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Multi-Class Trajectory Prediction in Urban Traffic
Using the View-of-Delft Prediction Dataset

Hidde J-H. Boekema ", Bruno K.W. Martens

Abstract—This letter presents View-of-Delft Prediction, a
new dataset for trajectory prediction, to address the lack of
on-board trajectory datasets in urban mixed-traffic environments.
View-of-Delft Prediction builds on the recently released urban
View-of-Delft (VoD) dataset to make it suitable for trajectory
prediction. Unique features of this dataset are the challenging road
layouts of Delft, with many narrow roads and bridges, and the close
proximity between vehicles and Vulnerable Road Users (VRUs).
It contains a large proportion of VRUs, with 569 prediction
instances for vehicles, 347 for cyclists, and 934 for pedestrians. We
additionally provide high-definition map annotations for the VoD
dataset to enable state-of-the-art prediction models to be used.
We analyse two state-of-the-art trajectory prediction models, PGP
and P2T, which originally were developed for vehicle-dominated
traffic scenarios, to assess the strengths and weaknesses of current
modelling approaches in mixed traffic settings with large numbers
of VRUs. Our analysis shows that there is a significant domain gap
between the vehicle-dominated nuScenes and VRU-dominated
VoD Prediction datasets. The dataset is publicly released for
non-commercial research purposes.

Index Terms—Data sets for robot learning, datasets for human
motion, deep learning methods.

I. INTRODUCTION

HE ability to accurately forecast the trajectories of nearby
T traffic agents is key to automated driving as it enables plan-
ning a comfortable, collision-free path for an automated vehicle
(AV). While this research topic has gained much attention, the
bulk of prediction datasets recorded on-board a vehicle involve
suburban areas [1] or cities with limited interaction between
different road user classes [2], [3], [4], [5]. Urban settings with
mixed traffic - where road infrastructure is shared between mul-
tiple different classes of agents - are comparatively little studied,
despite these settings being especially challenging for prediction
due to their unique road layouts, complex interactions between
road users, and close proximity of vehicles to Vulnerable Road
Users (VRUs) such as pedestrians and cyclists. Furthermore,
forecasting the motion of VRUs in mixed traffic is difficult as
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they are highly manoeuvrable and can change their behaviour
seemingly unpredictably.

Trajectory prediction approaches for vehicles have been ac-
tively researched in recent years; see surveys [6], [7], [8], [9].
Typical deep learning-based approaches for this task use an
encoder-decoder architecture e.g. [10], [11], [12]. The encoder
transforms the past trajectory of agents, their interactions, and
the local map information into a feature representation of the
scene. The decoder predicts possible future trajectories for the
agents from such representations. Current state-of-the-art mod-
els use ‘vectorised’ inputs to encode salient information for the
prediction task [10], [13], [14]. This type of input efficiently
represents road elements from map data and motion states
of tracked agents as vectors, which avoids issues associated
with rasterised representations of the environment e.g. lossy
rendering and computational inefficiency [13], [14]. Vectorised
semantic map information has been used with great success
to learn the influence of the static environment on a vehicle’s
trajectory. This approach not only improves scene compliance
but also the accuracy of predictions for vehicles [10], [14], [15].

Despite these developments, predicting the trajectories of
VRUs remains challenging. Most existing datasets focus on
vehicle prediction [1], [2], [3], [4], [5]. We therefore present
the View-of-Delft (VoD) Prediction dataset, an urban prediction
dataset set in the historic city centre of Delft, the Netherlands,
with challenging attributes such as unique road layouts, in-
cluding many narrow roads and bridges, and close proximity
between vehicles and VRUs. This dataset is an extension of
the VoD dataset [16], and adds semantic map data, which
state-of-the-art trajectory prediction methods depend on for
accurate prediction. An example camera image from the VoD
dataset and the corresponding prediction scenario are shown in
Fig. 1. To investigate to what degree trajectory prediction
methods are well suited to challenging VRU-dominated en-
vironments, we evaluate Prediction via Graph-based Policy
(PGP) [10], a state-of-the-art graph-based trajectory prediction
approach, Plans-to-Trajectories (P2T), a raster-based approach
(to compare this paradigm to graph-based methods), and, as a
third common baseline, the constant velocity Kalman Filter (KF)
on our novel VoD Prediction dataset.

