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Ẋ , Ẏ Velocity coordinates in inertial frame m/s
x State -

Table 2: List of Roman symbols [2]. In case symbols have multiple units, the latter are not indicated.

Symbol Description Unit
α Deflection angle deg
δ Infinitesimal difference -
∆ Difference -
ε Small quantity -
θ Phase angle deg
θC Lunar collision angle deg
θE Lunar ejection angle deg
θS Sun’s phase angle deg
φ Flow -
φ j ,k ( j , k)th term of the STM -
Φ State Transition Matrix -
ψ Periodic solution -

Table 3: List of Greek symbols. In case symbols have multiple units, the latter are not indicated.

Symbol Description Value Unit
aS Scaled Sun–(Earth–Moon) distance 388.81114 -
DU Unit of distance 3.844×108 m
G Universal gravitational constant 6.67408×10−11 m3/kg s2

ME ar th Mass of the Earth 5.97237×1024 kg
MMoon Mass of the Moon 7.34603×1022 kg
MSun Mass of the Sun 1.98848×1030 kg
µE M Earth–Moon mass parameter 0.01215 -
µS Solar mass parameter 3.289001×105 -
RMoon Mean lunar radius 1737.4 km
TU Unit of time 4.3425646 days
V U Unit of velocity 1.02454×103 m/s
ωS Scaled solar angular velocity −9.25196×10−1 -

Table 4: List of approximated constants. Taken from [1, 18].

xiv



List of Tables xv

Symbol Description
BR4BP Bi-circular Restricted Four Body Problem
C R3BP Circular Restricted Three Body Problem
DEST I N Y + Demonstration and Experiment of Space Technology for INterplanetary voYage +
EQUU LEU S EQUilibriUm Lunar-Earth point 6U Spacecraft
E M Earth–Moon
G2E Ganymede to Europa
HLO Horizontal Lyapunov Orbit
I ES Ion Engine System
I S AS Institute of Space and Astronautical Science
J AX A Japanese Aerospace Exploration Agency
JE Jupiter–Europa
JG Jupiter–Ganymede
LSB Lunar Swing-By
M2M Moon-to-Moon
N AS A National Aeronautics and Space Administration
SLS Space Launch System
SOI Sphere Of Influence
ST M State Transition Matrix
T OF Time Of Flight
Z V C Zero Velocity Curve

Table 5: List of Acronyms.

Symbol Description
I Identity matrix
J Projection of a J (x) = C̄
G Region
N Set of natural numbers
∇ Nabla
O Landau’s big O
R Set of real numbers

Table 6: List of other symbols. In case symbols have multiple units, the latter are not indicated.





Abstract

Many interplanetary missions massively leverage the lunar gravitational pull in the so-called low-energy
regime to converge to their aim, saving consistent amount of fuel. Among these, two future Japanese space-
craft are expected to repeatedly encounter the Moon along their trajectories to either facilitate the escape
from the Earth–Moon system or opportunely target a specific region in its neighbourhood. Although never
actively employed for preliminary trajectory design, lunar collision orbits have shown a rich dynamical struc-
ture and an applicability for both medium- and low-energy regimes. These characteristics, together with their
intrinsic nature of being close to trajectories experiencing lunar fly-by, have encouraged this research.
In this work, lunar collision orbits are employed to delineate a method for obtaining ballistic transfers be-
tween two successive lunar encounters, briefly addressed as Moon-to-Moon. This study is first carried out
with the assumptions of the autonomous Circular Restricted Three-Body Problem, subsequently extended
to the nonautonomous Bi-circular Restricted Four-Body Problem, including the solar gravitational influence.
Poincaré cuts are extensively used as a dimensionality reductant for lunar collision orbits: this allows to ascer-
tain their similar behaviour with trajectories flybying the Moon, whose characteristics are partly foreseen by
determining the associated intersection with the same cut. A patching is performed at the cut to obtain both
single and multiple ballistic Moon-to-Moon transfers. The strict bond of lunar collision orbits with the invari-
ant manifolds of simple periodic orbits about Lagrangian points is confirmed and exploited to design ballistic
itineraries connecting highly elliptic orbits about the Earth to horizontal Lyapunov orbits of the Earth–Moon
system, via a single Moon-to-Moon transfer. With the usage of the lunar collision orbits and the Poincaré cut,
a simple optimization technique is implemented to retrieve a properly defined Moon-to-Moon transfer from
a trajectory missing a second fly-by with the Moon.
Including the presence of the Sun, a similar method for obtaining single and multiple Moon-to-Moon trans-
fers is developed. A classification of lunar double-collision transfers is then performed within the same
framework, highlighting their similarity with other studies in past literature, eventually leading to the con-
struction of a database of Moon-to-Moon transfers. The latter, conceived as an improvement with respect
to the former version by adding the lunar gravitational influence, shows its applicability in real preliminary
trajectory design.

xvii





1
Introduction

This chapter introduces to the research performed by the author in his six-month period at ISAS, JAXA, in
Sagamihara, Japan.
The structure is divided in four parts. In Section 1.1 a brief description of Japanese past and future space
missions is outlined: two of them are taken as examples within this report. A short literature review concern-
ing the main aspects treated in this work is addressed in Section 1.2, followed by the definition of the main
research questions and objectives in Section 1.3. Concluding, the structure of the whole report is delineated
in Section 1.4.

1.1. Mission heritage
In this section, examples from past and future space missions are introduced: in particular, higher attention
is given to the trajectory design part for those missions exploiting the low-energy domain, in agreement with
the framework of this report. In Section 1.1.1, JAXA’s Hiten mission is presented, followed by other two future
Japanese missions, namely EQUULEUS and DESTINY+, reported in Sections 1.1.2 and 1.1.3, respectively. The
author is particularly attached to the latter two since he has been actively involved in their trajectory design
teams during his interning. As a further reason, this whole work has been conceived to help in the analysis of
the preliminary trajectory for both missions.

1.1.1. Hiten
Hiten (also known as MUSES-A) was the first space experimental satellite of the Institute of Space and Astro-
nautical Science (ISAS), now within the Japanese Aerospace Exploration Agency (JAXA). The demonstration
of a double lunar swing-by (Moon-to-Moon) was the primary aim among the mission objectives [30, 31].
On the 24th of January 1990, Hiten was launched on a highly elliptical orbit around the Earth; however, its first
apogee was 200,000 km below the nominal 470,000 km, therefore, after inquiring a database of failure-case
trajectories, wisely prepared before the launch, the engineers allowed the spacecraft to perform a first cor-
rective maneuver. In its whole trajectory, Hiten actively employed lunar resonances and solar perturbation
(especially during the last part of the mission) to achieve a total of ten lunar fly-bys (with several correction
maneuvers) and two Earth aerobreaking maneuvers. After the final one, about half of the initial fuel was still
unused, therefore the mission was extended: first, a looping around Earth–Moon fourth and fifth Lagrange
points was executed, followed by a lunar insertion maneuver, which ended up with a crash on the Moon’s sur-
face. Hiten represents the pioneer among the past space missions which effectively employed a low-energy
trajectory, in order to recover from the missed ejection conditions.

1.1.2. EQUULEUS
JAXA’s EQUULEUS (EQUilibriUm Lunar-Earth point 6U Spacecraft) is one of the selected CubeSat missions
which will be piggybacked by the Space Launch System (SLS) during its first flight for NASA’s Exploration-
Mission 1, recently re-scheduled for 2019. Developed as a joint mission between the University of Tokyo and
ISAS/JAXA, the trajectory design part is entirely performed by the latter. The aim is to lead the spacecraft
towards a quasi-halo orbit of the second Earth–Moon Lagrange point, demonstrating the controllability of a
CubeSat with a low-thrust engine under luni-solar perturbations. Up to the current baseline [22], the avail-
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able ∆v budget is 80 m/s, employed for correction and clean-up maneuvers first and station-keeping activity
later.
The constraints on the initial state for the trajectory design are dictated by the SLS, which ejects the spacecraft
with a considerable energy: due to its final aim, EQUULEUS trajectory is designed to reduce its energy. After
the first close lunar fly-by, Sun’s perturbation will be heavily exploited in order to lower down the energy of
the spacecraft. The overall trajectory consists of a multiple step approach. A first grid search is performed, in-
tersecting forward and backward arcs at their apogees: the former is obtained by propagating from the initial
condition at ejection while the latter from the quasi-halo orbit. Subsequently, these trajectories are optimized
to fill the state-gap at the closest patching points, by providing impulsive∆vs’ along the arcs. Concluding, the
optimal trajectories are again optimized to substitute the impulses with finite-burn arcs.
The trajectory for EQUULEUS is both a challenging and interesting task: the initial condition at ejection has
changed already numerous times and the available fuel is rather low.

1.1.3. DESTINY+
DESTINY+ (Demonstration and Experiment of Space Technology for INterplanetary voYage +) is an ISAS/JAXA
deep-space small-size science mission [35] expected to be launched in 2020 onboard the Japanese Epsilon
rocket: the first objective of DESTINY+ is to demonstrate the usage of Japanese Ion Engine System (IES) for
an interplanetary spacecraft leveraging lunar gravitational pull, which will eventually aim at an encounter
with Asteroid (3200) Phaethon.
After the injection on an extended elliptical orbit, the spacecraft will use its IES to allow for a first lunar en-
counter, while exploiting lunar resonances at the very last phase of its raising spiralling. A sequence of lunar
encounters, defined as Moon-to-Moon (M2M) transfers, will increase the energy of the spacecraft for its es-
cape from the Earth–Moon region; in this intermediate phase, solar gravitational influence will be properly
used to obtain a favourable final condition, before pointing towards Phaethon [4].
Hence, trajectory design has been preliminarily divided into three phases, each one corresponding to a spe-
cific arc: for what concerns the mid-phase (escaping from the Earth–Moon region), a toolbox using a database
of M2M transfers [36] has been designed to obtain feasible trajectories which will target a specific energetic
final condition, producing a multitude of initial conditions. Being a preliminary assessment, this toolbox will
be further refined to account for a specific final condition, to be jointed with the initial condition of the final
phase; a similar scenario happens for the final condition of the early phase with the initial condition of the
intermediate one. A possible mission extension to visit other small bodies is under study [4].
Similarly to EQUULEUS, this mission is rather challenging. Indeed, as indicated above, the study of the pre-
liminary trajectory is divided in three phases: finding the optimum for the whole trajectory, obtained by
patching together the different arcs, is not a straightforward task. For this reason subsequent refinements of
the whole trajectory will be needed.

1.2. State of the Art
This work is motivated by contemporary needs within the space industry and triggered by new discoveries
in the realm of space trajectory design. Being a really wide research area, the main topic has been narrowed
down to a study of trajectories starting and ending in proximity of the Moon. These kind of transfers are
briefly referred throughout this work as Moon-to-Moon (M2M).
The spark igniting the idea behind this research comes from an industrial need: in a real trajectory design sce-
nario, where both lunar and solar gravitational influences are employed, the availability of a database of M2M
transfers becomes a necessity for a fast and reliable preliminary design. This idea has been first pointed out by
Lantoine and McElrath [15] who discussed the applicability of a database of ballistic M2M transfers (namely
without any mid-course maneuver) within the low-energy framework of the Sun–Earth planar Circular Re-
stricted Three Body Problem (CR3BP). Although this survey represents a good starting point, demonstrating
a direct applicability of the developed database in two different space mission trajectories, it employs a rather
simplified dynamics, since it excludes the lunar gravitational pull from the model; this leads to a low fidelity
of the transfers with respect to the real case, especially when the spacecraft approaches the Moon with a low
level of relative velocity. Two limitations on spacecraft motion are evident: neither a multi-revolution case
around the Earth between two consecutive encounters with the Moon nor an out-of-plane component of the
trajectory is allowed.
In their recent work, Yarnoz et al. [36] managed to solve the former issue, while ongoing projects are carried
out to allow for a 3D motion of the spacecraft in the construction of the database. Each of the previously
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referenced work highlights a great computational effort in the definition of the database: this is due to the
overwhelming amount of propagated trajectories.
A possible choice for a model which is dynamically closer to the full ephemeris one with respect to the CR3BP,
therefore more correct, consists in taking in consideration the Sun, the Moon and the Earth together as grav-
itational bodies. In this case the researcher may bypass part of the dynamical troubles given by the increased
number of bodies by constraining their relative motion: a possible representation is suggested by Simó et al.
[27] and Topputo [29], where the planar Bi-circular Restricted Four Body Problem (BR4BP) is employed as a
dynamical model for the computation of spacecraft trajectory. The latter adheres more precisely to the real
case when compared to the similar result of the CR3BP: this makes it a valid alternative to overcome with
the poor precision for relative low-velocity approach with the Moon, without extensively weighing on the
propagation scheme. However the BR4BP dynamical model presents an important drawback: indeed, due
to the constrained relative motion, Sun, Earth and Moon do not perfectly respect Newton’s dynamics, which
translates in a lack of coherency. Nevertheless this flaw is minimal and the intrinsic approximation within
the model has shown an improvement in precision of the resulting trajectories when compared to the CR3BP
case.
A recent discovery by Oshima et al. [21] on lunar collision orbits (namely orbits hitting the Moon) opens to
new possibilities in the so-called medium-energy trajectory design regime. In their work, Oshima et al., by
employing Levi Civita regularization scheme to the equations of motion (Lega et al. [16]), discovered that this
type of orbits shapes a rich phase-space structure which perfectly separates two different kinds of motion for
orbits approaching the Moon, namely prograde and retrograde. A similar separatrix behaviour, although as-
sociated to a different nature and pertaining a different dynamical characteristic, has already been observed
in the invariant manifolds of the periodic orbits associated with the collinear Lagrangian points in the CR3BP,
but at a low-energy level, as demonstrated by Conley [7], whose result were later used in different works for
the computation of low-energy trajectories (Gómez et al. [8], Koon et al. [14], Parker and Anderson [23]). The
usage of the invariant manifolds emanating from the periodic orbits of the Lagrange points is suggested for
low-energy regime only, since at medium- and high-energy they lose their well-behaving nature, due to the
close passage with the secondary body. Conversely, this problem is outflanked by the collision orbits which
show a good behaviour on a wider and higher level of energies.
Even though representing a niche within the space trajectory design, the low- and the recently defined medium-
energy regimes allow new and cheaper solutions for the design of space trajectories, although generally de-
manding a larger time to accomplish the transfer. By considering a higher number of main gravitational
bodies the problem increases in complexity, although, depending on the case, this becomes necessary for
obtaining a better preliminary trajectory. Eventually, collision orbits have shown an interesting structure,
which needs to be further studied to gain insight in their underlying dynamics: accounting to the best of
author’s knowledge, they have never been actively employed for space trajectory design.

1.3. Research questions & objectives
In this section both the questions which gave birth and drove this research, together with the final objectives,
are highlighted. The former are fully addressed by the establishment of two main research questions and
relative sub-questions, while the latter are structured in two main research objectives and relative sub-goals,
reported below.

Main research questions:

1 Which useful information can lunar collision orbits provide to obtain Moon-to-Moon transfers within
the framework of the Circular Restricted Three Body Problem and the Bi-circular Restricted Four Body
Problem?

2 In the context of a preliminary trajectory design, to what extent can a database of Moon-to-Moon trans-
fers benefit from the introduction of the gravitational pull of the Moon within the dynamical model?

Sub-questions:

1.1 What are the benefits of propagating an orbit with Levi Civita regularization scheme, when compared to
Cartesian one?
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1.2 To what extent can a Poincaré cut be employed for gaining insight within the dynamics of lunar collision
orbits?

1.3 Which are the feasible strategies to opportunely correct a missing Moon-to-Moon transfer by means of
impulsive maneuvers?

2.1 In which case should the Bi-circular Restricted Four Body Problem dynamical model be preferred to the
simpler Circular Restricted Three Body Problem one?

2.2 Which key-characteristics of lunar collision orbits can be employed to design a database of Moon-to-
Moon transfers?

Main research objectives:

1 Furnish a new solution to design transfers between two successive lunar encounters, by employing lunar
collision orbits and Poincaré cuts within the framework of the Circular Restricted Three Body Problem
and Bi-circular Restricted Four Body Problem.

2 Develop a new and more precise database of Moon-to-Moon transfers, by employing lunar double-collision
orbits within the framework of the Bi-circular Restricted Four Body Problem.

Sub-goals:

1.1 Properly define what a Moon-to-Moon transfer is, from both a qualitative and quantitative perspective.

1.2 Understand the advantages and disadvantages of propagating trajectories with Levi Civita regularized
scheme, when compared to the common Cartesian one.

1.3 Leverage Poincaré cut to obtain information concerning lunar collision orbits.

1.4 Employ the main characteristics of lunar collision orbits to obtain Moon-to-Moon transfers.

1.5 Understand the benefits of using different optimization strategies for correcting a Moon-to-Moon transfer
by means of impulsive maneuvers.

2.1 Delineate which variables of the double-collision transfers need to be stored for a light and easy-to-
inquiry database.

2.2 Define a fast and reliable algorithm for database construction.

2.3 Investigate both advantages and drawbacks of the new approach when compared to the former version.

1.4. Report content and structure
The structure of this report is divided in five chapters, concerned with the different aspects of the performed
research. Besides this introductive part, the theoretical background is outlined in Chapter 2, where the build-
ing blocks of this report are briefly discussed. Successively, the three main chapters of this work are reported:
in Chapter 3 Moon-to-Moon transfers are presented within the dynamical model of the Circular Restricted
Three-Body Problem. This chapter provides the answer to the first main question. Chapter 4 extends the
concepts of the previous one, by including more complex themes of Moon-to-Moon transfer. The dynamical
model is subsequently extended to encompass the solar influence in Chapter 5: here, with the Bi-circular
Restricted Four-Body Problem model, the first main question receives its second answer, while the imple-
mentation of the new database replies to the second main research question. Concluding, in Chapter 6 a
final summary of the achieved results and a critical overview of the whole work are presented, together with
the proposal of an interesting new research topic. Supplementary material is gathered in Appendices A and B,
reporting the derivation of the most relevant equations here employed and code validation, respectively.



2
Theoretical background

In this chapter, the main aspects of the theory constituting the backbone of this report are discussed. Dealing
with low-energy trajectory design, in order to understand both the scientific outcome and the procedure
followed throughout this work, this chapter is divided in three parts: Section 2.1 highlights the key-features of
dynamical system theory, a branch of Mathematics which is severely employed in the treatment of nonlinear
dynamical problems, while in Section 2.2 a general view of the dynamical model is reported, in order to
properly grasp the physics behind spacecraft motion. Concluding, Section 2.3 outlines the basics concerning
space trajectory optimization theory employed in this report.

2.1. Dynamical system theory
Dynamical system theory is a field of Mathematics focusing on nonlinear differential (or difference) equa-
tions. Specific tools of the latter are highlighted in this section, for a correct reading of this work. First, an
introduction to the nonlinear systems is given in Section 2.1.1, followed by a general overview of autonomous
and nonautonomous systems in Section 2.1.2. The theory behind Poincaré maps is presented in Section 2.1.3
while a concluding introduction to the State Transition Matrix and the Differential Corrector scheme is re-
ported in Section 2.1.4. For a more in-depth analysis of the topic, refer to Verhulst [33].

2.1.1. Introduction to nonlinear systems
A general nth-order differential equation can always be transformed in a nth-dimensional system of first-
order differential equations. In this work, the mathematical statement of the general problem is

ẋ = f (x , t ) , x(t0) = x0 (2.1)

defined as initial value problem. x ∈ D ⊂ Rn represents the solution, t ∈ I ⊂ R refers to the independent
variable (usually time), while f : A −→ Rn , with A ⊂ Rn+1, is a vector function, shaping how the solution
evolves in time. The nonlinearity of the system is provided by the nonlinear function f (x , t ). If the system
obeys the existence and uniqueness hypotheses, Eq. (2.1) has one and only one solution x(t )1, sometimes
referred to as flow φ(x0, t0; t ). This property is a necessary first step to treat every problem here discussed.
Three important definitions, widely used throughout this work are here stated:

Definition Phase space:
Given the system in Eq. (2.1), phase space is considered as the subset D where the state is defined: x ∈ D ⊂Rn .

Definition Periodic solution:
ψ(t ) is defined as a periodic solution if it satisfies Eq. (2.1) and if ∃T ∈R : ψ(t +T ) =ψ(t ), ∀t ∈ I ⊂R

Definition Invariant manifold:
An invariant manifold is defined as an invariant set2 of points, shaping a continuous and smooth object,

1According to [33] one should demand how f (x , t ) is continuous in the definition set of x and t , namely A = [t0−ā, t0+ā]×{x : ‖x−x0‖ ≤
d̄} and it is Lipschitz-continuous in x . Then the theorem follows for |t − t0| ≤ mi n

(
ā, d̄

sup‖ f ‖
)
, with ā, d̄ positive constants.

2the set S ⊂Rn is invariant under the flow x(t ) =φt (x0) if ∀x0 ∈ S, x(t ) ∈ S

5



6 2. Theoretical background

namely a differentiable manifold. Alternatively, an invariant manifold is a manifold which is invariant under
the effect of the dynamical flow.

2.1.2. Autonomous vs nonautonomous
A system of differential equations, like the one in Eq. (2.1), is defined as autonomous if the nonlinear function
f does not explicitly depend on time, namely the mathematical statement of the problem is [33]

ẋ = f (x) , x(t0) = x0 (2.2)

consequently, Eq. (2.1) refers to the general nonautonomous system. Now, other important definitions are
given:

Definition Critical point:
For the general autonomous system outlined in Eq. (2.2), a critical (or equilibrium) point is defined as x∗ ∈
Rn : f (x∗) = 0. If, in a neighbourhood of x∗, limt→±∞ x(t ) = x∗, the critical point is referred to as positive
(t+→∞) or negative (t →−∞) attractor. Stability characteristics of the critical point can be easily inferred if
the system is linear; if the latter does not hold, drawing any conclusion about the stable nature of this point
may become a more difficult task. Generally, critical points are studied for autonomous systems only, since
for nonautonomous ones they are hard to obtain.

