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Abstract. An efficient uncertainty quantification method for unsteady problems is
presented in order to achieve a constant accuracy in time for a constant number of samples.
The approach is applied to the aeroelastic problems of a transonic airfoil flutter system
and the AGARD 445.6 wing benchmark with uncertainties in the flow and the structure.

1 INTRODUCTION

Numerical errors in multi-physics simulations start to reach acceptable engineering ac-
curacy levels due to the increasing availability of computational resources. Nowadays,
uncertainties in modeling multi-scale phenomena in fluid-structure, fluid-thermal, and
aero-acoustic interactions have a larger effect on the accuracy of computational predic-
tions than discretization errors. It is therefore especially important in multi-physics ap-
plications to systematically quantify the effect of physical variations on a routine basis.
Furthermore, unsteady fluid-structure interaction applications are practical aeronautical
examples of dynamical systems which are known to amplify initial variations with time.
In these problems, natural irreducible input variability can trigger the earlier onset of
unstable flutter behavior, which can lead to unexpected fatigue damage and structural
failure.

Polynomial Chaos uncertainty quantification methods [1–10] however usually result in a
fast increasing number of samples with time to resolve the effect of random parameters
in dynamical systems with a constant accuracy [11]. Resolving the asymptotic stochastic
effect, which is of practical interest in post-flutter analysis, can in these long time integra-
tion problems lead to thousands of required samples. The increasing number of samples
is caused by the increasing nonlinearity of the response surface for increasing integration
times. This effect is especially profound in problems with oscillatory solutions in which
the frequency of the response is affected by the random parameters. The frequency dif-
ferences between the realizations lead to increasing phase differences with time, which in
turn result in an increasingly oscillatory response surface and more required samples.

In order to enable efficient uncertainty quantification in time-dependent simulations, a
special uncertainty quantification methodology for unsteady oscillatory problems is de-
veloped. The approach based on time-independent parameterization of oscillatory sam-
ples achieves a constant uncertainty quantification interpolation accuracy in time with a
constant number of samples [12]. A parameterization in terms of the time-independent
functionals frequency, relative phase, amplitude, a reference value, and the normalized
period shape is used for period-1 responses. The extension with a damping factor and an
algorithm for identifying higher-period shape functions is also applicable to more complex
and non-periodic realizations [13].
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A second uncertainty quantification formulation for achieving a constant accuracy in time
with a constant number of samples is developed based on interpolation of oscillatory sam-
ples at constant phase instead of at constant time [14]. The scaling of the samples with
their phase eliminates the effect of the increasing phase differences in the response, which
usually leads to the fast increasing number of samples with time. The resulting formu-
lation is not subject to a parameterization error and it can resolve time-dependent func-
tionals that occur for example in transient behavior. It is also proven that phase-scaled
uncertainty quantification results in a bounded error as function of the phase for periodic
responses and under certain conditions also in a bounded error in time [15]. The unsteady
approaches are independent of the employed non-intrusive uncertainty quantification to
perform the actual interpolation of the oscillatory samples. Here the Simplex Elements
Polynomial Chaos (SEPC) method based on Newton-Cotes quadrature in simplex ele-
ments is employed [16]. Since the piecewise polynomial approximation of the response
of SEPC satisfies the extrema diminishing robustness criterion extended to probability
space, it enables us to resolve also bifurcation phenomena reliably [15]. The formulation
is also extended to multi-frequency responses of continuous structures by using a wavelet
decomposition preprocessing step in order to treat the different frequency components
separately [17].

After the introduction of the mathematical statement of the uncertainty quantification
problem in section 2, the efficient uncertainty quantification method for unsteady prob-
lems is presented in section 3. The developed approach is applied to the unsteady
fluid-structure interaction test cases of a two-dimensional airfoil flutter problem and the
three-dimensional aeroelastic AGARD 445.6 wing. In section 4 the stochastic post-flutter
analysis of a two-degree-of-freedom rigid airfoil in Euler flow with nonlinear structural
stiffness in pitch and plunge with uncertainty in a combination of randomness in two
system parameters is considered. The effect of free stream velocity fluctuation is ana-
lyzed in section 5 for the AGARD aeroelastic wing in the transonic flow regime 5% below
the deterministic flutter speed. Additional applications to other aeroelastic systems are
reported in [18–20]. Finally, the conclusions are summarized in section 6.

