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Affinely Parametrized State-space Models:
Ways to Maximize the Likelihood Function

Adrian Wills, Chengpu Yu, Lennart Ljung, and Michel Verhaegen

Abstract: Using Maximum Likelihood (or Prediction Error) methods to identify linear state
space model is a prime technique. The likelihood function is a nonconvex function and care must
be exercised in the numerical maximization. Here the focus will be on affine parameterizations
which allow some special techniques and algorithms. Three approaches to formulate and perform
the maximization are described in this contribution: (1) The standard and well known Gauss-
Newton iterative search, (2) a scheme based on the EM (expectation-maximization) technique,
which becomes especially simple in the affine parameterization case, and (3) a new approach
based on lifting the problem to a higher dimension in the parameter space and introducing rank
constraints.

Keywords: Parameterized state-space model, maximum-likelihood estimation,
expectation-maximization algorithm, difference-of-convex optimization.

1. INTRODUCTION

The identification of parametric state-space models using
observed input and output data is a fundamental identi-
fication problem which has been intensively investigated
in the last few decades Ljung [1999], Verhaegen and Ver-
dult [2007]. This contribution deals with the case that
the discrete time state space matrices are affine in the
parameters but otherwise have an arbitrary structure. This
corresponds to common and important applications, e.g.
networks, compartment models, physically parameterized
grey box models etc.

Among existing identification methods, prediction er-
ror methods (PEM) and maximum likelihood estimates
(MLE) can handle such parameterizations, but require
reasonable initial parameter estimates. Subspace methods,
like MOESP, Verhaegen and Dewilde [1992], and N4SID,
Overschee and Moor [1994], cannot handle models with
arbitrary structure.

We shall therefore focus on MLE for affine parameteri-
zation. Due to the non-convex nature of the likelihood
function, special care is required for how to approach its
maximization. After a definition of the problem (Section
2) and a formulation of the likelihood function (and the
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negative log-likelihood function, the NLLF) V in Section
3, we turn to the question of how to minimize V .

The standard technique is applying iterative local, Gauss-
Newton search. That is reviewed in Section 4.

It is also possible to to apply the general Expectation-
Maximization (EM) technique, Dempster et al. [1977]
for MLE to the state-space identification problem. This
has been done for black-box parameterizations in Wills
et al. [2010]. It is attractive to apply EM also to the
case of affine, structured paramerizations, since the E-step
becomes a linear regression. The details of this are given
in Section 5.

A third technique is based on “lifting”: Extend the ML
problem by several more parameters to make the criterion
much simpler (quadratic) and introduce a number of
constraints that ensure that the model structure still is
enforced. This leads to a formulation that resembles the
sub-space approach. A similar technique was applied to
the Hankel matrix of the impulse response obtained from
a subspace, black box estimate in Yu et al. [2017] and Yu
et al. [2018]. The approach applied to the input-output
data is described in Section 6.

2. PROBLEM STATEMENT

We consider a parameterized discrete-time (DT) linear
state-space model as follows

x(k + 1) = A(θ)x(k) +B(θ)u(k)

y(k) = C(θ)x(k) +D(θ)u(k) + w(k),
(1)

where u(k) ∈ Rm, x(k) ∈ Rn, y(k) ∈ Rp and w(k) ∈ Rp

are system input, state, output, and measurement noise,
respectively; θ ∈ Rd is the parameter vector; k is the time
index. We assume that the parameterized system matrices

are affine with respect to θ = [θ1, · · · , θd]T , i.e.,
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A(θ) = A0 +

d∑
i=1

Aiθi, B(θ) = B0 +

d∑
i=1

Biθi,

C(θ) = C0 +

d∑
i=1

Ciθi, D(θ) = D0 +

d∑
i=1

Diθi

(2)

where the coefficient matrices Ai,Bi, Ci andDi are known.
Note that the above structured representation allows for
describing dependencies between the entries of the matri-
ces, and the known coefficient matrices can represent a
general system basis which may have low-rank or sparse
properties. This type of affine model parameterization
is common for LPV (linear parameter varying) systems.
With gray-box modeling in discrete time one typically
also arrives at an affine parameterization like (2) with the
discrete-time physical parameters contained in θ.

