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Summary

All modern medical institutions gather data. The use of this data is crucial for their efficient
operation and could lead to significant efficiency gains if shared between institutions. How-
ever, this sharing poses a substantial risk to privacy, which is critical in the medical domain.
To minimize this risk, Differentially Private Generative Adversarial Networks (DP-GANs) are
employed to synthesize private data, which can then be shared with significantly reduced risk.

Generating synthetic medical data is a challenging task. The original private data often con-
tains numerous patterns, correlations, and anomalies. Reproducing these patterns and cor-
relations in synthetic data is difficult, and the presence of anomalies can make the training
process less efficient. However, by using these patterns to privately train an anomaly detec-
tion model, we can reduce the number of anomalies and improve the subsequent quality of
the data. Therefore, our research question is: ”How can we improve the utility of synthetic
medical data by employing anomaly detection?”.

After researching state-of-the-art approaches in synthetic medical data release, we designed
our framework: Generative Adversarial Network Anomaly Detection (GANAD). GANAD in-
volves private training and subsequent usage of an anomaly detection model at three key
points in the DP-GAN data synthesis pipeline. GANAD serves as an extension to DP-GANs,
further enhancing the utility of synthetic data.

To evaluate the performance of our framework on real datasets and with real DP-GANs, we
allocated 10% of the privacy budget (ϵ) to privately train an autoencoder. The autoencoder
was utilized at three stages: before the DP-GAN training (Pre-Generation), during the training
(Mid-Generation), and after the training (Post-Generation).

These three approaches were tested across three datasets with different privacy budgets. The
quality of the produced data was measured using AUROC and AUPRC metrics, averaged
across eleven machine learning models. Each test was repeated ten times to account for
randomness. Our results indicate that GANAD can lead to a 3-5% increase in utility when
applied carefully. Our highest improvement exceeded 10%, indicating promising directions for
further research.
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Abstract

Ensuring the privacy of medical data in a meaningful manner is a complex task. This domain
presents a plethora of unique challenges: high stakes, vast differences between possible
use cases, long-established methods that limit the number of feasible solutions, and more.
Consequently, an effective approach to ensuring the privacy of medical data must be easy to
adopt, offer robust privacy guarantees, and minimize the reduction in data utility.

The unique nature of medical data presents distinct challenges and also opportunities. We
must consider various types of correlations that significantly impact privacy guarantees. How-
ever, these correlations also provide opportunities to enhance the utility of synthetic data by
removing specific anomalies

This thesis proposes a framework compatible with state-of-the-art approaches for differentially
private dataset release based on the usage of Generative Adversarial Networks (GANs). Our
framework uses a part of the privacy budget to train an unsupervised learning model to detect
and remove anomalies. We evaluate the performance of the framework using a variety of
machine-learning models and metrics. The final results show an improvement of up 13%
compared to approaches not using our framework, under the same privacy budget.
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1
Introduction

According to Statista, the volume of data generated annually has increased more than tenfold
over the past decade [32], and this growing trend is expected to continue. Seagate estimates
that around 30% of newly generated data is medical in nature [15]. Additionally, there has been
a significant reduction in the cost of data storage, with some estimates indicating a thirtyfold
decrease over the same period [39]. Despite the substantial growth in data generation and the
decreasing cost of storage, a large portion of generated medical data remains underutilized.
Estimates suggest that up to 97% of medical data is not used at all [20] although more con-
servative estimates suggest this figure is closer to 43% [3]. This underutilization is attributed
to various factors, with some healthcare leaders highlighting competing financial priorities as
a major concern [3]. A critical factor affecting the usage of medical data is privacy. The im-
plementation of stringent guidelines under the General Data Protection Regulation (GDPR)
has created significant compliance requirements for data holders [38]. As a result, privacy
considerations will be the primary focus of this thesis.

Additionally, improper sharing or usage of data can lead to breaches of patient trust, significant
fines, and even patient discrimination in some cases [42]. Consequently, concerns about the
social impact of data privacy are a significant factor limiting the utilization of medical data. One
potential solution to this issue is the use of synthetic medical data.

1.1. Synthetic medical data
Synthetic medical data is artificially generated, typically by a machine learning model, to mimic
real medical data while protecting patient privacy. Ideally, synthetic data retains the utility
of real data without disclosing any private individual information. In more realistic terms, it
is challenging to completely preserve the utility of the original data while not revealing any
information about any individual.

Therefore, it is crucial to define privacy precisely and quantify the level of data protection it
offers. The following Section will focus on this aspect. Subsequently, we will analyze the
practical aspect of generating synthetic data.

1.1.1. Data synthesis
The theoretical concept behind data synthesis is straightforward. It involves analyzing authen-
tic data to learn its patterns and trends, which are then used to generate synthetic data. In
practice, this is most commonly achieved through deep learning techniques. For private data

1



1.2. Privacy-utility tradeoff 2

synthesis, the predominant method is the use of Generative Adversarial Networks (GANs).
GANs consist of two neural networks trained simultaneously: the discriminator and the gener-
ator. The discriminator’s role is to distinguish between authentic and synthetic data, while the
generator aims to produce data that can deceive the discriminator. Through this adversarial
process, the generator eventually learns to produce high-fidelity synthetic data. Further details
on evaluating GAN performance, the utility of generated data, and the inner workings of GANs
are discussed in Chapters 4 and 2.

1.1.2. Quantifiable privacy
Firstly, consider one of the oldest and most stringent definitions of privacy, formulated by Dale-
nius in 1977 [14]: No information about an individual that cannot be gained without access
to the data should be leaked. However, this notion is impractically strict, as demonstrated by
Dwork [17]. In the same paper [17], Dwork proposed a new standard for protecting the privacy
of individuals while still preserving meaningful utility - Differential Privacy. Differential Privacy
quantifies the increase in the probability that an individual is present in the dataset using the
parameter ϵ. This concept has been foundational, inspiring a variety of new approaches to
ensure data privacy.

1.1.3. Private data synthesis
In the previous sections, we gave a basic introduction to quantifying privacy as well as data
generation. The next logical step is to combine these two elements to synthesize data in
a privacy-preserving manner. This is typically achieved by training the model with privacy-
preserving techniques, ensuring that any output generated by the model remains private. At
this point, a trade-off between utility and privacy becomes evident. Higher privacy require-
ments reduce the model’s ability to learn effectively from the data, resulting in synthetic data
with lower utility. For complex classes, such as medical data, the utility of synthetic data with
meaningful privacy guarantees can often be insufficient for actual applications of this approach.
The following Section gives a high-level overview of how existing implementations address this
challenge.

1.2. Privacy-utility tradeoff
The solution to insufficient accuracy is straightforward: to achieve a level of data utility viable
for real-world applications, we must either improve the model’s performance or relax the pri-
vacy constraints. Typically, state-of-the-art solutions employ a combination of both strategies.
To understand how these options are balanced, we first need to explore them in more detail.

1.2.1. Approaches for privacy preservation
Before training any model, it is essential to select a precise definition of privacy. Although dif-
ferential privacy and its various formulations are currently the most widely adopted standards
for privacy-preserving data releases, numerous other approaches exist. In this section, we
briefly introduce several methods for preserving privacy as well as our final choice - Differen-
tial Privacy. We substantiate this choice in detail in Chapter 2.

k-Anonymity
k-Anonymity is achieved when each record is indistinguishable from at least k-1 other records
given a group of quasi-identifying attributes.

ℓ-Diversity
For a dataset to be ℓ-Diverse it requires that each group of indistinguishable records contains
at least ℓ different values for a given sensitive attribute. As such, it serves as an extension of
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k-Anonymity.

t-Closeness
t-Closeness is defined as the maximum distance t between the distribution of a sensitive
attribute in a given class and the distribution of said attribute in the whole dataset.

Differential privacy
Lastly, differential privacy is perhaps the most common approach to ensuring the privacy of
data. As differential privacy is a vital part of this thesis, we explore the intricacies regarding
different definitions, mechanisms, and applications in Section 2.2. Here, a short informal defi-
nition is given: A dataset is ϵ differentially private if the presence of an entry is indistinguishable
to a certain level based on the ϵ value. This is often achieved by adding noise to the original
data from a distribution - often Laplacian or Exponential is used. Differential privacy is an
umbrella term for a variety of different approaches however it is chosen the flexibility that is
paramount while designing a flexible data synthesis system.

1.2.2. Data generation models
While there is less variety in data generation architecture selection compared to the number of
privacy-preservation techniques, there are numerous choices to make regarding optimizers,
the number of layers, activation functions, and other parameters. Given a specific goal, such
as generating a particular type of synthetic data, we can select the optimal values for these pa-
rameters through a process called hyperparameter optimization. Theoretically, any parameter
can be optimized. However, in practice, certain parameters, such as neural network depth,
neuron type, and optimizer class, often remain constant. To compare our results with existing
approaches, we will apply hyperparameter optimization similarly. This process is discussed
in more detail in Chapter 5.

1.3. Pattern Guided Anomaly Removal
State-of-the-art approaches utilize highly optimized architectures based on the latest GAN
research, along with carefully selected definitions of differential privacy. While these methods
can achieve relatively high performance, there is still a clear need for even better-performing
data synthesis models. Improving the privacy-utility trade-off could lead to higher adoption of
synthetic medical data and enhanced privacy preservation. One aspect of note is that neural
networks are often designed for specific data patterns.

Given that medical data is typically highly correlated, intricate networks are required to accu-
rately capture its details. The training of these networks is however negatively affected by
another phenomenon present in the data - anomalies. Therefore, the detection and removal
of these anomalies, along with an analysis of the associated costs and utility gains, constitute
the primary improvements proposed in this thesis. In this Section, we briefly introduce the
various patterns that are present in the data, with usage of which we can remove anomalies
and subsequently improve the quality of synthetic data.

1.3.1. Correlation between columns
The idea that various measurements of the same patient taken within a short time span are
related is intuitive. We can model this as several variables measuring an underlying latent
variable—the person’s actual physical status. This status could be influenced by activities such
as exercising, sleeping, or experiencing a medical emergency. For instance, respiratory and
heart rates are usually correlated; both decrease during sleep and increase during exercise.
It is important to note that if we add artificial noise to the data, an unauthorized third party
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with medical expertise may still be able to make accurate predictions about the original data.
This property and its privacy implications are discussed in depth in Section 2.2 on differential
privacy.

1.3.2. Correlation between rows
While related to the previous type of correlation, correlation across rows is much less imme-
diately obvious. This pattern also indicates an underlying latent variable, although it is not
as clear-cut. Practically, we can imagine it as one person influencing the likelihood of an-
other person being in the same dataset. Influencing factors could include geographic location,
economic status, or social connections. For instance, consider a family with a rare heredi-
tary condition visiting the same hospital. The presence of one family member in the dataset
could significantly increase the probability of other family members being included. This type
of correlation is less studied but equally important. We discuss how this affects our privacy
guarantee in Section 2.2.

1.3.3. Time series
Another attribute of the data is the presence of time series. Mathematically, a time series is
a sequence of data points ordered by time. While this definition does not necessarily imply a
time-adjacent correlation, such correlations are almost always present in the medical domain.
In practical terms, this means that each data point in a medical time series is likely influenced
or partially determined by its predecessors.

