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Summary

Biology is full of complexities, and the more we learn, the more we realize how
much remains unknown. A major debate in microbiology is whether DNA alone
dictates an organism’s function or if metabolism and energy flows play an equally
fundamental role. This question is particularly relevant for microbes in dynamic
environments, where survival depends on metabolic adaptability.

This thesis focuses on “Candidatus Accumulibacter”, a key microorganism in
wastewater treatment that removes excess phosphorus from water. These
bacteria endure feast-famine cycles by storing and utilizing energy reserves as
conditions change. While extensively studied, much remains unknown about
their metabolic strategies and how environmental factors shape their function.
This research combines computational models, laboratory cultivation, and multi-
omics analysis to explore how “Ca. Accumulibacter” optimizes its metabolism.

Chapter 1 introduces the central debate: Is DNA the sole blueprint for microbial
function, or do metabolism and energy constraints shape microbial behavior? It
traces the shift from biochemical models to genome-centric approaches and
highlights the potential of a metabolism-first perspective. It also contextualizes
“Ca. Accumulibacter” within existing research, outlining its role in biological
phosphorus removal and summarizing past findings.

Chapter 2 investigates extracellular polymeric substances (EPS) produced by “Ca.
Accumulibacter”, revealing novel glycans and glycoproteins that challenge
genome-based predictions. These biomolecules are crucial for biofilm formation
and microbial interactions, emphasizing the need for direct biochemical analysis
alongside genetic data.

Chapter 3 uses elementary flux mode analysis (EFMA) to map the metabolic
potential of “Ca. Accumulibacter”. While genome annotations suggest flexibility,
thermodynamic constraints limit feasible metabolic strategies, highlighting the
role of energy availability in shaping microbial function.

Chapter 4 introduces the development of the Conditional Flux Balance Analysis
(cFBA) Toolbox, an open-source Python framework for modeling metabolism in
fluctuating environments. Unlike conventional models that assume steady-state
conditions, cFBA enables dynamic predictions of resource allocation over time.

Chapter 5 explores the impact of temperature on “Ca. Accumulibacter”
metabolism using cFBA. The findings confirm that biomass synthesis is mainly
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aerobic but also uncover metabolic shifts at lower temperatures that influence
phosphorus removal efficiency and microbial competition.

Chapter 6 examines how “Ca. Accumulibacter” metabolizes multiple substrates
simultaneously, revealing unexpected synergies that enhance survival in microbial
communities. Combining experimental enrichment cultures with cFBA, this study
identifies key metabolic trade-offs and resource optimization strategies.

Finally, Chapter 7 synthesizes the thesis findings, advocating for a shift beyond
genome-based interpretations toward a metabolism-centric understanding of
microbial function. It discusses broader implications for microbial ecology,
wastewater engineering, and metabolic modeling, emphasizing the need for
multi-omics approaches and potential applications in synthetic biology.

By integrating experimental and computational approaches, this research
deepens our understanding of how “Ca. Accumulibacter” thrives in fluctuating
environments. More broadly, it highlights the importance of metabolism and
energy flows in shaping microbial function, offering insights that extend beyond
wastewater treatment to microbial ecology and engineered bioprocesses.



Samenvatting

Biologie is vol complexiteit, en hoe meer we leren, hoe meer we beseffen hoeveel
er nog onbekend is. Een belangrijke discussie in de microbiologie is of DNA alleen
de functie van een organisme bepaalt, of dat metabolisme en energiestromen
een even fundamentele rol spelen. Deze vraag is vooral relevant voor microben
in dynamische omgevingen, waar overleving afhankelijk is van metabole
aanpassingsvermogen.

Deze thesis richt zich op “Candidatus Accumulibacter”, een cruciale micro-
organisme in afvalwaterzuivering dat overtollig fosfor uit water verwijdert. Deze
bacterién doorstaan cycli van overvloed en schaarste door energie op te slaan en
te benutten wanneer de omstandigheden veranderen. Ondanks uitgebreide
studie blijft veel onbekend over hun metabole strategieén en hoe
omgevingsfactoren hun functioneren beinvloeden. Dit onderzoek combineert
computationele modellen, laboratoriumcultivatie en multi-omische analyses om
te onderzoeken hoe “Ca. Accumulibacter” zijn metabolisme optimaliseert.

Hoofdstuk 1 introduceert het centrale debat: is DNA het enige bouwplan voor
microbiéle functies, of bepalen metabolisme en energiebeperkingen het gedrag
van micro-organismen? Het hoofdstuk schetst de verschuiving van biochemische
modellen naar genoomgerichte benaderingen en belicht het potentieel van een
metabolismegerichte visie. Het ook plaatst “Ca. Accumulibacter” in de bestaande
wetenschappelijke context, met een overzicht van zijn rol in biologische
fosforverwijdering en een samenvatting van eerdere bevindingen.

Hoofdstuk 2 onderzoekt de extracellulaire polymere stoffen (EPS) die “Ca.
Accumulibacter” produceert en onthult nieuwe  glycaan- en
glycoproteinestructuren die genoomgebaseerde voorspellingen tegenspreken.
Deze biomoleculen zijn essentieel voor biofilmvorming en microbiéle interacties,
wat het belang onderstreept van directe biochemische analyse naast genetische
gegevens.

Hoofdstuk 3 maakt gebruik van elementary flux mode analysis (EFMA) om het
metabole potentieel van “Ca. Accumulibacter” in kaart te brengen. Hoewel
genoomannotaties metabole flexibiliteit suggereren, tonen thermodynamische
beperkingen aan dat slechts een beperkt aantal strategieén haalbaar is. Dit
benadrukt de invloed van energiebeperkingen op microbiéle functies.

Hoofdstuk 4 introduceert de ontwikkeling van de Conditional Flux Balance
Analysis (cFBA) Toolbox, een open-source Python-framework voor het
modelleren van metabolisme in fluctuerende omgevingen. In tegenstelling tot
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conventionele modellen die uitgaan van een steady-state, stelt cFBA
onderzoekers in staat om dynamische voorspellingen te maken over de verdeling
van hulpbronnen in de tijd.

Hoofdstuk 5 onderzoekt de invioed van temperatuur op het metabolisme van
“Ca. Accumulibacter” met behulp van cFBA. De resultaten bevestigen dat
biomassa-synthese voornamelijk in aerobe omstandigheden plaatsvindt, maar
onthullen ook metabole verschuivingen bij lagere temperaturen. Deze
veranderingen beinvioeden de efficiéntie van fosforverwijdering en microbiéle
competitie.

Hoofdstuk 6 bestudeert hoe “Ca. Accumulibacter” meerdere substraten
tegelijkertijd metaboliseert en onthult onverwachte synergién die de overleving
binnen microbiéle gemeenschappen bevorderen. Door experimentele
verrijkingsculturen te combineren met cFBA, identificeert dit onderzoek
belangrijke metabole afwegingen en strategieén voor efficiénter gebruik van
hulpbronnen.

Hoofdstuk 7 vat de bevindingen van deze thesis samen en pleit voor een
paradigmaverschuiving van een genoomgerichte naar een
metabolismegeoriénteerde benadering van microbiéle functies. Het hoofdstuk
bespreekt bredere implicaties voor microbiéle ecologie, afvalwatertechnologie
en metabole modellering en benadrukt de noodzaak van multi-omische
methoden en mogelijke toepassingen binnen de synthetische biologie.

Door experimentele en computationele methoden te integreren, biedt dit
onderzoek diepgaand inzicht in hoe “Ca. Accumulibacter”floreert in wisselende
omgevingen. In bredere zin benadrukt het de centrale rol van metabolisme en
energiestromen bij microbiéle functies en biedt het inzichten die verder reiken
dan afvalwaterzuivering, met implicaties voor microbiéle ecologie en
biotechnologische processen.
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GENERAL
INTRODUCTION



All the images in this chapter were illustrated by Julie Watson to
make the content more accessible and easier to understand.




Biology is incredible. Yet it can seem frustrating and complex. Did you ever find
yourself lost in memorizing a sea of molecule names, cell parts and mechanisms?
You’re not alone. Even with the best teachers in the world, understanding
biological mechanisms is not easy. There is a reason for this — a reason so
humbling that we often prefer to ignore it. Or actively avoid confronting it. It’s
true! Students don’t fully understand biology. Neither do teachers. Not even
renowned scientists. In fact, sometimes the more we learn, the more we realize
how much we don’t know. Why is that?

It's rooted in the way we seek to understand the world around us. We try to break
down complex things, such as sight, intelligence, and love, into simpler
components. In doing so, we search for small, simple units that, collectively,
emerge as complex phenomena ®. Scientists refer to these basic units as
fundamental principles or elements. Once we identify these fundamental
principles, we can understand the root cause for many complex behaviours in the
world around us. Simple! Yet not. The problem is that what we call fundamental
today is not the same as what we thought was fundamental yesterday, nor will it
be the same tomorrow 2. With each new technological advance, these
‘fundamental' units are broken down into even simpler components, revealing
newly discovered 'fundamental' ones. Physics and elemental particles is a field
where this change is evident (Figure 1).

What is the most fundamental particle of the universe?

Atoms! Protons!

Strings?

Figure 1. Evolution over the centuries of our understanding of what constitutes the fundamental
particles in the universe.

The atom was once thought to be the fundamental unit of matter (the word itself
means ‘indivisible’ in Greek). In the early 20" century, we discovered that atoms
are actually composed of electrons, neutrons and protons —the fundamental
particles at that time®. With the advent of more advanced technology, scientists
challenged this notion by discovering that protons and neutrons are themselves
composed of even smaller constituents called quarks —the current fundamental
particles today*. If our technology becomes advanced enough, the fundamental



constituents might one day be vibrating strings °. And since technology advances
at a near-exponential rate, the frequency with which new fundamental principles
appear is also much faster!

Coming back to my first sentence: biology is incredible. Yet, just as in physics, it is
complicated by what we consider to be fundamental. The current mainstream
notion is that DNA, a molecule capable of carrying information, is the root cause
of life and complex phenomena. This perspective shapes how we approach
biology education, how journalists and the public discuss, and how scientists
conduct research. In the following pages, | will contrast this view with a different
perspective on what is fundamental to biology. I'll aim to show that challenging
this notion can help us better discover and understand biological systems. Then
I'll apply it to explore a unique microbe that indiscriminately stores fats, sugars
and stones. But we'll get there. Eventually.

Fundamental Changes in Understanding Biology

To start, let’s go back to the beginning: the origin of life”. I’'m writing this in 2024.
It should be pretty clear how life emerged by now, right?

Life emerged in the early stages of our planet. Inside a warm, shallow body of
water, neutral gas mixtures sparked by lightning led to the formation of organic
molecules —amino acids, sugars and even nucleotides ®’. Eventually, this
primordial soup gave rise to more complex molecules (Figure 2: Primordial soup).
RNA, among them, with catalytic power, became the first catalyst to enable self-
replication. Over time, RNA’s function was replaced by the more stable molecules:
proteins and DNA, which gave rise to life as we know it. And thus, life emerged.

Or did it?

Different theories challenge this version of the origin of life. One of the most likely
scenarios suggests that life did not emerge in a primordial soup, but in a
completely different environment: deep inside the ocean, specifically at
hydrothermal vents 8. These vents —cracks in the ocean bed from where heat
emanates —provide an ideal setting for the chemical formation of organic
molecules containing 2 or more carbon atoms. In this scenario, self-assembling
protocells harvesting the energy from hydrothermal vents gave rise to the most
basic chemistry that is central to life. A chemical, self-replicating, cycle, the tri-

" Such a cliché! | know, but bear with me.



carboxylic acid cycle (TCA"), capable of synthesis of organic molecules would then
lead to increasing complexity until it reached what we now consider life (Figure
2: Hydrothermal vents).

Primordial Soup Hydrothermal vents

DNA, RNA
and
Information

» Metabolism
(*) and
%2@ energetics

~

T
= g

Figure 2. Fundamentally different theories on the origin of life. On the left, the theory of the
primordial soup, in which life emerged in the form of complex biomolecules that formed with the
help of UV radiation and lightning. Scientists which defend this theory hold DNA, RNA and
information as fundamental to life. On the right, the theory of life emerging in hydrothermal vents
by the self-assembling metabolic cycles powered by continuous energy emanating from the earth’s
crust. Scientists defending this theory hold metabolism and energy flows as fundamental to life.

Does it matter which theory is correct? For now, it’s less about determining the
‘right” or the ‘wrong’. It’s about what each theory considers fundamental and how
that affects our approach to research. The former theory places RNA and DNA —
molecules that intrinsically carry information— at the beginning and centre of life.
It suggests that information, in the form of molecules, came first and somehow
invented metabolism. The latter theory places metabolism and the energy
sustaining it at the centre of life, considering them to be fundamental °.

In environmental microbiology, my current field of research, there is a heavy
emphasis on collecting terabytes (tera = a trillion bytes) of data from DNA and
RNA ¥ with less focus on metabolic or energetic considerations. It is common to
encounter research that concludes: “Microbe containing Genex, performs
Function X” or “Microbe expressing high amounts of RNAy, has a significant

" TCA, one of the most used abbreviations in this thesis. Can you guess how many times |
use ‘TCA’ in this whole thesis? Note that this footnote =+3 to the TCA-count.




enhanced Activity Y”. These conclusions might be correct, but as always, the devil
is in the details. They might be true; it really depends on the context in which the
microbe exists. This possibility of doubt is not always stated. For me, that is
troubling.

Studying molecules of information (DNA and RNA) is sometimes the most suitable
method (if not the only one) to categorize and try to understand most microbes
in this world today *. The analysis of such molecules is much simpler than that of
proteins and metabolites. However, microbiologists need to contextualize this
information from an energetic and metabolic-centric perspective. What really
influences an organism to consume a given substrate, to move in a given way, to
divide or to accumulate excessive amounts of minerals? DNA-based analysis may
pave the way to answer these questions, but it is insufficient to travel through
these paths. Conversely, we need an energetic/metabolic mindset to travel these
paths.

Let us explore further this dichotomy with an example.

Cell size and simplicity: is it DNA or energetics based?

As a student, you’ve probably looked at cells under a microscope. Eukaryotes are
cute and easy to spot. But bacteria? It takes a lot of training and patience to
convincingly spot bacteria with a normal microscope.

It is not an exaggeration to say that bacteria are tiny —microscopically small (to
state the obvious). They are at least 10 times smaller than eukaryotic cells. There
must be a reason for this, and indeed, there is. But it’s not hidden in DNA. On the
contrary, the reason is rooted in energetic limitations that are independent of
DNA, yet largely shape DNA content %13,

Cells require energy, which is primarily generated at the level of the membranes
14 There is a difference in proton (H*) concentration (a.k.a. pH) between the
inside and the outside of a cell. This difference forces H* to cross through the
membranes with such force that it generates energy. The more membrane space
a cell has, the more energy it can generate. So, why then aren’t bacteria much
bigger? Larger cells will have more membrane space (surface area), which means
greater capacity for energy generation. However, the cell itself (the volume) is
also larger and will demand more energy. And the growth of both surface and
volume isn’t equal.



Consider a cell in the shape of a cube. The surface of this cube (i.e. the
membranes) is calculated by multiplying the area of each face (x * x = x?) by the
number of faces (6). The volume, on the other hand, is calculated by multiplying
the length, width and height (x * x * x = x3). Now, if this cell doubles in size, the
surface only grows at a quadratic rate (which is to say, the exponent of x?), while
the volume grows at a cubic rate (exponent of x3). If you keep doubling the size,
the difference between surface and volume gets wider, with the volume growing
faster than the surface. Larger cells are simply not feasible because the amount

of energy that a unit of membrane needs to generate becomes unrealistically
high.

The energy dilemma
of Bigger Cells

Volume

V)

2

Surface
area (S)

Balanced membranes Overworked membranes
(not too much to sustain) (much more volume
per membranes)

Figure 3. The energy dilemma of big cells. The volume (V) of a cell grows faster than its surface (S)
as shown in the figure. This means that bigger cells have less membranes available per volume.
Because membranes generate energy, bigger cells must either generate more energy per
membranes, reduce their energy demands or just remain small.

Because of this physical, geometric limit, bacteria on average are no larger than
10 pum in diameter. Simple! No DNA involved —at least at the very fundamental
aspects. Actually, having, maintaining, and using DNA costs energy too. The very
same reason that makes bacteria small also limits the amount of DNA a cell can




sustain. Thus, bacterial genomes are roughly 5 Mbp in size, harbouring no more
than 3000 to 4000 genes *°. For comparison, a human cell contains up to 3000
Mbp in their genome, harbouring around 25 000 genes °. That’s nearly 500 times
bigger! How? Because we (eukaryotes) harbour energy generating slaves within
our cells called mitochondria, so we don’t depend on our surface for energy
generation. But that’s a complicated story we won’t deal with here.

In the following section, | will dig deeper into a type of environment where energy
flows are also crucial in shaping bacterial function. This is where the environment
of the unique microbe | mentioned at the very beginning. The one that
indiscriminately stores fats, sugars and stones.

Intermittent fasting: how bacteria adapt to sudden
periods of starvation

Almost every environment on this planet is dynamic. We experience monthly
changes in weather as the Earth orbits the Sun and daily shifts in light as the
planet rotates. We sleep, wake up, eat, get hungry, and exercise. We are never
truly static. The same applies to microorganisms, except perhaps in the controlled
confines of high-tech labs . Take oceans as an example. Sunlight stimulates
phototrophic growth near the surface, temporarily increasing oxygen levels. At
night, this process reverses, and the detritus from daytime growth descends,
nourishing deeper layers of the ocean. Over millions of years, life has evolved
countless strategies to not just survive, but to exploit these recurring cycles 8.

In wastewater treatment plants, engineers mimic these cyclic environments,
forcing bacteria to adopt a remarkable survival strategy. First, bacteria enter a
tank with abundant food but with no oxygen (i.e. anaerobic feast). After a few
hours, oxygen is injected into these tanks, though food is no longer abundant (i.e.
aerobic famine). Bacteria are then cycled through this process repeatedly. This
anaerobic feast, aerobic famine cycling is ingenious, as it forces bacteria to
employ a survival strategy that cleans our water by removing organic carbon and
phosphates —two of the main contaminants *°. This survival strategy is truly
remarkable and is worth exploring in detail.

Previously | mentioned that bacteria generate energy by means of a pH difference
across their cell membranes. This pH difference doesn’t appear out of thin air; it’s
established through a process that, paradoxically, requires energy—specifically, a
type of energy that cannot be directly used for survival: combustion. Yes, like fire.
Exactly the same.



During a fire, oxygen strips electrons from compounds in a process known as
oxidation. You may have painfully felt this when blowing air too close to a fire". A
similar process occurs in all living cells, but instead of indiscriminately generating
heat, cells use a controlled machinery to sequentially strip electrons from food
and pass them to oxygen at the membrane. The energy released is carefully
channelled into maintaining the pH difference between the inside and outside of

the cell. This pH difference, in turn, powers energy generation that cells can use
14

Now, let’s return to our cyclic environment—this anaerobic-feast, aerobic-famine
regime. A keen observer might spot a dilemma: if bacteria are separated from
oxygen while consuming food, how do they continue generating energy? Well,
they have a few options.

1. Resist the urge to eat: Some bacteria patiently wait until oxygen is
reintroduced before consuming their food as normal. This strategy, often
used by heterotrophic bacteria, is the most energy-efficient in terms of
yield. However, it is vulnerable to competition from bacteria that sacrifice
this yield to consume food anaerobically, leaving very little behind.

2. Consume food anaerobically: In the absence of oxygen, bacteria can use
alternative molecules to accept electrons, generating energy. However,
these molecules are not called oxygen. These substitutes are less efficient
than oxygen, resulting in much slower growth (a painfully slow process
for lab researchers).

3. The best of both worlds: The most effective strategy is a compromise.
Bacteria consume as much food as possible during the anaerobic feast
but refrain from stripping away its electrons. Instead, they store the food
as fats, patiently waiting for oxygen to arrive. When oxygen becomes
available, they use it to burn the stored fats, efficiently generating energy.
Voila—an elegant balance between speed and efficiency.

The latter strategy is the best fit for these cyclic environments. Many bacteria can
employ this trick, but one type in particular stands out: the Polyphosphate
Accumulating Organisms (PAOs'). As its name suggests, they are expert
accumulators, not just of polyphosphate but of other polymers too. These
organisms accumulates fats, sugars and polyphosphates — polymers that look like

" This happens a lot during a barbeque. At least for those that enjoy getting their hands (or
more likely, their faces) dirty.

" PAOs. Surely the most used abbreviation of this thesis. By how much more than TCA?
Place your bets!
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huge stones! The following pages will explore how this unique group benefits
from overaccumulation and how this affects their physiology.

PAOs: master of fats, sugars and stones

PAQOs thrive in the cyclic environments imposed during wastewater treatment
plants, specifically during Enhanced Biological Phosphorous Removal (EBPR) %°.
This process consists of repetitive anaerobic-feast, aerobic-famine regimes that
allow PAOs to accumulate excessive amounts of polyphosphate inside their cells
and, this way, to clean our water (see Figure 4 for a schematic of a typical cycle of
PAQOs). They are crucial to EBPR and decades of research have been devoted to
cultivating them, disturbing them, breaking them apart to measure their pieces,
and much more. We understand a great deal of these organisms, yet we still don’t
grasp what makes PAOs accumulate so much inside their cells.

The life cycle of PAOs

C) ANAEROBIC —> AEROBIC )

Glycogen Glycogen

PolyP tNADH PolyP -ATP
+ATP AP ATP__
pi¢— 2 Pi—
e AOH 5 pHB PHB 02
Acetate
Pi
Acetate al
Time Time

PHB

Time Time

Figure 4. A typical cycle of PAOs in EBPR systems. In this schematic, the dynamic changes of
extracellular and intracellular components that a typical PAO cell experiences during an EBPR cycle
are represented.



To help understand PAOs, we will look deeper into the history since their
discovery. | make the argument that this history should be seen as marked by
epochs. Each characterized by their discoverers: pragmatic engineers,
microbiologists and process engineers, and finally molecular biologists. After this
Chapter, you can find an image and a table representing a timeline of the most
important discoveries made in the research of PAOs since their discovery (See the
next section).

Pragmatic engineers (1959 — 1974)

The first report of excess phosphate being removed by sludge from wastewater
was in 1959 as part of a problem: rice plants suspended on the effluent water
grew many big leaves but very little rice grains because the effluent contained
excess nitrogen but weirdly not excess phosphorus 2°. The decade that followed
was the battleground of minds trying to prove or disprove the biological root of
this removal 2122, the physical conditions required to enhance the removal 2 and,
finally in 1974, the establishment of a technology that can effectively remove
phosphorus by means of bacterial polyphosphate accumulation .

Microbiologists and process engineers (1974 — 1998)

Towards the end of the 1970s it became apparent that engineers required a
deeper understanding of the biology underlying phosphorus removal to enable
system optimization. Thus, process engineers worked together with
microbiologists to understand the mechanisms resulting in phosphorus removal.
By 1987 a descriptive biochemical model for the metabolism of PAOs had been
established 2>2°. Not only was the system qualitatively described, but great steps
towards quantitative models to explain the biochemical changes in the anaerobic
or in the aerobic period of EBPR were also made 2?8, These quantitative models
are still used today when describing the biochemistry of PAOs enrichments.

Mark van Loosdrecht reflected on this period in 1997:

“It might be considered remarkable that the biochemical model was developed
by engineers, but all had personal contacts with or knowledge of the
microbiological research field. Possibly engineers were less hampered by a
traditional biochemical and microbial approach and could therefore more easily
come up with new concepts in microbial ecophysiology [...]” *°

At the end of the 90s, the process was well described and implemented effectively
worldwide. Still, some biochemical details were still unclear such as the source of
energy and reducing potential (ATP and NADH respectively) for the accumulation
of fats 2°, the varying stoichiometry observed across different treatment plants

11
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and labs ¥/, the actual biochemical operation for glycogen degradation 2%,

amongst others.

The complexity of metabolic networks, which can have a large number of possible
solutions, together with limited computational tools of the time was partly
responsible for hampering this progress. But in the late 1990s, a revolution was
underway—the sequencing of the human genome—that would transform
biology and PAQ research till the present day.

Molecular biologists (1999 — present day)

At the end of the 90s and beginning of the 2000s, researchers started
implementing molecular techniques to characterize the bacterial community
behind the umbrella term PAOs. For example, “Candidatus Accumulibacter
phosphatis” was proposed as the main responsible PAO in 1999 3!, and several
studies followed the exploration of this novel species 3*%.

In 2006, Martin, et al. ** publish the first metagenomic study of “Candidatus
Accumulibacter phosphatis”, paving the ground for an extensive field of
metagenomics in wastewater research. In their research they noted that genes
for Entner-Doudoroff (ED) glycolysis were not present in this species; that the
operation of a split TCA cycle could explain different stoichiometries observed
over the years; and that genes related to carbon fixation might indicate potential
autotrophic behaviour. These findings redefined how researchers understood
PAO physiology and paved the way for an era dominated by metagenomics and
molecular techniques.

