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Abstract. The Kathmandu Valley in Nepal is facing the combined effects of population growth, rapid urbanization,
economic development, and climate change. This results in serious water management challenges: growing freshwater
demands, declining water tables, drying of streams, and deteriorating water quality. Insufficient surface water supplies
have led to increased reliance on groundwater, especially during the dry winter and pre-monsoon seasons (November
- May). Despite groundwater’s importance, it is sparsely measured, poorly understood, and insufficiently managed. As
it is difficult and costly to measure all groundwater extractions in the Valley, a water balance approach is an alternative
method to estimate total net groundwater pumping. Therefore, the aim of this research was to develop and evaluate
potential methods for quantifying total pre-monsoon baseflow supplies by extrapolating baseflow measurements of a
subsample of watersheds to unmeasured watersheds. Estimated baseflow was used, together with other water balance
fluxes and changes in storage, to evaluate net groundwater pumping in the Valley. Three different methods were used:
(1) Spatial Analysis, (2) Regression Model, and (3) Black Box (machine learning). All methods relied on streamflow
data from 2017 to 2019, collected by citizen scientists from S4W-Nepal. Based on the three methods we presented,
we cautiously conclude that it is possible to determine the pre-monsoon baseflow contributions from a sub-sample
of head water catchments. Total baseflow estimates for the Valley using Spatial Analysis, Regression Model, Black
Box were 2.32, 2.30, 2.65 m?/s respectively. These values show orders of magnitude that correspond with expected
values. By using the average baseflow values of all three methods, we were able to close the water balance and
make an assumption for the net groundwater pumping in the Valley. Based on a population of 3.5 million, a net
groundwater extraction of 96 L/person/day during pre-monsoon was found. This striking outcome emphasizes the need
for more discharge and groundwater extraction measurements, to decrease the uncertainties and to refine the methods.

Keywords: Baseflow calculation, Hydrology, Kathmandu Valley, Nepal, Machine Learning, Regression Model, Spatial

Analysis

I. INTRODUCTION

OCATED in the foothills of the Himalayas, the Kath-
mandu Valley in Nepal (Valley) is home to more than
2.5 million permanent residents (population in 2011) [1]. With
a population growth of 4% per year, the Valley is one of
the fastest-growing metropolitan areas in South Asia [2]. For

the period 2011-2031 population growth is expected to be
52% [1]. The combined effects of population growth, rapid
urbanization, economic development, and climate change are
resulting in serious water management challenges.

Growing demand for freshwater on one side, and declining
water quality and quantity on the other side, put pressure
on existing water resources.Surface water supply were long
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Fig. 1.
Net groundwater pumping is solved for only the blue water balance area.

outpaced and now the Valley depends on groundwater as
the main water supply, especially during the winter and pre-
monsoon season (November - May), when only 20% of
the annual precipitation occurs [3]. Annually, groundwater
extractions exceed recharge rates, resulting in groundwater
level declines [4]. The public agency responsible for water
supply to the Kathmandu Valley, the Kathmandu Upatyaka
Khanepani Limited (KUKL), can only meet 19% and 31%
of the total water demand (estimated to be 370 million litres
per day) for the dry and wet seasons, respectively [5]. The
deficit between demand and supply is currently filled by other
sources such as stone spouts, springs, rainwater harvesting and
extractions from privately owned wells [6] [7] [8]. According
to Udmale et al., the deficit between water demand and
supply will increase to 322 million litres per day by 2021
[9]. As groundwater is considered to be a clean water source,
groundwater is increasingly relied up within the Valley [10].
As a result, the groundwater levels in the shallow unconfined
aquifer dropped from 2.57 to 21.58 meters below ground
surface between 2003 and 2014. Moreover, the monsoon is
an essential source of groundwater recharge in the Valley.
However, ungoing hardscaping (e.g. paving) of the Valley’s
landscape, and changes to monsoon timing and duration due
to climate change will also impact groundwater recharge in
the Valley [11].