Depending on the representation, this can be viewed as either a subset of cross-column or
cross-row correlation. In practice, including successive values as columns is more common.
For example, consider heart rate measurements taken at five-second intervals. If an initial
heart rate measurement is 90 bpm, it is statistically more likely that the next measurement will
be close to 95 bpm rather than 180 bpm. The exact correlation depends on the length of the
time interval and the nature of the value being recorded. Generally, repeated measurements
on the same patient are related, and the same privacy concerns previously mentioned apply.
As a practical example, we calculated the Pearson correlation coefficient for the heartbeat data
in the Fitbit smartwatch dataset [25] to be 99.4%. This is a perfect example of a simple time
series, so we do not expect such high values in more complex data. However, it illustrates
that strong correlations can be present in medical data.

1.3.4. Class Imbalance
Another crucial aspect to discuss, though not unique to medical data, is class imbalance. This
issue is particularly relevant in medical anomaly detection. For instance, one of the datasets
we analyze focuses on diagnosing epilepsy based on several medical readings. In this binary
classification task, the vast majority of the data does not indicate epilepsy. Therefore, it is
essential to take special care in developing and evaluating our approach to ensure that the
class imbalance in the original data does not distort our results.

1.4. Research Question
After all the considerations explained in the previous sections, we have formulated our re-
search question as follows: ”How can we improve the utility of synthetic medical data by em-
ploying anomaly detection?”
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1.5. Our Contribution
We introduce a framework that enhances the utility of data generated by differentially private
generative adversarial networks without increasing the privacy budget. Our framework is com-
pared to baseline and state-of-the-art approaches by evaluating the quality of several machine
learning models. This quality is measured using two common machine learning metrics AU-
ROC and AUPRC, explained in detail in Chapter 5. Finally, we demonstrate the epsilon cost
of our method, comparing it to the utility gain achieved by simply increasing the original privacy
budget.

1.6. Overview
In Chapter 2 we introduce the reader to the concepts necessary for the understanding of our
work. In Chapter 3, we discuss the existing works that explore our topic or topics adjacent to
ours. In the fourth Chapter - 4, we introduce our approach in detail as well as calculate the
privacy cost. Chapter 5 explains our testing methodology and evaluates the improvement of
our approach against existing state-of-the-art approaches. Lastly, in Chapter 6, we discuss
the limitations and merits of our approach as well as consider possible further improvements.



2
Preliminaries

In this Chapter, we first introduce several attack models useful for establishing the limitations
of existing privacy preservation approaches. This serves to substantiate the choice of Differen-
tial Privacy as present in Chapter 1. Subsequently, we explore intricacies behind Differential
Privacy as well as GANs and Autoencoders, the Anomaly Detection method of choice.

2.1. Attack Models
First, we define four attack models and provide a short practical example of each.

Record Linkage
In a record linkage attack, a specific value (qid) on the Quasi-Identifier (QID) in the released
table T identifies a small group of records. If the victim’s QID matches this value (qid), the
victim’s information can potentially be linked to this small group of records. The attacker then
has a limited set of records to consider for the victim’s information. With some additional
knowledge, the attacker might be able to uniquely identify the victim’s record within this group.

As an example, we can imagine an exchange of information between a hospital and a census
office. The hospital provides Table A with information about Job, Marital Status, Sex and
disease diagnosis. The census office also has access to Table B and knows that each person
in Table A also has an entry in Table B. Joining these tables on both the Job, Sex and Marital
Status, supposedly public information, the census office might be able to deanonymize the
entries of few select individuals and link name and diagnosis.

Attribute Linkage
In an attribute linkage attack, the attacker might not be able to pinpoint the exact record of the
target victim, but can infer the victim’s sensitive information from the published data (T). This
is done by analyzing the sensitive values associated with the group that the victim belongs to.
If certain sensitive values are common within a group, it becomes easier for the attacker to
make accurate inferences, even if k-anonymity is in place.

Assuming the same Table A as in the previous examples and a random attacker who is curious
to know the diagnosis of a person he knows the Job and Sex of. Depending on the exact size
of the dataset, there is a possibility that all entries with the same Job and Sex combination
share the same diagnosis, leaking sensitive information.

6



2.2. Differential privacy 7

Table Linkage
Both record linkage and attribute linkage assume that the attacker already knows the victim’s
record is in the released table T. However, sometimes just the presence or absence of the
victim’s record in T can reveal sensitive information. For instance, if a hospital releases a
data table containing records of patients with a specific disease, simply knowing whether the
victim’s record is in that table can be harmful. Table linkage occurs when an attacker can
confidently determine whether the victim’s record is included in the released table.

Assume we have a Table C containing ten entries, five of which are both Female and Singers.
An attacker also has access to public Table D where C ⊆ D. If Table D contains in total six
entries of Female Singers, the attacker can say with 5

6 certainty that any Female Singer from
D is present in C.

Probabilistic Attacks
Another type of attack focuses not on linking records, attributes, or tables directly to a person
but instead on modifying the attackers’ probabilistic belief on the sensitive information of a
victim, purely by access to public data.

Comparison of techniques
We have given a simplified notion of the various privacy-preservation techniques as well as
the attack models. Now, a more comprehensive comparison is given to justify the prevalence
of Differential Privacy as the widespread method for private data release.

Table 2.1: Vulnerability to various attack models - Privacy Models. Adapted from Benjamin C. M. Fung et al.[24]

Privacy Techniques Attack Model
Record Linkage Attribute linkage Table Linkage Probabilistic Attack

k-Anonymity ✓
ℓ-Diversity ✓
t-Closeness ✓

ϵ-Differential Privacy ✓ ✓

2.2. Differential privacy
Differential Privacy [17] is a framework that allows for a quantification of privacy using a sim-
ple formula. In recent years, Differential Privacy has become a standard for state-of-the-art
anonymization and subsequent private data release. This can attributed to the flexibility, wide
academic support and great ability to conduct statistical analysis to determine the exact cost of
releasing data in various practical terms. In this section, we will explore the common definitions
of Differential Privacy, the interactive vs the noninteractive approach, composition property
and various common mechanisms.

Definitions
Since Differential Privacy was first proposed by Dwork in 2006 [17], a number of relaxations to
the quite restrictive original definition have been made. These new definitions seek to better
measure the actual risk. In theory, a more accurate measurement of said risk allows us to
set the privacy parameter lower, subsequently increasing the utility of the released data. In
practice, there is no clear best definition and all definitions are used. As such, we introduce
the reader to a few most common ones that are relevant to this thesis. For an even more
in-depth exploration, we recommend the excellent work by Jayaraman and Evans [33]
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Epsilon Differential Privacy
The most common definition of Differential Privacy is the one originally proposed by Dwork in
[17]. This formula uses a single parameter ϵ to quantify the risk of a potential leakage.

Definition 1 (ϵ-Differential Privacy) MechanismM is ϵ-differentially private for all neighboring
datasets D and D′ and S ⊆ Range(M) differing by only one record given the privacy budget ϵ

Pr(M(D) ∈ S) ≤ Pr(M(D′) ∈ S) ∗ eϵ. (2.1)

Epsilon-Delta Differential Privacy
Another common definition is a slight relaxation of the previously defined ϵ-Differential Pri-
vacy. This relaxation introduces a variable δ which signifies the probability of information
being leaked.

Definition 2 (ϵ,δ-Differential Privacy) A mechanismM is ϵ,δ-Differentially Private for all neigh-
boring datasets D and D′, differing by only one record given the privacy budget ϵ and the
failure probability δ

Pr(M(D) ∈ S) ≤ Pr(M(D′) ∈ S) ∗ eϵ + δ. (2.2)

The value of δ depends greatly on the specifics of the dataset but commonly, a value below
1

datasetSize is picked.

Rényi Differential Privacy
Rényi Differential Privacy [41] is another relaxation that uses order α. This definition is based
on the concept of Rényi divergence.

Definition 3 (Rényi Divergence) For two probability distributions P and Q defined over R, the
Rényi divergence of order α > 1 is

Dα(P ||Q) ≜ 1

α− 1
lnEx∼Q

(
P (x)

Q(x)

)α

. (2.3)

Given the definition of Rényi divergence, we can now give a precise definition of Rényi Differ-
ential Privacy:

Definition 4 (Rényi Differential Privacy) A mechanism M is ϵ-Rényi Differentially Private in
order of α, if the following formula holds for any two neighboring dataset D and D′:

Dα(M(D)||M(D′)) ≤ ϵ. (2.4)

Composition property
While the intuitive definition of differential privacy as ”Adding noise from Laplacian or Exponen-
tial distribution to make the original data more private” is easy to understand, several ques-
tions arise when considering the application of differential privacy to correlated data or even
repeated application of it. Composition property is also one of the most risky elements when
implementing differential privacy as there is a plethora of pitfalls that can lead to underesti-
mation of the final privacy budget which in turn gives a false sense of security. An example
from practice could be the sensitivity doubling when using microbatching [48] or floating-point
implementations being subject to several vulnerabilities [8].

Definition 5 (Composition Property) For both repeated queries or releases of the same dataset
D, the resulting privacy budget ϵtotal can be defined as

ϵfinal = ϵ1 + ϵ2 (2.5)

where ϵ1 and ϵ2 are the privacy budgets of the queries/releases.
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It is also worthwhile to consider the epsilon budget when applying differential privacy to indi-
vidual columns. As an example, let’s imagine a simple dataset consisting of two columns of
continuous correlated data. If we apply the Laplacian mechanism with ϵ-Differential Privacy, a
naive computation will underestimate the amount of information leakage. This is the product
of the correlation between the columns. The higher bound of the actual value is simply 2ϵ, as
the added value of ϵ for individual columns.

Sensitivity
Sensitivity is another crucial aspect of Differential Privacy. Sensitivity determines how much
the presence of a single value can modify the result of a query on the dataset. A more formal
definition is given:

Definition 6 (Sensitivity) For two neighbouring datasets D and D′, the sensitivity of a mech-
anism M can be defined as:

△M = max
D,D′,||D−D′||1=1

||M(D)−M(D′)||. (2.6)

Laplace Mechanism
The Laplace Mechanism [18] is one of the two most common techniques for achieving differ-
ential privacy. Laplace Mechanism works by adding Laplacian noise to an output of a given
function. As such, it is ideal for adding noise to non-discrete values. First, we need to define
the scale parameter b.

Definition 7 (Laplace Mechanism Scale parameter) Laplacian scale parameter determines
the rate at which the probability density function decays away from the mean

Lap(x|b) = 1

2b
e−

|x|
b . (2.7)

Definition 8 (Laplace Mechanism) Given a dataset D, domain of the dataset D, dimension of
the dataset d and a function f : D → Rd, the Laplace Mechanism A can be defined as:

A = f(D) + Lap(O|b)d. (2.8)

Exponential Mechanism
The Exponential Mechanism [40] is the second widely used approach for ensuring differential
privacy of data. This mechanism is usually used for discrete data, a case where the Laplace
mechanism is usually not applicable. A commonly given example is that of product pricing.
Assume we sell products of type A and have several buyers willing to purchase exactly one
copy for a maximum price of 1$, 1$, and 3.01$ respectively. The maximum gain is when
setting the price at 3.01$ and the second maximum is at either 1$ or at 3$. However adding a
bit of random noise to these values, setting the price as 3.02 or 1.01 significantly reduces the
gain. As such, a mechanism rather needs to evaluate the ”goodness” of the value and replace
it with a value with similar ”goodness”.

Definition 9 (Exponential Mechanism) Assume a dataset D ∈ Dn, a set of objects R and a
scoring function f : (Dn × R) → R. An Exponential Mechanism ME with inputs D, R and f

selects an output r ∈ R with probability exp
(
ϵf(D,r)

2△

)
.