II. RELATED WORK

A. Trajectory Prediction

A considerable amount of literature exists on trajectory pre-
diction of traffic agents in the context of automated driving;

2377-3766 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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Fig. 1. Camera and topdown view of a scenario in the VoD Prediction dataset.
The annotated semantic map is visualised in the rasterised topdown view using
the nuScenes plotting code. Shaded agent boxes indicate past observations.

see [6], [7], [8], [9] for surveys on this topic. However, the
majority of current work focuses on predicting the future tra-
jectory for a single class of road user, e.g. cars [10], [17], [18],
cyclists [19], or pedestrians [20], [21], [22]. Few approaches are
designed to forecast the future trajectories of multiple classes of
agents [17], [23], [24].

Trajectory prediction approaches mainly use static scene
information in one of two formats: as raster maps, which
render geometric information as an image, or vector maps,
which provide this information as geometric primitives such
as points, polylines, and planes. An example of a raster-based
approach is Plans-to-Trajectories (P2T) [25], which conditions
trajectory predictions on plans from a grid-based policy learnt
using inverse reinforcement learning (IRL). In recent years,
vectorised representations [10], [13], [26] have gained popu-
larity as a means to encode scene information, as they do not
suffer from the loss in spatial and semantic information inherent
to rasterised representations [13]. Prediction via Graph-based
Policy (PGP) [10] effectively leverages this representation to
sample feasible trajectories for vehicles over the lane graph.
This is an advantage over popular goal-conditioned prediction
methods [17], [18], [27], [28], which only take the feasibility of
the selected goal location into account, and not the feasibility
of the possible routes to a goal as well [15]. A loss function
that uses vector map data to enforce driving rules for vehicles is
proposed in [29]. Finally, Graph Neural Networks (GNNs) are
a natural choice for modelling the interactions between traffic
agents and the road topology with this representation, and have
been shown to improve prediction performance [26].
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B. Motion Prediction Datasets

Numerous trajectory prediction datasets have been released
in the past few years [1], [2], [3], [4], [5], [11]. We limit
our discussion to datasets that were recorded from a moving
vehicle (“on-board” setting) as this setting is the most relevant
to automated driving systems. Desirable features for datasets
intended for trajectory prediction in mixed traffic include: 1)
contain ground truth tracks of multiple agent classes, 2) have a
high number of interactions between different agent classes, 3)
contain semantic map annotations, and 4) provide sensor data
to enable the use of subtle context cues. In Table I we show
the compliance of commonly-used datasets with most of these
features.

Many of the current datasets for on-board trajectory pre-
diction either have a significantly greater number of vehicle
annotations than any other road user class or are comprised
of highly structured traffic scenarios in suburban or regional
locations and thus have little interactions between agent classes.
This limits the transferability of models developed on these
datasets to urban mixed-traffic settings. Some of these datasets,
such as nuScenes [2] and Argoverse 1 [3], do not even have
any pedestrian or cyclist annotations for prediction in their test
set [11], and are hence not suitable for multi-class trajectory
prediction.

Accurate and detailed semantic map annotations have become
crucial due to the increasing use of map features by prediction
models [4], [29]. However, not all trajectory prediction datasets
provide map annotations. An example of a dataset without map
annotations is Euro-PVI [11], one of the largest urban European
datasets for trajectory prediction. Amongst the datasets that do
provide map annotations, there is variability in the quality of
the annotations. For example, the Argoverse 1 Prediction [3]
maps only contain lane centerline and drivable area annotations,
whereas Argoverse 2 [4] and nuScenes [2] provide more in-
formation e.g. lane boundaries, road signs, traffic lights. The
Argoverse 2 and Waymo Motion [5] annotations are 3D, in
contrast to nuScenes.

Sensor data can be used to develop more effective prediction
frameworks as they provide supplemental information to agent
tracks. However, most large-scale trajectory datasets either do
not provide sensor data such as camera images, LiDAR point
clouds, or radar data (e.g. Lyft Level 5 Prediction [1], Argoverse
1 and 2) or release it in a limited form. For example, the 1.2.0
release of Waymo Motion adds LiDAR data for the first second
of agent tracks only.

