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Abstract
One of the main research areas in air transportation is the area of flight-to-gate assignment problems.
In flight-to-gate assignment problems, flights are assigned to gates such that the utilities of all stake-
holders are maximised. Among the stakeholders are the passengers, whose preferences are up till
now often represented in terms of passenger walking distances (distance between entrance and gate).
However, the passenger experience is not only affected by the distance they need to walk but also by
congestions it encounters at passenger processing points.

One of the most promising modelling techniques, that is capable of modelling airport passenger flows
and terminal processes, is the agent-based modelling and simulation paradigm. Agent-based mod-
elling and simulation takes a bottom-up approach. This approach aims to identify emerging patterns at
the overall group level, by creating agents with specific capabilities at local level.

Currently, the airside and landside of an airport are independently managed. This also reflects the
scientific gap that is existent in current literature. Therefore, the current study aims to open a new
research area by integrating the two paradigms described above. Such that the integrated approach
enjoys the strengths of both paradigms. The main research objective is as follows:

To develop a methodology to integrate an agent-based model for airport terminal processes
with a flight-to-gate assignment optimisation, such that these airside and landside processes

can be managed simultaneously.

The current research will mainly focus on the security checkpoint queue, since it was found that the
security checkpoint is the main landside source of airside delay. Two integration methodologies have
been created in this research. The first integrates the agent-based model directly into the flight-to-gate
assignment optimisation strategy (direct integration). The second methodology aims to approximate
the agent-based model response by means of meta-models (indirect integration), before integrating
the meta-models with the flight-to-gate assignment optimisation.

The objective of the integrated optimisation is to make sure that the passenger experience at the secu-
rity checkpoint is optimised. The passenger experience is assumed to be optimal when the spread of
experienced queue times among the different security checkpoints of the airport is minimised. This can
be achieved by assigning the flights-to-gates such that passengers departing with a specific flight take
a roughly defined path to the assigned gate. The problem is optimised using a differential evolution
algorithm.

The direct integration methodology, based on the simulation optimisation framework, integrates the
agent-based model directly into the optimisation routine. An advantage of the proposed methodology
is the fact that there is little (to no) loss of detail of the agent-based model and the found optimal as-
signment is assumed to be the actual optimal assignment. However, the major disadvantage of this
method is the fact that the optimisation of a small case study (considering 8 flights and two gates) could
take in the order of days to complete. This is partly due to the fact that each scenario (flight-to-gate
assignment) needs to be simulated multiple times using the agent-based model, since each simulation
run could result in a different realisation. Furthermore, the optimisation algorithm used, explores both
feasible and infeasible solutions. Especially these infeasible solutions can be challenging in terms of
simulation time.

The indirect integration methodology, using meta-models created of the governing agent-based model,
is able to optimise in the order of minutes. However, the validity of the found optimal assignment is
dependent on the quality of the constructed meta-models. Two meta-model types have been created:
Regression meta-models and Gaussian radial basis function meta-models. Both meta-model types
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have difficulty approximating the highly non-linear behaviour apparent in the agent-based model data
(high approximation errors were observed). Furthermore, by means of a validation case study it was
observed that the indirect integration methodology was not yet able to locate the same optimal assign-
ment as the direct integration methodology.

Current research has opened up a whole new research area by developing two novel methodologies
to integrate an agent-based model and simulation with a flight-to-gate assignment optimisation. The
challenge during the integration was to match the level of the agent-based model (micro/passenger
level) with the level of the flight-to-gate assignment optimisation (macro/airport level), without losing
too much detail. The scientific contribution is substantial, since up till now the integration of an agent-
based model with a flight-to-gate assignment optimisation has not yet been investigated nor performed.
In addition, this study describes in detail all the steps taken and explored necessary to make the inte-
gration possible, which can be confidently used by future researchers.

This research can be further improved by focussing on improving the meta-models’ performances.
Furthermore, future studies could investigate the real-time reassignment problem, by creating a co-
ordinating agent that reassigns flights-to-gates when congestions occur in the terminal or flights are
delayed. Another suggestion would be to further calibrate the agent-based model and simulation. In
the future, the developed methodologies could be used in real practice. Airport managers could use
the methodologies to forecast passenger flows and pro-actively avoid congestions at the airport.
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1
Introduction

Since the Airline Deregulation Act of 1978, air transport has become a highly competitive market. This
has initiated a trend towards lower ticket prices, making air transport available to the general public.
Demand for air travel is growing ever faster, which means more flights per hour at airports, bigger
aircraft, and a general higher passenger density. Managing these streams of traffic is one of the chal-
lenges airport managers face on a daily basis. A main field of research to relieve the airport managers
is the flight-to-gate assignment optimisation. Many factors are taken into account when considering
flight-to-gate assignments, such as the minimisation of passenger walking distances.

However, in reality these flight-to-gate assignments are not deterministic. Delays can be caused by
various reasons such as weather delays, aircraft congestion and technical problems. In addition, there
can be terminal delays that affect the passengers at the airport. May 2017, Amsterdam Airport Schiphol
(AAS) became so congested, that passengers were missing their flights due to congestions at check-in
points, passport control and security checkpoints. The latter was one of the biggest bottlenecks. Fur-
thermore, there is a growth in passengers bringing checked luggage, which makes check-in queues
longer. In general, passenger numbers will continue to grow. In April 2018, 6 million passengers flew to
or via AAS, which is 3% more than the previous year (Royal Schiphol Group Mediarelaties (2018)). It is
expected that passenger growth will continue in the coming years. Improved infrastructure is needed to
accommodate the growth. However, investment in expansion of airports is costly and does not always
dissolve bottlenecks as was the case at AAS. Therefore, new smart approaches have to be developed
that could be used to cope with the growth in passenger traffic at airports.

One of the research fields that is interested in modelling passenger flows at airports is the agent-
based modelling and simulation paradigm. Properly calibrated and validated agent-based models and
simulations can be used to assess infrastructure changes or schedule scenarios at real airports. To
understand and use passenger flow knowledge at airports, a novel research is proposed to investigate
the integration of flight-to-gate assignments model with a passenger flow model. Such an integrated
model could be used to manage landside and airside simultaneously and possibly prevent cases like
the one from AAS. The passenger flows at airports will be represented by an agent-based model and
simulation (ABMS), which is a powerful method to study complex systems and has proven to be very
useful in traffic and transportation systems (Chen (2010)). However, in general these agent-based
models are computationally heavy. Hence, these models are less preferred for quick scenario assess-
ment.

Therefore, both direct and indirect integration methods will be developed. The direct integration method
will integrate an agent-based model directly into the flight-to-gate assignment optimisation routine. In
the indirect integration method, agent-based model abstractions will be used to integrate with a flight-
to-gate assignment model. Once these integrated models of both landside and airside processes are
built, scenarios will be analysed to show the added value of such an integrated approach for efficient
and resilient airport management. Results of this research might also be used in, or useful for, current
airport operations.
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This report contains every step of the research performed and explored. In chapter 2 the most impor-
tant literature for the current research is reviewed. In addition, the existing scientific gap is identified.
Chapter 3 elaborates on the research framework, by defining the problem statement, research objec-
tive and questions. The chapter is concluded with the methodology that will be used to achieve the
research objective. In chapter 4 the adjustments that have been made to the agent-based airport ter-
minal operations model (AATOM) will be discussed. Then, in chapter 5 the direct method of integrating
the agent-based model with a gate and resource assignment optimisation will be treated. The prob-
lem will be mathematically formulated and the integration method developed. Chapter 6 introduces
the second indirect method of integration by meta-modelling. Before the actual integration can take
place, the abstractions of the agent-based model need to be created. The methods of integration are
tested in two case studies in chapter 7. In chapter 8 the results are discussed and implications are
given. Finally, the study is concluded in chapter 9, where the research questions are answered and
recommendations for future research are given.
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2
Literature review

In this chapter a literature review is presented. The main goals are to summarise what research has
been done and present the state-of-the-art in relevant scientific fields. In the literature review report
“An integrated approach for efficient and resilient airport management: Literature review” Spans (2017),
previously performed research was identified that could be used as input for this thesis. The current
section will give an overview of the most important and influencing findings of that literature review.
Since this thesis aims to open a whole new research direction, the current literature review will zoom
in on the separate parts involved that will be needed for the integration in the body of this thesis.

This chapter has been split into three main sections: 1. Flight-to-gate assignment problems (sec-
tion 2.1), 2. Airport passenger flow modelling (section 2.2), 3. Simulation optimisation. Finally, in
section 2.4 a main conclusion is drawn from the literature reviewed.

2.1. The flight-to-gate assignment problem
In this section the research into flight-to-gate assignment problems (FGAP) is reviewed. This section
starts off by looking at the problem description of FGAP, in section 2.1.1. In the same section, the
parties involved in a FGAP will be briefly addressed and their interests given. In section 2.1.2, the
models developed to represent the FGAP are classified according to their characteristics. The second
part of this section, starts in section 2.1.3 and is concerned with the solution methods used in FGAPs.

2.1.1. Problem description
Air transport growth has driven research into techniques for managing and allocating airport and airline
resources in a dynamic operational environment. Increasing passenger demand for comfort, in com-
bination with fierce competition between airlines, have led to the need for new models and methods
(Dorndorf et al. (2005)). One of the most complex and important problems that operations managers
daily face is the flight-to-gate assignment problem (Bouras et al. (2014)).

The problem that these managers try to solve is which aircraft to assign to which gate while maximising
for passenger convenience, airline preferences and/or airport efficiency. Dorndorf et al. (2005) argues
that the problem these managers face today are more complicated than most other traditional schedul-
ing problems. This can be attributed to two factors. Firstly, due to the high number of factors that have
to be taken into account such as incoming/outgoing flights, the presence of transferring passengers,
terminal equipment, crews and baggage handling. In addition, the use of available resources is highly
interdependent. Therefore, a resource management system for airports of any size is a complex task.

Assignment considerations and objectives
A solution to the FGAP, is such that the preferences of all stakeholders are fulfilled up to a satisfactory
level. Clearly, each stakeholder wants its own utility to be maximised. However, to ensure a durable
system the gain needs to be spread among parties involved. Besides preferences of the stakeholders,
there are also restrictions imposed by regulations and facilities which are therefore of general interest.
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These imposed restrictions define feasible solutions. Hence, if one of the conditions has not been met,
then the flight-allocation is not feasible. This could for example be that the gate or parking position
should technically fit the aircraft. Furthermore, certain origin destinations of a flight require a custom’s
facility. So if this is not in place for a certain gate then it is not a feasible allocation.

Papers on the FGAP describe similar desires of the different parties involved. Research by van Rhee
(1992) describes the preferences of passengers, ground handlers, airlines, and the airport. Some ex-
ample assignment considerations as given by van Rhee are given below.

Passengers’ preferences

• Gates with jet bridges are preferred over off-gate parking places.
• Waiting rooms should be suitable for the number of departing passengers in a flight.
• Arriving/departing passengers prefer short walking distances towards the exit/entrance.
• Connecting passengers prefer short walking distances towards their connecting flight.

Ground handlers’ preferences

• Acceptable transport distances for luggage and handling equipment.
• Parking spaces with enough clearance.
• Successive flights of one airline parked at the same position or in the vicinity.
• Grouping of aircraft, such that multiple aircraft can be handled at the same time.

Airlines’ preferences

• Minimal handling costs.
• Of utmost importance is the fulfilment of passenger’ interests.
• Requests for special parking positions should be honoured if possible.

Airport preferences

• Utilities of all parties involved should be proportionally maximised.
• Minimal operating costs.
• A balanced passenger and aircraft spread among the airport.

A vast amount of papers have tried to solve the FGAP, whilst taking the above preferences into account.
However, creating an optimised gate assignment plan involves a certain objective. A clear overview
of proposed objectives in the FGAP is given by Aktel et al. (2017). The majority of the papers on gate
assignments, propose an objective function that minimises walking distance of the passengers. One
of the first papers written on FGAPs is by Babić et al. (1984). In this paper aircraft are allocated to
an aircraft stand while minimising passenger walking distances. For arriving passengers, the walking
distance is the measured distance between the gate and (central) baggage claim area. The walking
distance for departing passengers is measured between check-in counters and gates.

Similar to the paper by Babić et al. is the work by Mangoubi and Mathaisel (1985) which tries to min-
imise passenger walking distances within the airport terminal using data from Toronto National Airport.
In addition to arriving and departing passengers, walking distances of transferring passengers are also
taken into account. The walking distance for transferring passengers is dependent on the location of
both the arriving gate and departing gate. However, the connecting gate of transferring passenger
is not known at that time. Therefore Mangoubi and Mathaisel make use of an uniform distribution as-
sumption to determine all inter-gate walking distances (the average walking distance to all other gates).
Mentioned in the paper is that this assumption has some major drawbacks, as in reality the distribution
is not uniform. Finally, the assignment problem is solved using a linear programming relaxation of an
integer program formulation and a heuristic. The latter proved to significantly reduce the computational
time if used as starting point. The model presented by Mangoubi and Mathaisel is a simple model
which could perfectly serve as a basis to build from.

Other papers that try to solve the FGAP using passenger related objectives include the work by Chang
(1996), Ding et al. (2004), Haghani and Chen (1997), Xu and Bailey (2001), Yan and Huo (2001).
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2.1.2. Flight-to-gate assignment problem classification
In this sub-section, some structure is added to the vast amount of literature on the FGAP. This is done
by classifying the models used for the FGAP into deterministic and non-deterministic models.

According to Cheng et al. (2012), the models used for the flight-to-gate assignment can be classified
into static models and stochastic & robust models. The main difference between the two types of mod-
els is that the static model deals with a deterministic formulation. Whereas, the stochastic and robust
models take disruptions into account and do not rely on an deterministic world (ideal world). The main
difference between stochastic and robust models, is the fact that stochastic models start by assuming
that the uncertainty has a probabilistic description whereas in robust optimisation the uncertainty con-
verted into deterministic and set-based buffers. Therefore, the decision is made to classify the models
either as deterministic or non-deterministic.

Deterministic models
The first class of models are the deterministic models. Especially in the early years of research into
FGAPs, deterministic models were the way to go. All the papers by Babić et al. (1984), Ding et al.
(2004), Haghani and Chen (1997), Mangoubi and Mathaisel (1985), Xu and Bailey (2001), Yan and Huo
(2001) propose deterministic gate assignment models. These models assume a fixed flight schedule
and a fixed number of gates. The main assumption of these models is that the expectations of the
systems are equal to the realisations, there is no uncertainty.

Recall that Mangoubi and Mathaisel used a model to minimise the passenger walking distance, taking
into account arriving, departing and transferring passengers. The model proposed can be classified as
a deterministic model.

The parameters used are the following:

• 𝑁 is the set of flights considered,
• 𝑀 is the set of gates considered,
• 𝑛 is the total number of flights,
• 𝑚 is the total number of gates,
• 𝑝𝑎

𝑖 , 𝑝𝑑
𝑖 , 𝑝𝑡

𝑖 denote the estimated number of arriving, departing and transferring passengers using
flight 𝑖, respectively,

• 𝑑𝑎
𝑗 , 𝑑𝑑

𝑗 and 𝑑𝑡
𝑗 denote the distances which the three types of passengers need to bridge for re-

spectively arriving, departing and transferring passengers from gate 𝑗,

The binary decision variable 𝑥𝑖𝑗 is assigned for each possible flight-to-gate assignment, where:

𝑥𝑖𝑗 = {
1 if flight i is assigned to gate j,
0 otherwise.

In eqs. (2.1) to (2.3) the deterministic model of Mangoubi and Mathaisel (1985) is shown. The total
walking distances for all passengers is denoted by 𝑍.

min 𝑍 =
𝑛

∑
𝑖=1

𝑚

∑
𝑗=1

(𝑝𝑎
𝑖 𝑑𝑎

𝑗 + 𝑝𝑑
𝑖 𝑑𝑑

𝑗 + 𝑝𝑡
𝑖𝑑𝑡

𝑗)𝑥𝑖𝑗 , (2.1)

s.t.

𝑀

∑
𝑗=1

𝑥𝑖𝑗 = 1 ∀𝑖 = 1, ..., 𝑁 (2.2)

∑
ℎ∈𝐿(𝑖)

𝑥ℎ𝑗 + 𝑥𝑖𝑗 ≤ 1 ∀𝑖 = 1, 2, ..., 𝑁 ∀𝑗 = 1, 2, ..., 𝑀 (2.3)

The constraint in eq. (2.2) ensures that every flight is assigned to one and only one gate. Furthermore,
eq. (2.3) makes sure that two aircraft may not be assigned to the same gate concurrently. 𝐿(𝑖) is the
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set of all flights ℎ which landed before flight 𝑖 and are still on the ground at the time flight 𝑖 arrives. 𝐿(𝑖)
is termed a “conflict set”. As one can see, there is no uncertainty included in the model itself. Hence,
the deterministic type of model assumes an ideal world.

However, airport operators produce the gate assignment plan one-day in advance. During the actual
day deviations from original plan might occur. Assuming that the initial one-day ahead plan was made
using a deterministic model, then this calls te need for real-time re-assignments. As in the deterministic
model these unforeseen events where not taken into account. Therefore, the second class of models
are the non-deterministic models.

Non-deterministic models
The first subcategory of the non-deterministic models are the stochastic models for the FGAP. This op-
timisation problem is based on probabilistic information. Gu and Chung (1999) try to model the effect
of stochastic flight delays, focussing on the reassignment problem. This paper introduces a genetic
algorithm to solve the FGAP and finds the best assignment with regards to the extra delay time.

In the work by Yan and Tang (2007) not only stochastic time delays are taken into account, but also
incorporate the probabilities of the delays into the model. Yan and Tang create a stochastic flight delay
gate assignment model. This model is a gate assignment model which takes flight delays into account
using data from Taiwan international airport. The model was formulated as an integer multiple com-
modity network flow program and made use of expected semi-deviation risk measure.

The second subcategory concerns the robust gate assignment models. The robustness of the model
relates to the ability of an assignment plan to remain sustainable under minor disturbances in the sched-
uled flight departure and arrival times. Already in the paper by Mangoubi and Mathaisel (1985) a fixed
buffer was suggested between two successive flight, which is an attempt to create a robust plan. The
fixed time buffer allowed for deviations in flight schedules.

Flight delays, severe weather, or equipment failures could potentially disrupt planned schedules and
therefore Bolat (2000) produces a mixed-binary mathematical model with a quadratic function for min-
imizing the variance of idle times at the gates. Idle time is the time between two successive flights
in which the gate is not being used (empty). When an aircraft departs late from its gate, it does not
directly disrupt the pre-made assignment schedule. This would only mean that the planned idle time
after departure is partially used. Hence, each flight should be assigned to a gate such that the idle
time after its departure is maximised. However, the assumed ground time of flights and the available
time of gates are constant. Therefore the goal of maximising the idle time after departure can only
be achieved by uniformly distributing the idle times over the gates. As a result the probability of gate
conflicts is minimised.

In the paper by Diepen et al. (2012), a gate assignment plan is made specifically for Amsterdam Airport
Schiphol (AAS). The model that is based on gate plans. Each gate plan consists of a subset of the
flights grouped because they can be assigned to a single gate of a certain type. Gates are then grouped
according to their type. Finally, the best subset of gate plans is selected such that each flight belongs
to one selected gate plan, and such that the number of selected gate plans for a certain type of gate
is equal to the number of gates of this type. In order to maximise robustness, the idle time between
consecutive flights at a gate is maximised.

Reducing the prevalence and impact of gate blockage is another way of creating a robust assignment.
Gate blockage is the occurrence of an aircraft which is on-time and assigned at a certain gate but has
to wait because the preceding aircraft is still occupying the gate. Castaing et al. (2016) formulate an
optimisation problem that assigns flights to gates so as to minimise the expected impact of gate block-
age using historical data to predict delay distributions. Li (2009) uses a probability distribution function
on gate conflicts between two aircraft to minimise the number of gate conflicts.

Finally, the paper by van Schaijk and Visser (2017) proposes a novel robust solution to the FGAP.
Deterministic gate constraints are replaced by stochastic gate constraints, which include stochastic
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flight delays. In the paper a regression is made in order to predict flight presence probabilities whilst
taking into account specific explanatory variables. This is a well established model, however the model
requires specific data which might require restricted access.

The robust models are an improvement compared to the deterministic models, as they account for
disturbances to the existing flight plans. The world represented in robust gate assignment models is
closer to reality. However, most of the resulting plans exhibit one-sided robustness, due to the fact
that only flight delays are taken into account. However, an airport managers could also deviate from
the gate assignment plan when disturbances at airport areas are observed. The work by Şeker and
Noyan (2012) shows an initial attempt to model terminal originating delays. The paper introduces an
estimation function on the gate conflict. A similar approach is used in the paper by Lim andWang (2005).

Another way to classify the models by single or multiple time slot models. The review of the related
literature is not shown here, but can be found in Spans (2017).

2.1.3. Solution methods for the flight-to-gate assignment models
In this sub-section the several solutionmethods used to solve the FGAPwill be discussed. Themethods
can (roughly) be split up into three groups: Expert methods, Simulation methods, and Mathematical
programming techniques. The methods will briefly be explained and important papers will be referred
to.

Expert methods
One way to solve a FGAP is with the use of expert based systems. Expert systems are a branch of
applied artificial intelligence, and were developed by artificial intelligence researchers in the mid-1960s.
The idea behind expert systems is that expertise, task-specific knowledge of humans, is recreated in a
computer as a model/software. End-users of the model could then call upon the computer for specific
advice. The expert system can make inferences, before arriving at a conclusion. As like a human
advisor, the system gives an advice and explains, if necessary, the logic behind the advice (Aronson
et al. (2005)). The logic behind the given advice is dependent on the rules implemented in the system.
Depending on the system, system operators are or are not in the position to change or add rules in
order to improve the system.

For the FGAP, Gosling (1990) argues that traditional operations research techniques have difficulty
dealing with uncertain information and multiple performance criteria. Furthermore, the operations re-
search techniques do not fit the needs of real-time operations support. A lot of research has focussed
on rule-based expert systems and papers like Brazile and Swigger (1988), Su and Srihari (1993) use
expert models to solve the FGAPs.

Simulation methods
Another way to solve the FGAP is by making use of so called simulation methods. Obviously, simula-
tion methods use a simulation approach to solve the problem. This method is most often used in the
situation where the deterministic gate assignment does not hold any more and the operations man-
agers need to interfere. This could be the case when flights are delayed or when there are bottlenecks
of passenger flows in the terminals. It can be seen as a planning and operational tool for simulating
the assignment of gates to aircraft. It can be used to evaluate the effectiveness of operational options
to improve the gate utilisation.

In the study conducted by Yan et al. (2002), a simulation framework is used that is able to analyse the
effects of stochastic flight delays on deterministic assignments. In addition, the simulation can also be
used to evaluate flexible buffer times and real-time gate assignment rules based on greedy heuristics.
Another paper which solves the FGAP using a simulation method is Hamzawi (1986). The model used
in the microcomputer is expert-knowledge based.

Mathematical programming techniques
The mathematical programming techniques can also be seen as the optimisation methods and can be
further subdivided into 1.) Exact methods and 2.) (Meta-) Heuristic methods. Exact methods could
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make use of branch and bound in combination with the simplex method to arrive at the exact optimal
solution. Heuristic methods can also be used if the global optimum is not of major concern. These
methods mostly search for a satisfying solution.

The work of Babić et al. (1984), Bolat (2000) use the branch and bound techniques to minimise the num-
ber of passengers who have to walk the maximum distances, and minimise the variance of the gate idle
times, respectively. Yan and Huo (2001) use a multi-objective integer programming, simplex method
with column generation and branch and bound techniques for the minimisation of passengers’ walking
distances and waiting times. The column generation approach is conventionally used for solving linear
problems, whose optimal solutions may not be integers. Therefore, column generation needed to be
used together with the branch and bound technique to deal with larger scale problems.

A drawback of the exact algorithms is the fact that the computational time rapidly increases when the
problem size increases. To overcome the problem of computational time, heuristic methods can be
used. Mangoubi and Mathaisel (1985) used a combination of two mathematical approaches, a heuris-
tic and a linear programming relaxation, to find the solution that minimises transferring passengers’
walking distances. No integer programming algorithm was needed since the linear programming re-
laxation already led to a 0, 1 optimal solution. It was found that the computational time of the linear
programming relaxation was substantial, when compared to the heuristic approach. However, the com-
putational time could substantially be decreased by using the heuristic solution as the starting point for
the linear programming relaxation.

When exact optimization fails to generate a solution in an acceptable amount of time, or fails to have
a solution at all, or the objective function is non-linear , heuristics can be used. Heuristic methods can
be divided into meta-heuristics and problem specific heuristics.

Problem specific heuristics can be interpreted as a set of rules (defined using expert-knowledge) to
limit the solution space in order to speed up the solution process. Specific heuristics are developed in
the work of Mangoubi and Mathaisel (1985) and Haghani and Chen (1997).

Meta-heuristics is becoming the more popular way to solve complex problems. Commonly used meta
heuristics include tabu search (TS), simulated annealing (SA), genetic algorithm (GA), and various
types of colonisation algorithms (CA). In addition, a promising algorithm is the differential evolution
(DE) algorithm that is supposed to converge faster and with more certainty than many other acclaimed
global optimisation methods.

A tabu search algorithm is a very effective tool in many optimisation problems. A TS approach searches
for the optimal solution with help of an adaptive memory procedure (Vemuganti (1999)). Each iteration
the algorithm evaluates neighbourhood moves. The algorithm selects one, and then moves from the
current solution to a new solution. Restrictions are imposed to classify certain moves tabu and thus re-
strict their selection. A non-tabu move with the highest evaluation is conventionally selected, although
aspiration criteria permit sufficiently attractive moves to be selected in spite of their tabu status. After a
pre-specified amount of iterations, the algorithm stops. Haghani and Chen (1997) used a tabu search
algorithm to solve a single timeslot mixed integer quadratic gate assignment problem. As explained,
the algorithm exploits the special properties of different types of neighbourhood moves and creates ef-
fective candidate list strategies. Finally, all feasible solution sets were examined, and the best solution
for smallest total walking distance was chosen. In the same paper, the use of the heuristic method
was compared with the solution obtained with CPLEX (commercial software). It was shown that TS
obtained the same optimal solution in less computational time. Ding et al. (2004) adjusted the model
used by Haghani and Chen (1997) to allow it to handle over-constrained flight schedules with the ob-
jective to minimise the amount of unassigned flights and passenger connection times.

Simulated annealing is a generic probabilistic heuristic approach. SA locates a ”sufficient” approxima-
tion of the global optimum of a given objective function in a large sample space. SA considers just like
the TS algorithm neighbouring solutions and compares them to the current solution. The SA proba-
bilistically chooses either to accept a new solution or to keep the current. The probabilities are tuned
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in such a way that the problem ultimately tends to the solution with a better objective value. SA is used
in the multicriteria airport gate assignment of Drexl and Nikulin (2008).

A genetic algorithm as used by Bolat (2001), is originally developed by Holland (1975). GA provides a
group of generations (solutions), which are evolved towards better solutions using biological-inspired
operations such as mutation, cross-over and natural selection. The work by Gu and Chung (1999)
shows an application of the genetic algorithm to solve the aircraft gate reassignment problem. It was
found that the genetic algorithm was well capable of finding the global optimum.

Colony based meta-heuristics is a relatively new means to solve a optimisation problem. An example
of a CA is in the work by Pintea et al. (2008). In this study the FGAP is solved with a hybrid ant system.
The algorithm is based on the way ants search for food and find their way back to the hive. They do
this with the use of pheromone trails. Other agents (ants) are attracted by the pheromone, so they
choose the path with a greater accumulation of pheromones at junctions. Random factors are inserted
to avoid inflexible solutions in a dynamic environment. It was shown in this paper that the CA lead to
the optimal solution.

The most promising technique currently being used is the differential evolution algorithm. This algo-
rithm is acclaimed to converge faster and with more certainty than other global optimisation methods
over continuous spaces (Storn and Price (1997)). This paper shows the performance of the algorithm
by means of an extensive test bed. Several other algorithms were compared to the DE such as: Adap-
tive Simulated Annealing, the Annealed Nelder and Mead approach, the Breeder Genetic Algorithm,
The EASY Evolution Strategy and the method of Stochastic Differential Equations. All of the above al-
gorithms were outperformed by the DE in terms of required number of function evaluations necessary
to arrive at the global optimum of a test function. This was a big breakthrough at that time, since the
DE uses a fairly simple and straight forwards optimisation strategy.

First, the algorithm initialises a random population with (a to be specified) number of individuals such
that most of the parameter space is covered (target vector). Secondly, these initial population is evalu-
ated by the fitness function. Then the DE mutates the target population to a new population by adding
the weighted difference between two population individuals to a third individual. Then, crossover takes
place which increases the diversity of the perturbed parameters. The crossover process output will be
a trial solution that will challenge the target vector.

What should be noted is that most of themeta-heuristics performway on a continuous parameter space.
Since the idea is to define and create a FGAP such as defined by Mangoubi and Mathaisel, it might be
problematic to use these meta-heuristics. However, Pan et al. (2007) proposes a discrete differential
evolution (DDE) algorithm which is capable of solving a scheduling problem. Pan et al. found that
the DDE was still competitive to other algorithms such as the iterated greedy algorithm for discrete
parameter space problems.

2.2. Airport passenger flow modelling
In 2017 Amsterdam Airport Schiphol (AAS) saw over 68 million passengers strolling around the airport.
Entering, leaving or connecting from one gate to the other. The busiest airport is Atlanta International
Airport, which saw over 103 million passengers in 2017. Air transport is expected to double, to over 14
billion by 2029 based on ACI’s forecast annualized growth rate of 4.9% (Airports Council International
(2016)). This means that passenger guidance at airports is becoming ever more important. From the
moment a passenger arrives at the airport their progress, speed and dwell-time can all be used to
smooth the flow of people through the terminal. The main airport issues and challenges are concerned
with capacity, congestion and delay. The capacity of an airport is the ability to accommodate a given
level of traffic. Where traffic could be aircraft, people, luggage, freight or vehicles. When the capacity
reaches its limits or is exceeded, congestion occurs. These congestions, an accumulation of e.g. pas-
sengers, could cause disorders or even delays.

This section starts off by looking at the distinct airport passenger processes section 2.2.1. These
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processes can be modelled using the agent-based modelling and simulation (ABMS) paradigm. The
general working of agent-based modelling and simulation is explained in section 2.2.2. Furthermore,
existing literature on the application of ABMS in modelling passenger flows is discussed. Section 2.2.5
discusses the difficulties encountered when validating an agent-based model and simulation.

2.2.1. Airport passenger processes
At airports, passengers arrive and depart at both airside and landside. This is schematically shown in
figure 2.1. The top flow are the passengers that arrive at the airside (arriving/transferring passengers)
and on the bottom are the passengers that arrive at the landside (departing passengers). The figure
shows the main areas or processing points that the passenger will encounter. Not all passengers pass
the same areas, this depends on the type of passenger.

Figure 2.1: Arriving and departing passengers, derived from Gatersleben and van der Weij (1999).

As was seen in the FGAP, passengers can be classified as arriving, departing or transferring. In this
thesis, arriving passengers are referred to passengers following the upper flow in fig. 2.1, whilst depart-
ing passengers follow the bottom flow. Most of the arriving passengers do not spend time shopping
at the airport, whereas departing passengers do. Transferring passengers will de-board their initial
flight and go towards the passport control points. After they passed the passport check they continue
towards their connecting gates or lounges and wait for their connecting flight. Note that the presence of
transferring passengers is dependent on the type of airport, because they are present at hub-airports
and not at smaller regional airports.

Furthermore, the distinction can be made between domestic and international flights, or Schengen and
non-Schengen , respectively. If the passenger for example is flying international, passports need to be
checked (with the exception of EU). In case of domestic passengers, the passport control block could
be left out from fig. 2.1.

Passengers can have different purposes of travel, such as leisure or business, and this also affects
their behaviour at airports. A leisure passenger tends to go shopping, eating and drinking more often
and mostly arrives earlier at the airport. Whereas business passengers tend to arrive later at airports
with respect to leisure passengers and spend less time shopping.

Besides the mentioned passenger processes, the terminal lay-out or configuration also affects the time
it takes for passengers to arrive at their gate or leave the airport. For example if the terminal has a lin-
ear configuration, passengers entering and leaving the airport have short walking distances. However,
transferring passengers experience longer walking distances to their connecting flights with respect to
other terminal configurations.

Finally, a lot of airports are struggling with the increase in passenger traffic resulting in significant con-
gestion (IATA and ACI (2014)). This presents a problem as an airport wants to achieve an as high as
possible level of service (LoS) to their customers (passengers). The level of service indicates to what
extend the airport processes offer satisfactory passenger waiting times and adequate space. Level of
service is a means of comparing airports and the standards have been defined by the International Air
Transport Association (IATA). The key performance indicators (KPIs) that can be used for comparison
(Airports Council International (2014)) could be:

• Waiting times or processing rates at airport services,

10



• Area per person,
• Commuting distances and maximum wait times at transfer processes to ensure minimum con-
nection times.

IATA defined for the levels of service four categories: Over-design, optimum, sub-optimum, and under-
provided. A schematic classification matrix is shown in fig. 2.2

Figure 2.2: Level of service matrix as defined by IATA, taken from IATA and ACI (2014)

The specific values of the LoS parameters have not been listed, but can be found in IATA and ACI
(2014).

2.2.2. Agent-based modelling and simulation
Agent-based modelling and simulation (ABMS) is a promising way to model the passenger flows at
airports. ABMS is often used to study complex systems and could be seen as part of the artificial intel-
ligence research field. In this section, the general working of agent-based modelling and simulation is
described.

“In agent-basedmodelling, a system ismodelled as a set of autonomous decision-making entities called
agents”(Bonabeau (2002)). An agent is an autonomous, computational entity that perceives its envi-
ronment through its sensors and acts upon its environment through its effectors (Weiss (2001)). The
agent’s autonomy is only constrained by the fact that it is programmed by a human being. So, in this
context it means that the agents pursue their goals in an open-ended manner (O’Sullivan and Haklay
(2000)). The autonomy of agents gives the agent (to some extent) control over their own behaviour,
they can act without the intervention of humans and other systems.

Agents may be affected by other agents, which can be modelled using a multi-agent system. In a multi-
agent system, agents interact with each other in an environment to solve problems, achieve goals or
execute tasks that are too difficult for one agent to solve autonomously. In order for agents to follow
their purpose, a modeller programs agents with behaviours, often described by simple rules, and inter-
actions with other agents, which in turn influence their behaviours.

This brings one to the major benefit of agent-based modelling which is the ability to represent socio-
technical factors of agents by making use of a bottom-up modelling approach. This approach aims
to identify emerging patterns at the overall group level, by creating agents with specific capabilities at
local level. Furthermore, cognitive and social models can be implemented, resulting in diverse agents
who are able to make decisions autonomously.
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By modelling an entire group of agents on an individual basis, the full effect of the diversity that exists
among agents in their attributes and behaviours can be observed and give rise to the behaviour of the
system as a whole. A specification of a multi-agent system comprises specifications of the environment,
local agent properties (cognitive and/or behavioural), and interaction among agents, and between the
agents and the environment.

Agent-basedmodelling has several benefits over othermodelling techniques. The arguments Bonabeau
uses are that agent-based modelling:

• Captures emergent phenomena: which results from the interactions of individual entities.
• Provides a natural description of a system: The model is composed of “behavioural” entities,
which makes the simulation of the model seem closer to reality.

• Flexible: in the case of an agent-based model means that it is easy to extend and/or tune for
example the agent’s behaviour. In addition, it is possible to change the level of aggregation of
agents.

The environment can be classified by its properties, according to Russell et al. (1995). These are for
example:

• Deterministic / Non-deterministic: In a deterministic environment an agent’s action has a single
guaranteed effect, whereas in a non-deterministic environment there is uncertainty about the state
that will result from the action.

• Static / Dynamic: A static environment remains unchanged over time, except when there are
actions performed by the agent. In a dynamic environment other processes are operating on it
and change the environment beyond the agent’s control.

• Accessible / Inaccessible: An accessible environment is one in which the agent can obtain
complete, accurate, up-to-date information about the environment’s state.