Interactivness
The mechanisms in the previous Section can generally be divided into two categories - inter-
active and non-interactive. This division defines the behavior of the mechanisms concerning
the usage of the data by a data analyst. This Section will explore the two approaches in detail.
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Interactive Differential Privacy
Interactive differentially private mechanism incorporates an alternative approach to the usage
of the data. Such a mechanism does not allow direct access to the data but instead manages
interaction by a offering only predefined set of differentially private queries. As an example of a
differentially private query, we can imagine calculating the average of a column. The average
will be calculated on the unmodified (non-private) data and then adding amount of noise de-
pending on the privacy parameter and the value of the data. The Differential Privacy library by
Google [29] provides implementations for the most common queries with the implementation
details found in [37].

The benefit of an interactive approach to Differential Privacy is a higher utility with regard to
data leakage. In other words, if the data analyst is interested only in specific values (i.e. the
average), interactive mechanisms can provide higher utility, as opposed to calculating the
value post-release (from a dataset processed by a non-interactive differentially private mech-
anism). Assuming a more complex system that allows the user to select among several types
of queries as well as define the budget of each one, a user can potentially extract significantly
more utility from the data suited to their specific needs given the same privacy budget. The
drawback of this approach is the inherent assumptions made about the usage of the data and
the limitations with regards to the usage of other tools. This can be thought of as a trade-off
between the flexibility and utility of the data. It is therefore nearly impossible to create an in-
teractive system that will permit the use case of each potential user. For these reasons, we
will be discussing only non-interactive approaches as they best fit with the existing workflows
as well as the varied nature of the data.

Non-Interactive Differential Privacy
Non-Interactive mechanisms apply a more static approach to ensuring the privacy of the data.
Compared to Interactive approaches, the noise is added to the data itself which is subsequently
released. From a theoretical perspective, the user loses control over which elements of the
data he wishes to learn more information. This however allows greater flexibility with regards
to the application of the data, integration of existing tools and generally allowing the data to
be seen in ways not yet developed at the time of release.

2.3. Autoencoders
In simple terms, anomaly detection is a process of identifying anomalies. For this thesis, we
are only considering unsupervised anomaly detection within datasets. Unsupervised means
that we assume no labeled data. In more abstract terms, we know nothing of the anomalies
beforehand and our detection works purely by finding irregular patterns in the data. In this
section, we briefly introduce the reader to the anomaly detection method used in this thesis
- Autoencoders. Autoencoders are currently widely used in the state-of-the-art DP-GAN ap-
proaches and are also therefore our method of choice.

Definition 10 (Neural Networks) Neural Networks (NNs) are a class of machine learning mod-
els inspired by the structure and function of biological neural systems. A neural network con-
sists of interconnected layers of nodes, or neurons, where each node processes input signals
through weighted connections and activation functions to produce an output.

The fundamental unit of a neural network is the perceptron, which computes a weighted sum
of input features, applies a bias, and passes the result through an activation function. This
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can be mathematically expressed as:

y = ϕ

(
n∑

i=1

wixi + b

)
(2.9)

where y is the output, xi represents the input features, wi denotes the weights, b is the bias,
and ϕ is the activation function.

Multilayer neural networks, also known as multilayer perceptrons (MLPs), extend the percep-
tron by incorporating multiple layers of neurons, typically including an input layer, one or more
hidden layers, and an output layer. Each layer performs a nonlinear transformation of its in-
puts, enabling the network to model complex, non-linear relationships in data. This makes
neural networks suitable for a wide range of tasks such as classification, regression, and pat-
tern recognition.

Autoencoders are a type of neural network, used primarily for unsupervised learning. The goal
of an autoencoder is to learn efficient representation/encoding of the data. An autoencoder
is composed of two components: an encoder and a decoder. The encoder first compresses
the input into a smaller dimension representation. The encoder then tries to reconstruct the
original data from this smaller dimension.

Architecture
While there aremany possible variations of autoencoders, the vast majority of implementations
are based on these few simple definitions:

Definition 11 (Encoder) Encoders transform the input x into a compressed representation z.
The encoder function can be modeled as:

z = fenc(x). (2.10)

Definition 12 (Decoder) Decoders reconstruct the original x′ from the compressed represen-
tation (z). The decoder function can be expressed as:

x′ = fdec(z). (2.11)

Definition 13 (Objective Function) The primary goal of an autoencoder is to minimize the re-
construction error between the input data x and the reconstructed data x’. The mean squared
error (MSE) is often the metric used for measuring the reconstruction loss:

L(x,x′) = |x− x′|2. (2.12)

Reconstruction error minimalization
The autoencoder training process tries to minimize reconstruction errors. As such, it is in-
herently adept at anomaly detection. Intuitively, the most anomalous entries will be the ones
the model is worst at reconstructing. Therefore, we can simply get N entries with the highest
reconstruction error.

Data Quality Improvement
Additionally, autoencoders can also be used to improve the performance of GANs. For ex-
ample, in [52] data is first encoded, then the encoded data is the basis for the training of the
GAN and lastly, the output of the GAN is again decoded. This is done to help ”better capture
correlations between neighboring features, represent a new compact feature space, transform
possible discrete records to a new continuous space and simultaneously model discrete and
continuous phenomena” [52].
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2.4. Generative Adversarial networks
Generative Adversarial Networks (GANs) [28] are a class of deep learning models designed
for generating synthetic data. GANs commonly consist of two main components: A generator
and a discriminate trained in an adversarial manner.

Generator
The generator is a neural network that takes random noise as input and generates samples as
close to the target real data distribution as possible. The generator aims to learn a mapping
from (random) noise space to the real data space, capturing the latent structure of the real
data. During training, the performance is measured as the ability to fool the discriminator by
creating synthetic data indistinguishable from real data.

Discriminator
The discriminator is also a neural network that is instead focused on binary classification of
real and synthetic data. The discriminator takes a sample of data as an input and outputs
the probability of the data being synthetic or genuine. The performance of the discriminator
is measured by its ability to correctly classify samples from both the synthetic and authentic
datasets.

Adversial Training
The training process of GANs involves a minimax game between the generator and the dis-
criminator. The generator is trying to minimize the difference between the distribution of the
real and the synthetic data, while the discriminator is trying to maximize its ability to distinguish
between real and synthetic data. The training of these two networks is done in an alternating
fashion, with the generator being able to generate continuously more realistic samples and
the discriminator becoming better at identifying fake samples.

Loss Functions
As for any neural network, the selection of a loss function plays a crucial role in the training
process. In the original paper proposing GANs back in 2014 [28], the binary cross-entropy loss
was used for both the discriminator and the generator. Since then, a variety of modifications
and improvements have been proposed. These improvements, such as Wasserstein distance
loss functions or architecture changes will be discussed in detail in Chapter 3.



3
Related Works

While we recognize the need for high-utility methods for ensuring the privacy of medical as
well as the importance of anomalies in this data, we are not the first to delve into these topics.
This Chapter first introduces the various advancements in the area of Differentially Private
Generative Adversarial Networks (DP-GANs) and compares them. This comparison is sub-
sequently used to select three candidates for the evaluation of our framework. Additionally,
we also introduce several techniques towards efficient anomaly removal using Autoencoders
(AE).

3.1. DP-GANs
In this Section we introduce the reader to latest advances in the field of Differentially Private
Generative Adversarial Networks. We place special focus on solutions focused on the gener-
ation of data for the medical domain.

3.1.1. DP-GAN
The major widely adopted approach to training Generative Adversarial Networks privately was
originally proposed by Xie et al. [57] in 2018. The paper achieves this by adding noise to
gradients, clipping the gradients, and also by the usage of Wasserstein distance as a means
of measuring the distance between probability distributions. Their approach brings several
key advances. Firstly, the size of the training data does not influence the privacy parameter
in any way which has been an issue for one of the previously proposed approaches [45].
Secondly, they provide rigorous proof of privacy which makes the privacy of the training data
independent from the generator (although the discriminator and computation of the generator
are still private). They also explore the relation between the privacy budget ϵ, the number
of iterations, and the quality of the data. While their selection of the metric for quality of data,
Wasserstein Distance, is not as advanced as the metrics used in later papers, they still provide
valuable insight for hyperparameter tuning. As such, DP-GAN is now widely used as the basis
for the implementation of more advanced approaches introduced further in this Section. It is
however worth noting that that this GAN is able to handle only labelled data, a shortcoming
that is addressed by some of the more advanced later approaches.

3.1.2. Medical DP-GANs
In this Section, we introduce the reader to the latest advancements in the specific field of
medical data focused DP-GANs. These advancements will be explained in detail as they are
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the most relevant for our framework.

PATE-GAN
PATE-GAN [34] improves upon the original GAN architecture [28] by utilizing the PATE frame-
work. Private Aggregation of Teacher Ensembles, first proposed in [45] and improved in [44]
divides a dataset into n disjoint subsetsD1, ..,Dn. Then n Teachers (Classifiers) T1, ..Tn, are
trained separately on the n disjoint subsets. After the Teachers are trained, a sample to be
evaluated is then passed to each of the Teachers. The results of the Teachers are then ag-
gregated in a private/noisy manner. First, given a set of possible classes c, we calculate how
many Teachers gave each class as the result. Lastly, noise from the Laplace distribution is
added to each of these counts and afterward, the maximum is selected. The output of a single
query to the PATE mechanism is

(
1
λ

)
-differentially private where Lap(λ) corresponds to c i.i.d.

noise variables [34]. The key issue for using Teachers, however, is the private nature of their
parameters and the increased cost for repeated queries. As such, only the usage of Teachers
is not sufficient for implementing a DP-GAN. Therefore an extension originally proposed in [45]
is used. This extension adds a concept of Students, classifiers trained on public (unlabelled)
data, first labeled by the private PATE mechanism. Compared to Teachers, no parameters of
Students are public and they can also be queried repeatedly without any additional privacy
cost.

In PATE-GAN, the combination of Teachers and Students replaces the discriminator. In the
standard GAN model, the generator is trying to minimize its loss with respect to the discrim-
inator and the discriminator is trying to minimize it with respect to the generator. However,
in PATE-GAN, Teachers are trying to minimize their loss with respect to the generator, the
generator is trying to minimize it with respect to the Students and the Students are minimizing
loss with respect to the Teachers.

Lastly, it is important to mention that the authors of PATE-GAN have slightly modified the train-
ing process for Students. As we cannot depend on any similar data being publicly available,
Xavier initialization [26] is used to initialize the Neural Networks on the Students. Afterward,
the Students are trained on data generated by the Discriminator (labeled by the Teachers). In
each iteration of training of the GAN, first, the Teachers and then the Students are updated.

RDP-CGAN
Rényi Differential Privacy - Convolutional Generative Adversarial Network [57] proposes sev-
eral changes upon the original GAN model [28]. Firstly, a relaxation of DP, Rényi Differential
Privacy [2.2], is used to compute the privacy bounds in a tighter manner, allowing for better
performance under the same privacy budget. Secondly, the usage of Convolutional Autoen-
coders allows the RDP-CGAN to work on discrete and continuous data at the same time.
Additionally, temporal and correlational dependencies are included in the generated data by
employing one-dimensional convolutional neural networks. Lastly, the Wasserstein GAN [4]
is used to train the CGAN model to avoid mode collapse [30].

The main novelty of RDP-CGAN, apart from combining several existing approaches is the
innovative usage of the Autoencoders within the architecture. Part of the privacy budget is
first used to train the autoencoder. This is done both by noise addition as well as gradient
clipping. The generator is then trained to produce encoded data. As such, before being either
released or passed to the discriminator for further training, the data must be again decoded
by the autoencoder.