C. Contributions

Our contributions are twofold:

1) We release the naturalistic VoD Prediction dataset,! an
extension of the urban VoD dataset [16]. This dataset
contains a large proportion of VRUSs such as pedestrians
and cyclists. It additionally has high-quality 3D road user
annotations, vectorised semantic map elements such as
lanes, crosswalks, intersections and off-road areas, plus

Thttps://intelligent-vehicles.org/datasets/view- of - delft
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TABLE I
OVERVIEW OF ON-BOARD MOTION PREDICTION DATASETS, WITH THEIR RELEASED SENSOR INFORMATION, SEMANTIC MAP INFORMATION, SIZE OF THE DATASET,
NUMBER OF AGENTS (AND AGENT CLASSES) FOR PREDICTION, AND RECORDING LOCATIONS

Information Size Agents for Prediction
Dataset Location
. Sem. Duration (s)  Freq. . . . # Pred.
Camera LiDAR  Radar Map Scenes (hist.. fut.) (Hz) Vehicles  Cyclists  Pedestrians Classes
Lyft Level 5 [1] N.A. 0 O | v 170k 05,5 10 *49M *TTk *605k 3
WOMD [5] N.A. O O O [ 104k 1, 8 10 *60k *620 *23k 3
Argoverse 2 [4] N.A. 0 O 0 v 250k 5,6 10 10k 1000 1000 5
nuScenes [2] N.A., Asia W v [} ] 1000 2,6 2 1000 0 0 1
Euro-PVI [11] Europe [ g O O 1077 0.5, 3 2 1077 1581 6177 3
VoD Prediction Europe o v [ v 1850 0.5,3 10 569 347 934 3
VoD prediction is our dataset. N.A. = north america. * All agents reported because breakdown of agents intended for prediction is not reported.
sensor data from camera, LiDAR, and radar. The dataset TABLE II
is accompanied by a software kit? to facilitate using the VOD-P DATASET STATISTICS
dg;a.s.et f()ﬁ cust(.);nlljeq motéon pre(fhctlon scenarios. It is oot o oAz Speed (/s Aceel (/) pagn
) We mvest.lgate ow: we two representative state-ol- L0 0y 501 518 082 037 -003 253 90.2
the-art trajectory prediction approaches (PGP [10] and  cyclist 0.34 187 189 319 080 -006 228 97.8
Vehicle 0.55 312 293 256 086 -0.02  7.16 93.5

P2T [25]) predict in mixed-traffic urban settings. We also
investigate the domain gap between the vehicle-dominated
nuScenes and urban View-of-Delft Prediction datasets
using the PGP model.

III. TRAJECTORY PREDICTION

The aim of trajectory prediction is to estimate the future
trajectory of one or more ‘target’ agent(s) over a time horizon
T’ given an observed history of length T},. The observed states
of each agent « in a prediction scenario are given as a sequence
x4y 0 ={x%7, - X%y, X}, where each state x{ contains
the pose and velocity of the agent at time ¢. Map data, semantic
attributes (e.g. agent class) and/or sensor data can be used as
additional context information. Given these inputs, a predic-
tion model may make K predictions for the future trajectory
of the target agent. The predictions are evaluated against the
ground truth future trajectory y{.p = {y{,...,¥7,_1,¥%,}
where each y{ is the position of the agent at time ¢. In multi-
class trajectory prediction, target agents can be from differ-
ent classes and/or share the environment with other road user
classes.

IV. DATASET

In this section, we present the View-of-Delft Prediction (VoD-
P) dataset, an extension of the View-of-Delft (VoD) dataset [16]
for trajectory prediction. The VoD dataset comprises camera,
radar, LiDAR, and GPS/IMU information. Tracked objects were
annotated at 10 Hz, in contrast to e.g. nuScenes, which was
annotated at only 2 Hz. A summary of the dataset and compar-
ison with major trajectory prediction datasets can be found in
Table I. For more details on the sensor setup, we refer readers
to [16]. Here, we outline the specific additions that allow the
dataset to be used for trajectory prediction for vehicles and
VRUs.