Definition First integral:
As a straightforward definition, once Eq. (2.2) is given, a first integral of the system is defined as H : Rn → R

for x ∈ D ⊂Rn such that ∇x H · ẋ = 0, where (·) represents the scalar product. For this reason, any first integral
can be seen as a constant of motion for autonomous systems.

Three more aspects must be here reported. First of all, an important property holds for autonomous systems,
referred to as translation property by Verhulst [33]: it states how, if a solutionφ(t−t0) of the system of Eq. (2.2)
exists, then φ(t − t1) is a solution of the same problem, with initial condition x(t1) = x0.
Another important assertion for autonomous systems is that periodic solutions are closed orbits in the phase
space, and vice versa; this straightforwardly follows from the existence and uniqueness theorem.
A theorem holds for the existence of invariant manifolds of a critical point: it states how, under certain con-
ditions related to the structure of the problem in Eq. (2.1), the stable and unstable invariant manifolds of the
nonlinear problem, referred to as Ws , Wu respectively, are tangent to, equidimensional to and with the same
order of smoothness of the stable and unstable eigenspaces of their linearized counterparts3.

2.1.3. Poincaré map
Named after the nineteenth century mathematician H. Poincaré, they are defined as:

Definition Poincaré map:
It is a mapping of a point x̄ ∈ V ⊂ Rn−1 to the same subspace V , usually referred to as hyperplane or more
informally, cut. Therefore P : V → V is the Poincaré map; however, the starting point and the projected one
can occupy the same location within the phase space.

By mapping, one literally exits from V ; the out-of-V link is performed by the unique flow φ(t ), solution of
Eq. (2.1), passing through x̄ . Although the map for almost every case links two different points of V , the inter-
section order, namely the number of consecutive intersections the map had with V , is a key-element of this
report. To cite an example, P (x̄) is the first order mapping of x̄ , while P (P (x̄)) = P 2(x̄) represents its second
one and so forth.
The Poincaré map requires the subset V to be everywhere transversal to the flow, namely Øx∗ ∈V : f (x∗) = 0
and V is nowhere tangential to the flow itself.
An intrinsic feature of this particular mapping, which is evident from its definition, is that it lowers the dimen-
sionality of the analysed space: indeed, the flow is usually studied in V in order to gain insight on its general
characteristics, rather than looking at its behaviour in the whole phase space. For this reason, in autonomous

3According to [33], Eq. (2.1) can be written as ẋ = Ax + g (x), with Ax following from the linearization of the nonlinear equation, while
g (x) expressing a sort of nonlinear rest. If A (n ×n matrix) has n eigenvalues with non-zero real part and g (x) is k− times continuous
in a neighbourhood of x∗ (critical point), the theorem holds true.
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planar problems like the one discussed in this report where x ∈ R4 and a first integral H = H(x) exists, the
whole state of every point defined by the flow in the bidimensional projection of V can be retrieved. It is
important to notice how periodic orbits are mapped as single points on V .

2.1.4. State Transition Matrix and Differential Correction
The State Transition Matrix (STM) Φ (t0, t1) linearly approximates how a slight deviation δx0 from the state
x0 ∈Rn at t = t0 is mapped as a deviation δx1 from the unperturbed solution x∗(t ) at t = t1. Hence, the linear
relation between the two deviations is expressed by

δx1 =Φ (t0, t1)δx0 (2.3)

From the generic Eq. (2.1), it follows how the dynamics of the STM is defined by

dΦ (t0, t1)

dt
= A (t )Φ (t0, t1) , Φ (t0, t0) =In×n (2.4)

where A (t ) = Dx f (x , t ) |x=x∗(t ) (namely the Jacobian of f (x , t ) evaluated along x∗(t )) while In×n is the n ×n
identity matrix. From Eq. (2.4) it can be obtained δẋ = A (t )δx .
If Eq. (2.1) allows for a T−periodic solution φ(t ), then Φ (t0, T ) is referred to as Monodromy matrix. The STM
has some other important properties, namely [33]

Φ(t1, t2) =Φ(t2, t1)−1, Φ(t0, t2) =Φ(t1, t2)Φ(t0, t1) (2.5)

In the framework of this research, the STM has a twofold usage: it is employed for the computation of the
initial condition of the simple periodic orbits discussed in Section 2.2.1, as shown by Howell [12], and for the
optimization of a trajectory, as explained in Section 2.3. Although for different purposes, the STM is used in
both cases in an identical way, namely within a Differential Correction scheme.
In a typical Differential Correction, by propagating an initial state x0 up to the final time t = t1, a final state
x f = x(t1) is obtained. If a desired final state xd is sought, corresponding to a shift from the reference one
δx1 = xd − x f , an initial deviation can be added to x0, which helps in reaching xd . By inverting Eq. (2.3)
one can retrieve this deviation as δx0 = Φ−1 (t0, t1)δx1. The new initial state is propagated and the whole
procedure iterated, if needed: this follows from the approximated nature of Eq. (2.3).
The Differential Corrector largely depends on three elements: the degree of nonlinearity of the problem, the
distance of the first guess x0 from the actual x̄0 which, once propagated for the required time gives exactly xd ,
and the size of [t0, t1].

2.2. Dynamical model
In this section, the main elements of the dynamical models used for this work are discussed. The latter are
reported from the easiest to the theoretically most complex one: starting from a restricted case of the three-
body model in Section 2.2.1, the section moves forward to highlight the main characteristics of a four-body
model in Section 2.2.2. Concluding, in Section 2.2.3 the mathematical concepts of the Levi Civita regulariza-
tion scheme are applied to the first described dynamical model.

2.2.1. CR3BP
The Circular Restricted Three-Body Problem (CR3BP) is a special case of the Three-Body Problem which de-
fines in its generality the mutual gravitational interactions of a system of three bodies P1, P2 and P3. Two
assumptions are stated before deriving the equations of motion, which justify the definition of Restricted and
Circular. These are briefly stated below:

1. m3, namely the mass of the third body P3, is infinitesimal when compared to m1 and m2, masses of P1

and P2, often referred together as primaries or singularly as primary and secondary, respectively.

2. Following from the previous assumption, the motion of the two massive bodies is considered planar
and circular about their common centre of mass. In the case the third body has its motion constrained
to the same plane, the CR3BP takes the further adjective of Planar.

Before continuing with the mathematical definition of the dynamical model, two different reference frames
are here mentioned, namely the inertial and synodic one.
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The former is defined as a reference frame where the first principle of dynamics holds true, namely a point
with a total null force is seen from the frame in its condition of steadiness or constant speed; conversely, the
latter is defined as when this does not happen.
Besides the general description, throughout this work as well as in the majority of the existing literature, a
pseudo-inertial frame is implicitly used to ease the treatment of data. A clear example rises when employing
the centre of the Earth as origin of the frame, although the Earth itself moves under other forces. Hereafter, the
pseudo adjective is discarded to facilitate the reading, although this simplification should always be assumed
as implicit.
Assuming the two reference frames as coplanar and with a common origin, they are separated by a central
angle θ on the x y-plane. The following transformation holds:

x s yn =
[

A 02×2

Aθ A

]
x i n (2.6)

with the states x s yn , x i n ∈R4, 02×2 the 2×2 zero-matrix and

A =
[

cos(θ) −sin(θ)
sin(θ) cos(θ)

]
and Aθ =

dA

dθ
(2.7)

where θ is taken anticlockwise from the positive x-axis of the inertial reference frame. Before dealing with the
involved mathematics, a sketch comparing the inertial and synodic frame is reported in Fig. 2.1.

P1

P2

P3

yinysyn

xin

xsyn

-

1-

θ

Figure 2.1: Representation of the P1P2-barycentric reference frame, in both the inertial and synodic form. In this exemplary caseµ= 0.1.

Equations of motion
The equations of motion, expressing the dynamical model, are obtained as a specific case of the three body
problem. The lengthy derivation is here not reported. Since the whole work described in this report has been
performed with the planar assumption of the dynamics, thanks to severe simplification on the data handling,
the state is hereafter considered bidimensional.
It is custom to express every involved quantity in its dimensionless version: this gives several advantages
in the comprehension of the data and in the computation of the associated trajectories, while at the same
time extending the applicability of the singular case to a multitude of similar ones. Equations, in the synodic
x y-frame, centered on the barycenter of the two primaries, are described by [28]

ẍ = 2ẏ + ∂U3

∂x

ÿ =−2ẋ + ∂U3

∂y

where: U3(x, y) = 1

2
(x2 + y2)+ 1−µ

r1
+ µ

r2
+ 1

2
µ(1−µ) (2.8)

with the mass parameter µ= m2/(m1 +m2), r1 =
√

(x +µ)2 + y2 and r2 =
√

(x +µ−1)2 + y2 representing the
distances of m3 from the two primaries, located at (x, y) = (−µ, 0) and (x, y) = (1−µ, 0), respectively. The
function U3(x, y) is referred to as effective potential: it describes a non-central and conservative scalar field.
Quantities are transformed into their dimensionless versions by three problem-depending constants, namely
DU , V U , and TU , unit of distance, velocity and time respectively. The latter act as divisors for every time-,
distance- and velocity-like quantity. In particular, once DU is obtained from the geometry of the problem
(usually taken as the average distance between the primaries), the other two follows as

TU =
√

DU 3

G(m1 +m2)
and V U = DU

TU
(2.9)
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where G is the universal gravitational constant. From Eq. (2.9), TU can be conceived as the inverse of the
orbital mean motion for a massless spacecraft around a body with mass m = m1 +m2.
As it is discussed in Section 2.1.2, the system of equations is autonomous: it allows the existence of one and
one only first integral, called Jacobi’s integral, defined as

J (x, y, ẋ, ẏ) = 2U3(x, y)− (ẋ2 + ẏ2) (2.10)

The projection of the 4-dimensional space defined by

J (C̄ ) = {(x, y, ẋ, ẏ) ∈R4 : J (x, y, ẋ, ẏ) = C̄ } (2.11)

on the x y-plane is called Hill’s region, as depicted in Fig. 2.2. There is an intrinsic difference between the
constant C̄ and the projection of the Hill’s region on the phase space J (C̄ ), although often confused in litera-
ture: the former represents a constant, while the latter is a subset of the phase space for a certain value of the
constant.
Throughout this report, the angular momentum h2 and the energy H2 with respect to the Moon are largely
employed. Their derivation is reported in Appendix A, while their definition is [29]

h2 (x) = (
x +µ−1

)(
ẏ +x +µ−1

)− y
(
ẋ − y

)
(2.12a)

H2 (x) = v2 (x)2

2
− µ

r2(x)
=

(
x +µ−1+ ẏ

)2 + (
ẋ − y

)2

2
− µ

r2(x)
(2.12b)

Referring to Section 2.1.4, the Jacobian of the system of Eq. (2.8) is given by

A(t ) =



0 0 1 0
0 0 0 1

∂2U3

∂x2

∂2U3

∂y ∂x
0 2

∂2U3

∂x ∂y

∂2U3

∂y2 −2 0


x=x∗(t )

(2.13)

It is helpful, for the purpose of this report, to have a geometrical delimiter about the secondary: the Hill’s
sphere. The latter helps to distinguish the area on the x y-plane where the gravitational pull of the secondary
either largely (inside the sphere) or weakly (outside the sphere) influences the motion of the spacecraft. Its
radius is given by [25]

RHi l l = 3

√
µ

3
(
1−µ) (2.14)

Hill’s sphere is selected as a suitable boundary thanks to its meaning and derivation4, although representing
an approximation of the real case since the gravitational perturbation of the Earth in a neighbourhood of the
Moon is position-depending. In this report the term sphere is widely interchanged with circumference (rep-
resenting Hill’s sphere intersection with the synodic x y-plane) in order to maintain the proper nomenclature.

Lagrange points and periodic orbits

Equation 2.8 has five equilibrium points, named Lagrange or Lagrangian points. From the strict definition,
their location can be computed setting the left-hand side of Eq. (2.8) to zero, after having converted it into a

4Hill’s sphere should not be confused with the Sphere of Influence (SOI). The difference stands either in the formulation and in the
meaning. According to [34], the SOI is described as the volume-space centered on a massive body P1 within which one can consider
the motion of the spacecraft as a perturbed two-body problem about P1. The relative formulation is directly derived from the general
N -body equation of motion. However, according to [32], Hill’s sphere (to be discerned from Hill’s region in Eq. (2.10)) is derived from a
stability analysis of spacecraft’s orbit about the secondary, directly following from Hill’s equations, which represents a revised approx-
imated (1−µ ≈ 1) set of equations about the secondary. The latter are derived from the CR3BP system of Eq. (2.8). For this reasons,
the Hill’s sphere constitutes a suitable boundary for the case treated in this report. It must be noted how the radius of the SOI is by
definition larger than the Hill’s sphere one.
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four-dimensional system of first-order differential equations, as

ẋ = vx

ẏ = vy

v̇x = x +2vy −
(
x +µ)(

1−µ)
r 3

1

− µ
(
x +µ−1

)
r 3

2

v̇y = y −2vx −
y

(
1−µ)
r 3

1

− µy

r 3
2

(2.15)

This leads to ∇U3(x, y) = 0 for the derivation of these points.
Hence, their location is on the x y-plane even in the 3D-case; three of them, namely L1, L2 and L3, are set on
the line connecting the two primaries m1 and m2, as depicted in Fig. 2.2 and for this reason are addressed as
collinear Lagrange points. With the definition of potential given in Eq. (2.8), they have a location so that their
associated Jacobi constants are C̄L1 > C̄L2 > C̄L3 > C̄L4 = C̄L5 = 3. Their values, for the Earth–Moon case are
reported in Table 2.1.

Li xLi C̄Li

L1 0.836914718893202 3.200344909832180
L2 1.155682483478614 3.184164143176462
L3 -1.003037603428298 3.024162670307643

Table 2.1: Coordinates and associated Jacobi constant values for the collinear Lagrange points.

P1 P2

L1

(a)

P1 P2

L1 L2

(b)

P1 P2

L1 L2
L3

(c)

Figure 2.2: Example of the Zero Velocity Curves (grey) for different values of C̄ . Note how, by decreasing their values, the available space
widens. (a) C̄L2 < C̄ < C̄L1 ; (b) C̄L3 < C̄ < C̄L2 ; (c) C̄L4,5 < C̄ < C̄L3 ;

The dynamics concerning the collinear Lagrange points and associated periodic orbits have been widely
studied in the past (Conley [7], Koon et al. [14], Parker and Anderson [23]). It is interesting, for the sake of
completeness, to briefly show the computation of both the simple planar periodic orbits about the collinear
Lagrange points and the associated invariant manifold [23]. As a first step, a guessed state along the x−axis
is given as x0 = (

x, 0, 0, ẏ
)

0. This state is corrected to meet a final constraint of xT /2 = (
x, 0, 0, ẏ

)
T /2 in order

to comply with the symmetric requirement of a T−periodic orbit [12]. The initial condition, generating a
periodic orbit at a fixed C̄ is then obtained by iterating the following system

[
δx
δẏ

]
0, i

=


φ3,1 −φ2,1

ẍ

ẏ

∣∣∣∣
x=xT /2, i

φ3,4 −φ2,4
ẍ

ẏ

∣∣∣∣
x=xT /2, i

∂J

∂x

∣∣∣∣
x=x0, i

∂J

∂ẏ

∣∣∣∣
x=x0, i


−1 [ −ẋT /2, i

C̄ − J
(
x0, i

)]

x0, i+1 = x0, i +
[
δx, 0, 0, δẏ

]T
0, i

(2.16)
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where φ j ,k is the ( j , k)th element of the STM evaluated at x = xT /2, i . The whole procedure is repeated, in
agreement with what is discussed in Section 2.1.4. The first equation in the system of Eq. (2.16) is derived
in Appendix A and as an example, Fig. 2.3 shows the Horizontal Lyapunov Orbits (HLO) about the collinear
points for the same value of C̄ .
After the Differential Corrector has converged and the initial state x0 for the periodic orbit is obtained, the
associated invariant manifold is constructed by perturbing and subsequently propagating the state x ti , p.o. at
time ti along the periodic orbit as

x ti ,new = x ti , p.o. ±ε
v k

i

‖v k
i ‖

(2.17)

where x ti ,new is the perturbed state at time ti , v k
i =Φ (t0, ti )V k where k stands for either the stable S or unsta-

ble U eigenvector V of the monodromy matrix and ± distinguishes between the interior (−) and exterior (+)
branch. In this report, for the Earth–Moon system, ε≈ 2.6×10−4 (in its dimensionless form, corresponding to

100 km) when perturbing the first two components xti , yti , while ε≈ 2.6×10−4/
√

ẋ2
ti
+ ẏ2

ti
for the remaining

velocity components ẋti , ẏti of x ti , p.o.. Although ε has a rather high value in this report, the choice is here mo-
tivated by a preference of a fast (rather than precise) computation of the invariant manifolds, due to the high
amount of generated orbits, in agreement with Parker and Anderson [23]. Indeed, smaller perturbations can
approximate better the invariant manifolds, even though they require more time to depart from the orbit. For
every perturbed state, the orbits are accordingly propagated (backward in time if k = S, forward otherwise)
in order to obtain the associated invariant manifold. An example of the invariant manifolds for an L2 HLO is
depicted in Figs. 2.4a and 2.4b.

L3
L2L1

P1 P2

Figure 2.3: Example of three HLOs’ associated with the collinear Lagrange points, for C̄ ≈ 3.0115.

(a) (b)

Figure 2.4: (a) Stable (green) and unstable (red) invariant manifold emanating from the HLO at L2 (dashed black line) for C̄ ≈ 3.0514.
Earth and Moon as black dots, Lagrange points as red dots. ZVC in grey; (b) magnification of the stable manifold of (a) in proximity of
the Moon. Manifold propagated for t ≈ 55 terrestrial days.
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2.2.2. BR4BP
The Bi-circular Restricted Four-Body Problem consists in an extension of the former CR3BP, whereas the pres-
ence of a fourth body PS is included. The latter has a non-negligible mass mS , and its orbit is assumed to be
coplanar with the mutual motion of the other two massive bodies, previously indicated as P1, P2, and re-
stricted to be circular with respect to their barycentre in the synodic reference frame. Although the relative
dynamical model lacks in coherence, not complying with Newton’s laws, it can give a deep insight in the in-
volved dynamics.
The BR4BP represents a possible solution among different simplified four-body dynamical architectures:
however, for the main purpose of this report, it has been chosen since best fitting with the studied case,
namely the Sun–Earth–Moon system, as substantially confirmed by an extensive literature (Qi and Xu [24],
Simó et al. [27]). The general equations in the P1P2-synodic frame are defined by [29]

ẍ = 2ẏ + ∂U4

∂x

ÿ =−2ẋ + ∂U4

∂y

where: U4(x, y, θs ) =U3(x, y)+ µS

rs (θs )
− µS

a2
S

(
x cos(θS )+ y sin(θS )

)
(2.18)

where µS = mS /(m1+m2), aS is the magnitude of the radius of PS ’ circular orbit around the barycentre of the
P1P2 subsystem,ωS is the angular velocity of PS ’ circular motion in the synodic frame, the time-wise variable
θS = θS0+ωS (t − t0) is the angular distance in the synodic frame between the positive x−axis and the position
vector of PS , and U4 represents the new time-dependent potential function. The introduction of a new body
has switched the problem from an autonomous to a nonautonomous one, although 2π/ωS -periodic. A visual
overview in the synodic frame is given by Fig. 2.5. Both the BR4BP and the CR3BP presents few symmetries
which ease computational effort. Throughout this thesis work, the following one is extensively used [20][

x, y, ẋ, ẏ , t
] −→ [

x, −y, −ẋ, ẏ , −t
]

(2.19)

However, when using this symmetry for the BR4BP, the value of θS0 must be switched in sign, accordingly
with the time-dependency of Eq. (2.18). In Appendix A the proof of the symmetry is outlined. Information
concerning Earth’s orbit about the Sun and Moon’s orbit about Earth are briefly reported in Table 2.2.

- 1-

P1 P2

P3 PS

θS

y

x

ωS

aS

Figure 2.5: Geometry of the BR4BP in the synodic P1P2-barycentric reference frame. as not in scale.

Body a [km] T [days] e [-] i [deg]

Earth 1.496×108 365.256 0.017 -
Moon 3.844×105 27.452 0.055 5.15

Table 2.2: Main orbital data for Earth and the Moon, with respect to the Sun and Earth respectively. Table shows their average semi-major
axis, periods, eccentricities and inclinations (with respect to Earth’s orbit about the Sun), respectively from left to right. Mind how Earth’s
inclination about the Sun is null since the ecliptic is taken as reference plane. A single day refer to one terrestrial day, namely 86400 s
(taken from Acton [1], Lissauer and de Pater [18]).