This combination of dimensionality reduction which simplifies the training process for the GAN,
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the ability to easily include various types of data and the utility of generated data [5] make RDP-
CGAN one of the leading approaches in the field of medical data synthesis.

Privacy-Preserving Generative Deep Neural Networks Support Clinical Data Sharing
The work conducted by Beaulieu-Jones [5] takes the DP-GAN model proposed in [57] and
tests it against various types of medical data. Unlike the other discussed papers this one
comes from a purely medical background and therefore takes a slightly different approach.
The emphasis is on the medical aspect, focusing on various healthcare metrics to measure
the quality of the data, rather than proposing new improvements to the original model. As
such, the paper shows great promise for clinical data sharing in practice.

3.1.3. General use DP-GANs
The following GANs are only partially related to our research and are therefore introduced to
showcase their various improvement, rather than to directly compare them in detail.

DP-auto-GAN
DP-auto-GAN [50] proposes an approach using autoencoders to improve the way the gener-
ator learns the latent distribution. Functionally, we can draw similarities between RDP-CGAN
[57] and DP-auto-GAN [50] as both approaches use Rényi Differential Privacy [41] and Au-
toencoders to make the training process more effective. The difference lies in the structure
of the GAN, as DP-auto-GAN does not use the CGAN architecture, instead focusing on the
traditional approach. Another difference is the analysis of results, where the authors of DP-
auto-GAN also focus on metrics such as 1-Way Marginal and Diversity Divergence.

DP-GAN for Time Series, Continuous, and Discrete Open Data
The GAN model proposed in [23] uses a Long Short Term Memory (LSTM) model inside the
generator to handle streaming data and a Multi Layer Perceptron (MLP) to handle discrete
data. There is also a proposed improvement of reducing the clipping parameter over time,
which should reduce the variance in the noise and improve the convergence of the model.
Using these methods and a generous privacy budget (ϵ=7), the authors were able to achieve
performance close to non-private approaches. It should however be noted that the model was
not tested on more complicated, medical data which tends to increase the gap between private
and nonprivate model performance.

DP-AeGM & DP-VaeGM
Differentially Private Autoencoder-Based Generative Model and Differentially Private Varia-
tional Autoencoder-BasedGenerativeModel are two DP-GAN variations proposed in [10]. The
main contribution is the usage of Autoencoder and Variational Autoencoder respectively, the
introduction of which should increase the quality of the data for the same privacy budget. The
core focus of the paper is proposing a model that is protected against various types of attacks -
Model Inversion, Membership Inference and GAN-based Attacks. The model is indeed robust
against the mentioned attacks, however, this comes at a cost of performance compared to the
other state-of-the-art approaches.

Differentially Private Releasing via Deep Generative Model
The approach presented in [58] shares many similarities with the DP-GANmodel [57]. The key
contributions comes in the form of several performance improvements. Parameter grouping
and stratified clipping of different groups of parameters provide a tradeoff between conver-
gence rate and privacy cost. Additionally, similarly to [23], the degree of gradient clipping is
continuously adjusted. Lastly, the model is ”warm started” by conducting the first few training
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iterations on public data in a non-private manner. This assumption of the existence of public
data is perhaps the main drawback of this approach. In practice, publicly available data similar
to some specific private data can be more of an exception rather than a rule.

GS-WGAN
Gradient Sanitized Wasserstein Generative Adversarial Network is one of the more recent
approaches toward private data synthesis. The authors of GS-WGAN [9] propose an improve-
ment by applying the gradient sanitization mechanism to only a select group of parameters,
exploiting the fact that only the generator is released. This enhances the general utility of the
generated data and increases the reliability of discriminator training. Additionally, the use of
Wasserstein Distance to bound sensitivity is proposed, citing that the new loss function pro-
vides lower variance in gradient norms during training. GS-WGAN also employs subsampling
to reduce the chance of information about any given individual being leaked. This is done by
dividing the private dataset into N subsets and creating the N discriminators, each discrimi-
nator training on a random subset each iteration. Lastly, the subsampling allows GS-WGAN
to be used in a federated learning scenario.

3.1.4. Comparison of DP-GANs
Table 3.1: Comparison of analyzed DP-GAN approaches

Name Evaluated Data GAN structure Uses AE
DP-GAN [57] MNIST & Medical Standard No
PATE-GAN [34] Medical PATE No
RDP-CGAN [57] Medical CGAN Yes
PPGDNN [5] Medical Standard No

DP-auto-GAN [50] Mixed & Medical Standard Yes
DP-GAN for TS, C and DOD [23] Synthetic & IOT & Medical Standard No (LSTM)

DP-AeGM [10] MNIST & Medical Standard Yes
DPR via DGM [58] MNIST & Faces Standard No
GS-WGAN [9] MNIST & FASHION Mnist Wasserstein No

3.2. AutoEncoders
Autoencoders are ourmethod of choice for improving the utility of generated data using anomaly
detection. In this Section, we explore the variants and improvements of autoencoders. It is im-
portant to note that these approaches are not differentially private and would require additional
modifications to use them with our framework.

Variational AE based Anomaly Detection using Reconstruction Probability
An et al. [1] propose the usage of variational autoencoders combined with the use of recon-
struction probability as an improvement over the usually used reconstruction error.

Variational autoencoder [35] is an adaptation of the traditional autoencoder model with several
changes. Firstly, the output of a variational autoencoder is a distribution, represented in terms
of variance and mean. As such, the variance can be used as one of the parameters to deter-
mine the reconstruction probability. This is an improvement of classical autoencoders, as their
deterministic mapping cannot represent the variability of data reconstruction. Additionally, the
same can be said for the latent variables which are stochastic variables within the variational
autoencoder context.

Lastly, the usage of reconstruction probability compared to reconstruction error allows for a
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much more logical selection of an anomaly threshold. In classical autoencoders, a specific
threshold of reconstruction error must be chosen to remove specific anomalies. Due to the
black-box nature of neural networks in general, selecting a specific threshold is inherently an
arbitrary process and the selection of the value of the threshold is often done on a trial-and-
error basis. The usage of reconstruction probability however allows us to select a specific
consistent threshold that can be reasoned for regardless of the specific data.

Using the modified structure and the new reconstruction probability metric, the authors report
significant improvement in the efficiency of the removal of anomalies compared to classic
autoencoders. This efficiency is measured as the performance gain of ML models trained on
datasets in which anomalies were removed with a given method.

Deep Autoencoding Guassian Mixture Model for Unsupervised AD
The approach in [62], named Deep Autoencoding Gaussian Mixture Model (DAGMM) first
utilizes an autoencoder to generative low-dimensional representation of data as well as the
corresponding representation error. These values are then used as input to the Gaussian Mix-
ture Model (GMM). The output of GMM is several means, variances, and weights of Gaussian
distributions corresponding to several clusters within the data. Lastly, after the GMM is fully
trained, the density of each data point can be estimated. Lower density, meaning the data
point belongs to lower-density regions within the Gaussian Distributions, indicates a higher
chance of being an anomaly. The final probability of being an anomaly is then a composite of
the density as well as the reconstruction error. Using this metric, the authors show an up to
14% improvement in f-1 scores compared to basic autoencoder-based approaches.

Robust Autoencoders
Zhoue et al. [59] propose an improvement inspired by a robust Principal Component Analysis
(PCA) approach. The new approach focuses on robustness, stating performance increases,
especially in cases with no clean training data. The main difference from a standard autoen-
coder model comes in the form of two main improvements. Firstly, an improvement upon the
older model of denoising autoencoders [56] is proposed - computing entries freely based on
the performance of the autoencoder algorithm. Second, unlike in [36], the sparsity of the hid-
den layer is not penalized, allowing for a sparse set of exceptions, for which the autoencoder
loss function will not be used. Using these approaches, the authors have demonstrated a
significant increase in performance. When dealing with highly noisy data, an improvement of
up to 30% was achieved compared to the baseline autoencoder model.

Memory-Augmented Autoencoders
Memory-Augmented Autoencoder (MemAE), proposed by Gong et al. in [27] is a variant of
autoencoders that aims to increase the efficiency of autoencoder-based anomaly detection by
decreasing the overall generalization ability, fixing the issue of the autoencoder ”learning too
well” and being able to reconstruct even anomalies. To amend this issue, a memory module
is used. The first step is encoding the data. The encoded data is then passed to the memory
module which uses it for a query, returning the most relevant memory item. This item is sub-
sequently decoded, serving as the output of MemAE. During training the memory module is
also improving, the contents are updated to present the core elements of the non-anomalous
data. After the training is finished, the memory module is static. Using this approach, the au-
thors were able to create a highly generalizable and effective method for anomaly detection.
Applied to the cybersecurity dataset KDDCUP, MemAE is able to outperform the previously
mentioned DAGMM [62].
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Autoencoders with Nonlinear Dimensionality Reduction
In [49], Sakurada et al. compare classical autoencoders, denoising autoencoders, and linear
and kernel PCA. During evaluation, they establish the performance benefits that both classi-
cal and denoising autoencoders provide. The authors also report a class of anomalies that
autoencoders detect that other approaches were not able to. The performance of the tested
approaches is evaluated experimentally on both synthetic and authentic non-medical data,
showing a significant increase in performance for both the autoencoder models.

Context-Encoding Variational Autoencoder
CeVAE [60] uses an approach similar [62] and [1], using both the reconstruction error as well
as the density to score the anomalies. The novelties come in the form of a combination of a
Context Encoder [46] and a variational Autoencoder [35]. With this combination, the authors
also include the KL-divergence of the posterior from the prior of the latent variable distribu-
tions. The KL-divergence, serving as a rough estimator combined with the reconstruction
error can then achieve high performance, especially in the field of medical image data. To test
the performance, the model was evaluated on several public challenges [12]. During the ex-
perimentation, the model was able to outperform the common autoencoder implementations,
such as the variational or denoising variant.



4
GAN Anomaly Detection - GANAD

In this chapter, we introduce our framework for embedding differentially private autoencoder
into various steps of a DP-GAN pipeline. Our framework, GANAD, proposes three anomaly re-
moval approaches. Pre-Generation, Mid-Generation, and Post-Generation each apply anomaly
detection at different points in the data synthesis pipeline. We first introduce the reader to the
two possible approaches to ensuring the privacy of our anomaly detection model and then the
following sections will explain each of our anomaly removal approaches in detail, considering
the design philosophy, practical details, and lastly the privacy guarantee.

Figure 4.1: The Data Synthesis Pipeline with three approaches with Anomaly Removal

4.1. Privacy of autoencoder
In this section, we explore two possible approaches to ensuring the privacy of the anomaly
model of choice - autoencoders. These two privacy-preserving approaches have their own
benefits and specifics which are crucial to consider when selecting one for usage in our frame-
work.

Private Release
The simpler and more versatile approach is the private release of information by an unprivately
trained model. The process starts with the standard training of a model. Afterward, the dataset
in which we wish to detect anomalies is processed by the model, and the related outputs
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are analyzed. Using the predetermined privacy budget and the sensitivity calculated as the
maximum distance between any two elements in the outputs, we apply laplacian noise to the
outputs. Afterward, the highest values selected correspond to the most anomalous entries.
We can repeatedly select any number of anomalies from this with no additional cost however
classifying new data will require more of the privacy budget. The main advantage of this
approach is that it is very simple and model-agnostic. The privacy guarantee is very easy to
understand and as we are only modifying the output of a model, this approach does not require
rigorous proof of the private training. With respect to the three presented options for anomaly
detection, this method is not well suited for Mid-Generation removal, as we would have to split
our allocated privacy budget into n parts where n is the number of GAN training iterations.