Since then, the field has focused heavily on characterizing PAO genetics. For
instance, researchers identified that two main variants of the gene ppk1 diverged
early in the evolution of “Ca. Accumulibacter” and could be used to distinguish
between groups called clades 323>, However, such a separation showed to be
confusing in the following decades since many functions showed to be randomly
distributed amongst clades**38. To solve this issue, it became common practice
to publish the metagenome of the specific species associated to functional
observations 394, Finally in 2022, Petriglieri, et al. ** performed a systematic re-
evaluation of the phylogeny of “Ca. Accumulibacter” and today over 20 species
of “Ca. Accumulibacter” are recognized”.

" Quite crazy to keep up with. For example, if we name some of the species (alphabetically),
we have: aalborogensis, adiacens, adjuntus, affinus, appositus, cognatus, conexus,
contigus, delftensis,... amongst many others. We didn’t even reach phosphatis yet!



Regarding the current state-of-art in PAOs research, one cannot overlook the
importance of the publication of the first metagenome of “Ca. Accumulibacter
phosphatis”3*. It was truly transformative for the field of PAOs research. This is
the branching point at which most research moved to focus almost exclusively on
molecular techniques and seemed to have forgotten biochemistry and systems
biology®. This not only happened in PAOs, but in almost every research field in the
world. This was eloquently captured by Sydney Brenner in 1995 in a letter to
Current Biology, where he addressed the (then) challenges of understanding
biology when too much emphasis is placed on genetics:

“The only way out is through biochemistry of one kind or another. In 1990, |
made the remark that biochemistry and communism seemed to have
disappeared in that year. Most people thought | said this with glee, but in fact it
was with regret, at least for biochemistry.

[...] what we now need to do is integrative biology, that we are very good at
working out how simple systems with few components work but very bad at
putting the parts of multicomponent systems together.” *2

It’s sobering to realize that almost 30 years later, this statement remains just as
relevant. In the case of PAOs, the need for integrative biology approaches is more
critical than ever to unravel the complexities of these marvellous organisms. To
get the knowledge we have gathered from our genetics approach and apply it
with a metabolic and energetics mindset. To use systems biology approaches to
answer some of the questions that have been buried under mountains of data.

Aims and scope of this thesis

In this thesis, | aimed at deepening our understanding of how bacteria thrive in
feast-famine cycles with a mindset of integrative biology. Specifically, using “Ca.
Accumulibacter” as a model organism of PAOs, | aimed to answer some of the
knowledge gaps that limit our ability to obtain a systems-biology level
understanding of microbial communities living in EBPR systems. Specifically, |
attempted to shed light on the following knowledge gaps that exist in the field:

* Don’t let me convince you. Have a look at the timeline plot of PAOs history in the next
section. There you might get an idea of how strong the focus on molecular biology has
been in the last 20 years.
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The extent to which genetic information and bioinformatics tools can
predictive the physiology of PAOs. With the advent of rich genomic data,
attempts at predicting complex physiological structures and behaviours are
being made. In Chapter 2 we studied extracellular polymeric substances
(EPS) of PAOs to underscore how limited and inconclusive the use of genomic
data alone can be.

Genome-based metabolic models are used to perform simulations in which
often direction and reversibility of reactions is pre-defined. Little effort has
been made to apply systematic analysis to these models and to limit their
solutions to given environmental conditions. Chapter 3 explores a metabolic
model based on genomic data of “Ca. Accumulibacter” and highlights the
diversity and complexity of network solutions. Further it explores the use of
thermodynamic calculations in identifying feasible solutions within a given
environmental context.

Modelling frameworks that allow for the prediction of complex metabolic
strategies in cyclic environments with resource allocation are complex, lack
clear documentation and are not available on open-access software. This
limits the application of systems biology on organisms living in dynamic cycles
such as PAOs. Chapter 4 describes the development of an open-source
Python toolbox to research optimal metabolic strategies under cyclic
conditions.

Resource allocation theory has been applied to many microorganisms to
enable better understanding of their metabolism. However, little effort has
been done in slow growing organisms such as PAOs. Furthermore, the
consequences of a historical assumption that biosynthesis is restricted to
aerobic phases has not been tested. In Chapter 5 we applied the modelling
toolbox from Chapter 4 to explore the consequences of temporal separation
of biosynthesis in “Ca. Accumulibacter” and explore the metabolic
consequences of this separation. This was possible thanks to the
implementation of temperature as an external variable affecting fluxes, which
inevitably leads to tighter control on resource use at lower temperatures.

The metabolic mechanisms of “Ca. Accumulibacter” under mixed substrate
conditions remain poorly understood, with most studies focusing on single
substrates. While some reports have identified potential synergies in co-
substrate uptake, the specific metabolic interactions and their implications



for resource use and EBPR optimization have not been fully elucidated.
Chapter 6 identifies hidden synergetic interactions between metabolic model
operations by means of combining experimental tests on highly enriched
PAOs cultures with metabolic modelling predictions.

Finally | integrate all these findings in Chapter 7 and give my personal outlook
into the research field.
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A Brief History of PAO Research
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present in EBPR. bacter": 18 new species. metabolic traits.

Figure 1. Timeline of significant discoveries in PAO-related research. Each node represents an initial
observation, with subsequent references indicating ongoing research contributions over the years.
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Animated icons denote the primary focus of the research during each period: engineers,
microbiologists, molecular biologists, and systems biologists. Corresponding references are detailed
in Table 1 at the end of the introduction section.

The historic timeline depicted in Figure 1 shows the evolution over the years in
the research of PAOs, starting with the very first description of phosphate
removed by activated sludge. To put emphasis on the research type being
performed, and especially on the popularity of research approaches over the
years, an illustration was placed next to each node representing a scientist type
(Figure 2 describes these types).

Types of researchers

in PAOs
Applied Micro Molecular Systems

engineers biologists biologists biologists

o)

o)
15
e L

¥ e

Applied research,
removal efficiencies, no
need for fundamental
understanding.

Quantitative
understanding of
multiple levels of cell
organization.

Fundamental Research focused on
understanding of molecular techniques:
microbiology. omics, in-situ analysis.

Figure 2. Type of researcher and approach in the study of PAOs. Each type is matched with the
discoveries in the historical timeline from Figure 1.

And finally, a not-so-brief summary of all the references from the timeline (Table
1). Hopefully, this serves as a handy PAO starter guide for curious young scientists!
It’s easy to get lost and overwhelmed in the gigantic world of publications.

Table 1. Summary of all the greatest discoveries in the history of PAO research. The number of each
reference aligns with the reference in the Figure 1.

Year Discovery

1959 Srinath, et al. * observed that rice plants grown in activated sludge
tanks exhibited excessive vegetative growth but poor grain
formation, indicating phosphorus removal in the tanks.

1965 Levin and Shapiro 2 identified that phosphate uptake in treatment
plants is biological, describing it as "luxury" uptake not linked to
growth, and proposed designs for phosphate removal.




1970

Menar and Jenkins 3 concluded that phosphate removal is a chemical
process rather than a biological one.

1974

Barnard “ provided the first engineering-focused description of the
enhanced biological phosphorus removal (EBPR) process, discussing
mass balances and operational conditions.

1975

Nichols ° tested Barnard's designs and found that anaerobic zones
near the feed of plug flow reactors enhance phosphorus removal.

1975

Fuhs and Chen © Isolated Acinetobacter species and demonstrated
their ability to accumulate polyphosphate, though the exact
biochemical mechanisms were unclear.

1980

Deinema, et al. 7 found that EBPR sludge, dominated by
Acinetobacter,  accumulates  polyphosphates and  stores
polyhydroxyalkanoates (PHAs), mainly polyhydroxybutyrate (PHB).

1986

Comeau, et al. ® described the stoichiometry and kinetics of bacteria
involved in phosphate removal, suggesting roles for polyphosphate
and PHB in energy storage and substrate utilization.

1986

Wentzel, et al. ° proposed a metabolic model for Acinetobacter,
believed to be the main PAOs, highlighting the glyoxylate cycle's role
in supplying intermediates to the TCA cycle.

1987

Mino, et al. ° experimentally tested and validated that anaerobic
glycogen degradation is involved in PAOs transformations.

1994

Smolders, et al. * and Smolders, et al. ** developed the first
guantitative metabolic models explaining the metabolism of PAOs
during EBPR.

1997

Maurer, et al. 2 used labelled experiments to show that glycogen is
potentially degraded via the Entner-Duodoroff (ED) pathway.

1999

Hesselmann, et al. * identified “Candidatus Accumulibacter
phosphatis” as the main bacterium responsible for phosphorus
removal in EBPR.

2000

Hesselmann, et al. **> provided additional evidence that glycogen is
degraded via the ED pathway with labelled substrate.

2002

McMahon, et al. ' cloned and sequenced polyphosphate
metabolism genes (ppkl and ppk2) from "Ca. Accumulibacter,"
confirming their role in polyP synthesis

2002

Crocetti, et al. ¥7 discovered GAOs as competitors to PAOs, with
similar metabolic behaviors but negative effects on phosphorus
removal.

2004

Kong, et al. ¥ used MAR-FISH microscopy to link phosphate and
acetate uptake activities to "Ca. Accumulibacter."

2004

Venter, et al. 1° showed that metagenomes can be obtained from
environmental samples.
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2004

Tyson, et al. ?° provided quantitative insights into microbial

communities based on metagenomic data.

2005

Kong, et al. %! revealed that gram-positive Actinobacteria, related to
Tetrasphaera, also participate in phosphorus cycling in EBPR.

2006

Oehmen, et al. 2% further test GAOs in EBPR systems and describe
detailed metabolic operations with propionate.

2006

Martin, et al. 2> published the first metagenomic study on PAOs,
resolving controversies in EBPR models and proposing new metabolic
pathways.

2007

He, et al. ?* used the ppkl gene as a marker to separate "Ca.
Accumulibacter" into distinct clades

2007

Carvalho, et al. % provided evidence of different “Ca.
Accumulibacter” morphotypes (rods and cocci) that might indicate
varying metabolic capabilities, including denitrification.

2008

Wilmes, et al. 2° conducted the first meta-proteomics study of PAOs,
linking identified proteins to EBPR processes using metagenomic
sequences.

2008

Wilmes, et al. ¥ performed high-resolution metaproteomics

combined with a metagenomic database, revealing strain differences
among “Ca. Accumulibacter” members.

2009

Flowers, et al. 28 showed that different “Ca. Accumulibacter” clades
have varying denitrification abilities, with clade IA capable of using
nitrate as an electron acceptor.

2009

Wexler, et al. % studied protein dynamics in EBPR cycles, confirming
glycolysis through the EMP pathway and noting protein carry-over
between anaerobic and aerobic phases.

2009

Lopez-Vazquez, et al. *° developed a kinetic model to identify
conditions where PAOs outcompete GAOs, calibrating parameters to
fit experimental results.

2010

Nielsen, et al. 3! called for improved quantitative models that
integrate  ecological and metabolic principles for better
understanding of EBPR communities.

2010

Oehmen, et al. 2 showcase ecological principles in the incorporation
of microbial metabolic models of PAOs and GAOs in EBPR.

2010

He, et al. 3* performed the first metatranscriptomics analysis of PAOs,
highlighting gene expression patterns between anaerobic and
aerobic stages.

2011

He and McMahon 3* used transcriptomic analysis with RT-gPCR to
show dynamic gene expression changes during EBPR cycles,
responding to acetate, oxygen, and phosphate levels.




2011

Nguyen, et al. 3> demonstrated that EBPR systems include other key
microbial players, such as the diverse Tetrasphaera group, beyond
Accumulibacter.

2012

Acevedo, et al. % demonstrated metabolic flexibility in "Ca.
Accumulibacter," showing varying stoichiometries with polyP and
glycogen and resulting changes in clade composition.

2012

Albertsen, et al. 3’ performed a quantitative metagenomic study of a
full-scale EBPR system, highlighting the lack of reference genomes
and showing low abundance of "Ca. Accumulibacter" in full-scale
systems.

2013

Kristiansen, et al. 3® developed the first metabolic model for
Tetrasphaera in EBPR using metagenomics data.

2013

Flowers, et al. * retrieved the MAG of a new clade of "Ca.
Accumulibacter," showing that clades with high 16S rRNA sequence
similarity can have distinct genomic and functional potentials.

2014

Mcllroy, et al. *° retrieved two MAGs for “Ca. Competibacter” (GAOs)
and explored genomic differences underlying their distinct functions.

2014

Mao, et al. ** conducted the first study combining metagenomics and
metatranscriptomics for PAO enrichment but with limited biological
insights.

2014

Lanham, et al. > developed a "black-box" parameterized kinetic
model to explain experimental data on PAOs and GAOs in full-scale
treatment plants.

2015

Nguyen, et al. ¥ showed intracellular glycine accumulation in PAO
enrichments dominated by Tetrasphaera.

2015

Skennerton, et al. * published eight new MAGs for "Ca.
Accumulibacter," identifying pan-genomes, variable genomes, and
differences in metabolic potential for electron acceptors.

2015

Mao, et al. * conducted a global study on the abundance and
diversity of "Ca. Accumulibacter" clades in WWTPs, highlighting their
diversity and prevalence worldwide.

2015

Welles, et al. *® experimentally showed that PAOs use polyphosphate
and glycogen as redundant ATP sources and revealed physiological
differences between "Ca. Accumulibacter" clades.

2016

Barr, et al. * demonstrated that metaproteomics aligns better with
FISH results than metagenomics for quantifying "Ca. Accumulibacter"”
and highlighted proteomic differences in granular vs. floccular sludge.

2016

Oyserman, et al. *® identified dynamic temporal changes in the
transcriptome of "Ca. Accumulibacter" during EBPR cycles, revealing
novel metabolic routes such as hydrogen production and glycine
consumption.
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2016

Law, et al. *® used molecular techniques to track "Ca. Accumulibacter"
dynamics in full-scale WWTPs at high temperatures, showing GAO
competition is less severe than previously thought.

2016

Albertsen, et al. *° identified "Ca. Propionivibrio" as a GAO closely
related to "Ca. Accumulibacter," often misidentified as PAOs due to
probe overlap.

2017

Stokholm-Bjerregaard, et al. *! surveyed 18 Danish EBPR plants over

9 years and found Tetrasphaera to be the most abundant PAO and
Micropruina the most abundant GAO.

2017

Rubio-Rincdn, et al. *2 showed that GAOs and PAOs can synergize
during EBPR through electron sink interactions with the nitrogen
cycle.

2017

Welles, et al. >3 characterized PAOs with varying polyphosphate levels,
showcasing metabolic flexibility and capturing the first electron
microscope photo of "Ca. Accumulibacter."

2017

Guo, et al. ** used metagenomics to reveal microbial diversity in
activated sludge and assigned functional roles, with "Ca.
Accumulibacter" being highly prevalent.

2018

Zeng, et al. *> monitored seasonal changes in the abundance and
clade diversity of "Ca. Accumulibacter" in WWTPs using ppkl as a
marker.

2019

Camejo, et al. °® used metagenomics and metatranscriptomics in an
EBPR reactor performing denitrification to show that gene expression
indicates activity potential.

2019

Fernando, et al. >’ developed a FISH-RAMAN technique to identify
and study the physiology of cells accumulating polyP, glycogen, and
PHAs in situ.

2019

Rubio-Rincodn, et al. *® proposed "Ca. Accumulibacter delftensis"
(from clade IC) to address clade diversity issues, showing it cannot
denitrify.

2019

Arumugam, et al. > reported the first closed genome of "Ca.

Accumulibacter," retrieved with high quality and coverage.

2019

Qiu, et al. ® identified a MAG of "Ca. Accumulibacter" capable of
using acetate and amino acids, linking their metabolism to phosphate
cycling.

2019

Rubio-Rincon, et al. ®* using lactate as substrate for EBPR, showed
that Tetrasphaera decouples polyP hydrolysis from carbon substrate
uptake leading to loss of EBPR activity.

2020

da Silva, et al. ®2 used stoichiometric metabolic modeling to show that
PAO flexibility in EBPR stages is rooted in network structure and
metabolic fluidity.




2021

McDaniel, et al. % compared gene expression across "Ca.

Accumulibacter" MAGs, showing different genomes express genes
differently during EBPR cycles.

2021

Petriglieri, et al. ® identified two new PAO species, "Ca.
Dechloromonas phosphoritropha" and "phosphorivorans," capable
of cycling PHAs and glycogen.

2022

Chen, et al. ® tested uptake mechanisms of acetate, propionate,
glutamate, and aspartate in PAOs and GAOs, revealing microbial
group-specific physiological differences.

2022

Petriglieri, et al. ®® reevaluated "Ca. Accumulibacter" phylogeny,
proposing 18 novel species names and emphasizing MAGs for
functional diversity analysis.

2022

Singleton, et al. ®” categorized the previously known Tetrasphaera
members as new genus “Ca. Phosphoribacter”, one of most
abundant PAO present worldwide.

2023

Chen, et al. ® showed that "Ca. Accumulibacter cognatus" can
metabolize certain fermentation products, leading to phosphate
release

2023

Ziliani, et al. ® suggested that glucose is consumed in "Ca.

Accumulibacter" enrichments, supported by 67% FISH evidence.

2023

Pdez-Watson, et al. > employed quantitative models to predict the
metabolic strategies of PAOs during a whole EBPR cycle.

2023

Kleikamp, et al. "t showed that metagenomics, metaproteomics, and
16S rRNA provide differing quantitative insights into microbial
community structures.

2024

Pdez-Watson, et al. > demonstrated that computational tools assess
metabolic capacity and diversity within simple models of individual
MAGs.

2024

Xie, et al. ”® conducted evolutionary analysis of genes related to
polyphosphate cycling in "Ca. Accumulibacter," highlighting activity
during EBPR cycles.
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Abstract

Biological wastewater treatment relies on microorganisms that grow as flocs,
biofilms or granules for efficient separation of biomass from cleaned water. This
biofilm structure emerges from the interactions between microbes which
produce, and are embedded in, extracellular polymeric substances (EPS). The true
composition and structure of the EPS responsible for dense biofilm formation is
still obscure. We conducted a bottom-up approach utilizing advanced glycomic
techniques to explore the glycan diversity in the EPS from a highly enriched
“Candidatus Accumulibacter” granular sludge. Rare novel sugar monomers such
as N-Acetylquinovosamine (QuiNAc) and 2-O-Methylrhamnose (2-OMe-Rha)
were identified to be present in the EPS of both enrichments. Further, a high
diversity in the glycoprotein structures of said EPS was identified by means of
lectin-based microarrays. We explored the genetic potential of “Ca.
Accumulibacter” high quality metagenome assembled genomes (MAGs) to
showcase the shortcoming of top-down biocinformatics-based approaches at
predicting EPS composition and structure, especially when dealing with glycans
and glycoconjugates. This work suggests that more bottom-up research is
necessary to understand the composition and complex structure of EPS in
biofilms, since genome-based inference cannot directly predict glycan structures
and glycoconjugate diversity.
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Introduction

Biological wastewater treatment relies on microbial communities that form
aggregates called biofilms, flocs or granules, which play a pivotal role in the
separation of biomass from treated water 2. These structures house
microorganisms embedded within a complex mixture of extracellular polymeric
substances (EPS), which are produced by the microorganisms themselves 3.
Despite the intricate nature of EPS, significant progress has been made by
focusing research on community members that are easily controllable in lab
reactors. Among these organisms, “Candidatus Accumulibacter”, a well-studied
gram-negative bacterium, emerges as a dominant member in most aerobic
granular sludge (AGS) systems * and is believed to play a major role in EPS
formation. Despite not being isolated as a pure culture, “Ca. Accumulibacter” can
be highly enriched in open lab cultures while maintaining the desired biofilm
granular structure. Consequently, “Ca. Accumulibacter” has become a valuable
model organism to study not only EPS formation but also the functioning,
relationships, and assembly of microbial aggregates more broadly.

EPS plays a pivotal role in biofilm formation >, provides protection against

predation and environmental stress ©, facilitates nutrient cycling 7, and shapes
overall microbial community structure &. Their composition, exceedingly complex,
emerges from active secretion, cell decay and sorption from the environment °.
Thus they comprise of sugars, proteins, nucleic acids and lipids, although the
reported composition is strongly dependent on the method employed for its
extraction 1 and analysis . Focusing on isolating EPS into their individual
molecular components overlooks the potential existence of combinations of
these molecules. In this context, “glycans”, which denote sugar chains, can be
found as free molecules or linked to other macromolecules, particularly proteins
and lipids.

Glycans are one of the most complex macromolecules in nature. Not only are
their basic components diverse (typically ranging from 3 to 7 carbons) but the
types of linkages (i.e. glycosidic bonds) that can occur at each individual carbon
leads to different degrees of branching resulting in a nearly unlimited range of
structures 2. In addition, in a microbial community each individual member
could contribute to a unique set of glycan molecules which further hinders the
understanding of the EPS’s glycome. Thus, developing systematic methods to
better understand the sugar component that makes the EPS of a biofilm is of
paramount importance. One such method is a ‘top down’ approach in which the



genetic makeup of microbial communities can be analysed and the potential for
production of glycans predicted 2. This method however is limited to a set of well-
studied polysaccharides and lacks the discovery of novel or unknown structures.
We propose a different method which involves a ‘bottom up’ approach to start
with examining the glycan composition (i.e. what is there) to guide the further
analysis on a species-based proteomic or genomic analysis.

Recent advances in next-generation mass spectrometry and an ever-growing
resolution have revolutionized our ability to explore the composition of glycans
from environmental samples **1. The high precision and sensitivity allow for the
identification of novel glycans. By employing these cutting-edge techniques,
researchers are now equipped to identify and characterize new glycan structures
within the EPS of “Ca. Accumulibacter”, this way expanding our knowledge of the
glycan diversity in these bacteria. High throughput techniques such as lectin
microarrays 17 exploit the natural selectivity of lectins to recognize specific glycan
structures. Recently, the use of this technique was combined with protein
identification opening the possibility to study glycoconjugates such as
glycoproteins.

Glycoproteins in bacteria have only recently gained scientific attention, as
glycosylation was long believed to be exclusive to eukaryotic organisms 1°.
However, pathogenic bacteria have been found to contain multiple glycoproteins
that play significant roles in various processes, for example the bacterial adhesion
to host mucosal membranes . In addition, an array of glycoproteins were
recently discovered in bacteria from environmental samples, e.g. from an
enrichment of anaerobic ammonium oxidizing (ANAMMOX) bacteria *?
indicating not only their presence but also their high variety. Consequently, it is
crucial to continue investigating the presence of glycoproteins in environmental
bacteria and explore their potential connections to the formation and function of
EPS.

Glycoproteins result from protein glycosylation, a post-translational modification
that influences protein structure, stability, and functionality. Two primary protein
glycosylation systems have been identified in bacteria: en-bloc and sequential
glycosylation *°. En-bloc glycosylation involves the assembly of a lipid-
oligosaccharide in the cytoplasmic membrane, followed by the export and
transfer to a protein in the extracellular space 2>?3. Conversely, sequential
glycosylation entails the stepwise transfer of sugar moieties (mono or
oligosaccharides) onto proteins 2. While extensive information exists regarding
these processes in model organisms like Campylobacter jejuni and Haemophilus
influenzae, limited knowledge is available concerning protein glycosylation
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mechanisms in microorganisms commonly found in wastewater treatment plants,
such as "Ca. Accumulibacter".

In this paper, we aim to uncover the functional significance of glycoproteins and
their associated glycans within the EPS of “Ca. Accumulibacter”. For this, we
adopted a comprehensive bottom-up approach to investigate the diversity of the
glycome within the EPS of "Ca. Accumulibacter." Utilizing advanced glycomic
techniques, we identified previously elusive novel glycan structures and explored
the variety of glycoproteins present in two highly enriched “Ca. Accumulibacter”
granular cultures. Guided by these results, we examined the genetic potential of
available genomes of “Ca. Accumulibacter” to produce novel glycans and
glycoproteins. This work highlights the importance of a thorough analysis of
structural components of EPS rather than relying solely on functional roles from
genomic-only inferred components.