2 MATHEMATICAL FORMULATION OF THE UNCERTAINTY QUAN-

TIFICATION PROBLEM

Consider a dynamical system subject to na uncorrelated second-order random input pa-
rameters a(ω) = {a1(ω), .., ana

(ω)} ∈ A with parameter space A ∈ R
na , which governs an

oscillatory response u(x, t, a)

L(x, t, a; u(x, t, a)) = S(x, t, a), (1)

with operator L and source term S defined on domain D×T ×A, and appropriate initial
and boundary conditions. The spatial and temporal dimensions are defined as x ∈ D and
t ∈ T , respectively, with D ⊂ R

d, d = {1, 2, 3}, and T = [0, tmax]. A realization of the
set of outcomes Ω of the probability space (Ω, F , P ) is denoted by ω ∈ Ω = [0, 1]na, with
F ⊂ 2Ω the σ-algebra of events and P a probability measure.

Here we consider a non-intrusive uncertainty quantification method l which constructs a
weighted approximation w(x, t, a) of response surface u(x, t, a) based on ns deterministic
solutions vk(x, t) ≡ u(x, t, ak) of (1) for different parameter values ak ≡ a(ωk) for k =
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1, .., ns. The samples vk(x, t) can be obtained by solving the deterministic problem

L(x, t, ak; vk(x, t)) = S(x, t, ak), (2)

for k = 1, .., ns, using standard spatial discretization methods and time marching schemes.
A non-intrusive uncertainty quantification method l is then a combination of a sampling
method g and an interpolation method h. Sampling method g defines the ns sampling
points {ak}

ns

k=1 and returns the deterministic samples v(x, t) = {v1(x, t), .., vns
(x, t)}. In-

terpolation method h constructs an interpolation surface w(x, t, a) through the ns samples
v(x, t) as an approximation of u(x, t, a). We are eventually interested in an approximation
of the probability distribution and statistical moments µui

(x, t) of the output u(x, t, a),
which can be obtained by sorting and weighted integration of w(x, t, a)

µui
(x, t) ≈ µwi

(x, t) =

∫

A

w(x, t, a)ifa(a)da. (3)

This information can be used for reducing design safety factors and robust design opti-
mization, in contrast to reliability analysis in which the probability of failure is deter-
mined [21].

3 AN EFFICIENT UNCERTAINTY QUANTIFICATION METHOD FOR

UNSTEADY PROBLEMS

The efficient uncertainty quantification formulation for oscillatory responses based on in-
terpolation of scaled samples at constant phase is developed in section 3.2. The robust
extrema diminishing uncertainty quantification method based on Newton-Cotes quadra-
ture in simplex elements employed in the unsteady approach is first presented in the next
section.

3.1 Robust extrema diminishing uncertainty quantification

A multi-element uncertainty quantification method l evaluates integral (3) by dividing
parameter space A into ne non-overlapping simplex elements Aj ⊂ A

µwi
(x, t) =

ne
∑

j=1

∫

Aj

w(x, t, a)ifa(a)da. (4)

Here we consider a multi-element Polynomial Chaos method based on Newton-Cotes
quadrature points and simplex elements [16]. A piecewise polynomial approximation
w(x, t, a) is then constructed based on ns deterministic solutions vj,k(x, t) = u(x, t, aj,k)
for the values of the random parameters aj,k that correspond to the ñs Newton-Cotes
quadrature points of degree d in the elements Aj

µwi
(x, t) =

ne
∑

j=1

ñs
∑

k=1

cj,kvj,k(x, t)i, (5)

where cj,k is the weighted integral of the Lagrange interpolation polynomial Lj,k(a) through
Newton-Cotes quadrature point k in element Aj

cj,k =

∫

Aj

Lj,k(a)fa(a)da, (6)
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(a) Element (b) Initial grid (c) Adapted grid
Figure 1: Discretization of two-dimensional parameter space A using 2-simplex elements and second-

degree Newton-Cotes quadrature points given by the dots.

for j = 1, .., ne and k = 1, .., ñs. Here, second degree Newton-Cotes quadrature with d = 2
is considered in combination with adaptive mesh refinement in probability space, since
low order approximations are more effective for approximating response response surfaces
with singularities. The initial discretization of parameter space A for the adaptive scheme
consists of the minimum of neini