2.2.3. Levi Civita regularization
A regularization of the problem is usually performed to avoid a lack in precision in the computation of the
state, especially in those areas of the phase space where a singularity of the equations exists. Levi Civita first
proposed a local regularization scheme [17] for the synodic CR3BP. In this work, his scheme is employed to ac-
curately propagate orbits starting from or passing really close to the secondary (the Moon in the Earth–Moon
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system): without this shrewdness, Eq. (2.8) would lead to a really imprecise computation due to the singular-
ity at (x, y) = (1−µ, 0). The thorough derivation, in a less old-fashioned manner, is extensively reported in
Szebehely [28]. The regularization changes the shape of the equations of the problem, consequently varying
the obtained state itself. In this report, u = (u1, u2, u3, u4) is referred to as the state in regularized coordinates.
The transformation between Cartesian synodic and regularized coordinates, (x, y, ẋ, ẏ) ⇐⇒ (u1, u2, u3, u4) is
given as [16, 21]

Car2LC:



if x < x0 if x ≥ x0

u2 =
√

r0 − (x −x0)

2
u1 =

√
r0 − (x −x0)

2

u1 = y

2u2
u2 = y

2u1

,while:

[
u3

u4

]
= 1

2r0

[
u1 u2

−u2 u1

][
ẋ
ẏ

]
(2.20a)

LC2Car4:

[
x −x0

y

]
=

[
u1 −u2

u2 u1

][
u1

u2

]
,while:


ẋ = 2

(u1u3 −u2u4)

u2
1 +u2

2

ẏ = 2
(u1u4 +u2u3)

u2
1 +u2

2

(2.20b)

where x0 is the abscissa of the regularized body, while r0 is the distance of the spacecraft from it. Equations
of motion in regularized coordinates are

u′
1 = u3

u′
2 = u4

u′
3 =

1

4
[(au +bu)u1 + cuu2]

u′
4 =

1

4
[(au −bu)u2 + cuu1]

(2.21)

The independent variable has changed from t to s, according to the regularization dt = r0ds. Consequently,
the derivative of the state with respect to s is indicated with

(′). au , bu , cu are defined as

au = 2(1−µ)√(
u2

1 −u2
2 +1

)2 +4u2
1u2

2

− C̄ + (
u2

1 −u2
2 +1−µ)2 +4u2

1u2
2 +µ(1−µ) (2.22a)

bu = 8(u2u3 +u1u4)+2
(
u2

1 +u2
2

)(
u2

1 −u2
2 +1−µ)− 2(1−µ)

(
u2

1 −u2
2 +1

)(
u2

1 +u2
2

)
[(

u2
1 −u2

2 +1
)2 +4u2

1u2
2

] 2
3

(2.22b)

cu = 4u1u2
(
u2

1 +u2
2

)−8(u1u3 −u2u4)− 4(1−µ)u1u2
(
u2

1 +u2
2

)
[(

u2
1 −u2

2 +1
)2 +4u2

1u2
2

] 2
3

(2.22c)

The Jacobi constant C̄ appears in Eq. (2.22a), while the singular term r0 is absent.
One particular case which is severely employed throughout this report is when orbits start from the secondary
at (x, y) = (1−µ, 0), where the local regularization reaches its major usefulness. According to [21], the initial
condition starting from the centre of the secondary is


u1

u2

u3

u4

=



0
0√

µ

2
cosθc√

µ

2
sinθc

 (2.23)

where θC represents a parametrizing collision angle. In Appendix A the derivation of Eq. (2.23) is shown.
Levi Civita regularization for the CR3BP is one possible solution to avoid singularities of the problem; never-
theless, a local regularization scheme can be extended to handle global singularities (see Castilho and Vidal
[6]). To the best of author’s knowledge no Levi Civita regularization scheme is available for the BR4BP.

4Car2LC stands for the transformation from Cartesian to Levi Civita. Vice versa holds for LC2Car.
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2.3. Optimization
In this section, the problem of optimization for spacecraft trajectories is briefly analysed from a theoretical
perspective. The main aspects employed throughout this report do not cover the whole realm of optimization
technique available in the existing literature: for this reason, only the necessary information is here described.
In Section 2.3.1 the most general aspects regarding optimization are presented, followed by Section 2.3.2
where the techniques employed in this work are described.

2.3.1. Overview
In this report the generic optimization problem can be defined through its mathematical statement: the state
variable y ∈ D ⊂ Rn represents the finite set of parameters, whose optimization aims at either minimizing
or maximizing the cost function F : D → R. Every maximization problem can be regarded as a minimization
one, by changing the sign of the cost function. The mathematical statement of the generic optimization is
summarized as follows:

Find y , such that :

F (y) is minimized

subject to :

c(y) ≤ 0, c eq (y) = 0,

(2.24)

where c eq : Rn → Rm with m ∈ N : m ≤ n (when linearly independent) and c : Rn → Rq with q ∈ N, are re-
ferred to as nonlinear equality and inequality constraints, respectively. It is implicit throughout this report to
include the linear constraints within the nonlinear ones, for every problem statement, since the former can
be thought as a special case of the latter [2]. Every optimization problem needs a first guess y 0 to start with
the computation. The distance of the guess to the real optimum represents a cardinal element for a fast and
precise convergence to the optimum y opt .

2.3.2. Strategies
The problem highlighted in Eq. (2.24) is solved in this report with two different strategies, although the struc-
ture of the overall algorithm can be described with a single flow, as it is shown in Fig. 2.6.

Guess an initial y

Propagate the
equations of motion

Evaluate cost func-
tion and constraints

Are con-
vergence
criteria

fulfilled?

End

Correct y

no

yes

Figure 2.6: Architecture of the algorithm used for optimization
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Due to the nonlinear nature of the problem, part of the algorithm is iterated until the convergence criteria
are satisfied. The flow can be compared to the single-shooting technique, whereas the shooting is embodied
by the propagation block. Although the overall algorithm is unique in this report, two different strategies are
applied to account for the convergence criteria and the correction of y , whose main difference relies on the
underlying mathematics.

STM and Differential Corrector: As for the first simpler case, the strategy employing the STM with the Dif-
ferential Corrector is used for the state correction, whose architecture is delineated in Section 2.1.4. This
method has been selected due to its simplicity and fast computational implementation. In this case, having
as generic solution x(t ), the variable y is fully contained within the initial state x(t0). The convergence in this
report is based on

∣∣F (
y
)∣∣.

fmincon: MATLAB fmincon routine is used, aiming at finding the optimal y opt minimizing the cost func-
tion F (y), potentially counting on different algorithms (Interior-Point [11] and Sequential Quadratic Pro-
gramming [2] among others). The problem statement needs to be translated in order to be correctly pro-
cessed, according to the software standard [19]. The gradients of the cost function as well as the constraints
can be given as input to the routine in order to ease the computation and improve the result. Differently from
the previous approach, the variable y may not be contained within the initial state x(t0). The convergence
step is performed within the routine.





3
Simple M2M transfer in the Earth–Moon

CR3BP

In this chapter Moon-to-Moon (M2M) transfers are addressed, using the planar Earth–Moon CR3BP. The
model consists of a severe approximation of the real case: as stated in Section 2.2.1 the two primaries are
considered as points, rotating in a circular uniform motion about their barycentre. However, as highlighted
in Table 2.2, the assumptions on the dynamics of the involved bodies are rather minimal, due to the low ec-
centricity of lunar orbit about the Earth . Being a preliminary study for a basic understanding of the involved
dynamics, no perturbation (solar radiation pressure, spherical harmonics and so forth) is here taken into ac-
count rather then the intrinsic third body one. This approximation is either reasonable, in order to outline
the main aspects of the motion and ease the treatment of the chaotic problem, and consistent with a severe
amount of examples in literature. The same philosophy is extended to the whole report.
The chapter is divided as follows: in Section 3.1 the author explains the concepts behind an M2M transfer and
how the different tools are employed. In Section 3.2 the single ballistic M2M transfer is derived, analysing its
main features. Considerations pertaining the invariant manifolds of simple periodic orbits about the Earth–
Moon collinear Lagrangian points and lunar collision orbits are discussed in Section 3.3, before the conclud-
ing assessments in Section 3.4.

3.1. Approach
The backbone of this chapter, necessary to understand how the M2M transfer are obtained and further anal-
ysed, is discussed in this section. First, a formal definition of what in this report is considered as a Moon-to-
Moon transfer is here outlined, in both a qualitative and quantitative way.

Definition Moon-to-Moon transfer:
A Moon-to-Moon transfer, shortly addressed as M2M transfer, is defined as every transfer starting and cul-
minating within the lunar Hill’s sphere but out from the lunar surface, whose maximum distance from the
Moon exceeds the lunar Hill’s sphere radius.

Avoiding the Moon surface is a prerequisite for every trajectory; however, the selection of lunar Hill’s sphere as
implicit boundary to discern what is influenced by the Moon from what is not, can lead to different debates.
Nevertheless, following from Section 2.2.1, this choice represents a good quantitative element to catalogue a
transfer as an M2M, without any complication.
The procedure to obtain an M2M transfer can be divided into three steps: in Section 3.1.1 lunar ejection orbits
(a particular case of collision ones) are propagated from the centre of the Moon for different collision angles
θC but with the same constant C̄ , according to Levi Civita regularized equations highlighted in Section 2.2.3.
Right after the first propagation step, the dynamical scheme is switched from Levi Civita to Cartesian, fol-
lowing the dynamics of the CR3BP. Considerations pertaining the latter issue are addressed in Section 3.1.2.
Concluding, in Section 3.1.3, in order to study four-dimensional trajectories within the phase space, the be-
haviour and main characteristics of the collision orbits are analysed on case-depending Poincaré cuts.

17
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3.1.1. Lunar ejection orbits
Ejection orbits are propagated from the centre of the Moon, therefore the Levi Civita local regularization
scheme is employed, in order to avoid the singularity. The initial condition on the four-dimensional state is
given in Eq. (2.23).
An example of an ejection orbit is shown in Fig. 3.1.
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Figure 3.1: Example of a lunar ejection orbit (blue) for C̄ = 3.1 and θC = 5π/8. Zero Velocity Curve outlined in grey. Earth and Moon
depicted as black dots at (x, y) = (−µ, 0) and (x, y) = (1−µ, 0) respectively. Lagrange points L1 and L2 in red.

In particular, numerical results have shown a linear correlation between the collision angle θC and the phys-
ical synodic ejection angle at the Moon θE , defined as the departure angle from the Moon with respect to the
positive synodic x−axis. This relation cannot be determined at the very start of the ejection trajectory from
the Cartesian state, due to the singularity; in Fig. 3.2a, this result is numerically shown, while in Fig. 3.2b an
example of ejection trajectories is depicted in a magnification about the Moon.
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Figure 3.2: (a) Linear correlation between collision angle θC and ejection angle θE ; (b) Example of lunar ejection orbits (red) for different
initial collision angles θC at C̄ = 3.1. Moon represented by the black circle, while its center being the black dot at (x, y) = (1−µ, 0).

It is clear how θE = 2θC : for this reason, the case θC ∈ [0, π) is employed hereafter. It is here evident the
usefulness of using collision orbits: having a fixed value of C̄ , one can analyse the whole set of collision orbits
by just varying the collision angle θC .
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3.1.2. Propagation scheme
Few key-aspects discerning the two dynamical systems, namely Cartesian and regularized Levi Civita are
here highlighted: the latter, from Eq. (2.21), is computationally slower to handle and slightly less precise
with respect to the former, as evident in Eq. (2.8). The last assessment can be inferred from the results of
Fig. 3.3, showing for a set of random initial conditions, the main differences between the two propagation
schemes: in Figs. 3.3a and 3.3b the final error in the computation of C̄ is reported, for propagations based
on Levi Civita and Cartesian scheme respectively. In Fig. 3.3c computational time is compared. Orbits are
propagated with identical propagation characteristics (absolute and relative tolerances, events and so forth)
and for an identical final time.
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Figure 3.3: 79 computed orbits with random initial conditions. Difference between final and initial Jacobi constant C̄ vs. frequencies N
for (a) Levi Civita and (b) Cartesian scheme; (c) computational speedup: Levi Civita divided by Cartesian. The integration time is set at
t ≈ 434 terrestrial days.

Due the random search, certain initial conditions may lead to an Earth close passage, which deeply slows the
Levi Civita numerical propagation.
Due to a higher computational time and the need to compare the solutions in this chapter with the results
of Chapter 5, where no Levi Civita regularization is implemented as pointed out in Section 2.2.2, the latter
propagation scheme is employed whereas the state is located in a neighbourhood of the Moon only. For
the sake of an easier understanding and implementation, this area is selected as a disk centered at x Moon =(
x, y

)
Moon = (

1−µ,0
)
. The problem translates in finding a proper radius l for this region, so that:{

for ‖x −x Moon‖ ≤ l −→ Levi Civita scheme

for ‖x −x Moon‖ > l −→ Cartesian scheme
(3.1)

The choice criteria is based on a combination between a higher precision for the final result and a lower
computational time; for what concerns the latter, following the previous analysis, one should conclude how
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the sooner one switches from Levi Civita to Cartesian propagation scheme, the better it is, since the former is
proved to be slower than the latter.
For the former, a different analysis is performed. In order to properly define l in Eq. (3.1), different l = nRMoon ,
with n ∈N+ are used: final precision, in terms of magnitude of the Jacobi integral C̄ with respect to the starting
one is again used as a discriminating quantity. Results are shown for different l in Fig. 3.4
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Figure 3.4: The same initial condition of one lunar ejection orbit is here propagated for t ≈ 218 days, using different n = {1, 2, . . . , 100}
as number of lunar radii for switching the propagation scheme from Levi Civita to Cartesian. Precision of the algorithm, in the shape of
Jacobi constant C̄ difference between the end and start of the trajectory is reported in the y-axis.

Due to the lack of correlation between the final error in the Jacobi constant ∆C̄end and the number of lunar
radii n, in order to have a more-reasonable boundary, the radius of the Moon has been selected, so that
l = RMoon in Eq. (3.1). This also complies with the previous analysis dealing with computational time.
Therefore lunar ejection orbits are propagated with Levi Civita scheme up to the intersection with the lunar
surface; however, the piercing can happen in both directions, namely either exiting from or entering the lunar
surface.

3.1.3. Ejection orbits and Poincaré cut

As a final step before deepening in the M2M transfers, collision orbits are here briefly analysed. They are
studied throughout this work on two different and really simple Poincaré cuts, namely the x− and y−axis:
the choice of which one should be used is purely case-depending, as understandable throughout this report.
Transversality condition (introduced in Section 2.1.3) is carefully ensured in both cases, by demanding ẏ 6= 0
and ẋ 6= 0 at the x− and y−axis crossing, respectively. By employing the y−axis, one fulfils the requirement
of avoiding any critical point of the dynamical system on the cut (Lagrange points, see Section 2.2.1), valid
∀µ ∈ R+ : µ 6= 0.5, which is always the case in this report. However, the same cannot be stated for the x−axis:
when referring to the former, the formal definition of the Poincaré cut V , once defined D = {R\{xL1 , xL2 , xL3 }},
becomes V = {(x, ẋ, ẏ) ∈ D ×R2 : J (x, 0, ẋ, ẏ) = C̄ }; this is not repeated elsewhere in this report, but taken as
assumed when referring to this particular cut. Both cases, namely the x- and y- Poincaré cut are portrayed in
Figs. 3.5a and 3.5b respectively, where the intersections of the lunar ejection orbits are evident.
For the planar case, the employment of the Poincaré cut as a line (namely by fixing a coordinate to have
a certain value) means that a point on the cut determines one and only one possible trajectory: indeed,
by using the x−axis Poincaré cut as an example, if an ejection orbit intersects it, the piercing point can be
depicted on the y ẏ-plane and by employing the Jacobi constant C̄ , the magnitude of the fourth remaining
coordinate can be retrieved (ẋ in this case). However, an ambiguity on the sign raises, which needs to be
solved by constraining the case.
Concluding this section, in order to study collision orbits, lunar ejection orbits are propagated with Levi Civita
regularization scheme up to the intersection with lunar surface. From that point onwards, trajectories are
propagated with the Cartesian propagation scheme as long as they stay out from the Moon, otherwise the
scheme is re-switched. The intersections of the orbits with the x- or y-axis Poincaré cut are employed to gain
insight in the characteristics of lunar collision orbits.
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Figure 3.5: Poincaré cut examples with lunar ejection orbits (blue); (a) x-axis Poincaré cut, yellow intersections; (b) y-axis Poincaré
cut, green intersections. Earth and Moon depicted as black dots at (x, y) = (−µ, 0) and (x, y) = (1−µ, 0) respectively. Lunar Hill’s sphere
reported as a dashed black circle around the Moon.

3.2. Single M2M transfer
In this section, lunar collision orbits are used to retrieve and analyse single M2M transfers. The structure is
subdivided in two different subparts: in Section 3.2.1 the procedure to obtain a ballistic single M2M transfer
out of the lunar collision orbits’ characteristics is highlighted, followed in Section 3.2.2 by a deep analysis of
the obtained results from the previous section.

3.2.1. M2M transfer retrieval

In this section, the procedure to define and compute a single M2M transfer is presented, with the help of the
information given by the intersections of the lunar ejection orbits with a Poincaré cut.
First of all, the main idea on how to define an M2M, one of the main targets of this master thesis, is here
outlined. The basic concept is to employ a single Poincaré cut to find the intersections of two different sets of
ejection orbits; these data is used to patch two near-collision lunar arcs together, therefore obtaining a prop-
erly defined and continuous M2M transfer. In this case, collision orbits really help in this procedure, since
fly-by orbits behave similarly to collision ones; although this last assessment may intuitively be understood,
it is extensively treated and confirmed in Section 3.2.2.
The underlying procedure is similar to what Koon et al. [14] applied to compute homoclinic and heteroclinic
transfers about periodic orbits of the Lagrange points: basically, they reported the intersections of the in-
variant manifolds originated from periodic orbits of the collinear Lagrange points on well-defined Poincaré
cuts of the same or different dynamical systems (for example Sun–Earth with Earth–Moon) in order to obtain
a patched approximation of a transfer between the same (homoclinic) or different (heteroclinic) periodic
orbits. Although the idea here developed resembles the one Koon et al. dealt with, since Poincaré cuts are
employed and a patching of two trajectories is sought, the difference stands in both the purpose and the char-
acter of the patching: indeed in this section the author is not trying to merge orbits heading to or departing
from a periodic orbit about a Lagrange point, but rather orbits passing close by the Moon, without using in-
variant manifolds of periodic orbits about Lagrange points, but rather lunar collision orbits.
As stated in Section 3.1, ejection orbits are propagated from the lunar centre at

(
x, y

) = (
1−µ, 0

)
in the syn-

odic barycentric reference frame, up to the point they intersect the Poincaré cut. In this section, the positive
y−axis is used as cut, looking at the intersection presenting ẋ ≥ 0. An introductory example on how the inter-
sections of the collision orbits look like on the Poincaré cut mentioned above is given in Figs. 3.6a and 3.6b,
in the case orbits are propagated backward in time, in the y ẏ- and ẋ ẏ-plane respectively. First intersections
only with the cut is reported.
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Figure 3.6: Intersections of 12000 backward-propagated lunar ejection orbits with the Poincaré cut on the positive y-axis. First en-
counter only, with C̄ = 2.97 and ẋ ≥ 0 at intersection is here shown; representation on the (a) y ẏ- and (b) ẋ ẏ-plane.

Figure 3.6 clearly demonstrates the mathematical correctness of the employment of the cut, that is, it does
contain neither any critical point, as assessed in Section 3.1 neither any non-transversal point. The former
condition is trivial to verify but the latter may raise some doubt: indeed, the curve in Fig. 3.6b almost touches
the vertical ẋ = 0 line. Although this does not happen for this energy level, for different values of C̄ it may
be the case; however, intersections are stored pointwise, therefore obtaining collision orbits which do not
respect the constraint is rather improbable. Nevertheless, by continuity, there exists a proper set of initial
conditions for lunar ejection orbits with a certain C̄ leading to the unlucky condition mentioned above: in
this case, that set should be discarded to save the transversality condition.
The shape drawn by the dots in Figs. 3.6a and 3.6b seem rather similar: this translates into an almost linear
correlation between the y- and ẋ- coordinate of the first order intersection points. For this reason, only one
of the two representations is shown for the remainder of this report, namely the y ẏ- one, which brings the
space coordinates y , ideal to show when seeking a patching.
In order to obtain an M2M transfer, two sets of intersections of lunar ejection orbits with the same value of
Jacobi constant C̄ , are visualized on the same Poincaré cut. Since the M2M is a transfer starting from the
Moon and heading back to it, a Poincaré cut which highlights orbits both arriving at and leaving the cut is
needed. This is achieved by employing two different propagation directions, namely one integrating the state
forward in time and one backward. The symmetry in time is valid for trajectories propagated with the BR4BP
model, as stated in Section 2.2.2; this result is easily extendable to the simpler CR3BP case, therefore reducing
by half the required computational time. In case t0 6= 0, the symmetry still holds, since either a switch to −t0

is applied or the translation property for autonomous systems is used, as discussed in Section 2.1.2.
It is further specified how the same sign for the not-plotted quantity (namely ẋ) needs to be ensured for intu-
itive reasons. Depending on at which axis the patching is sought, the order of the encounters (intersections)
with the Poincaré cut should always be taken into account: for this reason, the forward- and backward-
propagated intersections of the lunar ejection orbits with the Poincaré cut have always a different order,
which is shortened in this report as

(
nth bw, mth fw

)
a±, where a± indicates the positive or negative semi-

axis a, while n, m the two orders of the backward (bw) and forward (fw) propagation, respectively. As an
example, the first-backward with the second-forward intersections with the positive y-axis, shortened to(
1st bw, 2nd fw

)
y+ is shown in Fig. 3.7a. The great characteristic of the symmetry mentioned above is that

Fig. 3.7a is the symmetric counterpart about the ẏ axis of the
(
2nd bw, 1st fw

)
y− with ẋ < 0.