ABMS takes a bottom-up approach, which means that it is built up agent-by-agent and interaction by
interaction. There are several types of agents:

• Reactive agents: are agents that are able to perceive their environment, and respond in a timely
fashion to changes that occur in it.

• Proactive agents: are driven not only by observations, but also by internal states.

In the case of a reactive agent, an observation is the input of the agent which directly (or with a delay)
results in a response. This type of agent has a set of actions for all possible observations in order to
satisfy their design objective. Proactive agents posses an internal/cognitive model and show goal di-
rected behaviour. This internal model could be aimed at solving a problem, planning, decision making,
or learning processes. However, the agent does not have complete information of the system. The
agents have incomplete information about their environment and are restricted in their capabilities.

Interaction among agents depends on the social abilities that the agents possess, which are important
in the formulation of the agent-models. Do they have the ability to communicate in an indirect (through
the environment) or direct way? Are they able to coordinate with the aim to achieve (/avoid) desirable
(/undesirable) states? Are the agents able to understand and reason about the behaviour and internal
states of other agents? Furthermore, one of the choices the programmer needs to make whether or
not there is a cooperative setting or a competitive setting.

Agent-based models can be applied and could be useful in any system where emergent phenomena
occur. These include social, political and economic sciences. The main areas where agent-based
modelling is applied are on studying markets (e.g. stock market), organisations (e.g. operational risk),
diffusion (e.g. diffusion of innovation) and flows (e.g. evacuation or customer flow management). The
latter area is of special interest, since passenger flow management at airports has become more im-
portant.

Concluding, in all agent-based models three aspects should be present such that one could enjoy all
the benefits of agent-based modelling:
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• Interaction among agents; The agents should be able to interact in the environment,
• Local autonomy; Agents posses the ability to make decisions autonomously, based on e.g.
observations,

• Diversity; There are different types of agents present in the model.

2.2.3. Passenger queuing models
One of the underlying passenger processes that has not yet been mentioned, is the process of queu-
ing. Queueing can be viewed as one of the most important parts to consider in the airport environment,
as this is where the passengers spend a large part of their time. However, up till now little research
has been done in the application of ABMS on queuing systems. Therefore, this side track will give the
necessary background knowledge from queuing theory.

The fundamentals of queuing theory were laid by the Danish mathematician A. K. Erlang in 1909 and
was taken further by the Russian mathematician A. N. Kolmogorov. Nowadays queuing theory belongs
to the classic part of logistics (Šeda et al. (2011)).

In queuing systems, passengers enter the system and require servicing. However, the serving options
may be restricted by the amount of service lines. In addition, the service time is random in nature, since
it is affected by for example the characteristics of the passenger. Then if all service lines or service
desks are occupied, the passenger needs to wait in line to be served. This example, describes queuing
system based on a FIFO principle, First In, First Out.

In queuing theory it is assumed that arrivals correspond to the Poisson process and that the service
time has an exponential distribution Šeda et al. (2016). One of the ways to classify the queues is the
A/B/C classification, where

• A: the probability distribution of random variable period (interval) between the requirement arrivals
to the system,

• B: the probability distribution of random variable service time of a requirement, and
• C: the number of parallel service lines.

As mentioned, most queuing systems assume the input flow is a Poisson process which has three
properties:

1. Stationarity (homogeneity over time): the number of events in equally long time intervals is
constant

2. Regularity: the probability of more than one event occurring in a sufficiently small interval of
length Δ𝑡 can be neglected

3. Independence of increases: the number of events that occur in one time interval are indepen-
dent of events occurring in other time intervals.

The queuing system’s behaviour is represented or described by the Markov Processes in the paper
by Šeda et al. (2016). Furthermore, this paper studies the queuing processes by Monte Carlo simula-
tions, which generates the population with a certain probability distribution. One of the key conditions
mentioned in this paper is the necessary and sufficient condition for a queue not to grow beyond all
bounds. This condition is shown in eq. (2.4), which is the utilisation equation.

𝜆
𝑐𝜇 < 1 (2.4)

where 𝜆 is equal to the Poisson parameter of passengers arriving, 𝑐 the number of parallel service lines
and 𝜇 is the exponential distribution parameter of the service rate.

In an agent-based model passengers could arrive with a certain distribution. For example, most of the
leisure people arrive around two hours before their flight, but there are also passengers who arrive
earlier or later. Hence, there exists a arrival distribution (or inter-arrival distribution). Kingman (1963)
wrote that the waiting time in a queue where the inter-arrival time and service rates have any given
distribution (G/G/c queueing system), can be approximated by the following formula:
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𝑊 𝐺/𝐺/𝑐
𝑞 ≈ 𝑊 𝑀/𝑀/𝑐

𝑞
𝐶2

𝑎 + 𝐶2
𝑠

2 , (2.5)

where 𝑊 𝑀/𝑀/𝑐
𝑞 denotes the queue time if the inter-arrival time and service time were both exponen-

tially distributed and, 𝐶2
𝑎 and 𝐶2

𝑠 are the coefficients of variation of service time and inter-arrival time,
respectively. Further details on the calculations of the parameters can be found in Kingman (1963).

The limitation of this equation is the fact that it does not perform well when there are no a clear distri-
bution in both the inter-arrival times as well as the service times. In the agent-based model this is the
case, as many passenger arrival streams overlap each other. This will result in a non-clear inter-arrival
distribution. Furthermore, these equations can be used to approximate the average queue time. How-
ever, during the day these queue times can drastically change within a couple minutes. It is especially
these peaks that cause disorder and therefore new means should be sought for to predict the queueing
time behaviour at an airport.

Agent-based models is a more precise way to model queues. The ABMS is able to show the queue
build up real-time and therefore forms the perfect starting-point to look for new ways to model queue
behaviour.

2.2.4. Air transport applications
Agent-based modelling techniques have been applied in many research fields like transportation sys-
tems (Chen (2010)). Air transport operations are ideal for multi-agent system modelling due to the
geographical and functional distribution, and the highly dynamic nature (Burmeister et al. (1997)). Be-
low, three important papers on the application of agent-based models on airport passenger modelling
are discussed. The main purpose is to gain information on how passenger processes on airports have
been modelled so far using ABMS.

Eilon and Mathewson (1973) are one of the first to propose an ABMS to simulate and evaluate passen-
ger processing times and congestion in the airport terminal. The model presented included a large set
of parameters such as flight schedules, passenger characteristics, processing rates at service desks,
and the availability of resources.

In the work by Ma (2013), a model of an entire airport was presented, including all processes that the
agents (passengers) encounter. The agent would arrive at the airport, possessing several advanced
traits such as the ability to make a phone call. Furthermore, the time it takes to make a phone call
and the frequency of phone calls were also included. Other traits are for example visiting the restroom,
eating or drinking. These advanced traits of passengers were aimed at representing the causal rela-
tionships between routing decisions and self-consciousness of passengers. After the initialisation of the
passengers, they would go their own ways in the airport and decide on where to go themselves using a
mechanism of route-choice decision-making. Passengers would arrive in a range from two hours to 30
minutes in advance of their flight and pass all processes as were described in section 2.2.1. Further-
more, the study also assigned basic traits to the agents. These basic traits included for example the
agent’s nationality, age, gender, travel class and frequency of travel. A Bayesian networks framework
linked the basic to the advanced traits of passengers and was able to infer the probabilities of actions.

In addition, Schultz and Fricke (2011) presented a model which was based on a stochastic approach
for passenger movement. In this model the agents posses an operational behaviour level, tactical be-
haviour level and a safety and emergency planning level. The aim of this research was to create a
valid and calibrated agent-based model, since the entire progress of terminal management depends
on the individual behaviour of the passengers. This model could then be used for system performance
evaluations and for the identification of optimisation capabilities. Included in the model were also the
handling processes of the airport such as the security checkpoints.

Another important paper, studies the use of agent-basedmodelling for security risk assessment. Janssen
and Sharpanskykh (2017) argue that traditional methods used for security risk assessment, that are
based on probabilistic tools and informal expert judgements, lack the capability to take the dynamic and
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intelligent nature of attackers into account. Therefore, Janssen and Sharpanskykh propose a combi-
nation of agent-based modelling and Monte Carlo simulations. An illustrative case study is given of an
terrorist that aims to bring in an improvised explosive device (IED) past an airport security checkpoint.
Three types of agents are included in the model: An attacker, a defender and passengers. Further-
more, the environment in which the agents interact consists of sensors (e.g. X-Ray machine) and
physical objects (Walls and queue separators). The queue separators allow for the measurement of
the number of people in the queue and the average queuing time.

As mentioned earlier, agent-based modelling and simulation is also used to model evacuation pro-
cesses. Cheng et al. (2014) consider the passenger group dynamics on an airport evacuation process
using an agent-based model. Results showed how passengers react to an evacuation signal, which
route to choose in an evacuation and the average time for passengers to finish the evacuation. This
work shows that an agent-based model is well suited to simulate the evacuation process at an airport
and analyse the pedestrian group dynamics. Airport managers could use the simulations to propose
and test evacuation plans.

There are also other simulation studies related to passenger flows in airport terminals. An example
is the paper by Gatersleben and van der Weij (1999), where passenger flow management is studied
at Amsterdam Airport Schiphol. They apply simulation to gain insights into the relations between pro-
cesses, the presence of bottlenecks and their causes. Since the simulation provided continuous output,
time-dependent graphs could be constructed of utilisation, throughput and waiting times. Furthermore,
the variance of occupation of the terminal segments could be analysed. Several scenarios were simu-
lated and by comparing the results the likelihood of arising bottlenecks could be estimated. The study
proved to be very successful.

2.2.5. Validation of agent-based models
There are many advantages of using agent-based modelling and simulation in complex systems. How-
ever, one of the main draw-backs is the ability to validate the model. Because agent-based modelling
is a way to describe what is happening in the real world, it is necessary to validate that the model is
actually describing the real world. The credibility of the model depends highly on the ability to validate
the model.

Often, there is a trade-off between increasing the confidence in the level of accuracy of the model, and
the cost of data collection and the effort required to validate the models. The validation of a pedestrian
flow agent-based model is difficult, due to the amount of parameters that are included in an agent-
based model (Teknomo and Gerilla (2005)). One way to collect validation data could be by using video
cameras at the specific locations. Using the videos, certain aspects can be validated such as speed of
overall flow and instantaneous occupancy by humans at the considered location. In addition, tracking
software could be used to show the paths passengers take around the airport terminal. Besides, vali-
dation of pedestrian flow models require a deep understanding of the factor and parameter behaviour.

Simulation models can be validated using mathematical statistics as described in the paper by Klei-
jen (1999). Three situations can be distinguished in which statistical validation techniques might be
necessary. When there exists:

1. no data on the input or output of the real system,
2. only output data on real systems,
3. both input (or trace) and output data on real systems, which is used to perform so-called trace

driven or correlated inspection simulation.

In case (item 1), an analyst could still generate simulated data and perform sensitivity analysis to test
whether the simulation model contradicts qualitative, expert knowledge.
In case (item 2), the means of real and simulated output distributions may be compared using the two-
sample student 𝑡 test.
Finally, in case (item 3) alternative regression and bootstrap procedures should be applied. The alter-
native regression should be applied if the outputs are normally, identically and independently distributed
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(n.i.i.d.), and is a regression of the differences on the sums. Alternatively, one could use bootstrapping
of a simple validation statistic based on differences.

2.3. Simulation optimisation
In this section, the most relevant theoretical content is discussed: Simulation optimisation. This re-
search field has the potential to close the existing scientific gap.

In mathematical programming models a large number of decision variables and constraints can be
involved. Similarly, simulation models often utilise a large number of random variates. However, the
combination of the two most used tools on this scale is not yet achievable (Fu et al. (2015)). Mostly
due to the fact that the dynamics of simulation models cannot be simply converted into e.g. a set of
constraints. Hence, this section studies one of the attempts to close this scientific gap. Simulation
optimisation is the process of finding the best values from among all possibilities for the input variables
without evaluating each possibility. The aim is to maximise information obtained with the lowest amount
of resources (e.g. time).

A simple flow chart of a simulation optimisation model is shown in fig. 2.3.

Figure 2.3: Schematic overview of a simulation optimisation model, taken from Carson and Maria (1997).

The simulation model has 𝑛 input variables and 𝑚 output variables. Hence, simulation optimisation tries
to find the optimal settings of input variables such that the output variables of interest are optimised.

In simulation optimisation there has to be a trade-off between allocating computational resources used
for searching the solution space versus running additional simulation replications to increase the esti-
mating performance of promising solutions. The optimisation process involves algorithmic computation,
as well as simulation computation for estimating the new candidate solutions. Therefore, two types of
sampling are needed: Sampling of the solution space and the sample path (stochastic simulation)
space.

A general simulation optimisation problem could be of the form as displayed in eq. (2.6). In this example,
there is only one output variable of interest (𝑦).

min
𝜃∈Θ

𝑦(𝜃) ≡ 𝐸[𝐿(𝜃, 𝜔)],

s.t. 𝑎(𝜃) ≤ 𝑏,
𝑐(𝐿(𝜃, 𝜔)) ≤ 𝑑,

(2.6)

where 𝜃 is the 𝑛-dimensional vector of all the decision variables and Θ is the feasible region. There is
little knowledge on the structure or shape of 𝑦 in eq. (2.6), such as linearity or convexity. The variable 𝑦
cannot be obtained directly. However, it is an expectation of another function 𝐿(𝜃, 𝜔), which is a sample
performance estimate obtained from the output of the simulation replication. This could for example be
the queue-time for a certain amount of passengers for a specific gate assignment plan. Furthermore,
𝜔 comprises the randomness in the system.

There are six major categories of simulation optimisation methods as described by Carson and Maria
(1997). The categories can be found in fig. 2.4, together with some of the most used techniques
employed in the different methods.
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Figure 2.4: Simulation optimisation methods as given by Carson and Maria (1997).

The most used categories in simulation optimisation methods are briefly explained below, for informa-
tive purposes only.

• Gradient based search methods
This methods assesses the objective function’s shape by estimating the response function gradi-
ent (∇𝑦). Deterministic mathematical programming techniques are then used to solve the prob-
lem.

• Stochastic optimisation
These methods are iterative algorithms based on gradient estimation. In stochastic optimisation,
local optimum have to be found for an objective function whose values are not known analytically.
However, the values can be estimated or measured. A disadvantage is that when the objective
function is flat, these algorithms tend to converge very slow and often diverge when the objective
function is steep. The counterpart of stochastic optimisation is sample path optimisation. In this
method a stochastic problem is turned back into a deterministic problem, by taking a large enough
set of samples. The problem is then optimised using a non-linear programming method.

• Response surface methodology
The response surface methodology (RSM) is explained in Kleijnen (2008). It is a procedure for
fitting a series of regression models to the output variable and optimising the resulting regression
function. An application of RSM in simulation optimisation is shown in Biles (1974).

• Heuristic methods
These are direct search methods that require only function values. This category includes ap-
proaches such as genetic algorithms, tabu and scatter search approaches and any other iterative
and possibly population-based (evolutionary) algorithms from deterministic optimisation.

The interest in the area of simulation optimisation is growing. However, many of the methods require
a rapid determination of the output variable value at a given input parameter vector value. Therefore,
recently much attention is given to shorten the computational time of these methods by means of meta-
modelling.

2.3.1. Meta-modelling
The agent-based model of the passengers moving around an airport is too large and complex to include
it in any other model, or to use it for smaller analyses. Therefore, a way should be found to reduce
the size of the agent-based model by approximation, whilst not losing a certain level of detail in the
model. Such a model, is called a meta-model for simulation input-output relations. A simple form of a
meta-model can reveal the general behaviour of the more complex agent-based model. These simpler
form of models can be run iteratively for repeated what-if evaluation for multi-objective systems or for
design optimisation (Barton (1992)). The advantage of a meta-model based optimisation strategy is
the incorporation of knowledge of the smoothly varying response function and it enables a reduction in
prediction variance by extending the effect of the law of large numbers over all fitting points. However,
one should be careful because bias is introduced when the meta-model fails to capture the true nature
of the response function.

The general mathematical form of a simulation model input-output function will be represented as:

𝑦 = 𝑔(𝑣) (2.7)
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following the paper by Barton (1992). In this simple representation, 𝐲, 𝐯 represent the output and input
vectors, respectively. Meta-models are most often built per output component of 𝐲 (each coordinate
function of 𝐠). In the work by Barton (1992), the attention is restricted to input-output models where the
random component (if present) is additive, 𝐲 has one component, and the list of parameters is restricted
to those that will be in the argument list of the meta-model:

𝑦 = 𝑔(𝐱) + 𝜖. (2.8)

Creating a meta-model involves finding a way to model 𝑔 and 𝜖. In analogy to the work by Barton, the
meta-model is denoted by 𝑓 and the predicted output responses as 𝑓(�⃗�) or ̂𝑦. Hence,

𝑔(𝐱) ≈ 𝑓(𝐱) = ̂𝑦. (2.9)

In mathematical form the meta-modelling work does not seem too difficult. However, several issues
will be encountered when building a meta-model:

• Choice of functional form,
• Design of the experiments, which sets of 𝐱 with observations 𝑦 to fit 𝑓 to 𝑔, the assignment of
random number streams, the length of runs etc.,

• Assessment of adequacy of the fitted meta-model.

A meta-model inherently loses details, which were present in the parent model (ABM). The loss of detail
is determined by the level of abstraction. In table 2.1 a general categorisation is given of meta-models.

Table 2.1: General categorisation of meta-model types as given in Manfren et al. (2013).

Type Description Advantages Disadvantages

White-box Models with high level of detail
based on the laws of physics that
permit accurate modelling, employ-
ing algebraic and differential equa-
tions (ODE, PDE) to describe tem-
poral and spatial variations.

High level of accuracy
and precision. Gives
a detailed physical de-
scription of phenomena.

High computational ef-
fort. Difficult and error-
prone modelling and im-
plementation process.

Grey-box Model uses a simplified descrip-
tion of the underlying phenomena in
space and time with algebraic equa-
tions and first order ODE. Data is
used to identify the best model and
corresponding model parameters.

Easier to implement
compared to white-
box models. Gives a
physical description
of phenomena. Good
level of computational
efficiency.

Less accurate and pre-
cise than white-box mod-
els. Error-prone imple-
mentation process.

Black-box Empirical or data-driven models.
Based on little or even no physical
behaviour of the system. Only rely
on the available data to identify the
model structure.

High level of computa-
tional efficiency and flex-
ibility. Simple to imple-
ment with respect to the
achievable accuracy.

Physical representation
is gone. Opaque to the
user.

So in general, a simplified physically based model with unknown parameters optimised with respect
to real data (grey-box model), is more understandable than a black-box model. However, a black-box
model is fairly simple to implement and could achieve high accuracy. Furthermore, the computational
efficiency is very high of black box models, making it possible to do multiple runs in less time than a
grey-box model could. Hereafter, two meta-models will be treated which are often used in simulation
optimisation methods as stated by Kleijnen (2008).

Polynomial regression
The functional form of a meta-model will generally be described as a linear combination of basis func-
tions from a parametric family (eg. polynomials, sine functions etc.). The most popular techniques
have been based on parametric polynomial response surface approximation: The function 𝑔 can be
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approximated in some region of the 𝑥’s by a polynomial model. These polynomial regression models
were developed for optimisation (Barton (1992)), as explained earlier.

A meta-model is built using 𝑚 simulation outputs 𝑦 = (𝑦1, ..., 𝑦𝑚)′, which were a result of the input
conditions �⃗�1, ..., �⃗�𝑚. The errors (𝜖𝑖) for the different observations 𝑖 are assumed to be independent,
identically distributed Gaussian quantities with variance 𝜎2. A general form of a polynomial regression
model is given in eq. (2.10).

𝑓(�⃗�) = ∑ 𝛽𝑘𝑝𝑘(�⃗�) (2.10)

The function 𝑝𝑘(�⃗�) represents a basic function and are usually taken as the products of power functions,
1, 𝑥𝑗 , 𝑥2

𝑗 ,.... The 𝛽𝑘 are estimated using the observed 𝑚 data points using the least squares method of
maximum likelihood estimation.

The interpretation of the models are also dependent on the polynomial chosen for the regression. For
example, a 𝛽 of a linear term 𝑥1, indicates the direct relationship with the outcome 𝑦. If the value of
the 𝛽 coefficient is large, then the parameter has a large effect on the outcome and vice versa. A
coefficient of a quadratic term indicates whether or not there is a non-linear response. Furthermore,
a large coefficient corresponding to a cross product term (e.g. 𝑥1𝑥2) is interpreted as a change in the
effect of 𝑥1 as a function of the value of 𝑥2, and vice versa. In addition, calculating the estimates of the
coefficients 𝛽 is relatively simple and for low order polynomial fits the accuracy of the predicted value
does not rapidly degrade when moving away from any experimental observation. “Although polyno-
mial response is not accurate for highly non-linear problems, it is easy to use and is very accurate for
low-order non-linearity” Jin et al. (2001).

Kriging meta-model or spatial correlation model
An alternative meta-model is the Kriging meta-model (KG), or sometimes called spatial correlation
model. Kriging models are fitted to data that are obtained for larger experimental areas than the areas
used in low-order polynomial regression meta-models. Hence, these models are global instead of local
models.

This method captures the expected smoothness of the function in a spatial correlation function. The
model assumption is:

𝑦(𝐱) = 𝑔(𝐱) + 𝑍(𝐱). (2.11)

In eq. (2.11)𝑍 is assumed to be a realisation of a stochastic process withmean zero (Gaussian process)
with a spatial correlation function as in eq. (2.12).

𝐶𝑜𝑣(𝑍(𝑥𝑖), 𝑍(𝑥𝑗)) = 𝜎2𝑅(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝(− ∑ 𝜃𝑗(𝑥𝑖 − 𝑥𝑗)𝑝) (2.12)

where 𝜎2 is the process variance, and 𝑅 is the correlation. As mentioned in work by Barton (1992) the
value of 𝑝 is fixed at 𝑝 = 2 such that it is a Gaussian correlation function. Furthermore, 𝑔(�⃗�) is usually
approximated by a constant, or a linear function of 𝑥. Maximum likelihood is used to estimate the 𝜃𝑗
values, which indicates the importance of input 𝑗. The higher 𝜃𝑗 the less effect input 𝑗 has. The 𝜃𝑗 val-
ues are used to calculate approximate expected values of eq. (2.11) to provide the meta-model 𝑓(�⃗�).
Mentioned in the book by Kleijnen is that a Kriging meta-model can be used to model deterministic sim-
ulation models as well as stochastic simulation models. The latter is done in van Beers and Kleijnen
(2003), where the stochastic simulation output is simply replaced by the average computed from the
replications. Another paper which clearly describes the global optimisation of a stochastic black-box
system using the Kriging meta-model is the work by Huang et al. (2006).

In the work by Kleijnen (2009) a more elaborate overview of basic Kriging assumptions and formulas
is given and a comparison with classic linear regression models is made.

Radial basis function
The radial basis function approximation consists of a sum of radially symmetric functions centered at
different points in the domain Θ. The radial basis function model is special type of neural network
consisting of three layers. The first distributes the input vector to each of the receptive field units in the
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second layer, which is the hidden layer. The hidden units play a role in simultaneously receiving the
input vector and non linearly transforming the input vector into an m-dimensional vector. The outputs
of the m-hidden layers are then linearly combined with weights to produce the network output at the
output layer. The radial basis function model can be described as

𝑓(𝐱) =
𝑚

∑
𝑗=1

𝑤𝑗𝜑𝑗(𝐱) =
𝑚

∑
𝑗=1

𝑤𝑗𝜑(‖𝐱 − 𝜇𝑗‖/𝜎𝑗), (2.13)

where �⃗� is the input vector, 𝜇𝑗 is the jth basis function centre, ‖ ⋅ ‖ denotes the Euclidean distance,
the 𝑤𝑗 values are the weights, and the 𝜎𝑗 are basis function widths. The 𝜑() plays the role of transfer
function.

This type of meta-model has proven to applicable to a M/M/1 queuing system (Miyoung Shin et al.
(2014)). In this paper the function (𝜑) was taken as a Gaussian basis function, which is one of the most
popular forms. The input parameter taken for the meta-model was the arrival rate. The Gaussian radial
basis function model is used to estimate the sojourn time in the system (waiting time plus service time).

Similar to the paper by Miyoung Shin et al. (2014), other reference papers (such as Miyoung and Goel
(2000)) that use a Gaussian radial basis function also only have one input variable. The aim of cur-
rent study is to approximate the agent-based model and simulation by a set of meta-models, which
are capable of capturing the dynamic relationships from the agent-based model (ABM). Therefore, it is
believed that only one input variable to describe one output variable will not be enough.

All three meta-models presented methods show great potential. However, up till now little (to no) re-
search has been done on applying these meta-models to input-output relations of agent-based models
and simulations.

2.4. Literature conclusions
This chapter has provided a broad literature review which has uncovered the scientific gap that is the
connection between operations research optimisations (FGAP) and airport passenger flow modelling
(ABMS). It has been found that simulation optimisation forms the right basis to close this scientific gap.
In this section the main conclusions from this research are summarised.

2.4.1. Flight-to-gate assignment problems
Flight-to-gate assignment problems have been assessed for decades and the present papers apply
only minor changes to models proposed in existing literature. It can be concluded that the deterministic
models, do not fit the dynamic character of an airport. Furthermore, the majority of the literature using
robust models took a one-sided approach by making the assignment plan robust for flight delays. The
scientific gap that can be defined in the FGAP research is probably the ability to capture the real world
environment, especially on the terminal side. Unforeseen events do not only occur on the airside of
the airport. Disturbances on the terminal side, like bottlenecks in passenger flows or queue times
at security checkpoints, could be reason for an airport operator to intervene in the assignment plan.
Unfortunately, little attention is given in existing research to the terminal side processes that might
have an effect on the flight-to-gate assignment. Finally, three solution methods have been discussed:
Expert methods, Simulation methods, and Mathematical programming techniques. The majority of the
literature reviewed, uses the mathematical programming techniques. However, if the computational
time was critical or the objective function was non linear, one could switch to meta-heuristic methods.
It has been proven in literature that the differential evolution algorithm was able to find even global
optimum faster than other global optimisation algorithms. In addition, there are no restrictions to the
objective function or the constraints which makes the DE algorithm an ideal starting point.

2.4.2. Passenger flow modelling at airports
This section gave a clear overview of the processes that a passenger encounters in an airport. Arriving,
departing and transferring passengers pass different areas in the airport. The airports are designed to
provide a certain level of service. However, due to the continuous high growth in passenger traffic these
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levels of service standards are endangered. Agent-based modelling and simulation has been proven
to be very successful in modelling passenger flows at airports. The passengers can be modelled using
a multi-agent system, where the agents interact in an environment such as an airport. Analysing the
results of a multi-agent simulation can be very useful to identify bottlenecks at the airport. Furthermore,
agent-based modelling and simulation is able to show the emergent phenomena during the day due to
its bottom-up approach. The difficulty with agent-based models however, is the fact that validation pro-
cess is difficult. Often, available data is little which calls the need for experts with a deep understanding
of the passenger’s behaviour.

2.4.3. Simulation optimisation
Simulation optimisation will form the theoretical content of this thesis. Simulation optimisation could
be seen as optimising an expectation function with stochastic parameters. The aim is to find optimal
settings of input variables such that the output variables of interest are optimised. The most often
used methods were mentioned and briefly explained. One of the major difficulties in simulation op-
timisation is the time needed to simulate a feasible solution to the optimisation problem. Therefore,
simulation model input-output meta-models were examined, which reduce the size of the simulation
model by simplification. Polynomial regression, Kriging and radial basis function meta-models were
briefly explained, as these are the most often used meta-models. The latter two have been proven to
be promising in representing a M/M/1 queuing system. Simulation optimisation describes both direct
and indirect (using meta-modelling) methods to integrate simulation models with optimisation models.
Hence, simulation optimisation forms the perfect theoretical basis on which the current study can build.
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3
Research framework and methodology

As was described in the introduction, this research will focus on the integration of agent-based model
and simulation with an flight-to-gate assignment optimisation. Before one can start integrating these
two paradigms, a clear path should be specified such that the most is achieved during the limited time
of the research.

The first step is to identify the problem which will be solved, this is done in section 3.1. Then, in
section 3.2 the objective for this thesis will be presented and research questions are formulated. Every
research needs a scope, which is defined in section 3.3. The scope defines the boundaries of the
research, which are needed to keep the research goals realistic. Next the model requirements are
presented in section 3.4, which explains the expectations for the model and the software used to create
it. Furthermore, in section 3.5 the contribution of this research is summarised by making a distinction
between scientific and industry contribution. The chapter is concluded by presenting the methodology
in section 3.6 that will be used to answer the research questions.

3.1. Problem statement
One of the most important and complex tasks at an airport is the development of the flight-to-gate as-
signment plan. The gate plans are made at least one-day in advance, but disturbances in the schedule
require also real-time adjustments. A vast amount of literature has focussed on solving the flight-to-gate
assignment problem. Assigning gates in order to minimise waiting times, connection times, un-gated
flights, and baggage transport distances.

The most popular objective found in the flight-to-gate assignment problem papers, was the passenger
walking distances (as in the work by Mangoubi and Mathaisel (1985)). However, static optimisations
like this one do not fit the dynamic environment of an airport. A passenger walking at an airport is
not only confronted with the distances it needs to walk. But the processes it encounters such as the
check-in and security processes also affect the passenger experience. Currently in the FGAP research,
efforts are being made to make the airside more realistic by including flight delays as in the work by
Yan and Tang (2007). In addition, models are being made that are robust to disturbances using robust
models. An example is the model proposed by van Schaijk and Visser (2017), which incorporates the
airlines’ punctualities into the model. However, realistic modelling of the terminal-side is underexposed.
One can imagine that congestions at airports could give an incentive to the passenger to choose a dif-
ferent path. Hence, the pre-assumed walking distances/times in the FGAP are not the actual walking
distances/times.

Passenger traffic is growing to the extent that airports reach their operating limits. This means that
airports are getting more and more congested, possibly leading to airside delays. It was found by Eu-
rocontrol (2017), that 5-12% of the flights delayed due to landside terminal elements was due to the
security checkpoint process. In addition, there is a growing concern of terrorist attacks which puts a
high pressure on security. Due to the fact that airports are often restricted in building expansion, air-
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ports need to come up with smart and sophisticated solutions to overcome congestions at the airport.

Agent-based modelling and simulation has proven to be a suitable way to model and analyse passen-
ger flows at airport terminals. An agent-based model is able to simulate a specific day or scenario at a
specific airport and will reveal emergent phenomena. These could include bottlenecks in the terminal
building or queue build up at processing points. Several studies examined the whole passenger expe-
rience at an airport (Ma (2013)), at specific passenger processing points (Janssen and Sharpanskykh
(2017)), or examined the passengers during evacuation of an airport Cheng et al. (2014). Ideally, an
agent-based model would be used to find an optimal solution that minimises the occurrence of un-
wanted bottlenecks or queues. However, due to the amount of details (characteristics) of the individual
agents (passengers) and the number of agents in the entire system, the agent-based model could be-
come too big and complex to perform iterative optimisations with.

Another problem is the fact that there is a disconnect between the management of terminal processes
and control over airside operations. So, there are a lot of processes, such as the gate assignment,
that could change the guidance of passenger flows at airports, but these have not been explored in
research yet.

3.2. Research objective and questions
The goal of this research is to fill the scientific gaps mentioned in chapter 2. The proposed research
objective is:

To develop a methodology to integrate an agent-based model for airport terminal processes
with a flight-to-gate assignment optimisation, such that these airside and landside processes

can be managed simultaneously.

By integrating the agent-based model with a flight-to-gate assignment optimisation, a completely novel
approach to manage landside and airside simultaneously is presented. To reach the objective, a main
research question has been formulated. The objective is achieved once an answer to this question is
found. The main research question is the following:

How can a multi agent-based model for airport terminal processes be integrated with a flight-to-gate
assignment optimisation?

To answer this question, the research has been split up into four sub-research questions. Once these
have been answered, the main research question can be answered. The sub-research questions are:

1. What airport areas are important to consider when integrating a multi agent-based model for
passenger processes in a flight-to-gate assignment problem?

2. What variables used in the agent-based model from areas in item 1, could be used in the flight-
to-gate assignment model?

3. Can the agent-based model be integrated in a direct way or by creating meta-models that are
able to capture the dynamic relations?

4. Is the integrated model credible, does it reflect the agent-based model and reality?

It is hypothesised that the integration can take place in both a direct way and indirect ways, as was seen
in the simulation optimisation literature. However, there are probably infinitely many ways to integrate
the two paradigms and therefore the research scope needs to be defined.

3.3. Research scope
In this section the research scope is presented within which the research is performed. The scope
is determined based on the scope used in flight-to-gate assignment problem literature as well as the
insights from the AAS case (see chapter 1).

Given the time constraint of this thesis the scope has been restricted to only a small section of a possi-
bly larger airport. The added value comes from developing the integration methodology and not from
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solving the largest or most complex problem at hand.

Geographically, the research will be limited to one airport. However, the aim of the research is to create
a general methodology which can be applied to any airport around the world. The agent-based model
that will be used for integration will contain departing and transferring passengers. Hence the focus of
the research will be on a hub-airport similar to Amsterdam Airport Schiphol. One of the characteristics
of a hub-airport like Schiphol is the fact that there exists a Schengen area and a non-Schengen area.
Hence, this will also be used in current research. In addition, a variety of aircraft sizes arrive at hub-
airports leading to potentially interesting results or insights.

Landing and taxiing will not be considered in the airside of the model, as most of the FGAP literature
did not take this into account as well. Furthermore, the temporal scope of the flight-to-gate assignment
that will be created will span over half a day of operations.

Ideally, an airport section will be considered with multiple check-in areas, security checkpoints, border
control points, and two wings with gates. Depending on the gate selected, passengers have the possi-
bility to take different paths from the entrance to their assigned gate. This situation could probably have
the most interesting results as passengers flow from all directions and are difficult to manage by airport
management. The basis on which the fictitious airport will be based are wings C and D of Amsterdam
Airport Schiphol. This part of Schiphol contains the above mentioned points.

Finally, the initial aim of the research was to integrate all processes of the agent-based model with a
flight-to-gate assignment model. However, this appeared to be unrealistic due to the time constraint.
Therefore, it was decided to examine only the security checkpoint queues. The security checkpoints
were chosen as these are one of the largest passenger processing points contributing to flight delays
(Eurocontrol (2017)). Furthermore, during preliminary exploration it was found that the most interesting
and critical behaviour was observed at the security checkpoints.

3.4. Model requirements
To achieve the research objective, models will be built that will help to achieve the research goals.
Below a few of the model requirements and the software used will be discussed.

The model requirements are:

• The flight schedule input for the flight-to-gate assignment should be representative of a real flight
schedule.

• Strong relationships between gate assignments and simulation outputs will need to be present.
• The agent-based model should be representative for actual daily airport operations.
• The flight-to-gate assignmentmodel should be a simple flight-to-gate assignmentmodel that could
be used by airport managers.

• The results should be presented in graphs and tables.
• To be able to substantiate the successfulness of integration, evidence should be provided.

These requirements will be translated to multiple models, which will be built in MATLAB and JAVA. The
central modelling and simulation environment in this research is AATOM, which will be elaborated on in
section 3.6. AATOM has been coded in the JAVA language and the open-source software development
environment used is Eclipse. The models that will be built in MATLAB consist of the meta-models, the
optimisation algorithm and the problem definition.

Improving the computational time of the optimisation algorithm and agent-based model will be outside
the scope of this research. The computers used to run simulations, build meta-models and perform
the optimisations are HP Elitebook 8560w computers with an Intel Core i7-2630 QM processor. At one
point during the research, three of these computers were needed to speed up the process.
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3.5. Impact and contribution
The combination of two most used research tools, mathematical programming models and simulation
models, is in general a gap in the current literature. Therefore, it is important to explore this gap, in
addition to the gap between the airside and terminal processes.

The novelty of this research is the fact that the implementation of a dynamic passenger model (such
as an agent-based model) in a flight-to-gate assignment problem, has never been done before. This
could be a major improvement of the current way passengers are taken into account in the flight-to-gate
assignments. This combination could potentially create a model that is capable of handling/optimising
airside as well as landside processes simultaneously.