Results

Reactors performance and microbial community

Two reactor enrichments were operated under the same conditions except for
the rotational speed of the impeller (reactor 1: 400 rpm; reactor 2: 800 rpm).
Both enrichments achieved a steady state in which the cyclic profiles of
phosphate and acetate concentrations were typical of a polyphosphate
accumulating organisms (PAOs) enrichment (Figure 1: Activity) 2. Biomass
concentrations in both reactors were relatively comparable at 4.61 + 0.05 and
4.68 + 0.08 g/L total suspended solids (TSS) for reactors 1 and 2 respectively.
Further reactor characterization revealed a closely related microbial community
based on 16S rRNA gene analysis (Figure 1: 16S), in both cases dominated by the
genus “Ca. Accumulibacter”. These findings align with the FISH results indicating
a strong dominance of “Ca. Accumulibacter” in both enrichments (95.8 + 4.4 %
and 97.9 + 2.3 % of biovolume in reactor 1 and 2 respectively).
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Figure 1. Reactor characteristics for the enrichments with the impeller rotating at 400 (top panel)
and 800 (bottom panel) rom at steady state. Each panel presents the activity test of a cycle by
showing the concentrations of phosphate and acetate (mmol/gTSS) (left) and the microbial
community abundance based on 16S rRNA amplicon sequencing (right). Both activity tests indicate
that acetate was taken up during the anaerobic phase with the concurrent release of phosphate,
typical for PAOs enrichments. For 16S rRNA results, the resolution at genus level indicates > 1 %
abundance, otherwise genus with < 1 % abundance were clustered into the category “Others”.

EPS vield and characterization

To characterize the “glycans” in the EPS of the “Ca. Accumulibacter” enrichment,
the biomass from each reactor was collected at the end of the aerobic phase and
the EPS were extracted. The total carbohydrate content was determined as 50.6
MEeq_glucose/Zeps fOr reactor 1 and 64.1 Mgeq_giucose/8ersfor reactor 2. Additionally,
the total protein content was determined as 288.9 mgeq_ssa/geps for reactor 1 and
398.6 mgeq ssa/ eps for reactor 2. Analysis of the specific glycosyl composition of
the EPS (Figure 2) revealed a similar glycan profile, with the presence of both
common carbohydrate monomers such as glucose (Glc), rhamnose (Rha), 2-O-
Methylrhamnose (2-OMe-Rha), mannose (Man), galactose (Gal), ribose (Rub), N-
Acetylglucosamine  (GIcNAc), and relative uncommon monomer N-
Acetylquinovosamine (QuiNAc).
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Figure 2. Glycosyl composition of the extracted EPS as relative mole abundance from the total
amount of carbohydrate monomers determined by GC-MS. Carbohydrate monomers detected:
glucose (Glc), Rhamnose (Rha), Mannose (Man), Galactose (Gal), Ribose (Rib,) N-Acetylglucosamine
(GlcNAc), N-Acetylquinovosamine (QuiNAc) and 2-O-Methylrhamnose (2-OMe-Rha).

Potential for biosynthesis of the carbohydrate monomer QuiNAc

Guided by the identification of the rare monomer QuiNAc in the EPS of our highly
enriched reactors, it is interesting to investigate the genetic potential for its
biosynthesis in “Ca. Accumulibacter” species. The pathway for QuiNAc synthesis
identified in Pseudomonas aureginosa (also present in Rhizobium elti and Bacilus
cereus) is shown in Figure 3A. The first steps involve the biochemical conversions
from Fructose-6-Phosphate (a glycolytic intermediate) towards UDP-GIcNAc
catalyzed by the enzymes coded by GImS, GImM and GImU. Next, UDP-GIcNAc is
dehydrated and further oxidized by two distinct enzymes (coded by wbpM and
wbpV respectively) to generate UDP-QuiNAc. Analysis of “Ca. Accumulibacter”
MAGs indicated that all assessed species harvested the complete gene set for
synthesis up to UDP-GIcNAc (Figure 3.B). For the further conversion of this sugar
towards UDP-QuiNAc, several MAGs contained the wbpM gene, but none of the
MAGs were annotated to harvest wbpV. Nevertheless, several MAGs contained
coding sequences that were matched to wbpV with over 40 % identity but had
been annotated only as ‘SDR family oxidoreductases’ (Figure 3). These could
represent genes carrying the function of wbpV and thus represent the potential
for QUINAc synthesis in “Ca. Accumulibacter” species.
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Figure 3. Genetic potential for the biosynthesis of QuiNAc in “Ca. Accumulibacter”. (A) Biosynthetic
pathway of the glycan QuiNAc in bacteria indicating the genes coding for each reaction step enzyme.
(B) Presence (filled with blue) or absence (empty) of the genes involved in this biosynthetic pathway
in multiple metagenome-assembled genomes (MAGs) of “Ca. Accumulibacter” species. Genes with
BLAST hit > 40 % identity but not annotated as such are filled with lighter blue.

Glycoprotein analysis with lectin microarrays

Glycans include both free carbohydrates and glycoconjugates (glycoproteins and
glycolipids). Since protein glycosylation is a key posttranslational modification to
proteins, the possible presence of glycoproteins in the EPS was studied. A lectin
microarray was used to analyse the protein glycosylation within the EPS of “Ca.
Accumulibacter”. In this assay, proteins in the extracted EPS were initially labelled
with Cy3. If a protein was glycosylated, the glycan part would bind to the specific
lectin present on the array and would emit a fluorescent signal due to the
presence of Cy3 at the protein part. Therefore, from this essay it is possible to
evaluate the presence of glycoproteins and identify the glycan profile based on
the lectin specificity. In brief, a fluorescent signal signifies two things: first, the
attached proteins are glycoproteins, and second, their glycan profile matches the
pattern recognized by the lectin.

Among the 96 lectins tested, 63 and 52 emitted a detectable fluorescent signal
for the extracted EPS from reactors 1 and 2 respectively. To focus on the strongest
signals, a filter (fluorescence intensity > 200) was applied, sorting out 17 lectins
that bound significantly to the EPS (Figure 4). It was found that, the fluorescence
intensity profiles were similar for both reactors 1 and 2. Notably, lectins binding
glycans containing specific sugar monomers such as rGRFT (mannose containing
glycans), rCGL2 and rGal3C (galactose containing glycans), along with PVL (Sialic
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acids containing glycans), HEA (O-glycans) and FLAG-EW29Ch-E200K (6-sulfo-
galactose glycan), exhibited the highest fluorescence in both cases.

General Lectin

Specificity Lectin Reactors
<
ConA -
Mannose HHL -
ASA -
rHeltuba -
o M
cosc- [0
Galactose 1000 -
rLSLN - -
- 800 % 9
STL - 3 Q
23
PVL - 60 | &3
Sialic acids o
rACG - - 400
rRSIIL -
Fucose -200
LTL -
wea -
O-glycan
MPA -
6-sulfo-Galactose FLAG-EW29Ch-E20K —..
N-acetyl glucosamine PHAE -
1 I
N
ép‘ éo‘
& &

Figure 4. Lectin microarray profile indicating the fluorescence intensity for binding of glycoproteins
in the EPS to each individual lectin. The broad specificity of each lectin is showed, more specific
structural specificity is included in the published article online.

Potential for protein glycosylation in “Ca. Accumulibacter”

The lectin microarrays results revealed a diverse array of glycoprotein structures
in the EPS of both reactors. Glycoproteins assembly typically involves the transfer
of an oligosaccharide from a lipid-oligosaccharide to a protein, and the diversity
stems from variations in the oligosaccharide assembly. To investigate the genetic
potential responsible for lipid-oligosaccharide assembly, MAGs of “Ca.
Accumulibacter” were compared to the well-described lipid-oligosaccharide
assembly system of Campylobacter jejuni (Figure 5.A). The analysis of gene
presence and absence in diverse species of “Ca. Accumulibacter” revealed
significant variations in the assembly system for oligosaccharides linked to
glycoprotein synthesis. While some species exhibit 2 or 3 related genes, others
possess near-complete systems akin to C. jejuni such as “Ca. Accumulibacter
regalis” (Figure 5.B). These differences imply potential species-related diversity in



glycoprotein structures, as evidenced by the wide array of glycoprotein structures
observed in lectin microarrays.
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Figure 5. (A) Protein glycosylation mechanism present in C. jejuni (figure adapted from Nethaft and
symanski 19) (B) Presence (filled) or absence (empty) of the genes involved in this biosynthetic pathway
in multiple metagenome assembled genomes (MAGs) of “Ca. Accumulibacter” species.

Discussion

In this research we operated two lab-scale reactors with conditions to enrich for
“Ca. Accumulibacter” to allow a deep understanding of the glycans and
associated macromolecules produced in the EPS by members of these species.
We obtained two highly enriched reactors (16S rRNA resulted in ~70 % “Ca.
Accumulibacter” for both reactors — FISH indicated ~95 % of the biovolume) with
remarkable similarities in their reactor performance and more importantly in the
EPS glycans and glycoprotein profiles.

Identification of previously undescribed sugar monomers in the
EPS of “Ca. Accumulibacter” enrichment

Bacteria coat themselves with a dense array of cell envelope glycans that enhance
bacterial fitness and promote survival 2. Within a microbial aggregate, this sweet
coat may end up as a component of the EPS. Additionally, there are glycans
specifically produced within the extracellular space. As bacterial glycans play a
critical role in cell-cell and cell-environment interaction, it is significantly
important to study the glycan profile of “Ca. Accumulibacter”, which is one of the
dominant microorganisms in EBPR systems. In the current research, lab-scale
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reactors and various analytical methods were used to conduct this study. GC-MS
analysis revealed the presence of novel glycans previously undocumented in EPS
from “Ca. Accumulibacter”: i.e. QuiNAc and 2-OMe-Rha.

QuiNAc has been reported in bacterial species of Pseudomonas and Rhizobium
associated to lipopolysaccharides (LPS) %7 vyet its function is not yet fully
understood. QuiNAc-deficient mutants of R. elti, for example, exhibit LPS with
significant reduction in the O-antigen content compared to the wild type. Such
mutants fail to aggregate and colonize nodules in the roots of their legume hosts
28 even when the O-antigen content is increased by genetic engineering %°. Thus,
QuiNAc is proposed to serve as the bridging glycan between lipids and
oligosaccharides in LPS 3932, |t is worth pointing out the similarities between R.
elti and “Ca. Accumulibacter” since both bacterial species appear to grow as
densely aggregated microcolonies. In this respect, the role and the exact location
of QuiNAc in “Ca. Accumulibacter” requires further research, which may shed
light on maintaining a stable population of “Ca. Accumulibacter” in the EBPR
system at wastewater treatment plant.

Besides QuiNAc, 2-O-methyl-rhamnose is another uncommon sugar monomer
detected in the EPS of “Ca. Accumulibacter”. 2-O-methyl-rhamnose has been
reported on the S-layer glycoprotein glycan of Geobacillus stearothermophilus *3,
It has also been reported as part of the repeating unit of the lipopolysaccharide
from Thiocapsa roseopersicina 3 and as a spore-specific constituent of Bacillus
cereus *°. The role of 2-O-methyl-rhamnose is not clearly described in literature.
It was hypothesized that 2-O-methylation of the terminal rhamnose residue on
the S-layer glycoprotein glycan of G. stearothermophilus might function as a
termination signal for chain elongation (Schaffer et al., 2002). Why it is produced
by “Ca. Accumulibacter” enrichment and where it is located are interesting topics
to be investigated.

Glycoproteins are present and highly diverse in the EPS of “Ca.
Accumulibacter”

Within the glycans, besides free polysaccharides, there are glycoconjugates such
as glycoproteins and glycolipids. To further investigate the potential existence of
glycoproteins and its glycan profile, a lectin microarray analysis was performed.
The existence of glycoproteins with diverse glycosylation patterns were observed.
Protein glycosylation has profound effects on protein function and stability. For
example, the surface layer proteins, which envelop almost all bacteria, have
glycosylation patterns that significantly influence properties like water retention,
surface roughness and fluidity . In environmental microorganisms such as “Ca.



Accumulibacter”, both the presence and strong diversity of glycoproteins in the
EPS may be crucial for the functioning and assembly of the microbial community.
This has significant implications for comprehending the role of EPS proteins since
their functionality and structure can be fundamentally different depending on the
type and diversity of the associated glycans *’.

Typically, approaches for studying glycoproteins in environmental samples involve
identifying individual glycan structures and further characterizing the proteins
with mass spectrometry 23839 Recently, Pabst, et al. * introduced a systematic
glycoproteomics method, revealing a wide array of glycoproteins in an
enrichment culture of anaerobic ammonium-oxidizing bacteria, aligning with our
findings for similar environmental bacteria. While the described glycoproteomics
approach effectively identifies specific proteins and glycan compositions, lectin
microarrays, such as the method applied in this study, offer a high throughput
examination of the glycans on the protein surfaces, enabling a broader screening
of possible protein glycosylation pattern. Combining both approaches can provide
a comprehensive understanding of glycoproteins, bridging the gap between
structural characterization and functional implications.

In EPS research, identifying novel glycans and glycoconjugates
needs a bottom-up approach

Bacteria produce a tremendous variety of unusual sugars and sugar linkages as
well as modifications of sugars. The study of bacterial glycans is further
complicated by their enormous structural diversity. In comparison, mammalian
cells construct their cell surface glycans using only nine monosaccharide building
blocks, plants use twelve monosaccharides, whereas >700 monosaccharides have
been found in bacterial glycans 2.

Moreover, unlike DNA replication or protein translation, glycan biosynthesis is not
directed by a pre-existing template molecule. Instead, the production of glycans
is decided by a few factors together: the biosynthetic machinery, the available
nucleotide sugars (which serve as monosaccharide donors), and signals from the
intracellular and extracellular environment. Thus, the presence of glycans is
dynamic and is influenced by both genetic and environmental factors *°.
Therefore, if the factors influencing glycans production and the remarkable
variety of monosaccharides that can be produced by bacteria are added up, it is
tremendously challenging to study the glycan composition in EPS.

Currently, top-down approaches are widely used. They predict the glycans

composition in the EPS based on metagenomes 3, resulting in theoretical
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polymeric substances that require experimental validation *'. In addition,
bioinformatic approaches based on DNA sequence are limited to only discovering
biosynthetic pathways that have been very well described (e.g. cellulose
biosynthesis #?), shadowing the identification of unknown biomolecules and new
glycans. As an example, in this research, the sugar monomer QuiNAc was
detected in highly enriched “Ca. Accumulibacter” cultures, while its complete
biosynthetic pathway could not be obtained in the available high quality genomes
of “Ca. Accumulibacter”. This indicates that with the top-down approach, the
existence of QuiNAc can hardly be predicted.

Findings of the current research, together with those of Pabst, et al. 14, highlight
the huge diversity encountered in the glycans in the EPS. Homology modelling of
enzymes involved in carbohydrate synthesis and transfer rarely provides
information on the type of monosaccharide involved in the process ** which
further hinders a complete description from metagenome information only. We
identified that the genomes of “Ca. Accumulibacter” species harbour different
sets of genes in the described system for oligosaccharides-lipid assembly,
showcasing that even on a genus level there is a high potential for varying glycan
compositions. Due to the special property of glycan synthesis, it is significantly
necessary to use more bottom-up approaches for the chemical description of EPS
components which could guide further genetic analysis and generalizations.

Conclusions

- Novel glycans containing QuiNAc and 2-OMe-Rha were identified for the
first time in the EPS of “Ca. Accumulibacter” enrichments.

- Glycoproteins in the EPS from “Ca. Accumulibacter” are present and
exhibit a high variation in the glycan structures that make them.

- The complexity in the EPS of environmental bacteria hinder the top-down
approaches to only discover well-known polymeric substances. More
bottom-up research is required to fill the knowledge gap that is required
for genomic modelling approaches to understanding EPS of
environmental bacteria.



Materials and methods

Reactor operation

Two reactor conditions were tested for this research. Both reactors were
operated under the exact same conditions except for a change in the stirring
speed of the reactor impeller (400 rpm vs 800 rpm) to enrich for different sized
granules. The “Ca. Accumulibacter” enrichment was obtained ina 2 L (1.5 L
working volume) sequencing batch reactor (SBR), following conditions similar to
the one described by Guedes da Silva et al. (2020) with some adaptations. The
reactor was inoculated using activated sludge from a municipal wastewater
treatment plant (Harnaschpolder, The Netherlands). Each SBR cycle lasted 6
hours, consisting of 30 minutes of settling, 50 minutes of effluent removal, 10
minutes of N, sparging, 5 minutes of feeding, 130 minutes of anaerobic phase
and 135 minutes of aerobic phase. The hydraulic retention time (HRT) was 12
hours (removal of 750 mL of broth per cycle). The average solids retention time
(SRT) was controlled to 8 days by the removal of effluent at the end of the mixed
aerobic phase. The pH was controlled at 7.0 + 0.1 by dosing 1 M HCl or 1 M NaOH.
The temperature was maintained at 20 + 1 °C.

The reactor was fed with two separate media: a concentrated COD medium (400
mg COD/L) of acetate (17 g/L NaAcx3H,0) and a concentrated mineral medium
(1.53 g/L NH4Cl, 1.59 g/L MgS04x7H-0, 0.40 g/L CaCl,x2H,0, 0.48 KCl, 0.04 g/L
N-allylthiourea (ATU), 2.22 g/L NaH,PO4xH,0, 0.04 g/L yeast extract and 6 mL/L
of trace element solution prepared following Smolders et al. (1994). In each cycle,
75 mL of each medium was added to the reactor, together with 600 mL of
demineralized water. The final feed contained 400 mg COD/L of acetate.
Extracellular concentrations of phosphate and ammonium were measured with a
Gallery Discrete Analyzer (Thermo Fisher Scientific, Waltham, MA). Acetate was
measured by high performance liquid chromatography (HPLC) with an Aminex
HPX-87H column (Bio-Rad, Hercules, CA), coupled to Rl and UV detectors (Waters,
Milford, MA), using 0.0015 M phosphoric acid as eluent supplied at a flowrate of
1 mL/min.

Microbial community analysis

The microbial community of each reactor condition was characterized after a
minimal of 4 residence times was reached (approximately 35 days of operation).
Two orthogonal approaches were used for the community characterization: 16S
amplicon sequencing and Fluoresence In Situ Hybdirization (FISH).
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For 16S RNA amplicon sequencing, DNA was extracted from the granules using
the DNeasy UltraClean Microbial kit (Qiagen, Venlo, The Netherlands), using the
manufacturer’s protocol. The extracted DNA was quantified using a Qubit 4
(Thermo Fisher Scientific, Waltham, MA). Samples were sent to Novogene Ltd.
(Hong Kong, China) for amplicon sequencing of the V3-4 hypervariable region of
the 16S rRNA gene (position 341-806) on a MiSeq desktop sequencing platform
(lllumina, San Diego, CA) operated under paired-end mode. The raw sequencing
reads were processed by Novogene Ltd. (Hong Kong, China) and quality filtered
using the QIIME software **. Chimeric sequences were removed using UCHIME *°
and sequences with >97% identity were assigned to the same operational
taxonomic units (OTUs) using UPARSE #6. Each OTU was taxonomically annotated
using the Mothur software against the SSU rRNA database of the SILVA Database
47 Sequences obtained are deposited under the Bioproject accession number
PRINA1084229 in the NCBI database.

For FISH, samples underwent the procedures outlined by *¢ for handling, fixation,
and staining. Bacteria were selectively identified using a blend of EUB338,
EUB338-ll, and EUB338-Ill probes %*°. "Ca. Accumulibacter" was visualized
employing a mixture of PAO462, PAO651, and PAO846 probes (referred to as
PAOmix) °1. Hybridized samples were subsequently examined utilizing the Axio
Imager 2 fluorescence microscope (Zeiss, Oberkochen, Germany). To quantify and
analyse the fluorescent pixels in the microscopic images, a custom image analysis
tool was developed. The tool employs algorithms to identify and quantify
different colour categories, including blue (Eubacteria only), purple (PAOmix +
Eubacteria) and green (GAOmix + Eubacteria) providing a comprehensive analysis
of the microbial composition. The tool is available on GitHub
[https://github.com/TP-Watson/FISH-quantification-PaezWatson].

EPS extraction and characterization

EPS extraction from the biomass

Biomass samples collected at the end of the aerobic phase were freeze-dried
prior to EPS extraction. EPS were extracted in alkaline conditions at high
temperature, using a method adapted from Felz et al. (2016). Freeze-dried
biomass were stirred in of 0.1 M NaOH (1 % w/v of volatile solids) at 80 °C for 30
min. Extraction mixtures were centrifuged at 4000xg at 4 °C for 20 min.
Supernatants were collected and dialyzed overnight in dialysis tubing with a
molecular cut-off of 3.5 kDa, frozen at-80 °C and freeze-dried. The freeze-dried
extracted EPS samples were stored for further analysis.



Determination of the total protein and carbohydrate contents of the extracted EPS

The total protein content was estimated using the bicinchoninic acid (BCA) assay
52 with bovine serum albumin (BSA) as standard. The total carbohydrate content
was determined using the phenol—sulfuric acid assay > with glucose as standard.
Both analyses were performed as described by 1.

Glycosyl composition and detection of glycoproteins in the EPS

Glycosyl composition analysis of the extracted EPS was performed at the Complex
Carbohydrate research Center (CCRC, the University of Georgia) by combined
GC/MS of the O-trimethylsilyl (TMS) derivatives of the monosaccharide methyl
glycosides produced from the sample by acidic methanolysis. These procedures
were carried out as previously described in Santander, et al. *. In brief, lyophilized
EPS aliquots of 300 ug were added to separate tubes with 20 pg inositol as the
internal standard. Methyl glycosides were then prepared from the dry sample
following the mild acid treatment by methanolysis in 1 M HCl in methanol at 80
°C (16 h). The samples were re-N-acetylated with 10 drops of methanol, 5 drops
of pyridine, and 5 drops of acetic anhydride, and were kept at room temperature
for 30 minutes (for detection of amino sugars). The sample was then per-o-
trimethylsilyated by treatment with Tri-Sil (Pierce) at 80 °C (30 min). These
procedures were carried out as described by Merkle and Poppe >*. GC/MS analysis
of the per-o-trimethylsilyl methyl glycosides was performed on an AT 7890A gas
chromatograph interfaced to a 5975B MSD mass spectrometer, using a Supelco
EC-1 fused silica capillary column (30 m x 0.25 mm ID) and the temperature
gradient shown in Table 1.

Table 1. Temperature program for the GC-MS analysis for the TMS method.

Rate Hold Time | Run Time
, Value (2C) , ,
(eC/min) (min) (min)
Initial 80 2 2
Ramp 1 20 140 2 7
Ramp 2 2 200 0 37
Ramp 3 30 250 5 43.7

Identification of methylated sugar by alditol acetates

Identification of methylated sugar was performed by GC-MS of the alditol
acetates as described Pefia, et al. '°. The analysis was performed on 400 mg of
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the sample. The sample was hydrolyzed in 2 M trifluoroacetic acid (TFA) for 2 hin
a sealed tube at 120 °C, reduced with NaBD,, and acetylated using acetic
anhydride/TFA. The resulting alditol acetates were analyzed on an Agilent 7890A
GC (Table 2) interfaced to a 5975C MSD, electron impact ionization mode. A

SP2331 fused silica capillary was used as column.

Table 2: Temperature program for GC-MS analysis by alditol acetates

Rate . Value (20) Ho.Id Time Ruh Time
(eC/min) (min) (min)
Initial 60 1 1
Ramp 1 27.5 170 0 5
Ramp 2 4 235 2 23.5
Ramp 3 3 240 12 36.9

Glycoproteins detection by Lectin microarray

The high-density lectin microarray was constructed based on the procedure
outlined by Tateno, et al. Y. To label EPS, 0.4 pg of it was mixed with Cy3-N-
hydroxysuccinimide ester (GE Healthcare). Excess Cy3 was removed using
Sephadex G-25 desalting columns (GE Healthcare). The Cy3-labelled EPS was then
diluted to a concentration of 0.5 pug/ml with probing buffer, which contained 25
mM Tris-HCI (pH 7.5), 140 mM NacCl, 2.7 mM KCl, 1 mM CaCl;, 1 mM MnCl,, and
1% Triton X-100. The mixture was incubated with the lectin microarray overnight
at 20°C. The lectin microarray was washed three times with probing buffer, and
the resulting fluorescence images were acquired using a Bio-Rex scan 200
evanescent-field-activated fluorescence scanner (Rexxam Co. Ltd., Kagawa,
Japan).

