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Abstract: With increased developments and interest in cooperative driving and higher levels of
automation (SAE level 3+), the need for safety systems that are capable to monitor system health and
maintain safe operations in faulty scenarios is increasing. A variety of faults or failures could occur,
and there exists a high variety of ways to respond to such events. Once a fault or failure is detected,
there is a need to classify its severity and decide on appropriate and safe mitigating actions. To provide
a solution to this mitigation challenge, in this paper a functional-safety architecture is proposed and an
optimization-based mitigation algorithm is introduced. This algorithm uses nonlinear model predictive
control (NMPC) to bring a vehicle, suffering from a severe fault, such as a power steering failure, to a
safe-state. The internal model of the NMPC uses the information from the fault detection, isolation and
identification to optimize the tracking performance of the controller, showcasing the need of the proposed
architecture. Given a string of ACC vehicles, our results demonstrate a variety of tactical decision-
making approaches that a fault-affected vehicle could employ to manage any faults. Furthermore,
we show the potential for improving the safety of the affected vehicle as well as the effect of these
approaches on the duration of the manoeuvre.
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1. INTRODUCTION

Cooperative and automated driving (e.g., platooning) have been
widely researched in the past decades, showing their effects
on reducing workload and stress of the drivers Heikoop et al.
(2017), but also on society. Driving in a platoon can increase
road throughput by driving at closer distances Lioris et al.
(2017) and can reduce fuel consumption (and therefore CO2

emissions) up to 20% Liang et al. (2016). For both cooperative
and automated driving (CAD), ensuring safety for higher levels
of automation requires architectures that contain health moni-
toring and management, safety-channels and fallback function-
alities ISO (2018); Khabbaz Saberi et al. (2015). The safety
mechanisms designed to mitigate potential safety-critical haz-
ards should be able to transition and bring a vehicle to a safe
state, i.e. an operating mode without an unreasonable level of
risk. In addition, vehicles operating in SAE level 4 or 5 should
be able to autonomously reach a minimal risk condition in
case of a performance-relevant system failure Tax (2016). This
implies that the vehicle should, without the interference of a
human driver, bring itself to a minimal risk or safe condition
when a fault or failure within the vehicle occurs, such that the
vehicle can no longer be operated in the absence of unreason-
able risk (e.g., a brake or steering failure, in the absence of any
redundant or other risk mitigating measures).

To address the concerns above, the authors of Luo et al. (2017)
proposed an architecture pattern with a safety channel suitable
for automated driving applications and Automotive Safety In-
tegrity Level (ASIL) D, which is the highest risk class. In this

work, the safety channel is divided into a health channel and
a limp home channel. However, it does not specify the func-
tionalities and methods that should be used in these channels,
as this would highly depend on the level of automation and the
type of functionalities involved. Falling back to such a channel
would be a logical consequence of being able to diagnose a
fault, crossing a level of severity which disables the vehicle
to operate in a nominal condition. This requires functionalities
to diagnose the system and check for the presence of faults
and their severity. The survey Gao et al. (2015) provides an
overview of methods that can be used to diagnose a fault, which
implies three steps: (i) detection, i.e. determining whether there
is a fault, (ii) isolation, i.e. the location of the fault; (iii) iden-
tification, i.e the type, shape and size of the fault. Furthermore,
Gao et al. (2015) briefly discusses fault tolerant control (FTC)
strategies, where the system performance is maintained in the
presence of faults, yet no real connection is made between
the diagnosis and what mitigation measures should be taken.
Similarly, Yang et al. (2020) fault tolerant cooperative control
is introduced, focusing on mitigation strategies.

All current work focuses on single mild faults, that require a
limp home mode or degraded functionality and so far, there
is no end-to-end system including functional safety consider-
ations for both diagnosis and mitigation of faults of different
types. There are various challenges in knowing all considered
faults for design, their severity levels and having detection and
mitigation strategies. Nevertheless, once a severe fault is diag-
nosed, it is of foremost importance to bring the system to a safe
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1. INTRODUCTION

Cooperative and automated driving (e.g., platooning) have been
widely researched in the past decades, showing their effects
on reducing workload and stress of the drivers Heikoop et al.
(2017), but also on society. Driving in a platoon can increase
road throughput by driving at closer distances Lioris et al.
(2017) and can reduce fuel consumption (and therefore CO2

emissions) up to 20% Liang et al. (2016). For both cooperative
and automated driving (CAD), ensuring safety for higher levels
of automation requires architectures that contain health moni-
toring and management, safety-channels and fallback function-
alities ISO (2018); Khabbaz Saberi et al. (2015). The safety
mechanisms designed to mitigate potential safety-critical haz-
ards should be able to transition and bring a vehicle to a safe
state, i.e. an operating mode without an unreasonable level of
risk. In addition, vehicles operating in SAE level 4 or 5 should
be able to autonomously reach a minimal risk condition in
case of a performance-relevant system failure Tax (2016). This
implies that the vehicle should, without the interference of a
human driver, bring itself to a minimal risk or safe condition
when a fault or failure within the vehicle occurs, such that the
vehicle can no longer be operated in the absence of unreason-
able risk (e.g., a brake or steering failure, in the absence of any
redundant or other risk mitigating measures).