Groundwater is discharged in two ways: (1) by using natural
springs and baseflow in streams or (2) by artificially remov-
ing the water from wells. As baseflows and spring supply
are insufficient during the winter and pre-monsoon months,
manual groundwater extractions must make up the difference.
Therefore, it is important to quantify the amount of ground-
water extraction. However, it is difficult to measure all places
where water is manually extracted in the Valley. A potential
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1.1: Locations of the rivers in the Kathmandu Valley and the three land-use classes, 1.2: Baseflow generating (tan) and water balance (blue) areas.

method of estimating total net groundwater pumping in the
Valley is applying a surface layer water balance. Unfortunately,
baseflow contributions to the Valleys water supply are poorly
measured. Seeing this gap, Smartphones4 Water-Nepal (S4W-
Nepal) started measuring discharge from several head water
catchments throughout the Valley in 2017. However, there
are multiple drainage areas that are not captured by these
measurements. In this paper, we investigated methods to solve
this problem.

A. Research question

In this research we focused on improving the understanding
of baseflow contributions to the Valley’s pre-monsoon water
supply. Therefore, the aim was to develop and evaluate po-
tential methods for extrapolating baseflow measurements to
unmeasured catchments, to develop a robust estimate of the
total baseflow contribution to the Valleys pre-monsoon water
supply. The estimated baseflow will be used, together with
other water balance fluxes and changes in storage, to evaluate
net groundwater pumping in the Valley.

To obtain net groundwater pumping, the following questions
had to be answered:

1) How can monthly stream flow measurements from a sub-
sample of headwater catchments in the Valley be used
to determine total pre-monsoon baseflow contributions
to the Valley’s water supply?

2) Can these estimates of pre-monsoon baseflow be used in
a water balance to estimate net groundwater pumping?

II. STUDY AREA

The Kathmandu valley is located at an elevation of approx-
imately 1,400 m and covers an area of around 587 km? [4].
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Fig. 2. 2.1: Locations of the basepoints in the Kathmandu Valley and the corresponding known watersheds, 2.2: Locations of the unknown watersheds within

the Valley.

With a mild slope and surrounded by steep hills and moun-
tains, the Valley has always been an attractive place for humans
to settle. The Valley is principally drained by the Bagmati
River, whose headwaters originate from the Northern region of
the Valley. Eight other tributaries (Balkhu, Bishnumati, Dhobi,
Godawari, Hanumante, Kodku, Manohara and Nakkhu) join
the Bagmati river, prior to exiting at the southwestern edge of
the Valley near Chobar. From upstream to downstream land-
use changes from mainly natural to built in the Kathmandu,
Lalitpur, and Bhaktapur urban areas (Figure 1.1). The Valley
and its surrounding hills consist of old basement rock which
is covered with unconsolidated and consolidated sediments
[12]. The impermeable rock layer is bowl shaped and the
only water outlet can be found at Chobar, where the Bagmati
river leaves the Valley in the south-west direction. Water can
enter the shallow aquifer especially in the northern part of
the Valley. Elsewhere, the Valley’s floor is mainly covered
by an impermeable clay layer which separates the shallow
aquifer from the deep aquifer. Recharge of the deep aquifer is
possible, but predominantly in the northern part of the Valley
[13]. Natural recharge of the shallow aquifer is declining due
to the increasing sealing of the surface by urbanisation which
prohibits infiltration. Currently, groundwater is extracted from
both the shallow and deep aquifer. To estimate net groundwater
pumping in the Valley we defined the spatial domain of our
water balance. We decided to select the densely urbanised
area where the land-use is predominantly completely built.
The water balance area is visualised in Figure 1.2.

III. METHODOLOGY

To be able to answer the research questions, we split up
the methodology in several smaller steps. Firstly, we anal-
ysed discharge data to determine the baseflow [m?/s] during
pre-monsoon for different baseflow measurement locations
throughout the Valley, so-called basepoints. For the base-
points, corresponding watersheds were delineated, and specific

baseflows were computed [L/km?]. Secondly, we investigated
different characteristics (e.g. precipitation and land-use) to
determine their correlation to the specific baseflow. Thirdly,
we constructed three different methods to predict baseflow for
unknown watersheds. The three different methods that were
used are:

1) Spatial Analysis
2) Regression Model (manual)
3) Black Box (machine learning model)

Applying the three methods resulted in different estimations
of baseflow for the unknown watersheds. We compared the
three methods to discuss their strengths and weaknesses. By
comparing the results, the overall surface water inflow of
the water balance could be determined. Then, we estimated
the other fluxes and changes in storage. Finally, we applied
these estimates to close the water balance and to estimate net
groundwater pumping in the Kathmandu Valley.