Gene identity analysis

Genomic analysis was undertaken to explore the existence of genes within various
"Ca. Accumulibacter" species that are associated with potential glycan synthesis
and protein glycosylation machinery. We acquired MAG (Metagenome-
Assembled Genome) sequences for 19 "Ca. Accumulibacter" species from the
European Nucleotide Archive as described in Pdez-Watson, et al. >°. BLAST
analysis was executed on the coding sequences of these genomes to identify the
presence of (or potential for) specific genes in a reference set (reference genes



used in table S2). Sequence alignment was employed to evaluate conservation
and recognize potential orthologs or homologs (min_identity 30 %, evalue e-12).
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Abstract

With the rapid growing availability of metagenome assembled genomes (MAGs)
and associated metabolic models, the identification of metabolic potential in
individual community members has become possible. However, the field still lacks
an unbiassed systematic evaluation of the generated metagenomic information
to uncover not only metabolic potential, but also feasibilities of these models
under specific environmental conditions. In this study, we present a systematic
analysis of the metabolic potential in species of "Candidatus Accumulibacter”, a
group of polyphosphate-accumulating organisms (PAOs). We constructed a
metabolic model of the central carbon metabolism and compared the metabolic
potential among available MAGs for “Ca. Accumulibacter” species. By combining
Elementary Flux Modes Analysis (EFMA) with max-min driving force (MDF)
optimization, we obtained all possible flux distributions of the metabolic network
and calculated their individual thermodynamic feasibility. Our findings reveal
significant variations in the metabolic potential among “Ca. Accumulibacter”
MAGs, particularly in the presence of anaplerotic reactions. EFMA revealed 700
unigue flux distributions in the complete metabolic model that enable the
anaerobic uptake of acetate and its conversion into polyhydroxyalkanoates
(PHAs), a well-known phenotype of “Ca. Accumulibacter”. However,
thermodynamic constraints narrowed down this solution space to 146 models
that were stoichiometrically and thermodynamically feasible (MDF > 0 kJ/mol), of
which only 8 were strongly feasible (MDF > 7 kJ/mol). Notably, several novel flux
distributions for the metabolic model were identified, suggesting putative, yet
unreported, functions within the PAO communities. Overall, this work provides
valuable insights into the metabolic variability among "Ca. Accumulibacter"
species and redefines the anaerobic metabolic potential in the context of
phosphate removal. More generally, the integrated workflow presented in this
paper can be applied to any metabolic model obtained from a MAG generated
from microbial communities to objectively narrow the expected phenotypes from
community members.
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Introduction

Microbial ecology research strongly relies on cultivation independent approaches
since most bacterial species are, to date, unculturable !. Instead, data is
generated from analysing microbial communities directly in their natural
environments, often through metagenome analysis. The rapid development of
high throughput sequencing technologies has resulted in a growing number of
metagenome-assembled genomes (MAGs) representing members from various
microbial communities (for example Singleton, et al. 2). Over the years, MAGs
generated from ecological samples have been linked to potential functional guilds
in microbial communities based on the presence of specific genes **. Particularly
in the context of water engineering, MAG’s metabolic potentials encompass
functions like exopolysaccharide synthesis °, nitrogen, phosphorus and iron
removal ® and even mutualistic interactions amongst species .

The metabolic potential derived from MAGs is the initial step towards attaining a
mechanistic understanding of the physiology of community members—i.e., what
they do within the community. Constraint based methods like flux balance
analysis (FBA), provide tools to predict metabolic functions and have been
successfully applied to study monocultures &°. Efforts have been made to extend
their applications towards understanding metabolic interactions %!, resource
allocation 2, microbial biosynthesis 13, or even inferring functional guilds ** from
microbial communities in ecology (Dillard, et al. * explain and discuss the

available methods more in depth).

Transitioning from a metabolic network to metabolic flux predictions requires
addressing key assumptions regarding (i) objective functions of the cells, (ii)
considered constraints (or limits) on intracellular reactions and (iii) the chosen
environmental conditions for the simulations . As the number of high-quality
MAGs continues to grow, so does the number of metabolic models aiming at
predicting community functions. However, critically evaluating the feasibility of
metabolic pathways in the specific environmental context is crucial for accurately
defining constraints on intracellular reactions, thereby addressing assumptions ii
and iii. In this work we propose an integrated workflow that integrates existing
methodologies in constraint-based modelling and pathway thermodynamics to
address these assumptions. As a case study, we apply this workflow to critically
assess the anaerobic metabolic capabilities of the well-studied community of
Phosphate Accumulating Organisms (PAOs).

PAQOs are considered the main microbial group contributing to the enhanced
biological phosphorus removal (EBPR) process and have been extensively studied



for many decades /2. Among the PAOs, "Ca. Accumulibacter" has emerged as a
highly studied genus due to its complex metabolism and role in the EBPR cycle.
“Ca. Accumulibacter” thrives by utilizing a dynamic interplay of storage polymers,
including polyphosphate, glycogen, and polyhydroxyalkanoates (PHAs), in the
alternating anaerobic/aerobic cycles of the EBPR ecosystem L. Despite numerous
attempts, pure cultures of this organism are still lacking, emphasizing the critical
importance of studying their MAGs for gaining insights into their contribution to
the EBPR process.

Several groups have proposed different biochemical models that could explain
the internal metabolism of “Ca. Accumulibacter”. Each of these models suggests
uniquely different ways as to how “Ca. Accumulibacter” obtains the reducing
equivalents (NADH) required for storage of fatty acids as PHAs during anaerobic
periods. Comeau, et al. 22 proposed that the complete tricarboxylic acid (TCA)
cycle is active anaerobically as a source of NADH for the accumulation of
polyhydroxybutyrate (PHB) (Figure 1.A). Mino, et al. ¥ demonstrated anaerobic
depletion of glycogen and suggested it as the source of NADH by means of
glycolysis (Figure 1.B). Pereira, et al. > measured polyhydroxyvalerate (PHV) as
well as PHB in EBPR sludge and proposed a mechanism for its accumulation using
both glycolysis and the TCA cycle, albeit with a secondary back-flux through the
‘left” branch of the TCA cycle to balance NADH production (Figure 1.C).
Conversely, Hesselmann, et al. ** suggested a model including glycolysis and a split
TCA cycle (Figure 1.D), introducing the use of one of the anaplerotic reactions
(catalysing the conversion from pyruvate to oxaloacetate) while Yagci, et al. %
introduced the concept of the glyoxylate shunt to bypass certain reactions within
the TCA cycle (Figure 1.E). Burow, et al. 2° provided experimental evidence of the
functioning of the glyoxylate shunt during the anaerobic phase of EBPR by using
enzymatic inhibitors supporting the model from Yagci, et al. 2°. Conversely, Zhou,
et al. ¥ provide evidence for acetate uptake without glycogen use supporting a
full anaerobic TCA cycle. Modelling approaches such as flux balance analysis (FBA)
on PAOs have proposed so-called varying stoichiometry (or metabolic flexibility)

which could explain the lack of consensus over all these proposed stoichiometries
28
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Figure 1. Schematic representation of the proposed metabolic transformations in PAOs during the
anaerobic uptake of acetate over time 17.22-25,

This apparent complexity (and hence lack of consensus) for understanding the
transformations in central carbon metabolism during the anaerobic uptake of
acetate showcases the need for systematic re-evaluation of potential
stoichiometries and reaction limitations within a given environmental context.
Furthermore, the newly available MAGs associated to individual species of “Ca.
Accumulibacter” % represent a great opportunity to study potential differences
amongst species from this complex genus. In their research, numerous species of
the genus “Ca. Accumulibacter” were assigned, and a general comparison was
made on the difference in potential metabolic guilds harvested in these newly
available MAGs.

Stoichiometric modelling simply calculates the stoichiometries of a network while
balancing the production and consumption of metabolites — i.e., maintaining
steady state. While FBA requires an optimization objective to identify
stoichiometries *°, elementary flux mode analysis (EFMA) is a powerful tool that
offers a systematic approach to assess all minimal combinations possible in a
given metabolic network %32, Flux modes can be especially strong when dealing
with highly interwoven metabolic networks (such as central carbon metabolism)
and has been famously applied to understand the TCA cycle as much more than
just energy generation 3. The high number of flux modes possible from a
metabolic network (due to its combinatorial effect) severely limits its application.

Approaches to filter (or minimize) flux modes from a network are based on
supposed irreversibilities from individual reactions 33>, Nevertheless, the ad hoc
definition of reaction irreversibilities neglects the context of the given reaction —
i.e., the metabolic conditions in which it is happening and its relative contribution
to the overall pathway stoichiometry. In contrast, methods such as the max-min



driving force (MDF) optimize the overall thermodynamics driving force of a
pathway *® without presumptions on the reaction irreversibilities. Thus, its
combination with EFMA could hold the key for the identification of the most
probably stoichiometries from a pathway given a specific environmental context.

In this work, we analysed the anaerobic metabolism of PAOs to illustrate a
systematic methodology for deriving consistent metabolic insights from MAGs.
We assess the metabolic potential in central carbon metabolism of nineteen high
quality MAGs of “Ca. Accumulibacter” species by employing EFMA and highlight
differences amongst these species. Further, we determine which potential
metabolic flux models contribute to the most feasible model solutions during the
anaerobic uptake and storage of acetate into PHAs.

Results

The core metabolic model of “Ca. Accumulibacter” is not
conserved amongst species

We built a metabolic model based on all previous reports on the metabolism of
PAOs. This model included all the reactions involved in polyphosphate and
glycogen degradation, PHA synthesis, glycolysis, TCA cycle, glyoxylate shunt and
anaplerotic reactions (Figure 2.A). PHAs are modelled as poly-hydroxybutyrate
(PHB) and hydroxy 2-methyl-valerate (PH2MV) as a proxy to distinguish PHAs
resulting from either acetyl CoA or propionyl CoA.

We confirmed the presence of the genes related to the model in the available
MAGs for “Ca. Accumulibacter” species (species considered in Table S2). The
analysis revealed the absence of genes associated with the glyoxylate shunt and
anaplerotic reactions in some species (Figure 2.B.). Specifically, the majority of
MAGs analysed lacked the gene coding for malic enzyme (malE). Additionally,
while all analysed MAGs possessed the gene for phosphoenolpyruvate
carboxykinase (pepck), some MAGs did not contain the gene for
phosphoenolpyruvate carboxylase (pepc). In other words, some species of “Ca.
Accumulibacter” lack the pair pepc/pepck, and the majority lack the enzyme
malE.
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Figure 2. (A) Schematic representation of the PAOs metabolic model used in this research. (Left)
Model schematic including all reactions as reversible except for reactions degrading glycogen (Glyc),
polyphosphate (PolyP), acetate uptake and polyhydroxyalkanoate (PHAs) accumulation. Reaction
names were given to each reaction and is indicated in italics next to each arrow. (Right) Closer
inspection into the anaplerotic routes connecting phosphoenolpyruvate or pyruvate with malate or
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Oxaloacetate. These reactions are catalysed by the indicated enzymes: PEP-carboxykinase (pepck),
PEP-carboxylase (pepc) and malic enzyme (malE). (B) Functional potential present in the MAGs of
“Ca. Accumulibacter” species related to the presence (filled) or absence (empty) of the genes
involved in anaplerotic reactions and/or glyoxylate shunt reactions of central carbon metabolism.
MAGs are separated based on their corresponding types (also referred to as clades).

Elementary Flux Modes Analysis (EFMA) reveals more than 700
possible metabolic model solutions to explain the anaerobic
metabolism of “Ca. Accumulibacter”

We conducted EFMA on the metabolic model of PAOs. This resulted in individual,
elementary flux modes (EFM), each of which contains the fluxes for every reaction
such that metabolites are balanced. Thus, each EFM is a unigue metabolic model
solution that represents a specific, balanced phenotype. Here, we narrowed the
EFMs to only solutions that encompassed both acetate uptake and PHA
accumulation since this represents the observed metabolism during the
anaerobic phase of EBPR. This selection resulted in 700 unique metabolic model
solutions. With these 700 solutions, 700 sets of yield coefficients are obtained
(Figure 3).

Among these solutions, we identified flux distributions that have been previously
proposed in the literature, including studies by Comeau, et al. %2, Mino, et al. 2,
Hesselmann, et al. 2 and Yagci, et al. % (highlighted in Figure 3). The solution
corresponding to the model proposed by Pereira, et al. 2 could not be identified
since the double net flux of reactions in the TCA cycle is mathematically not
possible. Notably, the range of solutions obtained with EFMA is much wider than
that of the proposed models alone, suggesting a potentially greater flexibility in
terms of polyphosphate/glycogen utilization, PHA accumulation, and even CO;
incorporation.
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Figure 3. Model yields of glycogen and polyphosphate use, CO, production and PHB and PH2MV
synthesis (mole) per mole of acetate consumed in the metabolic model of PAOs. The violin plots
illustrate the distribution of stoichiometric values based on 700 unique solutions. Published solutions
from previous studies by Comeau, et al. 22, Mino, et al. 21, Hesselmann, et al. 2% and Yagci, et al. 2°
are indicated by differently coloured circles and lines. Negative stoichiometries indicate the reverse
direction of the proposed reactions, such as the production or consumption of CO, within the
different solutions.

A small subset of the metabolic model solutions s
thermodynamically feasible

To further reduce the 700 metabolic model solutions, the thermodynamic
feasibility of each solution was evaluated by means of calculating the MDF. The
MDF algorithm maximizes the driving force (defined as the maximum- A.G’ for
each reaction) of a given metabolic model solution % (see Materials and
Methods). MDF suggests that only 20.9 % of the 700 metabolic model solutions
result in a thermodynamically feasible pathway, i.e. all individual metabolic
reactions proceed in the required direction with a negative A/G’ (Figure 4A). The
models proposed by Mino, et al. 2!, Hesselmann, et al. 2* and Yagci, et al. ?° are
within the feasible solutions. Nevertheless, these proposed models show an MDF
value close to equilibrium (MDF of 1.18, 1.8 and 0.14 kJ/mMOl.cetate respectively). In
contrast, for the model proposed by Comeau, et al. %2 no thermodynamically
feasible solution (MDF =-4.06 kJ/mOlacetate) Was found.

The obtained 146 thermodynamically feasible metabolic model solutions can be
further reduced considering that a significant dissipation of energy is required to
obtain a significant reaction rate. From the current solutions, 6 metabolic models



indicated the highest energy dissipation with MDF values above 7 kJ/molacetate
(Figure 4.A and Figure 4B for model operations with an MDF of 7.46 kJ/molacetate).
All these solutions include either the combination of pepc/pepck or the
combination of pepc with malE. Notably, all these metabolic model solutions
result in the same vyield coefficients for glycogen degradation matching that of
PH2MV accumulation and no PHB accumulation.
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Figure 4. (A) A swarm plot displaying the distribution of the Minimal Driving Force (MDF) achieved
by all 700 metabolic model solutions. The MDF results based on the models proposed by Comead,
et al. 22, Mino, et al. 21, Hesselmann, et al. ?* and Yagci, et al. 2> are highlighted in distinct colours
and sizes. (B) Flux maps with highest MDF of 7.46 kJ/ MOlacetate. AMong the top metabolic model
solutions, we showcase three flux maps out of a total of six. The six top metabolic models pertain to
three solution pairs, each with and without polyphosphate degradation (but solutions with the same
combination of reactions). Note that polyphosphate degradation was excluded from the
thermodynamic analysis due to the high uncertainty of the AsGe of this polymer.

Dependency of reaction feasibility on the NADH/NAD* ratio

The thermodynamic driving force of each metabolic model solution was the result
of a combination of the individual reaction’s A/G’. Depending on the set of active
reactions in each EFM, a specific reaction can either be thermodynamically
feasible or infeasible. The reason for this observation is coupling of reactions via
shared metabolites, which make the system more or less constrained depending
on the EFM. Specific reactions consistently exhibited high infeasibilities (A:G" > 0)
across multiple EFMs. Figure 5 represents an overview of the achieved A.G’ values
for each reaction on both the forward and, when applicable, reverse directions in
all 700 EFMs (see also Table S1 for detailed information on stoichiometry of each
reaction and the forward and reverse operation).

Reactions that consistently displayed thermodynamic infeasibilities include glc5,
glc6, tca7, tca9, pepc, phal and pha4 in the forward direction (Figure 5A) and
glc10, tcal, tca2, tca3, tcad, tcas, pepck, icl, mls and malE in the reverse direction

67



68

(Figure 5B). Thus, these reactions (in the indicated direction) contribute to the
infeasibility of the solutions where these reactions are included. Conversely,
reactions that consistently exhibited negative A.G’values include tcal, tca2,
pepck, mls, MalE, pha3, pha5 and pha6 in the forward direction and tca7, tca9
and pepc in the reverse direction, indicating their strong contribution to feasible
networks.

The MDF optimization was further constrained to reflect expected changes in the
ratio of NADH/NAD* when considering anaerobic vs aerobic conditions % to
showcase the limitations posed under anaerobic conditions. For this analysis, we
fixed the NADH/NAD* ratio to be 0.1 and 10 which reflects the change in this ratio
between aerobic and anaerobic conditions. With these fixed values, we
performed MDF and represented the distribution of A/G" under each condition
(Figure 5). This modification led to changed A/G’ distributions for reactions
involving oxidation or reduction of NAD(H). Specifically, reactions generating
NADH resulted in higher A.G" values leading to potential infeasibilities. Notably,
reactions glc6, tca7 and tca9 running in forward direction (Figure 5A) were the
strongest affected by the change in the NADH/NAD" since their A.G" became more
positive at a higher ratio potentially indicating their (even stronger) infeasibility
under anaerobic conditions.
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Figure 5. Boxplot distribution of the calculated A.G’ for each reaction based on the 700 Elementary
Flux Modes (EMF) solutions and respective Minimal Driving Force (MDF) optimization. Dark and
light blue indicate different NADH/NAD* ratios that were fixed for the MDF analysis simulating
changes from aerobic to anaerobic conditions respectively. Distribution of the reactions in (A)
forward or (B) reverse operation. Absent boxplot indicates that the reaction in its given operation
does not contribute to the solution space of the model.

Discussion

Bridging metagenomics with metabolic function predictions

This research paper presents an integrated workflow designed to extract feasible
metabolic predictions within a specific environmental context from a MAG's
metabolic model. This systematic analysis serves as a crucial step towards
transitioning from descriptive studies in microbiome research towards more
mechanistic and predictive studies, also called eco-systems frameworks *%3°. With
the increasing availability of high quality MAGs, research has rapidly focused on
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assigning metabolic functions to given species based on gene presence/absence
264043 gnd, in limited cases, integrating multi-omic data **8. We emphasize the
importance of subjecting metabolic networks to critical examination within the
specific environmental context of the community, aided by modelling tools like
those presented in this work, to evaluate all potential functionalities of
community members in a consistent manner. This essential step precedes the
integration of multi-species metabolic models aimed at predicting (or even
engineering) microbial communities.

Generating metabolic models from MAGs is becoming easier; more advanced,
automated tools are developed and support model construction from
metagenomes “°*!. However, caution must be taken when performing
simulations on metabolism. We have showcased just how diverse the possible
solutions to a simple metabolic model can be (by employing EFMA) and more
importantly how many of these potential solutions represent thermodynamic
infeasibilities (by using MDF analysis). Our approach adds a general/universal test
on the stoichiometric solutions — universal as thermodynamics are calculated for
all possible network solutions (reaction combinations) and do not rely on a
specific assumptions on one reaction or only on energy generation cycles °? as
done with tools such as gap-seq or CarveMe.

The analysis presented in this paper faces two limitations related to input data.
Firstly, meta-omic data from environmental samples (due to its inherent
complexity) poses challenges on sequence completeness. Even assuming
complete MAGs, we are limited to studying metabolic reactions with documented
descriptions, leaving out many potential genes/enzymes not catalogued in
databases. For instance, it is estimated that in the genome of Escherichia coli the
function of 35 % of coding sequences is unknown >3). The former is a technical
limitation that can be overcome with better quality data. Thus we recommend
the application of this workflow with confidence on MAGs generated combining
both short and long read sequencing data (as demonstrated in Singleton, et al. 2).
Conversely, the latter limitation persists beyond the advancements of current
omic-techniques. Metagenomics, metatranscriptomics and metaproteomics are
insufficient to address functionality of coding sequences. To uncover novel
functions within organisms, a different approach must be taken. The combination
of metabolic modelling predictions with experimental validation could be
powerful in indicating how incomplete our state-of-art knowledge on metabolism
is.



Physiological differences amongst “Ca. Accumulibacter” species

We applied our workflow to “Ca. Accumulibacter” species since these organisms
have been vastly studied and recently an exponential growth in the available
genomes has become available ?°. In contrast to previous studies, which focused
on finding ‘the correct’ stoichiometry for anaerobic acetate uptake in PAOs, our
analysis provides a holistic analysis of underlying metabolic potential within a
basic model of central carbon metabolism. Building upon the concept of
‘metabolic flexibility’ proposed by da Silva, et al. % for PAOs, we emphasize the
idea of understanding metabolism in a non-linear manner, where multiple
metabolic branches (here seen as nodes) can coexist. However, the absence of
essential genes in a network can limit this ‘flexibility” and may indicate differences
in the ecological niches of individual “Ca. Accumulibacter” species.

One notable observation when comparing the MAGs of “Ca Accumulibacter”
species was the absence of the anaplerotic route enzyme malE in almost all
studied species, and the pepc/pepck pair in certain species (Figure 2.B). We found
that the presence of these reactions (especially their combination) contributed
to the highest driving forces of the metabolic models (Figure 4.B). This suggests
that the species lacking malE and/or the pair pepck/pepc may be more
thermodynamically limited and would exhibit a considerably lower flexibility
during anaerobic substrate uptake. On the other hand, the species “Ca.
Accumulibacter  cognatus”, “Ca.  Accumulibacter  propinquus”,  “Ca.
Accumulibacter regalis” and “Ca. Accumulibacter appositus” exhibited the
complete genetic potential for the model studied, indicating both stoichiometric
and thermodynamic flexibility during anaerobic substrate uptake.

Furthermore, it is important to note that malE and pepc/pepck play crucial roles
in controlling flux from the TCA cycle towards gluconeogenesis, replenishing
bacterial glycogen reserves >*. Therefore, while our research focused on the
anaerobic uptake of acetate, the absence of these enzymes could have broader
consequences during aerobic conversions of “Ca. Accumulibacter” that have not
been assessed. Previous studies have shown that the lack of malE leads to
imbalanced metabolic rates, altered storage reserves > and substantial reduction
of growth yields ®¢. Similarly, the pepc/pepck pair has been shown to participate
in futile cycles in Escherichia coli®’. Overall, a better understanding of the absence
of these genes through the complete EBPR anaerobic/aerobic cycle is needed.
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Redefining the anaerobic metabolic potential of “Ca.
Accumulibacter”

Decades of research into PAO biochemistry have led to the progressive
proposition of individual models to explain the anaerobic uptake of acetate. Here
we examine individual model operations proposed over the years in the context
of our results and propose an updated metabolic model for the anaerobic uptake
of acetate in “Ca. Accumulibacter”.

Firstly, the stoichiometric analysis aided by EFMA resulted in 700 possible unigue
metabolic model solutions to the model (Figure 3). This number of possible
stoichiometries explains the lack of consensus on the proposed model operations
over the years. We found that the suggested operations by Comeau, et al. %,
Mino, et al. %, Hesselmann, et al. ** and Yagci, et al. ® are indeed
stoichiometrically possible. However, the model proposed by 2 did not appear in
these solutions; since this model suggests the simultaneous operation of the
forward and reverse direction of a portion of the TCA cycle (see Figure 1), which
as a net flux is impossible. EFMA can therefore aid to identify first-hand the
possible operations of a metabolic model, without depending on experimental

observations.

EFMA generated 700 metabolic model solutions, of which 21 % were also
thermodynamically feasible. Many of these solutions, however, operate close to
thermodynamic equilibrium. The model solutions with the highest
thermodynamic feasibility made use of a split TCA cycle together with an
additional cycle using either pepc/pepck or pepc/malE (Figure 4.B). These
solutions result in an MDF of more than 7 kl/molacetate, by means of converting all
the carbon from acetate to CO,, leading to the high energy dissipation of the
system. By integrating the distribution of each individual reaction’s AG’ values
under anaerobic conditions (Figure 5), we outline the metabolic model for “Ca.
Accumulibacter” in Figure 6, highlighting reactions that represent strong
thermodynamic infeasibilities. Below we discuss on the implications of specific
reactions on the model for “Ca. Accumulibacter”.



/7 N\
= e

lgﬂcZ
F6P
Ic .
e — Feasible
FBP
gled —=> Infeasible
DHAP 7> G3P
lg/u
BPG
lg/c7
P3G
lg/:ﬂ
P2G
pepck lq/(,‘}
PEP
epc Ig/clo

PYR . Acetate
-

malE rfblE Icmz d

¥

AcCoA —=p —p —p HB
p 2 E

lm 3

IA

FUM icIT

& a7 tcad
'{:5

SucCoA

nha»\nl — — H2MV
\ phab phat /

Figure 6. Redefinition of the PAOs metabolic model for anaerobic uptake of acetate and
accumulation of PHAs. Scheme represents the reactions (grey arrows) connecting metabolites
participating in central carbon metabolism. Based on thermodynamic analysis, each reaction of the
pathway has been defined as feasible (when AG’ < 0kJ/MOlacetate), irreversible (when the reverse
reaction could contribute to the stoichiometry, but it’s A,G’ > 0 ki/molacetate) or bottleneck (when
A,G” > 0 kl/MOlacetate but no other alternatives are possible).