To address the concerns above, the authors of Luo et al. (2017)
proposed an architecture pattern with a safety channel suitable
for automated driving applications and Automotive Safety In-
tegrity Level (ASIL) D, which is the highest risk class. In this

work, the safety channel is divided into a health channel and
a limp home channel. However, it does not specify the func-
tionalities and methods that should be used in these channels,
as this would highly depend on the level of automation and the
type of functionalities involved. Falling back to such a channel
would be a logical consequence of being able to diagnose a
fault, crossing a level of severity which disables the vehicle
to operate in a nominal condition. This requires functionalities
to diagnose the system and check for the presence of faults
and their severity. The survey Gao et al. (2015) provides an
overview of methods that can be used to diagnose a fault, which
implies three steps: (i) detection, i.e. determining whether there
is a fault, (ii) isolation, i.e. the location of the fault; (iii) iden-
tification, i.e the type, shape and size of the fault. Furthermore,
Gao et al. (2015) briefly discusses fault tolerant control (FTC)
strategies, where the system performance is maintained in the
presence of faults, yet no real connection is made between
the diagnosis and what mitigation measures should be taken.
Similarly, Yang et al. (2020) fault tolerant cooperative control
is introduced, focusing on mitigation strategies.

All current work focuses on single mild faults, that require a
limp home mode or degraded functionality and so far, there
is no end-to-end system including functional safety consider-
ations for both diagnosis and mitigation of faults of different
types. There are various challenges in knowing all considered
faults for design, their severity levels and having detection and
mitigation strategies. Nevertheless, once a severe fault is diag-
nosed, it is of foremost importance to bring the system to a safe
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would be a logical consequence of being able to diagnose a
fault, crossing a level of severity which disables the vehicle
to operate in a nominal condition. This requires functionalities
to diagnose the system and check for the presence of faults
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overview of methods that can be used to diagnose a fault, which
implies three steps: (i) detection, i.e. determining whether there
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tification, i.e the type, shape and size of the fault. Furthermore,
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strategies, where the system performance is maintained in the
presence of faults, yet no real connection is made between
the diagnosis and what mitigation measures should be taken.
Similarly, Yang et al. (2020) fault tolerant cooperative control
is introduced, focusing on mitigation strategies.

All current work focuses on single mild faults, that require a
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types. There are various challenges in knowing all considered
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Fig. 1. Scenario description where a severe fault occurs in a
string of automated vehicles.

state (i.e., make use of a safe and efficient fallback strategy). To
this end, Svensson et al. (2018) focuses on trajectory planning
in fallback scenarios by formulating the problem as an optimal
control problem, without considering any faults. The authors
of Xue et al. (2018) describe an adaptive model predictive
control (MPC) algorithm to simultaneously avoid potential col-
lisions with surrounding vehicles and handle the presence of a
front perceptive sensor failure. Yu and Luo propose Yu and Luo
(2019) a fallback strategy to park on the road shoulder while
having a loss of all redundant paths or GPS location. However,
they decouple the longitudinal and lateral control of the vehicle,
which might hinder the safe vehicle movement towards the road
shoulder, especially in high risk scenarios. Furthermore, in all
previous works, no failures are considered that influence the
vehicle’s handling.

Our contributions: the literature on trajectory planning and
control for high vehicle automation is rich. Yet, it lacks work
on fallback strategies for these functionalities, which form an
essential part of the safety mechanisms in functional safety. We
sum up our contributions as follows.

(i) The first contribution of this paper is a fallback strategy
which is proven, based on the architectural pattern pro-
posed in Luo et al. (2017). We pick up the architectural
pattern from Luo et al. (2017) and design a functionality
with a software architecture that fits in this proven pattern,
through which we accommodate fault diagnosis as well as
mitigation for automated driving applications. The archi-
tectural design aims to facilitate all required steps from
nominal operation to transitioning the vehicle to a safe-
state in case of severe failures.

(ii) The second contribution of this paper is focusing on a
vehicle affected by a failure and model uncertainty, for
which an MPC-based fail-safe mitigation algorithm is in-
troduced with coupled longitudinal and lateral dynamics.
This algorithm, deployed inside a safety channel, ensures
the safe operation of the vehicle in case of a failure, by
bringing it to the emergency lane.

Fig. 1 shows the example scenario considered, where in a
string of automated vehicles, running in nominal conditions,
one detects a fault and needs to automatically park itself on the
road shoulder. Within this scenario, two mitigation strategies
are investigated for the faulty vehicle to showcase the influence
on the remainder of the string of vehicles: (i) The vehicle will
brake inside the current lane, starting from the point that it
receives the instruction to park on the road shoulder, and (ii)
The vehicle will brake outside of the current lane, starting from
the point that it has left the active lane.

This paper is organised as follows. Section II introduces the
main components of the proposed architecture which enables
nominal and fallback functionalities for an automated vehicle.
Section III introduces the fail-safe mitigation algorithm and
Section IV presents the simulation results for various scenarios
and fault severity levels. Finally, conclusions and recommenda-
tions are described in Section V.

2. FUNCTIONAL SAFETY ARCHITECTURE

To ensure safe and comfortable operations, an automated vehi-
cle architecture consists of three parts, namely, a nominal chan-
nel, a health monitor and a safety channel Luo et al. (2017). We
propose here the architecture shown in Fig. 2, which is an actual
applied architecture based on the architectural pattern proposed
in Luo et al. (2017). Herein, the nominal channel performs all
the nominal vehicle operation, i.e., all automated tasks which
could function in the absence of unreasonable risk. The health
monitor continuously monitors data coming from the vehicle to
check whether this is operating in a healthy state, and the safety
channel accommodates fail-safe mitigation to bring the vehicle
to a safe-state when needed. The design of the actual module is
not in the scope of this paper, however, earlier results show the
feasibility of designing a suitable fault estimator van der Ploeg
et al. (2022b), which, given appropriate thresholds, can serve as
a suitable classification algorithm.