This research aims to open a whole new direction in both operations research as well as the agent-
based modelling field. As discussed, the combination possibilities of both paradigms are endless, and
this research focusses only on one specific case.

The literature reviewed in chapter 2 identified gaps in the existing literature. Figure 3.1 presents an
overview of the state-of-the-art and potential contribution of the proposed research from both a scientific
and industry perspective.

Figure 3.1: Overview of the status quo and contribution of the proposed research, from both scientific and industry perspective.

3.6. Methodology
Having set the objective and defined the boundaries of the research, the next step is to define the
methodology that will be used to achieve the research objective.

3.6.1. AATOM and simulation environment
Central in this thesis is the agent-basedmodelling and simulation environment, AATOM. AATOM stands
for Agent-based Airport Terminal Operations Model. It is a microscopic agent-based model that is able
to simulate movement and operations in an airport terminal (Janssen et al. (2017)). The creator of
AATOM is Stef Janssen, who is currently developing the platform even further. At the beginning of
this research the model included the main handling processes required for outbound aircraft. These
include check-in and security checkpoints. Furthermore, basic facilities for discretionary activities like
bathrooms, restaurants and shops, are modelled. It has been designed in such a way that students
can add or remove functionalities and create their airport environment the way they need it. Hence, it
forms a basis for studies, to investigate the field of security, efficiency and to investigate the relationship
between other parameters. This model is the ideal starting point for the current research.

This thesis is still one of the first theses that uses AATOM as an experimental environment. Therefore,
some of the features that were not yet present when starting the research had to be developed during
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the thesis as well.

As the objective is to integrate an agent-based model for airport passengers, the first step is to generate
an airport environment. As discussed in section 3.3, two wings (C and D) of AAS would form the in-
spiration for the fictitious airport to be created. This means that the dimensions of the terminal building
of AAS should be used to create the environment. Unfortunately, the exact dimensions of in general
terminal buildings are confidential (for security reasons), but schematics of the terminal building are of-
ten available. The design is therefore based on those schematics, together with knowledge about the
gate spacing. A total of four gates are present at the fictitious airport and the terminal building is around
7000𝑚2. The length of the piers will be kept to a minimum since these will not add value to the research.

Next, the processes and passengers that are within the scope are added. These include the check-in,
security checkpoints, and border control facilities. The placement of the facilities will also be inspired
by AAS. The border control facilities will split the airport in half, with on one side the Schengen area
and on the other side of the border control the non-Schengen area. A total of four check-in facilities,
four security checkpoints and two border control facilities are added. Creating four distinct paths to the
four gates.

In the current state of AATOM (when the research started), passenger diversity was restricted to the
luggage type passengers are bringing. One type of passenger only brings carry-on luggage whereas
the other type of passenger has checked luggage. The autonomous decision making in the current
state of AATOM is visible in two ways. The first is the decision people make whether they would like to
check-in at the airport or prefer to check-in online. Logically, people who checked-in online will not have
to pass the check-in facility, provided they do not bring checked luggage. The second autonomous de-
cision the agents make is whether they visit some of the bathrooms, restaurants and shops. It was
discussed in section 2.2.2 that the local autonomy, diversity and interaction among agents would cre-
ate the most valuable agent-based model. In addition, the scope of the research is on a hub-type of
airport where also transferring passengers are present. Therefore, it was decided to enrich the diver-
sity among agents and add another autonomous decision that the agents could make. The diversity
was enriched by creating two types of passengers with different purposes of travel. The first division
was between departing and transferring passengers. Secondly, the purpose of travel could be leisure
or business. The diversity of agents posses different characteristics and decision making capabilities.
The autonomous decision capabilities were extended by creating the possibility to dwell around the
airport between check-in and proceeding towards the security checkpoint. Based on stress build up
(growing queues), agents can decide when to proceed. In addition, different arrival distributions are
added for business and leisure passengers based on literature.

The next step is to perform Monte-Carlo of many realistic departure schedules, using the pseudo-
random number generators used by many processes that are implemented in AATOM. These simula-
tion results are used to size the passenger handling facilities. The data used to generate the schedules
have been taken from the FlightRadar24 website. This data was used to asses the sizes of aircraft
that depart from AAS every day and the frequency of departures with respect to the total number of
gates. Simulating a large amount of different scenarios were useful to size the facilities such that in
some scenarios congestions only would occur at the security checkpoints. In reality this means that
the facilities (except for the security checkpoints) are slightly over-sized for the most heavy scenario.

3.6.2. Simulation optimisation
The first way to integrate the agent-based model with a flight-to-gate assignment problem is a direct in-
tegration by simulation optimisation. In this integration the entire agent-based model will be integrated
with an operations research optimisation algorithm. As discussed in chapter 2, the disadvantage of this
way of integration is the fact that the optimisation is computationally heavy. The advantage however,
is that there is little loss of detail. The simulation optimisation methodology applied to integrate ABMS
with the flight-to-gate assignment optimisation is graphically shown in fig. 3.2.

First, the flight-to-gate assignment problem will be specified that will be solved by the optimisation al-
gorithm. Since this paper is pioneering the integration of an ABMS with an FGAP, the problem to be
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Figure 3.2: Simplified representation of the simulation optimisation method used to integrate an agent-based model with a
flight-to-gate assignment optimisation, based on figure from Carson and Maria (1997).

solved is taken as a relatively simple flight-to-gate assignment problem. Once a proper methodology
has been created for the integration, one could easily increase the complexity or scale of the problem.

The most difficult part to connect these two paradigms, agent-based modelling and flight-to-gate as-
signment optimisations, is that up till now there is little connection between the decision variables in a
flight-to-gate assignment problem and the behaviour in the agent-based model. In general, passengers
enter the airport and proceed to the airline check-in desk with whom they have their flight. Next, they
continue towards the security which consists out of multiple checkpoints that mostly serve a single pier
or multiple piers with gates. Since passengers with different destinations enter the security queue, there
is little (to no) causal relationship between the assignment of gates and the security checkpoint queue
behaviour through passenger flows. Therefore, in section 3.6.1 a causal relationship was created by
having distinct security checkpoints per gate. Then, if a flight was assigned to a gate, the queue build
up would be due to the sequence of flights assigned to that gate.

The starting point for the flight-to-gate assignment problem was the model by Mangoubi and Mathaisel
(1985) shown in eq. (2.1), whose objective was to minimise the passenger walking distances. The
decision variables used by Mangoubi and Mathaisel will be used in current study as well. In addition,
extra decision variables are added to control the number of X-ray scanners that are open during the
planning horizon.

The aim of current research was to avoid congestions and enhance the passenger experience at the
airport. This means that the queue times passengers observe should be minimised from the perspec-
tive of the airport. An individual passenger would like to have zero queue time. However, since there
is only a limited amount of resources at the airport, this would mean that passengers with different des-
tinations will experience queue. Therefore, the objective has to be specified such that the optimisation
will lead to the best spread in queue times among the different security checkpoints. In the simulation
optimisation method, the objective function value will be the result of many replication simulations of
one scenario/trial solution. The restrictions posed on the flight-to-gate assignment will be similar to the
constraints in eqs. (2.2) and (2.3). In addition, restrictions will be posed on flight with Schengen and
non-Schengen destinations and on the amount of resources that can be deployed.

Finally, the flight-to-gate assignment is optimised using meta-heuristics as these algorithms are able
to handle non linear formulations of the flight-to-gate assignment problem. Furthermore, the literature
review has revealed that the differential evolution algorithm was able to outperform other global opti-
misation algorithms. Even in the case of a discrete solution space.

The way the actual optimisation will take place is discussed in chapter 5. One of the major disadvan-
tages of this direct integration will be the computational time to find an optimum for the flight-to-gate
assignment problem. Therefore, indirect ways should be developed that replace the agent-basedmodel
in the optimisation strategy by an abstract representation.

3.6.3. Meta-modelling
The abstraction process is called meta-modelling for simulation input-output relations. During this pro-
cess, equations are generated which should be able to replace the agent-based model in the optimi-
sation strategy.

Therefore, the output of the models should be related to the earlier defined objective function and the
input variables should be related to the decision variables. In this thesis one specific way will be chosen
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to connect the decision variables of an FGAP to the response variable of the meta-models. Since the
assignment of a flight to a gate will initiate the arrival of passengers during a period of time. Hence,
first an assumption should be made on the arrival distributions of passengers (at entrance) as well as
the known amount of passengers that will depart with a certain flight. Next, with these known incoming
streams of passengers, the meta-models will try to predict the security checkpoint queue times. Hence,
the connection between the decision variables of the FGAP with the objective function is indirect. In the
intermediate step the decision variables are converted into passenger arrival streams after which meta-
models will predict the queue times per security checkpoint. The resource decision variable (which will
select the number of X-ray scanners used) will select which set of meta-models will be used to predict
the queue times.

The above described method is graphically shown in fig. 3.3. The meta-model sets in the figure indicate
the different meta-models of a single type constructed for different amount of resources deployed.

Figure 3.3: Functional flow diagram of the queue time prediction using meta-models.

The construction of the meta-models starts by generating a data set on which the meta-models can be
fitted. The method used to generate the data set is similar to the approach taken by Miyoung Shin et al.
(2014). Basically, what should be done is visualise all the different possibilities of gate assignments.
These can range from really heavy assignments in which two large aircraft are assigned close after
one another and on the other hand zero assignments. Then uniformly across the figurative distribu-
tion space draw X experiments. The data generated by these X experiments (gate assignments) is
then pseudo-randomly split for reasons that will be explained in section 6.3. One half will be used for
meta-model fitting and the other half was used to asses the general ability (generalisation error) of the
models to predict the queue time. This trade-off between fitting error and generalisation error is called
the bias and variance dilemma which will be treated in section 6.4. Low complexity models (models
with little variables) tend to have a high bias and low variance, while complex models have low bias but
high variance. This trade-off is comparable with the trade-off between fitting and generalisation error.
Hence, the generalisation error will be assessed on a separate data set (validation data set) which is
different from the data set used for fitting.

The two meta-model types that will be created are polynomial response type of meta-models and radial
basis function meta-models. The polynomial response meta-model was taken as the current research
is the first (to the authors knowledge) to apply meta-modelling to such a large part of an agent-based
model. Therefore, this study chooses a fairly basic model (polynomial response model) and a slightly
more complex non-parametric model (radial basis function model). In addition, it was shown in liter-
ature that the radial basis function model was able to approximate a simple M/M/1 queueing theory
model with good precision.
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Once the meta-models have been defined, the performance of these models are tested by means of
fitting errors and generalisation errors. Finally, the agent-based model meta-models will be integrated
with the flight-to-gate and resource assignment problem.

3.6.4. Validation and verification of the models and methods
Validation and verification in the light of current research can be divided into three parts. 1. Do the
meta-models represent the agent-based model, 2. Do the meta-models reflect real queue behaviour,
3. Verify that the integrated models (meta-model based optimisation) optimise for the defined objective.

Validating whether the constructed meta-models are able to represent the agent-based model will be
done in two ways (following Snee (1977)). The first is done by simulating a random scenario (gate
and resource assignment) in AATOM. The same scenario is used to predict the queue times using the
set of meta-models. Finally, the simulation results are compared to the meta-model predictions. The
difference between the prediction and simulation realisation will give an indication of the validity of the
meta-models.
Secondly, a case study will be performed to assess the validity of the meta-models in the optimisation
strategy. The direct integration of the agent-based model into the flight-to-gate optimisation will, if im-
plemented correctly, result in the actual optimum assignment. Therefore, it should be checked whether
the meta-model based optimisation will predict the same optimal assignment.

Validation tests to assess the capability of the meta-models to represent realistic queue behaviour are
difficult. The current research focuses on a fictitious airport, and therefore there is no data available of
the actual airport. Kleijen (1999) argues that validation should be carried out by performing sensitivity
analysis, to find out whether the model contradicts qualitative expert knowledge. This can be done by
local or global sensitivity analysis. Both methods have advantages and disadvantages. A local sen-
sitivity analysis shows locally what influence a certain parameter has on the output parameter. This
is, in models with many combined variables, strongly related to the settings of the other parameters.
Therefore, global sensitivity analysis is preferred, but the method proposed by Saltelli et al. is only
capable of assessing the importance of the variables (not the direction). Since the models that will be
proposed have combinations of variables in them, global sensitivity analysis will be carried out. This
type of sensitivity analysis makes the validation with reality difficult.

The research is concluded by performing a verification case study. This case study will only be tested on
the meta-model based optimisation. It can be confirmed that the meta-model based optimisations are
implemented correctly, if both models find an optimum gate and resource allocation that will minimise
the difference in queueing times among the different security checkpoints.
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4
Multi-agent model set-up

As explained in chapter 3, the central modelling and simulation environment in this thesis research
is AATOM. It has been programmed in such a way that studies can be performed with it and allows
for changes to the environment, agents and interactions. As the focus of current research is on an
airport like AAS, changes had to be made in AATOM to accommodate the current study purpose. This
chapter will address the changes made in AATOM starting with the airport environment. Furthermore,
the passenger diversity and autonomous decision making will be elaborated on.

4.1. Fictitious airport environment
In chapter 3 it was observed that departure hall 1 of AAS showed great potential to serve the purpose
of current research. Therefore, departure hall 1 of AAS (connected to wings C and D) would be the
basis on which a fictitious airport design would be based.

One of the key features of AAS is the fact that the airport is split into two parts: Schengen and non-
Schengen. At the Schengen side, flights to a fellow Schengen agreement country depart. Passengers
at the Schengen side do not have to pass border control and therefore there is no passport control
processing point in place. On the other side is the non-Schengen area. Logically, on this side of the
airport passengers embark on flights towards non-Schengen countries. The passport control at AAS
is carried out by Royal Netherlands Marechaussee. Note, that under no-circumstances flights from or
to non-Schengen countries are allowed to depart from the Schengen side of the fictitious airport.

The fictitious airport created had four gates: Two Schengen and two non-Schengen gates. One of the
main assumptions of this thesis is the following:

Assumption 1 (Path restriction) Passengers heading for a specific gate, take a specific path corre-
sponding to that gate.

The main reason for this assumption is due the fact that there needs to be a causal relation between
processes at the experimental airport when applying parametric models. Imagine that the flight-to-gate
assignment was completely unrelated to the passenger walking paths. The paths taken by the indi-
vidual passengers are determined by the passengers themselves and could be up till a certain level
independent of the assigned gate. Then there would be no in advance known or little correlation be-
tween gate assignment variables and passenger process outputs. Since the first meta-model that will
be built in chapter 6 is from the family of parametric models, it is required that there is a correlation
between the gate assignment and the walking paths. Therefore, it is necessary to have the path re-
striction assumption.

It was decided that for every gate there would be separate passenger processing points in place.
Hence, four gates require four security checkpoints, and four check-in facilities. However, since the
Schengen part of the airport does not require passport control, only two passport control facilities are
in place for the Non-Schengen gates.
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The interior dimensions of AAS were confidential and therefore the designed experimental environment
in AATOM was based on educational guesses using rough airport maps. The final airport layout is
shown in fig. 4.1.

Figure 4.1: Designed fictitious airport in AATOM.

In the figure, the two sides of the airport can be seen. The lower area of the airport is the non-Schengen
part and the upper area separated by the border control points is the Schengen area. In the same
figure, assumption 1 can be seen. Passengers heading for their flight at gate A will have to pass their
designated passenger process points (indicated with A).

4.2. Agent specification
In this section the agents present in the ABMS will be discussed. As the model is based on the ex-
isting AATOM, only the changes to the existing model will be discussed. For this thesis to be able
to draw conclusions about the ability to integrate an agent-based model with an operations research
gate assignment optimisation, it is necessary that AATOM would possess all the required properties of
an agent-based model. Recall, that for a model to be called an agent-based model three aspects are
necessary to be present:

• Interaction among agents
• Local autonomy
• Diversity of agents

These three aspects create the strength of an agent-based model to capture emergent phenomena.
The latter two characteristics had to be strengthened as these were not yet clearly present in AATOM.

4.2.1. Passenger diversity
In the baseline AATOM there was a low diversity of passengers present. Each passenger had the
same characteristic and had little to no local autonomy. Therefore, it was decided to increase the level
of diversity among agents by making a distinction in passenger’s purpose of travel.

The two commonly known passenger types are:

• Business passengers: Passengers that are comfortable with travelling by aircraft for work. They
spend little to no time shopping and mostly do not dwell around the airport.
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• Leisure passengers: Passengers who travel by aircraft to their holiday destination, friends or
relatives.

In a paper by Schultz and Fricke (2011), the managing of passenger handling at airports is studied.
This paper zooms in on the fact that people with different purposes of travel have different amount of
luggage with them, different walking paces and different arrival distributions. The evidence found in
this paper has been implemented in AATOM.

Business and leisure passengers’ perceptions directly depend on the individual’s system experiences.
In addition, the individual’s system experience also affects the decisions made by the two types of
passengers. Business passengers are familiar with all systems of the airport and usually do not dwell
around the airport.

The paper by Schultz and Fricke examined 595 passenger movements at Dresden Airport. One of
the examined characteristics of passengers (using video-based passenger tracking) was the walking
speed of passengers with different travelling purposes. The empirical results found are shown in ta-
ble 4.1.
In the table, the different walking speeds for business and leisure passengers are displayed. It was

Table 4.1: Measured speed profiles for different passengers configuration indicated by expected value (𝜇 [m/s]) and standard
deviation (𝜎 [m/s]), table has been taken from Schultz and Fricke (2011).

Group
size

Business Leisure Average
𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

1 1.38 0.21 1.19 0.25 1.36 0.23
2 1.17 0.17 0.97 0.20 1.06 0.21
3 1.04 0.23 0.93 0.17 0.96 0.19

observed at Dresden airport, that the business purpose passengers on average walk faster than leisure
passengers. Also, except in the case of groups size equal to three, the standard deviation of the walk-
ing speed is also lower for business passengers.

In the current state of AATOM group behaviour has not yet been taken into account. Therefore one
should pay attention only to the first row in table 4.1. As there is little data available similar to the
Dresden airport data, it will be assumed that the results found will also hold for the fictitious airport in
current study. Hence, the first diversification of agents is made by establishing business and leisure
passengers with mean walking speeds of 1.38 m/s and 1.19 m/s, respectively. Furthermore, the stan-
dard deviations of these mean walking speeds were also taken from table 4.1.

Another major difference between business and leisure purpose travellers, is the fact that they arrive
at the landside with different distributions. Schultz and Fricke show that leisure passengers arrive from
three hours before departure till 30 minutes before departure. The observed patterns from Dresden
Airport can be found in fig. 4.2. The arrival of leisure passengers seems to be normally distributed
around 1:40 [h:mm] before departure. On the other hand, business passengers tend to arrive at the
landside around 1:10 [h:mm] before departure. The distribution for business passengers does not
appear to be normally distributed.
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Figure 4.2: Arrival distribution of business and tourist purpose passengers, taken from Schultz and Fricke (2011).

These different arrival distributions needed to be implemented, such that the agent-based model used
for integration represents reality as much as possible. Hence, the arrival distributions have been simpli-
fied and recreated by approximating the curves in the above graph. The simplified arrival distributions
(deduced from fig. 4.2) are shown in fig. A.1 in appendix A. In fig. 4.3, an example is given of the as-
sumed number of arriving business and leisure passengers for a flight of 500 passengers over time.
The passengers will arrive following a Poisson distribution.

Figure 4.3: The number of passengers arriving following a Poisson distribution per 5 minute interval for a flight that departs
after 10800 seconds.

The distributions for landside arrival are however not the only arrival distributions that have to be taken
into account. Transferring passengers form a very large group of passengers at major hub airports.
At Amsterdam Airport Schiphol, the transferring passengers in 2016 were 37.8% of all departing pas-
sengers (Schiphol Group (2016)). Therefore it was assumed that for every departing flight on the
non-Schengen side of the airport, 37.8% of the arriving passengers would be transfer passengers.
Transfers from non-Schengen flights to Schengen flights have not been taken into account. The rea-
son for this is that at this point (opening the research area) the amount of extra complexity would not
add value to the analysis. Since these type of passengers would be the only ones using the border
control processing point from the non-Schengen area to the Schengen area.

Concluding, for a flight that departs at the non-Schengen side of the airport 37.8% of the total pas-
sengers headed for that flight are transfer passengers. The other 62.2% is spawning at the entrance
of the airport. Furthermore, the ratio business/leisure passenger has been taken from Schiphol Group
(2016) as well. In here, it was stated that 32% of the total passengers has a business purpose of travel.

The decisions made above lead to the following assumption:

Assumption 2 (Passenger knowledge) It is assumed to be known in advance, how many passen-
gers will depart per aircraft as well as their arrival distribution.
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Furthermore, passengers have the ability to decide whether they would like to check-in online or pass
by one of the check-in desks. Whether passengers need to pass by the check-in desk is also dependent
on the luggage type they are bringing. A passenger with only carry-on luggage does not need to pass
the check-in desk if he/she is checked-in online. However, if a passenger is checked-in online but is
bringing checked luggage, he/she needs to go by the check-in desk. The ratio of online check-in versus
desk check-in and carry-on over checked luggage have been set equal for both passenger types. In
reality this figure might be different, but this would not change the developed methodology in this thesis.

Another characteristic that has been implemented to strengthen the diversification, is the bag com-
plexity factor. The bag complexity factor gives an complexity indication of the bags that are brought
through the security checkpoints. A higher bag complexity level means that the security operators need
more time to check it. However, due to the fact that the function has not yet been fully implemented in
AATOM, it will not have an effect during the current research.

The entire semi-formal multi-agent simulation specification of AATOM in the LEADSTO language is not
given here. An elaborate specification of the AATOM model can be found in the work by Janssen et al.
(2017).

4.2.2. Autonomous decision making
The other aspect that needed to be strengthened was the local autonomy in the system. In the initial
state of AATOM, people could already take various autonomous decisions. Passengers could decide
to check-in online, visit restaurants, or go shopping. The decision was taken to introduce extra local
autonomy by giving the agents the ability to go towards a ’Goodbye area’ (see fig. 4.1).

The goodbye area represents a place where passengers could say goodbye to people who dropped
them off, or to have something to eat or drink before they would continue towards the security check-
point. Hence, the agents can decide to go there before going to the designated security checkpoint.

The decision making is based on the paper: “Time pressure and stress in human judgement and de-
cision making.” (Maule and Svenson (1993)). The stress is caused by uncertainty and queue build-up
and the risk of not making the flight. Whereas, the uncertainty is caused by the fact that the passenger
does not have complete information of the time it takes to go through security. The passenger knows
its time till departure and makes an estimate about its excess time. The excess time is the time till de-
parture minus the time needed to pass security and border control. In the current study it is assumed
that if the time till departure is less than one hour, then there is no time to visit the goodbye area. If
one decides to visit the goodbye area, then the maximum time it stays here is drawn from the normal
distribution (N(600,200) [s]).

The queue build-up is another factor that influences the decision-making of the passenger. Initially,
when the passenger enters the terminal building it observes a certain ’crowdedness’ at the airport se-
curity checkpoint. Hence, it is assumed that the passenger is able to observe its designated security
checkpoint queue length at all times. It could be the case that the queue observed is so long that the
threshold is being exceeded at which the passenger believes it needs all its excess time to pass all the
necessary checkpoints. Based on many simulations the decision was made to set the threshold to a
queue length of 25 passengers.

Furthermore, once the passenger has decided to visit the goodbye area, it checks it with regular inter-
vals to see if the queue’ state has changed. The observed queue state can be:

• Worsened: The queue length has increased with respect to the initial observation.
• Neutral: The queue length has remained unchanged with respect to the initial observation.
• Improved: The queue length has decreased with respect to the initial observation.

This regular check takes place with respect to the previous observation after 2.5, 5.0, 7.5 and 10.0
minutes. When the observed state changes to worsened, the passenger decides to immediately go to
the security checkpoint. This reflects the stress increase caused by queue build-up.

35



Finally, not every passenger takes the time to visit the goodbye area. Two assumptions have been
made on this. Business passengers in general do not spend time before going through the security
checkpoint (Schultz and Fricke (2011)). Partly caused by the fact that they enter the airport ’late’.
Therefore, it was assumed that the business passengers would not visit the goodbye area. Secondly,
not every leisure passenger will visit the goodbye area. Therefore, it was assumed that the probability
that a leisure passengers would visit the goodbye area equals 0.3. Formally, the start of the goodbye
activity for a passenger (among the 30%) is modelled as follows:

activity_area(Goodbye_activity) ∈ obs(current_area)

∧ obs(activity_area_free) = true

∧ obs(queue_length) ≤ 25
∧ 𝑡 < 𝑡𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 − 1hr
→ activity_state(Goodbye_activity) = in_progress

The implemented diversity and local autonomy defines multiple walking routes of the passengers.
These walking routes have been graphically displayed in fig. 4.4.

Figure 4.4: Flow chart of possible walking routes to a (non-)Schengen gate.

As can be seen from the figure, passengers arriving at the landside could take take four different paths
to the security checkpoint by taking the following arcs:

Route 1 : (4)
Route 2 : (1),(5)
Route 3 : (2),(6)
Route 4 : (1),(3),(6)

Note, that route three and four are never taken by business passengers as they do not go to the
goodbye area. Leisure passengers can take all paths depending on their luggage, check-in status, and
their observations/decisions.

4.2.3. Sizing the facilities
Finally, before starting on the integration of the agent-based model with the operations research opti-
misation, the amount of operators for every processing point need to be determined. In chapter 1 and
in the work by Schultz and Fricke (2011) it was mentioned that the security checkpoints were the major
landside sources of delays. In a study by Eurocontrol (2017) it is found that 5-12% of the delayed flights
due to landside terminal elements originate at the security check. Therefore, the number of operators
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are chosen, such that the bottleneck at the airport would be at the security checkpoint.

In order to determine the amount of operators needed to handle passengers, it is necessary to estimate
the amount of passengers that will arrive daily at the airport. The amount of passengers arriving at the
airport depend on the number of passengers per flight and the maximum amount of flights that can be
scheduled within a certain time frame.

First, the different sizes of aircraft that depart from Schiphol airport every day are analysed. This
analysis was done using data of the 9th of October 2017 taken from (https://www.flightradar24.com/).
Between 9:00 AM and 10:00 PM 517 flights departed from Schiphol airport. Of these flights, 231 were
Schengen flights and 286 were non-Schengen flights. In the table below (in table 4.2), the Schengen
and non-Schengen flights are grouped according to their size.

Table 4.2: Departure size of aircraft at Amsterdam Airport Schiphol, 9 October 2017 between 9:00 AM and 10:00 PM.

Flight type
Aircraft size [#seats (% of total)]

≤100 (100,200] (200,300] >300
Schengen 62 (27%) 167 (72%) 2 (1%) 0 (0%)
Non-Schengen 45 (19%) 132 (57%) 57(23%) 57 (25%)

What can be observed is that, for both Schengen and non-Schengen flights, the majority of the depart-
ing aircraft has between 100 and 200 seats. However, 25% of non-Schengen flights have more than
300 seats.

Secondly, the maximum number of departures in the planning horizon needs to be determined. To-
gether with the aircraft sizes, the maximum number of passengers per time interval can be determined.
This information is needed for determining the minimum required number of operators per passenger
processing point.

First, the interval standard needed to be set for the entire project.

Assumption 3 (Time interval standard) The time interval over which passenger arrival rates and
queueing times will be given is set to 5 minutes.

This interval has been set such that enough people will arrive per interval and enough data can be
gathered to give a good indication of what happens within the interval and between intervals. In fig. 4.5
the queueing time is displayed for all passengers. In this figure it can be seen that the queueing time
does almost not change within a five minute interval, but slightly changes between intervals. Hence,
the five minute interval is taken as the time over which the queue times will be averaged.

In order to determine the maximum amount of arriving passengers per time interval, it is necessary to
know at what frequency aircraft depart. Hence, the smallest turn around times with the largest aircraft
could lead to the highest amount of passengers entering the airport during a specific interval. It was
found in literature and on internet resources (https://www.flightradar24.com/) that the quickesst turn
around time for aircraft in group >200 (table 4.2) was little over 1 hr. Furthermore, the quickest turn
around times found for aircraft of size ≤200 was around 20 minutes. These two extremes were used
to find the maximum amount of arriving passengers per time interval.

The first extreme were two departing aircraft with 500 passengers aboard ( A380), of which the second
aircraft departs 1 hour after the other has departed. This scenario will never occur in real live but it
was useful to examine the queue times of this scenarios. This first extreme scenario a maximum of
around 49 passengers arriving in five minutes would be observed. This was determined using the ar-
rival distributions created as was shown in fig. 4.3. The second extreme consist of two aircraft with 200
passengers aboard, of which the second aircraft departs 20 minutes after the first aircraft has departed.
The maximum arriving passengers within five minutes was a little over 48 passengers (in five minutes).
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Figure 4.5: Arrival time of passengers at security checkpoint C versus the queue time experienced by the passengers.

These two scenarios, together with other scenarios were simulated in AATOM. Main conclusions about
the observations was that the queue build up was extremely sensitive to the number of X-ray scanners
used. The extreme scenarios resulted in peaks where major queue build up occurred, when two X-ray
scanners were opened. However, when three X-ray scanners were used, the queue build up almost
completely disappeared (which will be seen in fig. 5.2). When this was discovered it was decided to
include the possibility to keep the number of X-ray scanners open. Hence, this would be one of the
decision variables in the problem statement.

The other facilities have been designed in a similar fashion, except for the fact that the objective was
to avoid bottlenecks at these facilities. Hence, the check-in facilities and border control facilities have
been slightly over-sized.

To conclude this chapter, an overview of the parameters implemented in AATOM are listed in table A.1
in appendix A. Note that not all these settings have been calibrated yet with real airport data. Therefore,
these settings shall only be used to replicate the current study or could be used for future research.
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5
Simulation optimisation

The initial way to integrate the agent-based model and simulation with an operations research gate
assignment optimisation would be to connect both paradigms in a direct manner. In this chapter the
initial integration is made using a simulation optimisation method, which was explained in chapter 2.

The method proposed has been deduced from the paper by Casado et al. (2004). In the paper a deci-
sion support system for optimising passenger flow is made. This system makes the trade-off between
service quality and labour costs at an airport. The paper integrates a simulation module with an optimi-
sation module that requires that Dantzig’s labour scheduling problem is solved. The difference between
the reference paper and the current study is the fact that in the reference paper the problem needed to
be solved in short computational time. Ultimately this would be the case for the current study as well,
but for an initial study to open the scientific gap, this seems one step too far. Hence, this paper has
a similar aim as the current research and therefore the steps made in this paper will be applied to the
current research.

The first step will be to define the problem that needs to be solved in section 5.1. In section 5.2,
the optimisation algorithm will be explained. The chapter is concluded by reflecting on the created
simulation optimisation method. The implementation of the integration method will be elaborated on,
and in chapter 7 a small case will be solved.

5.1. Non linear programming definition
In this section the problem will be defined that will be solved by simulation optimisation. First, the
general non linear programming definition will be given and during the section the problem will be cus-
tomised to fit the current problem at hand.

Let 𝑛, 𝑚, and 𝑝 be positive integers. Let 𝑋 be a subset of 𝑅𝑛, let 𝑓 , 𝑔𝑖, and ℎ𝑗 be real-valued functions
on 𝑋 for each 𝑖 in 1, …, m and each 𝑗 in 1, …, p, with at least one of 𝑓 , 𝑔𝑖, and ℎ𝑗 being non linear.

The general form of a non linear programming problem is displayed below.

minimise
𝑥

𝑓(𝑥)

subject to 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚.
ℎ𝑗(𝑥) = 0, 𝑗 = 1, … , 𝑝.
𝑥 ∈ 𝑋

The problem at hand in the current study is a flight-to-gate assignment. In the problem definition above
the function 𝑓 will, in the simulation optimisation method, be an expectation of the simulation.

Mangoubi and Mathaisel (1985) wrote a simple gate assignment model which will be the basis for cur-
rent study. The difference between the current gate assignment problem will be the objective function.
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Whereas Mangoubi and Mathaisel were optimising for passenger walking distances, the current re-
search will focus on optimal utilisation of the security checkpoints. This means that the objective is to
evenly distribute waiting times per time interval among the security checkpoints.

The parameters that are of importance:

• 𝑁 is the complete set of flights considered,
• 𝑉 is the set of Schengen flights, which is a subset of 𝑁 ,
• 𝑀 is the complete set of gates considered,
• 𝑈 is the set of Schengen gates, which is a subset of 𝑀 ,
• 𝑛 is the total number of flights,
• 𝑚 is the total number of gates,
• 𝑠 is the total number of X-ray scanners open during the planning horizon.

The first (binary) decision variable 𝑥𝑖𝑗 is assigned for each possible flight-to-gate assignment, where:

𝑥𝑖𝑗 = {
1 if flight i is assigned to gate j,
0 otherwise.

The second decision variable is the integer 𝑟𝑗 and represents the number of X-ray scanners open at
security checkpoint 𝑗, which is the security checkpoint of gate 𝑗.

However, it was decided in section 4.2.3 to constrain 𝑟𝑗 to only two possible values.

𝑟𝑗 = {
2 if 2 X-ray scanners are open at security checkpoint j,
3 if 3 X-ray scanners are open at security checkpoint j.

In eq. (5.1) the model of Mangoubi and Mathaisel (1985) is applied to the current problem.

minimise
𝑥𝑖𝑗 ,𝑟𝑗

𝑓(𝑥𝑖𝑗 , 𝑟𝑗) =
𝑇

∑
𝑖𝑛𝑡=1

1
𝑚 − 1

𝑚

∑
𝑗=1

(𝑆𝐶𝑄𝑇 𝑗
𝑖𝑛𝑡(𝑥𝑖𝑗 , 𝑟𝑗) − 𝑆𝐶𝑄𝑇𝑖𝑛𝑡(𝑥𝑖𝑗 , 𝑟𝑗))2

subject to ∑
𝑗∈𝑈

𝑥𝑖𝑗 = 1, ∀ 𝑖 ∈ 𝑉

∑
𝑗∉𝑈

𝑥𝑖𝑗 = 1, ∀ 𝑖 ∉ 𝑉

∑
ℎ∈𝐿(𝑖)

𝑥ℎ𝑗 + 𝑥𝑖𝑗 ≤ 1,
∀ 𝑖 ∈ 𝑉
∀ 𝑗 ∈ 𝑈

∑
ℎ∈𝐿(𝑖)

𝑥ℎ𝑗 + 𝑥𝑖𝑗 ≤ 1,
∀ 𝑖 ∉ 𝑉
∀ 𝑗 ∉ 𝑈

∑
𝑗∈𝑀

𝑟𝑗 = 𝑠

(5.1)

In the above problem the objective function is to minimise 𝑓 , which is a function of 𝑥𝑖𝑗 and 𝑟𝑗 . The ob-
jective of the current minimisation problem is to make sure that the utilisation of the security checkpoint
queues is spread among the facilities. In reality this would mean that the objective is to make sure
that the waiting times are spread equally among the stations. The thought behind this is that once the
queueing times are equally spread among the checkpoints, then the overall passenger experience at
the checkpoints is optimised. Furthermore, delays caused by congestions at the security checkpoints
are minimised.

Currently, passengers headed for different gates pass through the same set of security checkpoint
facilities. In reality, queue build-up is managed ad hoc. This is done by an assigned security officer
that assigns groups of persons to a specific security checkpoint or X-ray machine. The idea of current
research is to direct the passenger streams in a smart way, such that the congestions are kept to a
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minimum. By simulating the passenger streams in a optimisation loop, different scenarios can be eval-
uated. Finally, the optimisation algorithm will explore promising scenarios and eventually select the
’optimal’ solution. This method is not suitable to be solved by exact solution algorithms. Hence, the
brackets around optimal, since these methods could converge to local optima.