As a final step before obtaining an M2M transfer, a point on the Poincaré cut is taken: since the order of the
encounter is low, if a point which is close to the first-backward set of points is propagated forward in time,
then the obtained trajectory passes by the Moon. The same result holds if a point which is close to the second-
forward set of intersections is propagated backward in time. This result is confirmed by Fig. 3.7. More on this
is pointed out in Section 3.2.2.
As a successive step, an M2M transfer is expected if a point on the Poincaré cut, close to both the intersections,
is taken as starting point for the propagation. As an example, Figs. 3.8a and 3.8b show the location of two
possible candidate points in their global and magnified view on the cut, respectively, while Figs. 3.8c and 3.8d
show the propagated results. The latter confirm both the intuition and the applicability of the method itself.
It is further stressed out how, for the time symmetry, another free ballistic M2M transfer is automatically
obtained for each one already computed; thanks to both the translation property and the autonomous char-
acteristic of the CR3BP, setting an initial epoch does not add complexity to the problem.
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Figure 3.7: (a)
(
1st bw, 2nd fw

)
y+ intersections (green and red respectively) with the positive y-axis. C̄ = 2.97 and ẋ ≥ 0; (b) to (d) prop-

agated orbits from the cut, according to the location in (a). Backward- and forward- propagated transfers in red and green respectively.
Earth and Moon as black dots. Lunar Hill’s sphere depicted as a dashed circle about the Moon.
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Figure 3.8: (a) Location of the propagated points on the y-axis Poincaré cut, for C̄ = 2.97, with ẋ ≥ 0; (b) magnified view of (a); (c)
resulting propagated orbits from the intersection points in (a) in (yellow point) and red (green point). Earth and Moon depicted as black
dots, lunar Hill’s sphere as dashed black circle about the Moon; (d) magnified view of (c) in a neighbourhood of the Moon. Starting and
ending states for the trajectories depicted in green and red respectively.
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3.2.2. M2M analysis
In this section a qualitative analysis on the relationship between the lunar collision orbits and the M2M trans-
fers is performed, highlighting important characteristics of the latter. Dealing with a hard nonlinear dynam-
ics, a numerical grid search approach is here preferred. Every grid point on the Poincaré cut is propagated
to find the unique associated trajectory; from each of those, one can compute different interesting quantities
which are reported and shown at the relative initial states on the cut. Therefore a point on the cut plotted with
a certain characteristic is the origin of a trajectory carrying that particular characteristic. Data are shown on
the cut in a colorwise fashion or by extending the concept to a third dimension. In the latter case, the inter-
sections of the ejection orbits with the cut are merely used as reference, without respecting the out-of-plane
criteria. A specific area of the whole search space is here analysed, as depicted in Fig. 3.9: trajectories are
both forward- and backward- propagated from there. Although the plots are concerned with a specific and
bounded region of the whole domain, the same analysis has ben carried out in other interesting areas, lead-
ing to the same qualitative results.
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Figure 3.9: (a) General view of the studied area (black box) of the whole domain.
(
1st bw, 2nd fw

)
y+ intersections (green and red,

respectively), with ẋ ≥ 0 and C̄ = 3.01; (b) magnification inside the black box.

The Jacobi constant C̄ is now changed with respect to previous analysis, as visible from the different shape, in
order to give an idea on how a Poincaré cut moves by changing C̄ . This analysis can however be performed at
other plausible values of C̄ , without qualitatively changing the main final outcome. In Fig. 3.10 the trajecto-
ries are analysed with respect to the reached perilune r2 for both the forward- and backward-propagated arc.
This allows to numerically validate a previously implicit assertion: indeed, the results show that a small shift
from the intersection of the collision orbit for the initial propagated state on the cut is consequently mapped
by the flow to a certain distance from the Moon at the trajectory’s closest passage. This mapping is not purely
random, but it follows a continuous trend when departing from the intersections of the collision orbits on
the Poincaré cut. Indeed, the more one shifts from the backward-propagated intersections of the collision
orbits on the cut (green), the more the forward-integrated trajectories are missing the Moon, as depicted in
Fig. 3.10b; a similar trend can be inferred for the forward-propagated intersections of the lunar ejection or-
bits with the cut (red) and the backward-integrated trajectories in Fig. 3.10a. Chaotic regions and other blue
shadows are due to high-order intersections with the cut, which are not here reported to ease the reading.
However, these become a central topic in Chapter 4. In Fig. 3.10c the region for feasible M2M transfers is
outlined: every black dot, once opportunely propagated, generates an M2M transfer, according to the re-
quirements pointed out in Section 3.1.
In Figs. 3.11a and 3.11c the angular momentum with respect to the Moon h2 at perilune is reported, for the
backward- and forward-propagated arcs respectively, along the z−axis; the relative top-views are shown in
Figs. 3.11b and 3.11d. The separatrix nature of the collision orbits with respect to prograde and retrograde
trajectories at the Moon (h2 > 0 and h2 < 0 respectively) is evident, as confirmed by Oshima et al. [21]. The
backward-integrated arc of Figs. 3.11a and 3.11b shows the separatrix nature of the forward-integrated colli-
sion orbits; similarly happens for the forward-integrated arc and the backward-propagated ejection orbits in
Figs. 3.11c and 3.11d. Especially for the backward-integrated arcs in Fig. 3.10a, only the closest region to the
intersections on the cut is shown, since the dynamics of high-order encounters rapidly takes place.
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Figure 3.10:
(
1st bw, 2nd fw

)
y+ intersections (green and red, respectively), with ẋ ≥ 0, C̄ = 3.01; colors show perilunes for (a) backward-

and (b) forward-propagated trajectories; (c) black dots report the propagation points satisfying the M2M transfer requirements.
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Figure 3.11:
(
1st bw, 2nd fw

)
y+ intersections (green and red, respectively), with ẋ ≥ 0 and C̄ = 3.01; (a) on the z-axis the angular mo-

mentum with respect to the Moon, h2, at perilune for the backward-integrated arcs; (b) top-view of (a); (c) on the z-axis the angular
momentum with respect to the Moon, h2, at perilune for the forward-integrated arcs; (d) top-view of (c).
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The energy with respect to the Moon H2 at perilune1 for each arc is plotted in Fig. 3.12. In particular, following
the same scheme addressed in Fig. 3.11, H2 at perilune for the backward- and forward-integrated trajecto-
ries are plotted in Figs. 3.12a and 3.12b and in Figs. 3.12c and 3.12d respectively: again, it exists a separatrix
boundary between the H2 > 0 and H2 < 0 regions, although the limit-curve is different from what is shown in
Fig. 3.11 for h2, where the separatrix nature of lunar collision orbits is evident. Results have shown how, by
decreasing the value of C̄ , this boundary shifts towards the collision orbits. Although without explaining this
behaviour, a deeper insight of this phenomena is given in Section 3.3.
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Figure 3.12:
(
1st bw, 2nd fw

)
y+ intersections (green and red, respectively), with ẋ ≥ 0 and C̄ = 3.01; (a) on the z-axis the energy with

respect to the Moon, H2, at perilune for the backward-integrated arcs; (b) top-view of (a); (c) on the z-axis the energy with respect to the
Moon, H2, at perilune for the forward-integrated arcs; (d) top-view of (c).

To conclude this section and to provide another interesting characterizing element, a wider grid of initial
points on the cut is backward-propagated in time, encompassing the feasible domain (given by the condition
J (x |cut ) = C̄ ). The main results are reported in Fig. 3.13, in the usual colorwise fashion. Due to the backward
integration scheme, both figures follow in colors the trend given by the forward-propagated lunar collision
orbits, for both low- and high-order encounters. Even though only the second-order forward propagated
intersections are superimposed on the grid (in red), high-order encounters are not shown to ease the reading.
In Fig. 3.13a the minimum perigee heights R1, propagated from every initial point on the grid are shown, while
in Fig. 3.13b the associated time to reach the perigee tR1 is reported (taken as positive).

1H2, as well as the angular momentum with respect to the Moon h2 have a correct meaning whereas the trajectory is primarily influenced
by the Moon. Since the outer boundary of an M2M transfer is set at the lunar Hill’s sphere (smaller than the lunar Sphere of Influence),
both H2 and h2 are meaningful in this analysis.
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The points on the Poincaré cut getting close to Earth backward in time are mainly set between pairs of the
same-order intersections of the collision orbits with the cut. Indeed, the other depicted blue-shadows are
contained between high-order forward-propagated lunar collision orbits. Chaotic regions are present in the
general picture, to further confirm the behaviour of the involved dynamics.

Figure 3.13: Second-order intersections of the forward-propagated lunar collision orbits (red) with the Poincaré cut on the positive
y-axis, for C̄ = 3.01 and ẋ ≥ 0; grid of points propagated backward in time, reporting (a) minimum perigee heights and (b) the associated
time to reach the perigee.

3.3. Collision and Lyapunov orbits
A special attention is given in this section to the simple periodic orbits of the collinear Lagrange points; in par-
ticular, it is pointed out a similar behaviour of lunar collision orbits with the invariant manifolds emanated
from the Horizontal Lyapunov Orbits (HLOs’) related to the collinear Lagrange points.
One of the intuition leading to this research was to solve for the bad-behaving nature of the invariant mani-
folds of the periodic orbits associated to the Lagrangian points by using lunar collision orbits. These invariant
manifolds are computed according to the algorithm explained in Section 2.2.1.
In particular, the stable and unstable invariant manifolds of the L2-originating HLO intersect the positive
y−axis, as depicted in Figs. 3.14a and 3.14b respectively (in black) for the stable and unstable manifold (both
exterior and interior branches). Analogously happens for the negative y−axis, although not shown here.
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Figure 3.14: (a) First order intersections of the backward-propagated lunar collision orbits (green) and the stable invariant manifolds of
the L2 HLO (black) with the Poincaré cut at the positive y-axis; (b) second order intersections of the forward-propagated lunar collision
orbits (red) and the unstable invariant manifolds of the L2 HLO (black) with the Poincaré cut at the positive y-axis; C̄ = 3.01 and ẋ ≥ 0.
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It is quite remarkable how, similarly to what obtained by Oshima et al. [21], the invariant manifold of the HLO
in L2 shadows the intersections of the collision orbits. The same behaviour is recognizable at lower values of
C̄ (again, not shown here). However, the latter invariant manifold shadows part of the whole collision-orbit
figure, namely the external region only, where the collision orbits are rarefied, since represented by a low-
density trace of points. An example of a collision orbit piercing the Poincaré cut close to an intersection of
the invariant manifold of the L2 HLO with the same cut, is depicted in Fig. 3.15, together with the associated
trajectory from the invariant manifold. Their similarity is evident.
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Figure 3.15: (a) Forward-integrated collision orbit (straight yellow) and orbit approaching L2 HLO on the stable manifold (dashed
magenta), from two close initial points on the Poincaré cut. Zero Velocity Curve highlighted in grey. Earth and Moon depicted as black
dots; (b) magnification of (a) in a neighbourhood of the Moon.

Analogously to what is observed in Fig. 3.14, the invariant manifolds associated with the HLOs’ of L1 and L3

at the same C̄ can be represented: as shown in Figs. 3.16a and 3.16b, respectively for L1 and L3 HLOs’ for the
stable branch only (both exterior and interior), they maintain the shadowing characteristic with the collision
orbits.
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Figure 3.16: First order intersections of lunar ejection orbits (green) and the stable invariant manifold of (a) L1 (magenta) and (b) L2
(cyan) HLOs’ with the Poincaré cut at the positive y-axis.
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A similar result is observable for L1 HLO for what concerns the unstable branch. However, for the first in-
tersection of the unstable invariant manifold emanating from L3 HLO with the positive y−axis, the shadow-
ing characteristic is maintained, although merely in the inner circle of the second-order intersection of the
forward-propagated collision orbits (red): this is comprehensible, since the L3 unstable invariant manifold
does not pass close by the Moon, therefore it does not receive a sensible gravitational influence. Neverthe-
less, the third encounter of the L3 HLO with the Poincaré cut gains back the typical structure shown by the
collision orbits, since trajectories now pass close by the Moon. The same analysis is applicable with the first
intersection of the interior unstable invariant manifold of L3 HLO with the negative y−axis, once compared
to the second-order forward-propagated collision orbits.
Concluding, comparing the results of Figs. 3.14a and 3.14b with Figs. 3.12a and 3.12c it can be inferred how
the intersections of the invariant manifold associated with L2 HLO may have a separatrix nature with respect
to the lunar energy at perilune for trajectories approaching the Moon. Figure 3.17 shows how the external part
is ruled by the invariant manifold emanating from L2 HLO (black), while the internal one by the L1 HLO (ma-
genta). The invariant manifolds are computed slightly changing C̄ , according to the algorithm highlighted
in Section 2.2.1, therefore the location of the points loses in accuracy. However, it seems how the invariant
manifolds emanating from L2 HLO (black) are slightly shifted from the H2 = 0 boundary. Although not shown
in this report, the same procedure has been repeated for different areas and for a range of 2.97 ≤ C̄ ≤ 3.01.
If the analysis is limited to a particular C̄ , the separatrix behaviour with respect to perilune H2 is overall the
same across the cut; however, by comparing the results for different values of C̄ , the outcome changes, since
the separatrix nature is once more imputable to the invariant manifold of the HLO and once to the collision
orbits. Therefore, it can be stated how it exists a different (and unknown up to now) object, which stands in
between the two elements here treated, namely collision orbits and invariant manifold of HLOs’, carrying this
interesting separatrix property about H2. This report does not show who this character is, although it claims
how it is bounded by the collision orbits and the treated invariant manifolds.
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Figure 3.17: Trend of H2 at perilune (in blue) for trajectories propagated from the Poincaré cut; (a) first-order intersections of backward-
propagated lunar ejection orbits (green) with stable invariant manifold of L2, L1 and L3 HLOs’ (black, magenta and cyan respectively);
in blue, H2 for forward-propagated trajectories; (b) top-view of (a); (c) second-order intersections of forward-propagated lunar ejection
orbits (red) with unstable invariant manifold of L2, L1 and L3 HLOs’ (black, magenta and cyan respectively); in blue, H2 for backward-
propagated trajectories; (d) top-view of (c).
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3.4. Conclusion and possible applications
The analysis performed in the previous sections outlines important qualitative characteristics about the M2M
transfers in the Earth–Moon CR3BP. This section summarizes the most prominent aspects, presenting pos-
sible applications of the latter as a preliminary trajectory design or analysis tool; indeed, due to the simpli-
fication introduced by the dynamical model, the applicability of this research is constrained to a first-order
design only.
In the first part, the features of the intersections of lunar collision orbits with the Poincaré cut on the positive
y-axis are extensively discussed. In particular, Section 3.2.2 reports the location of the points on the cut so
that the propagated trajectories have certain characteristics in terms of minimum distance from the Moon,
angular momentum and energy at perilune, referred to as r2, h2 and H2 respectively.
In order to find a proper M2M transfer, a certain distance from the intersections of the collision orbits with
the cut needs to be maintained, as shown in Fig. 3.10c. This limits the available space to certain regions which
are not too far from but not too close to the intersections of the collision orbits with the cut; however, by look-
ing at the behaviour of the perilunes, an initial point on the cut so that a certain condition is reached can be
easily selected. This is helpful for trajectory design and analysis purposes.
For what concerns the angular momentum at perilune, lunar collision orbits show a parabolic-like separa-
trix nature for trajectories approaching and departing from the Moon, distinguishing the prograde from the
retrograde motion. The energy H2 for trajectories approaching the Moon at perilune, shows an analogous
parabolic-like behaviour, although with respect to a particular curve different from the one drawn by lunar
collision orbits: together with what is described for h2, this can be leveraged to target specific conditions at
lunar encounter, both qualitatively (in sign) and to a lesser extent quantitatively (in magnitude). This knowl-
edge can be employed as an analysing tool: indeed, H2 is a key-element when referring to orbital capture,
while the sign of h2 is an important parameter for lunar fly-by.
In Section 3.3, the invariant manifolds associated with HLOs’ about the collinear Lagrangian points are treated
together with lunar collision orbits in order to highlight their relation: following from Conley [7], these invari-
ant manifolds have an intrinsic separatrix behaviour for what concerns the inbound and outbound motion of
a massless body (like a spacecraft) with respect to the analysed system (for example, Earth–Moon). Extend-
ing his results to the case discussed in this report, a threefold behaviour for the orbits propagated from the
cut can be observed: depending on the location of the starting point, they can remain within the originating
zone (inner and outer), they can asymptotically reach the HLO or they can escape from one zone reaching
the other one. With reference to Fig. 3.13, a point on a blue region can be potentially selected in order to
have a backward close encounter with the Earth and at the same time leverage the information brought by
the invariant manifold. An example of a possible behaviour is depicted on the cut in Fig. 3.18a for a trajectory
experiencing a ballistic Earth-M2M-escape sequence (green dot), later plotted in Figs. 3.18c and 3.18d in both
the synodic and Earth-centered inertial reference frame. This can be used to obtain a first-guess solution for
a highly elliptic orbit which actively and repeatedly benefits from Moon’s presence in order to ballistically
escape from the Earth–Moon system: this is, to a certain extent, the baseline of JAXA’s DESTINY+ mission. As
a subsequent example, in Fig. 3.18b two points are highlighted which, once propagated, direct the spacecraft
towards an HLO in L2 and L3 (yellow and magenta, respectively). The propagated trajectories, both fully bal-
listic and accounting for a single M2M transfer, are shown for the HLO at L2 in Figs. 3.18e and 3.18f and at L3

in Figs. 3.18g and 3.18h. Collision orbits clearly demonstrate a similar behaviour to the invariant manifolds
emanating from HLOs’: this may suggest how the former can be employed as a substitute of the latter, being
less complex to compute and behaving better on a wider energetic range.
All in all, new characteristics concerning collision orbits are here shown, which are not addressed in the ex-
isting literature. The knowledge presented in this chapter, concerned with the single M2M transfer in the
Earth–Moon CR3BP, is further extended in the next one, by embracing more complex themes. For this rea-
son, more general remarks pertaining to the subject here treated are delayed to the conclusions of Chapter 4.
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Figure 3.18: (a) & (b)
(
1st bw, 2nd fw

)
y+ intersections (green and red respectively) and stable invariant manifolds from L2 and L3 HLOs’

(black and cyan respectively). C̄ = 3.01. Earth-M2M-escape ballistic sequence propagated from the cyan dot of (a) depicted in (c) and
(d) for the synodic barycentric and Earth-centered inertial reference frames (≈ 238 days); Earth-M2M-HLO in L2 ballistic sequence
propagated from the yellow dot of (b) depicted in (e) and (f ) for the barycentric synodic and Earth-centered inertial reference frames
(≈ 208 days); Earth-M2M-HLO in L3 ballistic sequence propagated from the magenta dot of (b) depicted in (g) and (h) for the barycentric
synodic and Earth-centered inertial reference frames (≈ 313 days). Earth and Moon are black dots in the synodic frame, while lunar Hill’s
sphere is as a dashed circle. Lunar orbit about the Earth plotted as a dashed circle in the inertial frame.





4
Extended M2M transfer in the Earth–Moon

CR3BP

With the results shown in the previous chapter, more complex topics are here discussed, extending the con-
cept of the single M2M transfer in the Earth–Moon CR3BP. The structure is divided in three main parts. Lunar
collision orbits and Poincaré cuts are again largely employed: in Section 4.1, a method to obtain ballistic se-
quences of M2M transfers is presented, while in Section 4.2 the constraint of a ballistic trajectory is removed,
allowing to obtain controlled M2M transfers by means of a ∆v . Section 4.3 concludes both this chapter and
the discussion concerning M2M transfers in the CR3BP.

4.1. Ballistic multiple M2M transfer
In this section, a method to obtain a so-called ballistic multiple M2M transfer is highlighted. First, an impor-
tant definition is here given:

Definition Multiple M2M transfer:
A multiple M2M transfer, interchangeably referred to as sequence of M2M transfers, is defined as a succession
in time of single M2M transfers which are mutually and continuously patched.

The main idea behind a multiple M2M transfer is based on the same approach outlined in Section 3.2, al-
though the complexity is here enhanced: briefly, the M2M transfers are found by propagating points on the
Poincaré cut at the positive y−axis which are close to both the second-order forward-propagated and first-
order backward-propagated intersection sets of the collision orbits with the common cut, briefly referred to
as

(
1st bw, 2nd fw

)
y+. This combination of orders is one of the best two options (together with its symmetric

counterpart) since both sets are obtained by the collision orbits which travel the closest distance between
the start (namely the Moon) and the Poincaré cut (the positive y−axis); this leads to the lowest possible con-
tribute by the nonlinear dynamics to the trajectory.
However, different orders of intersections may be used: if for example a region of the search space on the cut
has the peculiarity of having points from the

(
1st bw, 3r d bw

)
y+ sufficiently close, that area is probably reach

of feasible M2M transfers, which can be obtained with a forward-propagation. However, with this approach,
two drawbacks may occur. First, the collision orbit may perform a loop on the cut, therefore misleading the
search. Second, as already suggested, the higher the order, the stronger the nonlinear effect of the dynamics
since the longer the time to re-encounter the Moon. As it is stated above, in the latter case the propagation is
performed in one direction only (forward) and there is no patching in between a single M2M transfer as it is
done in Section 3.2.1: two starting points on the same cut which are slightly shifted may consequently lead to
two completely different trajectories. In a similar fashion, this idea may be applied to the

(
2nd fw, 4th fw

)
y+

intersections.
Following, the concept of a multiple M2M transfer is quite straightforward: indeed, taking points on the
Poincaré cut which are simultaneously close to every of the above mentioned cuts may lead, after a proper
propagation, to sequences of triple, double and single M2M transfers (the latter representing an extreme
case). The intersections are referred to as

(
1st bw, 3r d bw, 2nd fw, 4th fw

)
y+, consistently with the previous

33
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nomenclature.
In order to show where these areas are, a grid search is performed to cover the whole feasible region on the
cut; subsequently, every point in this grid is checked whether it has at least one point from every of the anal-
ysed cut in its neighbourhood. The latter is defined as an ellipse centered at every grid point, with semiaxes
ry = 0.04, r ẏ = 0.01, whose magnitudes are defined by trial and error. Fig. 4.1a depicts the four analysed cuts,
while Fig. 4.1b highlights the points of the grid complying with the requirement mentioned above (black
dots). These points are propagated both forward an backward in time: if they comply with the requirements
of a triple multiple M2M transfer, they are marked in yellow, while in magenta if representing a sequence of
two M2M transfers. In Fig. 4.2a the trajectory propagated from one of the yellow points of Fig. 4.1b is pre-
sented, highlighting the triple M2M transfer, and subsequently magnified in Fig. 4.2b to point out the four
different lunar swing-bys. Figure 4.2c highlights the trends in r2 (red) and H2 (blue) in time.
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Figure 4.1: (a)
(
1st bw, 3r d bw, 2nd fw, 4th fw

)
y+ intersections (green, cyan, red and orange respectively) with the Poincaré cut on the

positive y-axis with C̄ = 3.01 and ẋ ≥ 0; (b) magnification of (a), with highlighted the candidate points for the propagation (7207, black),
the actual points generating a sequence of three and two M2M transfers (yellow, 1136 ≈ 16% and magenta, 889 ≈ 12% respectively). Mind
how every sequence of three M2M transfers can be regarded as two distinct sequences of two M2M transfers.
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Figure 4.2: (a) Example of a sequence of three M2M transfers. Earth and Moon depicted as black dots, lunar Hill’s sphere as a dashed cir-
cle about the Moon; (b) magnification of (a) about the Moon. Green and red dots marking the start and end of the trajectory, respectively;
(c) trend in time of r2 and H2 (red and blue, respectively) for the trajectory highlighted in (a) and (b).
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4.2. Controlled M2M transfer
In this section, the ballistic constraint is removed, to seek controlled M2M transfer, by means of an impulsive
maneuvers. The structure is the following: in Section 4.2.1 two possible optimal strategies to correct a missing
single M2M transfer are highlighted, while in Section 4.2.2 a sub-optimal iterative approach is outlined, to
systematically retrieve a multiple M2M transfer.