2.1 Nominal Vehicle Operation

Nominal vehicle operation refers to the operation of the vehicle
under normal circumstances, that is, in the absence of anoma-
lies, faults or failures (AFFs) which could impose unreasonable
risk to the vehicle and passengers. Moreover, in nominal op-
eration, the vehicle is assumed to be driven in its Operational
Design Domain. In these conditions, the system can make use
of all its functionalities and ensure safe vehicle control.

2.2 Fault Detection and Isolation

To assess AFFs, first, their presence and location should be
known. This is done by respectively the detection and the iso-
lation, where the detection solely focuses on the presence of an
AFF. Subsequently, the isolation then determines the location of
the AFF. Finally, the identification determines its type, shape,
and size, using advanced observer techniques such as Propor-
tional (Multiple-) Integral observers, adaptive observers, sliding
mode observers or descriptor observers Gao et al. (2015).

2.3 Fault Severity Classification

The risk of the diagnosed fault can be classified using ASIL
levels and safety channel hardware, to determine if it is safe for
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functionality of an automated vehicle, including failures.



 Niels Lodder  et al. / IFAC PapersOnLine 56-2 (2023) 1094–1100 1095

Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license  
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

1

2

3

Fig. 1. Scenario description where a severe fault occurs in a
string of automated vehicles.
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having a loss of all redundant paths or GPS location. However,
they decouple the longitudinal and lateral control of the vehicle,
which might hinder the safe vehicle movement towards the road
shoulder, especially in high risk scenarios. Furthermore, in all
previous works, no failures are considered that influence the
vehicle’s handling.

Our contributions: the literature on trajectory planning and
control for high vehicle automation is rich. Yet, it lacks work
on fallback strategies for these functionalities, which form an
essential part of the safety mechanisms in functional safety. We
sum up our contributions as follows.

(i) The first contribution of this paper is a fallback strategy
which is proven, based on the architectural pattern pro-
posed in Luo et al. (2017). We pick up the architectural
pattern from Luo et al. (2017) and design a functionality
with a software architecture that fits in this proven pattern,
through which we accommodate fault diagnosis as well as
mitigation for automated driving applications. The archi-
tectural design aims to facilitate all required steps from
nominal operation to transitioning the vehicle to a safe-
state in case of severe failures.

(ii) The second contribution of this paper is focusing on a
vehicle affected by a failure and model uncertainty, for
which an MPC-based fail-safe mitigation algorithm is in-
troduced with coupled longitudinal and lateral dynamics.
This algorithm, deployed inside a safety channel, ensures
the safe operation of the vehicle in case of a failure, by
bringing it to the emergency lane.

Fig. 1 shows the example scenario considered, where in a
string of automated vehicles, running in nominal conditions,
one detects a fault and needs to automatically park itself on the
road shoulder. Within this scenario, two mitigation strategies
are investigated for the faulty vehicle to showcase the influence
on the remainder of the string of vehicles: (i) The vehicle will
brake inside the current lane, starting from the point that it
receives the instruction to park on the road shoulder, and (ii)
The vehicle will brake outside of the current lane, starting from
the point that it has left the active lane.

This paper is organised as follows. Section II introduces the
main components of the proposed architecture which enables
nominal and fallback functionalities for an automated vehicle.
Section III introduces the fail-safe mitigation algorithm and
Section IV presents the simulation results for various scenarios
and fault severity levels. Finally, conclusions and recommenda-
tions are described in Section V.
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To ensure safe and comfortable operations, an automated vehi-
cle architecture consists of three parts, namely, a nominal chan-
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propose here the architecture shown in Fig. 2, which is an actual
applied architecture based on the architectural pattern proposed
in Luo et al. (2017). Herein, the nominal channel performs all
the nominal vehicle operation, i.e., all automated tasks which
could function in the absence of unreasonable risk. The health
monitor continuously monitors data coming from the vehicle to
check whether this is operating in a healthy state, and the safety
channel accommodates fail-safe mitigation to bring the vehicle
to a safe-state when needed. The design of the actual module is
not in the scope of this paper, however, earlier results show the
feasibility of designing a suitable fault estimator van der Ploeg
et al. (2022b), which, given appropriate thresholds, can serve as
a suitable classification algorithm.

2.1 Nominal Vehicle Operation

Nominal vehicle operation refers to the operation of the vehicle
under normal circumstances, that is, in the absence of anoma-
lies, faults or failures (AFFs) which could impose unreasonable
risk to the vehicle and passengers. Moreover, in nominal op-
eration, the vehicle is assumed to be driven in its Operational
Design Domain. In these conditions, the system can make use
of all its functionalities and ensure safe vehicle control.

2.2 Fault Detection and Isolation

To assess AFFs, first, their presence and location should be
known. This is done by respectively the detection and the iso-
lation, where the detection solely focuses on the presence of an
AFF. Subsequently, the isolation then determines the location of
the AFF. Finally, the identification determines its type, shape,
and size, using advanced observer techniques such as Propor-
tional (Multiple-) Integral observers, adaptive observers, sliding
mode observers or descriptor observers Gao et al. (2015).

2.3 Fault Severity Classification

The risk of the diagnosed fault can be classified using ASIL
levels and safety channel hardware, to determine if it is safe for
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the vehicle to continue driving. If it is not safe for the vehicle,
the module determines whether the vehicle can continue with
degraded functionality or whether it should go to a safe state.