= na! simplex elements and nsini
= 3na samples, see

Figure 1. The example of Figure 1 for two random input parameters can geometrically
be extended to higher dimensional probability spaces. The elements Aj are adaptively
refined using a refinement measure ρj based on the largest absolute eigenvalue of the
Hessian Hj , as measure of the curvature of the response surface approximation in the
elements, weighted by the probability fj contained by the elements

fj =

∫

Aj

fa(a)da, (7)

with
∑ne

j=1 fj = 1. The stochastic grid refinement is terminated when convergence measure

δne
is smaller than a threshold value δne

< δ̄ where

δne
= max

(

‖ µw⌊ne/2⌋
(x, t) − µwne

(x, t) ‖∞

‖ µwne
(x, t) ‖∞

,
‖ σw⌊ne/2⌋

(x, t) − σwne
(x, t) ‖∞

‖ σwne
(x, t) ‖∞

)

, (8)

with µw(x, t) and σw(x, t) the mean and standard deviation of w(x, t, ω), or when a
maximum number of samples n̄s is reached. Convergence measure δne

can be extended to
include also higher statistical moments of the output.

In elements where the quadratic second degree interpolation results in an extremum other
than in a quadrature point, the element is subdivided into ñe = 2na subelements with
a linear first degree Newton-Cotes approximation of the response without performing
additional deterministic solves. It is proven in [15] that the resulting approach satisfies
the extrema diminishing (ED) robustness concept in probability space

min
A

(w(a)) ≥ min
A

(u(a)) ∧ max
A

(w(a)) ≤ max
A

(u(a)) ∀u(a), (9)

where the arguments x and t are omitted for simplicity of the notation. The ED property
leads to the advantage that no non-zero probabilities of unphysical realizations can be
predicted due to overshoots or undershoots at discontinuities in the response. Due to
the location of the Newton-Cotes quadrature points the deterministic samples are also
reused in successive refinements and the samples are used in approximating the response
in multiple elements.
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Figure 2: Oscillatory samples as function of time and phase.

3.2 Efficient uncertainty quantification interpolation at constant phase

Polynomial Chaos methods usually require a fast increasing number of samples with time
to maintain a constant accuracy. Performing the uncertainty quantification interpolation
of oscillatory samples at constant phase instead of at constant time results, however,
in a constant accuracy with a constant number of samples. Assume, therefore, that
solving equation (2) for realizations of the random parameters ak results in oscillatory
samples vk(t) = u(ak), of which the phase vφk

(t) = φ(t, ak) is a well-defined monotonically
increasing function of time t for k = 1, .., ns.

In order to interpolate the samples v(t) = {v1(t), .., vna
(t)} at constant phase, first, their

phase as function of time vφ(t) = {vφ1
(t), . . . , vφna

(t)} is extracted from the deterministic
solves v(t). Second, the time series for the phase vφ(t) are used to transform the samples
v(t) into functions of their phase v̂(vφ(t)) according to

v̂k(vφk
(t)) = vk(t), (10)

for k = 1, .., ns, see Figure 2. And, third, the sampled phases vφ(t) are interpolated to
the function wφ(t, a)

wφ(t, a) = h(vφ(t)), (11)

as approximation of φ(t, a). Finally, the transformed samples v̂(vφ(t)) are interpolated
at a constant phase ϕ ∈ wφ(t, a) to

ŵ(ϕ, a) = h(v̂(ϕ)). (12)

Repeating the latter interpolation for all phases ϕ ∈ wφ(t, a) results in the function
ŵ(wφ(t, a), a). The interpolation ŵ(wφ(t, a), a) is then transformed back to an approxi-
mation in the time domain w(t, a) as follows

w(t, a) = ŵ(wφ(t, a), a). (13)

The resulting function w(t, a) is an approximation of the unknown response surface u(t, a)
as function of time t and the random parameters a(ω). The actual sampling g and
interpolation h is performed using the extrema diminishing uncertainty quantification
method l based on Newton-Cotes quadrature in simplex elements described in the previous
section.