3. ML ESTIMATION METHOD

Suppose observed random data Z has the probability
density function pZ(z, θ) that depends on an unknown pa-
rameter θ. Then the likelihood function (LF) for estimating
θ from Z for an actual observation z of Z is

L(θ, z) = pZ(z, θ). (3)

The θ that makes the actual observations as likely as
possible,

θ̂ML = argmax
θ

L(z, θ) (4)

is the Maximum Likelihood Estimate (MLE). Since log is a
an increasing function, it is customary to instead minimize
the negative logarithm of L(z, θ) (Negative Log Likelihood
Function, NLLF):

V (z, θ) = − logL(z, θ). (5)

To identify the parameter vector θ∗ of the discrete-time
model (1) using the IO data z = {u(k), y(k)}N−1

k=0 , the
negative log-likelihood function (NLLF) V (z, θ) takes the
form (see, e.g. Ljung [1999], Sect 7.4)

V (z, θ, x(0)) =
1

N

N−1∑
k=0

‖y(k)− ŷ(k|θ)‖2

s.t. x(k + 1, θ) = A(θ)x(k, θ) +B(θ)u(k)

ŷ(k|θ) = C(θ)x(k, θ) +D(θ)u(k)

for k = 0, · · · , N − 1.

(6)

This expression assumes that the disturbances w(k) in (1)
are white and Gaussian with known covariance I. The
expression has also been normalized and stripped from
non-essential constants.

Apart from the parameter vector θ, the initial state x(0)
is also a variable to be estimated. The expression (6) is
quadratic in x(0) for given θ, so it is immediate to find the
minimizer x̂(0, θ) for each θ. Hence x(0) can be directly
eliminated from the problem (6).

The performance of the PEM/ML method mainly relies on
the selection of the initial parameter estimate. It is shown
in Ljung and Parrilo [2003] that the chances to reach the
global minimum of (6) from random starting points may
be very slim for problems of realistic sizes.

The NLLF is defined by (6). For any given value of θ and
x(0) it is straightforward to compute V (z, θ, x(0)), and

any other calculation method for the likelihood method
must give the same result. The difficulty does not lie
there. But the problem is that even though the model
parameterization is simple (linear in θ according to (2)),
the expression V becomes a complicated function (very
high order polynomial) of θ. Note that from (6),

x(k, θ) = A(θ)kx(0) +

k−1∑
j=1

A(θ)k−jB(θ)u(j) (7)

As a result, V may have an unsmooth surface, with several
local extremal points. The minimization of V by local
search may thus show difficulties.

We shall now proceed to look into several ways to formu-
late how to maximize the LF.

4. FINDING THE MLE BY LOCAL SEARCH

The gradient-based optimization algorithms such as Gauss-
Newton method [Ljung, 1999, Section 10.2] and gradient
projection method [Verhaegen and Verdult, 2007, Chapter
7] can be used to solve (6). In these methods, the crucial
step is to compute the predicted output ŷ(k, θ) and its

derivative ∂ŷ(k,θ)
∂θ at a given point θ = θ̂i. Given the

parameter estimate θ̂i, the predicted system output can
be obtained by simulating the following system:

x̂(k + 1, θ̂i) = A(θ̂i)x̂(k, θ̂i) +B(θ̂i)u(k)

ŷ(k|θ̂i) = C(θ̂i)x̂(k, θ̂i) +D(θ̂i)u(k).
(8)

Denote Xj(k, θ) = ∂x̂(k, θ)/∂θj for j = 1, · · · , l with θj
being the j-th component of θ. Then, the derivative ∂ŷ(k,θ)

∂θj

can be computed by simulating the following systems:

Xj(k + 1, θ̂i) = A(θ̂i)Xj(k, θ̂
i) +

∂A(θ)

∂θj

∣∣∣∣
θ=θ̂i

x̂(k, θ̂i)

+
∂B(θ)

∂θj

∣∣∣∣
θ=θ̂i

u(k)

Ψi(k) =
∂ŷ(k|θ)
∂θj

∣∣∣∣
θ=θ̂i

= C(θ̂i)Xj(k, θ̂
i) +

∂C(θ)

∂θj

∣∣∣∣
θ=θ̂i

x̂(k, θ̂i)

+
∂D(θ)

∂θj

∣∣∣∣
θ=θ̂i

u(k),

(9)

where x̂(k, θ̂i) and u(k) are system inputs, and the ma-

trices A(θ̂i), ∂A(θ)
∂θj

∣∣∣
θ=θ̂i

, ∂B(θ)
∂θj

∣∣∣
θ=θ̂i

, C(θ̂i), ∂C(θ)
∂θj

∣∣∣
θ=θ̂i

are

fixed at the point θ = θ̂i.