2.4 Tactical Decision Making

In literature, this module is implemented both on a single- and
multi-vehicle level, if the vehicle has vehicle-to-vehicle com-
munication and can drive in cooperative modes (e.g., platoon-
ing Konstantinopoulou et al. (2019)). Tactical decision making
is usually a needed nominal functionality that also contains a
health monitoring and management component. In CAD, by
using this module, the integrity of a string of vehicles can be
maintained while, for example, one of the vehicles abruptly
leaves the string of vehicles. In the context of the scenario de-
scribed in Fig. 1, a benefit of this module is that the behaviour of
the Lead Vehicle (LV) can be influenced such that the Trailing
Vehicle (TV) can reconnect to the LV while optimizing certain
parameters (e.g., fuel consumption).

2.5 Mitigation

Reducing the effect of an AFF is referred to as mitigation.
Anomalies can lead to faults and consequently to failures,
which are undesirable and potentially unsafe. In the context
of a failure, i.e., a termination of an intended behaviour of an
element or an item due to a fault manifestation ISO (2018), han-
dling this failure means controlling the system in its presence.
Depending on the outcome of the Fault Severity Classification
(FSC) module, the strategy for the mitigation is chosen to be
fail-operational or fail-safe.

2.5.0.1. Fail-operational When the FSC module determines
that the vehicle can safely continue operation, possibly with
reduced functionality (also referred to as degraded or limp
functionality), fail-operational mitigation is performed. Such
mitigation is most commonly performed by FTC if the AFF
concerns an actuator or process Yang et al. (2020). As exem-
plified in Khalili et al. (2018), FTC converts the system to be
less or not at all dependent on the faulty component, using the
information acquired in the health monitor.

2.5.0.2. Fail-safe In case the FSC module determines that
the vehicle is in a non-healthy state and cannot guarantee
safe operation, fail-safe mitigation is performed by initiating a
fallback manoeuvre to bring the vehicle to a safe-state. Similar
to fail-operational mitigation, the information acquired in the
health monitor is used.

3. FAIL-SAFE MITIGATION ALGORITHM

To describe the fail-safe mitigation algorithm proposed in this
paper, we start from the scenario described in Fig. 1. Herein,
three vehicles are assumed to drive automatically on the road
(with functionalities such as adaptive cruise control and lane
keep assist active, i.e., the nominal functionality). As shown in
Fig. 3, once a severe fault occurs, the faulty vehicle needs to
transition to a safe state with the help of its safety channel. The
ACC-based longitudinal controller is ensuring a constant time-
gap inter vehicle distance, with the following error dynamics

etg = hdg −
dx,i−1 − dx,i

vx,i
, (1)

where etg represents the time gap error between the two ve-
hicles, hdg indicates the desired time gap between the two
vehicles, dx,i−1 − dx,i is the distance between the preceding
vehicle and the ego vehicle, and vx,i is the ego vehicle velocity.

This error is controlled by a Proportional Derivative (PD)
controller Naus et al. (2010) with the control law formulated
in the Laplace domain as follows:

uPD = etg(kp + kds), (2)
where uPD is the control output, kp the proportional gain, and
kd the derivative gain of the control law.

To ensure safe handling of the faulty vehicle, both longitudinal
and lateral control is immediately taken over by the safety
channel after AFF diagnosis. Without loss of generality, we
assume here the faults are already detected and classified and
focus on the Tactical Decision Making (TDM) and Fail-Safe
Mitigation (FSM) modules from Fig. 2. The implemented TDM
is explained in Section 3.1 and the controller used in FSM is
explained in Section 3.2.

3.1 Implemented Tactical Decision Making

Fig. 4 shows the implemented TDM module, in which the FSC
module gives a message to the TDM module when the failure is
classified and the vehicle should be parked on the road shoulder.
The environmental module gives input that determines if the
vehicle should brake in, or out-of-lane, e.g. if the road shoulder
is long enough to brake out-of-lane, otherwise brake in-lane is
required. Eventually, the TDM module sends a message to the
TV when it should close the gap back to the LV.

3.2 Functional Safety Mitigation Controller

MPC is often used to generate optimal control commands for
the vehicle, Maciejowski (2002); van Nunen et al. (2017);
van der Ploeg et al. (2022a), by taking into account the vehicle
dynamics and its limitations over a predefined time window,
known as prediction horizon N . A Nonlinear MPC (NMPC)
performs the high-level control in the safety channel and is
required because of the combined longitudinal and lateral dy-
namics, based on the continuous-time equations of the linear
single-track dynamic bicycle model Schmeitz et al. (2017):

v̇y(t) = −Cαf + Cαrf2
mvx(t)

vy(t) +

(
lrCαrf2 − lfCαf

mvx(t)
− vx(t)

)
r(t) +

Cαf

m
δ(t)f1

(3)

ṙ(t) =
lrCαrf2 − lfCαf

Izvx(t)
vy(t) −

l2fCαf + l2rCαrf2

Izvx(t)
r(t) +

lfCαf

Iz
δ(t)f1

(4)

Nominal Channel

Safety Channel

Leading, {i-1}Following, {i}Trailing, {i+1}

Fig. 3. Multiple ACC-driven vehicles of which one encounters
a severe fault and needs to reach a safe state.