Zhttps://github.com/tudelft-iv/vod-devkit

A. Scene Selection

The View-of-Delft dataset is recorded in locations with a
large number of VRUs and a high degree of interaction between
different road user classes, such as pedestrians, cyclists, and
cars, amongst others. We use this data to create prediction scenes
consisting of tracks and context over a ‘history’ and ‘future’ pe-
riod for a single ‘target’ agent. Agents are selected as prediction
targets if they have been observed for at least the entire history
and future period. Thus we have full trajectory information over
both the history and future for each prediction target, contrary
to datasets that allow target agents to have partially observed
histories e.g. nuScenes [2]. We do take agents that are partially
observed into account as surrounding agents. Parked vehicles
and bicycles without riders are not included as target agents.

We modify the original VoD [16] dataset splits to better suit
the prediction task. The train and validation split are merged into
one train-val split as in nuScenes to allow more efficient use of
the data available. No target agents are taken from VoD highway
sequence as the scope of the VoD-P dataset is urban driving (the
highway sequence, including map annotations, is still provided
in VoD-P). Target agents from the same recording are assigned
to the same split. This results in a 76%/24% train-validation/test
split for an 0.5 s history and 3 s prediction horizon. Note that
only recordings from the VoD test split are in the VoD-P test
split, and similarly for the combined train and validation splits.
See Fig. 2 for the distribution of tracks of target agents in the
train and validation set; VoD-P has a significantly larger spread
in pedestrian and cyclist movement directions than nuScenes [2].

Table IT shows quantitative dataset statistics. This table shows
the distribution of agents in the dataset, as well as trajectory
statistics by agent class: the mean speed and acceleration, max
acceleration, greatest in-trajectory speed difference, and path
efficiency (see [30] for a definition). See also [30] for the
statistics of other prediction datasets.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 02,2024 at 07:23:38 UTC from IEEE Xplore. Restrictions apply.
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Samples of VoD-P and nuScenes tracklets in the training and validation sets for a history of 7}, = 0.5 s and future of 7'y = 3 s. An equal number of

samples was randomly drawn from the datasets to ensure a fair comparison. The tracklets are positioned at the origin and aligned with the positive y-axis at t = 0
(i.e. last observed timestep). The VoD-P dataset contains challenging and diverse tracklets.

B. Vector Map Information

As current trajectory prediction methods [10], [17], [18], [25]
rely on semantic map data, we provide accurate annotations of
designated lanes, intersections, crosswalks and off-road areas
with extensive labels for each road element. This means that
our dataset contains information that can aid the prediction
performance for agents in urban areas. The annotations were
created by human annotators from georeferenced aerial images.>
Additionally, we label every road element with a unique element
identifier, its road type and which road users are allowed to use
the road element.

Lanes are annotated as polygons, denoting the drivable area
of the lane. The boundaries and lane centreline are calculated
from these polygons; their direction denotes the legal direction
of travel along the lane. We also provide the following labels:
road type (e.g. residential, bike path, highway), the agent classes
allowed to use the lane, and the type of road boundary (i.e.
solid/dashed marking). Road boundary types determine which
lane switches are feasible. Intersections are annotated as a
polygon that encloses the area of an intersection. We define an
intersection as a region where at least one lane ends and at least
one lane starts. By this definition, lane merges or splits also
occur on an intersection. Lanes that agents are legally allowed
to travel between are annotated as connected. A “connecting”
lane between them is calculated by interpolating the boundaries
and centrelines of the lanes over the intersection. Crosswalks are
polygons that indicate designated pedestrian crossing locations.
Off-road areas indicate the pedestrian domain, e.g. sidewalks,

3https://www.pdok.nl/wms

city squares, footbridges, as well as other non-road areas such
as car parks. These polygons can help to predict for pedestrians.

C. Vehicle Localisation

In order to ensure that the tracks in the dataset are smooth
and accurately positioned with respect to the map data, we
estimate the 6-DOF pose of the ego-vehicle at each times-
tamp using a two-stage localisation pipeline. First, we apply
KISS-ICP [31] on the LiDAR point clouds to get estimates
of the relative transformation between consecutive poses of
the ego-vehicle. Global pose estimates are obtained by manual
annotation of point correspondences in the camera images and
world frame of selected timestamps. The poses are calculated
from the correspondences using Perspective-n-Point (PnP) [32].
Finally, we fuse the local and global transforms using Pose Graph
Optimisation (PGO) [33].