This uncertainty quantification formulation for oscillatory responses is proven to achieve
a bounded error ε̂(ϕ, a) = |ŵ(ϕ, a)− û(ϕ, a)| as function of phase ϕ for periodic responses
according to

ε̂(ϕ, a) < δ ∀ϕ ∈ R, a ∈ A, (14)
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where δ is defined by
ε̂(ϕ, a) < δ, ∀ϕ ∈ [0, 1], a ∈ A. (15)

The error ε(t, a) = |w(t, a) − u(t, a)| is also bounded in time under certain conditions,
see [15].

The phases vφ(t) are extracted from the samples based on the local extrema of the time
series v(t). A trial and error procedure identifies a cycle of oscillation based on two or
more successive local maxima. The selected cycle is accepted if the maximal error of
its extrapolation in time with respect to the actual sample is smaller than a threshold
value ε̄k for at least one additional cycle length. The functions for the phases vφ(t) in the
whole time domain T are constructed by identifying all successive cycles of v(t) and linear
extrapolation to t = 0 and t = tmax before and after the first and last complete cycle,
respectively. The phase is normalized to zero at the start of the first cycle and a user
defined parameter determines whether the sample is assumed to attain a local extremum
at t = 0. The interpolation at constant phase is restricted to the time domain that
corresponds to the range of phases that is reached by all samples in each of the elements.
If the phase vφk

(t) cannot be extracted from one of the samples vk(t) for k = 1, .., ns,
then uncertainty quantification interpolation h is directly applied to the time-dependent
samples v(t).

4 TRANSONIC AIRFOIL FLUTTER

The combined effect of independent randomness in the ratio of natural frequencies ω̄(ω)
and the free stream velocity U∞(ω) on the post-flutter behavior of an elastically mounted
airfoil is analyzed. The structural model of the pitch-plunge airfoil with cubic nonlinear
spring stiffness is given by [22, 23]:

ξ′′ + xαα′′ +
( ω̄

U∗

)2

(ξ + βξξ
3) = −

1

πµ
Cl(τ), (16)

xα

r2
α

ξ′′ + α′′ +
1

U∗2
(α + βαα3) =

2

πµr2
α

Cm(τ), (17)

where βξ = 0m−2 and βα = 300rad−2 are the cubic spring parameters, ξ(τ) = h/b is the
non-dimensional plunge displacement of the elastic axis, see Figure 3, α(τ) is the pitch
angle, and (′) denotes differentiation with respect to non-dimensional time τ = Ut/b,
with half-chord length b = c/2 = 0.5m. The radius of gyration around the elastic axis
is rαb = 0.25m, bifurcation parameter U∗ is defined as U∗ = U/(bωα), and the airfoil-air
mass ratio is µ = m/πρ∞b2 = 100, with m the airfoil mass. The elastic axis is located at
a distance ahb = −0.25m from the mid-chord position and the mass center is located at a
distance xαb = 0.125m from the elastic axis. The ratio of natural frequencies is defined as
ω(ω) = ωξ/ωα, with ωξ and ωα the natural frequencies of the airfoil in pitch and plunge,
respectively. The randomness in ω̄(ω) is described by a uniform distribution around mean
value µω̄ = 0.25 with a coefficient of variation of 10%. The free stream velocity U∞(ω) is
subject to a symmetric unimodal beta distribution with β1 = β2 = 2 with a coefficient of
variation of 1% around mean µU∞ = 276.27m/s, which corresponds to M∞ = 0.8.

The non-dimensional aerodynamic lift and moment coefficients, Cl(τ) and Cm(τ), are
determined by solving the unsteady Euler equations. The two-dimensional flow domain is
discretized by an unstructured hexahedral mesh of 12 · 103 cells, which was selected based
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Figure 3: The elastically mounted pitch-plunge airfoil model.

on a grid convergence study. The governing equations are discretized using a second order
central finite volume discretization stabilized with artificial dissipation. An Arbitrary
Lagrangian-Eulerian formulation is employed to couple the fluid mesh with the movement
of the structure. The fluid mesh is deformed using radial basis function interpolation of
the boundary displacements [24]. Time integration is performed using the second order
BDF-2 method until t = 3 with time step ∆t = 0.002, which was established after a time
step refinement study. Initially the airfoil is at rest at a deflection of α(0) = 0.1deg and
ξ(0) = 0 from its equilibrium position. In order to study the post-bifurcation behavior,
the bifurcation parameter U∗ is fixed at 130% of the deterministic linear bifurcation point
for the mean values of the random parameters. The stochastic behavior of the angle of
attack α(t, ω) is resolved as indicator for the post-flutter airfoil behavior.