Fault Severity
Classification

Yes No
Mitigation 

(Fail-operational)

Yes/No

Gap closing to  
lead vehicle

Mitigation 
(Fail-safe)

NoYes Stay in lane and
maintain gap to

preceding vehicle

Compute lateral and
longitudinal trajectory

to road shoulder
Environment

Park on Road
Shoulder

Faulty  
vehicle on road

shoulder

Brake  
in-lane

Fig. 4. Flow chart of the implemented vehicle Tactical Decision
Making (hexagons) and its effects on the trailing vehicle
(blue blocks).

Where Cαf and Cαr are the front and rear cornering stiffness,
respectively, m is the vehicle mass, lf and lr are the length from
the front and rear axles to the center of gravity, respectively,
Iz is the vehicle’s moment of inertia and finally, vx, vy, r
represent the longitudinal velocity, lateral velocity and yaw
rate, respectively. Finally, f1 and f2 represent signals, acting on
the steering wheel angle δ(t) and the rear corner stiffness Cαr,
respectively. These signals represent a power steering failure,
f1, and model uncertainty, f2, potentially introduced by a fault.
Throughout this paper, we assume that the signals f1, f2 appear
as constants and are measurable by a fault diagnosis algorithm.
Within the constraints imposed by the linear bicycle model, the
tyre dynamics are also linear.

The proposed MPC design requires a discrete-time update
model, thus Equations (3) and (4) are discretized using the
forward Euler method, to form the nonlinear state-update equa-
tions (Equation (6)), from the state vector x(k):

x(k) = [ax(k) vx(k) vy(k) dy(k) r(k) θ(k)]
T, (5)

where ax, dy and θ are the longitudinal acceleration, and lateral
position with respect to the center of the current lane and
heading angle, respectively.

ax(k + 1) = sdtax(k) +Gdtax,c(k) (6a)
vx(k + 1) = vx(k) + ax(k)∆t (6b)
vy(k + 1) = vy(k) + ∆vy(k)∆t (6c)
dy(k + 1) = dy(k) +(

vy(k) cos
(
θ(k)

)
+ vx(k) sin

(
θ(k)

))
∆t

(6d)

r(k + 1) = r(k) + ∆r(k)∆t (6e)
θ(k + 1) = θ(k) + r(k)∆t, (6f)

where sdt and Gdt are respectively the discrete-time pole and
gain of the first-order transfer function representing the longitu-
dinal dynamics, ax,c is the intended longitudinal acceleration,
δ is the front wheel angle, ∆vy and ∆r are the increments in
vy and r, ∆t denotes the sampling time step and the indicator
k denotes the discrete time step.

Model (6) can be rewritten in a more compact notation as:

x(k + 1) = g(x(k), u(k), f), (7)

Where u(k) := [ax,c, δ]
T is the control vector and f :=

[f1, f2] represent the constant values of the determined failure.
The NMPC is formulated as

Table 1. Simulation parameters

Parameter value unit

Cαf 120 kN/rad
Cαr 220 kN/rad
lf 1.33 m
lr 1.47 m
m 1845 kg
Iz 3580 kg ·m2

(a) Vehicle parameters

Variable Constraint unit
(min / max)

| δ | 0.0873 rad

| δ̇ | 0.0818 rad/s
ax -3.5 / 1.5 m/s2

ax,c -3.5 / 1.5 m/s2

ȧx,c -14 / 6 m/s3

vx 1.26 / 33 m/s
| ay | 2 m/s2

(b) Constraints parameters

min
u

N∑
k=1

J (x(k), u(k), z(k)) (8a)

s.t. x(k + 1) = g (x(k), u(k), f) (8b)
xmin ≤ x(k) ≤ xmax (8c)
umin ≤ u(k) ≤ umax (8d)

∆umin ≤ u(k + 1)− u(k)

∆t
≤ ∆umax (8e)

ay,min ≤ ay(k) ≤ ay,max (8f)
x(0) = xinit (8g)
∀k ∈ {0, . . . , N}, (8h)

where z(k) contains the reference from the trajectory genera-
tion and J represents the multi-objective cost function:

J
(
x(k), u(k), z(k)

)
= wvx

(
zvx(k)− vx(k)

)2
+

wdy

(
zdy (k)− dy(k)

)2
+ wθ

(
zθ(k)− θ(k)

)2
+

wax

(
ax,c(k)

)2
+ wδ

(
δ(k)

)2
,

(9)

where w(... ) are the respective weights. Constraint (8b) in-
dicates the dynamic coupling and constraints (8c), (8d) and
(8e) indicate comfort and model limitations. Within which δ,
δ̇ and ȧx,c are based on the physical capabilities of the vehi-
cle and limits of the dynamic bicycle model. The constraints
on ax, ax,c, ay and vx are based on the maximum allowed
ACC braking, according to ISO 15622, comfort and highway
speed limit respectively. The lateral acceleration ay in (8f) is
calculated by the following steady-state relation (imposed as a
comfort constraint):

ay = −Cαf + Cαr

mvx
vy+

lrCαr − lfCαf

mvx
r+

Cαf

m
δ (10)

Note, that the problem is assumed feasible in the scope of
this work. However, through the use of an additional slack
variable in the objective and carefully chosen constraints, one
can enforce feasibility by sacrificing certain vehicle-dynamic
constraints.

4. SIMULATION RESULTS

For this simulation study, a string of vehicles is considered as
depicted in Fig. 3, where all vehicles are modelled using the
parameters given in Table 1.a. These parameters correspond to a
lab passenger vehicle available at TNO 1 , used for research on
cooperative and automated driving technologies. The constraint
values used in the NMPC model are given in Table 1.b.