A. Definition of baseflow for known basepoints and water-
sheds

For the period 2017-2019 citizen scientists and members
of S4W-Nepal have collected discharge data at different lo-
cations around the Valley by performing USGS mid-section
measurements with a SonTek FlowTracker Acoustic Doppler
Velocimeter (ADV). With the collected data, we were able to
plot and analyse hydrographs for these locations. Since we
found out that the number and regularity of measurements per
location was highly variable, we decided to only use locations
with more than two measurements during the pre-monsoon
to determine baseflow. This resulted in 25 basepoints spread
over the Valley for which the baseflow could be deducted
based on hydrographs. Since we were working with limited
data, we decided to use a three year average for the pre-
monsoon months since there were no noticeable differences
in the baseflow values for the different years. To normalise
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for catchment size, we converted the baseflow [m3/s] to the
specific baseflow [L/s/km?].

Based on the 25 basepoints, we delineated the 25 cor-
responding known watersheds using Quantum Geographic
Information System (QGIS) (see Figure 2.1). The known
watersheds are located all around the Valley, but most densely
in the northeast. Watersheds for which the baseflow was not
measured are called unknown watersheds within this paper.
The locations of the unknown watersheds can be found in
Figure 2.2.

B. Evaluation of Characteristics impacting baseflow

Specific baseflow from the 25 known watersheds was not the
same. Therefore, we compiled the variables that would likely
influence the baseflow for each watershed. The constructed
Regression Model and Black Box used these to build and
train their algorithms, but logically these models needed the
right variables as input data. For this paper, these variables
are referred to as characteristics. We hypothesized that the
following nine characteristics might impact specific baseflow
of a watershed:

1) Precipitation (P)

2) Land-use (3 classes: natural, agricultural and built)

3) Basepoint elevation

4) Evaporation (ET)

5) Stream orientation

6) Area (A)

7) Stream length

8) Mean slope

9) Presence of shallow aquifer/recharge areas

We obtained the following the watershed characteristics
using QGIS: area, stream orientation, basepoint elevation,
mean slope, and streamlength (total length of all streams
within the watershed). Also, the presence of the shallow
aquifer and the recharge areas, expressed in percentages of the
total area, were obtained from QGIS. For evaporation, USGS
Simplified Surface Energy Balance Operational (SSEBop)
remotely sensed data was used in combination with QGIS. For
land-use classification we made use of the study on “Quan-
tifying the connections” from Environmental Monitoring and
Assessment (EMAS) by Davids [4]. The six original land-
use types were merged to three classes: natural (forest and
shrubs), agricultural (rice and non-rice), and built (high and
low density) areas. For precipitation, we decided to use ground
measured data. While precipitation data from the Department
of Hydrology and Meteorology (DHM) was mainly collected
in the centre of the Valley, citizen scientists also measured
precipitation at the edges of the Valley. We combined the DHM
and citizen science data and interpolated this combined data
over the Valley in QGIS using Inverse Distance Weighting
(IDW) interpolation. This resulted in a spatial precipitation
map covering the whole Valley.

We visualized the relation between the characteristics and
specific discharge using scatter plots. We fitted regression lines
through the obtained scatter plots to search for relations. Both
linear and polynomial relations were tested and the best fit was

determined based on the computed coefficient of determina-
tion. (R?). Furthermore, the Pearson’s correlation coefficient
(r) between the characteristics and the specific baseflow was
computed. A correlation coefficient of 1 indicates a perfect
positive correlation, whereas a coefficient of zero shows none.
Unfortunately, the relations we found using this technique
were not able to compute any sensible data. Looking at the
scatter plots in Figure 3, it can be observed that outliers
seemed to have a large impact on R? and 7.
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Fig. 3. Scatter plots between characteristics and specific baseflow.

Due to the effect of the outliers, we narrowed the character-
istics down to the three most important based on our physical
understanding of the relationships between specific baseflow
and on the largest correlation coefficients.