From the gradient (d|p-matrix) Ψi, and the current predic-

tion error εi(k) = y(k)− ŷ(k|θ̂i) the gradient of the NLLF
function V in (6) can be formed as

Gi = V ′(θ̂i) =
N−1∑
k=0

Ψi(k)εi(k) (10)

as well as the approximation of the second derivative
matrix (the Hessian) of V :

Hi =

N−1∑
k=0

Ψi(k)[Ψi(k)]T (11)

This gives the algorithm
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A(θ) = A0 +

d∑
i=1

Aiθi, B(θ) = B0 +

d∑
i=1

Biθi,

C(θ) = C0 +

d∑
i=1

Ciθi, D(θ) = D0 +

d∑
i=1

Diθi

(2)

where the coefficient matrices Ai,Bi, Ci andDi are known.
Note that the above structured representation allows for
describing dependencies between the entries of the matri-
ces, and the known coefficient matrices can represent a
general system basis which may have low-rank or sparse
properties. This type of affine model parameterization
is common for LPV (linear parameter varying) systems.
With gray-box modeling in discrete time one typically
also arrives at an affine parameterization like (2) with the
discrete-time physical parameters contained in θ.

3. ML ESTIMATION METHOD

Suppose observed random data Z has the probability
density function pZ(z, θ) that depends on an unknown pa-
rameter θ. Then the likelihood function (LF) for estimating
θ from Z for an actual observation z of Z is

L(θ, z) = pZ(z, θ). (3)

The θ that makes the actual observations as likely as
possible,

θ̂ML = argmax
θ

L(z, θ) (4)

is the Maximum Likelihood Estimate (MLE). Since log is a
an increasing function, it is customary to instead minimize
the negative logarithm of L(z, θ) (Negative Log Likelihood
Function, NLLF):

V (z, θ) = − logL(z, θ). (5)

To identify the parameter vector θ∗ of the discrete-time
model (1) using the IO data z = {u(k), y(k)}N−1

k=0 , the
negative log-likelihood function (NLLF) V (z, θ) takes the
form (see, e.g. Ljung [1999], Sect 7.4)

V (z, θ, x(0)) =
1

N

N−1∑
k=0

‖y(k)− ŷ(k|θ)‖2

s.t. x(k + 1, θ) = A(θ)x(k, θ) +B(θ)u(k)

ŷ(k|θ) = C(θ)x(k, θ) +D(θ)u(k)

for k = 0, · · · , N − 1.

(6)

This expression assumes that the disturbances w(k) in (1)
are white and Gaussian with known covariance I. The
expression has also been normalized and stripped from
non-essential constants.

Apart from the parameter vector θ, the initial state x(0)
is also a variable to be estimated. The expression (6) is
quadratic in x(0) for given θ, so it is immediate to find the
minimizer x̂(0, θ) for each θ. Hence x(0) can be directly
eliminated from the problem (6).

The performance of the PEM/ML method mainly relies on
the selection of the initial parameter estimate. It is shown
in Ljung and Parrilo [2003] that the chances to reach the
global minimum of (6) from random starting points may
be very slim for problems of realistic sizes.

The NLLF is defined by (6). For any given value of θ and
x(0) it is straightforward to compute V (z, θ, x(0)), and

any other calculation method for the likelihood method
must give the same result. The difficulty does not lie
there. But the problem is that even though the model
parameterization is simple (linear in θ according to (2)),
the expression V becomes a complicated function (very
high order polynomial) of θ. Note that from (6),

x(k, θ) = A(θ)kx(0) +

k−1∑
j=1

A(θ)k−jB(θ)u(j) (7)

As a result, V may have an unsmooth surface, with several
local extremal points. The minimization of V by local
search may thus show difficulties.

We shall now proceed to look into several ways to formu-
late how to maximize the LF.

4. FINDING THE MLE BY LOCAL SEARCH

The gradient-based optimization algorithms such as Gauss-
Newton method [Ljung, 1999, Section 10.2] and gradient
projection method [Verhaegen and Verdult, 2007, Chapter
7] can be used to solve (6). In these methods, the crucial
step is to compute the predicted output ŷ(k, θ) and its

derivative ∂ŷ(k,θ)
∂θ at a given point θ = θ̂i. Given the

parameter estimate θ̂i, the predicted system output can
be obtained by simulating the following system:

x̂(k + 1, θ̂i) = A(θ̂i)x̂(k, θ̂i) +B(θ̂i)u(k)

ŷ(k|θ̂i) = C(θ̂i)x̂(k, θ̂i) +D(θ̂i)u(k).
(8)

Denote Xj(k, θ) = ∂x̂(k, θ)/∂θj for j = 1, · · · , l with θj
being the j-th component of θ. Then, the derivative ∂ŷ(k,θ)

∂θj

can be computed by simulating the following systems:

Xj(k + 1, θ̂i) = A(θ̂i)Xj(k, θ̂
i) +

∂A(θ)

∂θj

∣∣∣∣
θ=θ̂i

x̂(k, θ̂i)

+
∂B(θ)

∂θj

∣∣∣∣
θ=θ̂i

u(k)

Ψi(k) =
∂ŷ(k|θ)
∂θj

∣∣∣∣
θ=θ̂i

= C(θ̂i)Xj(k, θ̂
i) +

∂C(θ)

∂θj

∣∣∣∣
θ=θ̂i

x̂(k, θ̂i)

+
∂D(θ)

∂θj

∣∣∣∣
θ=θ̂i

u(k),

(9)

where x̂(k, θ̂i) and u(k) are system inputs, and the ma-

trices A(θ̂i), ∂A(θ)
∂θj

∣∣∣
θ=θ̂i

, ∂B(θ)
∂θj

∣∣∣
θ=θ̂i

, C(θ̂i), ∂C(θ)
∂θj

∣∣∣
θ=θ̂i

are

fixed at the point θ = θ̂i.

From the gradient (d|p-matrix) Ψi, and the current predic-

tion error εi(k) = y(k)− ŷ(k|θ̂i) the gradient of the NLLF
function V in (6) can be formed as

Gi = V ′(θ̂i) =
N−1∑
k=0

Ψi(k)εi(k) (10)

as well as the approximation of the second derivative
matrix (the Hessian) of V :

Hi =

N−1∑
k=0

Ψi(k)[Ψi(k)]T (11)

This gives the algorithm
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Algorithm 1 Gauss-Newton algorithm for minimizing the NLLF

1) Choose an initial parameter vector θ̂0. Set i = 0

2) From the current parameter estimate θ̂i compute
the gradient and Hessian Gi and Hi in (10,11)
3) Do the update step θi+1 = θi + µ[Hi]−1Gi

where µ is adjusted so that the criterion V is decreased
4) Stop if no improvement is achieved, otherwise return to step 2).

Several variants of this family of algorithms exist, essen-
tially corresponding to different ways to form [Hi]−1Gi.

The performance of the local search method relies on the
selection of the initial parameter estimate. It is shown in
Ljung and Parrilo [2003] that the chances to reach the
global minimum of (6) from random starting points may
be very slim for problems of realistic sizes.

5. FINDING THE MLE BY
EXPECTATION-MAXIMIZATION METHOD

An alternative to direct gradient-based optimization of
the ML objective outlined above is the Expectation-
Maximisation (EM) algorithm. In a similar manner to gra-
dient based methods, this approach also approximates the

log-likelihood cost about a current parameter estimate θ̂i,
but different to gradient-based methods the local surrogate
model is not formed by a Taylor series expansion.

Instead, the EM method creates a model of the likelihood
by first creating a joint likelihood between the actual data
and the so-called “missing data”. The purpose of designing
this joint likelihood is to render the problem more easily
solvable if the missing data were actually available. Since
it is not, the local model comes as a result of marginalising
the missing data relative to its best estimate based on the
actual measured data. This is called the Expectation step
(E-step). Again, similar to gradient-based search this local
model is then maximised as a surrogate for the actual log-
likelihood. This is called the Maximisation step (M-step).

In situations where data is literally missing, either by error
or measurement censoring, then the choice of missing data
can be obvious Isaksson [1993], Goodwin and Feuer [1999].

For state-space systems, it is the “desired” state-sequence,
as opposed to missing data, that would render the ML esti-
mation more tractable if it were actually available. Indeed,
within the automatic control community, the missing data
is almost always chosen as the full state sequence Shumway
[1982], Gibson and Ninness [2005], Gibson et al. [2005],
Wills et al. [2009], Gopaluni [2008], Goodwin and Agüero
[2005], Ghaharamani and Roweis [1999], Schön et al.
[2011], Wills et al. [2013].

Unfortunately, for the current affine model structure with
no state noise, this creates a difficulty since there is a de-
terministic relationship between states and measurements.
Therefore, rather than choose the entire state sequence as
missing, in what follows it is the initial state that is de-
termined to be missing (or desired). The EM method then
proceeds by alternating between estimating this missing
state (E-step), and, maximising the joint log-likelihood
over the system parameters (M-step).