The objective function will be to minimise the sum of variances of the security checkpoint queue times
during the time intervals, as shown in eq. (5.1). This objective function will make sure that the queue
times experienced by passengers at the different security checkpoints are as close as possible to each
other during every time interval 𝑖𝑛𝑡. The optimal assignment of flights-to-gates and resources will make
sure that the passenger experience at the security checkpoint is optimised. An illustrative example of
the four observed security queue times during five minute intervals is shown in fig. 5.1. The security
checkpoint queue time (𝑆𝐶𝑄𝑇 ) is defined as the average time that passengers are waiting in a queue
before they can proceed to an X-ray scanner during the five minute interval. The variance of security
checkpoint queue times is determined per time interval and then summed to arrive at the objective
function value.

Figure 5.1: Illustration of the objective function calculation.

The calculated variance of a single interval is a measure for the spread of the queueing times among
the different checkpoints during that interval. Summing all the calculated variances will give a measure
for the overall spread. The variance per interval will be calculated by:

𝑣𝑎𝑟𝑖𝑛𝑡 =
1

𝑚 − 1

𝑚

∑
𝑗=1

(𝑆𝐶𝑄𝑇 𝑗
𝑖𝑛𝑡 − 𝑆𝐶𝑄𝑇𝑖𝑛𝑡)2, (5.2)

where 𝑆𝐶𝑄𝑇𝑖𝑛𝑡 represents the average of the security queue times of the 𝑚 security checkpoints during
the time interval 𝑖𝑛𝑡. Then the objective value 𝑓 is calculated using eq. (5.3):

𝑓 =
𝑇

∑
𝑖𝑛𝑡=1

𝑣𝑎𝑟𝑖𝑛𝑡, (5.3)

where 𝑇 represents the total number of time intervals in the examined planning horizon.

In the simulation optimisation method, the security checkpoint queueing times will however not be cal-
culated by means of equations. These times will be the outcome of many simulations. Due to the
stochasticity in the model (pseudo random number generators), Monte Carlo simulations need to be
performed (at least ten times) to be able to say something about the queue behaviour during one of
the intervals. The number of replication runs was set to ten, since after ten runs the variance of the
queue times per time interval did not change much any more. Hence, running more simulations of the
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same scenario did not give more information about a scenario. After these Monte Carlo simulations,
the average queueing times per interval per checkpoint are calculated and fed back to the optimisation
algorithm. The algorithm can try to reduce the objective function value 𝑓 by changing the flight assign-
ment (𝑥𝑖𝑗) or by assigning extra X-ray scanners (𝑟𝑗).

The problem is constrained by four types of constraints of which two were used by Mangoubi and
Mathaisel (1985). These two have been split-up since the current problem handles two types of flights
(Schengen and non-Schengen). Schengen flights cannot be assigned to non-Schengen gates and vice
versa. When formulating the constraints in eq. (5.1) this has been taken into account by splitting the
assignment problem constraints in two sets.

The initial set of two constraints in eq. (5.1), makes sure that every flight is assigned to one and only one
gate. The number of constraints of this type are equal to the number of flights considered 𝑛. The second
set of constraints makes sure that no two aircraft may be assigned to the same gate concurrently. In
the first constraint of the set, 𝐿(𝑖) represents the set of all Schengen flights ℎ which landed before flight
𝑖 and are still on the ground at the time flight 𝑖 arrives. Hence, 𝐿(𝑖) represents the Schengen conflict
set and if the flights are indexed in order of their arrival time it can be defined as:

𝐿(𝑖) = {ℎ | 𝑡𝑑
ℎ ≤ 𝑡𝑎

𝑖 , ℎ = 1, … , 𝑖 − 1 ∀ 𝑖 ∈ 𝑆} (5.4)

where 𝑡𝑑
ℎ is the departure time of flight ℎ and 𝑡𝑎

𝑖 is the arrival time of flight 𝑖. Since it has been mentioned
that only departure flights are considered, an assumption needs to be made about a time window for
a flight to be present at the gate. This is the time that a gate is locked for its use by a specific flight.
This includes the turn around time of flight 𝑖 as well as a buffer. This assumption is based on a similar
assumption made by Yan and Huo (2001).

Assumption 4 (Turn around time) The turn around time (including buffer) of an aircraft is dependent
on its size (amount of seats). It is assumed that:

𝑇 𝑢𝑟𝑛 𝑎𝑟𝑜𝑢𝑛𝑑 𝑡𝑖𝑚𝑒(𝑖) = {
2400𝑠 if flight 𝑖 has ≤200 seats
4800𝑠 otherwise.

These turn around times have been based on actual turn around times found (https://www.flightradar24.com/),
turn around times assumed by reference papers like Diepen et al. (2012), Yan and Huo (2001). Fur-
thermore, the minimal assumed turn around times showed the most interesting queue time behaviours
when using two or three X-ray scanners.

To determine the conflict set, the 𝑡𝑎
𝑖 is set equal to the time that an aircraft has the right to occupy a gate

and is not necessarily the arrival time of flight 𝑖. The similar principle holds for the departure time. In this
way a certain robustness is added to the model. However, this does not make the model completely
robust to severe changes in the schedule. Though, it can be reasoned that passengers coming in for
a flight that is last-minute delayed have already passed the security queue and therefore do not affect
the validity of the proposed method.

The final constraint is the resource constraint. Every X-ray scanner requires four operators and it is
assumed that that the security agency plans it personnel on its own in advance. Therefore, there is a
limited amount of resources that can and need to be used during the day. Hence, this is a pre-assumed
number of X-ray scanner 𝑠 that need to be opened during the planning horizon, as this corresponds
to the number of security operators working at the particular day. Since the values of 𝑟𝑗 have been
restricted to either two or three, the number of total X-ray scanners 𝑠 is also restricted to a finite set.
The reason for implementing this constraint has to do with the fact that currently AATOM is still under
development. This means that the personal characteristics of the agents (e.g. individual efficiency)
are not yet fully implemented and therefore the queue time behaviour of security checkpoints are fairly
similar. What is expected is that the security checkpoint queues of the non-Schengen and Schengen
gates will almost behave identically (the data will show little differences). For example, if two identical
non-Schengen flights are expected at the same time, the queueing times experienced during the time
intervals preceding the arrivals will show little difference between security checkpoint A and B. Setting
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the 𝑠 = 10 could ensure that there will be a clear asymmetry between the security checkpoints, two
security checkpoints could have three X-ray scanners active and the other two could have two X-ray
scanners active.

Furthermore, the speed and efficiency of the optimisation algorithm depends on the shape of the ob-
jective function. The addition of the resource constraint will make objective function less flat, probably
leading to a better performing optimisation algorithm. The impact of different amount of X-ray scanners
at security checkpoint C (SC C) is shown in fig. 5.2.

(a) A case with relatively low observed queue times when two X-ray scanners active at SC C.

(b) An extreme case with high observed queue times when two X-ray scanners active at SC C.

Figure 5.2: The impact of using an extra X-ray scanner shown in two cases for security checkpoint C.

5.2. Differential evolution algorithm
The algorithm that will be used to solve the non linear problem is the differential evolution algorithm.
The basic idea of the differential evolution (DE) algorithm is similar to evolutionary steps in nature.
It has been demonstrated that the DE algorithm converges faster and with more certainty than other
global optimisation methods such as a genetic algorithm (Storn and Price (1997)). The initial idea was
to use a genetic algorithm implemented in the MATLAB environment. However, the MATLAB imple-
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mentation of a genetic algorithm fails to cope with the combination of integer programming with equality
constraints. The DE algorithm employed in current study, a version of the ‘Multiobjective Evolutionary
Algorithm Based on Decomposition’ (Zhang and Li (2007)) supplied by V. Ho-Huu, could readily cope
with the formulated problem.

The method is a parallel direct search method that uses 𝑁𝑃 D-dimensional vectors

𝑥𝑖,𝐺 , 𝑖 = 1, … , 𝑁𝑃 (5.5)

as a population for every generation 𝐺. The algorithm is initialised by randomly choosing the initial
population that covers the entire parameter space. Random decisions are made using a uniform dis-
tribution.

DE generates new populations by adding the weighted difference between two population vectors to a
third vector. This process is called mutation.

Let 𝑥𝑖,𝐺 𝑖 = 1, … , 𝑁𝑃 be a target vector, yields the lowest objective function value. Then a mutant
vector is generated using:

𝑣𝑖,𝐺+1 = 𝑥𝑟1,𝐺 + 𝐹 × (𝑥𝑟2,𝐺 − 𝑥𝑟3,𝐺) (5.6)

with random indexes 𝑟1, 𝑟2, 𝑟3 ∈ 1, … , 𝑁𝑃 , integer, mutually different and 𝐹 > 0. The random integers
should be chosen such that they are different from the running index 𝑖. Therefore, 𝑁𝑃 should be at
least equal to four to allow for this condition. The real parameter 𝐹 controls the amplification of the
differential variation (𝑥𝑟2,𝐺 − 𝑥𝑟3,𝐺), and 𝐹 ∈ (0, 1).

The next step is crossover. Crossover increases the diversity of the perturbed parameters. The output
of this step will be the trial solution that will challenge the target vector. The trial vector will be of the
following form:

𝑢𝑖,𝐺+1 = (𝑢1𝑖,𝐺+1, 𝑢2𝑖,𝐺+1, … , 𝑢𝐷𝑖,𝐺+1) (5.7)

In fig. 5.3, the crossover process is illustrated.

Figure 5.3: Illustration of crossover process, taken from Storn and Price (1997).

As can be seen in fig. 5.3 the trial vector is formed by

𝑢𝑗𝑖,𝐺+1 = {
𝑣𝑗𝑖,𝐺+1 if (𝑟𝑎𝑛𝑑𝑏(𝑗) ≤ 𝐶𝑅) OR 𝑗 = 𝑟𝑛𝑏𝑟(𝑖),
𝑥𝑗𝑖,𝐺 if (𝑟𝑎𝑛𝑑𝑏(𝑗) > 𝐶𝑅) AND 𝑗 ≠ 𝑟𝑛𝑏𝑟(𝑖) 𝑗 = 1, 2, … , 𝐷.

where 𝑟𝑎𝑛𝑑𝑏(𝑗) is the 𝑗th evaluation of a uniform random number generator with an outcome ∈ [0, 1].
Furthermore, 𝐶𝑅 is the crossover constant and is to be specified by the user (𝐶𝑅 ∈ [0, 1]). The function
𝑟𝑛𝑏𝑟(𝑖) randomly chooses an index ∈ 1, 2, … , 𝐷 such that it ensures that at least one parameter of 𝑣𝑖,𝐺+1
passes on to 𝑢𝑖,𝐺+1.
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Finally, to decide whether or not it should become a member of generation 𝐺+1, the trial vector 𝑢𝑖,𝐺+1 is
compared to the target vector 𝑥𝑖,𝐺, using a greedy criterion. If the trial vector yields a smaller objective
function value than the current target vector, then 𝑥𝑖,𝐺+1 is set to 𝑢𝑖,𝐺+1. If not, then the old target vector
is retained. Once the method converges, the iterations are stopped and the optimum is found.

The direct integration of the agent-based model into the differential evolution algorithm created in the
current study is shown in fig. 5.4, which is similar to the procedure used by Casado et al. (2004) and
Carson and Maria (1997) presented in section 2.3. It includes the steps described above and additional
steps to evaluate the trial and target vector. To obtain the objective function values, the target and trial
gate and resource assignments need to be simulated in AATOM. This is done by performing Monte
Carlo simulations on the 𝑁𝑃 individuals in the generation and the trial vectors. Monte Carlo simulations
had to be repeated ten times per individual in order to be able to say something about the response of
the system. Many outputs can be taken from the simulations, but the output of interest for the current
study is the queueing time experienced at the security checkpoint per time interval, 𝑆𝐶𝑄𝑇𝑖.

Figure 5.4: Illustration of the integration of the agent-based model into the differential evolution algorithm. (Blue) Differential
evolution algorithm. (Red) Simulation and data handling steps.

The above described step requires computational power and time: A ’seven hour day’ at the airport,
could take around two hours to simulate. Therefore, if the entire generation was of size four (𝑁𝑃 =
4, the bare minimum), it would take around 20 hours to evaluate a single individual ten times. Thus,
evaluating the entire generation would cost around 60 hours, without taking any delays due to manual
work into account. This is a major disadvantage of the direct coupling of an agent-based model with
an optimisation.

The complete simulation optimisation routine is shown in fig. 5.5.

The DE algorithm develops, based on the flight schedule, potential solutions (gate and resource allo-
cations). These potential solutions are then simulated in AATOM. Before the objective function value
can be calculated from the simulation data, the data needs to be handled such that there are no outliers
present in the data and the security checkpoint queue times per time interval are obtained. In the next
sub-section the data handling steps, taken to convert the raw passenger data from AATOM into the
security checkpoint queue times per time interval, are briefly discussed.

5.2.1. Data handling steps
The AATOM output data from the security checkpoint is not directly usable since it is on single passen-
ger level (as seen in fig. 5.5). An example format of raw ABMS output data is shown in table 5.1.

45



Figure 5.5: Functional flow of the simulation optimisation methodology.

Table 5.1: Example simulation output data.

Time [ms] Agent ID Activity
88550 170354826 10
141000 81823678 10
282550 81823678 13
343550 1172147589 10
371550 14615546 14
935200 1947197068 20
1013400 170354826 14

The first column is the time with respect to the start of the simulation and the second column displays
the agent identification number. The value in the third column indicates two aspects. The first number,
of the two-digit value, is an indicator for the type of passenger. If the first digit is a ’1’ then the agent is a
leisure passenger, while a ’2’ indicates a business passenger. The second digit indicates the location
of the passenger. A ’0’ is the airport’ entrance and ’1’, ’2’, ’3’ and ’4’ indicate the security checkpoint
queues ’A’, ’B’, ’C’ and ’D’, respectively. For example, agent ID 170354826 enters the airport at 1min
29s and arrives at security checkpoint D at 16min 53s. Note, that the time is the only indicator that
indicates whether the passenger is joining the queue or leaving (𝑡𝑗𝑜𝑖𝑛 ≤ 𝑡𝑙𝑒𝑎𝑣𝑒). Hence, the data needs
to be managed in such a way that each row contains the data of one passenger (entrance time, security
system ID, arrival time, security checkpoint queue time).

After the data set transformation of a potential solution simulation run, the second step is to make sure
that the data is free of outliers. “An outlier is a data point that, because of its extreme value compared to
the rest of the dataset, might incorrectly influence an analysis ”(Zuur et al. (2007)). The noise apparent
in the simulation data could be a result of agents who are stuck in the environment. What could for
example happen is that in busy scenarios certain passengers are pushed into a corner from which they
are not able to escape. What is then observed in the data is a very large queue time of that passen-
ger with respect to the queue times experienced by the other passengers. Furthermore, such a stuck
agent might influence an other agent’s behaviour. Therefore, the raw data needs to be checked and if
existent, noise should be removed. The interquartile range (IQR) method is used to remove the noise
(outliers) from the data are proposed in the Ecological Data Analysis book by Zuur et al. (2007). In
addition to the IQR method, analysing the time between entrance and security checkpoint is another
descent way to see if for example an agent got stuck in the environment.
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The IQR method identifies outliers by creating box-and-whisker plots of the queue time experienced
for every time interval. The edges of the box represent the 1st and 3rd quartile (quartiles are the points
that divide the data into four groups of equal size), which are equal to the 25th and 75th percentiles.
The interquartile range is the range between the first and third quartile. The IQR method considers a
data point to be an outlier if it falls outside either 1.5 times the IQR below the first, or 1.5 times the IQR
above the third quartile. In fig. 5.6, box plots per time interval are shown for every security checkpoint
of data obtained by ten runs of the arbitrary schedule presented in table 5.2. The lower end of the blue
box indicates the first quartile and the top end of the box indicates the third quartile. The red line in
the blue box indicates the median of the security checkpoint queue time during that time interval. The
whiskers are drawn till the last data point that falls within the 1.5 times IQR range described above.
The red markers (‘+’) indicate the data points (outliers) that do not fall within the range.

Figure 5.6: Box plots of simulation results for the security checkpoints (l.r.t.b. security checkpoints A, B, C & D), with each two
X-ray scanners active.

Table 5.2: Departure times and aircraft sizes used for producing the data of fig. 5.6.

Gate A Gate B Gate C Gate D
Pax Time Pax Time Pax Time Pax Time
200 3:00 200 3:00 200 3:00 200 3:00
500 4:20 500 4:20 80 3:40 80 3:40
200 5:00 200 5:00 200 4:20 200 4:20
500 6:20 500 6:20 150 5:40 150 5:40
200 7:00 200 7:00 200 6:20 200 6:20

200 7:00 200 7:00

As can be seen from table 5.2, the departing flights fromGate A and B are the same as well as the flights
from Gate C and D. The time indicated in the table represents the departure time with respect to the
starting time of the simulation. Due to the fact that similar schedules were used for the Schengen gates
and the non-Schengen gates, the upper and lower two sub-plots in fig. 5.6 show similar behaviour. The
box plots show quite some points that fall outside the whiskers per time interval. However, these data
points are not necessarily outliers.
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Let us go into detail a little bit more by looking at the box plot of security checkpoint B as example. Two
different ’outliers’ can be observed in this plot.

The first type are the outliers detected where the median of the box is nearly zero. These can be ob-
served before interval number 32. For these time intervals, the median and the 25th and 75th quantile
of the box are close to zero (box ends). As a result, the whiskers will be very short. Therefore, if there
is a realisation (e.g. one out of the ten runs) that shows higher queue times during these intervals,
then the box plot observes those as being outliers. However, these data points are no true outliers,
but reflect the stochasticity of the agent-based model and are a result of the pseudo random number
generators.

The second type of outlier can be observed in the interval numbers beyond 32 at security checkpoint
B. Essentially, the same happens as in the first type of outlier. A small portion of the realisation could
show a significantly different outcome due to the stochastic behaviour of the model. This is clearly also
the case in fig. 5.6 as the outliers observed form together a different realisation.

Taking into account these two types of misclassified outliers, the data was made noise free. This step
mostly included cleaning the data from observations of too high security checkpoint queue times with
respect to the rest of the simulation data. An example of a box plot that showed significant outliers
is shown in fig. B.1. Finally, the average security checkpoint queue times per time interval could be
calculated from the noise free data which is the output of the noise removal step in fig. 5.5.

In chapter 7, the results of the initial direct integration of an agent-based model with an operations
research optimisation will be shown. As was mentioned earlier, the simulation optimisation method is
a very time consuming method. The size of the problem, number of replication simulation runs and the
manual connection between the JAVA AATOMmodel and the MATLAB optimisation algorithmmake it a
very slowmethod. In addition, the specified optimisation strategy would result in a optimal resource and
gate assignment for a specific day of operations. If this takes days to generate an optimal assignment
then it is impractical to use as a gate planner support tool. This is a well known disadvantage of
simulation optimisation and hence the current research into meta-modelling. Therefore, the next step
is to see whether the integration of the agent-based model and gate assignment optimisation can be
done by means of meta-modelling.
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6
Integration by meta-modelling

The optimisation of the direct integration of an agent-based model with flight-to-gate assignment op-
timisation is a very time-consuming process. Therefore, this chapter will describe a method to inte-
grate the agent-based model with a gate and resource assignment optimisation by making use of an
abstraction/meta-model. As explained in section 3.6 this will be done by two types of meta-models:
polynomial response functions and Gaussian radial basis functions.

First the input parameters for the meta-models will have to be selected in section 6.1. Then, in sec-
tion 6.2 the way the data is generated is elaborated on. Finally, in sections 6.3 and 6.4 the meta-
modelling steps will be explained for the polynomial response and the Gaussian radial basis function
methodology. In these sections the model fitting will be discussed and the performance of the models
evaluated.

6.1. Parameter selection
In the early stage (literature study) it was decided to apply meta-models for simulation input-output
relations. The first step in creating a meta-model is to determine the parameters that will be used to
create the meta-models. In this section, the parameter selection will be explained.

There are numerous variables that can be analysed from the AMBS, but it was decided at an early
stage that the security checkpoint queue time (𝑆𝐶𝑄𝑇𝑖) was the observed output in the simulation op-
timisation method (in chapter 5). Therefore, it was decided to also use the 𝑆𝐶𝑄𝑇𝑖 per checkpoint as
the output in the simulation input-output meta-model.

As the meta-model will be used to integrate the agent-based model with a flight-to-gate assignment
model, it is necessary that these input variables are both related to the flight-to-gate assignment deci-
sion variables as well as the simulation output variable (SCQT). Known from queueing theory is that
the average queueing time passengers experience is dependent on the arrival rate (at the security
checkpoint) and the service rate. However, the arrival rate at the entrance of the security checkpoint
queue is not known, due to the fact that there are intelligent agents present at the airport (capable to
make autonomous decisions). What is known are the arrival rates of the passenger at the entrance of
the airport (shown in chapter 4). Fortunately, these arrival rates of passengers are both related to the
flight assignment and the security checkpoint queue time. The arrival distribution can be converted into
expected number of passengers entering the airport per time interval using the passenger knowledge
assumption. These arrival rates (𝐴𝑅) per time interval 𝑖 (𝐴𝑅𝑖) could be used as input variables for the
meta-models. Below the variable connections with both paradigms will be further explained.

Relation gate assignment variables with input parameters
The flight-to-gate assignment assigns an incoming passenger stream to a path (recall assumption 1).
This conveniently ensures a relationship between the first type of decision variables (𝑥𝑖𝑗) in the flight-to-
gate assignment model and the number of passengers per time interval (meta-model input parameters).
Hence, this connection is strongly dependent on assumption 1.
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Relation input parameters with output parameter
The relationship between the input and output parameters of the simulation is the relationship that will
be represented by the meta-model. Hence, it is important that there exists a clear relationship between
the input parameter and the output parameter of interest since the initial meta-model that will be de-
veloped is a parametric model. One of the agent-based model parameters that could be changed was
the amount of X-ray scanners open per security checkpoint (the second type of decision variable 𝑟𝑗).
This decision variable directly affects the speed at which a security checkpoint operates and therefore
the queue build-up.

Secondly, the main difference between two unique scenarios are the arrival streams of passengers. If
one would run several different scenarios (departure schedules), one would observe different queue
time behaviour in each of the scenarios. This is as expected, since this behaviour reflects the common
understanding of queueing theory.

An example of an arrival stream of passengers (arriving at the airport entrance) and the resulting se-
curity checkpoint queue time behaviour is shown in fig. 6.1.

Figure 6.1: Scenario for security checkpoint queue C. (Blue) The number of passengers arriving (at the airport entrance) per
interval, headed for security checkpoint C. (Red) The security checkpoint queue times observed per time interval.

The arrival stream as shown in fig. 6.1 is at the airport entrance and this is not equal to the arrival
stream at the entrance of the security checkpoint queue. Passenger are intelligent and take different
paths to the security checkpoint. They could for example decide to visit the goodbye area, and leave
whenever they observe a worsened queue state. Therefore, the clear arrival distribution of passengers
at the airport entrance cannot be linearly translated into the arrival distribution at the entrance of the
security checkpoint queue. Hence, the well known queueing theory models cannot be confidently used
to approximate the security checkpoint queue time, since these models require clear arrival distribu-
tions. However, the general queue behaviour (known from queueing theory) is preserved.

So instead of trying to estimate the queue time based on the arrival rate at the security checkpoint
queue, the current study will try to find te relationship between the arrival rate at the airport entrance
and the security checkpoint queue time. The mathematical form of the relationship is not yet known.

When looking at fig. 6.1, one can see that there is a delay in the effect of the arriving passengers at
the airport entrance on the queue build-up at the security checkpoint. Queues will build-up when the
demand rate (arrival rate 𝜆) exceeds the service rate (𝜇). The queue will stop increasing or decrease
when the demand rate is equal to or lower then the service rate (see de Neufville and Odoni (2013) for
appropriate models). Therefore, the arrival rate of the initial time interval, where 𝜆 > 𝜇, has an effect
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on the queue time build-up in the same time interval but also on the queue time experienced in future
time intervals. Hence, there is a delayed effect between the arrival rate (measured at the entrance of
the security checkpoint queue) and the security checkpoint queue time.

In addition to the delayed effect based on traditional queueing theory, a delay is encountered between
the airport arrival time and the security checkpoint queue arrival time. This delay is caused by the fact
that the passengers that are for example not checked-in online will have to pass the check-in facility.
In addition, the goodbye area introduced in chapter 4 could also increase the time passengers spent
between entering the airport and arriving at the security checkpoint. An example of this delay is shown
in fig. 6.2.

Figure 6.2: The time it takes to walk from entrance to the security checkpoint for business and leisure passengers.

In fig. 6.2 it can be seen that for both business and leisure passengers there are two peaks. The first
peak (for business and leisure), mostly represent people walking directly towards the security check-
point. Therefore, the time to the security checkpoint is the lowest. The second peak are the people
(business and leisure) that need to pass by the check-in counter. Both peaks show that business
passengers are on average just a little bit faster. This is the result of the implemented walking speed
differences.

The leisure passenger data shows additional peaks. These peaks are a result of the implemented au-
tonomous decision making process. Note, that due to the autonomous decision making, the latter part
of the graph is specific for a certain scenario. For example, if only small flights depart from a certain
gate, more people might decide to visit the goodbye area and stay for a longer period. Whereas in busy
scenarios, passengers tend to visit the goodbye area less often and the amount spent in the goodbye
area fluctuates more heavily. This fluctuation is caused by quick changes in queue length.

These delays could be one of the reasons that there is a lagged response in the 𝑆𝐶𝑄𝑇 . As a result the
𝑆𝐶𝑄𝑇 𝐶

𝑖 (the security checkpoint C queue time in time interval 𝑖) is not only dependent on the people
arriving in the same time interval, but also on people arriving in earlier time interval. Hence, it is de-
pendent on the current arrival rate (𝐴𝑅𝑖) of passengers and the arrival rates of earlier intervals (𝐴𝑅𝑖−𝑙).
The number of lags 𝑙 taken as input variables was determined based on the observations from graphs
like fig. 6.2. It was observed that from all scenarios the longest time passengers needed to get from the
entrance to their designated security checkpoint was around 25 minutes. This equals five time intervals
(𝑙 = 5), therefore 𝐴𝑅𝑖 , 𝐴𝑅𝑖−1 , 𝐴𝑅𝑖−2 , 𝐴𝑅𝑖−3 , 𝐴𝑅𝑖−4 , 𝐴𝑅𝑖−5 were the lagged arrival rates taken into
consideration.

The chosen parameters are not the only parameters that could be selected to create meta-models.
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Parameters that reflect agent behaviour are for example not taken into account, but could be used
to construct meta-models as well. These parameters could for example include the business/leisure
ratio per flight and the carry-on/checked luggage ratio per flight. However, in the current study these
parameters are only used as experimental setting.

6.2. Data generation
In this section the data generation process is discussed. This is a time consuming but very important
step in the meta-modelling process. It determines the design space of the meta-models. Therefore,
data should be gathered such that it is rich in diversity.

The design space is the region over which the meta-model is supposed to hold. Outside this region,
the meta-model has a poor performance. If the design space is too small, then the meta-model is not
general for the agent-based model. However, if it is tried to make the design space large, then this
might result in unnecessary simulation runs that take a long time. As an example, one might want to
design the model such that every scenario is covered. This means that there could also be a scenario
in which only large flights (>350 passengers) depart from Schengen gates. In reality this does not occur
that often at e.g. AAS (see table 4.2), and these scenario runs are therefore unnecessary.

The data gathering simulations were therefore bound by two aspects. First, the size of aircraft were
bound by the aircraft sizes present at AAS (shown in table 4.2). Secondly, the turn around time as-
sumption (assumption 4) restricts the amounts of flights that can be assigned to the gates and therefore
drastically reduces the design space.

In the reference papers used (Miyoung and Goel (2000), Miyoung Shin et al. (2014)), the data gath-
ered was spread evenly across the design region. It was decided that the same approach would be
adopted for this data gathering step. Initially, the aircraft that could depart from the Schengen and
non-Schengen gates were divided into groups according to their size. This can be seen in table 6.1.

Table 6.1: Grouping aircraft according to the aircraft size into four groups.

Aircraft size (#seats)
≤100 (100,200] (200,300] >300

Aircraft size group S M L XL

To create a rich data set, first the extreme scenarios were run. The simulation length was set to seven
hours. This meant that in an extreme case only four XL aircraft are able to depart from a non-Schengen
gate (taking assumption 4 into account). In the other assumed extreme case, only small flights would
depart from the non-Schengen gate. The design area in between the extremes was filled with runs
of different combinations of flight sizes and amount of flights. An example set of the experiments that
were performed to gather data are shown in table 6.2. In this table only the experiments are shown
for gates A and C. The experiments conducted for gate B and D are equal to gate A and C, respectively.

What should be noted from the table is that the extreme case with four XL flights at a non-Schengen
gate was not performed, because the agent-based model and simulations ran into problems when that
amount of passengers arrived at the fictitious airport. For example, if the queues at the security check-
points became too large, passengers could get pushed into a corner by the other waiting passengers.
The victims would then not be able to escape that corner any more, which resulted in bad output data.
In addition, in some realisations the JAVA code completely stopped due to encountered errors.

In these simulation experiments there can be two types of systems present (Charnes (1993)). There
can be Terminating systems in which the model has specific start-up and shut-down times and there
can be a steady-state system. However, the simulation is a repetition of terminating systems (aircraft
arriving/departing), that can result in a steady-state system. Furthermore, the parameters of interest are
the security queue times for each time interval. Recall, that with the time interval standard assumption
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Table 6.2: Subset of the experiments carried out for data gathering in terms of flight sequencing and aircraft size for gate A and
C. Standard aircraft sizes taken were: (S = 100 pax), (M = 200 pax), (L = 300), (XL = 490).

Flight sequencing X-ray scanners
No. Gate A Gate C per SC
1 S S S S S S S S S S S S 2
2 S S S S S S S S S S S S 3
3 XL L XL M M L L M M L M M 2
4 XL L XL M M L L M M L M M 3
5 L M S XL L L L M L M M L 2
6 L M S XL L L L M L M M L 3
7 M M M M M M M M M M M M M M 2
8 M M M M M M M M M M M M M M 3
9 XL M S M M XL M S M M 2
10 XL M S M M XL M S M M 3
11 M XL M XL M M S M M M M 2
12 M XL M XL M M S M M M M 3
13 S XL L S M M M M S S 2
14 S XL L S M M M M S S 3
15 L XL S L M M S M M L 2
16 L XL S L M M S M M L 3
17 XL M XL M M XL L M S M M L 2
18 XL M XL M M XL L M S M M L 3

(assumption 3) it was assumed that during a time interval the changes in queue time were minor. Thus,
the queue time is treated as steady state in a time interval. Concluding, the current simulation data
cannot be clearly identified as a terminating nor steady-state system. Therefore, it was decided to
take an approach that fits both types of data analysis. This is done by first splitting the data into three
phases. The main reason for the split of the data will become clear in section 6.3, which has to do with
properties of the data set.

1. Start-up phase: The beginning of the simulation where the first flight has not yet departed and
the passenger stream of the second flight is not yet present.

2. In-operation phase: Main phase of the simulation, where flights are departing one after another.
3. Terminating phase: Final phase where queues are slowly declining and only the passenger

stream of the last flight is present.

The three phase periods are determined using the outputs of many simulations. During these simu-
lations, the first flight was assigned three hours (simulation hours) after simulation initialisation. The
entire planning horizon was filled with flights with minimal turn-around times.

The end of the start-up phase was determined every simulation run by applying a threshold rule:

𝑡𝑒𝑛𝑑,𝑝ℎ𝑎𝑠𝑒 𝐼 = max 𝑡𝑖𝑛𝑡 ; 𝑆𝐶𝑄𝑇𝑖𝑛𝑡 <
1
3 × max (𝑆𝐶𝑄𝑇 )

This threshold was set using knowledge gained about the queue time behaviour, such that a stationary
process is present in phase II. For example in fig. 6.3, it can be seen that after interval number 20 the
threshold was crossed. Hence, in this example it was decided that the start-up phase ended at interval
number 20. On average the start-up phases ended at interval number 21, leaving out simulations where
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no queue build-up occurred.

Figure 6.3: The three phases displayed in a sample scenario.

Therefore the global end of the start-up phase (phase I) was set to time interval 21 (105 minutes after
initialisation). Furthermore, it was observed from all experiments that the queue time would only start
to build-up from interval eleven onwards. Therefore, the meta-models should be built such that they
start forecasting from interval eleven. Hence, the initial ten time intervals were discarded.

The rationale used to determine the terminating phase was based on the arrival streams of passengers.
In the final 70 minutes before the last flight, only passengers for the last flight (that departs at the end
of the simulation) arrive at the entrance of the airport. Since the minimum turn around time was set to
40 minutes (assumption 4) and in the final thirty minutes no passengers arrive any more (see fig. A.1).
Hence, the final 14 time intervals (70 minutes) are designated as terminating phase (phase III), which
is also shown in fig. 6.3. The time in between the start-up and terminating phase is the in-operation
phase (phase II).

After determining the three distinct phases in the data set, the batchmeanmethodwas applied (Charnes
(1993)). This method “attempts to deal with autocorrelation in the data by combining adjacent auto-
correlated observations in the output sequence into (nearly) uncorrelated batches”. This method was
basically already applied when it was decided to create the time intervals. In addition, the method of
independent replications with truncation was applied. The simulation is run several times (ten times)
starting from the same initial conditions, but using independent pseudo-random numbers for each repli-
cation. Hence, every replication is independent of one another.

Besides gathering the output data of all the security checkpoints during the experiments, the input data
was also gathered. After controlling for outliers, the output observations were coupled to the input ar-
rival rates (e.g. 𝐴𝑅𝐴

𝑖−𝑙, 𝑙 = 0, 1 … , 5). The resulting data set was of the form displayed in table 6.3.

Table 6.3: Columns of the created data set.

𝐴𝑅𝑖−5 𝐴𝑅𝑖−4 𝐴𝑅𝑖−3 𝐴𝑅𝑖−2 𝐴𝑅𝑖−1 𝐴𝑅𝑖 Interval no Phase Gate 𝑆𝐶𝑄𝑇𝑖

… … … … … … … … … …

Finally, the data was split per gate and also per amount of X-ray scanners active. This resulted in a
total of 24 data sets, for which individual meta-models had to be built. In fig. 6.4 the dataset split into
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24 separate data sets is shown.

Figure 6.4: The split of the dataset per checkpoint, number of X-ray scanners and phase.

6.3. Polynomial response methodology
In this section the first type of meta-modelling, a form of response surface methodology, will be ex-
plained and created. First the form of the model will be determined by examining the data type and the
relationships among the input/output variables. What will be seen is that multi-collinearity is apparent
among the variables which will have to be reduced, before model fitting can take place. Finally, the
importance of the parameters is determined and the performance of the models will be tested. The
steps taken in this chapter are taken from the book by Woolridge (2012).

The polynomial response methodology tries to approximate the response in some region of the depen-
dent variables by a polynomial model (regression). The approach fits first or second order polynomial
models to the responses 𝑦. The common form of such a polynomial regression is shown in eq. (6.1).
Where 𝑝𝑘 is a polynomial with inputs 𝐱. 𝑓(𝐱) is the predicted output response.

𝑓(𝐱) = ∑ 𝛽𝑘𝑝𝑘(𝐱) (6.1)

For the remainder of this chapter 𝐲 = (𝑦1, … , 𝑦𝑛)′ represents a set of outputs of the simulation model
ran under input conditions (𝐱𝟏, … , 𝐱𝐧), respectively. The 𝜖𝑖 for the multiple observations are assumed
to be independent, identically distributed quantities with variance 𝜎2.

First, the data needs to be examined in detail, started off by recalling the purpose of a meta-model.
The aim of the meta-model is to forecast the security checkpoints queue times per time interval on an
arbitrary day. This means that the model needs to be general. The goal is to perform a flight-to-gate
assignment optimisation for a planning horizon that is least half-a-day long. However, the simulations
ran were only seven hours. This has some complications on the methods that can be applied.