V. METHODOLOGY

We analyse the performance of state-of-the-art trajectory
prediction approaches developed on vehicle-dominated datasets
on the VRU-dominated View-of-Delft Prediction dataset. As
baseline for this analysis, we select PGP [10] because it is state-
of-the-art for the vehicle-heavy nuScenes dataset [2]. We also
select the raster-based P2T [25] model as a baseline to investigate
the difference between the graph-based and raster-based map
encoding paradigms for complex map data. We summarize the
PGP and P2T architectures, which are also illustrated in Fig. 3 .

a) PGP: PGP [10] consists of three modules: a graph encoder,
a policy header and a trajectory decoder. The graph encoder
encodes vectorised lane information using a Graph Neural Net-
work (GNN) consisting of graph attention layers [34]. The

Authorized licensed use limited to: TU Delft Library. Downloaded on May 02,2024 at 07:23:38 UTC from IEEE Xplore. Restrictions apply.
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Summary of PGP [10] and P2T [25] models. PGP uses an architecture based on Graph Neural Networks (GNN) to encode a vectorised representation of

the scene. P2T estimates and fine-tunes discrete policies from a rasterised representation using a Convolutional Neural Network (CNN).

TABLE IIT
PREDICTION PERFORMANCE OF PGP [10] MODEL FOR A HISTORY OF
Tj, = 0.5 S AND A PREDICTION HORIZON OF Ty = 3 S AND VARIOUS
TRAINING CONFIGURATIONS

Evaluation Training Datasets K=1 K=5 K=10
Dataset nuScenes VoD-P  minFDE | minADE | MR | minADE| MR |
nuScenes [2] o u] 2.88 0.50 0.78 0.36 0.67
o lf 15.21 7.00 0.93 6.55 091
g m] 35.94 15.20 0.98 13.07 0.98
VoD-P | g 224 0.66 0.60 0.56 0.48
I g 2.19 0.49 0.67 0.38 0.52

motion (relative to the pose of the targetagent at¢ = 0) and class,
represented as one-hot vector (one element has value 1 and all
others 0), of the target agent and surrounding agents is encoded
using Gated Recurrent Units (GRUs) [35]. Social interactions
are encoded using multi-head attention and are represented as
node features on the constructed graph. Next, the policy header
uses the motion encoding and graph encodings to estimate the
transition probability between connected nodes in the lane graph.
Samples are drawn from this policy serve as social and scene
context for the trajectory decoder. These samples are combined
with the encoded motion of the target agent and a sample from a
latent noise distribution, and refined by a Multi-Layer Perceptron
(MLP) to obtain the future trajectory predictions.

b) P2T: [25] also consists of three modules: a convolutional
reward model for path and goal states, a Maximum Entropy
Inverse Reinforcement Learning (MaxEnt IRL) [36] policy that
can be sampled to obtain discrete plans on the 2D grid, and an
attention-based trajectory decoder. Scene and social context is
encoded as a raster image, where the colour channels are used
to represent semantic information, e.g., lane direction and agent
class. This context and the observed trajectory of the target agent
are first used to calculate the likelihood of the agent’s future path
and goal location on a discrete grid of the environment using a

CNN. These path and goal maps are then used to estimate a
policy for the agent, which is sampled to obtain discrete plans
over the grid of the environment. Finally, the trajectory decoder
outputs a continuous-valued trajectory for each discrete plan.
The observed trajectory of the agent is also input to the trajectory
decoder.

VI. EXPERIMENTS
A. Experimental Setup

1) Datasets: In our experiments, we use both the VoD-P
dataset and the nuScenes [2] dataset. We evaluate our models
on the VoD-P dataset with a history of 7}, = 0.5 s and a future
of T = 3 s, following [1], [11]. See Table I for some dataset
statistics of VoD-P. To compare nuScenes to our dataset, we trun-
cate the tracks in their prediction challenge split and interpolate
and re-sample their tracks at 10 Hz to match the setup of VoD.