More specifically, following similar arguments to those in
Wills et al. [2010], we treat only the initial state x(0) as the
“missing data”, since all the other states can determined

exactly according the model (1). Under this assumption,
we may define a “complete data” likelihood via

L(θ, z, x(0)) = pθ(z, x(0)), (12)

which is related to the likelihood L(θ, z) in (3), according
to

pθ(z) =
pθ(z, x(0))

pθ(x(0) | z)
. (13)

This allows the following expression for the log-likelihood

log pθ(z) = log pθ(z, x(0))− log pθ(x(0) | z) (14)

Define θ̂i as the current estimate of θ̂ML, then we may
take the conditional expected value of (14) (the so-called
E-step) to arrive at

log pθ(z) =

∫
log pθ(z, x(0))pθ̂i(x(0) | z)dx(0)

︸ ︷︷ ︸
�Q(θ,θ̂i)

−
∫

log pθ(x(0) | z)pθ̂i(x(0) | z)dx(0)
︸ ︷︷ ︸

�V(θ,θ̂i)

, (15)

Therefore, the difference between the log-likelihood at θ̂i

and the log-likelihood at an arbitrary value of θ is given
by (see e.g. Wills et al. [2010])

log pθ(z)− log pθ̂i(z) =
(
Q(θ, θ̂i)−Q(θ̂i, θ̂i)

)

+
(
V(θ̂i, θ̂i)− V(θ, θ̂i)

)
. (16)

It has been established elsewhere (see e.g. Wills et al.
[2010]) that

V(θ̂i, θ̂i)− V(θ, θ̂i) ≥ 0. (17)

As a result, if we can find θ̂i+1 (the M-step) such that

Q(θ̂i+1, θ̂i) > Q(θ̂i, θ̂i), then necessarily via (16) and (17)
log pθ̂i+1(z) > log pθ̂i(z). This observation leads to the

EM algorithm, which alternates between forming Q(θ, θ̂i)

using θ̂i and then maximising Q(θ, θ̂i) with respect to θ to

obtain a new better estimate θ̂i+1.

With regard to the innovations form of the model structure
(1), and with the choice of “missing data” x(0), the func-

tion Q(θ, θ̂i) is given as (ignoring unimportant constants
- see Wills et al. [2010])

Q(θ, θ̂i) = − log detP0 −N log detR

− Tr
{
P−1
0

(
(x̂0|N − µ)(x̂0|N − µ)T + P0|N

)}

− Tr

{
R−1

N−1∑
k=0

εkε
T
k

}
− Tr

{
R−1

N−1∑
k=0

CPkC
T

}
(18)

where we have further assumed that

w(k) ∼ N (0 , R), x(0) ∼ N (µ , P0), (19)

and

x̂0|N � Eθ̂i {x0 | z} (20a)

P0|N � Covθ̂i {x0 | z} (20b)

εk � yk − ŷk|k−1 (20c)

ŷk|k−1 = Eθ̂i {yk | z0:k−1} (20d)

Pk � Covθ̂i {xk | z0:k−1} (20e)

In the above, we have used the notation z0:k−1 to denote
all the data from time 0 until time k−1, i.e. {z0, . . . , zk−1}.

2018 IFAC SYSID
July 9-11, 2018. Stockholm, Sweden

720

The required terms (20a) and (20b) can be obtained
by a Kalman smoother (see e.g. Chapter 10 in Kailath
et al. [2000]). The terms (20c)–(20e) may be computed
by employing standard Kalman Filter recursions (see e.g.
Chapter 9 in Kailath et al. [2000]).

The above constitutes the E-step, where Q(θ, θ̂i) is com-

puted using the current estimate θ̂i. Considering the M-

step, it is necessary to maximise Q(θ, θ̂i) over θ to deliver

the next iterate θ̂i+1. Towards this end, note that we may
split the parameter vector θ in to two parts

θT = [ηT , βT ]T , (21)

where η parameterizes {µ, P0, R}, and β parameterizes
{A(β), B(β), C(β), D(β)}. In this paper we are concerned
with the case where β parameterizes the associated system
matrices according to a known structure, but we also
assume that no such structural constraints are imposed on
{µ, P0, R}, aside from requiring that P0 and R are positive
definite and symmetric.