Private Training
The more advanced approach is ensuring the privacy of the output of the anomaly model by
making the training process private. Amodel trained this way can process an unlimited amount
of non-private data and leak no information with the output. This is an advantage achieved
by a complex training approach. For basic autoencoders, similarly to GANs, gradient clipping,
and gradient noise addition can be used to train a model privately [47]. As stated, the biggest
drawback of this approach is the limitation with regard to the various improvements to the
standard autoencoder model. These improvements, discussed in Chapter 3, would require
additional analysis to determine whether this training approach does not leak any information,
however, that is beyond the scope of this thesis. Additionally, private training of autoencoders
can often lead to higher performance compared to the previous naive approach. For this
reason, we believe privately trainedmodels to be the superior option to use with our framework.

4.2. Pre-Generation Anomaly Removal
The first approach is Pre-Generation data anomaly removal. This is the simplest approach
and is akin to standard data preprocessing.

Design philosophy
As stated before, medical data contains a variety of intricate patterns. This naturally proposes
a challenge, as generating data incorporating these patterns is difficult. However, we can also
exploit the presence of said patterns to train a highly efficient anomaly removal model.

The most immediate use of this fact is simply removing the anomalies from the data by train-
ing and applying the anomaly detection model to the private authentic data. This is done
before giving a GAN access to the data, which should allow the GAN to be trained to produce
significantly fewer anomalies, leading to utility gains.

Practical details
One of the design goals of our approach is flexibility about the type of input data. Therefore,
our approach works in an unsupervised manner, assuming no labeling of anomalies in the
private data. The private, unprocessed data is then passed to an anomaly detection deep
learning model, an Autoencoder in our case. As training is done in a non-privacy-preserving
manner, we may simply train the model till we reach the desired loss. Afterward, a number or
percentage of anomalies is removed. This number highly depends on the dataset and there-
fore becomes another variable to hyperoptimize. The GAN is then trained on this anomaly-free
data.
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Privacy guarantee
First, to understand the potential privacy cost we need to state the situation and our assump-
tions: The anomaly detection model is trained on private data in a nonprivate manner. The
model and its output are never published. A model can be trained with regard to its own loss,
however, it is not to be optimized with regard to the output of the GAN. Under these assump-
tions, there is no additional privacy cost associated with the anomaly removal. As differential
privacy quantifies the chance of an individual’s information being leaked and there is no way
to way for an attacker to determine whether an individual’s data was removed from the dataset
via anomaly removal, there is no additional privacy leakage relating to pregen GANAD.

4.3. Mid-Generation Anomaly Removal
The second approach involves the continuous removal of anomalies during the GAN train-
ing process. This is the most unique of the approaches proposed and aims to increase the
efficiency of the discriminator to generate higher utility data.

Design philosophy
The core idea is again related to the complex, correlated nature of medical data. In a regular
training process, we expect the generator to try to reproduce the patterns present in the training
data. Especially at the beginning of this process, the generator performs poorly, leading to slow
training of the discriminator. In the later stages, the discriminator might reach a local maximum
by overly focusing on improperly reproduced anomalies. Mid-Generation removal addresses
this by eliminating anomalies from the data passed to the discriminator, both authentic and
synthetic.

Ideally, this forces the discriminator to consider less immediately apparent patterns instead
of focusing on improperly reconstructed anomalies. In other words, with fewer ”low-hanging
fruits,” the discriminator must learn to reproduce more subtle patterns, ultimately leading to
the generation of higher utility data.

Practical details
In practice, the inner flow of data between the generator and discriminator is the most likely to
differ in various improved GAN implementations. As such, we provide the general approach
for classical GANs and guidelines for more advanced approaches. The first step is again
privately training the anomaly detection model on private data. Afterwards, during the GAN
training process, anomalies are removed from both the original as well as generated data
before being passed to the discriminator. We make sure to remove the same number of
anomalies from both of these classes to prevent data imbalance in the training. In case of
multiple sets of data being passed to discriminators, we make sure that each of these sets
ends up the same size to again prevent imbalance.

Privacy Guarantee
In this approach, unlike from the other ones, we make repeated queries to the anomaly detec-
tion model. As such, it is crucial that the model is trained privately, instead of only its results
being privately released. With a model trained in such a way, the privacy loss can be quantified
as only the privacy budget allocated to the training of the anomaly detection model, meaning
the number of training iterations, and queries to the private model, does not have an impact
on the final privacy budget. The training process which ensures the privacy of the output of
the anomaly detection model will be explored further in Section 4.1.
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4.4. Post-Generation Anomaly Removal
The last presented option is removing the anomalies after the data is generated. This approach
is similar to standard data processing however the key difference is in the usage of part of the
budget to get access to the private data for training the anomaly detection model.

Design Philosophy
The core idea is to carefully select a part of the budget and use it to train an anomaly detection
model in a differentially private manner on authentic private data. This trained model can
then be used on the final output of the GAN to remove anomalies and improve the utility of
the synthetic data. The theory is that a Differentially Private learning process, especially one
done on highly complex, highly correlated data, will introduce anomalies that can be effectively
removed using information from the private dataset. As such, we hope that allocating part of
the budget to the anomaly detection model provides higher total utility than just increasing the
budget for the GAN training. This will be tested in depth in Chapter 5.

Practical Details
As we are proposing a flexible framework, the data can again be in any format. Afterwards,
an anomaly detection model is trained privately, with a preset privacy budget. Typically, this
is only a small fraction of the overall privacy budget, although the exact figures are reported
in Chapter 5. The anomaly detection model can be trained simultaneously with the GAN.
In practice, we expect the training of the GAN to take significantly more time than that of
the anomaly detection model. This combined with the negligible anomaly classification time
means that the additional runtime of this approach is close to zero.

Another aspect to consider is the amount of data points released. Compared to the other ap-
proaches, the generator will give us a preset number of data points to which we subsequently
apply anomaly detection. As an example, if we assume that we want to release n data points,
we need to decide in advance how many anomalous points we want to remove and gener-
ate n+ that many extra points. This is the scenario we assume and it ensures that no extra
information is leaked by optimizing on the outputs of the generator.

Privacy guarantee
Post-Generation anomaly removal works on the basis of using private information to directly
modify the data that a third party will have access to. As such, the anomaly removal leaks
information in a way that is quite easy to exploit by the attacker.

Imagine the classical inference attack scenario, where the attacker has access to two neigh-
boring (private) datasets and to the data released by the GAN. In such a scenario, the attacker
might see a difference in the output of Post-Generation using GAN depending on the anoma-
lity of the one entry. While this is an informal example, there is certainly information leakage
present. As such, we have chosen to quantify the higher bound of this risk with the part of the
privacy budget ϵ. The allocated privacy budget then limits the learning of an anomaly detection
model so that the effect it has on the outputted data by the GAN and any subsequent privacy
leakage is limited.
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Evaluation and Results

To evaluate our framework in practice, we conducted a variety of experiments with different
DP-GAN implementations, several relevant medical datasets, number of different machine
learning models and changing epsilon values. These experiments were repeated 10 times
to account for the randomness of the learning process. This Chapter first provides general
reproducibility details which allow anyone to easily verify the results as well as expand on the
work done. In the next Section, we consider the specific implementation details related to the
three tested models - DPGAN, RDPCGAN, and PATEGAN. Following, we introduce the three
datasets used for the testing, placing focus on the specifics of the data present in the datasets,
as well as general metrics such as dataset size or the number of features. Lastly, we apply
the robust testing setup to reliably evaluate the three proposed anomaly removal approaches
across a variety of settings.

5.1. Reproducibility specifics
This Section provides all the details necessary for reproducing the results.

Codebase
We have published the code used for testing at a public GitHub repository [54]. We thank the
authors of [52] for their provided implementation of RDP-CGAN and the authors of [34] for the
codebase for PATE-GAN. Both of these implementations, as well as our own implementation
of the standard DP-GAN model [57] were used in conjunction with our framework.

Hardware and OS
The experiments were run simultaneously on 2 systems - A System with 16 GB of RAM and
1165G7 CPU and another System with 32 GB of Ram, 7600X CPU and a 3080 GPU. Both
systems ran on Ubuntu. We believe our code to be machine agnostic however Linux operating
system is most likely required due to the required libraries and drivers.

Environment and Libraries
For our environment, we used Python version 3.7, with Tensorflow version 1.15.0 and the
Nvidia version of Tensorflow [43]. For the implementation of the Laplace Mechanism, the Diff-
PrivLib by IBMwas used [31]. All the other required packages are present in a requirements.txt
[54] file.

23
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5.1.1. Hyperparameters
In this Section, we provide the hyperparameters as well as explain the rationale behind their
selection.

Unless stated explicitly stated otherwise, the following values were used as hyperparameters:

Table 5.1: Hyperparameters used for running experiments

Parameter Name PATEGAN RDPCGAN DPGAN
Epsilon 0.1/1/10 0.1/1/10 0.1/1/10

Training Iterations 10 1/10/30 NA
Number of Experiments per setup 10 10 10

Delta 10−5 10−5 10−5

Teachers 1000 NA NA
Batch Size 64/16 64/16 64/16
Noise Rate 1.0 10/4/1 1.0

Mid/Post Generation ϵ budget 10% 10% 10%

Epsilon
Three distinct values were selected for the privacy budget ϵ. These specific values were cho-
sen to allow for easy comparison to existing research, using the same values. Additionally,
they correspond to values used in the real world by both companies and researchers [16].

Training Iterations
Due to the implementation specifics, each of the considered models handles the number of
epochs a bit differently. In PATEGAN, we can simply specify the number of epochs. In RDP-
CGAN, the privacy budget ϵ is not directly selectable and depends partially on the number of
epochs. As such, 1/10/30 epochs were used, corresponding to 0.1, 1, and 10 ϵ respectively.
Lastly, our implementation of DPGAN simply trains in epochs till the privacy budget is reached
so no epoch selection is required/necessary.

The selection of the number of epochs for RDP-CGAN was an empirical process. By far the
two most deciding factors of the calculated epsilon value are the number of epochs and the
Noise Rate. Therefore, we have attempted to select values that achieve a balance between
these two parameters.

Delta
The value for delta was selected to again coincide with values used in existing research. With
value of 10−5, delta corresponds to a small enough chance to not meaningfully impact the data
release while still improving the utility of generated data due to relaxed security constraints.

Teachers
The values regarding the number of Teachers for the implementation of PATEGANwere picked
due to findings in the original paper [34] regarding the efficiency of PATEGAN related to various
amounts of teachers.

Batch Size
The batch size used when training on both the UCI Epileptic as well as the Cardio Vascular
disease dataset was 64. For compatibility reasons and due to the smaller amount of records,
16 was used for the Cervical Cancer dataset.

The value of 64 was used due to other works on the same dataset selecting it.
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Noise Rate
Again, due to implementation details regarding the privacy budget ϵ selection, RDP-CGAN
uses 10, 4, and 1 as the noise ratio corresponding to 0.1, 1, and 10 ϵ respectively.

The values for Noise Rate in general were selected to achieve between the number of epochs
as well as the noise rate - the two deciding factors for the privacy budget computation.

Mid/Post Generation ϵ budget
This corresponds to the part of the overall privacy budget used for the training of the anomaly
removal autoencoder. We have briefly tested several different percentages and settled on 10%
as the best-performing amount. To truly determine the ideal percentage, additional research
that is outside the scope of this work would be required.

5.2. Utility Measurements
To measure the utility of generated data, we adapted the techniques developed by Jordon and
Yoon [34]. The reason for this is twofold - firstly, adapting the same utility metrics allows us to
directly compare our results to the original paper. Secondarily, we believe the technique to be
versatile and of high quality.

