwoord Samenvatting en leeswijzer Inleiding.
- 34) Choi, C., & Van Heeswijk, T. (2014). Urban Energy Metabolism With a Case Study on Amsterdam. Retrieved from http://edepot.wur.nl/330614
- 35) Cramer, J. M. (2013). De Amsterdamse Afvalketen. Utrecht Sustainable Institute, (april).
- 36) Dai, J., Ohadi, M. M., Das, D., & Pecht, M. G. (n.d.). Optimum Cooling of Data Centers Application of Risk Assessment and Mitigation Techniques.
- 37) Dutch Data Center Association. (2018). Datacenter Restwarmte & Innovatie. 1–82. Retrieved from www.dutchdatacenters.nl/publicaties
- 38) ECN, & TNO. (2019). Rapport Monitoring warmte 2017.
- 39) Eilering, J. A. M., & N.V., N. W. (2007). Mer stadskoeling Amsterdam Zuidoost: Ouderkerkerplas.
- 40) Equinix, H. (2018). Restwarmte van datacenters voor nieuwbouwwijk. 34-35.
- 41) Fixen, P. E. (2010). World fertilizer nutrient reserves : a view to the future.
- 42) Foundation, L. A. (2008). Nieuwe Nuts : Duurzaam ontlasten Naar lokaal gebruik van afvalwater.
- 43) Frijns, J., Hofman, J., & Nederlof, M. (2013). The potential of (waste)water as energy carrier. Energy Conversion and Management, 65, 357–363. https://doi.org/10.1016/j.enconman.2012.08.023
- 44) Gemeente Amsterdam. (2017). Ruimtelijk en Programmatisch Ontwikkelperspectief Amstel III. (December).

- 45) Gemeente Amsterdam. (2015). Afvalketen in Beeld.
- 46) Gemeente Amsterdam. (2016). Staat van Amsterdam: Groei van de stad. 4–21.
- 47) Gemeente Amsterdam Zuidoost. (2018). Gebiedsplan 2018 ArenApoort / Amstel III. 1–20.
- 48) Hopman, T. A. R. van H. M., Ridder, J. J. J. K. J. van P. D. de, Schoorlemmer, H., & Valstar, B. S. M. (1995). Kengetallen Mineralenmanagement Akker-en Tuinbouw. https://doi.org/954669R1.RVH
- 49) Iii, A. (n.d.). ArenAPoort.
- 50) ing. C. van Wijk, ing. H. Bosch, ing. A. Biesheuvel, A. Ester, J.Jonkers, ir. C. Kramer, ... ir. H. Titulaer. (1989). korte teeltbeschrijving CHINESE KOOL.
- 51) ing. J.J. Neuvel, S. Z. ir. H. H. H. T., ing. A.R. Biesheuvel, J. Jonkers, A. Ester, ir. L.P.G. Molendijk, ing. R. Meier, & ir. C. Kramer. (1994). teelt van STAMSLABONEN, FLAGEOLETS en BRUINE BONEN .
- 52) ing. R.D. Timmer, ing. H. Jansen, J. Staal, ing. C.M.A. Nijenhuis, ing. K.B. van Bon, & ing. P. de Jonge. (1989). teelt van DROGE ERWTEN.
- 53) Kennedy, C., Pincetl, S., & Bunje, P. (2011). The study of urban metabolism and its applications to urban planning and design. Environmental Pollution, 159(8–9), 1965–1973. https://doi.org/10.1016/j.envpol.2010.10.022
- 54) Kleerebezem, R. (2014). Biochemical Conversion: Anaerobic Digestion. Biomass as a Sustainable Energy Source for the Future: Fundamentals of Conversion Processes, 9781118304914, 441–468. https://doi.org/10.1002/9781118916643.ch14
- 55) Kool, A., Marinussen, M. & Blonk, H. (2012). GHG emissions of N, P and K fertilizer production. In Zeist, W. J. Van, Marinussen, M., Broekema, R., Groen, E., Kool, a., Dolman, M., & Blonk, H. (2012). LCI data for the calculation tool Feedprint for greenhouse gas emissions of feed production and util. 26.
- 56) Leguijt, C. (Cor), Grot, M. I. (Margret), Bles, M. (Mart), & CE Delft. (2010). Energiestrategie Amsterdam \n2040\ nBrug naar een duurzame energievoorziening.
- 57) Levy, M., & Raviv, D. (2018). An overview of data center metrics and a novel approach for a new family of metrics. Advances in Science, Technology and Engineering Systems, 3(2), 238–251. https://doi.org/10.25046/aj030228
- 58) Lindeman, E., Dignum, K., & Schyns, P. (2003). De Staat van de stad Amsterdam II. https://doi.org/10.1017/ CBO9781107415324.004
- 59) Markovič, G., Zeleňáková, M., Káposztásová, D., & Hudáková, G. (2014). Rainwater infiltration in the urban areas. WIT Transactions on Ecology and the Environment, 181, 313–320. https://doi.org/10.2495/EID140271
- 60) Mels, A. (LeAF). (2005). Afvalwaterketen ontketend. 4–35. Retrieved from http://stedelijkwaterbeheer.stowa.nl/ Upload/publicaties2/mID\_4924\_cID\_3914\_93616776\_rapport 2005 12.pdf
- 61) Milieu Centraal. (2017). Feiten en cijfers over verspillen van voedsel door consumenten in 2016. (May), 1–6. Retrieved from https://www.voedingscentrum.nl/Assets/Uploads/Documents/Voedingscentrum/Perskamer/2012/ Factsheet Verspilling april 2012 def.pdf
- 62) Municipality Amsterdam. (2016). Gemeentelijk Rioleringsplan Amsterdam 2016 2021. 1–46. Retrieved from https://www.waternet.nl/siteassets/ons-water/gemeentelijk-rioleringsplan-amsterdam-2016-2021.pdf
- 63) Op, R., & En, H. S. C. H. E. I. D. E. N. (2004). Meer ruimte nodig voor brongerichte sanitatie. 33–35.
- 64) Ronga, D., Setti, L., Salvarani, C., De Leo, R., Bedin, E., Pulvirenti, A., ... Francia, E. (2019). Effects of solid and liquid digestate for hydroponic baby leaf lettuce (Lactuca sativa L.) cultivation. Scientia Horticulturae. https://doi. org/10.1016/j.scienta.2018.09.037
- 65) RSFGV. (1999). CO2 in greenhouse horticulture. Applied Plant Research, 118. Retrieved from http://edepot.wur. nl/274827
- 66) Sheets, J. P., Yang, L., Ge, X., Wang, Z., & Li, Y. (2015). Beyond land application: Emerging technologies for the treatment and reuse of anaerobically digested agricultural and food waste. Waste Management, 44, 94–115.