With this separation of θ, we note that (18) can be
maximised with respect to µ by

µ = x̂0|N . (22)

Further, by substituting this expression into (18), the
terms involving P0 become

− log detP0 − Tr
{
P−1
0 P0|N

}
, (23)

which is maximised by

P0 = P0|N (24)

Again, by analogous argument

R =
1

N

N−1∑
k=0

εkε
T
k + CPkC

T (25)

is also a stationary point of (18). Substituting (22), (24)

and (25) into (18) delivers a “reduced” form Q̃(β, θ̂i) that
depends only on β as follows

Q̃(β, θ̂i) = − log det

(
1

N

N−1∑
k=0

εkε
T
k + CPkC

T

)
. (26)

In general, it is not possible to maximise Q̃(β, θ̂i) in closed
form. Therefore, we again employ a gradient-based search
procedure (similar to that used above in Algorithm 1)

in order to compute β̂i+1 that maximises Q̃(β̂i+1, θ̂i). In
order to implement this, it is first necessary to develop

an expression for the gradient of Q̃(β, θ̂i) with respect to
β. To that end, an expression for this gradient can be
straightforwardly derived by repeated application of the
Chain rule to deliver

∂Q̃(β)

∂βi
= −2

N−1∑
k=0

εTkR(β)−1 ∂εk
∂βi

−
N−1∑
k=0

Tr

{
R(β)−1 ∂CPkC

T

∂βi

}
, (27)

where R(β) is given by

R(β) �
1

N

N−1∑
k=0

εkε
T
k + CPkC

T (28)

and

∂εk

∂βi
= −

∂C

∂βi
x̂k − C

∂x̂k

∂βi
−

∂B

∂βi
, (29a)

∂x̂k+1

∂βi
=

∂A

∂βi
x̂k +A

∂x̂k

∂βi
+

∂B

∂βi
uk, (29b)

∂CPkC
T

∂βi
=

∂C

∂βi
PkC

T + C
∂Pk

∂βi
CT + CPk

∂CT

∂βi
, (29c)

∂Pk+1

∂βi
=

∂A

∂βi
PkA

T +A
∂Pk

∂βi
AT +APk

∂AT

∂βi
,

∂x̂0

∂βi
= 0,

∂P0

∂βi
= 0. (29d)

Combining these E and M steps results in the following
EM algorithm for identifying structured state-space mod-
els.

Algorithm 2 EM for structured state-space models

1) Choose an initial parameter estimate θ̂0. Set i = 0
2) Expectation (E) step:

Based on θ̂i and its associated A,B,C,D,R, µ, P0

system parameters, run a Kalman smoother
to obtain x̂0|N and P0|N .

3) Maximisation (M) step:
Set µ ← x̂0|N and P0 ← P0|N .

Use a gradient-based search algorithm to compute

β̂i+1 = argminβ Q̃(β, θ̂i).

Set R ← R(β̂i+1) and θ̂i+1 = {µ, Po, R, β̂i+1}.
3) If not converged, update i ← i+ 1 and return to step 2).

6. A LIFTING TECHNIQUE TO MINIMIZE THE
NLLF

We will use vector and matrix notation for (6). Let

Y = [y(0), y(1), . . . , y(N − 1)] (p|N matrix) (30a)

u = [u(0), u(1), . . . , u(N)] (m|N + 1 matrix) (30b)

x̂(θ) = [x(0), x(1, θ), . . . , x(N − 1, θ)] (n|N matrix)
(30c)

Then the criterion V in (6) can be written

V (z, θ, x(0)) = ‖Y − C(θ)x̂(θ)−D(θ)u‖2F (31)

where F denotes the Frobenius norm.

A common way to handle the complex surfaces such as
V is the expand the dimensionality of the problem to a
simpler structure and then projecting back on the smaller
dimension. In this case, we may expand the parameter
dimension by introducing several new variables, so that
the minimization criterion can be made simple, quadratic,
in terms of the larger parameter vector. At the same time,
the extra introduced variables must be constrained so that
the system dynamics, in terms of (7) is preserved. It is
desirable that these constraints are simple, linear or bilin-
ear in terms of the new variables. This is a version of the
lifting technique, frequently used in function minimization,
e.g. Balas et al. [1993]. That is what we now set out to do:

Introduce two new n|N + 1 matrices:

x =[x(0), x1, . . . , xN ] (32a)

x̄ =[x̄1, x̄2, . . . , x̄N+1] (32b)

and subject them to the following linear and bilinear
constraints

x̄(:, 0 : N − 1) = x(:, 1 : N) (33a)

x̄ = A(θ)x+B(θ)u (33b)

It is easy to see that these two constraints force

x = x̂(θ) (34)
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The required terms (20a) and (20b) can be obtained
by a Kalman smoother (see e.g. Chapter 10 in Kailath
et al. [2000]). The terms (20c)–(20e) may be computed
by employing standard Kalman Filter recursions (see e.g.
Chapter 9 in Kailath et al. [2000]).