The Unsteady Adaptive Stochastic Finite Elements response surface approximation of
the angle of attack α(t, ω) as function of the random parameters ω̄(ω) and U∞(ω) at
t = {0.5; 1.5; 2.5} given in Figure 4 shows an increasingly oscillatory response surface with
time. The 10% variation in ω̄(ω) has a larger effect on the frequency of the response than
U∞(ω) with 1% variation. Both parameters have a small effect on the amplitude of the
oscillation of α(t, ω) of approximately 3o. At t = 0.5 the airfoil exhibits transient behavior
from its initial perturbation of α(0) = 0.1o, which is indicated by the smaller amplitude
of the response surface variations of approximately 2o. These results are obtained using
the time-independent grid in probability space shown in Figure 4d with ns = 9 samples,
ne = 2 elements, and nesub

= 4096 post-processing subelements.

The resulting UASFE approximation of the mean µα(t) and standard deviation σα(t) of
the angle of attack α(t, ω) in Figure 5 shows two frequency signals due to the effect of
the two random parameters on the frequency of the response. The mean µα(t) exhibits
initially an increasing oscillation caused by the deterministic transient of the samples,
after which it develops a decaying oscillation due to the effect of the random parameters
on the frequency of the response. The large effect of the random parameters on the
dynamical system is illustrated by the fast initial increase of the standard deviation σα(t)
from its deterministic initial condition. Although the deterministic post-flutter behavior
is highly unsteady, the stochastic response reaches a steady asymptotic behavior with a
standard deviation of σα = 1.6o, which is a factor 16 larger than the initial angle of attack
α(0) = 0.1o. The discretizations with ns = {9, 13, 25} samples and ne = {2, 4, 8} uniformly
refined elements, respectively, indicate that the results are uniformly converged in time.
The approximation with ns = 25 is converged up to δne

= 6.2 · 10−3, where δne
is defined

by (8). The local convergence for µα(t) and σα(t) at t = {0.5; 1.0; 1.5; 2.0; 2.5} given in
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(a) t = 0.5 (b) t = 1.5

(c) t = 2.5 (d) Stochastic grid
Figure 4: Response surface of angle of attack α(ω) as function of random natural frequency ratio ω̄(ω)

and free stream velocity U∞(ω) for transonic airfoil flutter.
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Figure 5: Mean and standard deviation of angle of attack α(ω) for transonic airfoil flutter with random

natural frequency ratio ω̄(ω) and free stream velocity U∞(ω).

Table 1: Convergence measure δne
for mean angle of attack α(t, ω) for transonic airfoil flutter with random

natural frequency ratio ω̄(ω) and free stream velocity U∞(ω).

ns ne t = 0.5 t = 1.0 t = 1.5 t = 2.0 t = 2.5
13 4 0.640 · 10−3 3.712 · 10−3 4.426 · 10−3 7.207 · 10−3 4.331 · 10−3

25 8 0.268 · 10−3 2.455 · 10−3 3.138 · 10−3 4.422 · 10−3 2.684 · 10−3

Tables 1 and 2 for ns = {13, 25} shows no clear increase of convergence measure δ with
time. This illustrates that the convergence and the accuracy of the UASFE approximation
are in practice constant in time.

5 THREE-DIMENSIONAL TRANSONIC WING

The transonic AGARD 445.6 wing [25] is a standard benchmark case for the fluid-structure
interaction of a three-dimensional continuous structure. The discretization of the aeroe-
lastic configuration is described in section 5.1. In section 5.2 randomness is introduced in
the free stream velocity. The stochastic response of the system and the flutter probability
are determined.