The trajectory that the faulty vehicle follows during the fail-
safe mitigation is split into lateral and longitudinal movement,
1 https://www.tno.nl/en/focus-areas/traffic-transport/expertise-
groups/research-on-integrated-vehicle-safety/
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Fault Severity
Classification

Yes No
Mitigation 

(Fail-operational)

Yes/No

Gap closing to  
lead vehicle

Mitigation 
(Fail-safe)

NoYes Stay in lane and
maintain gap to

preceding vehicle

Compute lateral and
longitudinal trajectory

to road shoulder
Environment

Park on Road
Shoulder

Faulty  
vehicle on road

shoulder

Brake  
in-lane

Fig. 4. Flow chart of the implemented vehicle Tactical Decision
Making (hexagons) and its effects on the trailing vehicle
(blue blocks).

Where Cαf and Cαr are the front and rear cornering stiffness,
respectively, m is the vehicle mass, lf and lr are the length from
the front and rear axles to the center of gravity, respectively,
Iz is the vehicle’s moment of inertia and finally, vx, vy, r
represent the longitudinal velocity, lateral velocity and yaw
rate, respectively. Finally, f1 and f2 represent signals, acting on
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respectively. These signals represent a power steering failure,
f1, and model uncertainty, f2, potentially introduced by a fault.
Throughout this paper, we assume that the signals f1, f2 appear
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Within the constraints imposed by the linear bicycle model, the
tyre dynamics are also linear.

The proposed MPC design requires a discrete-time update
model, thus Equations (3) and (4) are discretized using the
forward Euler method, to form the nonlinear state-update equa-
tions (Equation (6)), from the state vector x(k):

x(k) = [ax(k) vx(k) vy(k) dy(k) r(k) θ(k)]
T, (5)

where ax, dy and θ are the longitudinal acceleration, and lateral
position with respect to the center of the current lane and
heading angle, respectively.

ax(k + 1) = sdtax(k) +Gdtax,c(k) (6a)
vx(k + 1) = vx(k) + ax(k)∆t (6b)
vy(k + 1) = vy(k) + ∆vy(k)∆t (6c)
dy(k + 1) = dy(k) +(

vy(k) cos
(
θ(k)

)
+ vx(k) sin

(
θ(k)

))
∆t

(6d)

r(k + 1) = r(k) + ∆r(k)∆t (6e)
θ(k + 1) = θ(k) + r(k)∆t, (6f)

where sdt and Gdt are respectively the discrete-time pole and
gain of the first-order transfer function representing the longitu-
dinal dynamics, ax,c is the intended longitudinal acceleration,
δ is the front wheel angle, ∆vy and ∆r are the increments in
vy and r, ∆t denotes the sampling time step and the indicator
k denotes the discrete time step.

Model (6) can be rewritten in a more compact notation as:

x(k + 1) = g(x(k), u(k), f), (7)

Where u(k) := [ax,c, δ]
T is the control vector and f :=

[f1, f2] represent the constant values of the determined failure.
The NMPC is formulated as

Table 1. Simulation parameters

Parameter value unit
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lr 1.47 m
m 1845 kg
Iz 3580 kg ·m2

(a) Vehicle parameters

Variable Constraint unit
(min / max)
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| δ̇ | 0.0818 rad/s
ax -3.5 / 1.5 m/s2

ax,c -3.5 / 1.5 m/s2

ȧx,c -14 / 6 m/s3

vx 1.26 / 33 m/s
| ay | 2 m/s2
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u
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s.t. x(k + 1) = g (x(k), u(k), f) (8b)
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umin ≤ u(k) ≤ umax (8d)

∆umin ≤ u(k + 1)− u(k)

∆t
≤ ∆umax (8e)

ay,min ≤ ay(k) ≤ ay,max (8f)
x(0) = xinit (8g)
∀k ∈ {0, . . . , N}, (8h)

where z(k) contains the reference from the trajectory genera-
tion and J represents the multi-objective cost function:
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)
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(
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+
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+
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where w(... ) are the respective weights. Constraint (8b) in-
dicates the dynamic coupling and constraints (8c), (8d) and
(8e) indicate comfort and model limitations. Within which δ,
δ̇ and ȧx,c are based on the physical capabilities of the vehi-
cle and limits of the dynamic bicycle model. The constraints
on ax, ax,c, ay and vx are based on the maximum allowed
ACC braking, according to ISO 15622, comfort and highway
speed limit respectively. The lateral acceleration ay in (8f) is
calculated by the following steady-state relation (imposed as a
comfort constraint):

ay = −Cαf + Cαr

mvx
vy+

lrCαr − lfCαf

mvx
r+

Cαf

m
δ (10)

Note, that the problem is assumed feasible in the scope of
this work. However, through the use of an additional slack
variable in the objective and carefully chosen constraints, one
can enforce feasibility by sacrificing certain vehicle-dynamic
constraints.

4. SIMULATION RESULTS

For this simulation study, a string of vehicles is considered as
depicted in Fig. 3, where all vehicles are modelled using the
parameters given in Table 1.a. These parameters correspond to a
lab passenger vehicle available at TNO 1 , used for research on
cooperative and automated driving technologies. The constraint
values used in the NMPC model are given in Table 1.b.