4.2.1. Single M2M transfer
The underlying philosophy of this section is to properly correct the state using impulsive ∆vs’ in order to
meet the M2M transfer requirements, by allowing a second fly-by with the Moon, otherwise missed.
The maximum ∆v that can be considered as impulsive is taken as 5 m/s, referencing to EQUULEUS data
[22]. The motivation behind this boundary can be explained by the following statement: a maneuver can
be considered as impulsive if the path covered by the spacecraft in the time frame needed by its engine to
actually perform that ∆v is negligible with respect to the system scale. To support the previous statement, in
Fig. 4.3 a collection of six different initial conditions is propagated (blue), for an amount of time derived from
engine’s characteristics, reported in Table 4.1. The propagation time is obtained accounting for an increasing
∆v = {1, 5, 12} m/s from Fig. 4.3a to Fig. 4.3c (left to right). A ∆v = 12 m/s cannot be treated as impulsive
even when the spacecraft is far from the main attractive bodies, while a ∆v = 1 m/s can be approximated as
impulsive even for trajectories close to Earth: a∆v = 5 m/s is found to be a possible optimal choice, especially
for trajectories far enough from both primaries. This represents a really simple and short qualitative analysis,
which is much more complex whereas one treats a real mission scenario. However, in order to obtain a fair
upper boundary for the admissible ∆v , this analysis is thought to be legitimate.
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Figure 4.3: Different trajectories (blue) propagated for the amount of time needed by EQUULEUS engine ([22]) to perform a maneuver
of (a) ∆v = 1 m/s, (b) ∆v = 5 m/s, (c) ∆v = 12 m/s. Earth and Moon depicted as black dots, lunar Hill’s sphere as dashed circle about the
Moon.

Isp Mpr opel l ant Mwet T̄tot al ∆v budget

70 s ≈ 1.47 kg < 14 kg 4 mN (100% duty cycle) 80 m/s

Table 4.1: EQUULEUS’ engine characteristics ([22]). Isp indicates the specific impulse, M the mass and T̄ the thrust.

For what follows in this section two main optimizing approaches are discussed: a shooting technique with
a fixed initial state is first studied, employing the Differential Corrector highlighted in Section 2.1.4 to adjust
the initial state in order to meet the M2M transfer criteria. Successively, a more complex algorithm used
to target a specific condition on a Poincaré cut is analysed, using MATLAB built-in function fmincon. Two
equal example-trajectories are treated in both cases, in order to obtain a more general view either within and
between the two strategies.

Shooting with fixed initial position
The Differential Corrector discussed in Section 2.1.4 is used to opportunely tune a certain state along the
trajectory: a re-encounter with the lunar Hill’s sphere, missed in the case of a purely ballistic approach, is
achieved. Using the

(
1st bw, 2nd fw

)
y+ intersections of the collision orbits, two points on the cut which are

close to the forward set but properly far from the backward one are taken into account, in order to have, for
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a limited propagation time, a trajectory encountering the lunar Hill’s sphere just once, namely backward in
time. Since the orbit is discretized in n different epochs, the idea is to have n different trajectories: each of the
latter is equal to the unperturbed one up to the epoch where the impulse is applied. For every trajectory the
impulse is applied once, at the ti epoch, with i ∈ {1, 2, . . . , n −1}. This gives a first fair idea on where to thrust
in order to have an M2M transfer with the lowest consumption in terms of ∆v . However, the initial part of
the unperturbed trajectories is not here taken into consideration: indeed, flying close to the Moon enhances
the weight of the nonlinear dynamics, therefore the assumption made for the derivation of the STM loses in
terms of efficiency and the algorithm rapidly diverges.
The selected points on the cut are depicted in Fig. 4.4a, while the associated unperturbed trajectories are
shown in Fig. 4.4b. The latter clearly miss the second lunar fly-by.
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Figure 4.4: (a) location of the propagation points on the
(
1st bw, 2nd fw

)
y+ Poincaré cut; (b) trajectories propagated forward and back-

ward in time from the black dots in (a). Initial and final points marked by green and red dots respectively.

In order to retrieve at ti the required ∆vi leading back to the lunar Hill’s sphere, the STM Φ (ti , tn), which
maps a perturbation from ti to tn , is defined thanks to Eq. (2.5) as

Φ (ti , tn) =Φ (t0, tn)Φ (t0, ti )−1 (4.1)

so that the equation which linearly maps a perturbation at the generic epoch ti to a perturbation at epoch
tn becomes δxn =Φ (ti , tn)δx i . The velocity components only, at epoch ti , can be corrected in order to have
a shift in final position at tn . Therefore, only the up-right part of the 4×4 system of equations is taken into
account, leading to the following set of equations[

δx
δy

]
n
=

[
φ1,3 φ1,4

φ2,3 φ2,4

][
δẋ
δẏ

]
i

(4.2)

where φk, j is the (k, j )th term ofΦ (ti , tn).
For this optimization, the cost function is set as a final distance from the Moon equal to 90% of the lunar Hill’s
sphere radius. Considering as x (t ) =φ (x i ; t ) the solution of Eq. (2.8), a radial unit vector ur , directed from the
unperturbed final state xn =φ (x i ; tn) (whose distance from the Moon is r2 (xn)) to the Moon is constructed,
so that the final shift in position is straightforward as[

δx
δy

]
n
= [r2 (xn)−0.9RHi l l ]ur (4.3)

Substituting Eq. (4.3) in the left-hand side of Eq. (4.2) and inverting the system, the equation of the impulse
is obtained. Due to the nonlinearity of the problem, the steps mentioned above are iterated. Although being
a really simple shooting algorithm, an optimization problem statement can be outlined as:

Find y = (
∆vx ,∆vy

)
i , such that :

|r2
(
xn

(
y
))−0.9RHi l l | is minimized

(4.4)
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Where the cost function is now expressed in terms of the variable y , thanks to Eq. (4.2).
A visual example of two corrected trajectories is reported in Fig. 4.5a, while the needed∆v (in terms of magni-
tude) versus the distance in time between the epoch at the impulse and the second encounter with the Moon
is reported in Fig. 4.5b. In particular, the latter outlines how it is not straightforward to state the sooner, the
cheaper for what concerns the impulsive maneuver: this is due to the involved nonlinear dynamics. None of
the cases respects the 5 m/s boundary for the impulse: this is generally due to the trajectory under study, since
using a different transfer which spends more time flying before the second lunar encounter usually leads to
a lower corrective ∆v . Both the unperturbed trajectories fall quite apart from the lunar Hill’s sphere, as out-
lined by the red points in Fig. 4.4b as well as by the dashed curves in Fig. 4.5a: the resulting lowest impulse
for a trajectory whose starting propagation point on the Poincaré cut was closer to the backward-propagated
intersection set of the lunar ejection orbits (green in Fig. 4.4a) would have probably been less.
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Figure 4.5: (a) Corrected trajectories (straight lines) compared to unperturbed ones (dashed lines). Impulses given by black arrows and
magnified by a factor of 15. Initial and final state depicted as green and red points respectively; (b) Time of the impulse with respect to
perilune vs magnitude of the impulse. Red and green points represent the plotted case in (a), as well as the minima for the corrected red
and green dashed trajectories.

In conclusion, this approach may lead to feasible results in order to recover a proper M2M transfer from
an otherwise single-flyby trajectory. However, few drawbacks are evident: first, the target condition cannot
be sufficient, since aiming at a particular state, or a condition in terms of energy can be preferred; second,
this approach loses in terms of effectiveness whereas the nonlinearities are enhanced; third, as previously
indicated, the best results exceed the imposed boundary in∆v ; fourth, a strategy with more than one impulse
would be hard to properly set-up.
This approach represents one of the possible strategies to recover a properly defined M2M transfer. Other
solutions may be preferred, for example targeting a fixed position at the end, as well as a different distance
from the Moon or a certain condition on energy or angular momentum at the re-encounter. In any case, the
same approach can be repeated when looking for a backward encounter with the lunar Hill’s sphere, as well
as a double one (both forward and backward): however, since this approach does not look promising in terms
of ∆v magnitude, every other possible implementation is here discarded.

Targeting the Poincaré cut
In this case, the yet-acquired knowledge of the intersections of the lunar ejection orbits with the Poincaré cut
is employed in order to optimally correct a non-M2M transfer, making it comply with the specified M2M re-
quirements. An initial point on the cut, similar to what is seen above, is selected, namely close to the forward
set (red in Fig. 4.4a) but properly far from the backward one (green in Fig. 4.4a). By means of an impulsive
maneuver, the optimization aims at correcting that intersection by reducing its gap with the backward set.
For this reason, the same black dots in Fig. 4.4a are here used as an example: however, the optimizer seeks
to correct with an impulse from the moment the unperturbed trajectory leaves the lunar Hill’s sphere, so
that the backward M2M requirement is always met. This because the optimizer, represented by MATLAB
fmincon routine, has a softer linear approximation, despite what is done with the Differential Corrector. The
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optimization problem statement is

Find y = (
∆vx ,∆vy , ti mpul se , ti nt

)
, such that :

100∗d([y, ẏ]i nt ,P-cuty,ẏ ) is minimized

subject to :

ti mpul se − ti nt ≤ 0, xi nt = 0
−p1000m/s
−p1000m/s

t0,unp

ti nt ,unp −0.5

≤ y ≤


p

1000m/sp
1000m/s

ti nt ,unp +0.5
ti nt ,unp +0.5


(4.5)

The optimized variable y is different to what is reported in the former section: in particular, y is constituted
by the components of the impulse ∆vx ,∆vy , the epoch at the impulse ti mpul se and at the intersection with
the Poincaré cut ti nt , which corresponds to the final propagation time for the optimized arc. The trajectory
is then ballistically propagated from ti nt onwards. The cost function is represented by the distance d( ) on
the y ẏ-plane between the intersection of the perturbed trajectory (i.e. the one obtained by applying the
impulsive maneuver) with the Poincaré cut, and the closest point from the set of the intersections of the first-
order backward-propagated lunar ejection orbits with the same cut, referred to in Eq. (4.6) as P-cuty,ẏ and
shown in green in Fig. 4.4a. Since the optimization algorithm excels in efficiency whereas the cost function is
close in magnitude to the unit value, the latter is increased by two orders of magnitude, due to the employed
scale. Linear constraints are added on the epoch at impulse, occurring before the intersection with the cut,
on the x-component of the state at the epoch of intersection (this forces the Poincaré cut piercing) and on
the maximum admissible values of the different components of the variable y . The unperturbed values of
the epoch at the intersection with the cut and at the exit from the lunar Hill’s sphere, respectively ti nt ,unp and
t0,unp , are employed as reference for the time boundaries.
The boundaries for the ∆v components exceed what stated for the maximum impulse; this is accepted in
order to understand more in depth the behaviour of the optimizer, leaving it more freedom. An impulsive
maneuver always causes a change in Jacobi constant C̄ , except when the impulse itself merely rotates the
instantaneous velocity vector without changing its magnitude: this potentially causes a loss in validity for the
utilized intersections of the ejection orbits P-cuty,ẏ for the computation of the cost function, since they are C̄ -
depending. However, the impulse components are so low that a drastic change in C̄ is not here achieved; this,
combined with the almost negligible change in the shape of the intersections of the lunar ejection orbits with
the Poincaré cut on the y ẏ-plane when C̄ is slightly varied (discussed in Section 4.2.2) confirms the validity of
the approximation. With the same unperturbed trajectories as depicted in Fig. 4.4b, the optimizing algorithm
is applied: the results are reported in Fig. 4.6a.
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Figure 4.6: (a) Corrected trajectories (straight lines) compared to unperturbed ones (dashed lines). Impulses given by black arrows and
magnified by a factor of 15. Relative impulses’ magnitudes reported in Table 4.2. Initial and final state depicted as green and red points
respectively. Red and green trajectories last for about 90 and 70 terrestrial days, respectively; (b) result of the optimizing algorithm in
terms of piercing the Poincaré cut, from the unperturbed black dots to the optimized blue points.
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As a result, the intersections of the transfers on the y ẏ-plane have shifted, as confirmed in Fig. 4.6b by the
blue points. Both figures are obtained with a specific first guess, here not reported. The nonlinear dynamics
makes the final optimized result highly dependant on the first guess. Indeed, for the identical problem state-
ment highlighted in Eq. (4.6), but for other two different first guesses, the solution changes, as highlighted in
Figs. 4.7a and 4.7b. The associated ∆vs’ are reported in Table 4.2.
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Figure 4.7: Corrected trajectories (straight lines) vs unperturbed ones (dashed lines). Impulses given by black arrows and magnified by
a factor of 15. Impulses’ magnitudes reported in Table 4.2. Initial and final state depicted as green and red points respectively. Red and
green trajectories last for about 90 and 70 terrestrial days, respectively. Two different initial guesses used for (a) and (b).

# Figure ∆v [m/s] ∆C̄ [-]
Fig. 4.6a Green: 23.5 - Red: 32.5 Green: -0.004 - Red: 0.027
Fig. 4.7a Green: 4.62 - Red: 29.9 Green: -0.005 - Red: 0.053
Fig. 4.7b Green: 4.78 - Red: 25.8 Green: -0.004 - Red: 0.060

Table 4.2: ∆vs’ and ∆C̄ s’ of the different optimized perturbed trajectories.

For some of the analysed cases, the results comply with the requirement of the maximum impulsive ∆v .
When this does not happen, a possible solution for lowering the corrective maneuver consists in splitting the
total cost in a number of impulses N > 1. The new problem statement becomes

Find y = (
∆vx,1,∆vy,1, . . . , . . . ,∆vx,N ,∆vy,N , ti mpul se,1, . . . , ti mpul se,N , ti nt

)
,

such that :

100∗d([y, ẏ]i nt ,P-cuty,ẏ ) is minimized

subject to :

ti mpul se,i − ti mpul se,i+1 ≤ 0 ∀i ∈ {1, 2, . . . , N −1}

ti mpul se,N − ti nt ≤ 0

xi nt = 0

−V̄
...

t0,unp
...

ti nt ,unp −0.5

≤ y ≤



V̄
...

ti nt ,unp +0.5
...

ti nt ,unp +0.5



(4.6)

Without deepening in the criteria for selecting an optimum number of impulses as well as showing a com-
parison for different initial guesses, an example with two and five impulses is depicted in Figs. 4.8a and 4.8b



40 4. Extended M2M transfer in the Earth–Moon CR3BP

respectively, with supporting data in Table 4.3. V̄ = 5 m/s and V̄ = 1.5 m/s in Eq. (4.6) for the two- and five-
impulses case respectively.
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Figure 4.8: Corrected trajectories (straight lines) vs unperturbed ones (dashed lines). Initial and final state depicted as green and red
points respectively. Red and green trajectories last for about 90 and 70 terrestrial days, respectively; (a) two impulses per trajectory, V̄ = 5
m/s, magnification by a factor of 50; (b) five impulses per trajectory, V̄ = 1.5 m/s, magnification by a factor of 300. Data reported in
Table 4.3

# Figure ∆vi [m/s] ∆vtot [m/s] ∆C̄ [-]

Fig. 4.8a
Green:

(
3.03 1.68

)
Red:

(
4.97 6.99

) Green: 4.71

Red: 11.96

Green: −0.002

Red : 0.020

Fig. 4.8b
Green:

(
1.17 1.37 0.90 0.47 0.37

)
Red:

(
1.01 1.46 1.80 1.82 1.77

) Green: 4.28

Red: 7.86

Green: −0.005

Red: 0.020

Table 4.3: ∆vs’ and ∆C̄ s’ of the different optimized perturbed trajectories in Fig. 4.8

As a conclusion, using more impulses allows to maintain the approximation discussed above. As shown in
Table 4.3 it seems how the higher the amount of impulses is, the lower the total fuel consumption becomes:
however, this happens for the particular cases here analysed, therefore no general conclusion can be delin-
eated. All in all, the approach here described seems more efficient with respect to the previous one.

4.2.2. Multiple M2M transfer
In this section a potential strategy to derive a sequence of M2M transfers by using impulsive maneuvers is
outlined.
In agreement with what is shown in the previous sections, a deep usage of the Poincaré cuts is here performed:
however, dealing with impulses and multiple M2M transfers, the general view needs to be extended, in order
to encompass a wider energetic domain. Indeed throughout this chapter every trajectory is conceived (or
rather approximated, as in Section 4.2) with a fixed Jacobi constant C̄ : however, the latter is often changed
in magnitude if an impulsive maneuver is performed. Therefore the intersections of lunar ejection orbits,
computed for a range of different C̄ , with the Poincaré cut are employed as a framework to opportunely guide
the state to achieve the main aim, namely building a sequence of M2M transfers.
A great difficulty lies underneath this problem: treating a sequence of M2M transfers is a very complex issue,
due to the nonlinearities within the dynamical model, especially when passing by the Moon. This did not
allowed the author to derive an efficient optimization strategy to correct a missing M2M transfer and, at the
same time, set up the state for the next M2M transfer, within an iterative algorithm. Therefore, unless a very
good first guess and a good solver are available, it is discouraged to optimize the sequence as a whole, in
favour of an approach which singularly treats every M2M transfer.
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As a consequence, in the remaining part of this section a sub-optimal approach is outlined in order to com-
pute a multiple M2M transfer, by employing a pile of Poincaré cuts on the negative x-axis.

Jump the Poincaré cut
A jumping-strategy for the design of a multiple M2M transfer is here developed; the approach is held on a
really basic level, due to the complexity of the problem.
Conversely to what is shown in this whole report, a different Poincaré cut is here employed, namely the neg-
ative x-axis: this does jeopardize the correctness of neither the final output of this section, nor the rest of the
chapter. For the sake of simplicity, every impulse, if needed, is only applied when the state is located at the
cut. The choice of the cut location is quite simple as well: although no optimization is sought, since the cut is
on the furthest point from the secondary (namely the Moon), any impulse is expected to be near-optimum. In
agreement with the previous theory, the intersections of the lunar ejection orbits are shown on the xẋ-plane.
In Fig. 4.9a the

(
1st bw

)
x− intersections are depicted, for C̄ ≈ 2.963, while in Figs. 4.9b to 4.9d the same inter-

sections are reported, with the associated value of C̄ ∈ {2.930, 2.935, . . . , 3.000} on the z−axis. As previously
suggested, the intersections slightly move on the xẋ-plane according to a change in C̄ , while the shape seems
to be maintained.
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Figure 4.9: (a) first-order intersections of the backward-propagated lunar collision orbits with the cut at the negative x-axis, with C̄ ≈
2.962 and ẏ ≥ 0; (b) top-view of a collection of intersections of first-order intersections of backward-propagated lunar collision orbits
with the same cut as in (a), for a the range C̄ ∈ {2.930, 2.935, . . . , 3.000}; (c) 3D-view of (b); (d) side-view of (b).

Using the knowledge from this pile of Poincaré cuts, a multiple M2M transfer can be designed, controlled by
means of impulsive maneuvers.
In order to provide an example, a collection of points close to the C̄ ≈ 2.963 intersections is propagated for-
ward in time and successive intersections with the same Poincaré cut are stored; this means how higher order
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encounters with the Poincaré cut may appear within the stored states. Later, if the latter fall within a certain
region of the xẋ-plane (selected to be a square encompassing the

(
1st bw

)
x−), they are perturbed by a∆v : the

underlying idea is similar to what is discussed in Section 4.2, namely an impulse is provided so to reduce the
gap between the state and the

(
1st bw

)
x− intersections. Thanks to the results of Section 3.2.2, this ensures to

meet the M2M transfer requirement when the (perturbed) state itself is propagated forward in time.
The used strategy to fill the gap with the cut is really basic and it does not employ any optimization scheme.
In this method, a ∆v augments the velocity components of the unperturbed state at the cut by means of two
simultaneous maneuvers: an iso-C̄ and/or a normal-C̄ one. The former, found to be the less optimal among
the two, consists in a movement of the intersection on a C̄ -fixed plane, along the ẋ-axis. This perturbation is
added whereas the minimum gap between the unperturbed intersection and the

(
1st bw

)
x− set at the same

C̄ -level is larger than a certain threshold (set at 0.02 units): this represents an iso-C̄ shift, which affects the
ẋ-component of the state by two orders of magnitude more than the ẏ-one (which explains the lower opti-
mality). The latter, namely the normal-C̄ maneuver, is retrieved by a movement along the C̄ -axis (resulting in
an iso-ẋ maneuver), in order to carry the state towards the C̄ -plane where the associated

(
1st bw

)
x− has the

point with a minimal distance with respect to the unperturbed state.
One of the obtained output is shown in Fig. 4.10d. The path drawn by the successive intersections among the
different cuts is shown in Figs. 4.10a to 4.10c.
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Figure 4.10: (a) Path among the different cuts of the perturbed trajectory in (d). Initial, mid and ending points marked in green, black
and red; (b) top-view of (a); (c) side view of (a); (d) resulting trajectory (blue) from (a). Clearly notice the location of the start, mid and
ending points (green, black and red) at the intersections with the cut.