2) Metrics: We adopt the widely used minimum Average
Displacement Error (minADE) () and Miss Rate (MR) ({)
metrics for K = {5, 10} predictions. The minADE is the lowest
average Euclidean distance between the ground truth trajectory
y and set of K predicted trajectories {31, ..., 7} over the
prediction horizon T’y and a dataset of size IV:

N
. 1 .
min ADEg = N ng,l min ADEg ,,, where (D)
1 &
. B . - (4)
min ADEx., = ie{?l.?l(} Ty thl Hym T Yin|,- @)

The MR is the fraction of scenes wherein the maximum point-
wise L2 distance between a predicted track y.7 and the ground
truth y;.7 is greater than a threshold distance r for any of the K

Authorized licensed use limited to: TU Delft Library. Downloaded on May 02,2024 at 07:23:38 UTC from IEEE Xplore. Restrictions apply.
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TABLE IV
PERFORMANCE OVER 6 DIFFERENT TRAIN-TEST SPLITS OF VOD-P WITH A Ty = 3 S PREDICTION HORIZON FOR K = 10 SAMPLES

Vehicle Cyclist Pedestrian
Method
minADE | MR | minADE | MR | minADE | MR |
KF 0.81+0.04 0.81+0.04 1.25 £ 0.06 0.97 £ 0.02 0.52 +0.03 0.78 = 0.03
P2T [25] 1.79+1.30 0.78 £ 0.07 1.59 + 0.64 0.93 +0.04 0.59 +£0.14 0.59 +0.13
PGP [10] 0.48+0.30 0.39+0.08 0.50+0.07 0.74+0.04 0.29+0.03 0.41+0.06

Mean + std. dev. are over the test sets in the splits. Best performance on each metric is shown in bold. minADE = minimum

average displacement error, MR = miss rate.

predictions:
N
MRy = — Z Miss g 1, where 3)
n=1
Missg,, = H(Rgn — 1), where 4)

Rin = i HT_A@) —
Kn ie{tﬂgg}{} <t€{rf}§>’(rf} Ytn = Yin|, (%)

where H (-) is the Heaviside step function. We choose a threshold
r of 0.5 m for a prediction horizon of T' = 3 s, to account for
the distance agents can travel in this time.

3) Baselines: To assess the degree of linearity (and thereby
the difficulty) of the dataset, we use a Kalman Filter with a
linear dynamics model as a baseline. We smoothed the agent
tracks in the training set by fitting a spline to the tracks and
calculated the difference between the original and smoothed
track points to estimate the measurement noise parameters. The
process noise was estimated using the deviation of poses and
velocities from the linear model in the smoothed tracks. Our
deep learning baselines are the PGP [10] and P2T [25] models,
described in Section V.

B. Domain Gap Between VoD-P and Nuscenes

We first investigate the domain gap between the urban VoD-P
dataset and the vehicle-heavy nuScenes dataset by testing the
PGP model on the VoD-P test set with different training setups:
1) training only on nuScenes, 2) training only on VoD-P, and
3) pre-training on nuScenes and fine-tuning on VoD-P. For a
fair comparison between the datasets we modify the nuScenes
tracklets to match the prediction setup of VoD-P (7}, = 0.5 s,
Tr =3 s @ 10 Hz). Table III shows the performance of the
model for these setups.

Only training on nuScenes leads to poor prediction perfor-
mance on the VoD-P test set; the minADE for K = 10 samples
is 2234% higher than when only training on VoD-P. This shows
that there is a significant domain gap between the two datasets.
Pre-training the model on nuScenes and fine-tuning on VoD-P
gives better average minADE scores (32% lower for K = 10)
than training on VoD-P alone, suggesting that the datasets are
complementary and can be used together for developing better
models for urban trajectory prediction. The high minFDE for
K =1 (over 2 m in all cases) shows that prediction models
have to make significant progress to ensure safe and comfortable
autonomous driving.

We also show the performance of PGP when trained and
evaluated on nuScenes. Notably, it scores better on the minADE
and MR metrics than when trained and evaluated on VoD-P,
demonstrating the difficulty of our dataset.