In fact, the data collected is panel data. As normally in panel data, data is gathered from different groups
of e.g. individuals over time. The time-series dimension of the current data are the consecutive time-
interval observations. The conventional method to apply would be panel data regression techniques.
An example of a panel data regression is shown in eq. (6.2). Letting 𝑖 denote the cross-sectional unit
and 𝑡 the time period, we can write a model with a single observed explanatory variable as

𝑦𝑖𝑡 = 𝛽0 + 𝛿0𝑑2𝑡 + 𝛽1𝑥𝑖𝑗 + 𝑎𝑖 + 𝑢𝑖𝑡, 𝑡 = 1, 2. (6.2)

In the case of the current dataset 𝑖 denotes the different scenarios and 𝑡 denotes the time interval. The
variable 𝑑2𝑡 is a dummy variable that equals zero when 𝑡 = 1 and one when 𝑡 = 2. This dummy variable
does not change across individuals, therefore it does not have a subscript 𝑖. In the example, there
only exist two time intervals, whereas in the data there exist more than two. The panel data method
applied to the current problem, would use a different dummy variable for each time interval, except
one. This is a disadvantage because it means that the model can only be used to forecast the security
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checkpoint queue time for the same amount of time intervals as was used to determine the estimators.
Furthermore, it is restricted to forecast per specific individuals (this case seven hours). Hence, there is
no such thing as out of sample forecasting which is necessary in the current research.

Therefore, an autoregressive distributed lag model is proposed. Which is mainly employed in time-
series data. In the current study, a special type of time-series data is available. The obtained data from
the individual simulations are time-series that are not connected over time. Such that the complete
data set is a collection of small time-series. The autoregressive distributed lag estimation performance
best when there is a certain level of stationarity in the output variable, which was artificially created in
the experiment design phase. This is achieved in current study by creating waves of queue times (see
fig. 6.3) and by splitting the data set in the three phases. The result was that the probability distribution
of the queue time was stable over the time intervals, as approximately the same realisation can be
found in different time intervals.

In addition, it was observed that the dependent variable tends to be larger when the previous time
interval observation of the dependent variable is also larger. Therefore, a partial autocorrelation graph
was made of the dependent variable, security checkpoint queue time. An example of such a graph is
shown in fig. 6.5.

Figure 6.5: The partial correlation graph of the dependent variable 𝑆𝐶𝑄𝑇 𝐶 .

From this figure it can be observed that the security checkpoint queue time has significant auto corre-
lation at lag 1. Therefore, it was decided to include the autoregressive term 𝑦𝑖−1 (moving average of
order 1). However, one should be careful that no serial correlation is present in the error terms, which
therefore needs to be checked. The chosen model is shown in eq. (6.3).

𝑆𝐶𝑄𝑇𝑖 = 𝛼0 + 𝛼1𝑆𝐶𝑄𝑇𝑖−1 +
5

∑
𝑙=0

𝛽𝑙𝐼𝐴𝑇𝑖−𝑙 + 𝑢𝑖 (6.3)

where 𝑖 indicates the time interval, 𝑙 the lag and 𝐼𝐴𝑇 is the inter-arrival time of passengers during the
time interval, 𝑆𝐶𝑄𝑇𝑖 and 𝐼𝐴𝑇𝑖−𝑙 are stationary processes and 𝑢𝑖 a white noise process. The 𝐼𝐴𝑇 was
chosen because it was already in the same units as the dependent variable (seconds). Finally, this
means that an extra column was added to the data set displayed in table 6.3, for the observed security
checkpoint queue time at lag 1 (𝑆𝐶𝑄𝑇𝑖−1). Furthermore, the previously specified 𝐴𝑅 terms, needed to
be converted to 𝐼𝐴𝑇 terms.
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Before estimating the coefficients or estimators by using ordinary least squares (OLS), one should be
sure that the assumptions for OLS to be consistent and efficient hold. These time series Gauss-Markov
assumptions are mentioned below.

• TS.1: Linear in parameters,
• TS.2: No perfect collinearity,
• TS.3: Zero conditional mean,
• TS.4: Homoskedasticity,
• TS.5: No serial correlation.

The mathematical definition of all assumptions will not be elaborated upon here, but an exhaustive ex-
planation can be found in Woolridge (2012). Theory tells us that OLS is consistent and unbiased con-
ditional on 𝐗 (all explanatory variables) under assumptions TS.1 - TS.3. However, under assumptions
TS.1 - TS.5 the OLS standard errors, 𝑡 statistics and 𝐹 statistics hold. The most important assumptions
to control for in the current study are assumptions TS.2 and TS.5, because the others will hold or can
be checked for once these assumptions hold. TS.5 has been partially accounted for by including the
lagged dependent variable 𝑆𝐶𝑄𝑇𝑖−1. However, TS.5 still needs to be checked, as well as TS.2.

6.3.1. Controlling for perfect collinearity
To check for perfect collinearity one is interested if one explanatory variable can be perfectly explained
by a linear combination of the other explanatory variables. If this would be the case then OLS would be
inconsistent. A check for collinearity can be done by using a pairplot (Zuur et al. (2007)). This plot is a
scatterplot matrix, that shows all pairwise scatter plots of all variables in one graph. If perfect collinearity
is apparent then one of the scatter plots shows a perfect linear relationship between one of the explana-
tory variables. Note, that only perfect collinearity would result in inconsistent OLS estimates. On the
other hand if multicollinearity would be detected, then the interpretation of the coefficients would be not
possible. Therefore, also in the case of non-perfect collinearity some extra steps had to be performed.

The first pairplot was created from one of the most demanding data sets: security checkpoint C with
only two operators active.

Figure 6.6: Pairplot of the explanatory variables to detect (perfect) collinearity, with in red the 𝑅2 values.

What should be observed in this plot-matrix are the relatively high correlation values. The graph shows
high correlation values, but there is no sign of perfect collinearity (correlation equal to one). However,
high correlations mean that there is multicollinearity. Multicollinearity makes it difficult to uncover the
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partial effect of each variable on the dependent variable. A 𝑅2 value of 0.9 between 𝑥1 and 𝑥2 as exam-
ple means that 90% of the sample variation in 𝑥1 can be explained by the other explanatory variable 𝑥2.
There is not much that can be done to remove collinearity, except for dropping variables or combining
variables to reduce the multicollinearity (Woolridge (2012)). Hence, it was decided to use combined
variables in the fitting stage.

Another pairplot was made of all variables (explanatory as well as dependent variables). This pairplot
could indicate if there are explanatory variables that are clearly linearly related to the independent vari-
able. This pairplot is shown in fig. 6.7.

Figure 6.7: Pairplot of all variables, with in red the 𝑅2 values.

This pairplot shows that there are no clear linear relationships between the 𝐼𝐴𝑇𝑖−𝑗 terms and the de-
pendent variable. However, there is most probably a form of linear relationship between the 𝑆𝐶𝑄𝑇𝑖−1
and the 𝑆𝐶𝑄𝑇𝑖. This was expected since fig. 6.5 already showed this correlation. In addition, this de-
pendent variable provides a simple way to account for historical factors that cause current differences
in the dependent variable that are difficult to account for in other ways.

6.3.2. Fitting the model
The fitting stage involves two steps. In the first step the efficiency of the model is improved. The
collinearity is removed by stepwise adding and removing explanatory variables and combinations of
the explanatory variables. In the second step the fitted model is tested against a validation data set.
This data set is different from the one used for fitting and will give a indication of the general perfor-
mance of the model in out of sample situations.

A model will be made for each of the 24 data sets: Each security checkpoint (SC A, B, C, D), per
amount of X-ray scanners (2 or 3 X-ray scanners) and per phase (3 phases). Ideally, the fitting of the
models would be done per data set, but this is a tedious process and does not add to the academic
value of this thesis. Hence, it was decided to fit the models and thus combine the explanatory variables
to reduce the collinearity on the data sets for two X-ray scanners (assumption 5). The same variables
and linear combinations of the variables would be used for the three X-ray scanner data sets. Hence,
the following assumption:

Assumption 5 (Removing collinearity simplification) It is assumed that the data obtained by em-
ploying 2 X-ray scanners behaves in a similar way as data obtained by employing 3 X-ray scanners.
Hence, the explanatory variable combinations that reduce collinearity in the 2 X-ray scanner data set
are the same for the 3 X-ray scanner data set.
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These combinatorial variables were obtained by performing a step-wise linear regression. The criterion
to add or remove terms was the 𝑝-value for an 𝐹 -test of the change in the sum of the squared error by
removing or adding a term. If the decrease in the sum of squared errors was insignificant, showing a
𝑝-value higher than 0.05 (5% significance level), then it was removed.

The starting point is the normal linear regression on all the explanatory variables, see table 6.4.

Table 6.4: Estimated coefficients of a linear regression of the explanatory variables on 𝑆𝐶𝑄𝑇 𝐶
𝑖 , phase 2 and two X-ray

scanners. The 𝑅2
𝑎𝑑𝑗 = 0.8660 and the root mean squared error 𝑅𝑀𝑆𝐸 = 203 𝑠.

Estimate SE tStat pValue

(Intercept) 92.068 31.474 2.9252 0.0036464
𝐼𝐴𝑇𝑖 -0.53213 1.6843 -0.31594 0.75222
𝐼𝐴𝑇𝑖−1 -1.9121 1.9736 -0.96883 0.33324
𝐼𝐴𝑇𝑖−2 1.883 2.0167 0.93371 0.35104
𝐼𝐴𝑇𝑖−3 -2.39 2.0961 -1.1402 0.2549
𝐼𝐴𝑇𝑖−4 0.64681 1.756 0.36834 0.71282
𝐼𝐴𝑇𝑖−5 0.15254 0.4373 0.34882 0.72742
𝑆𝐶𝑄𝑇𝑖−1 0.90417 0.021034 42.985 7.99E-149

This table shows once more that there exists collinearity among the variables, because almost all p-
values are insignificant but the adjusted 𝑅2

𝑎𝑑𝑗 value is high. Therefore, the stepwise linear regression
method was employed to reduce the multicollinearity. The selected variables and combination of vari-
ables by the stepwise regression method are shown in table 6.5.

Table 6.5: Stepwise linear regression result for SC C phase 2 with two X-ray scanners.

Estimate SE tStat pValue

(Intercept) 82.509 28.749 2.87 0.004331
𝐼𝐴𝑇𝑖−1 -1.9573 1.0359 -1.8895 0.059571
𝐼𝐴𝑇𝑖−5 0.1759 0.38421 0.45783 0.64733
𝑆𝐶𝑄𝑇𝑖−1 0.98949 0.03742 26.443 9.46E-89
𝐼𝐴𝑇𝑖−5 ⋅ 𝑆𝐶𝑄𝑇𝑖−1 -0.00526 0.00195 -2.6972 0.007298

To double check that there is no multicollinearity apparent, the Belsley collinearity test was performed
on the selected variables (𝐼𝐴𝑇𝑖−1, 𝐼𝐴𝑇𝑖−5, 𝑆𝐶𝑄𝑇𝑖−1, 𝐼𝐴𝑇𝑖−5 ⋅ 𝑆𝐶𝑄𝑇𝑖−1). This test is one of the most
common used tests for collinearity (Belsley et al. (2005)) and has been included in table B.1 as a for-
mality only. It showed no clear evidence of harmful collinearity.

The next step is to analyse the residuals of this regression, because it was assumed that there was
no serial correlation present. In order to check for serial correlation, the residuals were acquired from
the regression above. Since the data set has been made from multiple runs, the time series data has
gaps in them. Therefore, the serial correlation should only be checked within one run and not between
runs (or for the entire data set all at once). To check for serial correlation in the residuals, the following
check was performed to see if there is significant evidence of serial correlation:

𝐶𝑜𝑟𝑟(𝑢𝑖, 𝑢𝑠) = 0 ∀𝑖 ≠ 𝑠,
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where 𝑢𝑖 are the residuals in time interval(period) 𝑖. An example of this test for the regression above is
shown below:

𝐶𝑜𝑟𝑟(𝑢𝑖, 𝑢𝑖−1) = 0.3
which showed the presence of autocorrelation or serial correlation in the residuals. As this was unex-
pected, a second graph was made of the residuals, which is shown in fig. 6.8. What can be seen is
that the residuals are not a white noise process.

Figure 6.8: Residual plot created using data of a single experiment, which shows the absence of a white noise process.

This meant not only that assumption TS. 5 was violated but also TS.3 did not hold. Hence, the p-values
used to construct the above relationship were unreliable.

Therefore, it was decided to perform random sampling such that the data set was converted from a
panel data set to a cross-sectional data set. Each random sample contained the variables listed in
eq. (6.3). Random sampling made sure that the data set only consisted out of independently sampled
observations. This means that from every experiment random samples of data were drawn, which
formed the new data set. Hence, the resulting data consists only of random observations of the de-
pendent variable with their corresponding explanatory variables, as a randomly pooled cross-sectional
data set. Therefore, by definition no serial correlation will be present any more (Woolridge (2012)).

Once these new data sets were established, previous steps had to be repeated. The resulting stepwise
regression is shown in table 6.6.

It can be seen that the fit is rather high with 𝑅2
𝑎𝑑𝑗 = 0.906, however the root-mean squared error is high

(𝑅𝑀𝑆𝐸 = 171 𝑠). There are multiple reasons for the bad fit of the regression meta-model including:

• The regression model form is not able to approximate the non-linear agent-based model data.
• The selected independent variables are not able to approximate the response.
• The data split into three phases is still too rough.
• The time-interval selection of five minutes could have affected the fitting errors.

Hence, if one wants to improve the quality of the regression meta-models, these are the most impor-
tant areas to consider. In addition to the poor fit of the models, one can observe a high p-value for the
𝐼𝐴𝑇𝑖−4 term (pValue = 0.7998). The stepwise regression has not decided to remove this term since the
removal would not result in a significant increase in 𝑅2

𝑎𝑑𝑗 value. Also the variable was not linearly de-
pendent with any of the other terms in the current model, since otherwise it would have been removed.

It was assessed that the residuals represented a white noise process (see appendix B, fig. B.2). Fi-
nally, the meta-models made for the 𝑆𝐶𝑄𝑇 𝐶

𝑖 of security checkpoint C, phase I,II and III with two X-ray
scanners are given in eqs. (6.4) to (6.6).
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Table 6.6: Final linear regression on 𝑆𝐶𝑄𝑇𝑖 of SC C, phase 2 and two X-ray scanners. The 𝑅2
𝑎𝑑𝑗 = 0.906 and the root mean

squared error 𝑅𝑀𝑆𝐸 = 171 𝑠.

Estimate SE tStat pValue

(Intercept) 256.21 82.924 3.0897 0.002239
𝐼𝐴𝑇𝑖−1 -5.7531 2.7251 -2.1112 0.035788
𝐼𝐴𝑇𝑖−3 -7.5947 3.2207 -2.3581 0.019167
𝐼𝐴𝑇𝑖−4 0.53927 2.1243 0.25386 0.79982
𝐼𝐴𝑇𝑖−5 -1.2944 0.76359 -1.6952 0.091327
𝑆𝐶𝑄𝑇𝑖−1 0.97856 0.053793 18.191 4.00E-47
𝐼𝐴𝑇𝑖−1 ⋅ 𝐼𝐴𝑇𝑖−3 0.17447 0.074156 2.3528 0.019437
𝐼𝐴𝑇𝑖−4 ⋅ 𝑆𝐶𝑄𝑇𝑖−1 -0.01614 0.004085 -3.9518 0.000102
𝐼𝐴𝑇𝑖−5 ⋅ 𝑆𝐶𝑄𝑇𝑖−1 0.009492 0.003838 2.473 0.014088

𝑆𝐶𝑄𝑇 𝐶,1,2
𝑖 = 7.75 + 1.16 𝑆𝐶𝑄𝑇𝑖−1 (6.4)

𝑆𝐶𝑄𝑇 𝐶,2,2
𝑖 = 256.21 − 5.75 𝐼𝐴𝑇𝑖−1 − 7.59 𝐼𝐴𝑇𝑖−3 + 0.54 𝐼𝐴𝑇𝑖−4 − 1.29 𝐼𝐴𝑇𝑖−5 + 0.98 𝑆𝐶𝑄𝑇𝑖−1 …

+ 0.17 𝐼𝐴𝑇𝑖−1 ⋅ 𝐼𝐴𝑇𝑖−3 − 0.016 𝐼𝐴𝑇𝑖−4 ⋅ 𝑆𝐶𝑄𝑇𝑖−1 + 0.0095 𝐼𝐴𝑇𝑖−5 ⋅ 𝑆𝐶𝑄𝑇𝑖−1
(6.5)

𝑆𝐶𝑄𝑇 𝐶,3,2
𝑖 = −2.49 + 0.85 𝑆𝐶𝑄𝑇𝑖−1 (6.6)

where the superscript 𝐶, 2, 2 means that it is made for security checkpoint C, phase 2 and with two
X-ray scanners, respectively. As was mentioned in assumption 5, the same form of the models will be
used to fit against the 𝑆𝐶𝑄𝑇 𝐶,1,3

𝑖 ,𝑆𝐶𝑄𝑇 𝐶,2,3
𝑖 𝑆𝐶𝑄𝑇 𝐶,3,3

𝑖 data sets.

Equations (6.4) and (6.6) show that in phase I and phase III the only variables that are able to say
something about the dependent variable is the lagged dependent variable itself. Hence, the data ob-
tained in these phases behaves like a random walk. This is unfortunate since the strictly exogenous
variables in these phases are unused.

What should be observed from eq. (6.5), is the relationship between the inter-arrival times and the
queue time. The coefficients of 𝐼𝐴𝑇𝑖−1, 𝐼𝐴𝑇𝑖−3 and 𝐼𝐴𝑇𝑖−5 are negative. Hence, there is a negative
relationship between the inter-arrival time and the security checkpoint queue time. This was expected
because if the amount of passengers arriving per interval is higher (𝐼𝐴𝑇 lower) then the queue time
increases and vice versa. This result is also one of the few ways to test the validity of the meta-models
to represent reality. All of the variables mentioned above are also in as a combinatorial variable. There-
fore, the overall relationship between the explanatory variables (e.g. 𝐼𝐴𝑇𝑖−1) and the dependent vari-
ables could be assessed using local sensitivity analysis. However, the relationship of these variables
will be dependent on the values of the other variables. The combinatorial variables make inference
difficult and therefore a global sensitivity analysis will be carried out below. In the data used these vari-
ables have been created because they proved to have a large explanatory power on the variance of
the dependent variable. Furthermore, it can be seen that certain lagged inter-arrival times are missing.
This is a result of the stepwise linear regression.

This process was repeated multiple times for all the data sets shown in fig. 6.4. The regression results
for all meta-models are shown in appendix B in table B.2 to table B.22. Note, that the split of the models
into phases and number of X-ray scanners has been successful, as the parameters and the coefficients
are significantly different from one another. Furthermore, the common knowledge of queue behaviour
has been properly captured: higher service rate reduces the experienced queue time when the arrival
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rate is similar. This can be seen in fig. B.4 as the meta-models created for three X-ray scanners active
show significantly lower experienced queue times compared to the models for two X-ray scanners ac-
tive.

6.3.3. Global sensitivity analysis
The above described model for 𝑆𝐶𝑄𝑇 𝐶,2,2

𝑖 is dependent on many variables that add uncertainty to
the output of the model. With global sensitivity one can investigate the uncertainty that the different
parameters propagate to the output. The output of global sensitivity analysis shows which variable
contributes to most to the uncertainty in the output.

For an exact explanation of the steps taken to assess the global sensitivity analysis, one is referred to
Saltelli et al.. At this moment it is only important to know that the relative magnitude of 𝑆𝑇 𝑖 is a measure
for the proportion of the uncertainty that has been propagated to the output by the particular parameter.
Ranking the parameters from largest contributor (𝑆𝑇 𝑖) to lowest, one can clearly see the most important
parameters. The results of the global sensitivity analysis on the model in eq. (6.5) is shown in table 6.7.
In addition the results of the global sensitivity analysis of the meta-model for 𝑆𝐶𝑄𝑇 𝐵,2,2 is shown.

Table 6.7: Result of the global sensitivity analysis for
𝑆𝐶𝑄𝑇 𝐶,2,2 regression meta-model.

Parameter 𝑆𝑇 𝑖 Distribution
𝐼𝐴𝑇𝑖−1 1.44 U(5,600)
𝐼𝐴𝑇𝑖−3 1.39 U(5,600)
𝑆𝐶𝑄𝑇𝑖−1 0.031 U(0,2000)
𝐼𝐴𝑇𝑖−5 0.0041 U(5,600)
𝐼𝐴𝑇𝑖−4 0.0026 U(5,600)

Table 6.8: Result of GSA for 𝑆𝐶𝑄𝑇 𝐵,2,2 regression
meta-model influencing parameters.

Parameter 𝑆𝑇 𝑖 Distribution
𝐼𝐴𝑇𝑖−5 1.33 U(0,600)
𝐼𝐴𝑇𝑖−4 1.20 U(0,600)
𝑆𝐶𝑄𝑇𝑖−1 0.11 U(0,2000)
𝐼𝐴𝑇𝑖 0.063 U(0,600)
𝐼𝐴𝑇𝑖−3 1.59E-02 U(0,600)

What can be seen is that for both models an inter-arrival time variable is the most important and third
most important is the 𝑆𝐶𝑄𝑇𝑖−1 variable. Remarkable is that for the 𝑆𝐶𝑄𝑇 𝐵,2,2 model, the inter arrival
rate at lag 5 is most important and not the instantaneous inter-arrival time (𝐼𝐴𝑇𝑖) which is present in
that model. This could be due to the fact that passengers heading for SC B are more likely to visit the
goodbye area compared to the passengers heading for SC C. The result is that the passengers spend
more time dwelling around the airport before continuing towards the security checkpoint and therefore
the higher lagged inter-arrival time variables are more important.

6.3.4. Performance of the meta-models
The performance of this first set of meta-models can be checked by assessing the fit with a different
dataset and assessing the forecasting performance. Especially, the latter is important since the data
set has been split in three different phases. Hence, if the forecast is not correct in the first phase it will
most definitely not be correct in the second phase either.

When assessing the fit with a different dataset, one is interested in the size of the generalisation error.
Put differently: how well is the model in estimating the dependent variable using a different data set
than used for fitting? This unique dataset is generated when the data was randomly sampled to reduce
serial correlation. The one half of the initial data set is used for fitting and the second half (validation
dataset) was used to assess the generalisation error. The generalisation error gives an indication of the
general ability of the models to estimate the security checkpoint queue times in a certain time interval.
In addition, if the generalisation error is far from the fitting error, then the model might be overfitted. On
the other hand, if the generalisation and the fitted errors are similar, the model could be valid in general
sense.

First, the estimation errors on the validation set were calculated. The results are shown in table 6.9.
The table shows that the errors of the regression on the validation set were generally higher than on
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the fitting data set. Especially the second phase model for SC C has a significantly higher RMSE,
indicating overfitting. This might be problematic when this model is incorporated in the optimisation,
because the queue time estimates could be inaccurate and therefore indicating an optimum that is not
an optimum at all.

Table 6.9: Regression performance on validation set compared to the fitted residuals.

𝑅𝑀𝑆𝐸𝑓𝑖𝑡𝑡𝑒𝑑 [s] 𝑅𝑀𝑆𝐸𝑔𝑒𝑛 [s]
𝑆𝐶𝑄𝑇 𝐶,1,2 41.1 42.15
𝑆𝐶𝑄𝑇 𝐶,2,2 171.0 272.94
𝑆𝐶𝑄𝑇 𝐶,3,2 53.8 2.49

Remarkable is the lower generalisation error in the third phase with respect to the fitting error. This is
due to the fact that the validation data set for phase III only contained observations close to 0 s queue
time. This results in the error more or less equal to the intercept. All the fitting versus generalisation
errors for the entire set of models have been reported in appendix B in table B.25.

Next, the forecast performance of the models is checked. This will be the main feature of the model
that will be used when integrating it in the gate assignment optimisation and therefore the performance
needs to be acceptable. The forecast performance of the regression models are tested on an arbitrary
schedule that is shown in table 6.10. From this schedule the inter-arrival times (𝐼𝐴𝑇 ) of the passengers
per SC are calculated and used as inputs for the models. Furthermore, the 𝑆𝐶𝑄𝑇𝑖−1 for the tenth time
interval is set equal to zero. As the forecast starts at interval eleven.

Table 6.10: Schedule used for testing forecast, showing the time of departures as well as the expected number of passengers
per flight.

Gate A Gate B Gate C Gate D
Pax Time [h:mm] Pax Time [h:mm] Pax Time [h:mm] Pax Time [h:mm]
130 03:00 130 03:00 300 03:00 300 03:00
470 04:20 470 04:20 110 03:40 110 03:40
280 05:40 280 05:40 190 04:20 190 04:20
200 06:20 200 06:20 280 05:40 280 05:40
510 07:40 510 07:40 210 07:00 210 07:00

130 07:40 130 07:40

Furthermore, simulations are performed of the schedule above, which is used to compare the forecast
with. The resulting data is different from the fitting data, because the schedule is slightly longer and
the amount of passengers per flight are different.

In fig. 6.9 the forecast is shown for security checkpoint queue A and B using two X-ray scanners.
The forecast errors are high with respect to the level of the realisations. This was as expected since
the fitting and generalisation errors found were also high (table B.25). As explained earlier the phase
I models are only dependent on the lagged dependent variable. This means that whatever schedule
is used, the forecast will always have this shape and queue time at interval 21. This is a major flaw,
because the realised security checkpoint queue times are not always equal to this value. However, this
is the effect of averaging over all the different experiments. This indicates that the security checkpoint
queue time is difficult to forecast in phase I with this type of model. Hence, this resulted in the pre-
dicted increase in phase I. Unfortunately, the realisation of the simulation did not show this increase.
Furthermore, the time interval at which the predicted queue time increase in phase II is close to the
time interval where the realisation increases (for both A and B). However, both forecasts predict a too
high queue time peak around time interval 43. In general, it seems like the forecast is able to predict
the time at which the queue time starts to increase correctly. However, the level of the queue time
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Figure 6.9: Security checkpoint A and B (2 X-ray scanners) queue time observed (realisation) and regression meta-model
forecasts based on schedule in table 6.10 (𝑅𝑀𝑆𝐸𝐴 = 76.0 s , 𝑅𝑀𝑆𝐸𝐵 = 96.6 s).

forecast is too high (in this scenario) compared to the realisation. Hence, the middle section (phase II)
shows a consistent over-forecast. This can be caused by the fact that the linear regression model can
only react in firm direct way on changes in the input. The final peak (around interval 79) is predicted
well for both checkpoints.

The forecast produced for security checkpoint C and D with two X-ray scanners active is shown in
fig. 6.10. Overall, the forecast of queue times is way higher than the realised queue times. The root

Figure 6.10: Security checkpoint C and D (2 X-ray scanners) queue time observed (realisation) and regression meta-model
forecasts based on schedule in table 6.10 (𝑅𝑀𝑆𝐸𝐶 238.4 s , 𝑅𝑀𝑆𝐸𝐷 308.8 s).

mean square error of the queue forecast for SC C was equal to 238 s (≈ 4 min). That is high, knowing
that the maximum realised queue time at checkpoint C is equal to 536 seconds. Furthermore, what
can be seen is that the forecast in phase I (until interval number 21) is, as expected, only dependent
on the lagged security checkpoint queue time. In the first eleven time intervals in fig. 6.10 there is zero
queue time forecast as was explained earlier when introducing the phases. Fortunately in this case the
realisation is close to the forecast in phase I.
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Another observation is the fact that the first peak’s shape of elevated queue time forecast seems to
match the realisation. This reflects the fact that the phase II model has up to a certain level the ability
to predict how fast the queue time increases in the beginning of the phase. The same was observed by
predicting a ’busier schedule’, which can be seen in fig. B.3. The meta-model has problems forecasting
the rest of the in-operation phase. Figure 6.10 shows a clear overestimation in the second part of phase
II. The forecasts clearly do not follow the shape of the realisations any more. The realisation reaches
the first peak and then quickly reduces. However, the forecasts predict the initial peak to be longer.
This introduces after the first peak the over-forecast, which continues till the end. In general, it cannot
be said that this model is over-forecasting the security checkpoint queue times, since fig. B.3 shows a
clear under-forecast. That is unfortunate because the difference between the forecasts in (figs. 6.10
and B.3), is then not equal to the difference in realisations between the two scenarios.

It can be concluded that these meta-models are able to capture partly the emergent behaviour in the
agent-based model queues as the shape of the forecast show similar behaviour as the realisations.
However, the model is not able to forecast the queue times accurately (RMSE = 171s). The forecast
errors are too high with respect to the level of the realised queue times. Especially, if one aims to fulfil
the IATA level of service standards, then the accuracy of the models is too low. These results show
that the polynomial response or regression meta-models are not able to fully represent the agent-based
model considering queue times.

The poor forecasting performance could be due to the fact that the average queue times per scenario
vary quite heavily. In one scenario the maximum queue time is close to 40 minutes and in another the
queue times are close to one. This is difficult for a model to generalise. Especially, when restricting the
polynomial response meta-model to be linear (with linear combinations). Therefore, a non-parametric
model would be the next step when looking for a valid meta-model for the agent-based model of an
airport.

6.4. Gaussian radial basis function meta-model
In this section, a Gaussian radial basis function (GRBF) meta-model is built that should be able to re-
place the agent-based model in the simulation optimisation strategy. The objective is to construct a
GRBF meta-model that approximates an unknown input-output mapping on the basis of given simula-
tion data. Just as in the previous meta-model (Polynomial response methodology) the goal is not to
provide an exact fit to the data but to develop a meta-model that captures the underlying relationship.
It can be used to predict the output at some future observation of the input. This property is called
the generalisation ability. As was discussed in chapter 2, a GRBF meta-model has been successfully
applied to queueing systems in the work by Miyoung Shin et al. (2014). Of all types of meta-models
available, this felt like the best candidate to explore. Furthermore, the steps taken by Miyoung Shin
et al., will also be taken in the current study.

First the general idea of Gaussian radial basis function meta-modelling will be explained. Then, in
section 6.4.1 many GRBF meta-models will be developed for the data sets created in section 6.2. The
trade-off between fitting and generalisation errors will help selecting the final GRBF meta-models in
section 6.4.2. In section 6.4.3, the importance of the parameters is assessed by global sensitivity anal-
ysis. The section is concluded by assessing the forecasting performance of the GRBF meta-models in
section 6.4.4.

Suppose there is a given 𝑛 × 𝑑 input space input matrix 𝐗 = (𝐱𝟏, 𝐱𝟐, … 𝐱𝐧
𝑇 ), where each of the 𝑛 input

vectors 𝐱𝐢, 𝑖 = 1, … , 𝑛 is in an d-dimensional space. 𝐲 = (𝑦1, 𝑦2, … , 𝑦𝑛)𝑇 is the target vector, whose
elements are the individual output observations 𝑦𝑖 corresponding to the input vector 𝐱𝐢. The problem to
be solved is the mapping from the d-dimensional input space to a one-dimensional output value based
on the simulation data.

Finding the right meta-model involves trading off the overfitting versus underfitting. In general, the more
variables used for fitting, the lower the fitting error (overfit). However, this model will not possess the
ability to generalise on unseen data (data different from fitting dataset). This phenomena is the bias
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and variance dilemma which ideally looks like the graph in fig. 6.11. Models with a low complexity tend
to have a high bias, while complex models have low bias but high variance.

Figure 6.11: Idealised depiction of bias-variance and fitting and generalisation errors, taken from Miyoung Shin et al. (2014).

According to Mehrotra et al. (1997) artificial network meta-models can be evaluated by assessing the
quality of the results, the generalisability and computational resources (or complexity). The quality of
the results is reflected in the fitting error tested by the RMSE calculation. The generalisability is mea-
sured by assessing the error on the validation data set, that is different from the set used for developing
the model. Finally, the computational resources are measured in terms of CPU time, memory require-
ments or training time. These are heavily dependent on the number of nodes, connections, and layers
in a network.

Recall that the Gaussian radial basis function is of the form shown in eq. (6.7), which represents the
mapping 𝑓 ∶ 𝑅𝑑 → 𝑅.

𝑓(𝐱) =
𝑚

∑
𝑗=1

𝑤𝑗𝑒

−||𝐱 − 𝝁𝐣||2

2𝜎2
𝑗 (6.7)

where 𝐱 ∈ 𝑅𝑑 is the input vector, 𝝁𝐣 ∈ 𝑅𝑑 is the jth basis function centre, ||⋅|| denotes the Euclidean dis-
tance, 𝑤𝑗 is the weight of the jth basis function and the 𝜎𝑗s are the basis function widths or spread. The
function 𝑓(𝐱) will in the current research become for example become 𝑆𝐶𝑄𝑇 𝐶,2,2. The Gaussian radial
basis functions play the role of transfer function in the neural network. The GRBF is completely defined
by the parameters (𝑚, 𝝈, 𝝁, 𝐰), where 𝑚 is the number of basis functions with widths 𝝈 = (𝜎1, 𝜎2, … , 𝜎𝑚),
basis function centres 𝝁 = (𝜇1, 𝜇2, … , 𝜇𝑚) and the weights from the basis functions to the outputs are
𝐰 = (𝑤1, 𝑤2, … , 𝑤𝑚).

A GRBF model can also be seen as a three-layer-network. The first layer is the input layer that dis-
tributes the input vectors to each of the (𝑚) nodes in the hidden layer, without any multiplicative factors.
The 𝑚 hidden units each represent a basis function and plays a role in performing nonlinear transfor-
mation of the input vector, producing a value as an output. In the third layer, the outputs from the 𝑚
hidden units are linearly combined by using weights 𝑤 to produce a single value model output.

This means that the problem of designing the GRBF involves choosing 3𝑚 parameters: 𝑚 centres, 𝑚
widths and 𝑚 weights. However, in most research a global width is used 𝜎 = 𝜎𝑖 ∀𝑖 = 1, … , 𝑚. Therefore,
in the current research a global width will also be used, such that the total number of parameters to be
determined reduces to 2𝑚 + 1.

The method used to solve this problem is the Shin Goel (SG) algorithm, based on a mathematical
framework for radial basis functions (Miyoung and Goel (2000), Shin and Goel (1998)). The SG algo-
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rithm is a three-stage process shown in fig. 6.12.

Figure 6.12: Meta-modelling steps as developed by Shin and Park (2000).

In this procedure, the nonlinear parameters 𝑚 𝝁 and 𝜎 are determined, without reference to the output
values. Once these parameters have been found and fixed, the linear parameters 𝐰 are determined
by using reference target outputs. In Stage I the representational capability (RC) algorithm will be used
which is based on a mathematical framework developed in Shin (1998). The RC algorithm selects 𝑚
for a given 𝜎 and a specified value of 𝛿 (the representational capability). In Stage II, for a given (𝑚, 𝜎)
pair, the centres are determined and in the final stage the weights are determined by the least squares
method. For the full mathematical basis of the RC algorithm one is referred to Shin (1998). Here only
a brief conceptual description of the underlying theory is given.

The first question to ask in Stage I in fig. 6.12 is: For a given spread (𝜎), how many basis functions are
needed to cover the input space adequately when it is known that 100% coverage can only be achieved
by all the 𝑛 inputs? To answer this question Shin (1998) introduces the representational capability (𝛿),
which is defined relative to the input space spanned by the data 𝐱. In the paper it was found that with
𝑚 ≪ 𝑛 still a very high representational capability could be obtained. Then in the Stage II the 𝑚 centres
of the 𝑛 input vectors should be chosen such that the best design is created. This is done by choosing
𝑚 vectors that are the farthest apart from each other, leading to a model having the maximum repre-
sentational capability with 𝑚 basis functions. Furthermore, selecting the centres in this way provides
structural stabilisation, which is an important property of a good model.

6.4.1. GRBF meta-model development
In this subsection the GRBF models are created following the stages displayed in fig. 6.12. Before
developing the models, it should be discussed which variables are used. Since radial basis function
models are part of the non-parametric modelling one could argue that the steps taken in section 6.3
to remove collinearity are not needed since the model’s performance is not diminished by the multi-
collinearity problem of regression analysis (Wray et al. (1994)). However, more recent research fo-
cusses on the use of hybridised factor analysis-artificial neural networks (Garg and Tai (2012)). Hence,
it was decided to follow this path and remove the multi-collinearity before applying an artificial neu-
ral network. The collinearity was removed, just as in section 6.3 by applying stepwise regression in
advance. Fortunately, the stepwise regression to remove collinearity was already performed in sec-
tion 6.3. Therefore, it was decided to use the same variables that are apparent in the regressions
(eqs. (6.4) to (6.6) and table B.2 to table B.24). As an example, the steps in the meta-model develop-
ment will be shown of the model for 𝑆𝐶𝑄𝑇 𝐶,2,2. Only the final models of the other data sets (shown in
fig. 6.4) will be given.