https://doi.org/10.1016/j.wasman.2015.07.037

- 67) Sipma, J. (ECN), Kremer, A. (CBS), & Vroom, J. (CBS). (2017). Energielabels en het daadwerkelijk energieverbruik van kantoren. 89.
- 68) Tabassum, R., Arsalan, M. H., & Imam, N. (2016). Estimation of water demand for commercial units in Karachi city. FAST-NU Research Journal (FRJ), 2(1), 20–26. Retrieved from https://www.researchgate.net/profile/ Arvind\_Singh56/post/How\_to\_calculate\_per\_capita\_water\_demand\_for\_particular\_place/attachment/59d-6542079197b80779abca5/AS%3A520575915642882%401501126378837/download/V2\_i1\_paper4+Water+Demand+pp21-26+F.pdf
- 69) Thiel, L. Van. (2017). Watergebruik Thuis 2016. Vewin, 1–142.
- 70) Van Der Boon, J., Das, A., & Pouwer, A. (n.d.). het gewenste tijdstip van de stikstof bemesting voor een boomgaard in gras op rivierklei.
- 71) van der Hoek, J. P., Struker, A., & de Danschutter, J. E. M. (2017). Amsterdam as a sustainable European metropolis: integration of water, energy and material flows. Urban Water Journal, 14(1), 61–68. https://doi.org/10.1080/15730 62X.2015.1076858
- 72) Viljoen, A., & Howe, J. (2005). Continuous productive urban landscapes : designing urban agriculture for sustainable cities.
- 73) Voskamp, I. M., Stremke, S., Spiller, M., Perrotti, D., van der Hoek, J. P., & Rijnaarts, H. H. M. (2017). Enhanced Performance of the Eurostat Method for Comprehensive Assessment of Urban Metabolism: A Material Flow Analysis of Amsterdam. Journal of Industrial Ecology, 21(4), 887–902. https://doi.org/10.1111/jiec.12461
- 74) Wilken, D., Rauh, S., Fruhner-Weiss, R., Strippel, F., & Bontempo, G. (2018, November). Digestate as Fertilizer. Biogas Know-How, 4(Digestate as Fertilizer). Retrieved from https://issuu.com/fachverband.biogas/docs/digestate\_as\_fertilizer
- 75) Youngs, A. J., Nobis, G., & Town, P. (1983). Food waste from hotels and restaurants in the U.K. Waste Management & Research, 1(4), 295–308. https://doi.org/10.1177/0734242X8300100140
- 76) YOUNGS, A., NOBIS, G., & TOWN, P. (1983). Food waste from hotels and restaurants in the U.K. Waste Management & Research, 1(4), 295–308. https://doi.org/10.1016/0734-242x(83)90034-4
- 77) ZO!City, & Gemeente Amsterdam. (2015). ZuidOostZuid Amsterdam. Paving the future. Gebiedsvisie 2015-2025.