Because of the cross-correlation between precipitation and
elevation, it was chosen to only include precipitation, knowing
that this phenomenon would certainly be of influence. Other
cross-correlations between characteristics were also left out of
the new model, hoping this would prevent unnecessary noise.
Furthermore, we realised that areas with a high percentage
of natural and agricultural land have on average a higher
infiltration capacity than built areas and thus will contribute
more to the baseflow. Additionally, we expected that, due
to the strong south to north monsoonal air movement [3],
the orientation of the stream and its impact on orographic
precipitation would be of importance too.

Ultimately, we decided to train both the Regression Model
and the Black Box, by only using precipitation, land-use
(natural and agricultural), and stream orientation.

C. Three methods to approach baseflow

To predict the baseflow for unknown watersheds we used
three different methods: Spatial Analysis, Regression Model,
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TABLE I
CHARACTERISTICS AND CORRESPONDING CORRELATION

Characteristic Corr. Coefficient
Area -0.43
Precipitation 0.48
Evaporation 0.48
Stream orientation 0.46
Land-use natural 0.50
Land-use agricultural -0.56
Land-use built -0.31
Basepoint elevation 0.49
Stream length -0.44
Slope -0.26
Shallow aquifer 0.35
Recharge areas 0.78

and Black Box. Below, the methods and the input data that
are used are explained and any assumptions made for each
method are clarified.

1) Spatial Analysis: Spatial Analysis is the simplest method
that makes use of spatial interpolation. Interpolation is the
process of using geographic point data to compute values at
unknown locations. There are several interpolation methods
available. We decided to use Inverse Distance Weighted (IDW)
interpolation. IDW is a commonly used method which is also
available in QGIS. We used IDW interpolation of specific
baseflow in combination with land-use, since we assume
that only natural and agricultural land will contribute to the
baseflow. Firstly, we uploaded the known specific baseflow
data in QGIS and applied IDW interpolation over the Valley
area. For the distance coefficient we selected p=3 (indicating
how quickly the weight decreases with distance), since this
resulted in the most smooth projection. Next, we created a
mask layer in QGIS consisting of zeros for built and ones
for agricultural and natural areas. By multiplying these two
layers we ensured that only natural and agricultural land-uses
generated baseflow. This resulted in our final Spatial Analysis
map which shows no specific baseflow value for built areas
and, depending on the IDW interpolation, a varying specific
baseflow value for the natural and agricultural areas (see
Figure 4). Spatial Analysis resulted in a specific baseflow value
for every single pixel [L/s/km?]. It was then possible to calcu-
late each pixel’s contribution to the baseflow by multiplying
the pixel’s area by the interpolated specific discharge. Finally,
the actual baseflow for each watershed could be computed by
summing the baseflow values of all pixels that belonged to
each watershed.

2) Regression Model: Regression analysis is a statistical
method to determine the influence of one or more independent
variables (characteristics) on a dependent variable (specific
baseflow). We decided to build two types of regression models:
a manual regression model based on least squares method
(Regression Model) and a machine learning based regression
model (Black Box).

A simple and understandable way to build a regression
model is by using the Least Square Method (LSM). LSM is a
reliable method to identify the impact of certain independent
variables on the topic of interest. Depending on the number
of independent variables that are taken into account, the
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Fig. 4. Map showing the specific baseflow generating areas based on the
Spatial Analysis

Regression Model determines estimator coefficients (). The
combination of the estimators and the characteristics results
in an equation which can be used to determine the specific
baseflow for all unknown watersheds.

First, we used the 25 known watersheds to obtain the final
equation, since the specific baseflow for those watersheds is
known. We created a table in which the characteristics of
interest were stored for the known watersheds, called matrix
A. The corresponding measured specific baseflow values were
stored in a 2521 column vector y. The linear relation between
matrix A and y is given by Equation 1 where Z is the estimator.

y=Az )

Every characteristic has its own estimator. The estimator
can be determined by the least square equation 2.

&= (ATwA) 1t ATwy )

In this equation W is the weight matrix. We assumed
all measurements to have the same weight so W is the
identity matrix. A7 is the transpose of matrix A. To determine
the estimated specific baseflow of a watershed (y.s:), the
estimator per characteristic is multiplied with the value for
the characteristic that belongs to that watershed. The number
of characteristics is given by n (see Equation 3).