The above constitutes the E-step, where Q(θ, θ̂i) is com-

puted using the current estimate θ̂i. Considering the M-

step, it is necessary to maximise Q(θ, θ̂i) over θ to deliver

the next iterate θ̂i+1. Towards this end, note that we may
split the parameter vector θ in to two parts

θT = [ηT , βT ]T , (21)

where η parameterizes {µ, P0, R}, and β parameterizes
{A(β), B(β), C(β), D(β)}. In this paper we are concerned
with the case where β parameterizes the associated system
matrices according to a known structure, but we also
assume that no such structural constraints are imposed on
{µ, P0, R}, aside from requiring that P0 and R are positive
definite and symmetric.

With this separation of θ, we note that (18) can be
maximised with respect to µ by

µ = x̂0|N . (22)

Further, by substituting this expression into (18), the
terms involving P0 become

− log detP0 − Tr
{
P−1
0 P0|N

}
, (23)

which is maximised by

P0 = P0|N (24)

Again, by analogous argument

R =
1

N

N−1∑
k=0

εkε
T
k + CPkC

T (25)

is also a stationary point of (18). Substituting (22), (24)

and (25) into (18) delivers a “reduced” form Q̃(β, θ̂i) that
depends only on β as follows

Q̃(β, θ̂i) = − log det

(
1

N

N−1∑
k=0

εkε
T
k + CPkC

T

)
. (26)

In general, it is not possible to maximise Q̃(β, θ̂i) in closed
form. Therefore, we again employ a gradient-based search
procedure (similar to that used above in Algorithm 1)

in order to compute β̂i+1 that maximises Q̃(β̂i+1, θ̂i). In
order to implement this, it is first necessary to develop

an expression for the gradient of Q̃(β, θ̂i) with respect to
β. To that end, an expression for this gradient can be
straightforwardly derived by repeated application of the
Chain rule to deliver

∂Q̃(β)

∂βi
= −2

N−1∑
k=0

εTkR(β)−1 ∂εk
∂βi

−
N−1∑
k=0

Tr

{
R(β)−1 ∂CPkC

T

∂βi

}
, (27)

where R(β) is given by

R(β) �
1

N

N−1∑
k=0

εkε
T
k + CPkC

T (28)

and

∂εk

∂βi
= −

∂C

∂βi
x̂k − C

∂x̂k

∂βi
−

∂B

∂βi
, (29a)

∂x̂k+1

∂βi
=

∂A

∂βi
x̂k +A

∂x̂k

∂βi
+

∂B

∂βi
uk, (29b)

∂CPkC
T

∂βi
=

∂C

∂βi
PkC

T + C
∂Pk

∂βi
CT + CPk

∂CT

∂βi
, (29c)

∂Pk+1

∂βi
=

∂A

∂βi
PkA

T +A
∂Pk

∂βi
AT +APk

∂AT

∂βi
,

∂x̂0

∂βi
= 0,

∂P0

∂βi
= 0. (29d)

Combining these E and M steps results in the following
EM algorithm for identifying structured state-space mod-
els.

Algorithm 2 EM for structured state-space models

1) Choose an initial parameter estimate θ̂0. Set i = 0
2) Expectation (E) step:

Based on θ̂i and its associated A,B,C,D,R, µ, P0

system parameters, run a Kalman smoother
to obtain x̂0|N and P0|N .

3) Maximisation (M) step:
Set µ ← x̂0|N and P0 ← P0|N .

Use a gradient-based search algorithm to compute

β̂i+1 = argminβ Q̃(β, θ̂i).

Set R ← R(β̂i+1) and θ̂i+1 = {µ, Po, R, β̂i+1}.
3) If not converged, update i ← i+ 1 and return to step 2).

6. A LIFTING TECHNIQUE TO MINIMIZE THE
NLLF

We will use vector and matrix notation for (6). Let

Y = [y(0), y(1), . . . , y(N − 1)] (p|N matrix) (30a)

u = [u(0), u(1), . . . , u(N)] (m|N + 1 matrix) (30b)

x̂(θ) = [x(0), x(1, θ), . . . , x(N − 1, θ)] (n|N matrix)
(30c)

Then the criterion V in (6) can be written

V (z, θ, x(0)) = ‖Y − C(θ)x̂(θ)−D(θ)u‖2F (31)

where F denotes the Frobenius norm.

A common way to handle the complex surfaces such as
V is the expand the dimensionality of the problem to a
simpler structure and then projecting back on the smaller
dimension. In this case, we may expand the parameter
dimension by introducing several new variables, so that
the minimization criterion can be made simple, quadratic,
in terms of the larger parameter vector. At the same time,
the extra introduced variables must be constrained so that
the system dynamics, in terms of (7) is preserved. It is
desirable that these constraints are simple, linear or bilin-
ear in terms of the new variables. This is a version of the
lifting technique, frequently used in function minimization,
e.g. Balas et al. [1993]. That is what we now set out to do:

Introduce two new n|N + 1 matrices:

x =[x(0), x1, . . . , xN ] (32a)

x̄ =[x̄1, x̄2, . . . , x̄N+1] (32b)

and subject them to the following linear and bilinear
constraints

x̄(:, 0 : N − 1) = x(:, 1 : N) (33a)

x̄ = A(θ)x+B(θ)u (33b)

It is easy to see that these two constraints force

x = x̂(θ) (34)
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defined in (30).