The notion that the full anaerobic TCA cycle can occur to generate enough NADH
for the accumulation of PHAs is highly debated in literature. At the centre of this
debate lies succinate dehydrogenase (reaction tca5s in our network), a membrane
bound enzyme that transfers the electrons from succinate to FADH. In the
absence of a strong electron acceptor (like oxygen), it's thermodynamically
impossible to transfer these electrons to NADH. We modelled this reaction with
NADH rather than FADH, lumping the overall transfer of electrons from succinate
to FADH, to the quinone pool and finally to NADH, and confirm the
thermodynamic impossibility of this reaction (Figure 5). Some theories suggest
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succinate-to-fumarate conversion could occur through a novel cytochrome b/b6
fusion protein >® or electron bifurcation mechanisms *°. However, attempts at
assessing this activity have failed . Future work could be done using this model
framework to study these alternative routes and its effects on changing the
thermodynamics and yields of the anaerobic stoichiometry. We conclude that,
given the current evidence, the conventional succinate dehydrogenase reaction
cannot occur under anaerobic conditions.

We further add to the notion that the full TCA cycle cannot occur anaerobically
since. malate dehydrogenase (tca9 in our network) represents a
thermodynamically infeasible reaction in anaerobic conditions. This reaction has
been known to have very high energy requirements ®! thus several hypotheses
exist to explain the function of the full TCA cycle. One argument is that the
concentration of oxaloacetate is extremely low in cells (below the used lower
bound concentration in the MDF analysis = 1 uM), although this could result in
other reactions that utilize oxaloacetate to become infeasible 3. Assuming this is
the case, the redox state of the cell (ie. NADH/NAD*) would be a major
determinant of the feasibility of this reaction. Although not measured in “Ca.
Accumulibacter” (nor in any microbial community of this kind), the NADH/NAD*
ratios of bacteria and yeast when changing from aerobic to anaerobic conditions
increases as much as 10 fold 3723, which would pull this reaction towards the
infeasibility region. Further, van der Rest, et al. ® described that this reaction
could also be catalysed by a membrane bound enzyme that reduces a quinone
pool, thus making the reaction more thermodynamically favourable. However, da
Silva, et al. 2 found a high preference of malate dehydrogenase for NADH.
Altogether the evidence shows that malate dehydrogenase cannot operate
towards generating oxaloacetate and NADH under anaerobic conditions and
instead is more likely to operate under anaerobic conditions in the opposite
reaction, a phenomenon previously observed in Escherichia coli cells .

Finally, we represent three reactions of the metabolic model to be
thermodynamically infeasible albeit necessary to obtain the observed phenotype
of “Ca. Accumulibacter”. The reactions are glyceraldehyde 3-phosphate
dehydrogenase (glc6 in our network), acetoacetyl CoA synthase (phal in our
network) and methylmalonyl CoA mutase (pha4 in our network). Firstly, glc6 is a
well-known thermodynamic bottleneck reaction 3¢. To overcome this bottleneck,
alternative glycolytic pathways exist such as the Entner-Doudoroff glycolysis (ED)
or the pentose phosphate pathway (PPP) that bypass this reaction. However,
genomic °8, proteomic ® and enzymatic ®” evidence support the notion that both
ED and the complete PPP do not operate in “Ca. Accumulibacter”. Hence, the



reaction glcé is the only alternative in the current metabolic model to carry flux
from glucose towards lower glycolysis. Further research must be done to explore
weather thermodynamic ‘tricks’ exist to enable this reaction to occur or even if
different, yet unknown, glycolytic routes are active in PAOs anaerobically. On the
other hand, the reactions phal and pha4 involved in the synthesis of PHAs are
immediately followed by two reactions (pha2 and pha3 for PHB and pha5 and
pha6 for PH2MV) with very high thermodynamic driving force (Figure 5).
Although this process has not been studied for PHA synthesis, a very similar set
of reactions to phal in archaea (acetoacetyl-CoA thiolase) catalyze a similarly
thermodynamically ‘uphill’ reaction connected to ‘downhill’ reactions. Vogeli, et
al. %8 found evidence that substrate channeling via enzyme complexes exists and
could explain the pathway to occur despite this bottleneck. A similar mechanism
could be at play in “Ca. Accumulibacter” since PHA synthesis is observed
anaerobically.

It is important to note that our thermodynamic analysis only considers
intracellular metabolic reactions and excludes exchange reactions and reactions
involved in polymeric synthesis or degradation. The thermodynamics of exchange
reactions (for example, acetate uptake, phosphate export, etc.) not dependent on
metabolic network control. On the other hand, polymers are substances that are
not completely in aqueous solution as a typical metabolite is (hence they can be
accumulated to extremely high amounts). Thus, the incorporation of polymers
and their concentration’s contribution to a reaction’s thermodynamic driving
force requires a deeper physical understanding of polymers as a whole. Further
research should be done to understand the complexity that different kinds of
polymers contribute to metabolic reactions.

Trade-offs between stoichiometric yield and thermodynamic
feasibility

The metabolic model solutions that resulted in the highest MDF (Figure 4.B)
released the carbon from acetate as CO; and formed the more reduced form of
PHA (i.e. PH2MV). The PH2MV accumulated in these solutions came directly from
the amount of glycogen degraded. Although these solutions are
thermodynamically the most feasible, they will result in very poor growth yields
since none of the acetate accumulates as PHAs. This leads to an interesting
relationship between thermodynamic efficiency (proportional to the rate) vs the
stoichiometric efficiency (i.e. yield). This apparent relationship stems from the
trade-off between either converting acetate into CO, to gain driving force (and
thus uptake rates) against conserving the acetate into PHB that later can be used
to grow more efficiently (improve biomass yields). Such trade-off between rate
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and yield has been described previously for growth rate 79, but since PAOs grow
in a cyclic environment, such relationship has not been previously described and
represent an interesting research potential.

In this context, long term enrichments under fast vs slow feeding rates could offer
insights into microbial communities prioritizing uptake rates or efficiencies.
Similarly, applying a substrate mix that alleviate kinetic bottlenecks in substrate
uptake rates (as demonstrated in *) may enhance uptake rates, revealing
previously unexplored metabolic strategies. The integration of such experimental
findings with metabolic modelling can illuminate key aspects for metabolic
control, fostering hypothesis generation to improve or select microbial
communities’ functions.

Conclusions

Metabolic potential inferred from MAGs-only is misleading since many
potential reactions from a metabolic model can be thermodynamically
infeasible under specific environmental conditions.

- In the current post-genomic era, we should not predefine reaction
directions based on presence of marker genes, but rather systematically
evaluate their potential given metabolic and environmental context.

- The combination of EFMA with MDF calculations provides a suitable
framework for the assessment of metabolic pathway feasibility given a
MAG-derived metabolic model.

- Species of “Ca. Accumulibacter” possess different potential in their
central carbon metabolism specifically related to anaplerotic reactions.

- The full operation of a classical TCA cycle (oxidating direction) is,
according to current knowledge, not possible under anaerobic acetate
uptake due to thermodynamic infeasibilities in succinate dehydrogenase
and malate dehydrogenase.

- Anaerobic PHA accumulation in “Ca. Accumulibacter” results from a

trade-off between thermodynamic feasibility and stoichiometric yield.



Materials and methods

Model Construction

A metabolic model was built to represents reactions from glycolysis, TCA cycle,
anaplerotic reactions, PHA synthesis reactions, and glycogen degradation
pathways. The stoichiometry of each reaction was obtained from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database, using the available MAGs
for “Ca. Accumulibacter” as the reference. The chosen pathways to be
incorporated in this metabolic model were focused on substrate uptake and the
model was utilized to test current hypothetical operations of metabolism to
uptake acetate into PHAs (as summarized in Figure 1). For building more complex
metabolic models, we recommend the user to apply available methods for model
construction such as gapseq °°, CarveMe >, amongst others.

The model, consisting of 45 metabolites connected by 43 reactions includes
exchange reactions for metabolites such as PHA, glycogen, polyphosphate, CO,,
and H,0. Model reactions were formulated and implemented in Excel in the form
of a stoichiometric matrix S, in which the rows and columns signify the
metabolites and the reactions respectively. All metabolites in the S matrix are
considered to be in steady state by the relation:

Sv=0,

where v represents a vector containing the fluxes of each reaction (column in S)
30 We did not explicitly model FADH,, all electron transporters were modelled as
NADH. Similarly, all reactions were considered to be reversible at this early stage
of the model. PHAs are modelled as poly-hydroxybutyrate (PHB) and hydroxy 2-
methyl-valerate (PH2MV) as a proxy to distinguish PHAs resulting from either
acetyl CoA or propionyl CoA as done previously 3.

Enzyme and Gene Annotation

Genome analysis was conducted to investigate the presence of genes in species
of "Ca. Accumulibacter" related to the reactions from the metabolic model. The
MAG sequences of 19 species of "Ca. Accumulibacter" were obtained from the
European Nucleotide Archive and downloaded when available in the format WGS
Set EMBL. Standard genome annotations from the database was used to verify
the presence of the genes related to our metabolic network. In case these genes
were not annotated in all genomes, a set of proteins from Escherichia coli K12 for
catalysing the reactions in the network was used as a reference. BLAST analysis
was then performed (min_identity 30 %, evalue e-12) to compare these protein
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sequences with the reference set, and sequence alignment was used to assess
conservation and identify potential orthologs or homologs.

Elementary Flux Mode Analysis

The metabolic network was subjected to elementary flux mode (EFM) analysis
using the efm MATLAB tool developed by Terzer and Stelling 3. For the analysis,
reactions for glycogen and polyphosphate degradation, PHA synthesis and
acetate consumption were set as irreversible since this is the observed phenotype
from the anaerobic phase of EBPR. This approach aimed to systematically
evaluate the model's capabilities, so no further reactions were set as irreversible.
The resulting elementary flux modes (EFM) were all normalized to 1 mol of
acetate uptake. Variables of interest, including glycogen degradation, PHB and
PH2MV synthesis, polyphosphate degradation, and CO, export, were examined
for their distribution among the EFMs using Python and visualized with violin
plots. Relevant EFMs matching the stoichiometry proposed in the literature
(specifically the proposed models from Comeau, et al. 22, Mino, et al. /, Pereira,
et al. 3, Hesselmann, et al. 2 and Yagci, et al. %°) were manually filtered based on
the presence and direction of their active reactions within the EFMs.

MDF calculations and normalization

We evaluated the thermodynamic feasibility of each solution to the metabolic
model (i.e. an individual EFM) using the concept of Minimum Driving Force (MDF)
% For a reaction to be considered feasible, a negative value for the Gibbs free
energy (AG’) is required. The Gibbs free energy of each reaction is determined
by the (optimized) concentration of the metabolites in each range and thus
depends on the context of that reaction within the model solution (i.e. which and
how many reactions are active in the current EFM). For each EFM, the resulting
MDF is obtained from the reaction with the lowest thermodynamic driving force
(i.e. the lowest — A/G’). If this MDF (— A/G’) is > 0, it indicates that all the reactions
can operate and the EFM is considered feasible. Hence, maximization of the
driving force of an EFM can be achieved by the following linear optimization
problem:

Maximize B
x, B

Subjectto —(A,.G'® + RT - STx) > B

In (Cmin) <x<lIn (Cmax)



where B represents the minimum driving force of all reactions in the EFM, x a
vector containing the molar concentrations of the metabolites in S within a range
of concentrations (Cmin and Cmax). Important to note is that the MDF is influenced
by the presence/absence of reactions and their direction, but not affected by the
flux that each reaction could carry.

For the MDF analysis of each EFM, a custom stoichiometric matrix (S_adjusted)
was generated by modifying the S matrix as follows. Reactions involving
metabolites for which the estimation of A«G® is highly uncertain were removed
(reactions of glycogen and polyphosphate degradation, PHB and PH2MV
polymerization) as well as all external reactions from the model. Furthermore,
the reaction definitions were adjusted to fit the directionalities of each EFM
(either positive or negative fluxes). Reactions carrying no flux (zero values) were
removed. The resulting matrix was converted into a tab-separated value (tsv)
format for further calculations. MDF calculations were performed using the
Equilibrator pathway tool (version 0.4.7) developed by Noor, et al. * in the
Equilibrator package. As settings for these calculations, we used default
conditions such as a pMg (potential of magnesium) of 3, an ionic strength of 250
mM, a cytosolic pH (potential of hydrogen) of 7.5, and a degree of confidence of
0.95. Simulations varying this degree of confidence were also performed, but the
outcome of the model did not affect the results (data not shown). Metabolites in
the optimizer were allowed to vary within the default physiologically expected
ranges (0.001 to 10 mM), except for phosphate (10 mM), and CO; (0.01 mM).

The MDF and optimized A.G" values for each reaction in the models were
determined and stored. The MDF distribution of all solutions was visualized using
a swarm plot to identify subsets of models that were thermodynamically feasible.
Feasible reactions were manually selected, and a stoichiometry scheme derived.
The achieved optimized A.G’ values for each reaction in all the solutions were
used to create a bar plot in Python, representing the distribution of A.G".

To simulate anaerobic conditions, the additional constraint to limit the range of
concentrations of NADH and of NAD* (0.1 — 10 mM and 0.001 — 0.01 mM
respectively) was added to reflect known increase of NADH/NAD* up to 10 fold
from aerobic to anaerobic conditions *’. MDF optimization was then performed
on all EFMs with these conditions and resulting MDF and A;G” where analysed in
a similar fashion using Python.
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Code Availability

The code utilized in this study together with all the data required to adapt or
reproduce the simulations is available at Gitlab Project ID: 48899967
(https://gitlab.com/delft paos/from-metagenomes-to-metabolism-paos).
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Abstract

We present py_cFBA, a Python-based toolbox for conditional flux balance analysis
(cFBA). Our toolbox allows for an easy implementation of cFBA models using a
well-documented and modular approach and supports the generation of Systems
Biology Markup Language (SBML) models. The toolbox is designed to be user-
friendly, versatile, and freely available to non-commercial users, serving as a
valuable resource for researchers predicting metabolic behaviour with resource
allocation in dynamic-cyclic environments.

Availability: Extensive documentation, installation steps, tutorials and examples
are available at https://tp-watson-python-cfba.readthedocs.io/en/ and the
py_cFBA python package is available at https://pypi.org/project/py-cfba/
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Introduction

Optimal resource allocation is a widespread theory used to study evolutionary
trade-offs—inherent in metabolic processes *. The prevailing literature
predominantly focuses on microorganisms thriving under stationary conditions
4 While such conditions lend themselves to laboratory validation, in reality,
microbial habitats in nature and most environmental biotechnology applications
are far from static. Over evolutionary timescales, microorganisms have evolved
diverse metabolic strategies to face a diverse array of dynamic environmental
fluctuations >®. These fluctuating environments and the metabolic strategies of
organisms living therein can be studied with computational models. Modelling is
key to establish fundamental principles governing evolutionary fitness.

Rigen et. al., 7 introduced a mathematical framework named conditional flux
balance analysis (cFBA), designed to predict optimal resource allocation dynamics
under fluctuating conditions. This framework has been applied to cyanobacteria
8 and polyphosphate accumulating organisms °. In both cases, temporal synthesis
of storage polymers (e.g. glycogen, polyphosphate and polyhydroxyalkanoates)
resulted as an emergent property of resource optimization in dynamic-cyclic
scenarios. Nevertheless, reports on dynamic conditions remain sparse, primarily
confined to these exemplar cases.

The cFBA method integrates stoichiometric modelling, dynamic Flux Balance
Analysis (dFBA) with a final optimization through the whole simulation time, and
resource allocation to study metabolic dynamics within cyclic environments. As
such, it serves as a potent predictive tool for unveiling optimal metabolic
strategies in ecosystems such as diurnal cycles, feast-famine dynamics, and
aerobic-anaerobic transitions. Given the prevalence of such environmental
conditions in nature, the field of microbial ecology could benefit from the
application of cFBA. To date, there is no cFBA tool based on open-source
platforms. The current implementation relies on adoption of complex metabolic
models in MATLAB 7# with little documentation or simple examples for its
application. Here, we present an easy-to-use Python toolbox for the application
of cFBA (see Table 1 for a comparison of py_cFBA with other published models).
This toolbox allows users to explore the boundaries of metabolic behaviour given
a stoichiometric model, enzyme capacities, and a set of environmental
conditions.



Table 1. A comparison of cFBA with similar methods to research dynamic metabolism.

Feature RBApy ¥ | Cycle | cFBA py_cFBA
Sync
Y (this
research)
Method Resource | Cycle Conditional | Conditional
Balance | Sync®? | FBA’ FBA’
Analysis
11
Language Python Python | MATLAB" Python
Toolbox for user | + - - +
implementation
Comprehensive | + - - +
documentation,
tutorials  and
examples
Temporal  flux | + + + +
analysis
Enzyme + - + +
constraints
Study of | - + + +
organisms in
cyclic
environments
Capture - + + +
temporal use of
storage
polymers

*Requires a license for its use.
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Toolkit usage and user input

The cFBA toolkit is accessible as a Python package [https://pypi.org/project/py-
cfba/]. It comprises a suite of functions enabling the construction of the cFBA
model architecture and subsequent simulations. The required user input varies
depending on the desired complexity of the analysis. For instance, to model
dynamic cycling without any catalytic information, a stoichiometric matrix
suffices. However, if enzyme capacities are to be included, numerical constants
describing the relationships between reactions and their respective catalytic
efficiencies (keat) are needed. The first step in this toolkit’s pipeline is to generate
a basic cFBA model structure, which is encoded into SBML. Subsequently, the
SBML model is parsed into a linear programming problem. Detailed instructions
on model generation and Systems Biology Markup Language (SBML) file creation
can be found at [https://tp-watson-python-cfba.readthedocs.io/en/].

Methods and Implementation

Minimal Set of Constraints: Unlimited Catalytic Activity

The underlying metabolic model in cFBA is represented by a stoichiometric matrix
(S), which represents the interplay of metabolites and reactions in a metabolic
network. From the participating species (metabolites enzymes and biomass
components), a subset is expressed as imbalanced (M). These species—typically
enzymes, ribosomes, membranes, storage polymers, and substrates—exhibit
explicit concentration changes over time, which are explicitly modelled as done
with dFBA 3. Conversely, the remainder of metabolites (M) are presumed to
remain in quasi-steady state, because their turnover rate is significantly faster
than that of imbalanced species 724, Users can simulate dynamic environmental
changes (such as variations in light, substrate and oxygen) by constraining
reactions with upper and lower bounds.

Each cFBA simulation is normalized to an initial amount of biomass (typically 1
gram dry weight (gpw)). Biomass is not modelled as an independent metabolite
with its corresponding biosynthesis reaction, but rather defined as the weighed
sum of all components in M at each time point (all imbalanced metabolites). To
normalize the initial time point of the simulation to 1 gow, Eq. 1 is employed.

wIMt=0 =1 (Eq. 1)’



Here, w' represents the transpose of a matrix containing the molecular weights
of each imbalanced metabolite in M. The cyclic behaviour of cFBA is achieved by
enforcing identical relative amounts of imbalanced metabolites at both the
beginning and end of the simulation (Eq. 2).

Mtend = y Mt=0 (Eq.2)’

U represents the balanced growth of the system. These constraints represent a
quadratic programming problem which becomes linear for each value of u. The
objective of the cFBA model is to achieve the highest multiplication factor ()
using a binary search algorithm. Numerically-stable solvers with high numeric
precision, such as Gurobi, are recommended since complex models may lead to
ill-conditioned problems 8. The implementation of this method uses the OPTLANG
library in Python and the solvers supported and their limitations have been
described *°.

Cellular Limits and Requirements on Metabolites: Quotas

By default, the synthesis of imbalanced metabolites is not enforced (apart from
maintaining the relation in Eq. 1). Minimal cellular requirements can be enforced
by setting quota definitions (minimal concentration constraints) For instance,
Rigen, et al. 7 employed quota compounds to establish minimal thresholds for
inorganic ions, cell wall constituents, lipids, DNA, and non-catalytic proteins,
relative to biomass. Expanding upon the quota definitions utilized by Riigen, et al.
7 and Reimers, et al. & our toolkit enables users to define exact, minimum, and
maximum quota constraints at any time point during the simulation. This
facilitates the capture of dynamic behaviours in simulated environmental
conditions.

Coupling metabolism to protein allocation: Enzyme activity based on enzyme
amounts

Imbalanced metabolites can also act as catalysts of specific reactions. The relation
between the metabolite and the reaction it catalyses is indicated in the capacity
matrices (A and B in Eq. 3) which denote the associations between catalysed
reactions and the ket values of each catalysed reaction.

Acaptvrt < Beap -M* (Eq.3)’
vt < Mp" kg, (Eq.4)”
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Equation 3 sets a reaction r catalysed by an imbalanced metabolite M. to be
constrained by its upper limit following the relation in Eq. 4. It is noteworthy that
this defines an upper boundary to the reaction, not an exact value. Additionally,
if a reversible reaction is catalysed by an imbalanced specie, both directions of
the reaction must be accounted for in the S matrix.

Standard genome-reconstructed metabolic models typically include storage
polymers such as glycogen as part of biomass components. Following the
approach of Ofaim et al., *® we allow for the explicit separation of storage
metabolites from that of biomass (also referred to as lean biomass). This allows
the independent accumulation and utilization of said polymers in various
simulations irrespective of biomass composition (independent from Eq. 2).

An illustrative example of cFBA implementation for a toy model of a minimal cell
is presented in Figure 1. The system comprises one balanced metabolite (named
‘intermediate’) and three imbalanced species: storage, enzymes and biomass.
The reactions for substrate uptake and biomass synthesis are catalysed by the
species ‘enzymes’ each with a distinct ket value. The simulation incorporates a
dynamic component wherein substrate is only available until 2 hours in the
simulation. No quota compounds are defined, and the metabolite ‘biomass’
solely contributes to w'. The cFBA simulation results in an early use of resources
(substrate) into enzyme biosynthesis to reach the maximum catalytic capacity at
the third time-point (1 hour). After this point, the system produces biomass at a
balanced rate (optimizing enzyme usage), making temporal use of storage to
allow this steady rate of biomass synthesis. Variations and step-by-step examples
of this model implementation are available at [https://tp-watson-python-
cfba.readthedocs.io/en].



Simple example model
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Figure 1. Basic simulation of a toy-model using the cFBA Python Toolbox. Inputs required for this
model are a stoichiometric matrix, definition of balanced and imbalanced metabolites, and enzyme
capacities. The simulation includes an active feed during the first 10 units of time after which there
is no longer substrate simulating a feast-famine condition. Specifics and step-by-step
implementation of this model in the cFBA python toolbox are available at [https.//tp-watson-
python-cfba.readthedocs.io/en].

Conclusion

The Python cFBA toolkit facilitates the study of metabolic dynamics in cyclic
environments. We included clear documentation and examples for a fast
familiarization to resource allocation strategies in dynamic conditions. Two
considerations are of note: numerical challenges may require specialized solvers,
and further developments are needed to address complex biological systems
such as non-optimal balanced growth strategies or microbial communities.
Notwithstanding, the toolkit represents a significant advancement in systems
biology, offering researchers a powerful tool to explore metabolic behaviour in
dynamic-cyclic environments.
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Abstract

The understanding of microbial communities and the biological regulation of its
members is crucial for implementation of novel technologies using microbial
ecology. One poorly understood metabolic principle of microbial communities is
resource allocation and biosynthesis. Resource allocation theory in
polyphosphate accumulating organisms (PAOs) is limited as a result of their slow
imposed growth rate (typical sludge retention times of at least 4 days) and
limitations to quantify changes in biomass components over a 6 hour cycle (less
than 10 % of their growth). As a result, there is no direct evidence supporting that
biosynthesis is an exclusive aerobic process in PAOs that alternate continuously
between anaerobic and aerobic phases. Here, we apply resource allocation
metabolic flux analysis to study the optimal phenotype of PAOs over a
temperature range of 4 °C to 20 °C. The model applied in this research allowed to
identify optimal metabolic strategies in a core metabolic model with limited
constraints based on biological principles. The addition of a constraint limiting
biomass synthesis to be an exclusive aerobic process changed the metabolic
behaviour and improved the predictability of the model over the studied
temperature range by closing the gap between prediction and experimental
findings. The results validate the assumption of limited anaerobic biosynthesis in
PAOs, specifically “Candidatus Accumulibacter” related species. Interestingly, the
predicted growth yield was lower, suggesting that there are mechanistic barriers
for anaerobic growth not yet understood nor reflected in the current models of
PAOs. Moreover, we identified strategies of resource allocation applied by PAOs
at different temperatures because of the decreased catalytic efficiencies of their
biochemical reactions. Understanding resource allocation is paramount in the
study of PAOs and their currently unknown complex metabolic regulation, and
metabolic modelling based on biological first principles provide a useful tool to
develop a mechanistic understanding.
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Introduction

Biotechnological applications, especially in environmental engineering, strongly
depend on the function and stability of microorganisms that interact with each
other and with the environment in dynamically changing communities *. Further
development of tools to study and predict these microbial communities holds the
key to improving and expanding the plethora of their applications 2. Wastewater
treatment is a field of application that, for decades, has relied on the use of
microbial communities and modelling to better predict and control the emerging
dynamics of such environments 3. Extensive experimental knowledge on these
systems has been obtained using long-term lab-scale experiments *”/. While
significant experimental progress was achieved and there is a growing availability
of high-throughput data generating techniques (i.e. genomics 8, transcriptomics
910 and proteomics ), a full characterization and especially mechanistic
understanding of these communities remains a challenging task in ecology *°.
Modelling enables to test different hypothesis of mechanisms and especially
whole cell models are crucial to integrate observations, unravel biological
principles and predict functions or conditions that are currently inaccessible via
experimental approaches only 2.