Yest = To+ax1characteristicy +...+x,characteristic, (3)

While optimizing the Regression Model, we first analysed dif-
ferent combinations and relations of characteristics, as defined
in Section III-B, to find the combination that led to the best
result. First, we performed the ’leave one out’ method. 'Leave
one out’ method means that we trained the model with 24
watersheds as input while leaving one watershed out. A least
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square equation was used to estimate the specific baseflow
of the missing watershed, based on a certain combination
of characteristics. We compared the estimated value (yes,;)
with the known specific baseflow (y;) resulting in an Absolute
Percentage Error (APE). This has been repeated for all 25
watersheds. Figure 5 shows the resulting distributions of the
APE:s for every tested combination. It can be seen that the first
four combinations of characteristics showed a large spread in
the APEs. The APE ranges of the other methods were quite
comparable, however, there was some variability in the median
values of the APEs (shown as dark blue horizontal lines in
Figure 5).

Ultimately, the selection of the best result out of these com-
binations is based on the smallest Mean Absolute Percentage
Errors (MAPE), see Equation 4.

Zfil |yi_13/l:st,i| . 100%
25

The MAPEs are shown as green triangles in Figure 5. The
best performing combination of characteristics turned out to
have a MAPE of 33.3% and it includes: precipitation, land-
use agriculture, land-use natural and orientation. To make
calculations easier, we combined both land-use types in the
land-use “green” (see Equation 5). The estimator & for each
characteristic was determined. This resulted in the final for-
mula:

MAPE =

4)

Qupecific = 399.50 + 2.81 - 1073 - P — 902.59 - Green
+508.55 - Green® — 2.10 - cos (orientation)

One remark regarding the procedure of the Regression
Model is the following: we decided to drop Godawari and
Bhalku watersheds from the training data as they generated
aa APE of around 900%. This abnormal high percentage
might be explained by unknown industrial activities including
groundwater extraction and waste water discharge, resulting
in unreliable flow data at these locations. Due to time limits
we were not able to find the exact origin of the abnormalities.
This decision is also implemented for the Black Box.

3) Black Box: The Black Box Model is a supervised
machine learning algorithm. For this research, linear regression
via Scikit-Learn, a popular machine learning library for Python
[14], was used.

Based on our results with the manual Regression Model we
expected to use not only linear but also polynomial relations.
However, since the Scikit-Learn is only applicable for linear
regression, we had to transform the input characteristics to
polynomial coefficients to be able to include polynomial
relations as well. To account for the polynomial coefficients,
we transformed the normal linear model in Equation 6:

h(0) = &g + &1 01 + oo + By - O ©)

As in Equation 3, the ’characteristics’ are now defined as
the f-values. The 6-values that gave the best results, were
determined:

61 = precipitation®

Average Percentage Error (APE) distribution for the Regression Model

x x
175
150 x % x x x
x x
. x
125 x x
& w0 x
w x
<75
50
5
o
Q = « « *~ « “~ “ * - * “
s & & & & & & & & & §
< Y & & & & & & < & N
a’ < ) [s) 9] o o o [S) 9 [s)
Q7 o) o~ 7 / 7 7 7 3
LN AN A N A A
’ & < & < s > s
Q (&) o & ) & ép @
7 & ) o & 3
@ & & & o ©
R A A
& v g o g
Qr © Qr <)
Qs Qr

Characteristics taken into account

Fig. 5. APE distributions of different characteristic combinations for the
Regression Model, including MAPE values (green triangles).

Average Percentage Error (APE) distribution for the Black Box Method
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Fig. 6. APE distributions of different characteristic combinations for the Black
Box Method, including MAPE values (green triangles).

0y = Vbuilt

03 = vagriculture

0, = natural?

05 = cos (orientation)

Now, we transform Equation 6 to the following polynomial
model:

h(0) = &0 + 2101 + ... + 20,
=20 + &1 - precip + & - Vbuilt+

&3 - \agriculture + &4 - natural®+

&5 - cos(orientation)

)

This results in:
h@(z) = 90+01 '$1+02 'SC2+93 'I’3+94'I’4+95'I5 (8)

Comparable with the Regression Model, Black Box also
used a data set to train the model. We used the information
about the known watersheds to generate a training matrix
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(X rain) with the values of different characteristics as the
columns of the matrix. The corresponding specific baseflows
that were used to train the model were stored in ¥.,i,. Based
on these training matrices, the test matrix (X ) with the char-
acteristics of the unknown watersheds was used to determine
the predicted baseflows (ypreq). As with the Regression Model,
the test phase to determine the best characteristic combination
consisted of leaving one watershed out, determining the best
coefficients and comparing the estimated specific baseflow
with the observed specific baseflow in terms of MAPE.