The trajectory that the faulty vehicle follows during the fail-
safe mitigation is split into lateral and longitudinal movement,
1 https://www.tno.nl/en/focus-areas/traffic-transport/expertise-
groups/research-on-integrated-vehicle-safety/
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to best accommodate both our mitigation strategies. The lat-
eral trajectory is generated by a 5th order polynomial, taken
between current and goal waypoints with appropriate heading
angles, following Yu and Luo (2019). The current waypoint
is the middle of the active lane and the goal waypoint is the
middle of the road shoulder, assuming a straight road. For the
longitudinal trajectory, only goal velocities are given, such that
the controller determines the optimal control outputs within the
given constraints, considering all relevant dynamics. Alterna-
tively, as part of our future work, a local motion planner can
also be incorporated into our architecture to adapt the trajectory
online to avoid collisions with upcoming traffic (e.g., Ferranti
et al. (2019)).

The vehicle model that is used as a plant, to test the controller,
is based around the continuous time counterparts in (6).

4.1 Controller settings

The tuning parameters for the Proportional Derivative (PD)
controllers performing the longitudinal control for the ACC
string of vehicles and the NMPC controller that performs the
fallback manoeuvre are given in Tables 2 and 3, respectively.

Table 2 shows the tuning parameters of each vehicle, where
the LV is tuned differently compared to the FV and TV, as it
is operating in cruise control and tracking a reference velocity
instead of a time-gap to the preceding vehicle.

From the dynamic bicycle model in (3) and (4) it can be derived
that, as the velocity decreases towards zero, the eigenvalues of
the linear differential equations grow towards −∞. This phe-
nomenon is numerically impossible to capture in the Forward
Euler approximation used in this paper, as it would require the
sampling time to be reduced to 0. Following this line of reason-
ing, to prevent numerical instability of the internal prediction
model, a sampling time of 0.01 s and a vx,min of 1.26m/s
is selected. The selection of the prediction horizon N , control
horizon S and the NMPC weights w(... ) in the cost function are
manually chosen with a trade-off between computational effort
and tracking performance, aiming for low computational effort
with minimal loss in tracking performance.

4.2 Failure scenarios and braking strategies considered

We present six simulation results: (i) two simulations compare
braking in-lane and braking out-of-lane during the fallback ma-
noeuvre, (ii) two simulations investigating the robustness of the
controller by implementing realistic failures and uncertainties
in the vehicle model and (iii) two simulations investigating the
behaviour of the controller if it is reconfigured, following the
architecture proposed in Section 2, adjusting relevant formulas
and bounds.

The following failure and uncertainty are considered for (ii) and
(iii):

(1) f1: Power steering failure The steering output of the
controller is decreased by 50% before it feeds through to
the vehicle model, thus f1 = 0.5.

Table 2. Settings of PD controllers of each vehicle

Vehicle kp kd

Leading 5 0.3
Following / Trailing -150 -2.5

Table 3. Settings of NMPC used for the fallback
manoeuvre

Variable N S wvx wdy wθ wax wδ

Value 30 30 10 100 1 0.5 1

Table 4. Comparison between braking strategies
while going to the road shoulder and the effect on

upcoming traffic.

Braking Stop Stop Trailer Timegap
mitigation time [s] distance gap-closing error
strategy [m] time [s] at tb [s]

In-lane 8.208 117.534 13.880 1.650
Out-of-lane 10.838 190.610 7.634 1.004

(2) f2: Model uncertainty in the rear cornering stiffness The
rear cornering stiffness Cαr of the vehicle is decreased by
50%, thus f2 = 0.5.

4.3 Results

To show the performance of the proposed method in bringing
the vehicle to a safe state, two time moments are important,
ta, when the parking manoeuvre is initiated, and tb, when the
faulty vehicle has left the initial driving lane.

4.4 Braking in-lane versus braking out-of-lane

Table 4 highlights the trade-off between the two mitigation
strategies based on stop time and distance versus the re-
connection time of the remaining vehicles on the road (TV to
the LV). The stop time is calculated as the time between ta and
the time that the error on the goal velocity is less or equal to
0.01m/s and the error on the lateral position is less or equal to
0.001m. The travelled distance between these two instances is
the stopping distance. Re-connection time is calculated as the
time between the instance that etg is larger than 0.4 s and the
instance that the etg stays below 0.01 s. Stopping time and dis-
tance are largely influenced by ax,min as the lateral movement
consumes less time compared to the longitudinal movement.
Furthermore, the duration of the lateral movement has a major
impact on the difference in closing time due to the distance and
velocity difference it creates between both strategies.

As expected, the timegap error at tb shows that braking in-
lane (BIL) results in a higher time-gap than braking out-of-lane
(BOL) and therefore a longer closing time for BIL compared to
BOL. This is underpinned by the velocity difference between
the TV and LV at tb and the acceleration length in Fig. 5. The
lateral deviation in both strategies is equal, following Fig. 6,
however, the steering outputs show different behaviour in both
strategies. This, helped by the decreased longitudinal velocity
because of braking, translates into an increased yaw rate in the
vehicle dynamics for BIL compared to BOL.

As BIL results in higher lateral loads on the vehicle dynamics,
this strategy is used in further experiments and as a baseline
comparison. Figs. 7 and 8 show the error difference between
the input/states of the baseline (BIL without failure) and the
input/states of the subsequent failure.

4.5 Robustness of the controller

Following the results in Fig. 7, the steering failure causes the
controller to output higher steering inputs for the vehicle. Next

to that, steering is less smooth and shows more abrupt changes
in direction, caused by reaching the limit of the steering rate
δ̇. This is also clearly visible in the yaw rate r, showing its
influence on the lateral vehicle dynamics.