The enhanced biological phosphorous removal (EBPR) is one of the most studied
microbial processes in wastewater treatment and decades of research have
unravelled the main biological transformations of this complex engineered
ecosystem **1®. In the EBPR system, microorganisms cycle between anaerobic and
aerobic phases leading to the enrichment and proliferation of polyphosphate
accumulating organisms (PAOs). In this community, one of the most studied
bacteria is “Candidatus Accumulibacter” (hereafter referred to as
Accumulibacter) *°. Accumulibacter thrives in a typical EBPR cycle by a complex
metabolic strategy involving the cycling of storage polymers: polyphosphate,
glycogen and polyhydroxyalkanoates (PHAs) °.

So far, metabolic modelling approaches for PAOs have been developed and are
used with the aim to maintaining stable operations during EBPR processes and/or
predicting better conditions favouring simultaneous carbon, phosphorous and
nitrogen removal 3. Early models such as the ASM3 or TUDP have shown to
translate well with process observations, however, require extensive recalibration
depending on plant properties and environmental conditions. For example, more
recent model developments include the effect of putative PAO competitors 1718,
fermentative PAOs ', storage levels’ effects %°, etc. Nevertheless, most current



models rely on pre-defined metabolic strategies and consequently reflect the
already existing, though not necessarily complete, scientific knowledge on
metabolic functions of this ecosystem. Although useful, these features limit the
mechanistic understanding of the biological principles governing microbial
communities under dynamic conditions.

One of the pre-defined microbial strategies commonly applied in the EBPR
models is the assumption of growth being limited to the aerobic phase. Already
very early PAO studies suggested that biosynthesis occurs only in the aerobic
phase of EBPR systems at expenses of PHA degradation ??%. Throughout the
years, this assumption has been adopted into metabolic models. Interestingly,
this assumption has not been verified in-depth besides the observations on the
consumption of certain nutrients (e.g. NH4") linked to aerobic growth °. Many
bacterial species that survive under both anaerobic and aerobic conditions grow
anaerobically while fermenting substrate 2%, hence the validity of this
assumption (aerobic biosynthesis) in PAOs is yet to be confirmed.

Due to the slow growth of organisms in EBPR processes, it has been difficult to
estimate protein turnover rates and to precisely calculate protein synthesis in
different phases of a cycle. A typical EBPR lab-scale setting consist of daily cycles
of 6 hours with an imposed SRT of 8 days. Thus, theoretically the biomass in the
system should renew its proteome in the range of around 32 cycles, meaning that
in one cycle the newly produced proteins would account for only 3 % of the
proteome, and the putative contribution of anaerobic biosynthesis would be even
lower. Measuring such small differences in microbial communities is technically
challenging considering the inhomogeneity of the culture as well as current
limitations such as number of mass spectra acquisition per time %, biased
2627 amongst others. Proteomics studies
and Wexler, et al. ¥ fell short on

extraction methods to soluble proteins
on EBPR sludge from Wilmes, et al. 2
quantitatively identifying these changes, exemplifying the complications of
studying protein synthesis in slow growing systems such as PAOs.

8

Data from transcriptomic studies, however, seem to indicate a major trend
towards aerobic protein biosynthesis. Time series meta transcriptomic data from
a highly enriched Accumulibacter culture showed different clusters of expression
throughout the EBPR cycle °. The largest number of transcripts from their study
showed trends of transcription during the aerobic phase (identified as aerobic
pattern, redox transition and low phosphate patterns). Although the link from
transcription to protein synthesis is not always direct, these results highly suggest
that there is a regulation favouring protein synthesis to occur in the aerobic
phase. This hypothesis could be further explored experimentally with the use of

103



104

isotopically labelled acetate fed to a PAOs enrichment, such as the experiments
done by ¥, to identify the fate of **C anaerobically and aerobically over one or
multiple cycles, however up to date such evidence is lacking.

With no final experimental evidence, model-based studies considering
biosynthesis and resource allocation could be applied to develop an
understanding of a putative synthesis of biomass components and furthermore
guantify the putative benefit of anaerobic growth. Constraint-based models such
as flux balance analysis (FBA) integrating principles from resource allocation
represent an opportunity to test a hypothesis regarding biosynthesis during a
cyclic, dynamic system 3132 Conditional flux balance analysis (cFBA) is a metabolic
modelling tool that was originally developed to predict the metabolism of
cyanobacteria under dynamic day/night cycles with strong dependency on
resource allocation 32. The characteristics of the cFBA framework and the
similarities of these cyclic conditions with those of EBPR make cFBA a suitable
method to apply in the context of studying PAOs. Recently, the cFBA method was
applied to predict optimal strategies under dynamic environmental conditions
encountered during EBPR 33. Depending on the environmental constraints,
different optimal strategies, i.e. organisms accumulating polyphosphate (PAOs),
glycogen (GAOs), polyhydroxyalkanoates (PHA-Os) and heterotrophs were
predicted. The optimizations resulted in metabolic strategies comparable to those
typically observed for Accumulibacter. While the general behaviour was correctly
predicted, there were quantitative mismatches, suggesting the need for further
model development probably beyond parameter calibration. Because the model
is strongly shaped by the relation between enzymatic activities and resource
allocation, there is potential for expansion in this front.

Enzymatic activities are strongly influenced by temperature and consequently
temperature plays a crucial role in shaping the metabolism of microorganisms 3.
Implementation of temperature dependencies on metabolic models have shed
light on basic biological principles such as a linear relationship between growth
rate and ribosome content 3>® and optimal proteome allocation as a function of
temperature 3. However, these principles result from models for organisms such
as Escherichia coli at steady-state and may not apply to microbial communities
under dynamic conditions. On the other hand, there are extensive experimental
studies on the effect of temperature on PAOs metabolism *¥4°. The current
mechanistic understanding of PAOs metabolism with relation to temperatures
could be combined with metabolic models such as cFBA to identify metabolic
principles governing growth and resource allocation. Especially, at low



temperatures, the efficient use of available resources like enzyme capacity are
assumed to be crucial for evolutionary competitiveness.

In the current study, we combined the cFBA modelling framework with
temperature dependency for PAOs to identify metabolic principles regarding
resource allocation. We compared the complete model with and without a
constraint on anaerobic biomass synthesis. Our results further validate the
assumption on biomass being limited to the aerobic sector of EBPR and shed light
on previously unexplored putative regulation on protein biosynthesis.

Results

Reference simulation: EBPR cycle with unconstrained growth at
20°C

We first investigated the predicted metabolic response of the model with
unconstrained growth (Figure 1.A) in a typical EBPR system at 20 °C and used it as
the reference simulation for further comparisons. A total cycle length of 5 hours
was applied: 1.5 hours anaerobic and 3.5 hours aerobic. Acetate was enforced to
be consumed within 30 minutes of the anaerobic period to simulate the
competition for substrate and obtain the competitive strategy of organisms
enriched under this regime *. The minimal initial amounts (quota) of storage
polymers (polyphosphate, glycogen and PHA) per biomass (mol / gow) were
introduced in the model based on data published by Acevedo, et al. ”. Using these
conditions, the reference metabolic response of PAOs simulated was obtained
and compared to the experimental profiles from Acevedo, et al. ” (Figure 1B).

A: Metabolic model used in this study B: Metabolic profiles predicted by the model with unconstrained growth

Compound
amount
mC(P)mol/gpy

0 05 1 15 2 25 3 35 4 45

Time in cycle (h)
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Figure 1. A) Schematic representation of the reaction network used for the cFBA simulations.
Compounds enclosed by grey boxes are dynamic compounds, that can accumulate resp. decrease
over time. All other compounds were assumed to reach quasi steady-state. Each reaction is
catalysed by a specific enzyme available at a calculated, dynamic concentration. B) Solid lines:
predicted metabolite concentrations of PAOs during an EBPR cycle at 20 °C with unconstrained
growth 33. Circles and dotted lines: experimental data from an EBPR system retrieved from Acevedo,
etal.’.

The simulation reproduced complete acetate consumption and accumulation as
PHA (Figure 1B), while polyphosphate was degraded to provide the required ATP
for the uptake and activation of acetate and anaerobic maintenance. Reducing
equivalents (modelled as NADH) for PHA accumulation were provided by
glycogen degradation and a fraction of acetate being channelled through the TCA
cycle. When oxygen became available (aerobic phase, with activated ETC), the
intracellular PHAs were degraded and the resources from this degradation were
used to restore the glycogen and polyphosphate pool. Such metabolic strategy
observed in the cycling of polymers is typical of Accumulibacter 71>,

Although the model with unconstrained growth predicted typical profiles for
Accumulibacter, there are some quantitative mismatches with the compared
experimental data set (Figure 1.B), mainly regarding the amount of glycogen and
PHA used/accumulated within a cycle. This mismatch between prediction and
experimental data results in part from a higher contribution of the NADH
generated in the TCA cycle leading to lower required flux through glycolysis
(Figure 3, explored in the following subsections). We additionally identified that
biosynthesis was active anaerobically in this simulation (mainly synthesising
enzymes). To evaluate if the observed mismatches were specific to the chosen
condition (EBPR at 20 °C) or based on a systematic feature of our modelling
approach, we explored a broad range of different temperatures.

Simulations for different temperatures

Reported, experimentally determined values of temperature coefficients (8) in
PAOs range from 1.03 for polyphosphate synthesis to up to 1.13 for PHA
degradation (See Table S2 and Figure S1). For other reactions of the metabolic
model (TCA cycle, ETC, protein biosynthesis, ribosome synthesis, etc.) no specific
B values for PAOs were found in literature. Therefore, these were assumed to be
the same for all uncharacterized reactions and we analysed the impact of this
value varying within a range of the previous reported values.

A typical EBPR cycle was simulated ranging between 4 °C to 20 °C. For all
simulations, a shift in the metabolic strategy towards lower temperatures was
observed (Figure S2). The tested 6 value of uncharacterized reactions did not



affect the metabolic shift but affected the temperature at which the shift was
observed (Figure S2). For example, the simulations indicated a metabolic shift of
the system towards colder temperatures below either 13 °C or 18 °C when
assuming 6 values for uncharacterized reactions with 6=1.05 or 1.15 respectively.
From here on, a value of 1.05 was used for the reactions where no experimental
value was available.

Influence of the growth constraint on simulations

With temperature dependencies implemented in the metabolic model, we
simulated a typical EBPR cycle of PAOs over a temperature range from 4 °C to 20
°C with no constraints on growth. The results show a decrease in growth yield
with a decrease in temperature following two different exponential regions
(Figure 2.A: Unconstrained growth). In these simulations, the model employed
slightly a different metabolic strategy towards lower temperatures resulting in a
larger use of glycogen and polyphosphate over the cycle (Figure 2.B:
Unconstrained growth). We observed that in the studied temperature range,
resources were destined for growth in both the anaerobic and aerobic phases.
Interestingly, the lower the temperature, the higher contribution anaerobic
growth had on the system, especially destined towards enzyme synthesis
reactions (reaching up to 25 % of all biosynthesis at temperatures below 10 °C).

Although there is no conclusive proof that growth is an exclusive aerobic process
in PAOs, we analysed the impact of constraining growth to the aerobic phase only.
Particularly, a constraint was introduced to block biosynthesis reactions during
anaerobic conditions. The model with these new constraints was used to simulate
the previous conditions (typical EBPR cycle of PAOs over a temperature range
from 4 °C to 20 °C). The resulting growth yields were lower than those of the
unconstrained growth model and similarly decreased towards lower
temperatures (Figure 2.A: agerobic growth model). This decrease, however,
followed a distinct exponential Arrhenius-like curve. Additionally, these
simulations resulted in higher levels of glycogen use at 20 °C then the model with
no growth constraints (>3 fold higher) better replicating the results from Acevedo,
et al. /. Towards lower temperatures, less glycogen and more polyphosphate was
used in these simulations (Figure 2.B: Aerobic growth).
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A: Resulting growth of simulations at different temperatures
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Figure 2. Predicted biomass yields and intracellular storage pools during an EBPR cycle at different
temperatures. (A) Biomass increase at the end of a cycle. A decrease in temperature results in a
decrease of biomass synthesis during the cycle of both the unconstrained growth and the aerobic
growth model. The red and blue dots indicate simulations that are displayed w.r.t. glycogen and
polyphosphate profiles over time (B). (B) Glycogen and polyphosphate over time in an EBPR cycle at
8 °C (blue line) and 16 °C (red line). Left panel represents the profile for the unconstrained growth
model and the right panel represents the profiles of the aerobic growth model. For a representation
of polymer changes over the entire temperature range, see Figure S3.

Comparison and analysis of resource allocation strategies

The different predictions obtained over the studied temperature range are
compared in terms of their resource allocation. Especially, we focus on the
allocation of electrons (in form of NADH) and energy (in the form of ATP) by
analysing reactions using or generating these metabolites. For this, we analysed
the generation and consumption of NADH (Figure 3) and ATP (Figure 4) during the
anaerobic phase of each simulation with respect to the amount of acetate
consumed. Note that the metabolism of PAOs is strongly constrained in the



anaerobic phase, hence we primarily focus on the anaerobic phase of each
simulation.
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Figure 3. Balance and reactions involved in the NADH generation (green) and consumption
(magenta) during the anaerobic phase at different temperatures of the unconstrained growth (left
panel) model and the aerobic growth (right panel) model. Black arrow indicates the use of NADH
for biosynthetic reactions showcasing the main difference in the structure between both models.
Biosynthesis comprised all reactions synthetizing enzymes, ribosomes and biomass precursors. For
the specific reaction stoichiometry, please see Table S1. Abbreviations: tricarboxylic acid cycle (TCA),
poly-hydroxy-butyrate (PHB), poly-hydroxy-2-methylvalerate (PH2MV).
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Figure 4. Balance and reactions involved in the ATP generation (green) and consumption (magenta)
during the anaerobic phase of the PAOs simulations at different temperatures of the unconstrained
growth (left panel) model and the aerobic growth(right panel) model. Black arrow indicates the use
of ATP for biosynthetic reactions showcasing the main difference in the structure between both
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models. Biosynthesis comprised all reactions synthetizing enzymes, ribosomes and biomass
precursors. For the specific reaction stoichiometry, please see Table S1. Abbreviations:
polyphosphate (PolyP), phosphoenolpyruvate carboxykinase (PEPCK), tricarboxylic acid cycle (TCA).

The model with no constraints on anaerobic growth predicted that,
anaerobically, NADH and ATP were allocated towards biosynthesis of enzymes,
and this allocation grew larger at lower temperatures (Figures 3 and 4:
unconstrained growth model). The increased need for these resources for
biosynthesis was met with an increased flux of glycogen degradation (up to 280
% more turnover) supplying both the required ATP and NADH in this model, which
fits the observations of a larger turnover of glycogen towards lower temperatures
(Figure 2: Unconstrained growth).

Predictions of the model allowing only aerobic growth indicated an opposite
trend than that of the unconstrained model. Namely, the turnover of NADH was
larger at higher temperatures (Figure 3) resulting in a larger turnover of glycogen
as described in the previous section (Figure 2). Interestingly, the larger amounts
of glycogen degraded at higher temperatures led to an overproduction of
electrons than required only for acetate uptake, leading to a higher accumulation
of PH2MV as a sink of these electrons. Additionally, the source of ATP produced
anaerobically in this model shifted from a nearly full contribution of
polyphosphate at lower temperatures towards a shared contribution of
polyphosphate degradation, glycogen degradation and PEPCK at higher
temperatures (Figure 4: Aerobic growth model). Note that PEPCK is a reversible
reaction, and as such acts as both an ATP sink and source at lower and higher
temperatures respectively.

Discussion

The model with only aerobic growth predicts better polymer use
of PAOs

The metabolic shift predicted by the unconstrained growth model indicated that
at lower temperatures larger amounts of glycogen were being degraded than at
higher temperatures (Figure 2.B: unconstrained growth). This result was
surprising and opposite to what has been observed experimentally and described
in literature. Brdjanovic, et al. ¥ exposed PAOs enrichments at short term
temperature changes and observed that at lower temperatures less glycogen was
used overall, contradictory with the predictions of this model. Further, Brdjanovic,
et al. * confirmed the same experimental observations in PAOs enrichments on



longer term temperature effects. This same behaviour has been reproduced by
using kinetic models ! and even proven to hold true for Glycogen Accumulating
Organisms (GAOs) under similar conditions 2.

On the other hand, the constraint limiting biosynthesis to be an exclusive aerobic
process resulted in predictions more in line with the described literature over the
studied temperature range /%3943 je  the amount of glycogen used
anaerobically in a cycle increased with an increase in temperature (Figure 2, 3 and
4: aerobic growth). Further, the overall amount of glycogen used (and
consequently PHA accumulated) at 20 °C was also larger than in the
unconstrained growth model, resulting in improved model predictions when
compared to the experimental dataset obtained by Acevedo, et al. 7 (Figure 1).
Not only the predictions of the aerobic growth model approximated better the
results from Acevedo, et al. /, but also the anaerobic stoichiometric yields for
glycogen, PHA and polyphosphate fit better within the observed yields from
multiple PAOs enrichments at 20 °C (summarized in Welles, et al. *) (Figure 5)
further supporting the validity of the added biological constraint of this model.
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: Q Aerobic growth only

EBPR Polymer yields
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Figure 5. Anaerobic yields of Glycogen (Cmol glycogen / Cmol acetate), PHA (Cmol PHA / Cmol
acetate) and polyphosphate (Pmol / Cmol acetate) on acetate over a typical EBPR cycle at 20 °C.
The figure indicates a (green) box plot sumarizing typical literature values for PAOs enrichments
from several research groups (summarized in Welles, et al. 4%), and the predictions at 20 °C from the
(orange) unconstrained growth model and (light grey) aerobic growth model.

Other than the direct effect observed on polymer cycling, the model also
improved in fulfilling a basic principle of systems biology: linear relationship
between growth rate and ribosome content. Such a biological principle is
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paramount for biological systems at balanced growth 3>%¢ and should not be an
exception for PAOs. The simulations with no growth constraints at different
temperatures showed no such linear relation (Figure S4 A & B). However, once
the constraint on limiting anaerobic biosynthesis was introduced, a linear relation
between growth rate and ribosome content emerged (Figure S4 C & D). We note
that recently Mairet, et al. 3’ showed that at higher temperatures, this linear
relationship breaks, nevertheless the temperature range of this study is below
such threshold.

The different predictions from both models arose as a consequence of resource
limitation in a system that was tightly constrained by its catalytic capacities 32. At
lower temperatures, the decrease in catalytic efficiency of each metabolic
process resulted in lower flux capacities that could only be resolved by either
producing larger enzymatic levels or adopting a different metabolic strategy. Such
limitations in energy metabolism are known to strongly shape the proteome and
metabolic strategy of microorganisms *°. This was clearly observed in the
unconstrained growth model, when at lower temperatures there was an
increased flux of biosynthesis during the anaerobic phase (Figures 3 and 4) in
order to maintain metabolic fluxes high. These higher fluxes also resulted in
higher growth yields of the unconstrained growth model as compared to the
growth constrained model. Such biosynthetic fluxes were balanced with
increased glycogen degradation that generated the required NADH, ATP and
metabolic precursors. As these results strongly contradict what has been
observed experimentally, we conclude that indeed anaerobic biosynthesis is
severely limited in PAOs.

The aforementioned discussed results highlight the validity of the newly
introduced constraint as a general biological principle that could apply to PAOs
such as Accumulibacter, but might even be generalized to organisms that are
adapted to live under dynamic anaerobic/aerobic environments such as those
encountered in EBPR or estuary sediments. Next, we attempt to give a biological
meaning to the introduced constraint on limiting biomass synthesis and
hypothesise on the possible regulation behind it.

Putative regulation of biosynthesis under dynamic conditions

Biomass synthesis in PAOs has been commonly assumed to be limited to only the
aerobic phase 2?2, However, these assumptions have never been proven
experimentally. Since anaerobic growth is very common among bacteria it cannot
simply be assumed as non-existing in PAOs.



We suggest that the limit on anaerobic biosynthesis is likely caused due to a
dynamic shift in the energetic and redox state over an EBPR cycle. The presence
of an external electron acceptor (i.e. oxygen) has been proven to strongly affect
the redox state of cells . That is, anaerobically the NADH/NAD* ratio increases,
limiting reactions that are near equilibrium in the cell. Although not studied in
depth during EBPR we hypothesise that this ratio is dynamically changing over a
cycle (Zhao, et al. #’ showed direct measurements of this ratio, although this
methodology has not been extensively proven). Similarly, we hypothesise that
polyphosphate degradation could be initiated anaerobically by thermodynamic
control caused by a shift in the ATP/AMP balance in the cell (hypothesised in early
PAOs research by Comeau et al. (1996)) as a combined consequence of fast
acetate uptake and the changed redox state. However, the synthesis and
polymerization of proteins requires a relatively low ATP/AMP ratio, being opposite
to that required for polyphosphate degradation *¢, making both physiological
processes to be thermodynamically opposed. More research is required in the
dynamics of the redox and energetic state of PAOs to further understand
physiological mechanisms of organisms living under EBPR like conditions.

First principles modelling approach to predict PAOs metabolism

The dynamic resource allocation modelling approach applied resulted in typical
polymeric profiles that PAOs exhibit in a EBPR cycle (Figure 1) without the need
of parameter calibration or predefinition of metabolic strategies. Thus, the
employed method could be used not only to understand the environmental
selection on PAOs, GAOs and PHA-AOs as was done by Guedes da Silva, et al. %,
but to test basic metabolic principles shaping optimality in dynamic conditions.
This modelling approach represents an alternative to traditional used modelling
approaches that rely on experimental yields and kinetics >"2%, but is however not
intended to be used as an indicator of EBPR process control or performance.

The applied model in this research could be used as a tool to expand our current
understanding of redox and energetic state of bacterial cells under dynamic
conditions. For example, here we identified a potential shift in the sources of
NADH and ATP (Figure 3 and 4 respectively) as a function of temperature. Further
studying these individual contributions, this model could explain the reason
behind the large variation in P/C ratio obtained by different research groups when
studying PAOs enrichments (summarized in da Silva, et al. *). This model is not
intended to be used for monitoring waste water treatment plants, but rather to
gather fundamental knowledge that could help improve our mechanistic
understanding of organisms commonly encountered in said processes.
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Conclusions

From this research, we can conclude that:

- Resource allocation theory delivers a strong framework to analyse
metabolic processes in microbial communities typically found in
wastewater treatment systems

- Integrating temperature into a FBA models of organisms living in dynamic
conditions allows for deeper understanding of resource allocation
limitations of cells.

- Based on the resource allocation theory results, the biosynthetic routes
of Accumulibacter are limited to the aerobic phase of the EBPR cycle.
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Materials and methods

Model description

For modelling the metabolism and energy allocation of PAOs, a constrained-based
approach named conditional flux balance analysis (cFBA) was used 32. The model
and parameters for PAOs was obtained from Guedes da Silva, et al. .

The model consists of 29 metabolites connected by 36 reactions (Figure 1A)
represented in a stoichiometric matrix S. All network reactions and stoichiometry
are detailed in Table S1. Different to conventional approaches, only a subset of
metabolites (7 metabolites) are considered in steady state by the relation:

S.v,=0,

where S denotes the stoichiometric matrix subset of steady state metabolites and
v; denotes the fluxes of each reaction at time interval t. The remaining 22
metabolites are dynamic, i.e. are allowed to accumulate or deplete over time
(polymers, enzymes and biomass precursors) and their molar amount is updated
at each time point by the following relation:

Mt =§.Ut+Mt_1

M, is a vector that indicates the molar amount of the non-steady state
metabolites at time interval t, and S denotes the stoichiometric matrix subset of
the dynamic metabolites (not in steady state).