The comparison of different combinations of characteristics
is shown in Figure 6. Based on this figure, the best com-
bination of characteristics was precipitation, orientation, and
land-use: agricultural (P_Orient_A_Agri_Nat). This combina-
tion resulted in the smallest MAPE of 36.52%. This final
combination was used in the next step of this research to
determine the specific discharges for the unknown watersheds.

D. Closing the water balance

To determine the average groundwater pumping rate
(Qpump.ner), based on average annual baseflow data, we set up
a water balance for the Valley based on research performed
by Davids [4]. This water balance is provided in Equation 9:

AS = st,in + GWpump,net + P-F—- Qs’w,out (9)

where Qg i, is the surface water inflow, Qgw,ouc 18 the surface
water outflow at Chobar, P is precipitation, F is evaporation,
Qpumprnet is the net groundwater pumping and AS is the
storage change in the unsaturated zone as well as any lakes
or reservoirs (which are negligible in the Valley). The water
balance domain includes the unsaturated zone from the soil
surface down to the water table. For the boundary of our water
balance, we used the boundary around the densely built area
of Kathmandu (Figure 1.2).

With the available data from S4W-Nepal, DHM, and satel-
lites, we were able to define the baseflow of the surrounding
watersheds, which equals Qg iy Of our water balance. Also the
values for Qsw.out, P and E were determined. The precipitation
during pre-monsoon is negligible, since care was taken to
avoid performing baseflow measurements after precipitation
events where surface runoff was still occurring. Finally, we
assumed S to be a constant value, so AS is zero. For the
pre-monsoon months, this is a reasonable assumption, because
evaporation is relatively low as well as soil moisture changes.
These assumptions result in the final water balance for the
Valley, shown in Equation 10:

st,in + GWpump,net - E = st,out (10)

IV. RESULTS

Based on the three methods, we determined the baseflow
(by converting the specific baseflow) for both the known and
unknown watersheds. We then validated and compared the
methods by their output for known and unknown watersheds.
After summing up the baseflows of smaller watersheds, we
were able to determine the total baseflow for the larger
watersheds and sum these up for the total surface water inflow
to close the water balance.

Validation for discharge based on large or small watersheds

Comparison of all methods

— linear fit Spatial Analysis
B Spatial Analysis
— linear fit Regression Model
X Regression Model
linear fit Black Box
Black Box

y = 0.9276x
R2=09758 x

Baseflow by large watersheds [m3/s]

00 02 04 06 08 10
Baseflow by summation of small watersheds [m3s]

Fig. 7. Validation of the three methods by comparing discharge based on big
watersheds is the same as the summation of smaller watersheds

A. Comparison of the 3 methods

Using the three methods, we estimated the baseflow
Q[m?/s] for all 67 watersheds (25 known + 42 unknown
watersheds). To be able to quantify which method performed
best, an extended analysis of the results was performed.

1) Known Q vs estimated Q: For the 25 known watersheds
we defined the baseflow (Q [m?/s]) by the three methods and
compared the estimated values with the measured baseflow.
In appendix A, we provided a table with all measured and
estimated baseflow values for the 25 known watersheds per
method. A scatter plot between measured and estimated base-
flows shows the performance of the three methods (Figure 7
). For a perfect model, we would expect a linear fit where the
measured baseflow equals the calculated baseflow (y = x).
Figure 8 show that all methods are better in estimating the
baseflow for watersheds with a smaller baseflow than for
those with higher baseflow values. Although the differences
between the methods are not too big, the Regression Model
seems to give the best approximations. This is because this
method approaches the y = x-line best. Next, we compared
the baseflow distribution for the methods in Figure 9. From
the baseflow distribution it can be observed that the measured
baseflow values have a smaller spread than the three methods.
Spatial Analysis and Black Box give a higher average baseflow
estimation than what can be found for the measured baseflow
values, whereas the Regression Model gives a lower average.