Furthermore, the results show that the model uncertainty de-
creases the maximum controller setpoint and makes the initially
understeered vehicle show oversteered behaviour. The latter
translates into the vehicle turning more compared to the base-
line with the same steering input. This effect is also observed in
the lateral position error, where the vehicle initially steers too
much, and thus deviates further from the path.

4.6 Reconfiguration of the controller

The reconfigured controller uses the information on the failures
(Section 4.2) to update the internal NMPC model (Equation
(6)). For the steering failure, this means that δ(k) is transformed
into 0.5δ(k). Also, the bounds on δ and δ̇ are increased by
a factor 1

0.5 . In the case of the model uncertainty in the rear
cornering stiffness, Cαr is changed to half of its original value.
Fig. 8 shows the results, in which the lateral control action
is smoother for the steering failure but similar for the model
uncertainty, compared to the non-reconfigured controller in
Fig. 7. The magnitude of the steering output is comparable to
the failure and the model uncertainty in relation to the non-
reconfigured simulations.

The steering output and yaw rate of the model uncertainty
can be compared with its non-reconfigured result, however, the
maximum lateral deviation error is decreased by 92% for the
reconfigured controller. For the steering failure, the error on
lateral deviation is decreased to under 0.013mm, a decrease up
to 33%, and the yaw rate error to a maximum of 0.00037 rad/s,
effectively eliminating the effect of the failure on tracking
performance.

When evaluating all figures and Table 4, it is clear that the con-
troller is capable of handling a power steering failure or model
uncertainty in the rear cornering stiffness. Especially when re-
configuring the NMPC model, the performance is comparable
to that of the system without failure. Furthermore, as BOL
results in a lower gap-closing time for the TV, thus disrupts
the surrounding vehicles less than BIL, and results in lower dy-

Fig. 5. Longitudinal velocities vx and accelerations ax during
the lane changing strategies for all vehicles.

Fig. 6. Comparison between both mitigation strategies on steer-
ing output δ, lateral position dy and yaw rate r

Fig. 7. Error plots of the controller with a steering failure
and uncertainty in the rear cornering stiffness on steering
output δ, lateral position dy and yaw rate r compared to
the baseline.

namic loads thus higher comfort, it is recommended to use this
mitigation strategy if the environment of the vehicle allows this.

5. CONCLUSIONS

The contributions of this research focuses on introducing a
functional safety architecture that can handle multiple types of
faults, the strategy and the fail-safe mitigation algorithm to park
the vehicle on the road shoulder in case of severe failures. Such
an architecture is essential to enable higher levels of automation
and prove the functional safety of a system when a failure
occurs.

Our fail-safe mitigation strategy (tactical decision making and
motion control) relies on a finite state machine and a tai-
lored MPC formulation, controlling the lateral and longitudinal
movement of the vehicle simultaneously. The results, shown
for a severe failure (i.e. power steering failure) and model un-
certainty in the rear cornering stiffness, highlight the trade-offs
for different lane changing strategies for the faulty vehicle, i.e.
braking in- and out-of-lane, and for the other vehicle in upcom-
ing traffic. Furthermore, results also show that if the controller
can have failure-awareness it can adapt and performance can be
improved.
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Furthermore, the results show that the model uncertainty de-
creases the maximum controller setpoint and makes the initially
understeered vehicle show oversteered behaviour. The latter
translates into the vehicle turning more compared to the base-
line with the same steering input. This effect is also observed in
the lateral position error, where the vehicle initially steers too
much, and thus deviates further from the path.
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(Section 4.2) to update the internal NMPC model (Equation
(6)). For the steering failure, this means that δ(k) is transformed
into 0.5δ(k). Also, the bounds on δ and δ̇ are increased by
a factor 1
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Fig. 7. The magnitude of the steering output is comparable to
the failure and the model uncertainty in relation to the non-
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maximum lateral deviation error is decreased by 92% for the
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to 33%, and the yaw rate error to a maximum of 0.00037 rad/s,
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configuring the NMPC model, the performance is comparable
to that of the system without failure. Furthermore, as BOL
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the surrounding vehicles less than BIL, and results in lower dy-
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functional safety architecture that can handle multiple types of
faults, the strategy and the fail-safe mitigation algorithm to park
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an architecture is essential to enable higher levels of automation
and prove the functional safety of a system when a failure
occurs.

Our fail-safe mitigation strategy (tactical decision making and
motion control) relies on a finite state machine and a tai-
lored MPC formulation, controlling the lateral and longitudinal
movement of the vehicle simultaneously. The results, shown
for a severe failure (i.e. power steering failure) and model un-
certainty in the rear cornering stiffness, highlight the trade-offs
for different lane changing strategies for the faulty vehicle, i.e.
braking in- and out-of-lane, and for the other vehicle in upcom-
ing traffic. Furthermore, results also show that if the controller
can have failure-awareness it can adapt and performance can be
improved.
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Fig. 8. Error plots of the reconfigured controller with a steering
failure and uncertainty in the rear cornering stiffness on
steering output δ, lateral position dy and yaw rate r com-
pared to the baseline.

In future work we plan to validate our proposed architecture
and fail-safe mitigation algorithm also through experiments, to
verify it using more scenarios and by incorporating the other
needed components (such as fault diagnosis and severity classi-
fication). Furthermore, we aim to perform a stability analysis
on the proposed NMPC controller and look further into the
consequences on the remainder of the platoon (e.g. on string
stability and time headways). Other work includes real-time
implementation and experimental validation.
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