Starting from the green intersections in Fig. 4.10a, the trajectory performs a triple M2M transfer (four black
legs, five associated points) till it reaches the final red point. Every jump in the figure incorporates both the
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propagation and the subsequent perturbation on the cut: this means every black segment links a perturbed
state to the next perturbed one, namely after the subsequent maneuver at the cut, therefore often being at a
different C̄ value. Figs. 4.10b and 4.10c complete the example by showing the top- and side- view. In Fig. 4.11
the different impulses are clearly evident from the jumps in C̄ : the very last one is missing, since the transfer
happens to be ballistic. In Table 4.4 data concerning the magnitude of the associated ∆vs’ are reported. It is
evident how both the impulses and the time between lunar encounters are sub-optimal.

0 100 200 300 400 500 600 700 800
2.94

2.96

2.98

3

3.02

Figure 4.11: Trend of the value of C̄ for the trajectory depicted in Fig. 4.10d. Notice how the last jump misses since no correction is
needed.

#Impulses 1st 2nd 3r d 4th

∆v [m/s] 5.04 37.07 3.97 0 (ballistic)

Table 4.4: Characteristics of the impulses associated with the trajectory in Fig. 4.10d.

Although interesting, the method outlined in this section for multiple M2M transfer retrieval is highly depen-
dant on the nonlinearities at the Moon: indeed few points among the initial collection of propagated inter-
sections (coming from the C̄ ≈ 2.963 cut, as reported above) manage to produce a high number of successive
M2M transfers, since many diverge when leaving the lunar Hill’s sphere. This is the same issue occurring
when treating this problematic transfer on an iterative optimization scheme.

4.3. Conclusions
This section summarizes the main features of this chapter and provides both advantages and disadvantages
of the employed methods.
In Section 4.1, a method to obtain ballistic multiple M2M transfers is discussed: by employing lunar colli-
sion orbits at different orders of encounter, dislocated regions on a common Poincaré cut are defined, whose
points, once propagated, generate sequences of two and three ballistic M2M transfers. The survey stops at
a certain order of encounter, although extending the results to obtain a larger sequence of M2M transfer is
rather straightforward, as long as the nonlinearity does not hinder it.
The concept of a ballistic M2M transfer is then extended. In Section 4.2.1 two different strategies, employing
optimized impulses, are used to recover from a missing single M2M transfer. Studies with the Differential
Corrector scheme show worse results when compared to what is obtained with MATLAB fmincon routine.
Although it is not shown here, the optimization algorithm can be opportunely tuned in order to meet a dif-
ferent specific condition, for example a final energy or angular momentum. As a further extension, a method
to obtain sequences of corrected M2M transfer is highlighted in Section 4.2.2. A pile of Poincaré cuts is em-
ployed to steer the progressive intersections of the trajectory, in order to meet the M2M requirements. Only
sub-optimal solutions can be retrieved, which can be used as first guesses for a subsequent optimization.
Being a conclusive section before dealing with a more refined dynamical model, a general overview of the
obtained results is now outlined. The outcome is limited by the intrinsic nature of the dynamical model:
indeed, by taking into account the presence of the Earth and the Moon only, therefore discarding the grav-
itational influence of the Sun, the trajectories are sufficiently precise whereas they do not exceed a certain
region about the Earth–Moon system. Fixing a strict boundary is either hard and useless, since the solar in-
fluence may vary depending on the problem geometry: however, in the existing literature usually a limit of
≈ 1.5(E M) = 576607.5 km about the Earth–Moon barycentre is defined, corresponding to less then Earth’s SOI
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(Qi and Xu [24]). Therefore this entire analysis is enough precise whereas trajectories do not largely exceed
this boundary.
The used approach has another important drawback: indeed, according to the given definition of the M2M
transfer, the latter may not have to cross the cut in order to comply with the requirements. A looping be-
haviour close by the Moon can correctly fulfil the latter: for example, even though being quite an extreme
case, an HLO about either L2 or L1 with the proper level of energy can be classified as an M2M transfer, al-
though it does not cross the positive y-axis cut. In Chapter 5 this concept is extended.
Concluding, last two chapters show new methods to construct both single and multiple M2M transfers, in ei-
ther a ballistic or corrected approach, by exploiting existing and acquired knowledge of lunar collision orbits.
To the best of author’s knowledge, this kind of trajectories has never been actively employed for preliminary
trajectory design.



5
M2M transfer in the Sun–Earth–Moon

BR4BP

In this chapter, Moon-to-Moon transfers are studied in a more complex dynamical model than what is used
in Chapters 3 and 4. Indeed, the planar Sun–Earth–Moon Bi-circular Restricted Three Body Problem (BR4BP)
is here employed. In this case, Earth and Moon, namely P1 and P2 move in a circular orbit about their com-
mon centre of mass, while the Sun, referred to as PS , revolves in a circular orbit about the latter point. The
problem is simplified once compared to the real dynamics of the involved bodies: however, inaccuracies are
quite slight, as supported by Table 2.2.
The chapter is divided in four parts: in Section 5.1 the main aspects of the new dynamical model are com-
pared to the CR3BP, while in Section 5.2 the two main strategies to obtain single M2M transfers are high-
lighted. In Section 5.3 the latter topic is complicated by referring to sequences of M2M transfers, concluding
with the final assessments in Section 5.4.

5.1. BR4BP analysis
First of all, it is important to properly define how lunar ejection orbits are propagated in this chapter; a Levi
Civita regularization scheme for the BR4BP is not present in the existing literature, therefore the overall prop-
agation scheme, used throughout this whole chapter, acts as follows{

for ‖x −x Moon‖ ≤ RMoon −→ Levi Civita CR3BP scheme

for ‖x −x Moon‖ > RMoon −→ Cartesian BR4BP scheme
(5.1)

where again x represents the state of the spacecraft, x Moon = (1−µ, 0), while RMoon is the radius of the Moon.
This further sustains the choice of switching from the regularized to the Cartesian scheme for the CR3BP
model too, as reported in Section 3.1: indeed, this eases a potential comparison between the two dynamical
models when treating lunar collision orbits. For the sake of correctness, even though almost negligible when
the state is within lunar surface, the trend in time of solar phase angle θS is tracked. The approximation of
the dynamical model for the propagation part within the Moon does not hinder the truthiness of the derived
trajectory: indeed the state is almost at the centre of lunar SOI when propagated with the CR3BP Levi Civita
scheme, therefore the motion of the spacecraft is completely influenced by the gravity of the Moon only, while
negligibly from both Earth and Sun.
Before starting with the description of the approaches used to retrieve M2M transfers in the BR4BP, it is nec-
essary to understand to what degree is the BR4BP dynamical model different from the CR3BP one. For this
purpose, Fig. 5.1 shows two trajectories, propagated in time according to the CR3BP (dashed red) and the
BR4BP (straight blue) model. The only difference between the two figures, is that an inbound lunar ejec-
tion angle θE , with respect to the ZVC, is selected for the trajectories in Fig. 5.1a while an outbound one
in Fig. 5.1b. Within the same figure, trajectories are propagated with exactly the same initial condition. In
Fig. 5.1b the ZVC is pierced by the orbit propagated with the BR4BP model (straight blue curve): this further
confirms the lack of a Jacobi integral in its dynamics, implying the existence of a rather time-pulsating ZVC.
Although a comparison based on few orbits is definitively not enough for obtaining a rigorous discernment
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between the two models, Fig. 5.1 catches the main elements of this difference, in agreement with what stated
in Section 4.3: the 1.5 (EM) limit (roughly 5.7× 105 km), taken as a boundary between the CR3BP and the
BR4BP dynamical predominance, is confirmed. Indeed, trajectories in Fig. 5.1a stay in the inner zone of the
ZVC, therefore their distance from the centre of the reference frame does not exceed the limit, weakening
the effect of Sun’s gravitational pull down: as a result, these two orbits remain quite aligned, although propa-
gated with different dynamical models. The same cannot be inferred for Fig. 5.1b where the two orbits largely
diverge since they experience a stronger perturbation from the Sun, due to the motion in the outer region.
Henceforth the ZVC concept is discarded, due to its evident lack of meaning for trajectories propagated in the
BR4BP.
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Figure 5.1: Lunar ejection orbits propagated for ≈ 65 days with the BR4BP and CR3BP dynamical models (straight blue and dashed red,
respectively) with an equal initial C̄ for an (a) inbound and (b) outbound initial Sun’s phase angle θS0. ZVC depicted in grey, while Earth
and Moon as black dots. Synodic barycentric reference frame.

As a subsequent step, the influence of the initial solar phase angle θS0 on the trajectory is highlighted. For this
analysis, two different initial conditions, marked by different ejection angles θE and equal Jacobi-constant
value C̄ for the lunar ejection orbits are selected, similarly to what is done in Fig. 5.1. Different initial solar
phase angles θS0, ranging 0 ≤ θs0 < 2π are used, and coded accordingly with a blue-to-red scale, as plotted in
Figs. 5.2a and 5.2b.
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Figure 5.2: Lunar ejection orbits propagated for ≈ 30 days with the BR4BP dynamical model, with an increasing initial Sun’s phase angle
θS0 (from red to blue); (a) inbound initial ejection angle; (b) outbound initial ejection angle. Earth and Moon depicted as black dots,
while lunar’s Hill’s sphere as dashed black circle. Synodic barycentric reference frame.
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It is again remarkable from Fig. 5.2a how Sun’s influence is almost negligible in the inner part of the Earth–
Moon system. There is no direct correlation between Sun’s initial position and distance of the orbit from the
system, according to Fig. 5.2b for the external case. Aligned with what is mentioned above, two examples
are not fully representative to discern the main characteristic of the involved models, although they help in
defining important qualitative characteristics. A similar analysis, for a collection of M2M transfers, is shown
in Section 5.2.2.

5.2. Single M2M transfer
In this section, the concept of single M2M transfer is analysed with the BR4BP dynamical model, analogously
to what is explained in Section 3.2 with the CR3BP one. Two different procedures are here highlighted: in
Section 5.2.1 an approach similar to what is described in Section 3.2.1 for the CR3BP is outlined, while in
Section 5.2.2 a completely different strategy is pointed out to obtain an unconventional (or rather quasi-)
M2M transfer, leading to a classification of double-collision orbits.

5.2.1. M2M transfer with a pseudo-Poincaré cut
A similar approach to what is performed in Section 3.2.1 for the CR3BP dynamical model is here devel-
oped, in order to compute an M2M transfer in the BR4BP: orbits are propagated from lunar centre, set at
(x, y) = (

1−µ, 0
)

in the synodic barycentric frame, according to the scheme sequence pointed out in Eq. (5.1),
and their intersections with a Poincaré cut are stored, analysed and used for obtaining the M2M transfers.
One of the most important differences between the CR3BP and BR4BP is the nonautonomous characteristic
of the latter; no first integral can be delineated for this model, as outlined in Section 2.2.2, which implies the
impossibility of obtaining the unique state x and therefore the unique trajectory out of it, by taking a point
on the bidimensional projection of a well-defined Poincaré cut, as it is performed in Chapter 3.
Therefore, the intrinsic usefulness of a Poincaré cut is here limited. However, a Poincaré cut can still be used
as a mere order reductant of the dimensionality of the problem. With the only purpose of discerning what is
treated in this section to what is extensively employed in Chapters 3 and 4, a pseudo-Poincaré cut is defined.
The latter remains a semiaxis, in particular for this analysis the positive y-axis, in order to remain aligned
with Section 3.2.1.
A new set of points to shortly indicate the intersections of the lunar collision orbits with the cut is here intro-

duced: the former is referred to as S j
k,i ⊂ D = {

R2 × [0, 2π)
}
, where i = {

bw, f w
}
, the order-encounter k ∈N+

and j = {
θS0,1, θS0,2, . . .

}
. Due to the adjunct timewise variable θS , the state has now increased its dimen-

sionality by one element, therefore, although not encompassing every variable, a 3D-representation of the
intersections of the lunar ejection orbits with the cut is here employed, with the generic point expressed with

the triple
(
y, ẏ , θS

)
. The approach now aims at finding a set G within the cut where two elements x f w ∈ S

θS0,2

2, f w

and xbw ∈ S
θS0,1

1,bw are close enough (θS0,1 may be different from θS0,2). In this case, the two sets are defined as
the set of the first-order intersections of the backward-propagated ejection orbits, with a starting solar phase
angle θS0,1 and the set of the second-order intersections of the forward-propagated lunar ejection orbits, with
a starting solar phase angle θS0,2, respectively with the positive y−axis: in agreement with what is discussed
in Chapter 3, the combined presence of the two sets can be referred to as

(
1st bwθS0,1 , 2nd fwθS0,2

)
y+. In this

case, the set G mentioned above consists in

G =
{

x∗
2, f w ∈ S

θS0,2

2, f w : A∗ 6=∅
}

(5.2)

where for every x∗
2, f w , the associated A∗ is defined as

A∗ =
{

x1,bw ∈ S
θS0,1

1,bw : d
(

x∗
2, f w , x1,bw

)
< 1

}
(5.3)

and the distance function is d : D2 →R, such that

d(x1, x2) =
(
y1 − y2

)2

r 2
y

+
(
ẏ1 − ẏ2

)2

r 2
ẏ

+
(
θS,1 −θS,2

)2

r 2
θS

(5.4)

where
(
ry , r ẏ , rθS

)
are the semiaxes of an ellipsoid for the three treated variables, whose tuning is θS0-depending.

In the case here pointed out, a value of 0.02 is used for every semiaxis.
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For every element of the set G , the initial point of propagation is obtained by linearly interpolating between
every couple

(
x f w , xbw

)
satisfying Eqs. (5.2) and (5.3). The procedure involves a linearization with respect to

the coordinate ẋ too, which cannot be retrieved by the Jacobi constant, as performed in the CR3BP case.
This method, although incomplete since the four-dimensionality of the problem is not thoroughly covered,
is solved with this approach due to the large computational time a 4D grid search would require.
A result of this analysis, for the simple case θS0,1 = θS0,2 = 0 deg, is plotted in Figs. 5.3a and 5.3b for the 3D-
and top-view respectively, showing with the usual colors the

(
1st bw0, 2nd fw0

)
y+ intersections of the collision

orbits with the positive y-axis Poincaré cut. The forward-propagated set of intersections is obtained by the
backward-propagated one (at a different order encounter) by employing the time symmetry highlighted in
Section 2.2.2. The set G is here evident by the black disconnected points, while the cyan ones represent the
actual M2M transfers. To provide an example, one simple M2M transfer is here shown: in Fig. 5.4a the trajec-
tory is depicted in the synodic frame, while in Fig. 5.4b in the Earth-centered inertial one. As usual, green and
red points mark the start and end of the trajectory, respectively.
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Figure 5.3:
(
1st bw0, 2nd fw0

)
y+ intersections (green and red respectively) with the Poincaré cut on the positive y-axis, with ẋ ≥ 0,

C̄0 = 2.97. Black points representing the ones satisfying Eqs. (5.2) and (5.3), while cyan ones the one where actual M2M transfer are
propagated from; (a) 3D-view; (b) top-view.
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Figure 5.4: One example M2M transfer out of the obtained 796 results in Fig. 5.3; (a) synodic barycentric reference frame. Earth and
Moon depicted as black dots, lunar Hill’s sphere as black dashed circle about the Moon; (b) Earth-centered inertial reference frame.
Lunar orbit depicted as dashed black line. Starting and ending point marked as green and red dots respectively.

The obtained percentage of M2M transfers, out of the totality of candidate points (more than 67%), clearly
highlights the feasibility of this approach for obtaining a single M2M transfer in the BR4BP. However, the
study is consistently harder to handle with respect to what seen for the CR3BP, since a slightly different initial
angle θS0 leads to different intersections on the cut. Moreover, the mathematical beauty given by the Jacobi
constant cannot anymore be leveraged.
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5.2.2. M2M transfer from double-collision orbits
In this section, a different approach for obtaining an M2M transfer in the BR4BP is described and analysed.
Due to the impossibility to completely define the state by using a 3D-representation on a Poincaré cut (the
fourth coordinate, ẋ, is obtained using a trick in Section 5.2.1), the latter is used to define an M2M transfer in
a direct way, rather than employing an intermediate patching.
Ejection orbits are once again propagated from the Moon, accounting for the switch in the dynamical model
highlighted in Eq. (5.1). The positive x-axis is now used as cut for the analysis: in particular, the study
focuses on the intersections of lunar ejection orbits falling within an area close to the Moon, namely x ∈[
1−µ−Rhi l l ; 1−µ+Rhi l l

]
in the synodic barycentric frame, where RHi l l is the lunar Hill’s sphere radius. This

automatically gives an M2M transfer if the condition of lunar surface-hitting is discarded, although maintain-
ing the other one; therefore the trajectories here analysed are referred to as quasi-M2M. They can be subse-
quently used as a first guess for obtaining a properly defined M2M transfer, although this is not treated in this
report.
These quasi-M2M transfers, aside from helping in the definition of an M2M database discussed in Sec-
tion 5.3.2, have shown a quite rich structure, accounting for their shape as well as for their location at the
intersection with the cut. For this reason, in the remaining part of this section, their classification is dis-
cussed.

Orbit classification
Following from what is stated above, quasi-M2M transfers are here classified based on their shape and the
number of encounters with the Poincaré cut of radius RHi l l in a neighbourhood of the Moon, set on the
x−axis. The intersections are reported on the x ẏ-plane. The trajectories are propagated from the intersection
with the x−axis forward in time, towards the collision with Moon’s center. An initial solar phase angle of
θS0 =π/2 is used throughout this section; nevertheless, a similar approach can be applied to a different case,
bringing slightly different results. Quasi-M2M transfers are classified based on the encounter order with the
cut, as labelled in what follows.

First encounter: In this case, really simple quasi-M2M transfers are shown: their location on the cut is
depicted in Fig. 5.5a, which subdivides the trajectories in four main families, reported in Fig. 5.5b.
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Figure 5.5: First-order intersections with the Poincaré cut on the x-axis for x ∈ [
1−µ−Rhi l l ; 1−µ+Rhi l l

]
of lunar ejection orbits. Initial

condition θS0 =π/2, C̄0 = 2.97; (a) view of the intersections of the ejection orbits with the cut in the x ẏ-plane. Lunar surface depicted as
dashed black lines. See the classification in four different families; (b) shape of the different families. The cyan one is not reported since
meaningless; (c) initial lunar collision angles for the different families.
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The final ejection angle θE for every component of each family is depicted in Fig. 5.5c. Families are discerned
by their shape; no elements from the fourth family (cyan in Fig. 5.5a) is reported in Fig. 5.5b since they do not
pierce the Hill’s sphere. For every family, the intersections with the cut resembles a hyperbola centered on the
Moon: this is due to the singularity at this location (i.e. the Moon, (x, y) = (

1−µ, 0
)
), which causes a severe

increase of both components of the velocity when approaching it. A similar behaviour can be observed in the
xẋ-plane, here not reported. Referring to Figs. 5.5b and 5.5c, it can be inferred how Sun’s gravitational pull
helps in destroying the symmetry between family-1 and -2 orbits (green and red, respectively). Family-3 (in
yellow) represents the long-time class of first-encounter quasi-M2M transfers.
From Fig. 5.5c it can be noted how each first-order encounter family is positioned on a low range of ejection
angles θE : this aspect can largely tighten the initial coarse grid search, if seeking a specific family.

Second encounter: In this case the quasi-M2M transfers are obtained by propagating second-order en-
counter ejection orbits with the Poincaré-cut back to lunar central impact. Again, the intersections are re-
ported on the x ẏ-plane in Fig. 5.6.
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Figure 5.6: Second-order intersections with the Poincaré cut on the x-axis at x ∈ [
1−µ−Rhi l l ; 1−µ+Rhi l l

]
of lunar ejection orbits.

Initial condition θS0 = π/2, C̄0 = 2.97; (a) view of the intersections of the ejection orbits with the cut in the x ẏ-plane. Lunar surface
depicted as dashed black lines. See the classification in seven different families; (b), (c) and (d) shape of the different families; (e) initial
lunar collision angles for the different families.
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Figure 5.6a shows the location and subdivision of the different families based on their shape, while Figs. 5.6b
to 5.6d give a representation of the associated propagated quasi-M2M transfers: in Fig. 5.6e one can find their
culminating ejection angles. From Fig. 5.6a it is evident how family-1 and -2 of first-order encounter transfers
(green and red in Fig. 5.5b), are in part translated in family-4, -5 and -6 (green, red and cyan respectively) of
the second-order encounter, which are mimicking HLOs about L1, L2 and the direct satellite orbits about the
secondary, respectively. These three families of quasi-M2M transfers find their counterpart in Hénon [10],
although referred to as family-a, −c and −g (high energies version), respectively. However, in his work Hénon
obtained these three families of periodic orbits with a simpler dynamical model, defined as Hill’s problem for
µ→ 0, within the theory of the CR3BP. The family-3 in the first-encounter class (yellow in Fig. 5.5b) is again
observable in Fig. 5.6d, while three new families of long orbits appear, respectively in magenta, yellow and
black in Figs. 5.6b and 5.6c: the first one is located almost exclusively within Moon’s orbit about the Earth
(roughly one unit radius about the origin of the synodic frame), while the other two spend most of their time
out from this boundary.

Successive encounters: From the second encounter onwards, the amount of families starts to rapidly grow.
Although maintaining an hyperbolic-like structure about the point (x, y) = (

1−µ, 0
)
, the location of the quasi-

M2M transfers on the cut starts to lose any reasonable pattern. As an example, the cut at the fourth encounter
is shown in Fig. 5.7a. In particular, the fourth-encounter quasi-M2M transfers show the presence of another
member of the family-g ′ from Hénon [10], depicted in Fig. 5.7b. Similar orbits have been found for different
solar starting phase angles θS0.