Furthermore, introduce two new variables O(p|n matrix)
and M(p|m matrix), and finally Ψ(p|N matrix), together
with the bilinear and linear constraints:

Ψ = Ox (35a)

O = C(θ) (35b)

M = D(θ) (35c)

Now collect the new extended parameters

Θ = {θ,M,O,Ψ,x, x̄} (36)

and consider the quadratic minimization problem

min
Θ

‖Y −Ψ−Mu‖2F (37)

subject to the linear and bilinear constraints on Θ (33a)
and (35).

We see that the constraints force Ψ = C(θ)x̂(θ) and
M = D(θ).

Consequently, the minimization of the likelihood function
(31) = (6) is the same as solving the quadratic minimiza-
tion problem (37) with the indicated linear and bilinear
constraints.

These constraints can be summarized as

rankZ = n (38)

where

Z =

[
Ψ O
x In

x̄−B(θ)u A(θ)

]
(39a)

x̄(:, 0 : N − 1) = x(:, 1 : N) (39b)

O = C(θ) (39c)

M = D(θ) (39d)

To deal with the rank constraint, let fn(Z), for any real
matrix Z, be the sum of the largest n singular values of Z:

fn(Z) =

n∑
i=1

σi(Z). (40)

Note that fn(·) is a Ky Fan n-norm Bhatia [2013]. Then
the rank constraint can be written

‖Z‖∗ − fn(Z) = 0, (41)

This constraint can be rewritten in “linearized version” for
an iterative solution scheme by utilizing the SVD of Z at
the previous iterate j, Zj :

‖Z‖∗ − tr
(
U j,T
1 ZV j

1

)
= 0, (42)

with U1 and V1 as the left and right SVD matrices for the n
largest singular values of Zj . Treating (42) as a constraint
in en epigraph form we the minimize

min
Θ,t

‖Y −Ψ−Mu‖2F + t (43a)

subject to ‖Z‖∗ − tr
(
U j,T
1 ZV j

1

)
≤ t (43b)

Note that, due to the affine parametrization, Z is linear in
Θ. It is known that the nuclear norm is convex in the ma-
trix elements, so ‖Z‖∗ is convex in Θ. The criterion (43a)
is quadratic in Θ, t, so for given U1, V1, the constrained
minimization (43) is a convex problem.

The algorithm for minimizing the NLLF V will now be
given by

Algorithm 3 Sequential convex programming method
for minimizing the NLLF

1) Set U0
1 = 0 and V 0

1 = 0.
2) Repeat

2-1): Obtain the estimates Zj+1 and θ by solving (43), (39).

2-2): Compute the matrices Uj+1
1 and V j+1

1 , which are
the left and right singular vectors of Zj+1 corresponding
to the n largest singular values.

3) until
‖θj+1−θj‖2

‖θj‖2
≤ ε with ε a small value.

7. CONCLUSIONS

Three ways to compute the Maximum Likehood Estimate
have been treated. In addition to the standard and well-
known Gauss-Newton family of algorithms (Algorithm 1)
that can be applied to any parameterization, we have
described what an EM algorithm looks like in the case
of affine parameterizations, (Algorithm 2) as well as a
subspace inspired algorithm based on lifting (Algorithm
3). The two latter algoritms are specifically taylored to the
importnat special case of affine model parameterizations.

In all three cases the minimization task has been converted
to a sequence of convex minimization problems, from
different starting points: The GN approach is based on
local, quadratic approximation of the NLLF at the current
estimate so it solves a sequence of quadratic problems. The
EM approach also utilizes this approximation in the M
step. Algorithm 3 treats the non-convex rank constraint
(38) by sequential linearization in (43b)

As all iterative algorithms, the treated numerical solutions

all need an initial parameter estimate θ̂0. In the absense
of physical or other insights this has to done by a random
choice. (Step 1 in algorithms 1 and 2). This can lead to
bad convergence properties, as pointed out several times
in the contributions. Algorithm 3 offers a simple and non-
random initialisation. The latter algorithm has interesting
potential, but at present it is challenging to obtain an
effective implementation.
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