The variables used to construct the GRBF meta-model for 𝑆𝐶𝑄𝑇 𝐶,2,2 are shown in table 6.11.
Furthermore, when applying a neural network the data must be normalised such that the individual
features behave more or less like standard normally distributed data (Zuur et al. (2007)). So each
data set in fig. 6.4 must be normalised. This is most commonly done by subtracting the mean value of
each feature, and then scale it by dividing each feature by their standard deviation. An example of the
normalisation of 𝐼𝐴𝑇𝑖 is shown in eq. (6.8).

𝐼𝐴𝑇 𝑛
𝑖 =

𝐼𝐴𝑇𝑖 − 𝜇𝐼𝐴𝑇𝑖

𝜎𝐼𝐴𝑇𝑖
(6.8)
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Table 6.11: Variables used to create GRBF meta-model for 𝑆𝐶𝑄𝑇 𝐶,2,2.

𝑆𝐶𝑄𝑇 𝐶,2,2

variables
𝐼𝐴𝑇𝑖−1

𝐼𝐴𝑇𝑖−3

𝐼𝐴𝑇𝑖−4

𝐼𝐴𝑇𝑖−5

𝑆𝐶𝑄𝑇𝑖−1

𝐼𝐴𝑇𝑖−1𝐼𝐴𝑇𝑖−3

𝐼𝐴𝑇𝑖−4𝑆𝐶𝑄𝑇𝑖−1

𝐼𝐴𝑇𝑖−5𝑆𝐶𝑄𝑇𝑖−1

where 𝐼𝐴𝑇 𝑛
𝑖 is the normalised feature 𝐼𝐴𝑇𝑖, and 𝜇𝐼𝐴𝑇𝑖 and 𝜎𝐼𝐴𝑇𝑖 are the mean and standard deviation

of feature 𝐼𝐴𝑇𝑖, respectively. These normalisation constants (mean per feature per data set, standard
deviation per feature per data set) must be stored for forecasting purposes. Since, the input data that
will be used for forecasting, needs to be normalised by the same constants.

As explained the GRBF meta-modelling steps involve fitting and assessing the generalisation error on
different data sets. The split in data made was exactly the same as was used in the regression meta-
modelling steps.

Step I: Selection of 𝝈 and 𝜹
In the first step of the RC algorithm a range needs to be selected for 𝜎 and a value for the RC measure
𝛿. In the reference papers, the value range of 𝜎 was set using a heuristic:

0 ≤ 𝜎 ≤ √𝑑/2

where 𝑑 is the number of input variables. Furthermore, 𝛿 is usually taken to be:

0.1% ≤ 𝛿 ≤ 1.0%

It was decided that the model needed to have a 99% representational capability, 𝛿 = 0.1. Since 𝑑 = 8
for 𝑆𝐶𝑄𝑇 𝐶,2,2 (see table 6.11), the value range of 𝜎 lies between :

0 ≤ 𝜎 ≤ 2.

Multiple spreads will be taken to the next step, such that in the final step of the GRBF modelling the
best model can be selected based on the fitting and generalisation errors.

Step II: Determining the number of centres 𝑚
The number of centres per 𝜎 are determined using an interpolation matrix for each 𝜎. After constructing
the matrix, its singular value decomposition (SVD) needs to be performed. The result is a diagonal
matrix of decreasing singular values 𝑠1 ≥ 𝑠2 ≥ ⋯ ≥ 𝑠𝑛 ≥ 0. These singular values will give the number
of centres from the following:

𝑚 = max
1≤𝑖<𝑛

𝑖; 𝑠𝑖+1 ≤ 𝑠1 ×
𝛿

100 (6.9)

where (100 − 𝛿)% is the chosen RC criterion. This results in a number of centres 𝑚 per spread 𝜎, (𝜎, 𝑚)
pairs.

For the example data for 𝑆𝐶𝑄𝑇 𝐶,2,2, the number of input data points is 250 and there are eight input
variables. The 250 × 250 interpolation matrix 𝐺 is constructed by substituting the input vectors 𝐱𝐢’s
(𝑖 = 1, … , 250) in the following:
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𝐺 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

exp(− ||𝐱𝟏−𝐱𝟏||2
2𝜎2 ) exp(− ||𝐱𝟏−𝐱𝟐||2

2𝜎2 ) … exp(− ||𝐱𝟏−𝐱𝟐𝟓𝟎||2
2𝜎2 )

exp(− ||𝐱𝟐−𝐱𝟏||2
2𝜎2 ) exp(− ||𝐱𝟐−𝐱𝟐||2

2𝜎2 ) … exp(− ||𝐱𝟐−𝐱𝟐𝟓𝟎||2
2𝜎2 )

⋮ ⋮ ⋱ ⋮
exp(− ||𝐱𝟐𝟓𝟎−𝐱𝟏||2

2𝜎2 ) exp(− ||𝐱𝟐𝟓𝟎−𝐱𝟐||2
2𝜎2 ) … exp(− ||𝐱𝟐𝟓𝟎−𝐱𝟐𝟓𝟎||2

2𝜎2 )

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

For example if 𝜎 = 1.9, then the interpolation matrix 𝐺 becomes:

𝐺 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0.372 0.268 0.0138 0.952 … 0.107
0.372 1 0.971 0.103 0.549 … 0.661

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0.107 0.661 0.774 0.371 0.187 … 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

For each 𝜎, 𝐺 was computed and the SVD of G yields the diagonal matrix of singular values from which
the number of centres 𝑚 could be determined. The number of centres, for different values of spread
are shown in table 6.12.

Table 6.12: Values of (𝜎, 𝑚) pairs for 𝛿 = 1%.

RBF no 𝜎 𝑚
I 0.1 248
II 0.3 201
III 0.5 115
IV 0.7 73
V 0.9 49
VI 1.1 35
VII 1.3 28
VIII 1.5 19
IX 1.7 16
X 1.9 13

Step III: Determining the centre locations 𝝁
The centre locations 𝝁 are found by using the K-means clustering algorithm (Hartigan and Wong
(1979)). This algorithm aims to divide the total number of data points (with N dimensions) into K clusters
so that the within-cluster sum of squares is minimised. The K-means clustering algorithmminimises the
distance between 𝑥𝑖 and the closest centre 𝝁𝐤. The first step is to split 𝑥1, … , 𝑥𝑑 into clusters 𝑆1, … , 𝑆𝐾
then:

Minimise
𝐾

∑
𝑘=1

∑
𝑥𝑑 ∈𝑆𝑘

||𝐱𝐝 − 𝝁𝐤||2.

In the current research one should replace 𝐾 with 𝑚 since these are the number of centres (or clusters).
This minimisation can be solved iteratively, which will not be shown here but can be found in the original
work by Hartigan and Wong (1979).

The centre locations determined for the example (𝜎 = 1.9, 𝑚 = 13) pair are given in table 6.13.

These centre locations have been determined for all the (𝜎, 𝑚) pairs, but have not been shown here
due to the space it would require. With the centre locations known, the design matrices of each GRBF
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Table 6.13: Basis function centres for (𝜎 = 1.9, 𝑚 = 13) pair.

𝐼𝐴𝑇 𝑛
𝑖−1 𝐼𝐴𝑇 𝑛

𝑖−3 𝐼𝐴𝑇 𝑛
𝑖−4 𝐼𝐴𝑇 𝑛

𝑖−5 𝑆𝐶𝑄𝑇 𝑛
𝑖−1 𝐼𝐴𝑇 𝑛

𝑖−1𝐼𝐴𝑇 𝑛
𝑖−3 𝐼𝐴𝑇 𝑛

𝑖−4𝑆𝐶𝑄𝑇 𝑛
𝑖−1 𝐼𝐴𝑇 𝑛

𝑖−5𝑆𝐶𝑄𝑇 𝑛
𝑖−1

𝜇1 -0.459 -0.434 -0.447 -0.207 -0.041 -0.371 -0.013 -0.026
𝜇2 0.219 0.247 0.297 0.066 -0.893 0.008 -0.796 -0.788
𝜇3 5.835 6.612 6.568 15.001 -0.898 10.286 -0.803 -0.794
𝜇4 -0.680 -0.705 -0.682 -0.284 1.675 -0.473 1.089 1.063
𝜇5 1.177 1.334 1.409 0.284 -0.898 0.905 -0.803 -0.794
𝜇6 2.453 3.060 2.996 0.933 -0.898 2.787 -0.803 -0.794
𝜇7 -0.365 -0.329 -0.289 -0.121 -0.744 -0.326 -0.655 -0.641
𝜇8 -0.735 -0.726 -0.759 -0.304 1.001 -0.480 0.474 0.477
𝜇9 1.472 1.677 0.247 -0.045 0.917 1.241 1.804 1.464
𝜇10 2.031 0.380 0.308 -0.008 -0.875 0.711 -0.774 -0.765
𝜇11 0.172 0.062 -0.042 -0.044 0.897 -0.060 1.372 1.390
𝜇12 0.080 0.445 0.448 0.108 1.663 0.028 3.276 3.234
𝜇13 4.025 1.479 1.464 0.370 -0.898 2.551 -0.803 -0.794

could be determined. The design matrix Φ, is the matrix used to determine the weights for each of the
basis functions in the next step. Φ is created as follows:

Φ =
⎡
⎢
⎢
⎢
⎣

exp(− ||𝐱𝟏−𝝁𝟏||2
2𝜎2 … exp(− ||𝐱𝟏−𝝁𝐦||2

2𝜎2

⋮ ⋱ ⋮
exp(− ||𝐱𝟐𝟓𝟎−𝝁𝟏||2

2𝜎2 … exp(− ||𝐱𝟐𝟓𝟎−𝝁𝐦||2
2𝜎2

⎤
⎥
⎥
⎥
⎦

.

In the example of 𝜎 = 1.9 and 𝑚 = 13 the design matrix would be (250 × 13). These design matrices are
made for all (𝜎, 𝑚) pairs, but are not explicitly shown here.

Step IV: Determining the weights 𝐰 and estimating 𝐲
After calculating all the design matrices, the weights of the 𝑚 basis functions should be calculated.
Since the number of centres is not equal to the number of data points, this has to be done by the
pseudo inverse method. This means that the weights are given by:

w = Φ+𝐲, (6.10)

where Φ+ denotes the pseudo inverse of Φ, 𝐲 is the observed output vector of size 250 × 1, and 𝐰 is
the weight vector of size 𝑚 × 1. The weights for the previously used example are shown in table 6.14.

Table 6.14: Listing of weights for example GRBF for 𝛿 = 1%.

RBF no 𝜎 𝑚 𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6 𝑤7 𝑤8 𝑤9 𝑤10 𝑤11 𝑤12 𝑤13
X 1.9 13 -808.9 136.6 1.21E-12 1144.8 -89.6 2.0 48.2 1288.7 1271.0 40.7 -1012.5 724.0 -55.6

At this point all the parameters (𝑚, 𝝁, 𝝈, 𝐰) have been determined. The last step is to compute the out-
put ̂𝑆𝐶𝑄𝑇 𝐶,2,2 by using eq. (6.7). Thus, the fitted GRBF for model X (𝑚 = 13 and 𝜎 = 1.9) is shown in
eq. (6.11).
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̂𝑆𝐶𝑄𝑇 𝐶,2,2 = − 808.9 exp −
||𝐱𝐧 − 𝝁𝟏||2

2(1.9)2 + 136.6 exp −
||𝐱𝐧 − 𝝁𝟐||2

2(1.9)2 + 1.2𝐸 − 12 exp −
||𝐱𝐧 − 𝝁𝟑||2

2(1.9)2

+ 1144.8 exp −
||𝐱𝐧 − 𝝁𝟒||2

2(1.9)2 − 89.6 exp −
||𝐱𝐧 − 𝝁𝟓||2

2(1.9)2 + 2.0 exp −
||𝐱𝐧 − 𝝁𝟔||2

2(1.9)2

+ 48.2 exp −
||𝐱𝐧 − 𝝁𝟕||2

2(1.9)2 + 1288.7 exp −
||𝐱𝐧 − 𝝁𝟖||2

2(1.9)2 + 1271.0 exp −
||𝐱𝐧 − 𝝁𝟗||2

2(1.9)2

+ 40.7 exp −
||𝐱𝐧 − 𝝁𝟏𝟎||2

2(1.9)2 − 1012.5 exp −
||𝐱𝐧 − 𝝁𝟏𝟏||2

2(1.9)2 + 724.0 exp −
||𝐱𝐧 − 𝝁𝟏𝟐||2

2(1.9)2

− 55.6 exp −
||𝐱𝐧 − 𝝁𝟏𝟑||2

2(1.9)2

(6.11)

The output ̂𝑆𝐶𝑄𝑇 𝐶,2,2 is computed by substituting the normalised inputs into the above equation. Since
this model needs an eight dimensional input (eight input variables), it is difficult to show the response
behaviour in a single graph. Though, the meta-models created for phases I and III for all the security
checkpoints only had one input variable (𝑆𝐶𝑄𝑇𝑖−1). Therefore, by means of an example the response
of ̂𝑆𝐶𝑄𝑇 𝐶,1,2 is given in fig. 6.13.

Figure 6.13: Fitted Gaussian radial basis function for 𝑆𝐶𝑄𝑇 𝐶,1,2 (𝜎 = 0.7, 𝑚 = 5 ).

In the figure, the simulated data is shown (realisation), together with the estimated data for the security
checkpoint queue time of gate C in phase I with two X-ray scanners active. In the figure it can be clearly
seen that there are five centres (five points from which the GRBF radially decay) with a relatively large
spread (since the 0 ≤ 𝜎 ≤ √2). In addition, it can be seen that the fit around zero is not very satisfying.
Since the input variables have been normalised, this is the area where one wants to have a good fit
with the data.

After determining all the radial basis functions for all the data sets, as well as the different (𝜎, 𝑚) pairs,
the final GRBF model per data set needed to be selected.

6.4.2. Model selection
As explained earlier, the final GRBF models are selected based on the approximation ability, the gen-
eralisation ability and (if these are non determining) the complexity. Similar to the regression model
evaluation, the approximation ability or fitting error and the generalisation error are evaluated using
the root-mean-square error. In this section, the considerations will be mentioned for selecting the final
GRBF meta-model for 𝑆𝐶𝑄𝑇 𝐶,2,2. Similar considerations held when selecting the other final GRBF
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meta-models.

The fitting and generalisation errors for the candidate models for 𝑆𝐶𝑄𝑇 𝐶,2,2 are shown in table 6.15.
Furthermore, in fig. 6.14 the fitting and generalisation errors are plotted for the potential models in ta-
ble 6.15. What can be clearly observed is that the fitting errors decrease with increasing 𝑚. This was
expected since a large number of basis functions would provide a better approximation compared to
only a couple of basis functions.

Table 6.15: Fitting and generalisation errors for potential GRBF models for 𝑆𝐶𝑄𝑇 𝐶,2,2.

(𝜎, 𝑚) pairs RMSE [s]
RBF no 𝜎 𝑚 Fitting Generalisation
I 0.1 248 0.34 638.75
II 0.3 201 43.84 431.04
III 0.5 115 94.43 342.61
IV 0.7 73 126.96 309.33
V 0.9 49 138.13 302.28
VI 1.1 35 139.06 279.03
VII 1.3 28 146.44 268.87
VIII 1.5 19 175.99 283.36
IX 1.7 16 183.94 273.04
X 1.9 13 180.80 257.89

Figure 6.14: Fitting and generalisation errors plotted for GRBFs of table 6.15.

Choosing the final meta-model for 𝑆𝐶𝑄𝑇 𝐶,2,2 solely based on the fitting error, then one would choose
model I. However as one can see in the table, the generalisation error of this model is the worst of
all other models. Since the aim of the research is to find meta-models that are able to replace the
agent-based model and simulation for the security checkpoint queueing, the generalisability should be
leading. What can be observed in table 6.15, is a decline in generalisation errors goes with a decrease
in number of basis functions. This was also anticipated due to the bias-variance trade-off. From model
I to model IV the generalisation error shows the steepest decline, which then flattens out towards the
minimum generalisation error of model X. However, the fitting error shows the largest increase from
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model I to model IV. Finally, it was decided that the generalisation error should be leading when se-
lecting the final model, since the model will have to be used in many different situations (schedules).
However, if the fitting error deteriorates stronger at higher values of spread, then a model might be
considered with a slightly higher generalisation error. Hence, based on this analysis, the final GRBF
model for 𝑆𝐶𝑄𝑇 𝐶,2,2 will be model X with 𝑚 = 13 and 𝜎 = 1.9.

Similar as was decided in the removing collinearity simplification assumption (assumption 5), the spread
𝜎 selected for the two X-ray scanner models will also be selected for the three X-ray scanner models.
So, since the GRBF selected for 𝑆𝐶𝑄𝑇 𝐶,2,2 contained basis functions with width 𝜎 = 1.9, the GRBF for
𝑆𝐶𝑄𝑇 𝐶,2,3 will also have basis functions with width 𝜎 = 1.9. The number of basis functions can differ
between these two models.

The final chosen (𝜎, 𝑚) pairs as well as the fitting and generalisation errors of all meta-models are shown
in table 6.16.

Table 6.16: Final selection of GRBF models for all data sets, showing the selected 𝜎, 𝑚 and fitting and generalisation errors of
the final models.

(𝜎, 𝑚) pairs RMSE [s]
GRBF 𝜎 𝑚 Fitting Generalisation
𝑆𝐶𝑄𝑇 𝐴,1,2 0.5 4 9.93 95.67
𝑆𝐶𝑄𝑇 𝐴,2,2 1.5 20 79.06 202.05
𝑆𝐶𝑄𝑇 𝐴,3,2 0.5 5 0.69 0.48
𝑆𝐶𝑄𝑇 𝐴,1,3 0.5 4 0.86 1.66
𝑆𝐶𝑄𝑇 𝐴,2,3 1.5 15 17.35 18.24
𝑆𝐶𝑄𝑇 𝐴,3,3 0.5 2 0.00 0.00
𝑆𝐶𝑄𝑇 𝐵,1,2 1.1 4 23.37 17.82
𝑆𝐶𝑄𝑇 𝐵,2,2 1.7 17 118.92 101.58
𝑆𝐶𝑄𝑇 𝐵,3,2 0.5 6 1.57 0.02
𝑆𝐶𝑄𝑇 𝐵,1,3 1.1 4 2.96 1.82
𝑆𝐶𝑄𝑇 𝐵,2,3 1.7 11 10.94 28.94
𝑆𝐶𝑄𝑇 𝐵,3,3 0.5 3 0.02 0.00
𝑆𝐶𝑄𝑇 𝐶,1,2 1.3 4 34.31 28.77
𝑆𝐶𝑄𝑇 𝐶,2,2 1.9 13 180.80 257.89
𝑆𝐶𝑄𝑇 𝐶,3,2 0.3 10 56.68 60.97
𝑆𝐶𝑄𝑇 𝐶,1,3 1.3 4 14.18 13.43
𝑆𝐶𝑄𝑇 𝐶,2,3 1.9 10 39.52 88.75
𝑆𝐶𝑄𝑇 𝐶,3,3 0.3 4 0.55 0.05
𝑆𝐶𝑄𝑇 𝐷,1,2 0.9 4 38.11 19.80
𝑆𝐶𝑄𝑇 𝐷,2,2 1.3 21 124.31 103.14
𝑆𝐶𝑄𝑇 𝐷,3,2 0.9 4 108.27 83.88
𝑆𝐶𝑄𝑇 𝐷,1,3 0.9 5 8.36 10.39
𝑆𝐶𝑄𝑇 𝐷,2,3 1.3 15 56.86 66.75
𝑆𝐶𝑄𝑇 𝐷,3,3 0.9 3 11.99 37.80

What can be seen from this table is that in general the generalisation errors of the meta-models made
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for the in-operation phase are higher than the other meta-models. Especially in the case that only two
X-ray scanners were active. This could be, just as was the case in the regression meta-models, due
to the fact that the output variable fluctuation was heavier in this phase with two X-ray scanners. The
security queue time could be really high (e.g. 40 minutes queue time) but also relatively low (e.g. 1
minutes queue time). Hence, the maximum and minimum queue times could be really far apart in the
second phase. Furthermore, the poor fit of the meta-models could again be caused by similar factors
as were mentioned in section 6.3.2.

In table 6.17, an initial comparison of the meta-models made for 𝑆𝐶𝑄𝑇 𝐶 (regression and GRBF) is
made.

Table 6.17: Comparison of the regression and Gaussian radial basis function meta-models made of 𝑆𝐶𝑄𝑇 𝐶 .

GRBF Regression
RMSE [s] RMSE [s]

Meta-model Fitting Gener. Fitting Gener.
𝑆𝐶𝑄𝑇 𝐶,1,2 34.31 28.77 41.10 42.15
𝑆𝐶𝑄𝑇 𝐶,2,2 180.80 257.89 171.00 272.94
𝑆𝐶𝑄𝑇 𝐶,3,2 56.68 60.97 53.80 2.49

What can be seen is that overall the GRBF meta-models show both a better fit as well as lower gener-
alisation errors. Note, that both errors for both models in the second phase are rather high. This means
that if there are time intervals where the realised queue time is around 1 minute, the meta-models could
be off by around 4 minutes. These errors are too high for these less busy time intervals. On the other
hand, if the queue time was around 30 minutes, then the 4 minutes off is not that big of an issue.

The aim of the split in data between the amount of X-ray scanners was aimed to split the data in high
queue time data and low queue time data. However, this attempt did not fully split the data in these
two halves. Hence, future research could focus on splitting the data in a different way. There could be
looked at input value patterns that result consistently in really high queue times, medium queue times
and low queue times. Then the data could be split into three sets, one with low queue time data, one
with medium queue time data and the last data set with only high queue times. This could result in
better performing meta-models.

6.4.3. Global sensitivity analysis
Just as was done for the phase II regression meta-models, a global sensitivity analysis is also per-
formed for the GRBF meta-models. Recall, that one can investigate the uncertainty that the different
parameters propagate to the output. The results of the global sensitivity analysis of GRBF models
created for 𝑆𝐶𝑄𝑇 𝐶,2,2 and 𝑆𝐶𝑄𝑇 𝐵,2,2 are shown in tables 6.18 and 6.19.

Table 6.18: Result of GSA for 𝑆𝐶𝑄𝑇 𝐶,2,2 GRBF meta-model,
showing the ranking of influencing parameters.

Parameter 𝑆𝑇 𝑖 Distribution
𝑆𝐶𝑄𝑇𝑖−1 0.488011 N(0,1)
𝐼𝐴𝑇𝑖−4 0.030256 N(0,1)
𝐼𝐴𝑇𝑖−5 0.019579 N(0,1)
𝐼𝐴𝑇𝑖−1 0.008784 N(0,1)
𝐼𝐴𝑇𝑖−3 0.005856 N(0,1)

Table 6.19: Result of GSA for 𝑆𝐶𝑄𝑇 𝐵,2,2 GRBF meta-model,
showing the ranking of influencing parameters.

Parameter 𝑆𝑇 𝑖 Distribution
𝑆𝐶𝑄𝑇𝑖−1 0.602512 N(0,1)
𝐼𝐴𝑇𝑖 0.064913 N(0,1)
𝐼𝐴𝑇𝑖−5 0.002552 N(0,1)
𝐼𝐴𝑇𝑖−4 0.001253 N(0,1)
𝐼𝐴𝑇𝑖−3 3.57E-04 N(0,1)
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What can be seen are different results compared to the GSA of the regression meta-models. The most
important factor (which propagates the most uncertainty to the output) is the 𝑆𝐶𝑄𝑇𝑖−1. Comparing the
results of GSA for 𝑆𝐶𝑄𝑇 𝐵,2,2 to the GSA results of the regression model, one can see that the 𝐼𝐴𝑇𝑖−5
is no longer the most nor second most important factor. Furthermore, when comparing the GSAs of
the 𝑆𝐶𝑄𝑇 𝐶,2,2 meta-models one can see that in the GRBF meta-models, the inter-arrival times at lags
4 and 5 are the second and third most important factors. The comparison of both GSAs clearly indicate
the difference the two types of models produced.

6.4.4. Forecast performance
Finally, the forecasting performance of the meta-models will be examined. This is done in exactly the
same way as was done in section 6.3 and of the same schedule as presented in table 6.10.
In fig. 6.15 the forecast of 𝑆𝐶𝑄𝑇 𝐴 and 𝑆𝐶𝑄𝑇 𝐵 and the realised queue times with two X-ray scanners
active are shown.

Figure 6.15: Security checkpoint A and B(2 X-ray scanners) queue time observed (realisation) and GRBF meta-model forecast
based on schedule in table 6.10 (𝑅𝑀𝑆𝐸𝐴 = 81.2 s, 𝑅𝑀𝑆𝐸𝐵 = 34.6 s).

What can be seen is that the graphs forecasts produced by the GRBF meta-models follow the re-
alisations quite well. The models predict increases and decreases when they are actually realised.
Especially, the meta-model created for SC B shows impressive results. The meta-models for SC A
slightly over-forecast the initial and final peak. This probably caused the high forecast error (𝑅𝑀𝑆𝐸𝐴

= 81.2 s). However, the forecast’s shape still shows actual queue behaviour in an acceptable way. In
general, the forecast produced by the GRBF meta-models for 𝑆𝐶𝑄𝑇 𝐴 and 𝑆𝐶𝑄𝑇 𝐵 approximate reality
better than the regression meta-models. Furthermore, in fig. C.1 the forecasts of the same scenario us-
ing the three X-ray scanner models are shown, which reflects common queue behaviour (lower queue
times experienced when the service rate increases).

The produced forecast of 𝑆𝐶𝑄𝑇 𝐶 and 𝑆𝐶𝑄𝑇 𝐷 and the realised queue times with two X-ray scanners
are shown in fig. 6.16.

Interesting to see is that the forecast produced by the GRBF meta-models for 𝑆𝐶𝑄𝑇 𝐶 outperform the
forecast produced by the regression meta-models (fig. 6.10, RMSE = 235.0 s). Both type of models
show more or less the same behaviour, but the regression models tend to over-react or is more sen-
sitive to changes in the arrival rates (inter-arrival times). On the other hand the forecast produced for
SC D by the GRBF shows a very high over-forecast. The model is not able to predict the level nor the
shape of the real queue times. This is reflected by the higher forecast errors compared to the regres-
sion model forecast of 𝑆𝐶𝑄𝑇 𝐷. This could be due to the fact that the selected centre locations are
not properly placed to forecast the security checkpoint queue time in this scenario, since no deviant
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Figure 6.16: Security checkpoint C and D(2 X-ray scanners) queue time observed (realisation) and GRBF meta-model forecast
based on schedule in table 6.10 (𝑅𝑀𝑆𝐸𝐶 = 72.6 s, 𝑅𝑀𝑆𝐸𝐷 = 438.4 s).

behaviour was discovered in the model selection step (see table C.1). Future research could try to
improve the performance of the model by examining the forecast performance, rather than examining
a generalisation error. This could result in models with better forecast performance.

In appendix C fig. C.2, an additional forecast is shown of 𝑆𝐶𝑄𝑇 𝐶 , for a different schedule, equal to
the schedule used to produce fig. B.3. What can be observed is that the GRBF meta-model produces
a worse forecast than the regression meta-models based on 𝑅𝑀𝑆𝐸 (RMSE is 580 s and 779 s for
regression and GRBF, respectively). In addition, the GRBF models do not follow the shape of the re-
alisation as good as the regression models do. Hence, in a busy scenario, where queue times could
reach up to 30 minutes, the GRBF meta-models perform worse than the regression meta-models.

More forecast examples and comparison between the two types of meta-models will be given in chap-
ter 7.

6.5. Integration with differential evolution algorithm
Since the meta-models (both regression and GRBF) have been selected, the final step is to integrate
the meta-models with the differential evolution algorithm. This section describes the method of inte-
gration, which will be done in a similar way as has been done in chapter 5. Specifically, the problem
formulation given in section 5.1 remains unchanged, but the optimisation flow changes.

The major change compared to the simulation optimisation method, is the way the security checkpoint
queue times are estimated, which are used in the objective function value with eqs. (5.2) and (5.3).
In the simulation optimisation functional flow, the security checkpoint queue times were the output of
the agent-based model and simulation. However, this method is very time consuming. A meta-model
based optimisation could drastically decrease the computational time, at the cost of losing details of the
governing agent-based model. These meta-models would replace the agent-based model and simu-
lation, in the optimisation strategy.

In the proposed method in this section, the differential evolution algorithm can be used as it is designed.
The functional flow diagram of the meta-model based optimisation is shown in fig. 6.17.

The trial vectors that are the output of the crossover process, will be used as input to the objective
function module. Recall that it was assumed that that the number of passengers that will depart per
flight, and their distribution of arrival is known in advance (assumption 2).

76



Figure 6.17: Functional flow diagram of the meta-model based optimisation framework.(Blue) Differential evolution algorithm.
(Red) the objective function module.

The first step in the objective function module is the conversion from the binary gate assignment deci-
sion variable to passenger streams. Since the total amount of passengers (including Business/Leisure
and transfer ratio) is known, the passenger streams (number of passengers per time interval) per de-
parting flight can be calculated. If the differential evolution algorithm decides to assign a certain flight
to e.g. SC A, then the passenger stream for that flight is added to the passenger stream expected for
security checkpoint A. This is graphically shown in fig. 6.18.

Figure 6.18: Step one in the objective function module shown in fig. 6.17.

After the number of passengers per time interval per security checkpoint have been determined, they
can be converted into the 𝐼𝐴𝑇𝑖 used in the meta-models. This is simply done by:

𝐼𝐴𝑇𝑖 =
300

𝑃 𝐴𝑋𝑖

where the 300 represents the five minute time interval (in seconds) and PAX𝑖 the number of passengers
that arrive in a five minute interval. The 𝑆𝐶𝑄𝑇 for the entire horizon and all security checkpoints are
calculated using the created meta-models in either section 6.3 or section 6.4. Before the inter-arrival
times can be implemented in the GRBF meta-models, they need to be standardised with the same
standardisation constants as were used to construct the meta-models. Furthermore, the decision vari-
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able 𝑟𝑗 decides whether two or three X-ray scanners meta-models are used.

In the final step of the objective function model, the objective function values for all the individuals in
the population are calculated using eq. (5.3). The way the security checkpoint queue times for every
security checkpoint are calculated (step 2 in fig. 6.17) is graphically shown in fig. 6.19.

Figure 6.19: Objective function calculation based on the decision variables.

Note, that since the generalisation error of both the regression and GRBFmeta-models were fairly high,
it is expected that the optimum found by the optimisation will not reflect the actual observations from
simulations properly. Therefore, the optimum found by this integrated optimisation method will need to
be checked by performing simulations of the optimum decision variable found.

The final step is to assess the performance of the different ways of integration on test cases.
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7
Evaluating methods of integration

In this chapter the different methods developed for integrating an agent-based model for airport pas-
sengers with a gate and resource assignment optimisation will be evaluated using two cases.

As described in section 3.6, a case study will be performed to assess the validity of the meta-model
based integration by comparing the meta-model based integration with the direct integration method in
section 7.1. Secondly, in section 7.2 a case will be used for verification, to study whether the proposed
methods are able to find an optimal gate and resource allocation that minimises the differences in queue
times amongst checkpoints.

7.1. Validation case study
In this section, the methods of the initial integration of an agent-based model with an operations re-
search optimisation will be tested. Specifically, this case study is developed such that a comparison
can be made between the three different methods of integration: Simulation optimisation, Regression
model based optimisation, and GRBF model based optimisation.

This first test case is made such that the different methods can be fairly compared. It contains a small
schedule, in which only two gates are used. The gate usage restriction was imposed due to the compu-
tational time that is needed by the simulation optimisation method to solve larger cases. As explained,
the computational time needed for one simulation run depends on the size of the aircraft and the depar-
ture frequency. Secondly, the differential evolution algorithm explores both the feasible solution space
and the infeasible solution space. Infeasible solutions can be very challenging since these can result in
over two-hours-long simulation runs. In addition, the simulations are performed in JAVA, but the data
handling and the differential evolution algorithm is done in MATLAB. This is a less preferred set-up,
because the iterations involve time-consuming manual interaction.

Therefore, it was decided that the case study, developed to compare the integration methods, would
be small and examines only the Schengen gates C and D (total number of gates 𝑚 = 2). The small
case schedule was developed based on knowledge about the observed behaviour during the research,
which is shown in table 7.1. One can see, that the schedule only considers eight scheduled departures.
Hence, the total number of flights (𝑛) considered in the problem 𝑛 = 8. Therefore, the total number of
decision variables in this case study equals eighteen (2 × 𝑛 plus the two X-ray scanner decision vari-
ables). Finally, the total number of X-ray scanners that need to be open is set to 𝑠 = 5.

The settings used in the differential evolution algorithm are shown in table 7.2. These settings have
been chosen such that the probability of convergence was the highest, by consulting the coder of this
algorithm (PhD candidate Ho-Huu, V.) in addition to trial and error.

Constraint violation is increasingly penalised by the penalty setting, from one generation to another. In
the first generation a solution that violates a constraint is penalised by the minimum penalty value, and
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Table 7.1: Departure schedule for validation case
study.

Flight Pax Time [h:mm]
1 150 3:00
2 150 4:20
3 200 5:40
4 250 7:00
5 300 3:00
6 200 4:20
7 210 5:40
8 300 7:00

Table 7.2: Differential evolution algorithm settings for validation case study.

Parameter Value Unit
Population size 8 Ind.
Stopping condition tolerance 1.00E-05 [-]
Total generations 30 It.
Penalty minimum 8 [-]
Penalty maximum 15 [-]

the final generation (Generation 30) by the maximum penalty value.

Since the validation case only examined two security checkpoint queues, the earlier defined objective
function calculation in eq. (5.3) is cumbersome. Therefore, the following equation will serve as the
objective function in this case study:

min
𝑥𝑖𝑗 ,𝑟𝑗

𝑓 =
𝑇

∑
𝑖𝑛𝑡=1

|𝑆𝐶𝑄𝑇 𝐶
𝑖𝑛𝑡 − 𝑆𝐶𝑄𝑇 𝐷

𝑖𝑛𝑡|. (7.1)

7.1.1. Simulation optimisation
The simulation optimisation was the first method used to solve the flight-to-gate assignment problem
of the schedule in table 7.1. The initial random generation had a population of eight individuals, of
which none was a feasible solution. Each individual (𝑖𝑛𝑑) of the first generation are shown in table 7.3.
Column one to eight of 𝑥𝑖𝐶 and 𝑥𝑖𝐷 represent the assignment variables of flights one to eight to gate C
and D, respectively. Hence, if the 𝑥1𝐶 is equal to one, then flight one is assigned to gate C.

As explained, the time needed to estimate these infeasible solutions was high. For example, a single
simulation run of the second individual (𝑖𝑛𝑑 = 2) in table 7.3 took a little over two hours. The differential
evolution algorithm did not always converge towards a feasible solution, and even if a feasible solu-
tion was found it was checked whether this was a global optimum of local. Note, that in this report only
the successful runs of the optimisation algorithm will be shown and the non-convergent runs are left out.

Table 7.3: Example of an initial population of decision variables (𝑥𝑖𝑗 )produced by the differential evolution algorithm.

𝑖𝑛𝑑 𝑥𝑖𝐶 𝑥𝑖𝐷 𝑟𝐶 𝑟𝐷

1 0 0 0 1 1 1 0 1 0 0 1 1 1 1 1 0 2 3
2 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 2 2
3 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 3 3
4 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 3 3
5 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 1 3 3
6 0 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1 2 2
7 0 0 0 0 0 1 0 1 1 1 0 0 1 0 1 1 3 2
8 0 1 1 0 1 0 0 0 0 1 1 0 0 0 0 1 2 2

The intermediate output of the differential evolution algorithm is shown in table 7.4.
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Table 7.4: Successful simulation optimisation run of the flight-to-gate assignment problem of the validation case study.