In this Section, we give a brief introduction to the individual models used and the way their
performance is measured. For performance measurements, we have chosen to use AUROC
and AUPRC instead of metrics such as F1 score or accuracy. We believe that AUROC and
AUPRC are advantageous in our specific context as they perform better with unbalanced data
and provide a more comprehensive evaluation of a model’s performance. We measured both
the AUROC and AUPRC scores, however for the conciseness only AUROC scores are present
in the Section. The additional data can be found in Appendix A.

Logistic Regression
Logistic regression is a simple linear model used for binary classification that predicts the
probability of a binary outcome based on input features.

Gaussian Naive Bayes
Gaussian Naive Bayes [61] variant of Naive Bayes that assumes features are normally dis-
tributed and uses Bayes’ theorem to predict the probability of each class.

Bernoulli Naive Bayes
Bernoulli Naive Bayes [61] is another variant of Naive Bayes suitable for binary feature data,
where features are assumed to be independent boolean variables.

Linear Discriminant Analysis
Linear Discriminant Analysis [6] is a method used for dimensionality reduction and classifi-
cation. It models the distribution of the predictors separately in each class and uses Bayes’
theorem to estimate the probability of each class.

Random Forest
Random Forest [7] is an ensemble learning method that constructs multiple decision trees
during training and outputs the mode of the classes or the average prediction of the individual
trees.

Extra Randomized Trees
Extra Randomized Trees is model similar to Random Forests, but the splits are chosen ran-
domly instead of optimally.
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Adaptive Boosting
Adaptive Boosting [21] is a learning method that iteratively trains weak classifiers by focusing
on instances that were previously misclassified.

Bootstrap Aggregating
Bootstrap Aggregating, also known as Bagging is an approach that improves the accuracy
and stability of machine learning algorithms by averaging multiple models trained on different
subsets of the data.

Support Vector Machine
Support Vector Machine [13] is a supervised learning model used for classification and re-
gression analysis. It can find an optimal hyperplane that best separates classes in a high-
dimensional space.

Gradient Boosting Machine
Gradient Boosting Machine [22] is a technique where new models are sequentially added,
each correcting errors made by the previous models, thereby minimizing the overall error.

XGBoost
XGBoost [11] is an optimized implementation of gradient boosting that is highly efficient, flexi-
ble, and scalable.

5.2.1. AUROC (Area Under the Receiver Operating Characteristic Curve)
AUROC is a metric commonly used to evaluate the performance of binary classification mod-
els. It plots the true positive rate against the false positive rate at various threshold settings.
The area under this curve (AUROC) provides a measure of the model’s ability to distinguish
between positive and negative classes across all possible thresholds, with values closer to 1
indicating better discrimination capability and a value of 0.5 suggesting performance compa-
rable to random chance.

5.2.2. AUPRC (Area Under the Precision-Recall Curve)
AUPRC evaluates the precision-recall trade-off of a binary classifier. Unlike AUROC, which
focuses on the true positive rate against the false positive rate, AUPRC considers the preci-
sion and recall of the classifier. It is particularly useful in settings where the class distribution
is highly imbalanced, as it provides a comprehensive measure of the classifier’s performance
across all thresholds. A higher AUPRC indicates better precision-recall trade-off, with a maxi-
mum value of 1 indicating perfect performance and a baseline value influenced by the propor-
tion of positive examples in the dataset.

5.3. Datasets
After careful analysis of the performance of state-of-the-art DPGAN approaches, we have
selected three datasets that have been widely used for experiments in existing works. This
selection allows us to directly compare our results as well as test our approach in a variety of
medical settings.

5.3.1. UCI-Epileptic
The version of the UCI-Epileptic dataset [2] that we used contains 178 features, each indicating
a one-second brain activity recording. The dataset contains six classes, with 1 indicating that
the measurements were recorded during an epileptic seizure and the other corresponding to
other factors - such as eyes being closed or the exact area of the brain being recorded. We
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merged the five other classes, transforming this into a binary classification problem. Overall,
this modified version of the dataset contains 11500 rows. As such, it serves as an example of
a highly correlated highly complex dataset with a decent number of samples.

5.3.2. Kaggle Cardiovascular Disease
The Cardiovascular dataset [53] provides 11 features, ranging from age, and weight, to glu-
cose levels and smoking status. The goal of this dataset is to determine whether the person
has a cardiovascular disease. This dataset contains the fewest features of the three used
datasets however it also contains over 70000 rows of data. As such, it provides the most com-
plex setting concerning both time and memory. This allows us to test how well our proposed
approaches scale with these parameters.

5.3.3. Kaggle Cervical Cancer
The Cervical Cancer dataset [19] is the third dataset we used for our experiments. With 35
features, it serves as a nice middlepoint between the UCI and the Cardiovascular dataset. It
also only has around 800 records, presenting a unique opportunity to test the performance of
GANAD in a setting with a limited amount of training data. As this data contains some missing
values and is already limited in size, we used preprocessing to extend the utility of existing
data as much as possible.

5.4. GANs
While we already explored various state-of-the-art approaches towards DP-GANs in detail
in Chapter 3, here we focus more on the implementation details and decisions that were
made while implementing GANAD within specific GANs. We also report on the performance
of GANAD in these scenarios.

5.4.1. PATE-GAN
For testing of PATE-GAN [34], we modified the code provided by the authors at [55].

For the implementation of the pre-generation anomaly removal, we first load the data and
apply any necessary preprocessing. Subsequently, we train an autoencoder with an unlimited
privacy budget, based on the rationale explained in Chapter 4, and remove several anomalies.
The rest of the process does not differ from the original PATEGAN implementation.

Our mid-generation anomaly removal approach is a bit more involved, as it consists of re-
moving anomalies within each of the training loops of the students. In our implementation,
we performed anomaly removal on each of the batches during each training epoch using a
differential-privately trained autoencoder.

The post-generation anomaly removal again involves the private training of an autoencoder.
The autoencoder is then used on the output of the GAN to remove a preset number of anoma-
lies. Otherwise, the data generation and the PATE-GAN training process are not modified.
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Experimental Results
Table 5.2: ML Utility comparison of different AR methods using AUROC metric with varying epsilon values -

RDPCGAN UCI-Epileptic.

AR Methods/Epsilon ϵ = 0.1 ϵ = 1 ϵ = 10

Control 0.402 ± 0.001 0.409 ± 0.002 0.465 ± 0.018
Pre-Generation 0.519 ± 0.006 0.403 ± 0.001 0.519 ± 0.014
Mid-Generation 0.493 ± 0.007 0.427 ± 0.003 0.431 ± 0.006
Post-Generation 0.454 ± 0.002 0.476 ± 0.008 0.456 ± 0.014

Table 5.3: ML Utility comparison of different AR methods using AUROC metric with varying epsilon values -
PATEGAN Cardiovascular Disease.

AR Methods/Epsilon ϵ = 0.1 ϵ = 1 ϵ = 10

Control 0.575 ± 0.001 0.597 ± 0.001 0.627 ± 0.000
Pre-Generation 0.557 ± 0.000 0.586 ± 0.000 0.650 ± 0.000
Mid-Generation 0.559 ± 0.001 0.597 ± 0.001 0.637 ± 0.001
Post-Generation 0.558 ± 0.001 0.599 ± 0.001 0.647 ± 0.001

Table 5.4: ML Utility comparison of different AR methods using AUROC metric with varying epsilon values -
PATEGAN Cervical Cancer.

AR Methods/Epsilon ϵ = 0.1 ϵ = 1 ϵ = 10

Control 0.632 ± 0.005 0.654 ± 0.004 0.686 ± 0.004
Pre-Generation 0.599 ± 0.014 0.621 ± 0.008 0.693 ± 0.008
Mid-Generation 0.594 ± 0.009 0.636 ± 0.005 0.672 ± 0.004
Post-Generation 0.605 ± 0.009 0.642 ± 0.009 0.697 ± 0.002

Intepreting the results
Across the tested datasets and the various ϵ values, we can see that the usage of GANAD is the
most effective at high-privacy budgets, yielding above-baseline performance in all three tested
datasets. The Pre-Generation anomaly removal also stands out as the best-performing variant
of GANAD. Lastly, we observe the highest improvements related to GANAD in UCI-Epileptic,
the dataset with the highest number of features.

5.4.2. RDP-CGAN
For our testing of RDP-CGAN [57], we used the base implementation provided by the authors
at [51]. For ease of testing, we created a single file, combining the data synthesis pipeline
provided by RDP-CGAN with the data quality testing methods used in [55]. It is worth noting
that RDP-CGAN takes a bit of a different approach to generating labeled data. It is trained
only on a specific class of data which it then reproduces. As such, generating data with two
classes involves two trainings of the model. However, as the training is always only accessing
one class of the data, the overall privacy budget is not increased compared to other GANs.

The pre-generation anomaly removal involves training the autoencoder on the whole dataset
once and then applying it on the data before the start of each of the respective RDP-CGAN
training processes. No further changes were required to implement pre-generation anomaly
removal with RDP-CGAN.
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To remove anomalies using the mid-generation approach, we start by differential-privately
training the autoencoder. Afterward, we use the trained model to remove an equal number of
synthetic and authentic entries in each training batch in each training epoch.

Post-generation anomaly removal consists of first using the predefined privacy budget to train
both the RDP-CGAN as well at the autoencoder. The data is then generated using the trained
RDP-CGAN and subsequently, the autoencoder is used to remove anomalies from this data.
Lastly, the quality of the data can be evaluated.

Experimental Results
Table 5.5: ML Utility comparison of different AR methods using AUROC metric with varying epsilon values -

RDPCGAN UCI-Epileptic.

AR Methods/Epsilon ϵ = 0.1 ϵ = 1 ϵ = 10

Control 0.402 ± 0.001 0.409 ± 0.002 0.465 ± 0.018
Pre-Generation 0.519 ± 0.006 0.403 ± 0.001 0.519 ± 0.014
Mid-Generation 0.493 ± 0.007 0.427 ± 0.003 0.431 ± 0.006
Post-Generation 0.454 ± 0.002 0.476 ± 0.008 0.456 ± 0.014

Table 5.6: ML Utility comparison of different AR methods using AUROC metric with varying epsilon values -
RDPCGAN Cardiovascular Disease.

AR Methods/Epsilon ϵ = 0.1 ϵ = 1 ϵ = 10

Control 0.548 ± 0.002 0.539 ± 0.001 0.555 ± 0.001
Pre-Generation 0.563 ± 0.001 0.545 ± 0.001 0.559 ± 0.000
Mid-Generation 0.553 ± 0.003 0.536 ± 0.001 0.523 ± 0.002
Post-Generation 0.555 ± 0.001 0.545 ± 0.001 0.553 ± 0.000

Table 5.7: ML Utility comparison of different AR methods using AUROC metric with varying epsilon values -
RDPCGAN Cervical Cancer.

AR Methods/Epsilon ϵ = 0.1 ϵ = 1 ϵ = 10

Control 0.544 ± 0.004 0.659 ± 0.001 0.602 ± 0.012
Pre-Generation 0.560 ± 0.010 0.638 ± 0.002 0.731 ± 0.008
Mid-Generation 0.556 ± 0.006 0.618 ± 0.001 0.695 ± 0.012
Post-Generation 0.555 ± 0.001 0.636 ± 0.004 0.580 ± 0.016

Interpreting the results
The results of RDP-CGAN show a clear benefit of using GANAD in practice. In only one
of the nine total tested scenarios, we see a baseline returning the best results. We again
see good results in high privacy budget setting, with RDPCGAN Cervical Cancer returning
the highest improvement out of all tested scenarios. We do not see any point at which Mid-
Generation anomaly removal performs well, suggesting it may not be the best option to use
with RDPCGAN. Lastly, while we observed the highest performance in the Cervical Cancer
dataset, there does not seem to be a significant difference regarding the complexity of the
data.
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5.4.3. DP-GAN
As a test of our approach with the most basic settings, we implemented our own version of
DP-GAN. This version closely follows the standard GAN architecture and only implements
Differential Privacy by means of gradient perturbation and clipping.