Coming to a conclusion for orbit classification, the performed analysis can provide a useful insight in the
catalogue of quasi-M2M transfers: as previously demonstrated, some family is the perturbed and aperiodic
counterpart of orbits centered at the secondary, which can be found in the existing literature [10]. However,
this analysis is time consuming, since both the initial Jacobi constant C̄ for the propagation within the Moon
and Sun’s starting phase angle θS0 should be varied.
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Figure 5.7: Fourth-order intersections with the Poincaré cut on the x-axis at x ∈ [
1−µ−Rhi l l ; 1−µ+Rhi l l

]
of lunar ejection orbits.

Initial condition θS0 = π/2, C̄0 = 2.97; (a) view of the intersections of the ejection orbits with the cut in the x ẏ-plane. One family only
here reported, similar to family-g ′ from [10]; (b) shape of the green family shown in (a); (c) initial lunar collision angles for the green
family.
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5.3. Multiple M2M transfer
In this section two different approaches for obtaining sequences of single M2M transfers are described and
shown. The definition of multiple M2M transfer is highlighted in Section 4.1.
The outline of this section partially follows from what is described in Section 5.2: in Section 5.3.1, similarly to
what is discussed in Section 5.2.1, a pseudo-Poincaré cut on the y-axis is used as a dimensionality reductant
of the problem in order to visually find possible ballistic sequences of three M2M transfers. Conversely, the
concept of Poincaré cut is discarded for the second method, outlined in Section 5.3.2, where double-collision
M2M transfers are employed to obtain a first guess for a sequence of ballistic M2M transfers.

5.3.1. Multiple M2M transfer on a pseudo-Poincaré cut
This section can be regarded as the follow-up of Section 5.2.1, where ballistic M2M transfers are obtained
with a similar approach to what is described in Section 3.2. Briefly, a method is outlined to obtain an initial
propagation point on the cut which has the characteristic of being a good candidate for an M2M transfer
in the Sun–Earth–Moon BR4BP. However, the procedure, which depends on three coefficients, succeeds for
approximately 60% of the possible cases. In Section 4.1 high-order encounters of lunar ejection orbits are
employed in combination with low-order ones to obtain candidate points for sequences of triple (or double)
ballistic M2M transfers, with the CR3BP dynamical model.
The approach here employed takes its idea from the latter, although now related to the BR4BP case: aligned
with the employed nomenclature, the

(
1st bwθS0,1 , 3r d bwθS0,2 , 2nd fwθS0,3 , 4th fwθS0,4

)
y+ set of intersections is

chosen. However, in this simplified case, the initial solar phase angle is set to be null for every-order intersec-
tion, namely θS0,i = 0 deg for i = {1, 2, 3, 4}. The 3D- and top-view of the intersections of the four different-
order lunar ejection orbits with the common Poincaré cut are shown in Figs. 5.8a and 5.8b, respectively.

Figure 5.8:
(
1st bw0, 3r d bw0, 2nd fw0, 4th fw0

)
y+ intersections (green, cyan, red and yellow respectively) of lunar ejection orbits with

the Poincaré cut on the positive y-axis, for ẋ ≥ 0 and C̄0 = 2.97; (a) 3D-view; (b) top-view.

The candidate initial propagation points on the cut are retrieved similarly to what is done in Section 5.2.1,
although extending the concept to four cuts. The same set G is now defined as

G =
{

x∗
2, f w ∈ S

θS0,2

2, f w : A∗ 6=∅∧C∗ 6=∅∧D∗ 6=∅
}

(5.5)

where, for every x∗
2, f w , A∗, B∗, D∗ are defined as

A∗ =
{

x1,bw ∈ S
θS0,1

1,bw : d
(

x∗
2, f w , x1,bw

)
< 1

}
C∗ =

{
x3,bw ∈ S

θS0,3

3,bw : d
(

x∗
2, f w , x3,bw

)
< 1

}
D∗ =

{
x4, f w ∈ S

θS0,4

4, f w : d
(

x∗
2, f w , x4, f w

)
< 1

} (5.6)

with the same distance function d (x1, x2) defined in Eq. (5.4). A value of 0.05 is here used for every semi-

axis. The set G takes a collection of points from S
θS0,2

2, f w , while the candidate points are obtained by a 3D-linear



5.3. Multiple M2M transfer 53

interpolation between every
(

x∗
2, f w , x1,bw

)
couple for every A∗ whose associated x∗

2, f w respects Eqs. (5.5)

and (5.6): the approach may easily be extended to interpolate using couples of C∗ and D∗. The missing coor-
dinate, namely ẋ, is obtained using the interpolation between the points of the considered couple, although
it is not represented on the cut.
For this simplified case (every initial solar phase angle is set to zero) an example of a sequence of three ballis-
tic M2M transfers is shown in Fig. 5.9a in the synodic frame, magnified in Fig. 5.9b in proximity of the Moon;
in Fig. 5.9c the trend in time of both distance and energy with respect to the Moon is outlined.
The locations of the candidate points on the cut, together with the points leading to ballistic sequences of
triple M2M transfers are not here reported, due to their overwhelming amount. However, statistics are high-
lighted in Table 5.1.
It is quite remarkable how the percentage of the sequences of both triple and double M2M transfers is higher
than their CR3BP counterparts. Although few of the considered candidates happen to be relatively close in
the cut, the associated orbits tend to mutually diverge, due to the nonlinearity introduced by the Moon at the
fly-by.
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Figure 5.9: (a) Example of a ballistic sequence of three M2M transfers in the BR4BP dynamical model. Earth and Moon depicted as
black dots, lunar Hill’s sphere as a dashed circle about the Moon; (b) magnification of (a) about the Moon. Green and red dots marking
the start and end of the trajectory, respectively; (c) trend in time of r2 and H2 (red and blue, respectively) for the trajectory highlighted
in (a) and (b).

# Candidates Triple M2Ms Double M2Ms
6376 1266 ≈ 20% 1814 ≈ 29%

Table 5.1: Statistics concerning ballistic sequences of M2M transfers. Mind how every sequence of three M2M transfers can be regarded
as two different sequences of double M2M transfers: however, this is not considered in the shown numbers. Moreover, notice how the
triple and double percentages are higher than what shown in Fig. 4.1.
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5.3.2. Database of double-collision M2M transfer
In this section a different approach for potentially obtaining a sequence of M2M transfers with the BR4BP
dynamical model is developed and discussed, highlighting both its advantages and disadvantages. As the
title suggests, a database of double-collision M2M transfers, previously studied in Section 5.2.2, is built and
later employed as a framework for obtaining the trajectory. The database itself can be regarded as a step-back
in the construction of a well-defined M2M transfer, since the trajectory is allowed to collide with the Moon:
however, this brings to a tremendous reduction of the computational burden and a direct improvement to-
wards a straight usage within a real space mission scenario, thanks to the gained simplicity.
A database of solutions is generally a prerogative for a real space mission, in order to hasten the preliminary
trajectory design process and at the same time, account for different errors; as a further reason, as it happens
for a secondary payload, the initial condition may significantly vary throughout the whole mission design
process, therefore demanding a certain readiness for providing the nominal trajectory. EQUULEUS is an em-
blematic example of this, since its ejection state depends on the always-changing SLS launching conditions.
For the trajectory of a spacecraft which leverages the gravitational influence of the Moon, accounting for the
availability of an already-designed and easy-to-inquiry database of M2M transfers becomes a powerful tool:
one of the greatest advantages consists in storing the initial and final conditions of the M2M transfers only,
therefore avoiding any other mid-course coordinate. With this method, a pre-optimized first guess of the tra-
jectory can be rapidly computed. The benefit of a database is even recognizable in its potential of tightening
the whole search space at the very first iteration, defining where the best trajectories are.
With these preliminary concepts in the background, the proposed database is built under the following char-
acteristics:

• Sun–Earth–Moon BR4BP propagating scheme.

• M2M transfers stored as lunar double-collision orbits, namely starting from lunar center and ending at
lunar surface.

• Maximum Time Of Flight (TOF) equal to 400 terrestrial days.

• Maximum reachable distance from the origin of the reference frame equal to 15 dimensionless Earth–
Moon units (roughly 5766×103 km).

• Initial Sun’s phase angle θS0 ∈ [0, 2π) with a step size of∆θS0 =π/500, initial Jacobi constant C̄ ∈ [2.8, 3.1]
with step size∆C̄ ≈ 0.043 and lunar collision angle θC ∈ [0, π) with step size∆θC =π/360 (from Fig. 3.2a
θE = 2θC ).

The current version of the database stores almost 730 thousands M2M transfers. The latter are saved consid-
ering the following array: [

C̄0, θS0, θE0, v∞,E0, C̄ f , θS f , θE f , v∞,E f , T OF
]

(5.7)

where the pedix 0 stands for the initial condition and f for the final one (at lunar re-encounter). The very
last variable may have been superfluous for the database if θS f was not stored as bounded in [0, 2π), since
T OF = (

θS f −θS0
)
ωS . Within the array, v∞,E represents the magnitude of the v∞ with respect to Earth. Al-

though defined in a BR4BP, the database itself is designed to carry typical CR3BP and Keplerian quantities.
This database has been conceived as the improvement of the work from Yarnoz et al. [36], where a Sun–Earth
CR3BP dynamical model is employed to obtain M2M transfers, discarding the gravitational attraction of the
Moon.
For the patching of two consecutive M2M transfers, the zero-level strategy is employed: briefly, the final state
of the i th M2M transfer is connected to the initial state of the (i +1)th one by assuming a lunar hyperbolic
passage. Relative formulae are discussed in Appendix A. This represents a really strong assumption, which
does not correctly mimic what really happens in a neighbourhood of the Moon at the moment of patching;
however, this assumption becomes admissible to preserve the simplicity of the database.
The latter can be inquired based on different approaches, although in this report one example only is given:
the aim is bringing the spacecraft to a final highly energetic condition, key-element for Earth-escaping trajec-
tories. No constraint on the initial condition is addressed. This is perfectly aligned with DESTINY+ mission
design, as described in Section 1.1. However, the database may have been used for EQUULEUS case too,
since, symmetrically to the DESTINY+ case, the aim is to lower down the energy before reaching the libration
orbit about Earth–Moon L2, since NASA’s SLS will give a high push to the spacecraft [36].
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Increasing the energy - DESTINY+ case
In this case the M2M database is employed to obtain a trajectory which leverages both lunar and solar grav-
itational pull to increase the spacecraft energy. This is an usual scenario in case the latter needs to leave the
Earth–Moon system. DESTINY+, discussed in Section 1.1, represents one possible example: the trajectory
here developed can be used for the mid-phase (or rather M2M-phase) of that mission. Here, the database is
inquired starting from the final condition, marked by a high energy with respect to Earth and obtains all the
feasible initial conditions and M2M transfers which can achieve it. For what concerns DESTINY+ case, both
initial and final state of the M2M-phase will then be patched with the remaining two pieces of the mission.
However, this study is not here discussed.
Representing a coarse wide search and without having a specific final state for the M2M-phase, the database is
inquired without setting any request on θE f and θS f , therefore looking at those transfers having a v∞,E f > 1.5
km/s, as specified in [36].
Both single and multiple double-collision transfers are sought: the latter are obtained from a sequence of the
former, using a pruning algorithm. This algorithm is implemented accounting for the continuity of the whole
trajectory by means of the zero-level patching strategy: both C̄ and θS are approximated as constant during
the lunar flyby while θE is varied according to the patching. Dealing with a database, therefore with a discrete
amount of trajectories, it is almost impossible to find two M2M transfers so that C̄ i

f = C̄ i+1
0 and θi

S f = θi+1
S0

are valid, where i refers to the i th M2M transfer along the sequence. For this reason, thresholds on both vari-
ables are defined before re-inquiring the database for a subsequent M2M transfer; in the case here reported,
thresholds are held at a low value in order to diminish the weight on the algorithm. The condition the preced-

ing M2M transfer needs to satisfy in θi
E f is related to the patching strategy: if θi

E f ∈
[
θi

E f ,mi n , θi
E f ,max

]
then

the double-collision transfer is considered for the patching. The two boundaries for θi
E f are related to θi+1

E0
by the lunar flyby deflection angle and a maximum and minimum perilune radius, set at 100 km above lunar
surface and at its Hill’s sphere border, respectively (see Appendix A). A threshold on the maximum number of
double-collision M2M transfers per trajectory is added: this is generally the case in the real mission scenario,
since every flyby represents a critical element for the trajectory, enhancing either the workload for the opera-
tional control and the risk of error.
In the example here developed, the database parameters are(

T OF, v∞,E f ,∆θS ,∆C̄ , NM2M
)= (

500days, 1.5km/s, 1.5deg, 0.5, 2
)

(5.8)

Fig. 5.10a shows all the available solutions, reporting the difference in Jacobi constant between the ending and
starting point of the trajectory ∆C̄ , versus the cumulative T OF ; colors provide data on the number of M2M
transfers, black for one double-collision, red for a sequence of two. The green dot in Fig. 5.10a is represented
by the associated trajectory in Figs. 5.10b and 5.10c, depicted in the inertial Earth-centered and barycentric
synodic reference frame respectively, highlighting its starting, patching and ending points (green, yellow and
red, respectively) together with the path covered by the Sun throughout the transfer time (red dashed line, not
in scale). Figure 5.10d reports the trend in time of the Jacobi constant C̄ (blue), the distance from the Moon
r2 (green) and the scaled energy with respect to Earth E (red). The vertical dashed black line marks the con-
nection with the second double collision M2M transfer. Pictures confirm the applicability of the approach,
namely the energy of the spacecraft is enhanced: however the latter is primarily increased by lunar flybys,
rather than by the solar influence, which takes quite long to properly act. This is usually the case for the tra-
jectories within the database. Although the number of possible solutions is rather high, no triple sequence of
M2M transfer is visible: this is due to the low range of initial C̄ used for the definition of the database, to the
zero-level patching approach and to the low allowed maximum T OF . It is now straightforward to understand
some advantages and disadvantages of this method with respect to the former version [36].

• Bringing the Moon within the model increases the complexity and improves the precision. However,
thanks to the employment of double-collision orbits, the complexity lies in using the regularization
scheme only, equalizing the total number of free variables.

• The presence of the Moon unlocks the possibility to leverage its gravity pull: this translates in general
to a lower T OF to reach a specific condition, since Sun’s gravitational pull requires more time to be
leveraged.

• The former version of the database, built with the CR3BP dynamical model is much lighter: this is in
part due to a lower amount of available solutions.
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All in all, the idea of a database looks highly promising, since it gives an easy and rapid tool to design a pre-
optimized first guess trajectory. However, a future version should be computed for a higher range of initial
C̄ , in order to enhance the feasible sequences of M2M transfers. Concluding, a more efficient method for the
patching should be developed, without impairing the simplicity of the tool.
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Figure 5.10: (a) Single (black) and double (red) double-collision M2M satisfying Eq. (5.8). ∆C̄ vs cumulative T OF . Green point repre-
senting the double double-collision M2M transfer depicted in (b) to (d); (b) trajectory in the inertial Earth-centered reference frame from
the green point in (a). Sun’s position depicted in dashed red line (not in scale). Mind how the starting and ending points overlap (green
and red), being the latter the one coming from the hyperbolic-like trajectory about the Earth. Sun’s path too is marked by same starting
and ending points; (c) trajectory in (b) in the synodic barycentric frame; (d) trend of Jacobi constant C̄ (blue), distance from the Moon
r2 (green) and scaled energy with respect to Earth E (red) vs time. Vertical dashed black line marking the patching.

5.4. Conclusions
This section concludes the whole chapter, reporting the major achievements concerning M2M transfers in
the BR4BP dynamical model.
In Section 5.1 the propagation scheme for obtaining lunar ejection orbits in the BR4BP model is outlined,
counting on a dynamical approximation in the first part of the trajectory. Clearly, the concept of the Zero
Velocity Curve is discarded; however the latter helps in defining what represents a reasonable boundary for
trajectories propagated with the CR3BP scheme, in agreement with Section 4.3.
Subsequently in Section 5.2 a procedure to obtain single ballistic M2M transfers is outlined, employing the
intersections of lunar ejection orbits with the Poincaré cut on the positive y-axis. A classification of double-
collision M2M transfers is performed, which finds its corresponding in the existing literature, although for
the periodic case in a simplified version of the CR3BP [10]. To the best of author’s knowledge, this is the
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first time lunar collision orbits are employed for trajectory design in the BR4BP. Similarly, a classification of
double-collision M2M transfers in the BR4BP has never been performed, although the proposed one needs
to be further extended.
In Section 5.3 both the concept and the method for obtaining a single M2M transfer are extended, towards the
definition of an algorithm to delineate ballistic sequences of M2M transfers, by employing the intersections
of lunar ejection orbits with a common Poincaré cut. The procedure strongly depends on the geometry of
the involved bodies and on an extensive computational effort but results show up, agreeing with the initial
intuition. However, aligned with the outcome of their CR3BP counterparts, both single and multiple ballistic
M2M transfers obtained from the Poincaré cut do not encompass the whole existing realm of possible solu-
tions, since, according to the algorithm, trajectories need to be patched at the cut: this is not a mandatory re-
quirement for an M2M transfer. Although not complying with the M2M requirements, lunar double-collision
orbits solve for this issue.
The second research objective is here achieved: indeed a database of double-collision M2M transfers is built
under the assumptions of the BR4BP. With respect to the former version [36], the database can now leverage
the gravitational pull of the Moon, allowing to diminish the requested mission time. From a real trajectory
design scenario, inquiring the database gives a first and fast broad scan of the whole search space, helping
to immediately discard uninteresting regions. The application of the database to the M2M-phase of the tra-
jectory of JAXA’s DESTINY+ mission is shown, pointing out its efficiency; the database is easily applicable to
JAXA’s EQUULEUS case too. However, an extension of the amount of solutions is needed, in order to encom-
pass a wider initial range of energies, together with the implementation of a new and more reliable patching
strategy.
Concluding, this chapter highlights the main features of M2M transfers in the BR4BP, allowing to understand
the difference with the simpler CR3BP. In particular the former is more complex to handle, since the simplic-
ity provided by the existence of a first integral is not anymore present. The benefit is that trajectories are now
considered more precise with respect to their CR3BP counterparts, especially at significant distance from
Earth: indeed, the limit of 1.5 (EM) units is now meaningless, since the BR4BP intrinsically accounts for the
presence of the Sun.
No discussion on controlled M2M transfer or optimization strategy is provided in this chapter: the reason is
that no feasible method has been implemented, besides a simple shooting algorithm with the usage of the
Differential Corrector, highlighted in Section 2.1.4, not included in this report to avoid repeating a similar
discussion to what is already pointed out for the CR3BP.





6
Conclusions

This chapter concludes the research work here presented. Besides a very brief theoretical introduction, the
author highlights throughout this report the main achievements of his research work at ISAS/JAXA. First, a
summarizing overview of the obtained results is given in Section 6.1. Subsequently in Section 6.2, future
possible improvements of this work are discussed, in order to potentially shape a new research. Eventually
in Section 6.3 a new topic, born from different considerations concerning M2M transfers, is highlighted as a
possible diversion from this research.

6.1. Achievements
In this section, the main achievements of this six-month research are outlined.
Almost every research work starts with a specific set of questions and objectives; in this report they are exten-
sively highlighted in Section 1.3 and here used to judge the obtained results.

Research question 1: Which useful information can lunar collision orbits provide to obtain Moon-to-Moon
transfers within the framework of the Circular Restricted Three Body Problem and the Bi-circular Restricted
Four Body Problem?
Lunar collision orbits are literally a basin of useful information, especially for orbits passing close by the
Moon. As pointed out in Chapter 3, lunar collision orbits behave as separatrix with respect to prograde and
retrograde motion of orbits approaching the Moon. Useful characteristics of trajectories flying close to col-
lision orbits can be easily inferred: indeed, by looking at their intersections with a Poincaré cut, one can
substantially obtain information concerning their perilune and the associated value of energy and angular
momentum with respect to the Moon. For these reasons, a Moon-to-Moon transfer can be designed with the
information given by lunar collision orbits. In a similar fashion, trajectories which come from a low perigee
can be studied, as depicted in Fig. 3.13b.
Lunar collision orbits have again shown an almost equal structure to the invariant manifolds emanating from
the HLOs’ of the collinear Lagrangian points: this is a remarkable result, since by employing the former as a
substitute of the latter one diminishes the computational burden and widens the available energy regime.
For what concerns the BR4BP, discussed in Chapter 5, lunar collision orbits still provide useful information
about trajectories approaching the Moon, although the nonautonomous characteristic of the model compli-
cates the problem, losing part of the benefits of the Poincaré cut.
Concluding, lunar collision orbits yield useful information concerning sequences of ballistic M2M transfers,
for each of the analysed dynamical model.
All in all it can be asserted how lunar collision orbits can provide useful information on trajectories approach-
ing the Moon, which can be leveraged to obtain a properly defined Moon-to-Moon transfer.

Research question 2: In the context of a preliminary trajectory design, to what extent can a database of
Moon-to-Moon transfers benefit from the introduction of the gravitational pull of the Moon within the dy-
namical model?
It is shown in Section 5.3.2 how, by including the presence of the Moon within the dynamical model for the
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construction of the database, new trajectories are uncovered which leverage lunar gravitational pull to aim
the spacecraft towards the desired final condition. These solutions would have not been present in case
the employed dynamical model was a simpler Sun–Earth planar CR3BP. These transfers clearly shorten the
required time to achieve a great jump in the energy, since a lunar flyby acts faster than the gravitational in-
fluence of the Sun. With the focus on lunar double-collision orbits only, just four variables are needed to
completely define every transfer, as it is done in [36]; therefore, the increase in complexity of the dynami-
cal model does not weigh on the computational effort to obtain the database. However, the database itself
should include two more variables per M2M transfer.