Best Mean Max
Generation f-count f(x) population constraint
1 8 133426207.49 58473402776 4
2 16 74881960.55 561612665.5 4
3 24 20424907.56 320811454.7 2
4 32 20424907.56 228912672.7 2
5 40 20424907.56 178144095.5 2
6 48 20424907.56 178144095.5 2
7 56 20424907.56 178144095.5 2
8 64 20424907.56 178144095.5 2
9 72 20424907.56 178144095.5 2
10 80 20424907.56 178144095.5 2
11 88 20424907.56 127390018.8 1
12 96 20424907.56 84361643.85 1
13 104 20424907.56 84361643.85 1
14 112 20424907.56 84361643.85 1
15 120 20424907.56 84361643.85 1
16 128 20424907.56 84361643.85 1
17 136 20424907.56 84361643.85 1
18 144 20424907.56 84361643.85 1
19 152 1976.22 66384965.33 0
20 160 1976.22 66384965.33 0
21 168 344.79 441326862.2 0
22 176 344.79 441326862.2 0
23 184 344.79 441326862.2 0
24 192 344.79 441326862.2 0

What can be seen is that the optimum was found after 21 generations. A total of 192 different solutions
were evaluated using the agent-based model and simulation. The total amount of time needed to find
this solution was a around seven days. Again, this is themajor drawback of this method: computational-
time. A total of six optimisations were needed to find the optimum presented here. Three of these runs
converged and the other three did not.

The optimum objective function value which was found 𝐟 = 𝟑𝟒𝟒.𝟕𝟗 𝐬, was obtained with the following
decision variable:

𝑥𝑜𝑝𝑡 = [1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 2 3].

This means that the first four flights are assigned to gate C and the last four flights to gate D. Security
checkpoint C and D have two and three X-ray scanners active, respectively. The security checkpoint
queue times per time interval are shown in fig. 7.1.

Observed is that the security queue times for the different checkpoints are fairly close together. Only
the final part (around interval number 70), the queue times for SC C are around one minute higher than
the security queue times observed at SC D.

What the algorithm has done is assigning the flights with the expected highest number of passengers
to gate D, and in addition assign three X-ray scanners to security checkpoint D. This meets the expec-
tations, since the objective is to minimise the differences between queue times of the two checkpoints,
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Figure 7.1: Security checkpoint queue times results of the flight-to-gate assignment by simulation optimisation.

then logically the highest number of operators will be assigned to the ’busiest’ security checkpoint.

But why then is SC D used for these larger aircraft and not SC C? This is due to the minor difference
in performance of the two security checkpoints. Assigning these aircraft in this way resulted in smaller
differences in queue times, compared to the inverse of the above assignment. Furthermore, what can
be observed is the large peak of high queue times round interval 68 at SC C. The reason for is peak
is possibly due to the fact that this period of elevated queue times was unavoidable. The optimisation
algorithm can only change the discrete events of assigning flights to gates, apparently the proposed
assignment resulted in the smallest difference between the queue times experienced at SC C and D.

The optimal assignment found by the simulation optimisation method is assumed to be the global opti-
mum. It has been tested by making manual changes to the assignment. However, none of the changes
resulted in a lower objective function value. Furthermore, this result is assumed to be the actual result
of the optimisation problem since it includes the actual agent-based model and simulation in the loop.
Therefore, this result will be used as benchmark to compare the other methods against.

7.1.2. Regression model based optimisation
The second method that was used to solve the flight-to-gate assignment problem is the regression
model based optimisation. This method is significantly faster than the simulation optimisation method
(a couple seconds compared to days). Therefore, this method would be way easier to use for example
on a weekly basis by airport managers.

The optimal decision variable found by the regression model based optimisation is:

𝑥𝑜𝑝𝑡 = [1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 2 3].

Clearly, this assignment is different from the assignment found by the simulation optimisation algo-
rithm. However, the assignment of the X-ray scanners are the same as was done by the simulation
optimisation method. The objective function value (calculated by the regression meta-models) found
for the above assignment was equal to 𝐟 = 𝟓𝟒𝟔𝟖.𝟓𝟒 𝐬. This is way higher than the optimal value found
by simulation optimisation. In general, the difference between the realisation and forecast is due to
the lack in forecasting performance. Hence, the forecast produced by the regression models do not
accurately estimate the queue times that would be observed from a simulation experiment.

The forecast of the regressionmodels made of the optimal gate and X-ray scanner assignment is shown
in fig. 7.2. In addition, the optimal assignment has been simulated in AATOM, which is also shown in
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fig. 7.2.

Figure 7.2: Validating security checkpoint queue times as a result of the flight-to-gate assignment by regression model based
optimisation and the simulated queue times.

What can be seen is that the queue time forecast produced by the regression meta-models are fairly
close to each other in the second half of the planning horizon (from interval 38 onwards). However,
before interval 38 the queue times forecast for SC C are significantly lower than for SC D. Hence, the
algorithm has done its job in finding an assignment that minimised the difference between queue times
at SC C and SC D.

However, simulating the optimal gate and X-ray scanner assignment showed that the forecasts do not
represent the agent-based model accurately (see fig. 7.2). The simulated queue times at SC D are
for all intervals close to zero. Whereas, the regression meta-models forecast queue times up to six
minutes. Similar results are found for SC C, but one could argue that the forecast’s shape of the final
peak of SC C is close to the peak’s shape in the simulation. However, it is expected that the shape
similarities is merely a coincidence since the evaluation of the forecast in section 6.3 showed no shape
similarities in that area (see fig. 6.10). The objective function value would have been 𝑓 = 996.70 𝑠
(actual objective function value), if it would have been calculated based on the simulation realisation of
the optimal solution (found by the regression based optimisation).

What can be concluded is that the regression model based optimisation is not able to find the same
optimum as the simulation optimisation method. Furthermore, the forecasts produced by the regres-
sion meta-model do not only estimate higher queue times (in this case), but shape-wise they are also
completely off. Hence, the regression meta-models are not able to fully replace the agent-based model
since they are not able to find the same optimum as the simulation optimisation method. The optimum
found by the regression based optimisation however, is a close to the real optimal solution.

7.1.3. Gaussian radial basis function based optimisation
Finally, the Gaussian radial basis function based optimisation is tested on the above described flight-
to-gate assignment problem. Also this method is significantly faster than the simulation optimisation
method. However, it is to be seen whether or not this method will be able to find the same optimum
as the simulation optimisation method and if the queue time’ forecasts are similar to the agent-based
simulation observed queue times.

The optimal decision variable found by the GRBF based optimisation is:

𝑥𝑜𝑝𝑡 = [1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 2 3].
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This is again a different optimum for the same flight-to-gate assignment problem. Clearly it failed to
locate the true global optimum, found by the simulation optimisation method. The found optimal objec-
tive function value (calculated by the GRBF meta-models) is equal to 𝐟 = 𝟏𝟎𝟖𝟕.𝟔𝟓 𝐬. Which is lower than
the objective function value found by the regression based optimisation, but higher than the simulation
optimisation objective function value. However, again two X-ray scanners were assigned to SC C and
three X-ray scanners to SC D.

The GRBF models’ forecast of the optimal aircraft and X-ray scanner assignment is shown in fig. 7.3.
In addition, the found optimal assignment has been simulated in AATOM, which is also shown in fig. 7.3.

Figure 7.3: Validating security checkpoint queue times as a result of the flight-to-gate assignment by GRBF based optimisation
and the simulated queue times.

What should be observed (again) is that the lines for the security checkpoint queue times (forecast)
are close to each other at all time intervals. Compared to the regression based optimisation, the level
of the forecast matches the level of the simulation output data better. This was also observed when
examining the forecast performance of both models (figs. 6.15 and 6.16).

The forecast’s shape for SC C seems to match the shape of the simulated data, especially around
the last peak (from interval 62 onwards). Furthermore, in the middle section of the horizon, the GRBF
meta-model for SC C seems to accurately tell when the queue times are going up or down. In the
beginning of the planning horizon, the forecast shows a bad performance in estimating the appropriate
level of queue time. This is probably due to the fact that the start-up phase (phase I) is represented by
a bad performing model, since it is only dependent on the lagged security checkpoint queue time.

Little can be said about the forecast made for SC D, except for the fact that the level of queue time is
close to the simulated queue time level.

Concluding, it can be said that the GRBF based optimisation is not able to locate the global optimum
found by simulation optimisation. However, the objective function value would have been 𝑓 = 505.22 𝑠,
if it would have been calculated based on the simulation realisation of the optimal solution (found by the
GRBF based optimisation). Hence, the method is able to locate a near optimal solution. In addition,
the GRBF meta-models are able to predict at least the level of the security checkpoint queue time.
Nonetheless, it should be concluded that the GRBF based optimisation is not able to fully replace the
simulation optimisation strategy.
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7.1.4. Summary validation case study
The results of the validation case study are summarised in table 7.5. The optimal objective function
values found by the optimisation models are shown in the second column of the table and in the third
column the objective function values calculated from the realisations of the optimal assignment are
shown.

Table 7.5: Summary of validation case study showing the objective function value calculated from the model forecasts and from
the realisation of the optimal assignments.

Optimisation model 𝑓𝑚𝑜𝑑𝑒𝑙 [s] 𝑓𝑟𝑒𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 [s]
Simulation optimisation 344.79 344.79
Regression model 5468.54 996.70
GRBF model 1087.65 505.22

As discussed the simulation optimisation methodology is the only method that arrives at the true op-
timal assignment (with 𝑓 = 344.79𝑠). The optimal assignment found by the regression model based
optimisation was the least optimal assignment of all three models, since the 𝑓𝑟𝑒𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 was the highest.
Furthermore, the objective function value calculated by the regression models (𝑓 = 5468.54𝑠) is higher
than found by the GRBF meta-models. This could have been partially caused by the fact that the re-
gression meta-models have the tendency to over-react (identified when fitting) to slight input changes.
Which makes it difficult for the regression based optimisation to match the queue times experienced
at the different security checkpoints. In terms of 𝑓𝑟𝑒𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛, both the regression and GRBF meta-model
based integrations are able to locate acceptable assignments relatively close to optimal. However,
this could be a coincidence since the fitting and generalisation errors of both meta-model types were
generally high.

7.2. Verification case study
After assessing the validity of the meta-model based integrations, the verification case study is per-
formed to give the reader an idea of how the meta-model based optimisations would work once they
are fully capable to replace the agent-based model and simulation. The main point of this case study
is to see whether the proposed methodologies are able to locate the global/local minimum of a larger
gate and resource assignment problem. As was seen in previous case study, and also during the fit-
ting of the meta-models, the meta-models are currently not able to fully capture the dynamics of the
agent-based model. The generalisation errors of the models were high and the forecast produced by
the models was not consistent with the simulation results. During the current case study, one should
forget about these limitations for the moment.

The current case study is constructed using the observations presented in table 4.2, in which the mix
of aircraft observed at AAS was given. Furthermore, in the schedule used, it was tried to include the
waves of arriving Schengen aircraft that are connected to departing non-Schengen aircraft. The sched-
ule contained 44 flights that depart within 15 hours and 25 minutes. The main reason for this case study
is to verify that the proposed optimisation method works the way it is designed. Hence, to see whether
the following objective function is minimised:

min 𝑓 =
𝑇

∑
𝑖𝑛𝑡=1

1
𝑚 − 1

𝑚

∑
𝑗=1

(𝑆𝐶𝑄𝑇𝑖𝑛𝑡𝑗 − 𝑆𝐶𝑄𝑇𝑖𝑛𝑡)2,

where 𝑚 are the security checkpoints A to D and 𝑇 (total number of time intervals) was equal to
15×60+25

5 = 185. The schedule developed for the current case study is presented in table 7.6. The
fourth and the ninth column show whether the aircraft needs to be assigned to a Schengen (S) or non-
Schengen (N-S) gate.

The DE settings used to find the optimum have been shown in table D.1 (appendix D), which are
reported for the people that would like to replicate the current study. These settings have been found by
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Table 7.6: Schedule used to test the regression model based optimisation and GRBF model based optimisation.

Flight Arr time Dep time To Size [pax] Flight Arr time Dep time To Size [pax]
1 1:40 3:00 N-S 450 23 8:40 10:00 N-S 350
2 1:40 3:00 N-S 280 24 9:30 10:10 S 200
3 2:20 3:00 S 190 25 9:35 10:15 S 90
4 2:20 3:00 S 90 26 9:00 10:20 N-S 220
5 3:00 3:40 N-S 110 27 10:15 10:55 S 90
6 3:00 3:40 S 70 28 10:20 11:00 S 160
7 3:00 3:40 S 190 29 10:25 11:05 N-S 120
8 3:10 3:50 N-S 200 30 10:30 11:10 N-S 200
9 3:50 4:30 S 190 31 11:05 11:45 S 160
10 4:00 4:40 S 120 32 11:10 11:50 N-S 185
11 3:55 5:15 N-S 220 33 11:10 11:50 N-S 110
12 4:15 5:35 N-S 350 34 11:15 11:55 S 90
13 5:20 6:00 S 150 35 11:55 12:35 S 120
14 5:45 6:25 S 100 36 11:55 12:35 S 185
15 5:35 6:55 N-S 410 37 12:00 13:20 N-S 220
16 5:45 7:05 N-S 210 38 12:20 13:40 N-S 350
17 6:50 7:30 S 90 39 13:30 14:10 S 120
18 7:05 7:45 S 200 40 13:45 14:25 S 190
19 7:20 8:00 N-S 100 41 13:45 15:05 N-S 220
20 7:40 8:20 N-S 180 42 13:50 15:10 N-S 450
21 8:10 8:50 S 120 43 14:40 15:20 S 90
22 8:50 9:30 S 195 44 14:45 15:25 S 150

performing the optimisations in abundance. These settings give the highest probability of convergence
towards the potential global optimum.

7.2.1. Regression model based optimisation
First, the flight-to-gate assignment problem was solved using the regression model based optimisation.
The optimisation algorithm has been run several times, in order to make sure that the optimum found
had the highest probability of being a global optimum. In section 7.2.4 the performance of the algorithm
will be elaborated upon. Each of the optimisation runs took around 25 minutes to solve. This was due
to the high number of decision variables (180) and the high population size which was required (100).
In addition, the flatness of the objective function will have contributed as well.

The gate and X-ray scanner assignment that resulted in the smallest difference in waiting times amongst
the checkpoints was found, and is shown in table 7.7.

The security checkpoint queue times for the optimal assignment is shown in fig. 7.4. The algorithm
finally assigned three X-ray scanners to checkpoint A and C and two X-ray scanners to B and D. The
assignment resulted in a optimal objective function value of 𝐟 = 𝟏.𝟔𝟎𝟏E+𝟎𝟔 𝐬𝟐.

It took around 250 generations to find the optimal assignment, meaning that 12500 individuals were
evaluated. What can be seen from the figure is that the queue times at SC B are quite close to the
queue times at SC D. Also, the queue times experienced at SC A are close to zero for the entire plan-
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Table 7.7: Optimal gate assignment found by the regression model based optimisation for the schedule presented in table 7.6.

Gate A - 3 X-ray scanners Gate B - 2 X-ray scanners
Flight no Dep time Size [pax] Flight no Dep time Size [pax]
1 3:00 450 2 3:00 280
5 3:40 110 8 3:50 200
11 5:15 220 12 5:35 350
15 6:55 410 16 7:05 210
19 8:00 100 20 8:20 180
23 10:00 350 26 10:20 220
29 11:05 120 30 11:10 200
32 11:50 185 33 11:50 110
37 13:20 220 38 13:40 350
41 15:05 220 42 15:10 450

Gate C - 3 X-ray scanners Gate D - 2 X-ray scanners
Flight no Dep time Size [pax] Flight no Dep time Size [pax]
3 3:00 190 4 3:00 90
6 3:40 70 7 3:40 190
9 4:30 190 10 4:40 120
13 6:00 150 14 6:25 100
17 7:30 90 18 7:45 200
21 8:50 120 22 9:30 195
24 10:10 200 25 10:15 90
27 10:55 90 28 11:00 160
31 11:45 160 34 11:55 90
35 12:35 120 36 12:35 185
39 14:10 120 40 14:25 190
43 15:20 90 44 15:25 150

ning horizon, except for the beginning of the planning. This major disadvantage is due to the fact that
the model in phase I is only dependent on the lagged observed queue time, which was already ex-
plained when fitting the regression meta-models. Except for phase I, the queue times observed at SC
A are very close to the queue times at SC C.

Overall, the queue times seem to be fairly close to each other. Hence, this indicates that the method
is able to find the optimal assignment, leading to the most equal spread of queue times amongst the
security checkpoints. However, due to the fact that the assignment is a discrete event assignment, the
security checkpoints queue times will in most cases not be able to exactly match each other. If one
would want to achieve a perfect match of queue times amongst stations, then the passenger streams
should be decoupled. This means that the path restriction assumption is being dropped, giving the
airport manager the possibility to guide any sub-group of passengers to any security point. Decou-
pling the passenger processes (e.g. check-in facilities with security checkpoints) would introduce new
challenges which will need to be solved, but also decrease the causal relationship between the arrival
distributions and the queue build-up at a specific station.
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Figure 7.4: Security queue times as a result of the optimal assignment found by the regression model based optimisation. The
objective function value for this assignment is equal to 𝑓 = 1.601E+06 𝑠2.

7.2.2. Gaussian radial basis function based optimisation
The same flight-to-gate assignment problem was solved by making use of the Gaussian radial basis
function based optimisation. For this optimisation method, the same settings as in the regression based
optimisation were used for to find the optimum.

The smallest differences in queue times amongst the checkpoints was obtained by the gate assignment
shown in table 7.8.

What can be seen is that the assignment is completely different from the assignment found by the re-
gression model based optimisation method. However, both methods assign three X-ray scanners to
SC A and C, and two X-ray scanners to gates B and D. Due to the complex nature of the model, it is
difficult to say why certain decisions have been made by the optimisation tool.

What these models have in common is that the meta-models for 3 X-ray scanners generally predict
queue times very close to zero for schedules with medium sized aircraft in them. Therefore, the opti-
misation will look for a schedule sequence/mix, such that the queue times of the checkpoints that have
two X-ray scanners active are as close to zero as possible, as was seen in fig. 7.4. Apparently, security
checkpoint B and D perform better than A and C with two X-ray scanners for this schedule. Note that
in the first case study, this was exactly the opposite.

The predicted queue times for the checkpoints are shown in fig. 7.5.

What can be seen is that the queue times at SC A to C are fairly close to each other (below 100s per
time interval). However, the model is not able to suppress the queue times that will be apparent at SC
D, during two peak periods. If it were possible, the algorithm would probably have liked to activate an-
other X-ray scanner at SC D. Note, that the objective function value 𝐟 = 𝟑.𝟐𝟑𝟔E+𝟎𝟔 𝐬𝟐 is larger than the
objective function value from the regression based optimisation. This is probably due to the high peaks
from SC D, because the other periods show superior performance w.r.t. the queue times in fig. 7.4. In
addition, the forecasts produced by GRBF is by definition different from the regression forecast.

To show the difference, the optimal assignment found by the GRBF based optimisation can be used
by the regression meta-models to forecast the security checkpoint queue times. In this way one could
again see the difference between the two meta-models. This has been shown in fig. 7.6.

One aspect that immediately stands out, is the fact that the queue time peaks of SC D are still there.
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Table 7.8: Optimal gate assignment found by the GRBF model based optimisation for the schedule presented in table 7.6.

Gate A - 3 X-ray scanners Gate B - 2 X-ray scanners
Flight no Dep time Size [pax] Flight no Dep time Size [pax]
1 3:00 450 2 3:00 280
8 3:50 200 5 3:40 110
12 5:35 350 11 5:15 220
15 6:55 410 16 7:05 210
19 8:00 100 20 8:20 180
23 10:00 350 26 10:20 220
29 11:05 120 30 11:10 200
32 11:50 185 33 11:50 110
38 13:40 350 37 13:20 220
41 15:05 220 42 15:10 450

Gate C - 3 X-ray scanners Gate D - 2 X-ray scanners
Flight no Dep time Size [pax] Flight no Dep time Size [pax]
4 3:00 90 3 3:00 190
6 3:40 70 7 3:40 190
9 4:30 190 10 4:40 120
14 6:25 100 13 6:00 150
18 7:45 200 17 7:30 90
22 9:30 195 21 8:50 120
24 10:10 200 25 10:15 90
27 10:55 90 28 11:00 160
34 11:55 90 31 11:45 160
35 12:35 120 36 12:35 185
40 14:25 190 39 14:10 120
43 15:20 90 44 15:25 150

However, the tip of these peaks are around 300 seconds lower based on the regression meta-models.
Furthermore, the regression meta-models for SC B have a stronger reaction to increases in expected
passengers (reduction in inter arrival time). Therefore, the peaks for security checkpoint B are (as ex-
pected) higher for the regression meta-models than the GRBFmeta-model’s forecast. The queue times
observed at security checkpoint A and C are very close to zero (except for phase I of SC A). However,
the queue times experienced at SC B and D are farther apart and therefore overall the queue times are
less spread amongst checkpoints.

The objective function value (2.0263E+06 𝑠2) calculated by the regression meta-models of the GRBF
model optimal assignment is logically higher than the optimum found by the regression based optimi-
sation model (𝑓 = 1.601E+06 𝑠2). But, it is lower than found by the GRBF based optimisation model.

7.2.3. Summary verification case study
The results of the verification case study are summarised in table 7.9. What should be observed from
the table is the fact that both meta-model based optimisations resulted in different optimal solutions. In
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Figure 7.5: Security queue times as a result of the optimal assignment found by the GRBF model based optimisation. The
objective function value for this assignment is equal to 𝑓 = 3.236E+06 𝑠2.

Table 7.9: Summary of verification case study showing the objective function value calculated by the regression and GRBF
meta-models from the optimal assignment found by the regression based and GRBF based optimisation.

Objective function value calculated by
Assignment found by Regression meta-models [𝑠2] GRBF meta-models [𝑠2]
Regression based optimisation 1.601E+06 4.176E+06
GRBF based optimisation 2.026E+06 3.236E+06

addition, the table indicates that both optimisation models could be able to locate optimal solutions. As
for example the optimal solution found by the regression based optimisation had an objective function
value of 1.061E+06𝑠2 and the alternative solution (result of GRBF based optimisation) resulted in an
objective function value of 2.026E+06𝑠2. Hence, the solution found by the regression based optimi-
sation is better than the alternative. The same holds for the GRBF based optimisation. Furthermore,
manual trials of potential solutions also did not result in improvements of the proposed optimal solu-
tions. Hence, this verified that the meta-model based optimisations were able to locate (global) optimal
solutions.

7.2.4. Differential evolution algorithm performance
To conclude this chapter, a final word should be said about the performance of the optimisation algo-
rithm, since the optimisation strategies that were developed (figs. 5.4 and 6.17) did not converge every
time to the global optimum or even to a feasible solution.

The performance of the DE algorithm is dependent on selecting the right parameter settings for the
right characteristics of the considered problem. In addition, the DE algorithm has difficulties in handling
integer linear problems with equality constraints, and the convexity of the solution space also plays a
major role.

Selecting the parameter settings that result in the highest probability of converging runs was, together
with understanding the algorithm performance, a matter of trial and error. It was known that the objec-
tive function value was dependent on the number of intervals considered. A longer planning horizon
required higher penalty values. In addition, the infeasible solutions could have very low objective func-
tion values. Consider for example the case that no flights are assigned, then the objective function
value (𝑓 = 0 𝑠2) since there are no queues apparent at the airport. This makes it difficult for the DE to
move away from the infeasible solutions, unless the penalty values are set to high values. The level of
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Figure 7.6: Security queue times predicted by the regression meta-models. The optimal assignment found by the GRBF model
based optimisation. The objective function value for this assignment is equal to 𝑓 = 2.0263E+06 𝑠2.

these penalty values were obtained by performing many trial and error runs.

Secondly, the DE had difficulties with handling equality constraints. This was a major concern since the
equality constraints in the posed flight-to-gate assignment problems were very strict. As the majority
of the equality constraints (’= 1’) only involved two decision variables and the decision variables were
binary. This only leaves two possibilities, assigning the flight to one gate or to the other. Hence, the
solution space is quite narrow, which is difficult for a DE algorithm to handle (since it could easily ’jump’
over the feasible solution space).

The focus of the current study was only on four gates (two Schengen and two non-Schengen) of a
fictitious airport. Future research could easily extend the proposed problem by including more gates,
which could relax the majority of the strict constraints. Therefore, it is believed that the DE algorithm
would perform even better in future research on a similar topic.

Thirdly, also the convexity of the solution space plays a role in the speed of convergence as well as
the ability to locate the global minimum. A close to similar objective function value can be achieved by
different solutions, since the objective function value is a summation of the variances per time interval.
As this was the case, one of the remedies was to select a large population during each iteration. How-
ever, a large population size also means that the algorithm is less efficient, since it needs to evaluate
a lot of feasible and infeasible solutions.

Especially during the simulation optimisation one wants to have the correct parameter settings such
that convergence would occur, since each optimisation run took around seven days. This was done by
doing trial and error runs of the regression model based optimisation (on the first case), before starting
on the simulation optimisation. Nonetheless, the first couple simulation optimisation runs did not con-
verge to feasible solutions or did not converge to the, what was believed to be the, global optimum.

All the solutions presented in the current research have been challenged by many optimisation runs as
well as manual trial and error runs. It cannot be guaranteed that all the optima found are global optima,
however the optima belong definitely to the best of the local optima since trial and error did not result
in improved solutions.
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8
Discussion and implications

In this chapter a synthesis of all intermediary results, which were given throughout the report, will be
given. Meetings at Rotterdam The Hague Airport have been an important input for this chapter. In these
meetings the scientific contribution of the thesis was presented and knowledge was gained on the flight-
to-gate assignment practice. First, a discussion of the results and implications of the assumptions are
given in section 8.1. Secondly, in section 8.2 the implications of the results are given, by making a
distinction between research implications and industry implications.

8.1. Discussion of results
In this section the results presented throughout the report will be discussed. This is done by discussing
the overall picture of the results in the light of the research objective. First the integration success will
be discussed. Secondly, the quality of the agent-based abstraction models will be elaborated on and
finally the individual quality of the meta-models will be discussed.

Since the research objective is to integrate an agent-based model with an flight-to-gate assignment
it is necessary to discuss the quality of the integration. In this thesis, the focus has been on the se-
curity checkpoint queues as it was found that the security checkpoint is the main landside source of
airside delay. Two novel methodologies have been developed to integrate an agent-based model into
a flight-to-gate assignment optimisation. The scientific contribution is substantial, since up till now the
integration of an agent-based model with a flight-to-gate assignment optimisation has not yet been in-
vestigated nor performed.

The first method presented was a direct integration. The objective function of the flight-to-gate assign-
ment was the realisation of the agent-based model, which was dependent on the gate and resource
assignment. The direct integration method proposed was based on the simulation optimisation frame-
work, which includes a simulation model in an optimisation strategy. The system was solved using a
differential evolution algorithm. During the initial case study, both advantages and disadvantages of a
direct integration were recognised.

The main advantage of this method is the fact that there is little loss in detail due to approximation,
compared to the indirect methods. The only loss was induced by the time interval assumption and
the number of replication runs to estimate the queue time per interval. The time interval assumption
induced loss due to the fact that the queue time experienced within the five minute time interval was
not constant. The second is that the number of replications to estimate the queue times during the
intervals also create a loss in accuracy. Ideally, the number of replication runs would be so large that
extra runs would not change the variance of the average queue times per interval any more. In general,
ten runs were done to estimate a single scenario, except for cases where the spread of the queue time
observed per scenario (at a time interval) was relatively large. The limited number replication runs will
also have induced loss in detail. In the simulation optimisation method, it was decided to estimate the
average queueing time per time interval from 10 simulation runs of the same scenario. However, the
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actual average queue time during the time interval would better approximated by e.g. 100 replication
simulation runs. Therefore, there is loss induced by only performing 10 replication simulation runs.

The main disadvantage of this method is the computational time. As discussed, it took around one
week to complete one fairly simple optimisation run, without guaranteed success. The problem solved
in the initial case only involved two gates and eight flights. Therefore, it is believed that solving a larger
case with more flights and gates would lead to even more unacceptable computational times. There-
fore, this way of integration is believed to be inappropriate for an airport manager to use on a weekly
basis.

The second method of integration made use of agent-based model abstractions. This method was
proposed to overcome the main disadvantage of the direct integration method. The main advantage
of this indirect integration method is the fact that, compared to the direct integration, the optimisation
would only take a fraction of the time needed by the direct integration method.

This decrease in computational time however, was achieved by sacrificing the amount of details that
were present in the agent-based model. In addition to the loss of detail that was present in the direct
integration method, additional loss is induced by the approximation errors. During the fitting stage of
the meta-modelling process, the goal was to minimise the approximation errors. It was observed that
the fitting errors of the meta-models (both regression and GRBF) were generally not acceptable. The
point estimate errors of models created for phase II (in-operation phase), were up to 2 minutes and
50 seconds. The severity of such an error is dependent on the scenario. In cases where the queue
times at the security checkpoints reach up to forty minutes, these errors are actually quite good ( 93%
accuracy). However, in scenarios where low queue times are observed these errors are not accept-
able. The significant differences in queue times observed is due to three factors. The first cause is
the diversity of aircraft sizes that is assumed to depart from the fictitious airport. These range between
small aircraft such as the Embraer 190 and large aircraft such as the Airbus A380. Assigning two X-
ray scanners to a security checkpoint that only handles the E190s, could result in no queue build up.
Whereas the two X-ray scanners would not be able to avoid queue build up if assigned to a security
checkpoint that only handles A380s. Secondly, the frequency of the flights also strongly affects the
differences in queue times observed between scenarios. Finally, the sensitivity of the additional X-ray
scanner plays another significant role. The settings used for the X-ray scanners created situations in
which one could reduce the observed queue times from 40 minutes to only a couple of seconds by
opening an extra X-ray scanner. Further calibration of the model is therefore necessary, since these
situations will not occur in reality.

In addition to the fitting and generalisation errors of the meta-models, which indicates the meta-model’s
quality of abstraction, forecasts were created with both meta-model types. Furthermore, a case study
was conducted to test the validity of optimal assignment found by the meta-model based optimisation.

The meta-model variables included the lagged estimated queue time (𝑆𝐶𝑄𝑇𝑖−1). This is, compared
to the other variables (inter-arrival times), not a strictly exogenous variable and therefore the point es-
timate errors are not the only performance measures of interest. Forecasts were produced by both
meta-models of an arbitrary gate assignment and compared to the agent-based model and simulation
outcome of the same gate assignment. Mixed results were observed.

The GRBF meta-models of security checkpoint B proved to be able to approximate the actual queue
behaviour. It was expected that the meta-models for SC A and B, and C and D had to show similar
behaviour as the pairs experience the same type of passenger streams. The difference between the
GRBF meta-models produced for SC C and SC D (2 X-ray scanners) was remarkable. The GRBF
meta-models for gate D produced a large over-forecast, whereas the meta-models for SC C performed
well. The difference between GRBF meta-models for the presented schedule of SC A and B was more
acceptable.

The regression meta-models for SC A and B proved to both over-forecast the queue times, but were
fairly close to each other. In general, the regression meta-models were very eager to predict growths
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in queue times, compared to GRBF meta-models. However, the regression models were less eager
to predict reductions in queue time. This behaviour was a result of the form of the model and resulted
many times in structural over-forecasts in phase II.

Furthermore, the predicted queue time behaviour (shape of the graph) did not consistently follow the
observed queue time behaviour from the simulation. However, it was observed that overall the GRBF
meta-models were able to predict the level of the queue times better than the regression meta-models.

Global sensitivity analysis was conducted to assess the importance of the parameters in four meta-
models (𝑆𝐶𝑄𝑇 𝐶,2,2, 𝑆𝐶𝑄𝑇 𝐵,2,2 for both the regression and GRBF meta-model). In the non-parametric
models, the 𝑆𝐶𝑄𝑇𝑖−1 variable was most important. However, in the regression (parametric) models the
𝑆𝐶𝑄𝑇𝑖−1 variable was less important. The importance ranking of the lagged inter-arrival time variables
were dependent on both the specific security checkpoint and the meta-model type.

Before drawing major conclusions, the results of the indirect integrations were compared to the result of
the direct integration. It was assumed that the simulation optimisation (direct integration) would result
in the real global optimal gate assignment. Therefore, if the meta-model based optimisations would
be able to locate the same optimum, then there would be evidence that the meta-models are able to
replace the agent-based model in the optimisation strategy. However, both meta-model optimisations
resulted in different ‘optimal’ assignments. Hence, the validity of the developed indirect integration op-
timisation method depends on the quality of the meta-models.

The main result of this study has been the development of two methodologies to integrate an agent-
based model and simulation with a flight-to-gate assignment optimisation. The scientific gap that was
existent has been closed with a decent research, that encourages further research in this area. Fur-
thermore, this study describes in detail all the steps that have been taken or explored to make the
integration possible. These include: understanding the agent-based model and the emergent be-
haviour, developing necessary agent-based model features, agent-based model calibration, feature
selection, design of experiments, data generation, meta-model fitting and evaluation, integration with
optimisation and optimisation evaluation. One of the main challenges when integrating was to match
the level of the agent-based model (micro/passenger level) with the flight-to-gate assignment optimi-
sation (macro/airport level), without losing too much detail of the agent-based model and simulation.

8.1.1. Implications of the assumptions
To be able to perform research within a limited amount of time and scope, assumptions needed to be
made. Many of the assumption made in this thesis affected the results of the research. It is important
to assess the implications of the main assumptions.

One of the main assumption that ties the two paradigms (ABMS and OR) together is the path restriction
assumption. Passengers heading for a specific gate, take a specific path corresponding to that gate.
This assumption was necessary since parametric models require a clear correlation between the inde-
pendent variables and the dependent variables. If this assumption was not made, people would be able
to choose a security checkpoint themselves in a random way. Then there would be little correlation
between the arrival rates of passengers at the entrance of the airport for a specific flight and the queue
times observed at one of the security checkpoints. If the gate assignment was completely uncorrelated
with the path passengers take towards the gate, then the regression meta-models could even have
performed worse. Hence, this assumption is critical to the regression meta-model integration.

Secondly, the proposed integration is also heavily dependent on the passenger knowledge assumption,
which assumes knowledge about the amount of passengers departing per aircraft and a deterministic
arrival distribution. In reality, these arrival distributions might be non-deterministic, depending on the
destination and size of the airport. Furthermore, there could be factors influencing these arrival distri-
butions that are unknown. The proposed methodology is heavily dependent on the direct relationship
between assigning aircraft and the known arrival of passengers. In situations where the arrival distri-
butions are uncertain, the proposed methodology might not be valid.
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Furthermore, the passenger knowledge assumption also assumes that the number of passengers de-
parting per flight is known. In reality the airport has no knowledge in advance about the exact number
of passenger departing per flight, as became clear during a meeting with Duty Manager Operations
Dennis Gerharts of Rotterdam The Hague Airport. The knowledge they do have is the aircraft type and
the time it is supposed to arrive and depart. The current research aims to precisely predict queue times
per security checkpoint based on the number of passenger arriving per flight. If in a case instead of
200 passengers only 90 passengers arrive for a certain flight, this could result in a different gate and
resource allocation. Hence, the optimum found by the integrated model is only valid if the passenger
knowledge assumption holds.

In addition, it is assumed that the agent-based model is fully calibrated. This assumption ensures that
if an optimal gate and resource allocation is found, then it is also in reality an optimal allocation.

Finally, the input variables chosen for the meta-models and the type of the meta-models largely deter-
mine the quality of the meta-models. It was assumed that the two X-ray scanner data sets determined
the input-variables taken for the meta-models and for the GRBF meta-models also the spread (𝜎).
Ideally, the meta-modelling process steps had to be repeated for the three X-ray scanner data sets,
potentially leading to different variables and settings. Hence, the assumption could have resulted in
less performing three X-ray scanner meta-models. Furthermore, the time interval standard assumption
in combination with the meta-model types, affected the selection of variables. Hence, assuming a dif-
ferent time interval standard would have resulted in a different variable selection and hence, different
meta-model performances.