Biomass growth and composition

Growth of the system at the end of the simulation is described as the overall fold-
change (o) of the initial metabolite composition (Mo):

Meng = ax M,

This relation introduces the possibility to simulate a system in a cycle, as the
proportions of non-steady state metabolites need to be maintained only at the
end of the simulation. The values of M are an outcome of the simulation in order
to achieve maximal growth but limited to the total sum of 1 gram dry weight (gow)
by the relation:

where w'is a transposed vector containing the weights that different components
have on 1 gow of biomass. The values in w' were defined by Guedes da Silva, et
al. 32 for glycogen, polyphosphate and PHA levels based on data published by
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Acevedo, et al. /. Data published by Acevedo, et al. 7 belong to a reactor
performing > 99 % phosphate removal with a defined population of > 85 % PAOs
and show clearly identified cycling of polyphosphate, glycogen, PHB and PHV.
Protein content was based on the work of Yiicesoy, et al. *°.

Quota definition of compounds

The metabolites that are not in steady state consist of storage polymers
(glycogen, polyphosphate, PHB and PH2MV), catalytic metabolites (enzymes and
ribosomes) and non-catalytic metabolites (named here as biomass precursors
and other proteins). Because some of these metabolites do not reinforce the
autocatalytic behaviour of the system, their values in the vector M, will tend to
be 0 as this vector is an outcome of the simulation to optimize growth. To enforce
the synthesis of these compounds, Rigen, et al. 32 introduced the concept of
guota compounds following the relation:

Bquotat M, = Cquotat (WT-Mt)

In this relation, Bquomt is a matrix containing the index positions in the M vector
of the metabolites for which the quota is being defined at time point t. Cquotat is

a vector containing the values for the said quotas. The indicated relation was used
to define minimal quota levels at time 0 for glycogen, polyphosphate and PHAs
based on data published by Acevedo, et al. ’. It was also used to define an all-time
minimal level of biomass precursors and non-catalytic proteins.

For this research, the concept of quota compounds was slightly modified to
include specific and maximum quota compounds at indicated time points.

— T
Bquota_eqt M, = Cquota_eqt (W -Mt)
T
Bquota_maxt M, < Cquota_maxt (W -Mt)

These additional concepts were used to define a set initial amount of substrate
(acetate) at time 0 hours and to enforce its uptake by setting a maximum quota
of 0 at 0.5 hours of the cycle.

Catalytic and non-catalytic constraints on fluxes

Comparable to conventional FBA, each reaction can be limited according to pre-
assigned values in a lower (/b) and upper bound (ub) vector at each time point.

Ib, < v, < ub,

The lower and upper bounds were used to specify environmental limits on
reactions (e.g. during the anaerobic period, oxygen consuming had an ub of O



mmol/gow/h). Otherwise, the upper bounds were defined by the amount of a
specific catalyst and the turnover rate of this catalyst (ke e values) by:

Ve S Myg.Kearr

where M. denotes a subsection of M: containing the molar amount of enzymes
at time t and ket @ vector with the catalytic turnover number (kqq:e) of each
enzyme. All reactions from the system except for CO, diffusion are catalysed by
enzymes or ribosomes. The ke values for each reaction were adapted from the
work from Rigen, et al. *2 and if not considered in their research it was obtained
from the BRENDA database 1. The molar cost of all the enzymes was the assumed
to be the same based on the work from Riigen, et al. 3.

Maintenance requirements:

Metabolic models commonly consider the expenditure of energy (ATP) for basic
maintenance purposes. Here, a constant flux of 0.3980 mmol ATP/gow/h was
used, based on literature values for PAOs °. This value is assumed for the
anaerobic as well as aerobic phase and is independent of the amount of available
substrate.

Simulation of dynamic conditions:

Simulations were performed considering a typical EBPR cycle: an anaerobic phase
of 1.5 hours followed by an aerobic phase of 3.5 hours. The anaerobic conditions
were simulated by setting the upper bound for the electron transport chain (ETC)
reaction to 0 mmol O,/gow /h. Conversely, during the aerobic phase the upper
bound of this reaction was only limited by the capacity of the respective enzyme
constraint. The substrate (acetate) was available at the beginning of the anaerobic
phase (t=0h) by setting an initial metabolite quota for the starting amount. To
enforce rapid consumption, a maximum quota of 0 mmol/gow/h was set at 30
minutes.

Optimization target and algorithm used:

The previously defined constraints (equalities and inequalities of the model) are
discretized in defined time intervals throughout the cycle. Linear programming
was then used to identify possible flux distributions at each time interval without
an optimization objective. Thus, the obtained flux distribution for each time point
is not an optimal unique solution, but rather a possible solution that fulfils the
equality and inequality constraints mentioned so far (steady state metabolites,
initial metabolite composition, quotas and enzyme capacities).

The possible solutions can be further constrained for any given a value (fold
change of the system). The overall optimal target (maximum possible a value) was
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set following the approach introduced by Riigen, et al. 32 and used by Reimers, et

al. 2 and Guedes da Silva, et al. 3. Briefly, a search for a values that fulfil the linear
constraints is performed using an algorithm of binary search until the highest
achievable a value is found with a defined accuracy (minimal step-size) of 107.
Due to the presence of internal cycles in the metabolic model, the solution
obtained is not unique. To further limit the solution space, we identified and
limited internal cycles from the available solutions with no effect on the outcome
of the simulation.

Temperature dependencies:

Temperature was implemented as a parameter affecting the turnover rates (kcat)
of individual reactions following the simplified Arrhenius equation from 4 to 20
°C. This relation has been used previously to describe temperature effect on the
kinetics of PAOs using a black-box kinetic model 28 and is expressed as:

kear (T) = kear (20) * g (T=20°0),

where ket (T) represents the ket value at temperature T, Kot (20 the Kear value at 20
°C (defined as optimal temperature for PAOs) and theta (8) the temperature
coefficient for the specific reaction in question. The values for 6 are reaction
specific, and were adapted from the previously determined 6 values found in
Lopez-Vazquez, et al. ¥ and summarized in Table S2. The values for 8 of reactions
that have not been determined were set within the range of estimated 6 values
for comparable bioconversions. The effect of the set 8 values on the model
prediction was evaluated with a general parameter sweep.

Simulation with and without biomass synthesis constrains:

To evaluate the effect that biomass growth during the entire cycle or only during
the aerobic phase, two simulations were performed. These simulations are
referred to as the unconstrained growth (no constrains on biosynthesis) and the
aerobic growth (biosynthesis can only occur during the aerobic period) models.
The only difference between both models lays on the upper bounds allowed for
the reactions involved in protein and ribosomes production (including enzymes)
and synthesis of biomass precursors (BMP) synthesis (See Table S1 for information
on the stoichiometry of these reactions). In the unconstrained growth model,
these bounds were constrained like all other reactions (set by the catalytic
limitations), whereas in the aerobic growth model, these upper bounds were set
to 0 mmol/gasw/h during the anaerobic phase.



Software and model availability

All simulations were performed in MATLAB version 9.4 (R2019b) using LINPROG
as the linear optimization solver. The original cFBA model was retrieved from
Rigen, et al. 32 and the PAOs specific model retrieved from Guedes da Silva, et al.
3 The adapted model used in this study is available at GitLab project ID 39202430
(https://gitlab.com/delft paos/cFBA temperature).
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Abstract

This study explores the metabolic implications of dual substrate uptake in
“Candidatus Accumulibacter”, focusing on the co-consumption of volatile fatty
acids and amino acids under conditions typical of enhanced biological
phosphorus removal (EBPR) systems. Combining batch tests from highly enriched
“Ca. Accumulibacter” cultures with conditional flux balance analysis (cFBA)
predictions, we demonstrated that co-consumption of acetate and aspartate
leads to synergistic metabolic interactions, lowering ATP loss compared to
individual substrate consumption. The metabolic synergy arises from the
complementary roles of acetate and aspartate uptake: acetate uptake provides
acetyl-CoA to support aspartate metabolism, while aspartate conversion
generates NADH, reducing the need for glycogen degradation during acetate
uptake. We termed this type of metabolic interaction as reciprocal synergy. We
further expanded our predictions to uncover three types of interactions between
catabolic pathways when substrates are co-consumed by “Ca. Accumulibacter”:
(i) neutral, (i) one-way synergistic and (iii) reciprocal synergistic interactions. Our
results highlight the importance of network topology in determining metabolic
interactions and optimizing resource use. These findings provide new insights into
the metabolism “Ca. Accumulibacter” and suggest strategies for improving EBPR
performance in wastewater treatment plants, where the influent typically
contains a mixture of organic carbon compounds.
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Introduction

Enhanced biological phosphorous removal (EBPR) systems are complex, dynamic
environments that foster the growth of mixed microbial communities. Amongst
these, members of the genus “Ca. Accumulibacter” are dominant, both in terms
of biovolume¥2 and protein content®*, highlighting their key role in the biological
conversions that drive this process. Their unique metabolic capabilities allow
them to accumulate large amounts of polyphosphate (PolyP)*> © under cyclic,
dynamic environments. No pure cultures of “Ca. Accumulibacter” are available,
making research reliant on highly enriched cultures (> 90 % biovolume 2) for
characterization.

The metabolism of “Ca. Accumulibacter” depends on the cycling of
polyhydroxyalkanoates (PHAs), PolyP and glycogen during an EBPR cycle’®. This
enables the rapid anaerobic uptake and accumulation of volatile fatty acids (VFAs)
inside the microbial cells. The stored polymers can be subsequently oxidized
aerobically, generating enough energy for growth and the accumulation of PolyP.
Research on this metabolic strategy has predominantly focused on feeding single
substrates, such as VFAs like acetate 1°*2 and propionate 3, as well as non-VFA
substrates like glucose ***°, and amino acids like aspartate and glutamate®®.

It is noteworthy that environments containing only a single substrate are rare in
nature, and wastewater treatment plants are no exception. Wastewater typically
contains a mixture of organic substrates, including fatty acids, amino acids, sugars
and lipids'’*°. Understanding the effects of multiple substrates on the
metabolism of microorganisms involved in phosphate removal is therefore crucial
for optimizing EBPR processes.

Despite the importance of mixed substrates, studies on the metabolic
mechanisms of “Ca. Accumulibacter” during the simultaneous uptake of two or
more substrates are very limited. Studies have reported co-consumption of
acetate with glucose > % acetate with propionate and lactate 2! and acetate with
glycerol?? in enrichment cultures, but the interactions between the metabolic
strategies for consumption of each substrate remains poorly understood.

A notable study by Qiu et al. ¥ stands out for its detailed examination of the
concurrent uptake of acetate with either aspartate or glutamate. This research
identified a potential synergy between acetate and aspartate, where aspartate
uptake led to a net energy gain (~9 % ATP gain), enhancing acetate uptake. The
proposed mechanism was the operation of fumarate reductase (reducing
fumarate to succinate) which contributes to the proton motive force (pmf)
required for acetate transport. More recently, a similar energetic gain was



evaluated for acetate and succinate co-consumption?, though the entry point of
succinate bypasses fumarate reductase, raising the question of whether this
synergy is indeed driven by pmf or an unidentified metabolic interaction.

Understanding the interactions within metabolic networks is challenging due to
the complexity and interconnectedness of metabolites, especially energy carriers
like ATP, NADH, FADH,%*. In this regard, metabolic modelling provides valuable
tools for studying these networks and how interactions emerge from
stoichiometric rules. Techniques such as Flux Balance Analysis (FBA) can model
steady-state metabolic operations?, but more advanced methods are needed for
dynamic systems like EBPR?®2%. One such method is conditional FBA (cFBA)%,
which has been successfully used to model “Ca. Accumulibacter” metabolism,
where intracellular storage polymers cycling emerged as a property of model
stoichiometry and environmental conditions®’. However, how these emergent
properties change with multiple substrates remains an open question.

To address this, we aimed to understand the metabolic implications of dual
substrate uptake in “Ca. Accumulibacter” under the dynamic conditions
characteristic of EBPR. We developed and tested a metabolic model for the
uptake of varying acetate and aspartate ratios to uncover synergistic interactions
that improve growth vyields. These findings were validated with lab-scale
enrichments and the mechanisms behind the synergy are described. Finally, we
extended this modelling approach to explore interactions with additional
substrates, identifying a basic biological principle of metabolic interactions. This
work lays the groundwork for further exploration of multiple substrate
consumption, which could potentially lead to increased biomass yields compared
to individual substrate consumption.

Results

Different anaerobic stoichiometries are employed for acetate,
aspartate  and combined substrate uptake by “Ca.
Accumulibacter”

We expanded a previous metabolic model of “Ca. Accumulibacter”® to
incorporate uptake mechanisms for acetate and aspartate (Figure 1.A). Next, we
simulated the concurrent uptake of both substrates at varying ratios. To normalize
the simulations, we ensured that the combined substrates provided the same
amount of electron equivalents (analogous to the chemical oxygen demand, most
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widely used in engineering), meaning the ratios were adjusted to achieve
‘electron equivalence’ rather than molar equivalence (see methods for details).
The predictions indicated that the optimal anaerobic strategies employed for the
individual uptake of acetate or aspartate were different, and that a mixed uptake
also resulted in different individual anaerobic strategies rather than linear
combinations of the individual strategies (Figure 1.B).

With acetate as the sole substrate, polyP and glycogen were degraded to supply
resources for PHA accumulation primarily as acetyl-CoA precursors with a smaller
fraction of propionyl-CoA. As the fraction of aspartate uptake increased, less
glycogen degradation was required and larger fraction of PHAs as propionyl-CoA
precursors was synthesized. At an equal electron equivalence ratio of acetate to
aspartate, glycogen degradation halted. In scenarios with higher aspartate
fractions, glycogen degradation was not observed, and the PHA pool showed a
higher dominance of propionyl-CoA precursors with a higher demand for
polyphosphate degradation (Figure 1.B).



(A) Metabolic model (B) Predicted anaerobic phenotypes at different feeding regimes
G

PHA (propionyl-CoA)

Polymer accumulation (Cmol)
Electron equivalents fed

Glycogen

Polyphosphate

Polymer degradation (C-P-mol)

Acetate:aspartate uptake ratios
(equal total load of electron equivalents)

Figure 1. Different anaerobic stoichiometries employed for the uptake of acetate, aspartate and
combined substrates. (A) Schematic representation of the metabolic model of “Ca. Accumulibacter”
used for simulations. Metabolites are represented as filled circles connected via reactions with grey
lines. Red arrows indicate the entry point for substrate uptake in central carbon metabolism.
Intracellular storage polymers are represented as white boxes. (B) Anaerobic conversions during the
uptake of acetate/aspartate at varying electron equivalent ratios simulated with cFBA. (In blue) PHA
accumulation subdivided into PHAs from acetyl-CoA (C2) and from propionyl-CoA (C3). (In red)
Glycogen and Polyphosphate consumption. Three specific simulations marked with symbols (circle,
triangle and square) were confirmed experimentally in Figure 2.

To validate the modelling results, batch tests were performed on a lab reactor
enrichment culture. gFISH analysis estimated the biovolume abundance of “Ca.
Accumulibacter” at 89 + 3 %., while metagenomics analysis revealed the
enrichment of a clade | strain closely related to “Ca. Accumulibacter regalis”. The
enriched genome harboured the complete genetic potential required for
aspartate metabolism (Figure 2.A).

The batch confirmed the optimal strategies predicted by the cFBA simulations.
Substrate compositions were evaluated under three regimes: acetate, aspartate
and a 45:55 electron equivalence ratio of acetate to aspartate consumption
(regimes marked in Figure 1.B). The experimental results closely matched the
predicted stoichiometries (Figure 2.B). Specifically, in the acetate-fed regime,
PHAs accumulated anaerobically mainly as acetyl-CoA precursors, accompanied
by the degradation of polyphosphate and glycogen. In the mixed substrate
regime, PHAs accumulated as a balanced mixture of both acetyl-CoA and
propionyl-CoA precursors, with lower glycogen degradation per electron
equivalent consumed compared to the acetate-only regime, consistent with the
predictions. Finally, in the aspartate-fed regime, PHAs accumulated with a
substantial decrease in acetyl-CoA precursors. This regime required the highest
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polyphosphate degradation and no glycogen degradation, aligning with the
predictions (See Figure 1.B and Figure 2.B for comparison).

(A) Reactor enrichment (B) Experimental anaerobic phenotypes at different feeding regimes
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Figure 2. Lab culture enrichment and experimental validation of the model. (A) Microbial
community analysis with metagenomics and FISH. Metagenomics revealed the enrichment of an
MAG closely associated to Ca. Accumulibacter Clade | “Ca. Accumulibacter regalis” and harbouring
all the genes necessary for aspartate metabolism. FISH image of the enrichment in which magenta
colour represents the overlap of “Ca. Accumulibacter” (red) and eubacteria (blue). Bottom image of
phase contrast highlighting typical morphology observed from PAOs enrichments. (B) Experimental
validation of the anaerobic phase metabolic strategies observed during batch tests for acetate,
aspartate, and mixed acetate:aspartate (45:55 electron equivalence) regimes. Distinct markers
(circles, triangles, and squares) facilitate direct comparison with the modeled predictions in Figure
1.B.

Metabolic and energetic balances reveal complementary
strategies for the uptake of acetate and aspartate leading to
enhanced growth yields

Simulations with varying ratios of acetate and aspartate in the feed revealed not
only changes in internal storage polymer utilization under anaerobic conditions,
but also predicted maximum growth yields per electron equivalents for each cycle
(Figure 3.A). Growth on aspartate was more efficient than growth on acetate.
Notably, the highest growth yield was achieved with a combination of both
substrates, specifically at a 1:4 electron equivalent ratio of acetate to aspartate.



(A) Growth at different substrate ratios
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Figure 3. (A) Biomass growth yield as a duplication (% growth) in one cycle per electron equivalents
fed at varying fractions of acetate aspartate. Each region represents a unique metabolic strategy
employed by the model to optimize growth. (B) Active metabolic operation during anaerobic
substrate uptake predicted via the cFBA model at each region indicated in (A). Metabolic reactions
contributing to a net ATP loss of the system considering the whole EBPR cycle have been highlighted
in red. Lower thickness in Region Il illustrates the lower demand on glycogen degradation than in
Region I.

During acetate uptake, glycogen was degraded to supply NADH necessary for PHA
accumulation. The most efficient strategy for PHA accumulation reflected in the
model involved glycogen degradation via glycolysis to phosphoenolpyruvate
(PEP), then converting PEP to oxaloacetate (OAA) to fuel the TCA cycle. This
allowed partial acetate oxidation in the right branch of the TCA cycle, producing
NADH and Propionyl-CoA-type PHAs (Figure 3.B — region |). However, during the
aerobic phase, this strategy required glycogen replenishment and the resulting
glycolysis/gluconeogenesis operation over the cycle results in a net ATP loss, thus
reducing the overall growth yield.

As the aspartate-to-acetate ratio increased, aspartate metabolism generated
additional NADH via aspartate oxidase that countered the NADH requirement
from glycogen degradation (Figure 3.B —region Il), thus lowering the net ATP loss
in the glycolysis/gluconeogenesis cycle, which improved growth yields. When the
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ratio reached 1:1, glycogen degradation was no longer necessary. Beyond this
point, up to a 1:4 acetate-to-aspartate ratio, there were no net ATP losses,
resulting in the highest growth vyields (Figure 3.B — region Ill). In this range
reciprocal benefits were observed when aspartate consumption provided NADH
that benefited acetate metabolism, while acetate consumption supplied acetyl-
CoA equivalents that supported aspartate metabolism (as described below).

At higher aspartate fractions, the metabolic strategy necessitated the operation
of the right branch of the TCA cycle, which required acetyl-CoA equivalents. These
equivalents could be supplied through acetate uptake. At insufficient acetate
fractions, part of the consumed aspartate was channelled towards acetyl-CoA
generation via PEP carboxykinase (PEPCK), raising the demand for ATP (Figure 3.B
— region V). This was met with an increased polyphosphate degradation,
necessitating increased ATP requirements in the aerobic phase to replenish the
polyphosphate pools resulting in lower growth yields.

Synergistic effects of substrate co-consumption vary by
metabolic entry point and network topology

Several substrates were incorporated into the existing metabolic model of “Ca.
Accumulibacter”, and their co-consumption with acetate at varying ratios was
simulated using cFBA, as described in the previous section. The predictions
indicated that multiple substrates could support PHA accumulation without
relying on reducing equivalents from glycogen degradation, which is typically
required during anaerobic acetate uptake (Figure 4).

Interestingly, the co-consumption of certain substrates with acetate mirrored the
reciprocal synergistic effect observed with aspartate. Specifically, these
combinations led to an enhanced biomass yield per electron equivalent
compared to the yield of individual substrates. We referred to these as reciprocal
synergistic interactions. Substrates exhibiting this behaviour included succinate,
fumarate, malate, oxaloacetate, and aspartate, all of which enter the reducing
branch (left-hand side) of the TCA cycle. The metabolism of these substrates
resulted in sufficient NADH production to alleviate the dependence from
glycogen degradation, the main limitation during acetate uptake.
Complementarily, metabolising these substrates benefited from the uptake of
acetate to feed acetyl-CoA equivalents into the TCA cycle, as was the case with
aspartate.

In contrast, another class of substrates co-consumed with acetate produced
biomass yields greater than the sum of the individual parts but did not surpass



the yield of the more favourable substrate on its own. These substrates were able
to generate sufficient reducing power (NADH) to alleviate the reliance on
glycogen degradation, releasing the limitation for acetate metabolism. However,
they did not benefit from the additional acetate uptake, since their metabolism
did not require acetyl-CoA to be fed into the TCA cycle using PEPCK or similar
reactions. We classified these as one-way synergistic interactions, observed for
butyrate, lactate, pyruvate and citrate.

Finally, certain substrates such as propionate and alpha-ketoglutarate resulted in
biomass yields that closely matched the sum of the individual yields, with no
additional gain from co-consumption. We classified these as neutral interactions,
wherein the metabolic demands of these substrates closely resembled that of
acetate. These substrates required similar resources (NADH and ATP) as acetate,
leading to overlapping metabolic strategies that did not enhance overall growth
yield.

(A) Substrates synergy with acetate (B) Synergy types between substrates
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Yield S+

Reciprocal synergistic interaction:
- Exceeds expected yield
- Exceedsindividual substrate yield
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yield

Pyruvate e Lactate $Emyrale
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One-way synergistic interaction:
Expected yield - Exceeds expected yield
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Figure 4. Substrates interactions when co-consumed. (A) Metabolic model of “Ca. Accumulibacter”
highlighting the external substrates that were tested and their type of interaction when co-fed with
acetate. Blue: extra-ordinary interaction. Orange: positive interaction. Black: neutral interaction. (B)
Types of interactions (substrate synergy) existing between two substrates. Top shows reciprocal
synergy between acetate and aspartate in which the biomass yield can exceed that of the sum of
parts and the individual maximum biomass yields. Middle panel shows a positive interaction
between acetate and lactate in which the biomass yield can exceed that of the sum of parts but not
the individual maximum yield. Bottom panel shows a neutral interaction between acetate and
propionate in which the biomass yield is similar to the expected from the sum of parts.

Importantly, when thermodynamic constraints were removed from the model,
allowing all reactions to operate reversibly, no significant differences were
observed between the substrates. In this scenario, all co-consumed substrates
resulted in similar biomass yields, producing a horizontal line in the interaction
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plot, demonstrating the absence of any metabolic synergy under reversible
reaction conditions.

Discussion

This study demonstrates that “Ca. Accumulibacter” exhibits synergistic metabolic
interactions when acetate is co-consumed with aspartate, leading to enhanced
growth yields and reduced net ATP loss. These findings offer new insights into the
metabolic mechanisms of substrate co-consumption in EBPR systems and
highlight the importance of network topology in determining interaction
outcomes. Below, we contextualize these results within existing research on
EBPR, biological adaptation, and energy cycling while also acknowledging the
limitations of the predictive models used.

1719 and many studies

have documented “Ca. Accumulibacter” as capable of consuming multiple
substrates, both through genomic analysis'® °* and in situ studies®® 3. Our
findings align with these studies, showing that co-consumption of acetate and
aspartate not only is possible but also results in a metabolic interaction that
optimizes cellular resource. The reciprocal synergy observed arises from a two-

Wastewater typically consists of a mix of organic substrates

way release of metabolic limitations for each substrate, improving overall biomass
yield (Figure 2). Specifically, acetate uptake is typically limited by anaerobic
glycogen degradation, resulting in net ATP loss® >4, while aspartate uptake
requires ATP-consuming conversion of acetyl-CoA via PEPCK'. The combination
of both substrates alleviates these limitations, leading to improved growth. It is
noteworthy that the identified release in metabolic limitations were not
dependent on potential pmf generation as hypothezised by Qiu et al.*® and thus
can also explain the results obtained by Chen et al.?3.