C. Quantitative Results

Table IV shows the performance of the baselines over 6
different train-test splits. Positional errors (minADE) tend to
increase when considering pedestrians, cyclists and vehicles
successively, due to the increased travelling speeds involved.
Overall, PGP performs best. Interestingly, KF edges out the
second spot. It does relatively well for vehicles, which mostly
drive straight within their lanes, a behavior well captured by
a constant velocity motion model with added noise. For the
pedestrians and cyclists with greater freedom of movement, the
KF is clearly inferior to PGP. For completeness, Table V shows
the results of the baseline methods on the designated VoD-P
train-test split, i.e. the one used for benchmarking (similar effects
can be observed).

D. Qualitative Results

Fig. 4 shows the predictions of the baselines on an example
scene for each target agent class. The examples show that the
dynamics of agents in VoD-P are complex and non-linear.

The example illustrates how the P2T and PGP models are
often able to account for the map context, but not always for the
social context of the scene. The models are able to predict the turn
that the car will make in Fig. 4(b) and (c), showing that they are
able to process the dynamics of the vehicle and the road layout.
Fig. 4(e) and (f) show a failure case for a pedestrian for both
models. The pedestrian in this scene walks perpendicular to the
lane centrelines, and passes between a vehicle and pedestrian.
PGP predicts that the pedestrian will walk into the vehicle
blocking the road; P2T predicts wrongly that the pedestrian
will avoid the obstacles. In Fig. 4(h) and (i) a cyclists makes
a turn to the left at the last minute. Only P2T accounts for
this possibility in its predictions, but ignores the presence of
another agent in its predictions. The failure cases may result
from the high variance in VRU dynamics, or the varied and
complex road layouts and social interactions between agents in
urban centres. For example, cyclists and pedestrians can move
orthogonal to or even against the driving direction of lanes. These
examples show that the tested state-of-the-art models are unable
to consistently predict the behaviour of agents in urban settings
and suggests that predicting VRU trajectories might require a
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TABLE V
PERFORMANCE USING THE DESIGNATED VOD-P TRAIN-TEST SPLIT WITH A Ty = 3 S PREDICTION HORIZON FOR K = 10 SAMPLES

Vehicle Cyclist Pedestrian
Method
minADE | MR | minADE | MR | minADE | MR |
KF 0.93+0.67 0.85 1.22+0.85 0.99 0.52 £ 0.38 0.80
P2T [25] 2.24 4+ 3.38 0.83 1.01 £0.79 0.95 0.42 +0.31 0.66
PGP [10] 1.09 +1.88 050 056+062 081 027+022 0.35

Mean + std. dev. are over the target agents in the test set. All models were trained on VoD-P only. Best performance
on each metric is shown in bold. minADE = minimum average displacement error, MR = miss rate.
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Qualitative examples of baseline model predictions on VoD-P dataset for K = 10 predictions. Predictions are shown in red; the ground truth future

tracklet is shown in green. Refer to the legend in Fig. 1 for the colour scheme of the map annotations and agents. In the top row scenario, PGP and P2T are able to
predict the turn the car will make. However, in the second row scenario, PGP and P2T make inaccurate predictions because of the complexity of the scene. In the
last row scenario, only P2T predicts the sharp turn of the cyclist. See also the videos in the Supplemental Material.

different treatment of map information than predicting vehicles
bound to lanes.

VII. CONCLUSION

We introduced the View-of-Delft Prediction (VoD-P) dataset,
an extension of the VoD [16] dataset, enriching the available sen-
sor data with vectorised map information. Our experiments show
that there is a significant domain gap between the urban VoD-P

dataset and the widely used nuScenes [2] dataset, highlighting
the need for urban prediction datasets with many Vulnerable
Road Users (VRUs). Our dataset is a step towards bridging the
gap, enabling future research on trajectory prediction in complex
urban traffic.

From the comparatively poor performance of a constant ve-
locity Kalman Filter (KF) on VoD-P, we infer that there are a
sizeable number of non-linear trajectory segments in the dataset.
We also analysed the performance of the graph-based PGP [10]
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and raster-based P2T [25] models on our dataset. Although PGP
outperformed P2T on the metrics, the results show that neither
model is able to capture the full social and static context of
prediction scenarios for VRUs as well as for vehicles, motivating
the search for new prediction techniques in urban centres.

Future work includes encoding social and map context differ-
ently for each agent class to account for their unique interactions
with other agents and the static environment. Furthermore, more
experimentation on domain transfer is needed, how models
transfer across regions and how regional datasets are best com-
bined.
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