8.2. Implications of the results
In this section the implications of the results will be elaborated on. This is done by first assessing the
implications for future research and secondly the implications for the industry.

8.2.1. Research implications
It is important to consider the implications for future research since the aim of current study is to open
a new area of research. This research was part of a cluster at the Delft University of Technology, in
which multiple students worked on different topics within the subject of agent-based modelling and air-
port terminal operations, under supervision of dr. Alexei Sharpanskykh and Stef Janssen. The current
study was one of the first studies within the cluster that used the entire agent-based model. Hence, an
important contribution of the current research has been the identification and resolution of issues and
improvements found during the research.

Before starting the research it was assumed that finding an appropriate meta-model, that would be able
to capture the dynamics prevalent in an agent-based model, would be difficult. This is due to the fact
that meta-models are ‘simple’ equations with limited flexibility, whereas an agent-based model takes
a bottom up approach which aims at representing reality. This was the main reason during current
research to create different models for the phases and number of X-ray scanners active. However,
even within these restricted usage areas, the meta-models still have little explanatory power.

It can be argued whether or not a set of meta-models will ever be able to capture and represent pro-
cesses in an agent-based model. The response of many agent-based model processes are highly
non-linear which makes it very difficult to determine variables that are highly correlated with the ob-
served response. It is assumed that only a carefully managed set of probably many meta-models will
be able to approximate the response of an agent-based model and simulation. However, if this set of
variables and relations can be determined is to be seen. At least, with the proposed parameter selec-
tion, meta-model types and fitting methods used in the current study, did not result in meta-models with
satisfactory performance.

The main contribution to the existing literature are the developed of methodologies to integrate the
agent-based modelling and simulation paradigm with the operations research paradigm. To the au-
thor’s knowledge, little to no integrations have been made between the two paradigms. The current
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study has opened up the research area by providing a solid initial attempt by providing methodologies
to integrate the paradigms in a direct and indirect way. Especially, the area of simulation optimisation
has proven to be a very promising way to integrate an agent-based model for airport passengers with
an flight-to-gate assignment optimisation.

The contribution to the flight-to-gate assignment literature is limited. This is mainly because the current
state of the flight-to-gate assignment literature is already in an advance stage. Therefore, the contri-
bution of this research is mainly on the introduction of dynamic passenger models in the flight-to-gate
assignment problems. In addition, the research provides a solid static model that can be extended to
a robust model with more constraints which are representative for the airside considerations.

8.2.2. Industry implications
Next, it is important to consider the implications for the industry. In specific for the airport managers
responsible for the airside and landside operations.

During the meetings at RTHA it became clear that the methods current research proposes it not the
current practice, in terms of flight-to-gate assignments. Flight-to-gate assignments at RTHA do not
involve very complex mathematical tools whereas at AAS many more considerations are taken into
account, mainly financial considerations.

It was acknowledged that there is a clear disconnect between the airside and landside management.
The current research tries to find a precise relationship between assignments of flights-to-gates and
the minimisation of passenger delays in the terminal, for an airport with only four gates. One could
question why this study contributes to the industry practice. However, this study could be seen as a
way for airports to steer passenger flows at the airport. For example at Schiphol airport it could be inter-
esting to manage the passenger flows, not between gates but, between piers. Such that the utilisation
of the pier facilities are equally spread. The result could be increased retail revenues and improved
passenger experience. However, the proposed method would only be valid if the agent-based model
if fully calibrated and validated.

Currently, airports are managing passenger flows in a reactive manner. Cameras and sophisticated
tracking software are installed to monitor the terminal processes and the prevalence of congestions.
The proposed methodology tries to manages the passenger flows in a pro-active manner. Expected
passenger flows are predicted and the congestions (at the security checkpoints) minimised or avoided.
The proposedmethod would however require lots of data on the arrival distributions, passenger specific
characteristics, decision trade-offs etc. A proper implementation of the proposed method at an airport
would result in less real-time passenger related adjustments.

A comment should be made about the consequence of the proposed method at a real airport. The
method proposed, optimises the spread of queue times by assigning gates and resources. Hence it
assumes that the manager in charge of gate assignments, will be the same as or closely involved with
the security manager. At RTHA this is not the case. As an alternative, the proposed method could also
be used when the one responsible of the gate assignment knows how many resources are employed
during a day and where the resources are located.

Currently, the model is not yet ready to be used in practice. This would require calibration of the model,
more research into the meta-modelling of an agent-based model, and speeding up the computation in
case of the simulation optimisation method. However, in the future, the model could ease the work of
airport managers (landside and airside), improve passenger experience at airports and increase retail
revenue by steering passenger streams over the airport.
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9
Conclusion and recommendations

This chapter will present the most important conclusions and recommendations. The conclusion will
be discussed in section 9.1, where the research questions asked in chapter 3 will be answered. In
section 9.2, recommendations for future research will be given.

9.1. Conclusion
This research has taken the first steps towards developing a methodology to integrate an agent-based
model for airport passengers with a flight-to-gate assignment optimisation. This section will give the
main conclusions based on the research questions presented in chapter 3.

Q1: What airport areas are important to consider when integrating a multi agent-based model
for passenger processes in a flight-to-gate assignment problem?

In this research, the main focus has been on the security checkpoint, or more specifically, the queues
of security checkpoints. This focus was set based on the found delay sources at airports in literature.
However, this does not mean that the security checkpoint is the only area that had to be considered.

Passengers enter the airport at different times before departure. Some passengers need to pass by the
check-in desks to check-in and/or to drop-off luggage. Furthermore, passengers might dwell around
the airport before heading towards the security checkpoint. Including these areas increases the detail
of the model, and makes it closer to reality. Passengers do not all walk the same distances, as was
taken into account by many of the older static flight-to-gate assignment problems. Therefore, if one
wants to make the passenger experience better in terms of queue time at the security checkpoint, then
the agent-based model should represent realistic airport terminal processes. This can be achieved
by considering all areas and processes, before the security checkpoint (e.g. entrance area, check-in
area, goodbye area), when integrating the agent-based model with a gate and resource assignment
optimisation.

Q2: What variables used in the agent-based model from the areas above, could be used in the
flight-to-gate assignment model?

In this research it was chosen to restrict the paths passengers could take towards their designated gate.
The result of this restriction was that there were actually variables of the agent-based model that could
be used in the flight-to-gate assignment. In reality, the gate assignment is only weakly correlated with
the paths passengers take, since the gate only defines a rough path that passengers will take towards
their gate. Hence, the flight-to-gate decision variables decide the rough path for passengers to follow
to their flights.

As the objective function of the optimisation problem was to spread the queue times as equally among
security checkpoints as possible, the security queue time was the main output variable of interest. The
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queue time was affected by the number of passengers departing per flight, and thus the assignment of
those flights to gates.

Furthermore, in the meta-modelling based integration method, the inter-arrival times of passengers
were also taken as the input variables for the meta-models. The inter-arrival times were the average
time between arrival of passengers at the entrance area. The number of passengers arriving per five
minute time interval was determined by making the arrival distribution assumption. This assumed that
the number of passengers departing per flight and their arrival distribution were known in advance.
Based on the behaviour of the data, different combination of these variables (including the lagged se-
curity queue time) were made.

In addition, the number of X-ray scanners open per security checkpoint were taken into account. These
variables were taken as decision variables in the optimisation problem. Since these directly affected
the queue time behaviour per security checkpoint.

Other important variables were the number of operators per check-in counter, passenger transfer per-
centage, business/leisure ratio and other parameters shown in table A.1. These variables were not
directly included in the assignment problem, but defined the experiment setting.

Q3: Can the agent-based model be integrated in a direct way or by creating meta-models that
are able to capture the dynamic relations?

In this research, the agent-based model was integrated with a flight-to-gate assignment model in both
a direct and indirect way.

The direct integration was done by the simulation optimisation method. Since only little detail was
lost by averaging queue times over five minute intervals, the optimisation of direct integration was as-
sumed to lead to the real global optimal assignment. However, this method had a major disadvantage,
namely, the computational time required to find the optimal assignment. The differential evolution algo-
rithm used to find the optimal assignment examined both the feasible and non-feasible solution space.
Especially the latter space sometimes required a computation time of over 2 hours for a single simu-
lation run. Furthermore, the flatness of the objective function also contributed to the long optimisation
runs, without guaranteed success. The complete optimisation took in the order of days. This did not
guaranteed a feasible solution nor a global optimum. Hence, this method would not be useful to use
on a daily basis in real operations.

Therefore the indirect method of integration was developed. The agent-based model was replaced by
sets of abstractions, or meta-models. Two types of meta-models were developed: Regression meta-
models and Gaussian radial basis function meta-models. The models were created per phase (I, II,
III) , per security checkpoint queue (A, B, C, D) and per number of X-ray scanners active (2 or 3). The
models have been fitted on the same fitting data set. In phase I and III the only significant variable
was the lagged dependent variable. This indicates that the other variables had no significant effect on
the security queue time in phase I and phase III. Such an autoregressive model is known to have bad
forecasting performance. Hence, in these phases the meta-models are not able to capture the dynamic
behaviour of the governing agent-based model.

It was shown that both types of models under-performed (in terms of fitting error) in phase II with two
X-ray scanners active. The error was in general around two minutes, which is large knowing that the
queue time can be as low as a couple seconds in this phase and setting. However, the queue times in
this phase could also be around 40 minutes, in which case the fitting errors are satisfactory.

In addition, the generalisation errors were assessed by testing the models on a validation data set. In
most meta-models the generalisation errors were higher than the fitting errors. In addition, the gener-
alisation errors were leading in the selection process of the GRBF meta-models.

The meta-model sets were also tested in terms of forecasting performance. Mixed results were ob-
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served. In general, the regression meta-models were shown to be less able to predict drastic decreases
in queue time, leading in general to an over-forecasts in phase II. The GRBF meta-models also showed
mixed results. However, the drastic increases or decreases in queue time were better approached by
the GRBF meta-models. In some cases the GRBF models were able to approximate the shape of real
security checkpoint queue times quite accurately. However, the results found were not consistent and
therefore it cannot be said that the constructed meta-model sets are able to capture all the dynamic
relations present in the agent-based model.

The indirect integration, meta-models with the flight-to-gate assignment optimisation, could only be
achieved by assuming what was mentioned under Q2. The result was a computationally fast con-
verging algorithm compared to the simulation optimisation method. It was verified, by means of a
verification case study, that the indirect integrated methods resulted were optimising for equal spread
of queue times among security checkpoint queues. However, the optimisation algorithm suffered from
the objective function flatness, which made it difficult for the algorithm to locate the global optimum.

Q4: Is the integrated model credible, does it reflect the agent-based model and reality?

Especially the latter part of this question is difficult to answer as this requires data or expert knowledge
of the real underlying system. In addition to the fitting error, generalisation error and forecast perfor-
mance, the credibility of the meta-modelling based integration was tested using a validation case study.

As was explained, the optimum found by the simulation optimisation method was assumed to be the
actual optimal gate and resource assignment. Hence, assessing the difference between the optima
found, for the same departure schedule, by the meta-model based optimisation methods and the sim-
ulation optimisation method would give insight in the validity of the meta-model based optimisation
method.

What was observed was that all three methods gave different gate and resource assignments as op-
timal assignment. Hence, the meta-models are not a valid replacement of the agent-based model in
the simulation optimisation strategy. However, it was found that both meta-model based optimisations
(Regression and GRBF) were able to locate a close to optimal assignment to the posed flight-to-gate
and resource allocation problem.

Finally, the validity of the meta-models with respect to reality was difficult to assess. Global sensitiv-
ity analysis was conducted to determine the most important parameters per model. However, expert
knowledge is needed to assess whether these parameters are the most valuable per situation in real-
ity. In general, the predicted security checkpoint queue time (in phase II) went up when the number of
passengers arriving per time interval increased and went down when the number of passenger arriving
per time interval decreased. Furthermore, increasing the number of X-ray scanners (increasing the
service rate) resulted in lower experienced queue times. This is in line with common knowledge about
queue behaviour.

To conclude, it is possible to integrate an agent-based model with an flight-to-gate assignment by im-
posing the mentioned assumptions. The direct integration of an agent-based model into a optimisation
algorithm results in a very slow optimisation. However, the optimum found is the actual optimum.
Integrating the agent-based model by means of meta-models has been proven to be more difficult.
Especially the emergent behaviour in the agent-based model output data are difficult to approximate
by meta-models. The meta-models are not yet a valid replacement for the agent-based model in the
optimisation strategy. Once the agent-based model is fully calibrated, the meta-models are fully vali-
dated and have good performances, airport managers could use the integrated tool to guide passenger
flows over the airport such that congestions are avoided or minimised.

9.2. Recommendations for future research
In this section the recommendations for future research will be given. In general, the results found
and shown in this research are dependent on all assumptions made and variables considered. Hence,
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making different assumptions and/or changing the variables could lead to better or worse performing
models.

Before conducting any further research using the AATOM simulator, it is recommended to calibrate the
model. For example, it was found that the security checkpoint queue time behaviour was very sensitive
to opening a new X-ray scanner. However, this could be due to the fact that the agent-based model is
not yet fully calibrated with real airport data. Therefore, to be able to draw conclusions about whether
found optima with e.g. a simulation optimisation method are real, one could research the calibration of
the AATOM model. This can drastically change the relations studied in this research.

The major disadvantage of the simulation optimisation method, was the fact that it took days to find a
solution to a relatively simple problem. Hence, future research could aim to increase the computational
speed of the method by changing the agent-based model or by using a different solution algorithm.

Furthermore, the meta-model types that were used in current research are only two of the many possi-
bilities. Therefore, future research could focus on developing new meta-models or improve the meta-
models by using different parameters (including higher order terms). Meta-modelling of an agent-based
model could in itself be a very interesting research topic. In this way, different variables can be included,
which do not have to be related to the flight-to-gate assignment problem.

In the current study the path restriction was imposed, which defined the path corresponding to a gate.
Future research could try to decouple the flows from e.g. one specific check-in desk to the other spe-
cific security checkpoint. This way, passenger flows could even be directed in between processes, and
not only by assigning flights to gates.

Additional research could be done in the creation of the fitting data sets (design of experiments). In
the current study it is tried to evenly spread the design data points across the solution space. How-
ever, since the solution space is of high-dimensionality, it could be done in different ways. Therefore,
a similar study could be conducted by changing the design of experiments or to optimise the design of
experiments. This could improve the performance of the meta-models.

Another interesting study that could be conducted is to examine the real-time reassignment problems
that airport managers encounter. A coordinating agent could be put in place, that can reassign flights-
to-gates when congestions occur in the terminal or flights are delayed.

As discussed, the data split proposed in the current research could have been done differently. The
current study split the data into 24 distinct data sets (per phase, per SC and per number of X-ray scan-
ners). This resulted in meta-models with high fitting and generalisation errors. Future research could
split the data differently to improve the meta-models’ performances.

Finally, in the current research the variables (regression modelling) and spread (GRBF modelling) used
in the meta-models of the 3 X-ray scanner data sets were determined by the 2 X-ray scanner data sets.
Ideally, the fitting and model selection procedure would be done for each data set. Future research
could replicate the current but select variables and spread for every separate data set.
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A
Appendix

(a) Number of business passengers arriving per time interval as a
percentage of the total number of business passengers.

(b) Number of leisure passengers arriving per time interval as a
percentage of the total number of leisure passengers.

Figure A.1: Assumed passenger arrival distributions.
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Table A.1: Overview of parameters implemented in AATOM.

Parameters Standard value
Leisure Passenger
V (m/s) ; N(𝜇, 𝜎2) (1.19, 0.25)
P[Goodbye] 0.30
Goodbye time ; N(𝜇, 𝜎2) (600,200)
Luggage complexity ; N(𝜇, 𝜎2) (0.5, 0.15)
P[Carry-on] 0.50
P[Checked-in] 0.50
Business passenger
Business percentage 0.32
V (m/s) ; N(𝜇, 𝜎2) (1.38, 0.21)
P[Goodbye] 0.00
Luggage complexity ; N(𝜇, 𝜎2) (0.8, 0.07)
P[Carry-on] 0.50
P[Checked-in] 0.50
Transfer passenger
Transfer percentage 0.38
V (m/s) ; N(𝜇, 𝜎2) (1.19, 0.25)
Check-in facility
Service time ; N(𝜇, 𝜎2) (60,6)
Security checkpoint
Luggage check activity ; N(𝜇, 𝜎2) (60,6)
Xray check ; N(𝜇, 𝜎2) (60,6)
𝑡𝑙𝑢𝑔𝑔𝑎𝑔𝑒𝑑𝑟𝑜𝑝 ; N(𝜇, 𝜎2) (54.6,36.09)
𝑡𝑙𝑢𝑔𝑔𝑎𝑔𝑒𝑐𝑜𝑙𝑙𝑒𝑐𝑡 ; N(𝜇, 𝜎2) (71.5,54.95)
P[random check] 0
ETD check ; N(𝜇, 𝜎2) (34.8, 15.2)
Border control point
Service time ; N(𝜇, 𝜎2) (30,6)
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B
Appendix

Figure B.1: A scenario in outliers need to be removed from the data set.

Table B.1: Belsey colliniarity diagnostics’ variance decomposition. A condition index larger than 30 indicates colliniarity. Hence,
there is no colliniarity in the selected variables.

sValue condIdx 𝐼𝐴𝑇𝑖−1 𝐼𝐴𝑇𝑖−5 𝑆𝐶𝑄𝑇𝑖−1 𝐼𝐴𝑇𝑖−5 ⋅ 𝑆𝐶𝑄𝑇𝑖−1

1.581 1 0.0394 0.0333 0.0194 0.0198
1.0802 1.4637 0.0725 0.1346 0.0329 0.0313
0.4913 3.2182 0.879 0.8182 0.0003 0.0102
0.3035 5.2093 0.0092 0.0139 0.9474 0.9388
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Figure B.2: Standardised residuals of the regression in table 6.6, showing a white noise process.

Table B.2: Regression meta-model for 𝑆𝐶𝑄𝑇 𝐶,2,3
𝑖 , 𝑅2

𝑎𝑑𝑗 = 0.881 RMSE = 31.2s.

Estimate SE tStat pValue

(Intercept) -6.0525 8.0901 -0.74815 0.4551
𝐼𝐴𝑇𝑖−1 0.15765 0.32408 0.48645 0.62709
𝐼𝐴𝑇𝑖−3 0.9792 0.43343 2.2592 0.024766
𝐼𝐴𝑇𝑖−4 -0.64577 0.31671 -2.039 0.042541
𝐼𝐴𝑇𝑖−5 0.007052 0.081465 0.086567 0.93109
𝑆𝐶𝑄𝑇𝑖−1 1.2187 0.041911 29.079 8.97E-81
𝐼𝐴𝑇𝑖−1𝐼𝐴𝑇𝑖−3 -0.00492 0.006091 -0.80735 0.42026
𝐼𝐴𝑇𝑖−4𝑆𝐶𝑄𝑇𝑖−1 -0.0046 0.003509 -1.3124 0.19065
𝐼𝐴𝑇𝑖−5𝑆𝐶𝑄𝑇𝑖−1 -0.0187 0.004839 -3.8646 0.000143

Table B.3: Regression meta-model for𝑆𝐶𝑄𝑇 𝐴,2,2
𝑖 , 𝑅2

𝑎𝑑𝑗 = 0.957 RMSE = 106 s.

Estimate SE tStat pValue

(Intercept) 68.145 27.685 2.4614 0.014544
𝐼𝐴𝑇𝑖 -1.7354 0.93598 -1.8541 0.064956
𝐼𝐴𝑇𝑖−2 -0.23057 0.8384 -0.27501 0.78354
𝐼𝐴𝑇𝑖−3 0.73993 0.88554 0.83557 0.40423
𝐼𝐴𝑇𝑖−4 -1.5916 0.96234 -1.6539 0.099456
𝑆𝐶𝑄𝑇𝑖−1 1.1278 0.034529 32.664 2.69E-90
𝐼𝐴𝑇𝑖𝐼𝐴𝑇𝑖−4 0.022577 0.011359 1.9876 0.047994
𝐼𝐴𝑇𝑖𝑆𝐶𝑄𝑇𝑖−1 0.015737 0.003538 4.4485 1.32E-05
𝐼𝐴𝑇𝑖−2𝑆𝐶𝑄𝑇𝑖−1 -0.01685 0.003963 -4.2511 3.05E-05
𝐼𝐴𝑇𝑖−3𝑆𝐶𝑄𝑇𝑖−1 -0.01125 0.003585 -3.1387 0.001909
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Table B.4: Regression meta-model for𝑆𝐶𝑄𝑇 𝐴,2,3
𝑖 , 𝑅2

𝑎𝑑𝑗 = 0.956 RMSE = 8.65 s.

Estimate SE tStat pValue

(Intercept) 2.7004 2.1083 1.2808 0.20149
𝐼𝐴𝑇𝑖 -0.0584 0.066903 -0.87288 0.3836
𝐼𝐴𝑇𝑖−2 -0.00984 0.059501 -0.16545 0.86873
𝐼𝐴𝑇𝑖−3 -0.0019 0.064464 -0.02943 0.97655
𝐼𝐴𝑇𝑖−4 -0.02515 0.065917 -0.38151 0.70316
𝑆𝐶𝑄𝑇𝑖−1 1.7212 0.14925 11.532 9.00E-25
𝐼𝐴𝑇𝑖:𝐼𝐴𝑇𝑖−4 0.000718 0.000919 0.78075 0.43572
𝐼𝐴𝑇𝑖𝑆𝐶𝑄𝑇𝑖−1 -0.04773 0.009723 -4.9085 1.70E-06
𝐼𝐴𝑇𝑖−2𝑆𝐶𝑄𝑇𝑖−1 -0.05804 0.010625 -5.4627 1.17E-07
𝐼𝐴𝑇𝑖−3𝑆𝐶𝑄𝑇𝑖−1 0.046447 0.009396 4.9432 1.44E-06

Table B.5: Regression meta-model for 𝑆𝐶𝑄𝑇 𝐵,2,2
𝑖 , 𝑅2

𝑎𝑑𝑗 = 0.956 RMSE = 82.7 s.

Estimate SE tStat pValue

(Intercept) 50.347 16.492 3.0529 0.0025193
𝐼𝐴𝑇𝑖 -0.10217 0.29441 -0.34705 0.72886
𝐼𝐴𝑇𝑖−3 0.90619 0.46934 1.9308 0.054677
𝐼𝐴𝑇𝑖−4 -1.7874 0.62111 -2.8778 0.0043626
𝐼𝐴𝑇𝑖−5 -1.1128 0.49674 -2.2401 0.025992
𝑆𝐶𝑄𝑇𝑖−1 0.89667 0.02189 40.963 7.97E-111
𝐼𝐴𝑇𝑖𝑆𝐶𝑄𝑇𝑖−1 0.001595 0.000465 3.4315 0.00070576
𝐼𝐴𝑇𝑖−4𝐼𝐴𝑇𝑖−5 0.017767 0.005453 3.2584 0.0012812

Table B.6: Regression meta-model for 𝑆𝐶𝑄𝑇 𝐵,2,3
𝑖 , 𝑅2

𝑎𝑑𝑗 = 0.901 RMSE = 9.25 s.

Estimate SE tStat pValue

(Intercept) 2.3735 1.6536 1.4354 0.15247
𝐼𝐴𝑇𝑖 0.018255 0.03419 0.53394 0.59387
𝐼𝐴𝑇𝑖−3 -0.051 0.050887 -1.0023 0.31721
𝐼𝐴𝑇𝑖−4 -0.02146 0.069283 -0.3097 0.75706
𝐼𝐴𝑇𝑖−5 -0.05237 0.061484 -0.85174 0.3952
𝑆𝐶𝑄𝑇𝑖−1 0.86916 0.036301 23.943 9.10E-66
𝐼𝐴𝑇𝑖𝑆𝐶𝑄𝑇𝑖−1 0.001873 0.000588 3.1849 0.001638
𝐼𝐴𝑇𝑖−4𝐼𝐴𝑇𝑖−5 0.001127 0.000563 2.0014 0.046466
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Table B.7: Regression meta-model for 𝑆𝐶𝑄𝑇 𝐷,2,2
𝑖 , 𝑅2

𝑎𝑑𝑗 = 0.947 RMSE = 135 s.

Estimate SE tStat pValue

(Intercept) 142.67 46.505 3.0679 0.0024003
𝐼𝐴𝑇𝑖−1 -2.6675 1.732 -1.5402 0.12482
𝐼𝐴𝑇𝑖−2 -4.2563 2.1121 -2.0152 0.044983
𝐼𝐴𝑇𝑖−4 0.51608 1.3259 0.38923 0.69745
𝑆𝐶𝑄𝑇𝑖−1 1.0383 0.048779 21.287 1.84E-57
𝐼𝐴𝑇𝑖−1𝐼𝐴𝑇𝑖−2 0.060026 0.029376 2.0434 0.042092
𝐼𝐴𝑇𝑖−4𝑆𝐶𝑄𝑇𝑖−1 -0.00802 0.003281 -2.445 0.015194

Table B.8: Regression meta-model for 𝑆𝐶𝑄𝑇 𝐷,2,3
𝑖 , 𝑅2

𝑎𝑑𝑗 = 0.953 RMSE = 36.8 s.

Estimate SE tStat pValue

(Intercept) 6.5719 9.1188 0.72069 0.47179
𝐼𝐴𝑇𝑖−1 -0.33729 0.43936 -0.76769 0.44342
𝐼𝐴𝑇𝑖−2 0.018906 0.51337 0.036827 0.97065
𝐼𝐴𝑇𝑖−4 -0.00648 0.35213 -0.01839 0.98534
𝑆𝐶𝑄𝑇𝑖−1 1.0739 0.044111 24.345 4.04E-67
𝐼𝐴𝑇𝑖−1𝐼𝐴𝑇𝑖−2 0.003353 0.00715 0.46889 0.63957
𝐼𝐴𝑇𝑖−4𝑆𝐶𝑄𝑇𝑖−1 -0.00549 0.002829 -1.9406 0.05346

Table B.9: Regression meta-model for 𝑆𝐶𝑄𝑇 𝐴,1,2
𝑖 , 𝑅2

𝑎𝑑𝑗 = 0.99 RMSE = 9.39 s.

Estimate SE tStat pValue

(Intercept) 1.3802 0.95662 1.4428 0.15227
𝑆𝐶𝑄𝑇𝑖−1 1.3238 0.013543 97.75 1.69E-99

Table B.10: Regression meta-model for 𝑆𝐶𝑄𝑇 𝐴,1,3
𝑖 , 𝑅2

𝑎𝑑𝑗 = 0.828 RMSE = 2.9 s.

Estimate SE tStat pValue

(Intercept) 0.1246 0.29477 0.42271 0.67343
𝑆𝐶𝑄𝑇𝑖−1 2.4897 0.11402 21.834 2.00E-39

Table B.11: Regression meta-model for 𝑆𝐶𝑄𝑇 𝐵,1,2
𝑖 , 𝑅2

𝑎𝑑𝑗 = 0.921 RMSE = 20.9 s.

Estimate SE tStat pValue

(Intercept) 2.3081 2.1605 1.0683 0.288
𝑆𝐶𝑄𝑇𝑖−1 1.2665 0.037312 33.944 5.50E-56
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Table B.12: Regression meta-model for 𝑆𝐶𝑄𝑇 𝐵,1,3
𝑖 , 𝑅2

𝑎𝑑𝑗 = 0.122 RMSE = 3.86 s.

Estimate SE tStat pValue

(Intercept) 0.32419 0.39653 0.81756 0.41559
𝑆𝐶𝑄𝑇𝑖−1 0.82007 0.21392 3.8335 0.000223

Table B.13: Regression meta-model for 𝑆𝐶𝑄𝑇 𝐶,1,2
𝑖 , 𝑅2

𝑎𝑑𝑗 = 0.981 RMSE = 41.1 s.

Estimate SE tStat pValue

(Intercept) 7.746 4.339 1.7852 0.077323
𝑆𝐶𝑄𝑇𝑖−1 1.1598 0.01631 71.111 3.81E-86

Table B.14: Regression meta-model for 𝑆𝐶𝑄𝑇 𝐶,1,3
𝑖 , 𝑅2

𝑎𝑑𝑗 = 0.965 RMSE = 14 s.

Estimate SE tStat pValue

(Intercept) 0.37526 1.4533 0.25822 0.79678
𝑆𝐶𝑄𝑇𝑖−1 1.4064 0.026916 52.25 2.29E-73

Table B.15: Regression meta-model for 𝑆𝐶𝑄𝑇 𝐷,1,2
𝑖 , 𝑅2

𝑎𝑑𝑗 = 0.979 RMSE = 24.2 s.

Estimate SE tStat pValue

(Intercept) 4.5202 2.5635 1.7633 0.080975
𝑆𝐶𝑄𝑇𝑖−1 1.322 0.019543 67.647 4.62E-84

Table B.16: Regression meta-model for 𝑆𝐶𝑄𝑇 𝐷,1,3
𝑖 , 𝑅2

𝑎𝑑𝑗 = 0.744 RMSE = 9.22 s.

Estimate SE tStat pValue

(Intercept) 0.55608 0.99251 0.56027 0.57657
𝑆𝐶𝑄𝑇𝑖−1 1.2611 0.074305 16.972 6.19E-31

Table B.17: Regression meta-model for 𝑆𝐶𝑄𝑇 𝐴,3,2
𝑖 , 𝑅2

𝑎𝑑𝑗 = 0.956 RMSE = 4.75 s.

Estimate SE tStat pValue

(Intercept) -0.5956 0.48339 -1.2321 0.22085
𝑆𝐶𝑄𝑇𝑖−1 0.56966 0.01233 46.201 2.48E-68

Table B.18: Regression meta-model for 𝑆𝐶𝑄𝑇 𝐴,3,3
𝑖 .

Estimate SE tStat pValue

(Intercept) 0 0 NaN NaN
𝑆𝐶𝑄𝑇𝑖−1 0 0 NaN NaN
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Table B.19: Regression meta-model for 𝑆𝐶𝑄𝑇 𝐵,3,2
𝑖 , 𝑅2

𝑎𝑑𝑗 = 0.970 RMSE = 4.53 s.

Estimate SE tStat pValue

(Intercept) -0.32839 0.46127 -0.71192 0.4782
𝑆𝐶𝑄𝑇𝑖−1 0.65365 0.011559 56.549 1.26E-76

Table B.20: Regression meta-model for 𝑆𝐶𝑄𝑇 𝐵,3,3
𝑖 , 𝑅2

𝑎𝑑𝑗 = 0.200 RMSE = 0.02 s.

Estimate SE tStat pValue

(Intercept) 0.002261 0.00225 1.0049 0.3174
𝑆𝐶𝑄𝑇𝑖−1 -0.0114 0.080985 -0.14076 0.88835

Table B.21: Regression meta-model for 𝑆𝐶𝑄𝑇 𝐶,3,2
𝑖 , 𝑅2

𝑎𝑑𝑗 = 0.907 RMSE = 53.8 s.

Estimate SE tStat pValue

(Intercept) -2.4862 5.9517 -0.41773 0.67706
𝑆𝐶𝑄𝑇𝑖−1 0.8489 0.027287 31.109 1.38E-52

Table B.22: Regression meta-model for 𝑆𝐶𝑄𝑇 𝐶,3,3
𝑖 , 𝑅2

𝑎𝑑𝑗 = 0.07 RMSE = 0.572 s.

Estimate SE tStat pValue

(Intercept) 0.062937 0.05799 1.0853 0.28044
𝑆𝐶𝑄𝑇𝑖−1 0.28143 0.096759 2.9086 0.004492

Table B.23: Regression meta-model for 𝑆𝐶𝑄𝑇 𝐷,3,2
𝑖 , 𝑅2

𝑎𝑑𝑗 = 0.842 RMSE = 115s.

Estimate SE tStat pValue

(Intercept) -3.8346 13.014 -0.29466 0.76888
𝑆𝐶𝑄𝑇𝑖−1 0.86419 0.037552 23.013 2.66E-41

Table B.24: Regression meta-model for 𝑆𝐶𝑄𝑇 𝐷,3,3
𝑖 , 𝑅2

𝑎𝑑𝑗 = 0.02 RMSE = 12.9 s.

Estimate SE tStat pValue

(Intercept) 2.0782 1.3126 1.5832 0.11659
𝑆𝐶𝑄𝑇𝑖−1 0.074875 0.070555 1.0612 0.29119
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Table B.25: Regression performance on validation set compared to the fitted residuals.

𝑅𝑀𝑆𝐸𝑓𝑖𝑡𝑡𝑒𝑑 𝑅𝑀𝑆𝐸𝑔𝑒𝑛

𝑆𝐶𝑄𝑇 𝐴,1,2 9.39 13.95
𝑆𝐶𝑄𝑇 𝐴,2,2 106.00 155.53
𝑆𝐶𝑄𝑇 𝐴,3,2 4.75 0.81
𝑆𝐶𝑄𝑇 𝐴,1,3 2.90 2.15
𝑆𝐶𝑄𝑇 𝐴,2,3 8.65 9.62
𝑆𝐶𝑄𝑇 𝐴,3,3 0.00 0.00
𝑆𝐶𝑄𝑇 𝐵,1,2 20.90 8.42
𝑆𝐶𝑄𝑇 𝐵,2,2 82.70 92.32
𝑆𝐶𝑄𝑇 𝐵,3,2 4.53 0.33
𝑆𝐶𝑄𝑇 𝐵,1,3 3.86 1.44
𝑆𝐶𝑄𝑇 𝐵,2,3 9.25 35.12
𝑆𝐶𝑄𝑇 𝐵,3,3 0.02 0.00
𝑆𝐶𝑄𝑇 𝐶,1,2 41.10 42.15
𝑆𝐶𝑄𝑇 𝐶,2,2 171.00 272.94
𝑆𝐶𝑄𝑇 𝐶,3,2 53.80 2.49
𝑆𝐶𝑄𝑇 𝐶,1,3 14.00 13.79
𝑆𝐶𝑄𝑇 𝐶,2,3 31.20 31.73
𝑆𝐶𝑄𝑇 𝐶,3,3 0.57 0.06
𝑆𝐶𝑄𝑇 𝐷,1,2 24.20 17.80
𝑆𝐶𝑄𝑇 𝐷,2,2 135.00 120.04
𝑆𝐶𝑄𝑇 𝐷,3,2 115.00 77.22
𝑆𝐶𝑄𝑇 𝐷,1,3 9.22 10.88
𝑆𝐶𝑄𝑇 𝐷,2,3 36.80 42.12
𝑆𝐶𝑄𝑇 𝐷,3,3 12.90 37.73

Figure B.3: Security checkpoint C queue time observed and regression model forecast made for a schedule (RMSE = 580
s).(Blue) The realised queue times per time interval. (Red) The forecast of queue times per time interval.

117



Figure B.4: Forecast queue time Security checkpoint A and B using 2 and 3 X-ray scanners using regression models.
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C
Appendix

Figure C.1: Forecast queue time Security checkpoint A and B using 2 and 3 X-ray scanners using GRBF models.

Table C.1: Fitting and generalisation errors for potential GRBF models for 𝑆𝐶𝑄𝑇 𝐷,2,2.

(𝜎, 𝑚) pairs RMSE [s]
RBF no 𝜎 𝑚 Fitting Generalisation
I 0.1 242 1.35 662.13
II 0.3 150 58.74 255.19
III 0.5 85 108.27 162.95
IV 0.7 52 118.02 144.82
V 0.9 36 126.38 109.79
VI 1.1 27 122.68 123.24
VII 1.3 21 124.31 103.14
VIII 1.5 16 128.2856 109.5064
IX 1.7 13 127.8327 112.1566
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Figure C.2: Security checkpoint C (2 X-ray scanners) queue time observed and GRBF model forecast made for a schedule
(RMSE = 779 s).(Blue) The realised queue times per time interval. (Red) The forecast of queue times per time interval.
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D
Appendix

Table D.1: Differential evolution algorithm settings for the validation case study.

Parameter Value Unit
Population size 100 Ind.
Stopping condition tolerance 1.00E-05 [-]
Total generations 5000 It.
Penalty minimum 60 [-]
Penalty maximum 110 [-]
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