5.1 AGARD 445.6 wing benchmark problem

The AGARD aeroelastic wing configuration number 3 [25] known as the weakened model
is considered here with a NACA 65A004 symmetric airfoil, taper ratio of 0.66, 45o quarter-
chord sweep angle, and a 2.5-foot semi-span subject to an inviscid flow. The structure is
described by a nodal discretization using an undamped linear finite element model in the
Matlab finite element toolbox OpenFEM [26]. The discretization contains in the chordal
and spanwise direction 6 × 6 brick-elements with 20 nodes and 60 degrees-of-freedom,

Table 2: Convergence measure δne
for the standard deviation of angle of attack α(t, ω) for transonic airfoil

flutter with random natural frequency ratio ω̄(ω) and free stream velocity U∞(ω).

ns ne t = 0.5 t = 1.0 t = 1.5 t = 2.0 t = 2.5
13 4 2.943 · 10−3 3.275 · 10−3 7.500 · 10−3 5.378 · 10−3 3.896 · 10−3

25 8 0.973 · 10−3 4.388 · 10−3 0.859 · 10−3 2.194 · 10−3 3.344 · 10−3
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Figure 6: Initial condition and grid for the AGARD 445.6 wing for mean free stream velocity µU∞ .

and at the leading and trailing edge 2 × 6 pentahedral elements with 15 nodes and 45
degrees-of-freedom as in [27]. The orthotropic material properties are obtained from [28]
and the fiber orientation is taken parallel to the quarter-chord line.

The Euler equations for inviscid flow [29] are solved using a second-order central finite
volume discretization on a 60×15×30m domain using an unstructured hexahedral mesh.
The free stream conditions for the density ρ∞ = 0.099468kg/m3 and pressure p∞ =
7704.05Pa are taken from [25]. Time integration of the samples is performed using a third-
order implicit Runge-Kutta scheme [30] until t = 1.25s to determine the stochastic solution
until t = 1s. The first bending mode with a vertical tip displacement of ytip = 0.01m is
used as initial condition for the structure, see Figure 6.

The coupled fluid-structure interaction system is solved using a partitioned IMEX scheme
[31,32] with explicit treatment of the coupling terms without sub-iterations. An Arbitrary
Lagrangian-Eulerian formulation is employed to couple the fluid mesh with the movement
of the structure. The flow forces and the structural displacements are imposed on the
structure and the flow using nearest neighbor and radial basis function interpolation [27],
respectively. The fluid mesh is also deformed using radial basis function interpolation of
the boundary displacements [24]. A convergence study has been performed to determine a
suitable flow mesh discretization and time step size. Deterministic results for the selected
flow mesh with 3.1 · 104 volumes and time step of ∆t = 2.5 · 10−3s agree well with
experimental and computational results in the literature [25, 27, 33]. The deterministic
flutter velocity is found to be Uflut = 313m/s, which corresponds to a Mach number of
M∞ = 0.951.

5.2 Randomness causes non-zero flutter probability

In the following, the effect of randomness in the free stream velocity U∞(ω) is studied.
The mean free stream velocity is chosen 5% below the actual deterministic flutter velocity,
µU∞ = 0.95Uflut, to assess the effectiveness of a realistic design safety factor. The coeffi-
cient of variation of the assumed unimodal beta distribution is set to cvU∞ = 3.5%. The
outputs of interest are the lift L(t, ω) and the vertical tip displacement of the tip-node
ytip(t, ω).

The first Ns = 3 sampled time series of the lift Li(t, ω) of the UASFE discretization with
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Figure 7: Results for the AGARD 445.6 wing with random free stream velocity U∞(ω).

Ne = 1 element show in Figure 7a that the first bending mode is the dominant mode in
the system response. A second mode which is initially present in the response, damps out
quickly, such that a wavelet decomposition pre-processing step is in this case not necessary
to obtain the stochastic solution using UASFE. The samples illustrate that the free stream
velocity has a significant effect on the frequency and the damping of the system response,
which results in a diverging oscillation for i = 3, and decaying oscillations for i = 1 and
mean value µU∞ at i = 2. The same conclusions can be drawn from Figure 7b in which the
response surface approximation of the lift L(t, ω) at t = 1 is given for Ne = 5 elements and
Ns = 11 samples. The response surface has an oscillatory character due to the effect of
the random U∞(ω) on the frequency of the lift oscillation and consequently on the phase
differences in L(t, ω) at t = 1. The adaptive UASFE grid refinement results automatically
in a gradually finer mesh in the region of large lift amplitudes at large values of U∞(ω).