Sub-questions:
Although part of the sub-questions are already answered above, few others needs a singular proper reply.
What are the benefits of propagating an orbit with Levi Civita regularization scheme, when compared to Carte-
sian one?
Levi Civita regularization scheme tends to be slightly slower and less precise when compared to the Cartesian
one. However the former is necessary to solve for the local singularity at the Moon.
Which are the feasible strategies to opportunely correct a missing Moon-to-Moon transfer by means of impul-
sive maneuvers?
In this report, different strategies are approached; however, the most promising appears to be the one re-
ferred to as Targeting the Poincaré cut, using MATLAB built-in optimizer fmincon, with a multiple impulsive
strategy. Nevertheless, this consideration is restricted to the cases shown in this report; the employment of
other more complex optimization schemes may lead to better outcomes.
In which case should the Bi-circular Restricted Four Body Problem dynamical model be preferred to the simpler
Circular Restricted Three Body Problem one?
Although the former is more complex than the latter, the BR4BP provides a better estimate of the trajectory,
since it is closer to the real model. The CR3BP lacks in precision the more the trajectory gets further from
the centre of the analysed reference frame. The characteristic of being autonomous can represent a good
feature to gain a deeper insight in the problem. All in all, the BR4BP should be preferred whereas the gain in
improved precision outweighs the loss in simplicity.

Research objectives:
Both main research objectives and associated sub-goals have successfully been achieved and addressed in
this conclusive report. Being the first main objective more on the research side, it has lead to uncover a severe
amount of important features of lunar collision orbits, which partly helped in achieving the second task too.
After a clear definition of what an M2M transfer is, quite few methods for obtaining it are disclosed, with their
own advantages and drawbacks, for each of the studied dynamical models. Poincaré maps are extensively
used to both build M2M transfers and correct missing lunar fly-bys by means of impulsive maneuvers. One
of the most remarkable aspects is that collision orbits are here employed for the first time ever for trajectory
design, accounting to the best of author’s knowledge.
For what concerns the second main objective, being a more industrial-side task, the amount of inherent
scientific outcome is rather limited: however, properly setting up the right building blocks in a computational
efficient way was not an easy task. By comparing the database with the former version it is shown how the one
developed in this report has its own advantages. However, the new version has two more elements stored per
transfer, with respect to the former one: this choice eases the inquiry for both missions under study, although
increasing the weight of the database. The latter shows a clear applicability to the preliminary design of the
M2M trajectory phase of DESTINY+; however, studying the EQUULEUS case would have been equally simple.

6.2. What follows
In this section, possible extensions of the research outlined in this report are highlighted; the main purpose
is to potentially trigger new discoveries in the field of astrodynamics by improving the work here presented.
The major aspects pertaining the first main objective are:

• Although a single Poincaré cut decreases the complexity of the system, it forces the M2M transfer to
pass through it. By opportunely combining more Poincaré cuts, one may overcome this flaw.

• The underlying dynamical model used throughout this work is rather imprecise if one wants to straight-
forwardly apply the outcome to the real case. Different aspects can be leveraged to solve for this: al-
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lowing a 3D-motion where lunar collision orbits can be regularized with Kustaanheimo-Stiefel scheme,
including eccentricities and inclination of the main orbiting bodies, accounting for perturbations (so-
lar radiation pressure, higher order gravitational potential and so forth) are possible solutions to close
the gap with the real case scenario.

• A more efficient and reliable algorithm needs to be developed for the M2M transfer recovering, thor-
oughly leveraging the information of a pile of Poincaré cuts. A subsequent step would consists in im-
plementing an iterative algorithm for sequences of multiple impulsive M2M transfers, eventually ac-
counting for low-thrust arcs.

For what concerns the second main objective, improvements can be suggested in:

• The patching approximation is rather imprecise. Improving it, without weighing on the simplicity of
the approach would lead to a better preliminary design with the database.

• Once the best trajectory is obtained, a subsequent step consists in providing a first optimization to
retrieve a properly defined M2M transfer from the double-collision one.

• The database needs to be validated with past flown missions. However, this task depends on the avail-
ability of data.

• The classification of lunar double-collision orbits in the BR4BP needs to be extended and strictly for-
malized in order to encompass more orbits.

6.3. Possible future research
This main topic of this section slightly strays from the aspects treated throughout this report, by providing a
new interesting theme concerned with collision orbits. It is proposed as a standalone section since it repre-
sents more a diversion from the rest of this report rather than a logical consequence.
The idea is to widen the restrictive view given by one central body (Earth) and one orbiting satellite (our
Moon) only, which has been a landmark throughout this report. This concept is here extended to cover a
more complex system: for this purpose, the Jovian one is briefly addressed in this survey. Different studies
(Campagnola and Russell [5], Koon et al. [13]) have shown interesting features of this system, composed by
a central planet, namely Jupiter itself, and plenty of orbiting natural satellites. Among the latter, the present
study focuses on two of the so-called Galilean moons, namely Europa and Ganymede. Their main orbital
characteristics are briefly reported in Table 6.1.

Moon a [103 km] T [days] e [-] i [deg]

Europa 671.080 3.552 0.010 0.471
Ganymede 1070.400 7.155 0.001 0.204

Table 6.1: Main orbital data for both Europa and Ganymede, second and third Galilean moon of Jupiter respectively, with respect to
Jupiter. Table shows their average semi-major axis, periods, eccentricities and inclinations (Jupiter’s equator as a reference), respectively
from left to right. A single day refer to one terrestrial day, namely 86400 s (constants taken from Acton [1], Lissauer and de Pater [18]).

From Table 6.1 it is evident how the motion of the two analysed moons is almost perfectly coplanar and
Ganymede’s period is about twice Europa’s one.
The idea here is to employ collision orbits for both Europa and Ganymede in order to define a transfer from
one moon to the other one: in this case, a transfer from Ganymede to Europa is analysed, shortly referred to
as Ganymede-to-Europa (G2E).
The strategy is slightly more complicated to what is described in the previous chapters of this report: two
systems, namely Jupiter–Europa–spacecraft (JE) and Jupiter–Ganymede–spacecraft (JG) are simultaneously
studied, with the CR3BP assumptions. Ejection orbits from both moons are computed and their intersec-
tions with a common Poincaré cut are stored and later analysed. For the sake of easiness, the positive side of
the axis parallel to the y−axis, passing through Jupiter in the JE-system is used as cut; nevertheless a differ-
ent choice would have not changed the main results here achieved. The initial propagation epoch for both
system is with Jupiter, Europa and Ganymede aligned along the positive inertial Jupiter-centered x-axis, al-
though a different geometry is possible. The initial Jacobi constants for the two systems are C̄ JE = 2.97 and
C̄ JG = 2.9.
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Finding the intersections with the cut for the JE-system is not different to what is described in the previous
part of this report. However, for the JG-one a transformation of coordinate is needed: indeed, in the inertial
system the common Poincaré cut passes through Jupiter, rotating with an angular velocity given by the JE-
system. As a consequence, in the JG-system, the cut is not steady, but rotates.
Since propagated in two different systems, the JE-collision orbits and the JG-ones have a different Jacobi
constant at the intersection with the cut: for this reason the C̄ of the JE-system is employed as a third repre-
sentation variable at the moment of patching. This procedure is addressed as patched CR3BP in Koon et al.
[14].
Dealing with a G2E transfer, the intersections of the backward-propagated JE-collision orbits and the forward
propagated JG-ones are used to geometrically define the initial propagation points. With a proper initial ge-
ometry, a G2E can be obtained which is constructed from the first intersections only of the ejection orbits
with the common cut, for both systems. However, this case is not here treated.
Conversely to the rest of this report, the trajectory is not continuous at the moment of patching, in order to
have a double-collision transfer. In Figs. 6.1a to 6.1d the intersections of the collision orbits for the two sys-
tems are shown for the backward-propagated JG-ejection orbits (red, up to the sixth order) and the forward-
propagated JE-ones (green, up to the fifth order); however, the survey for seeking a feasible G2E is performed
on a wider range of order encounters with the cut, not shown to ease the reading. A G2E is then depicted
in Figs. 6.2a and 6.2b for the inertial Jupiter-centered and JE-barycentric reference frame, respectively. The
green arc is the trajectory propagated in the JE-system, while the red one is obtained from the JG-system.
All in all, the transfer resembles a mere ellipse between the two moons: however, the dynamical model is
richer than what achievable with a simple two-body patched conics approach. The obtained geometry is a
result of the selected high energies for the JE- and JG-system.

Figure 6.1: Different views for the intersections of the backward-propagated ejection orbits of the JE-system up to the fifth order (green)
and the forward-propagated of the JG-one up to the sixth order (red) in the y ẏC̄ JE -space. The former obtained with a C̄ JE = 2.97, while
the latter with a C̄ JG = 2.9; (a) top-, (b) yC̄ -side, (c) ẏC̄ -side and (d) 3D-view, respectively.
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Whereas a decreases of the Jacobi constants is performed, medium- and low-energy transfers may be un-
covered, resulting in a different and less conventional geometry for the trajectory. This further confirms the
great potential of collision orbits, which are capable of describing different energetic levels with one theory
only. As an extension, the same procedure can be employed for other Jovian moons, accounting for a multi-
moon itinerary. Transfers connecting planets of our solar system can be studied and designed with the same
procedure.
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Figure 6.2: Example transfer generated from propagating two initial conditions on the cut distant 4.5×10−4 in the y ẏC̄ JE -space. The
transfer starts from Ganymede (green point) along the red trajectory, switching system at the yellow point, representing the Poincaré-cut.
The transfer culminates at the red point, namely Europa. Starting propagation points are retrieved from the 21st intersections of the JE-
system and the 4th from the JG-one. Transfer time is 90 terrestrial days; (a) Jupiter-centered inertial reference frame; (b) JE barycentric
reference frame.





A
Derivation

Energy and angular momentum with respect to the Moon
In Section 2.2.1 the equations of the angular momentum and energy of the spacecraft with respect to the
Moon are delineated. Here the most important steps for their derivation are reported.
Remembering how the synodic reference frame is converted into dimensionless coordinates leading to a fic-
titious unitary mean motion n̄, with an abuse of notation the shifting angle between the barycentric inertial
and synodic reference frames can be regarded as the timewise variable, namely θ = t .
This leads to write the coordinates of the system from synodic barycentric [x(t ), y(t ), ẋ(t ), ẏ(t )] to inertial
secondary-centered [X (t ), Y (t ), Ẋ (t ), Ẏ (t )] as

X (t ) = (
x(t )+µ−1

)
cos t − y(t )sin t

Y (t ) = (
x(t )+µ−1

)
cos t + y(t )sin t

Ẋ (t ) = (
ẋ(t )− y(t )

)
cos t − (

ẏ(t )+x(t )+µ−1
)

sin t

Ẏ (t ) = (
ẋ(t )− y(t )

)
sin t + (

ẏ(t )+x(t )+µ−1
)

cos t

(A.1)

leading to the square of the inertial velocity with respect to the secondary expressed as

v2
2(t ) = (

x(t )+µ−1+ ẏ(t )
)2 + (

ẋ(t )− y(t )
)2 (A.2)

This straightforwardly leads to H2 in Eq. (2.12b). For what concerns h2, by definition, its magnitude is

h2(t ) = ‖r 2(t )∧v 2(t )‖ = X (t )Ẏ (t )−Y (t )Ẋ (t ) (A.3)

which leads to Eq. (2.12a) after substitution.

Differential corrector for periodic orbits
In Section 2.2.1 the Differential Corrector for the computation of the simple planar periodic orbits about the
collinear Lagrange points in the CR3BP is highlighted, through Eq. (2.16). Here more details concerning its
derivation are given.
According to [23], simple periodic orbits about collinear Lagrangian points pierce orthogonally twice the
x−axis of the synodic frame and are symmetric with respect to the same axis. Howell [12] used a similar
scheme for 3D halo orbits, which is applicable to the planar case too by reducing the dimensionality of the
problem.
Due to the above-mentioned characteristics, the starting- and mid-point for the simple T -periodic orbit can
be defined as

x0 =
[
x0, 0, 0, ẏ0

]T (A.4a)

xT /2 =
[
xT /2, 0, 0, ẏT /2

]T (A.4b)

By propagating Eq. (A.4a) till it reaches back the x−axis, therefore for a time t = T /2, one generally obtains a
final state which is not in the shape of Eq. (A.4b), since ẋT /2 6= 0. Therefore, x0 needs to be corrected using a
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shift δx0: a Differential Corrector is here employed, by using a single-shooting technique. The linear relation
between the deviation of the state at the start and at half the period of the orbit is different with respect to what
is pointed out in Eq. (2.3), since propagation time (namely T /2) is present in the equations. The equation for
the deviation of the final state becomes

δxT /2 =Φ (t0, T /2)δx0 + ẋT /2δ (T /2) (A.5)

However, δ (T /2) can be solved from the second row of Eq. (A.5), as

0 =φ2,1δx0 +φ2,4δẏ0 + ẏT /2δ (T /2) (A.6)

whereφ j ,k is the ( j , k)th term ofΦ (t0, T /2). By setting δẋT /2 =−ẋT /2 the first row of the matrix in Eq. (2.16) is
obtained. In order to have the second one, th relation J (x0 +δx0) = C̄ needs to be enforced. Therefore, using
Taylor-series expansion about x0 it follows how

C̄ = J (x0)+ ∇J (x)|x=x0 δx0 +O
(‖δx0‖2) (A.7)

So the second row can be retrieved, by rearranging the equation and neglecting the second-order terms as

δx0 =
[∇J (x)|x=x0

]−1 (
C̄ − J (x0)

)
(A.8)

noting how δy0 = 0 and δẋ0 = 0. The procedure is then iterated until convergence.

Symmetry for the BR4BP
In Section 2.2.2, a time-symmetry was presented. By applying transformation of Eq. (2.19) to system of
Eq. (2.18), it follows

dx

d(−t )
=−ẋ =−ẋ

d(−y)

d(−t )
= ẏ = ẏ

d(−ẋ)

d(−t )
= ẍ = x +2ẏ − (1−µ)(x +µ)

r 3
1

−µx −1+µ
r 3

2

−µS
x −as cos(−θS0 +ωS (−t + t0))

rs (θS )3 − µS

a2
S

cos(−θS0 +ωS (−t + t0))

d(ẏ)

d(−t )
=−ÿ =−y +2+̇+ (1−µ)y

r 3
1

+µ y

r 3
2

−µS
−y −as sin(−θS0 +ωS (−t + t0))

rs (θS )3 − µS

a2
S

sin(−θS0 +ωS (−t + t0))

(A.9)
Where −θS = − (θS0 +ωS (t − t0)). Using the well-known symmetries of the cos() and sin() functions, one
can obtain the same starting system of Eq. (2.18), therefore the existence of the symmetry of the solution is
verified. Of course, this result can be easily extended to the easier planar CR3BP (setting µS = 0).

Initial condition for ejection orbits
In Section 2.2.3, the initial condition for orbits ejected from

(
x, y

)= (1−µ, 0) is given as

u0 =


u1

u2

u3

u4


0

=



0
0√

µ

2
cosθc,0√

µ

2
sinθc,0

 (A.10)

The last terms u3, u4 are derived similarly to what is done in Broucke [3]: starting from the energy in Cartesian
coordinates

E(x, y, ẋ, ẏ) = 1

2

(
ẋ2 + ẏ2)−U3(x, y) (A.11)

through Eq. (2.20b), it follows

ẋ2 + ẏ2 = 2

r0

(
u2

3 +u2
4

)
(A.12)
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so, by multiplying both left- and right-hand side in Eq. (A.11) for r0 = r2 (since the singularity is at the Moon),
it is obtained

r2E(u) = 2
(
u2

3 +u2
4

)−U3
(
x(u), y(u)

)
= 2

(
u2

3 +u2
4

)− r2

2

(
x(u)2 + y(u)2)− r2

1−µ
r1

−µ− r2
µ(1−µ)

2

(A.13)

then, by setting r2 → 0 the final result follows as

u2
3 +u2

4 =
µ

2
(A.14)

Including a parametrizing angle θC , referred to in this report as collision angle, Eq. (A.10) is obtained.

Zero-level patching approach
In Section 5.3.2 a zero-level patching strategy is employed at the Moon to approximate the connection of
two consecutive double-collision M2M transfers; here the theory behind this patching is discussed. Briefly,
accounting to the shape of the database, as explained in Eq. (5.7), one can assume that for the whole duration
of the connecting fly-by, both C̄ and the solar phase angle θS do not change. However, the lunar ejection angle
θE is modified by the lunar close passage, by the assumption of an instantaneous fly-by.
With the fly-by equations in the background (Wakker [34]), the position and velocity of the spacecraft are
obtained, in an inertial reference frame centered on the flown-by object, namely the Moon. The position and
velocity at the lunar crossing in the inertial frame, r i , v i respectively, are employed to obtain the asymptotic
velocity with respect to the Moon v∞,M as

v∞,M =
√
‖v i‖2 − v2

esc =
√
‖v i‖2 − 2µM

‖r i‖
(A.15)

where µM represents the gravitational parameter of the Moon. Consequently, imposing as a minimum and
maximum perilune radius rp 100 km above lunar surface and the boundary of Hill’s sphere, respectively, the
deflection angle α can be computed as

α= 2arcsin

(
1

1+ rp v2
∞,M /µM

)
(A.16)

To connect the final state of the i th M2M transfer with the initial state of the (i +1)th one, the new ejection
angle, after geometrical considerations about prograde fly-by, becomes

θi+1
E ,0 = θi

E ,end +α−2π (A.17)





B
Code validation

Levi Civita propagation scheme validation
The Levi Civita regularized system of equations, described in Eq. (2.21), is compared to the results of Oshima
et al. [21], thanks to the kind help of the first author in providing the originating scripts. Their results are
compared to what is derived from the model employed throughout this report, showing a perfect agreement,
as depicted in Fig. B.1a for orbits propagated for tend ≈ −4.3 days and equal set of initial conditions. In
Fig. B.1b the ∆C̄ between the report’s and the Oshima et al.’s originated lunar ejection orbits at tend , versus
the associated originating θC is reported, further confirming the correctness of the employed model: the
differences are due to numerical discrepancies, originating from different strategies used to write the same
model.

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-1

-0.5

0

0.5

1

1.5

2

(a)

0 50 100 150 200 250 300 350
10
-16

10
-15

10
-14

10
-13

(b)

Figure B.1: (a) Orbits from [21] (straight red) compared to the ones originated from the dynamical model employed in this report
(dashed blue) for different starting collision angles θC ; (b) difference in C̄ between straight red and dashed blue orbits of (a) versus the
relative value of θC .

BR4BP validation
The BR4BP dynamical model, described in Eq. (2.18) is compared to the results of the online supplement
material of Topputo [29]. By validating the BR4BP model, the CR3BP is implicitly validated, being the latter a
simplification of the former (µS = 0).
Since it is really hard to find a properly well-propagated trajectory in the BR4BP in the available literature,
the model employed in this report is considered as validated if the results agree in terms of position with
the referenced material: indeed, in his work Topputo provided initial conditions for different Earth-to-Moon
transfers, whose final state should comply with the requirement of a radial distance from the Moon of 100
km.
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The (x) solution, reported in Fig. 8 in [29] is here used as a validating sample. The resulting trajectory, prop-
agated with the dynamical model used throughout this report, is depicted in Fig. B.2a in the Earth-centered
inertial reference frame: the trajectory starts in the neighbourhood of the Earth, ending in proximity of the
lunar orbit about the Earth.
A magnification of the transfer in proximity of the Moon, plotted in the synodic frame in Fig. B.2b, further
supports the evident correctness of the implemented dynamical model: the ending point, marked by the red
dot, perfectly meets the dashed line, corresponding to the 100 km circular orbit about the Moon (shown as a
straight black line).
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Figure B.2: (a) (x) trajectory (blue) in the Earth-centered inertial reference frame from Fig. 8 of [29], propagated with the dynamical
model used in this report. Earth referred to as black central dot, while lunar circular orbit depicted as a dashed black line; (b) magni-
fication of (a), in the synodic barycentric reference frame. Ending point for the trajectory (red dot) intersects the 100 km circular orbit
(dashed black line) about the Moon (straight black line).

Propagator selection
Throughout this report, the ode113 built-in MATLAB function is used as a propagator. It represents a fully
variable step-size, multi-step, nonstiff, PECE implementation of an Adams-Moulton-Bashforth propagator,
employed to solve for a system of ordinary differential equation, like the one highlighted in Eq. (2.8).
Although specifically indicated, thanks to its characteristics, for problems like orbital dynamics, ode113 pre-
cision and propagation time is here compared to the famous explicit Runge-Kutta (4,5) [26] and the third-
party implemented Runge-Kutta (7,8) [9], both with Dorman and Prince formulation. All the relevant subject
has already been treated in author’s previous literature study, therefore it is not here repeated.
Two different orbits are propagated for 250 terrestrial days with the CR3BP dynamical model. The resulting
absolute shift in Jacobi constant ∆C̄ = |C̄st ar t − J (x(ti )) | is computed along the orbit and shown for the three
propagators in Fig. B.3, supported by the required computational time in Table B.1.
Although the precision is case-depending (for example, ode78 outperforms for orbits spiralling outwards),
ode113 is chosen for its speed, due to the large amount of computed trajectories, and to its robustness (com-
pared to the less reliable ode78).

Propagator ode113 ode45 ode78

Fig. B.3a comp. time [s] 0.885 4.298 0.969
Fig. B.3b comp. time [s] 0.297 1.999 0.371

Table B.1: Computational time for the two orbits in Fig. B.3 for the different propagation schemes.
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Figure B.3: Trend of Jacobi constant difference ∆C̄ = |C̄st ar t − C̄i | compared to time. Two different orbits compared in (a) and (b)
respectively, revolving in the vicinity of the system (i.e. not spiralling outwards). ode113, ode45 and ode78 in blue, red and green
respectively.
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