The pre-generation anomaly removal approach again involves (nonprivately) training the au-
toencoder and using it to remove anomalous entries from the original dataset. This cleansed
dataset is then used for the DP-GAN training. Afterward, the data is simply generated and
evaluated.

For the implementation of the mid-generation anomaly removal, we use part of the privacy
budget to train the autoencoder. Then, after the generation of the synthetic data but before
forwarding it to the discriminator in each iteration, we employ the autoencoder and remove
anomalies from both authentic and synthetic data. After the training process, the data gener-
ation and evaluation is done.

Lastly, the post-generation anomaly removal first involves privately training both the DP-GAN
and the autoencoder. We generate the data and subsequently remove a preset number of
anomalies using the autoencoder. The quality of anomaly-free data is then tested.

Experimental Results
Table 5.8: ML Utility comparison of different AR methods using AUROC metric with varying epsilon values -

DPGAN UCI-Epileptic.

AR Methods/Epsilon ϵ = 0.1 ϵ = 1 ϵ = 10

Control 0.503 ± 0.001 0.512 ± 0.001 0.499 ± 0.000
Pre-Generation 0.525 ± 0.001 0.512 ± 0.001 0.483 ± 0.001
Mid-Generation 0.508 ± 0.002 0.498 ± 0.001 0.491 ± 0.001
Post-Generation 0.507 ± 0.001 0.498 ± 0.002 0.483 ± 0.001

Table 5.9: ML Utility comparison of different AR methods using AUROC metric with varying epsilon values -
DPGAN Cardiovascular Disease.

AR Methods/Epsilon ϵ = 0.1 ϵ = 1 ϵ = 10

Control 0.483 ± 0.001 0.505 ± 0.001 0.514 ± 0.001
Pre-Generation 0.508 ± 0.001 0.516 ± 0.002 0.489 ± 0.002
Mid-Generation 0.506 ± 0.002 0.506 ± 0.001 0.503 ± 0.001
Post-Generation 0.492 ± 0.001 0.493 ± 0.001 0.515 ± 0.001

Table 5.10: ML Utility comparison of different AR methods using AUROC metric with varying epsilon values -
DPGAN Cervical Cancer.

AR Methods/Epsilon ϵ = 0.1 ϵ = 1 ϵ = 10

Control 0.542 ± 0.016 0.428 ± 0.018 0.515 ± 0.012
Pre-Generation 0.505 ± 0.008 0.509 ± 0.004 0.488 ± 0.014
Mid-Generation 0.544 ± 0.008 0.515 ± 0.007 0.498 ± 0.013
Post-Generation 0.446 ± 0.007 0.507 ± 0.021 0.476 ± 0.026
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Interpreting the results
The testing of DPGAN and GANAD revealed two things. Firstly, the application of GANAD
with DPGAN can lead to utility gains mostly in lower-complexity datasets. Secondly, the DP-
GAN seems to struggle with synthesizing complex medical data. This can be observed in
the fluctuating AUROC scores measured in the Cervical Cancer dataset, with a non-positive
correlation between the utility and the privacy budget.

5.5. Anomaly detection usage
Pre-Generation Anomaly Removal
Table 5.11: The difference between the AUROC score of control and Pre-Generation AR - averaged across

models for each dataset

Dataset/Epsilon ϵ = 0.1 ϵ = 1 ϵ = 10

UCI Epileptic 0.040 ± 0.005 -0.013 ± 0.000 0.009 ± 0.002
Cervical Cancer -0.018 ± 0.001 0.009 ± 0.004 0.036 ± 0.007
Cardio Vascular 0.007 ± 0.001 0.002 ± 0.000 0.001 ± 0.001

Mid-Generation Anomaly Removal
Table 5.12: The difference between the AUROC score of control and Mid-Generation AR - averaged across

models for each dataset

Dataset/Epsilon ϵ = 0.1 ϵ = 1 ϵ = 10

UCI Epileptic 0.028 ± 0.003 -0.010 ± 0.001 -0.014 ± 0.000
Cervical Cancer -0.008 ± 0.001 0.009 ± 0.005 0.021 ± 0.004
Cardio Vascular 0.004 ± 0.000 -0.001 ± 0.000 -0.011 ± 0.000

Post-Generation Anomaly Removal
Table 5.13: The difference between the AUROC score of control and Post-Generation AR - averaged across

models for each dataset

Dataset/Epsilon ϵ = 0.1 ϵ = 1 ϵ = 10

UCI Epileptic 0.022 ± 0.001 0.013 ± 0.002 -0.009 ± 0.000
Cervical Cancer -0.037 ± 0.003 0.015 ± 0.003 -0.017 ± 0.001
Cardio Vascular 0.000 ± 0.000 -0.001 ± 0.000 0.007 ± 0.000

5.6. Intepreting the results
Defined in the first Chapter, we ask the question ”How can we improve the utility of synthetic
medical data by employing anomaly detection?”. While we have observed utility gains across
a variety of datasets and data-generation approaches, the true answer is a bit more complex.
We start by analyzing cases where the model yielded significant results, either positively or
negatively.

5.6.1. RDPCGAN performance gains
Across datasets and different values of epsilon, we have observed the highest increase of utility
when applying GANAD to RDP-CGAN. Not only have we observed the highest individual gain
compared to baseline - around 0.13 AUROC increase with Cervical Cancer ϵ = 10 dataset,
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we additionally observed performance increase related to the usage of GANAD compared to
the baseline in 8 out of 9 tested scenarios.

We believe this performance gain is related to the RDP-CGAN training process. As RDP-
CGAN uses an autoencoder itself to reduce the dimension of the training data, the anomaly
removal provided by the GANAD framework can lead to more efficient training and subsequent
higher utility of data. While this is just a possible explanation, it is also corroborated by the fact
that the high RDP-CGAN results were often achieved by pre-generation anomaly removal.

5.6.2. Efficiency based on complexity of datasets
Based on the results, it seems that the efficiency of GANAD seems to depend more on the
size of the dataset rather than the number of features. In the dataset with over 70000 entries,
8 out of 9 test configurations again returned an AUROC score higher than the baseline using
one of the GANAD removal techniques.

On the other side of the spectrum is the Cervical Cancer dataset with only 800 records. In
this dataset, apart from the outlier related to the performance of RDP-CGAN at ϵ = 10, we
have observed the smallest utility increase related to GANAD usage compared to the other
datasets.
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Conclusion, Discussion & Future Work

In this Chapter we analyze the results, discussing what they mean and how they answer the
question stated in Chapter 1. We conclude by presenting several directions in which this work
can be expanded upon and summarizing our contribution.

6.1. Discussion
In this Section, we discuss the real-world usefulness and applicability of our framework.

6.1.1. Use-case scenarios
Both our expectations as well as our results show that the GANAD framework works best in
highly correlated and complex datasets. Such datasets both make the data synthesis more
difficult as well as allow the autoencoder to be trained more efficiently. The dataset should
also not be preprocessed in terms of removing anomalies as this is crucial for the efficiency of
GANAD.

6.1.2. GANAD practicality
Our results, analyzed in the previous Chapter, indicate that while the blind application of
GANAD yields mixed results, careful and informed configuration can lead to significant gains
in utility. We estimate that with proper application, a 3-5% increase in AUROC score is achiev-
able in most scenarios. Key parameters to optimize include the number of anomalies removed,
the specific partition of the privacy budget allocated for the private training of the anomaly re-
moval model, and the exact stage at which anomaly removal is performed. However, it is
crucial to ensure that the optimization process does not inadvertently leak additional informa-
tion about the private dataset. While we do not provide a rigorous proof that the selection of
GANAD hyperparameters itself reveals sensitive information, caution is warranted given the
nature of the data. Thus, we recommend erring on the side of caution to protect data privacy.

6.2. Future Work
While we tried to design as diverse and objective testing of DP-GAN-related anomaly removal
as possible, there is some space for improvement. In this section, we outline possible direc-
tions for further effort on this front.
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6.2.1. Usage of more sophisticated anomaly removal methods
For our testing, we have employed a rather basic differentially trained autoencoder. This was
done simply for the solid theoretical basis behind the differential privacy of autoencoders, al-
lowing us to both easily calculate the related information leakage as well as ensure that no
additional information is leaked due to unexplored intricacies of the anomaly removal model.
However, as we explored in Chapter 3, there is a plethora of highly advanced options for
anomaly removal which could in practice yield even better results, provided we can accurately
calculate the privacy cost. Therefore, we believe focusing on more sophisticated differentially
private anomaly removal is likely the most promising improvement in terms of achievable utility
gains.

6.2.2. Number of anomalies to remove
As the focus of this thesis was on a rather diverse setting - synthetic medical data - we have
been unable to focus on any specific learning scenario in too much detail with regard to the
number of anomalies removed from the data. More in-depth research, experimenting with
various settings, and different numbers of anomalies removed could lead to a substantial utility
increase in the final data. Additionally, observing the tradeoff between the number of removed
anomalies and the utility of the data could reveal some interesting trends across datasets and
could lead to good heuristics for the selection of the number of anomalies to remove, usable
in practice.

6.2.3. Application of GANAD to non-medical data
There is a solid reasoning behind our selection of a group of data to analyze. As stated
in Chapter 1, we believe that due to several reasons such as high stakes or high level of
correlation, medical data is a prime candidate for differentially private data synthesis as well
as the anomaly removal we propose. However, it may be possible that GANAD performs
well on various other types of data. Therefore, we believe applying GANAD on new, highly
correlated domains may yield promising results and could serve as a promising direction for
research.

6.2.4. Exploration of low-dimensional datasets
During our testing, we focused on testing our framework with datasets commonly used in
existing medical DP-GAN research. This however meant all of the explored datasets were
rather complex concerning the number of features they have - even the most simple dataset
had over 30 features. Therefore, there is a lack of data regarding the performance of GANAD
over low-dimensional datasets. As GANAD works by exploiting the correlated nature of high-
dimensional datasets, we hypothesize it performs worse with a lower number of dimensions
however further research is needed.

6.3. Conclusion
In conclusion, we have demonstrated that with careful application, it is possible to enhance
the utility of synthetic medical data through anomaly detection and removal. ”While our ulti-
mate goal—maximizing data utility—aligns with several existing approaches, to the best of our
knowledge, we are the first to propose a method specifically tailored to removing anomalies.
Although our approach does not increase utility in every scenario, it can be a valuable tool for
optimizing the final utility of generated data when applied thoughtfully. Moreover, our method
incurs no additional privacy costs and introduces a negligible time overhead, less than 1% of
the overall runtime.
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A
Detailed results

PATEGAN
Table A.1: ML Utility comparison of different AR methods using AUROC & AUPRC metric with varying epsilon

values - PATEGAN UCI-Epileptic.