Results for the time evolution of the mean µL(t) and the standard deviation σL(t) of the
lift are given in Figure 8 for Ne = 4 and Ne = 5 elements. The two approximations are
converged with respect to each other up to 5 · 10−3. The time history for the mean lift
µL(t) shows a decaying oscillation up to t = 0.4s from the initial value of µL = −23.9N.
This behavior can be explained by the decaying lift oscillation for a large range of U∞(ω)
values and the effect of U∞(ω) on the increasing phase differences with time. For t > 0.4
the decay is approximately balanced by the exponentially increasing amplitude of the
unstable part of the U∞(ω) parameter domain. In contrast, the standard deviation shows
an oscillatory increase from the initial σL = 2.46N up to a local maximum of σL = 18.3N
at t = 0.31s due to the increasing phase differences with time. For t > 0.31 the standard
deviation slightly decreases due to the decreasing lift amplitude in part of the parameter
domain. Eventually, the unstable realizations result in an increasing standard deviation
which reaches at t = 1 values between σL = 14 and σL = 19, which corresponds to an
amplification of the initial standard deviation with a factor 6 to 8.

The nodal description of the structure directly returns the vertical tip-node displacement
ytip(t, ω). The approximations of the mean µytip

(t) and standard deviation σytip
(t) of

ytip(t, ω) show in Figure 9 a qualitatively similar behavior as the lift L(t, ω). The standard
deviation σytip

(t) vanishes, however, initially due to the deterministic initial condition for
the structure in contrast with the non-zero σL(t) at t = 0. The standard deviation reaches
values between σytip

= 4.2 · 10−3m and σytip
= 5.6 · 10−3m at t = 1, which corresponds
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Figure 8: Results for the AGARD 445.6 wing with random free stream velocity U∞(ω).
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Figure 9: Results for the AGARD 445.6 wing with random free stream velocity U∞(ω).

to a standard deviation equal to 42% and 56% of the deterministic initial vertical tip
deflection.

The probability of flutter can be determined by constructing the probability distribution
of the damping factor of the system given in Figure 10. The damping factor is here
extracted from the last period of oscillation of the sampled vertical tip node displacements.
Positive and negative damping factors denote unstable and damped oscillatory responses,
respectively. Even though the mean free stream velocity µU∞ is fixed at a safety margin
of 5% below the deterministic flutter velocity Uflut, the non-zero probability of positive
damping indicates a non-zero flutter probability. The 3.5% variation in U∞(ω) results
actually in a probability of flutter of 6.19%. Taking physical uncertainties into account
in numerical predictions is, therefore, a more reliable approach than using safety margins
in combination with deterministic simulation results.

6 CONCLUSIONS

An uncertainty quantification formulation for achieving a constant accuracy in time with
a constant number of samples in multi-physics aeroelastic problems is developed based
on interpolation of oscillatory samples at constant phase instead of at constant time.
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Figure 10: Results for the AGARD 445.6 wing with random free stream velocity U∞(ω).

The scaling of the samples with their phase eliminates the effect of the increasing phase
differences in the response, which usually leads to the fast increasing number of samples
with time. The resulting formulation is not subject to a parameterization error and it can
resolve time-dependent functionals that occur for example in transient behavior. Phase-
scaled uncertainty quantification results in a bounded error as function of the phase for
periodic responses and under certain conditions also in a bounded error in time. The
developed approach is applied to the unsteady fluid-structure interaction test cases of
a two-dimensional airfoil flutter problem and the three-dimensional aeroelastic AGARD
445.6 wing.

In the stochastic post-flutter analysis of a two-degree-of-freedom rigid airfoil in Euler flow
with nonlinear structural stiffness in pitch and plunge, a combination of randomness in
two system parameters is considered. The behavior of the mean, standard deviation, and
response surface of the angle of attack is resolved as indicator for the post-flutter airfoil
behavior. The asymptotic stochastic behavior of the time-dependent problem is steady
with a standard deviation of 1.6 degrees, which is a factor 16 larger than the deterministic
initial angle of attack. Convergence results for discretizations with increasing number
of samples indicate that the applied uncertainty quantification methodology results in
practice in a time-independent accuracy with a constant number of samples.

For the AGARD aeroelastic wing configuration the effect of randomness in the free stream
velocity is studied. Even though the mean free stream velocity is fixed at a safety margin
of 5% below the deterministic flutter velocity, a 3.5% coefficient of variation results in
a non-zero flutter probability of 6.19%. Taking physical uncertainties into account in
numerical predictions is, therefore, a more reliable approach than using safety margins in
combination with deterministic simulation results.
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