The energy losses associated with glycogen cycling during acetate consumption
in “Ca. Accumulibacter” has been well documented® % 19 358 put their direct
connection to physiological effects, such as growth yields, has not been previously
established. Research manipulating growth rates by adjusting biomass retention
time suggest that higher glycogen cycling corresponds to lower biomass yields®
®1 though the connection to energetics and metabolism has not been discussed
extensively. This behaviour can be compared to the broader context of “ATP
demanding yet useful" cycles®. Since the ATP loss in cycling glycogen is
temporally separated, this is not a futile cycle in strict sense. Yet the temporal
separation of glycogen degradation and replenishment serves an adaptive
purpose, allowing organisms to maintain metabolic flexibility in response to



dynamic environments. This flexibility supports survival and growth under
fluctuating conditions, similarly as that of apparent ATP-demanding pathways®*
8 Further consideration of the metabolic and energetic cost/benefit of these
temporally separated cycles needs to be considered.

The interaction between the metabolic operations of acetate and aspartate is
complex, due to both the complexity inherent of metabolic networks®® and the
dynamic nature of the EBPR cycle. The metabolic consequences of anaerobic
uptake strategies can only be fully understood when considering the entire cycle.
Most research in EBPR focuses on anaerobic processes, where the cell’s redox
state is tightly constrained, limiting reaction feasibility®’. However, without a
holistic perspective on the aerobic phase, it is difficult to assess how anaerobic
pathways impact overall metabolic fitness. The cFBA model employed here
provides a tool to explore these interconnected processes, revealing metabolic
strategies that minimize ATP losses as emergent properties of the system rather
than being predefined a priori. Our experimental results aligned well with the
model’s predictions, indicating that cFBA model successfully captured the key
features of substrate interactions and energy flows. This agreement between
predictions and experimental data reinforces the utility of cFBA in understanding
complex metabolic behaviors.

While our model successfully identified synergistic interactions, it was not able to
detect any substrate combinations that would lower biomass yields (in essence,
negative interactions). This limitation stems from the model’s focus on global
biomass yield optimization. Potential negative interactions might arise when
dealing with substrates that activate stress responses or an overproduction of
reductive potential and warrant further investigation.

Understanding the complete EBPR cycle is essential for uncovering the metabolic
costs associated with PAO strategies. Studies examining different carbon
substrates, such as butyrate and lactate, have shown shifts in glycogen use that
may impact EBPR performance, but these effects have not been integrated into a
broader understanding of biomass growth. Our results suggest that the energy
wasteful use of glycogen in “Ca. Accumulibacter” when consuming acetate can
be greatly released when co-consumed with many other substrates (amongst
them, butyrate, lactate, pyruvate, citrate, oxaloacetate, malate, fumarate and
succinate. See Figure 4). Further experiments are needed to uncover the
metabolic effects of multiple organic substrates and how it can be employed to
improve phosphorus removal.
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Conclusions

Co-consumption of acetate and aspartate by “Ca. Accumulibacter”
results in synergistic metabolic interactions that improve biomass yield
and reduce ATP losses.

Acetate conversion to PHA benefits from NADH generated during
aspartate metabolism, while aspartate uptake is supported by acetyl-CoA
produced from acetate uptake.

Glycogen cycling related to growth on acetate is energy demanding, co-
consumption with other substrates (e.g., aspartate, succinate, fumarate)
reduces this energy demand.

A holistic consideration of the entire EBPR cycle is essential to fully
understand the metabolic strategies and optimize the performance of
PAO:s.

Synergistic interactions arising from metabolic optimization present an
opportunity for co-utilization of carbon substrates that can be exploited
to enhance the yield of bio-based processes.



Materials and Methods

Metabolic model and cFBA simulations

The metabolism of “Ca. Accumulibacter” was simulated with cFBA using the
py_cFBA toolkit implementation3!. A basic metabolic model was constructed as a
stoichiometric matrix (S), representing the relationships between metabolites
and reactions. Stoichiometries for reactions involved in glycogen degradation,
glycolysis, the TCA cycle, anaplerotic routes, and PHA synthesis were adapted
from an earlier study on “Ca. Accumulibacter”®?, excluding the reaction MalE
which was present in only a few genomes within this genus. Stoichiometries for
aspartate metabolism were obtained from?*® and the presence of this pathway in
our enrichment culture was confirmed with metagenomics (see later in this
section). A reaction representing synthesis of 1 c-mole of biomass was
implemented in S following the stoichiometry from 3°, which combined the
energy (ATP) requirements for bacterial growth from acetyl-CoA from * and the
overall stoichiometry of PAOs growth from &34,

In the model, selected metabolites were defined as imbalanced, allowing their
accumulation or depletion over time during simulations. These included acetate,
aspartate, glycogen, PHB, PH2MV, CO2, polyP, and biomass. All other metabolites
were balanced, adhering to the steady-state assumption of FBA. Biomass was
defined as the sole contributor to the weights vector (w) in the cFBA formulation.

The model was implemented in Python using the py cFBA toolkit, which
generated SBML files for each configuration. Simulations of an EBPR cycle
consisted of five time points (At = 1 hour), with no enzyme capacity constraints.
Anaerobic and aerobic phases were simulated by allowing the reactions
ETC_NADH, ETC _FADH (electron transport chain oxygen consumption), and
biomass synthesis to occur exclusively in the final two time points of each cycle.
Reaction reversibility was defined using upper and lower bounds based on a prior
thermodynamic evaluation2.

Substrate uptake during the anaerobic phase was enforced using quota
definitions. An equality-quota at the initial time point specified the concentration
of substrate fed, followed by a max-quota of zero in subsequent time points. This
enforced the anaerobic uptake of substrate. Substrate concentrations were
normalized to provide equivalent electron equivalents, even for substrate
mixtures, based on their degree of reduction (e.g., 8 electrons for acetate, 12
electrons for aspartate). All simulations optimized biomass synthesis as the global
target across the entire cycle, rather than at each time step, consistent with cFBA
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methodology. All SBML models, simulation files and results are available at
https://github.com/TP-Watson/PAOs co-substrates cFBA.

“Ca Accumulibacter” Enrichment

A “Ca. Accumulibacter” enrichment was obtained in a 1.5 L (1 L working volume)
sequencing batch reactor (SBR), following conditions described earlier? with
some adaptations. The reactor was inoculated using enriched sludge from the
work of Pdez-Watson et al.2, which was previously inoculated with activated
sludge from a municipal wastewater treatment plant (Harnaschpolder, The
Netherlands). Each SBR cycle lasted 6 hours, consisting of 30 minutes of settling,
50 minutes of effluent removal, 10 minutes of N, sparging, 30 minutes of
anaerobic feeding, 105 minutes of anaerobic phase and 135 minutes of aerobic
phase. N, gas and compressed air were sparged at 500 ml/min into the reactor
broth to maintain anaerobic and aerobic conditions respectively. The hydraulic
retention time (HRT) was 12 hours (removal of 500 mL of broth per cycle, each
cycle of 6 hours). The average solids retention time (SRT) was controlled to 9 days
by the removal of 27,7 ml of mixed broth at the end of the mixed aerobic phase
in each cycle. The pH was controlled at 7.3 + 0.1 by dosing 0.5 M HCl or 0.5 M
NaOH. The temperature was maintained at 20 + 1 °C.

The reactor was fed with three separate media components diluted in
demineralized water: a concentrated COD medium (400 mg COD/L) of acetate (13
g/L sodium acetate x3H,0); a concentrated mineral medium (0.69 g/L NH4Cl, 2.16
g/L MgS04x7H,0, 0.54 g/L CaClyx2H,0, 0.64 KCl, 0.06 g/L N-allylthiourea (ATU),
0.06 g/L yeast extract and 6 mL/L of trace element solution prepared following
Smolders et al.”; and a phosphate solution containing 0.76 g/L NaH,P04xH,0 and
0.8 g/L Na;HPO4x2H,0. In each cycle, 75 mL of COD medium, 75 ml of mineral
medium and 360 mL of phosphate solution were added to the reactor during the
30 minutes of feeding. The final feed contained 400 mg COD/L of acetate.

Batch tests

Batch tests were conducted in the bioreactor on the enriched biomass once a
pseudo steady state was reached (determined by a constant phosphate release
and removal over multiple days). For the batch tests, 400 ml of H,0 and 50 ml of
mineral media were fed as usual during the anaerobic phase. Later, 50 ml of
organic substrate (containing either acetate, aspartate or a mix) was pulse fed and
considered the beginning of the anaerobic phase of the cycle. The anaerobic
phase on these batch tests was extended by 30 minutes to compensate for the
delay in feed. The organic media was prepared such that the final feed contained
400 mg COD/L of acetate, aspartate or a mix (calculated by using the degree of



reduction of 8 and 12 e/mol for acetate and aspartate, respectively). Thus, the
organic substrate solution for the tests contained only acetate, only aspartate or
mix of acetate and aspartate as follows: (i) 13.1 g/L sodium acetate trihydrate
(C2HsNaO,-3H,0), (ii) 19.35 g/L sodium aspartate (C4HsNNaQ,), or (iii) 5,8 g/L
sodium acetate trihydrate with 9,6 g/L sodium aspartate. For mixed substrates,
the net consumption of acetate and aspartate was used to determine the
acetate:aspartate uptake ratio.

Reactor and biomass analyses

Extracellular concentrations of phosphate and ammonium were measured with a
Gallery Discrete Analyzer (Thermo Fisher Scientific, Waltham, MA). Acetate was
measured by high performance liquid chromatography (HPLC) with an Aminex
HPX-87H column (Bio-Rad, Hercules, CA), coupled to Rl and UV detectors (Waters,
Milford, MA), using 0.0015 M phosphoric acid as eluent supplied at a flowrate of
1 mL/min.

The biomass concentration (total and volatile suspended solids — TSS and VSS)
was measured in accordance with Standard Methods as described in Smolders et
al.” with some modifications: 10 ml of mixed broth were obtained at the end of
the aerobic phase, centrifuged at 3600*g during 3 minutes and washed twice
with demineralized water to remove salts. The sludge was then dried at 100 °C
for 24 hours and weighed on a microbalance to determine the dry content — TSS.
The ash content was determined by incinerating the dry material in an oven at
550 °C, and the difference used to calculate the VSS.

For glycogen and PHA determination, biomass samples (10 ml mixed broth) were
collected throughout the batch test and stored in 15 ml conical tubes containing
0.3 ml of 37 % formaldehyde to stop biological activity. After each batch test, the
biomass tubes were pottered to break the granular structure of the biomass,
centrifuged at 3700 *g for 5 minutes and washed twice. The pellet was then
frozen at-80 °C for at least 3 hours and freeze dried. For glycogen analysis the
method described by Smolders et al.” was used: 5 mg of dry biomass was digested
in 0.9 M HCl solutions in glass tubes at 100 °C for 5 hours. After this time, tubes
were cooled at room temperature, filtered with 0.45 um Whatman disk filters and
neutralized with equal volumes of 0.9 M NaOH. The glucose resulting from
digestion was quantified using the D-Glucose Assay Kit (GOPOD Format) from
Megazyme (Bray, Ireland).

Microbial community characterization
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The microbial community of the reactor was characterized at pseudo steady state
as defined earlier. Two orthogonal approaches were used for the community
characterization: metagenomics and Fluorescence in-situ hybridization (FISH).

For FISH, samples underwent handling, fixation, and staining procedures outlined
by Winkler et al*>. Bacteria were selectively identified using a blend of EUB338,
EUB338-ll, and EUB338-lll probes®® 3’. "Ca. Accumulibacter" was visualized
employing mixtures of the probes Acc1011, Acc471, Acc471_2, Acc635, Accd70
designed and tested previously for different “Ca. Accumulibacter” lineages®. The
images were captured with an epifluorescence microscope equipped with filter
set Cy3 (ET545/25x ET605/70 m T565LPXR), Cy5 (ET640/30x ET690/50 m
T660LPXR), and FITC (ET470/40x ET525/50 m T495LPXR) (Axio Imager M2, Zeiss,
Germany). Quantitative FISH (qFISH) was done as a percentage of total biovolume
over 12 representative pictures using the Daime software (DOME, Vienna,
Austria)®.

For metagenomics, DNA from the biomass samples was extracted using the
DNeasy PowerSoil Pro-Kit (Qiagen, Germany) following the manufacturer's
protocol. Shotgun sequencing was performed by Hologenomix (Delft,
Netherlands). Paired-end sequencing with a read length of 150 bp was conducted
using the lllumina NovaSeq X sequencing system. Library preparation was carried
out using the Nextera XT DNA Library Preparation Kit. Approximately 10 Gbp of
sequencing data were generated per sample.

The quality of raw sequenced reads was assessed using FastQC (version 0.11.7)
with default parameters®, and results were visualized with MultiQC (version
1.19). Low-quality paired-end reads were trimmed and filtered using Fastp
(version 0.23.4) in paired-end mode*!. Taxonomic classification of raw reads was
performed to profile the microbiome in each sample using Kraken2 (version 2)
with the standard database, which includes all complete bacterial, archaeal, and
viral genomes in the NCBI RefSeq database, complemented by a curated
wastewater database (sludgeDB)*.

Clean reads were assembled into contigs using MetaSPAdes (version 3.15.5) with
default parameters®. The resulting contigs were binned using MetaBAT (version
2.2.15) to reconstruct metagenome-assembled genomes (MAGs) with default
parameters*®. Bin completeness and contamination were assessed using CheckM
(version 1.2.2) with the “lineage_wf” workflow *°. Relative abundance of bins with
contamination below 5% was determined in each sample using CoverM (version
0.7.0, https://github.com/wwood/CoverM) with default parameters.



For phylogenetic analysis, bins were classified using GTDB-Tk (version 2.4.0) and
GTDB release 220%. The ppk1 gene was utilised as a marker in bins identified as
Accumulibacter. hmmsearch #” was used with the ppkl.hmm profile, taking the
best hit as the ppk1 gene. Identified ppk1 genes were combined with those in an
existing database and aligned with MUSCLE (version 5.1)*¢. A phylogenetic tree of
these ppkl sequences was generated with RaxML-NG (version 1.2.2)* and
visualised using iTol (v6)*.
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Introducing this thesis, | explained how assumptions about what is fundamental in
biology shapes not only our reasoning but also the direction of research itself. These
assumptions influence how labs operate, what tools are developed, and ultimately,
they set boundaries of what a scientist can explain. Personally, | find theories that
view energy flows as fundamental to life more compelling than those that hold
information molecules (such as DNA or RNA) as central to biology. This perspective,
whether or not it holds as the sole truth, enables a more comprehensive exploration
of cellular responses to their environments, without an overly causal focus on DNA.

In studying “Ca. Accumulibacter”, | approached the subject from this less
conventional perspective, aiming to understand the energetic limitations shaping
these bacteria’s lives. This thesis contains the development and application of both
experimental and computational methods to deepen our understanding of “Ca.
Accumulibacter” and to probe what they do and why they do it. More concretely, the
previous chapters revealed that:

o Describing EPS from genetic potential alone is misleading for both individual
species and microbial communities. Complex glycans and glycoconjugates
are currently impossible to infer from genetic information alone and require
metabolic analysis (Chapter 2).

o Metabolic models based on genetics provide a map of metabolites
connections, while thermodynamics constrains the direction within this map,
defining the possibilities within a given network. By implementing these
constrains, the immense solution space of a PAOs metabolic network was
considerably reduced to a handful of thermodynamically feasible operations
(Chapter 3).

o Accounting for the cyclic nature of cells within their environment allows for
the first time a consistent, assumption-free, prediction and quantitative
understanding of metabolic phenotypes of “Ca. Accumulibacter” in an EBPR
cycle (Chapters 4, 5, and 6).

o The dynamic reoccurrence of oxygen in EBPR systems leads to temporal
separation of biosynthesis in “Ca. Accumulibacter” cells (Chapter 5).

o Complex interactions in metabolic networks are challenging to infer without
mathematical tools, which reveal synergistic effects when “Ca.
Accumulibacter” consumes multiple substrates simultaneously (Chapter 6).

Each chapter inevitably opens new questions and unknowns. While it’s easy to
become absorbed in specific details, stepping back to consider the broader
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challenges in researching PAOs — and microorganisms in dynamic environments more
generally — can help to guide the direction research should take and the pitfalls to
avoid. Our understanding of these microbes depends on measurements taken at
multiple biological levels, each with intrinsic limitations. In the following sections, we
will explore these levels — DNA, RNA, proteins and metabolites — following the central
dogma of biology, and examine the challenges unique to each. | then address the
complexities in integrating these data into a comprehensive, quantitative
understanding of microbial ecology and reflect on how rarely we fully consider
dynamic environments in microbiology.

DNA: A Metagenomics Race at Full Speed

While writing this section, | attended the Long Read Sequencing in Upsala, Sweden.
There | fully grasped the momentum of the “genomic-era” in research and witnessed
firsthand the striking commercialization of DNA sequencing. The race is unmistakably
in full swing. Yet, challenges remain. Even high-quality genomes are not entirely
complete, and many species — including “Ca. Accumulibacter” — lack circular genome
representation in databases. Efforts are underway, combining long- and short-read
sequencing, to uncover the ‘genomic dark matter’ in these and other species.
However, what remains hidden in these regions is yet to be known.

Genomic analysis offers valuable insights into the evolutionary history of a species,
genera and families, but it is best suited to eukaryotes, where DNA recombination is
primarily driven by sexual reproduction. Bacterial DNA, in contrast, is highly dynamic,
with horizontal gene transfer often dominating as a source of recombination. This
genetic fluidity reflects bacteria’s energetic constraints; populations tend to favour
smaller, adaptable genomes, enabling them to acquire beneficial genes from a
communal gene pool. Yet, how horizontal gene transfer shapes bacterial populations
under dynamic conditions is still largely unexplored.

Xie et al. ! inferred gene horizontal transfer events in genomes of “Ca.

Accumulibacter” and other PAQs, seeking to pinpoint the genetic basis for PAO traits.
Similarly, Alder et al. 2 found high frequencies of mobile genetic elements and non-
genomic vectors in “Ca. Accumulibacter”. Plasmid DNA, which is often overlooked in
metagenomic studies, may add significant genetic diversity to these environments.
This could challenge the relevance of traditional species definitions, but that might
be an exaggeration. Or maybe not? We simply don’t know enough.

Finally, as discussed in Chapter 2, gene presence doesn’t imply function, nor does
absence confirm lack of function. This issue has been discussed in detail earlier and
won’t be elaborated further here. Nonetheless this is a crucial consideration when
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relying solely on DNA data, which leads us to the next stage in the central dogma:
RNA.

RNA: Molecules of Activity, right?

Cells produce various types of RNA, including messenger RNA (mRNA), which is often
studied to infer microbial activity. The assumption is that mRNA levels directly reflect
gene transcription, and thus meta-transcriptomics studies are growing in microbial
ecology *®. However, interpreting mRNA levels in slow-growing and dynamic systems
presents challenges that have not been widely recognized. In fast-growing organisms,
mRNA levels lead quickly to new proteins. But in slow-growing cells — especially in
fluctuating conditions with temporal allocation of biosynthesis — how reliably does
mRNA at a given time correlate with activity?

Several factors obscure the relation between mRNA levels and activity. For example,
mRNA can undergo post-transcriptional modifications (PTcrpM) which can vary
among species 8. How these changes affect mRNA efficiency and stability,
particularly in ecological microbes, remains unknown. This is one of the first barriers
to linking mRNA levels with activity.

Additionally, mRNA must be translated into a protein, a process influenced by cellular
resource availability (as an example, see Iwanska, et al. °). Chapter 5 suggested that
“Ca. Accumulibacter” may favour biosynthesis to occur aerobically. How does this
temporal separation affect the correlation between mRNA levels and proteins
presents an open question, adding more uncertainty to transcriptomic data. In other
words, are mRNAs present in the anaerobic phase translated into proteins as
efficiently in the aerobic phase? Furthermore, slow-growing organisms exhibit
gradual and slow proteomic changes which are orders of magnitude slower than that
of mRNA lifetime. In this sense, mRNA shifts would affect only a fraction of the
proteome.

Once synthesized, a protein may not be active or catalysing reactions as expected.
This brings us to the next stage in the central dogma: proteins.

Proteins: Molecules that Actually Perform Functions

To understand a community member’s activity, proteomic analysis is often more
reliable than mRNA. Proteins are the molecules that “walk the walk”, executing
cellular functions. Consequently, proteo-genomics is an extremely powerful tool to
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understand microbial abundance in terms of potential activity a given group could

carry, and to understand reactions to environmental changes °*.

Like mRNA, proteins can undergo post-translational modifications (PTMs) that can
significantly alter their structure and function . While PTMs in bacteria have
received less attention than in eukaryotes, they play a crucial role in environmental
bacteria 1'%, especially for EPS as discussed in Chapter 2. The impact of PTMs on
metabolic enzymes — and whether they can be reversibly modified in response to
dynamic conditions — remains largely unexplored but could provide critical insights
into bacterial physiology. Further research must focus on developing methods to
detect changes in proteins within microbial communities ?° and to identify proteins
that elude detection due to hydrophobicity 2.

Metabolites and Energy Carriers: The Ultimate Challenge

As proteins interact with and respond to metabolic fluxes, we move into the realm of
metabolites. They are at the core of what makes a cell truly alive. DNA, RNA and
proteins are studied largely because they eventually lead to metabolic activity. Yet,
direct metabolic analysis remains underused, in part because of the complexity
compared to other biomolecules???3. In this sense, efforts should be put into
advancing analytical methods to accurately measure metabolites and energy states
within cells in ecology. Experiments using isotopically labelled substrates represent a
great starting point in further developing these techniques and metabolic
understanding 4%,

In Chapter 2, measurements of glycans in the EPS of PAOs demonstrated that EPS
composition is more complex than genetic inference alone suggests. However,
methods to measure central metabolites, such as those in the TCA cycle or glycolysis,
remain limited. Such metabolites are highly reactive and turnover quickly, requiring
methods for immediate quenching, effective extraction and precise quantification
techniques. This represents an opportunity for researchers to record the time
dependent metabolic state of cells within an environment, which ultimately could
explain the why of phenotypic behaviours.

In Chapter 3 mathematical tools led to identifying how TCA cycle and glycolysis
metabolite concentrations would affect metabolic direction and driving forces. In this
sense, accurately quantifying these metabolites — including energy careers such as
ATP and NADH —during an EBPR cycle could conclusively indicate the directionality of
metabolic reactions over time. A similar study in yeast cells found that indeed
metabolic changes — independent of gene expression — predominantly influenced
glycolytic direction and flux ?’. Chapter 5 predicted that PAOs biosynthesis might be
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temporally separated throughout the cycle, and measuring energy carriers like ATP
and NAD(P)H could yield more concrete answers. Nevertheless, first the analytical
methods for this quantification need to be advanced.

Integrating omics- data for a quantitative understanding of
metabolism

Achieving a quantitative understanding of microbial metabolism within complex
environments requires integrating multi-omics data — (meta)genomics,
(meta)transcriptomics, (meta)proteomics and (meta)metabolomics®®. Each layer
provides unique insights: genomics reveals ancestry and metabolic potential,
transcriptomics shows gene activation as a consequence of the environment,
proteomics reveals to what extent that gene activation was successful and what a
microbe can actually perform, and metabolomics captures the real-time intricacies of
metabolism. However, using these data types in isolation is insufficient to identify
fundamental and testable hypotheses to further our understanding of complex
systems like PAOs in dynamic environments.

Efforts are already being made with research integrating genomics-transcriptomics
145 or genomics-proteomics 2° data. Nevertheless, very little has been done in the
forefront of transcriptomics-proteomics and even less with proteomics-
metabolomics. We need robust frameworks that are able to merge different levels of
datasets allowing us to view causes and consequences of microbial activity more
comprehensively. Researching the dynamic interplay between different levels could
lead to novel insights into how a given phenotype is observed and, with views into
the future, how we can precisely manipulate a microbial community to achieve a
desired outcome.

Recurrent dynamic conditions: much more than PAOs

While “Ca. Accumulibacter” has been the focus of this thesis, the insights can extend
towards general microbial survival strategies in dynamic environments. Natural
microbial communities rarely face static conditions, instead encountering fluctuating
resources, oxygen levels, and environmental shifts. These dynamics many times
require adaptations that go beyond genetic control, due to the incompatibility
between the change itself and the time for reaction from genomic control. It is thus
interesting to point out that the strategy “Ca. Accumulibacter” employs to drastically
switch metabolism — which is metabolic control — may be employed by many other
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microorganisms. The only requirement is that the change in the environment is faster
than that of protein turnover. And this can be found in nearly every environment | can
think of — from oceans that experience sudden increase in temperature from a
hydrothermal vent, to soils where a massive input of fertilizers are applied by a farmer.
From wastewater treatment plants that suddenly receive massive flows of water
during the mid-term of the world cup final, to a cell within a controlled industrial
bioreactor that suddenly gets pushed by a massive impeller towards a substrate rich
region within the broth. We must always consider that cells react metabolically to a
given change before they can even attempt to react genetically. Genetic control, in
this sense, is an effect rooted on metabolic change.
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