AR Methods/Epsilon ϵ = 0.1 ϵ = 1 ϵ = 10
AUROC AUPRC AUROC AUPRC AUROC AUPRC

Baseline 0.56 ± 0.001 0.426 ± 0.001 0.573 ± 0.001 0.436 ± 0.001 0.553 ± 0.001 0.414 ± 0.001
Pre-Generation 0.544 ± 0.002 0.412 ± 0.002 0.539 ± 0.004 0.405 ± 0.004 0.543 ± 0.001 0.405 ± 0.001
Mid-Generation 0.550 ± 0.003 0.415 ± 0.002 0.538 ± 0.002 0.397 ± 0.002 0.553 ± 0.001 0.407 ± 0.002
Post-Generation 0.574 ± 0.002 0.443 ± 0.002 0.560 ± 0.004 0.425 ± 0.003 0.552 ± 0.001 0.422 ± 0.001

Table A.2: ML Utility comparison of different AR methods using AUROC & AUPRC metric with varying epsilon
values - PATEGAN Cardiovascular Disease.

AR Methods/Epsilon ϵ = 0.1 ϵ = 1 ϵ = 10
AUROC AUPRC AUROC AUPRC AUROC AUPRC

Baseline 0.575 ± 0.001 0.568 ± 0.001 0.597 ± 0.001 0.582 ± 0.001 0.627 ± 0.000 0.598 ± 0.001
Pre-Generation 0.557 ± 0.000 0.552 ± 0.000 0.586 ± 0.000 0.568 ± 0.000 0.650 ± 0.000 0.583 ± 0.000
Mid-Generation 0.559 ± 0.001 0.557 ± 0.001 0.597 ± 0.001 0.577 ± 0.000 0.637 ± 0.001 0.608 ± 0.001
Post-Generation 0.558 ± 0.001 0.561 ± 0.001 0.599 ± 0.001 0.583 ± 0.001 0.647 ± 0.001 0.604 ± 0.001

Table A.3: ML Utility comparison of different AR methods using AUROC & AUPRC metric with varying epsilon
values - PATEGAN Cervical Cancer.

AR Methods/Epsilon ϵ = 0.1 ϵ = 1 ϵ = 10
AUROC AUPRC AUROC AUPRC AUROC AUPRC

Baseline 0.632 ± 0.005 0.203 ± 0.009 0.654 ± 0.004 0.212 ± 0.006 0.686 ± 0.004 0.196 ± 0.004
Pre-Generation 0.599 ± 0.014 0.224 ± 0.009 0.621 ± 0.008 0.167 ± 0.003 0.693 ± 0.008 0.227 ± 0.011
Mid-Generation 0.594 ± 0.009 0.178 ± 0.006 0.636 ± 0.005 0.195 ± 0.004 0.672 ± 0.004 0.225 ± 0.007
Post-Generation 0.605 ± 0.009 0.183 ± 0.006 0.642 ± 0.009 0.186 ± 0.008 0.697 ± 0.002 0.232 ± 0.005
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RDPCGAN
Table A.4: ML Utility comparison of different AR methods using AUROC & AUPRC metric with varying epsilon

values - RDPCGAN UCI-Epileptic.

AR Methods/Epsilon ϵ = 0.1 ϵ = 1 ϵ = 10
AUROC AUPRC AUROC AUPRC AUROC AUPRC

Baseline 0.402 ± 0.001 0.237 ± 0.001 0.409 ± 0.002 0.249 ± 0.001 0.465 ± 0.018 0.292 ± 0.011
Pre-Generation 0.519 ± 0.006 0.334 ± 0.005 0.403 ± 0.001 0.238 ± 0.000 0.519 ± 0.014 0.339 ± 0.010
Mid-Generation 0.493 ± 0.007 0.310 ± 0.004 0.427 ± 0.003 0.253 ± 0.002 0.431 ± 0.006 0.256 ± 0.002
Post-Generation 0.454 ± 0.002 0.284 ± 0.001 0.476 ± 0.008 0.294 ± 0.005 0.456 ± 0.014 0.282 ± 0.009

Table A.5: ML Utility comparison of different AR methods using AUROC & AUPRC metric with varying epsilon
values - RDPCGAN Cardiovascular Disease.

AR Methods/Epsilon ϵ = 0.1 ϵ = 1 ϵ = 10
AUROC AUPRC AUROC AUPRC AUROC AUPRC

Baseline 0.548 ± 0.002 0.547 ± 0.001 0.539 ± 0.001 0.537 ± 0.001 0.555 ± 0.001 0.543 ± 0.001
Pre-Generation 0.563 ± 0.001 0.558 ± 0.001 0.545 ± 0.001 0.544 ± 0.001 0.559 ± 0.000 0.551 ± 0.000
Mid-Generation 0.553 ± 0.003 0.547 ± 0.002 0.536 ± 0.001 0.530 ± 0.000 0.523 ± 0.002 0.528 ± 0.001
Post-Generation 0.555 ± 0.001 0.548 ± 0.001 0.545 ± 0.001 0.541 ± 0.001 0.553 ± 0.000 0.549 ± 0.000

Table A.6: ML Utility comparison of different AR methods using AUROC & AUPRC metric with varying epsilon
values - RDPCGAN Cervical Cancer.

AR Methods/Epsilon ϵ = 0.1 ϵ = 1 ϵ = 10
AUROC AUPRC AUROC AUPRC AUROC AUPRC

Baseline 0.544 ± 0.004 0.075 ± 0.001 0.659 ± 0.001 0.135 ± 0.002 0.602 ± 0.012 0.167 ± 0.019
Pre-Generation 0.560 ± 0.010 0.091 ± 0.002 0.638 ± 0.002 0.113 ± 0.001 0.731 ± 0.008 0.295 ± 0.014
Mid-Generation 0.556 ± 0.006 0.120 ± 0.001 0.618 ± 0.001 0.103 ± 0.001 0.695 ± 0.012 0.282 ± 0.019
Post-Generation 0.555 ± 0.001 0.095 ± 0.000 0.636 ± 0.004 0.140 ± 0.003 0.580 ± 0.016 0.150 ± 0.012

DPGAN
Table A.7: ML Utility comparison of different AR methods using AUROC & AUPRC metric with varying epsilon

values - DPGAN UCI-Epileptic.

AR Methods/Epsilon ϵ = 0.1 ϵ = 1 ϵ = 10
AUROC AUPRC AUROC AUPRC AUROC AUPRC

Baseline 0.503 ± 0.001 0.358 ± 0.001 0.512 ± 0.001 0.357 ± 0.001 0.499 ± 0.000 0.337 ± 0.000
Pre-Generation 0.525 ± 0.001 0.371 ± 0.001 0.512 ± 0.001 0.360 ± 0.001 0.483 ± 0.001 0.329 ± 0.001
Mid-Generation 0.508 ± 0.002 0.360 ± 0.001 0.498 ± 0.001 0.351 ± 0.001 0.491 ± 0.001 0.338 ± 0.001
Post-Generation 0.507 ± 0.001 0.350 ± 0.001 0.498 ± 0.002 0.352 ± 0.001 0.483 ± 0.001 0.326 ± 0.001

Table A.8: ML Utility comparison of different AR methods using AUROC & AUPRC metric with varying epsilon
values - DPGAN Cardiovascular Disease.

AR Methods/Epsilon ϵ = 0.1 ϵ = 1 ϵ = 10
AUROC AUPRC AUROC AUPRC AUROC AUPRC

Baseline 0.483 ± 0.001 0.495 ± 0.000 0.505 ± 0.001 0.514 ± 0.001 0.514 ± 0.001 0.520 ± 0.001
Pre-Generation 0.508 ± 0.001 0.516 ± 0.001 0.516 ± 0.002 0.523 ± 0.001 0.489 ± 0.002 0.501 ± 0.001
Mid-Generation 0.506 ± 0.002 0.514 ± 0.001 0.506 ± 0.001 0.515 ± 0.001 0.503 ± 0.001 0.513 ± 0.000
Post-Generation 0.492 ± 0.001 0.505 ± 0.001 0.493 ± 0.001 0.504 ± 0.000 0.515 ± 0.001 0.524 ± 0.000
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Table A.9: ML Utility comparison of different AR methods using AUROC & AUPRC metric with varying epsilon
values - DPGAN Cervical Cancer.

AR Methods/Epsilon ϵ = 0.1 ϵ = 1 ϵ = 10
AUROC AUPRC AUROC AUPRC AUROC AUPRC

Baseline 0.542 ± 0.016 0.167 ± 0.009 0.428 ± 0.018 0.106 ± 0.004 0.515 ± 0.012 0.141 ± 0.007
Pre-Generation 0.505 ± 0.008 0.150 ± 0.005 0.509 ± 0.004 0.127 ± 0.001 0.488 ± 0.014 0.129 ± 0.003
Mid-Generation 0.544 ± 0.008 0.137 ± 0.002 0.515 ± 0.007 0.141 ± 0.006 0.498 ± 0.013 0.135 ± 0.002
Post-Generation 0.446 ± 0.007 0.097 ± 0.002 0.507 ± 0.021 0.142 ± 0.004 0.476 ± 0.026 0.137 ± 0.005

Pre-Generation Anomaly Removal
Table A.10: The difference between the AUROC & AUPRC score of baseline and Pre-Generation AR - averaged

across models for each dataset

Dataset/Epsilon ϵ = 0.1 ϵ = 1 ϵ = 10
AUROC AUPRC AUROC AUPRC AUROC AUPRC

UCI Epileptic 0.040 ± 0.005 0.032 ± 0.003 -0.013 ± 0.000 -0.013 ± 0.000 0.009 ± 0.002 0.010 ± 0.001
Cervical Cancer -0.018 ± 0.001 0.007 ± 0.000 0.009 ± 0.004 -0.015 ± 0.001 0.036 ± 0.007 0.049 ± 0.005
Cardio Vascular 0.007 ± 0.001 0.005 ± 0.000 0.002 ± 0.000 0.001 ± 0.000 0.001 ± 0.001 -0.009 ± 0.000

Mid-Generation Anomaly Removal
Table A.11: The difference between the AUROC & AUPRC score of baseline and Mid-Generation AR - averaged

across models for each dataset

Dataset/Epsilon ϵ = 0.1 ϵ = 1 ϵ = 10
AUROC AUPRC AUROC AUPRC AUROC AUPRC

UCI Epileptic 0.028 ± 0.003 0.021 ± 0.002 -0.010 ± 0.001 -0.013 ± 0.000 -0.014 ± 0.000 -0.014 ± 0.000
Cervical Cancer -0.008 ± 0.001 -0.003 ± 0.002 0.009 ± 0.005 -0.005 ± 0.001 0.021 ± 0.004 0.046 ± 0.004
Cardio Vascular 0.004 ± 0.000 0.003 ± 0.000 -0.001 ± 0.000 -0.003 ± 0.000 -0.011 ± 0.000 -0.004 ± 0.000

Post-Generation Anomaly Removal
Table A.12: The difference between the AUROC & AUPRC score of baseline and Post-Generation AR -

averaged across models for each dataset

Dataset/Epsilon ϵ = 0.1 ϵ = 1 ϵ = 10
AUROC AUPRC AUROC AUPRC AUROC AUPRC

UCI Epileptic 0.022 ± 0.001 0.019 ± 0.001 0.013 ± 0.002 0.010 ± 0.001 -0.009 ± 0.000 -0.005 ± 0.000
Cervical Cancer -0.037 ± 0.003 -0.023 ± 0.002 0.015 ± 0.003 0.005 ± 0.001 -0.017 ± 0.001 0.005 ± 0.001
Cardio Vascular 0.000 ± 0.000 0.001 ± 0.000 -0.001 ± 0.000 -0.002 ± 0.000 0.007 ± 0.000 0.005 ± 0.000
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