2) Validation of the methods: In order to validate the
methods and see whether they were able to only make good
predictions for small watersheds or also for bigger watersheds,
we constructed some bigger unknown watersheds that overlap
the summation of smaller watersheds. By comparing the
estimated baseflow for the bigger watershed with the sum
of the estimated baseflow values for the smaller watersheds,
we could check the consistence of the three methods. It is
important to note that since the bigger watershed is often
covering a slightly bigger area than the small watersheds it
is not expected to find a perfect 1:1 relation. The results are
presented in Figure 7. It can be observed that none of the
methods shows clear inconsistency. All methods find sufficient
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Estimated baseflow vs measured baseflow: scatter plots

(A) Spatial Analysis

(B) Regression Model
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Fig. 8. Scatterplots between estimated and measured baseflows using (A) Spatial Analysis, (B) Regression Model and (C) Black Box for the known watersheds.

comparable baseflow values, so the output by the different
methods seems reliable.

3) The range of the output: For the 42 unknown watersheds
we defined the baseflow by using the three methods. However,
for those watersheds it was not possible to compare the
estimated values with measured baseflow data. Figure 10
provides box plots of the estimated baseflow distribution for
the unknown watersheds. Numerical values are provided in
appendix B. From both the box plots and the numerical
values, we observed that the range for the baseflow values
are comparable for all methods. The Regression Model shows
the highest baseflow estimates, where Spatial Analysis shows
the lowest.

4) Final estimated baseflow: Our main interest for the three
methods was to find the estimated baseflow for the nine big
watersheds in the Valley (see Figure 2). Those watersheds
belong to the nine tributaries of the Bagmati River. Their
outflow point is located at the edge of the densely urbanised
area near Chobar and equals the surface water inflow to our
water balance. Based on the three methods, the baseflow for
those watersheds was defined and presented in Figure 11. For
five out of nine watersheds the baseflow was measured at the
outflow point (the purple bar). Even though the three methods
are not capable of estimating the exact same baseflow, their
values do show orders of magnitude that correspond with
the expected values. The numerical values of the estimated
baseflow Q [m3/s] per watershed are presented in table II. It
can be seen that the sums for the different methods are quite
close to each other, especially for the Spatial Analysis and the
Regression Model. The average sum of the estimated annual
averaged baseflow flux of the study area is 2.4 m>/s, which is
equal to 0.35 mm/day of runoff.

B. Water balance

To close the water balance as explained by Equation 10,
we found the values for the different fluxes using QGIS and
SSEBop satalite data.

o ET (pre-monsoon) = 46 mm/month (SSEBop)
e Area = 130298755 m?

Baseflow distribution for the known watersheds
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Fig. 9. Baseflow distribution for all methods compared to measured baseflow
values for known watersheds

Baseflow distribution for the unknown watersheds
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Fig. 10. Baseflow distribution for all methods for unknown watersheds

o ET (pre-monsoon) = 2.3 m3/s
. st,oul (Khokana) = 4 m3/s
e Qgwin =24 m3/s (avg.baseflow 3 methods)

Using Equation 10 and the other fluxes, resulted in a
Qnet,pump Of 3.9 m?3/s for the total water balance area. Taking
into account the population growth since 2011, we assumed
a population of 3.5 million in the Valley. This resulted in an
estimated daily net groundwater pumping of 96 L/person/day
during pre-monsoon.
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Estimated baseflow and measured baseflow
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Fig. 11. Baseflow per watershed for three methods

TABLE 11
FINAL DISCHARGE [M3/S] PER WATERSHED
Watershed ASrE:ll;:}s Relarg;sellon Black Box | Average
Balkhu 0.07 0.36 0.27 0.23
Bishnumati 0.59 0.92 0.65 0.72
Dhobi 0.05 0.03 0.02 0.03
Bagmati 0.46 0.31 0.33 0.37
Manohara 0.44 0.23 0.42 0.37
Hanumate 0.43 0.27 0.61 0.44
Godawari 0.10 0.01 0.10 0.07
Kodkhu 0.03 0.06 0.09 0.06
Nakkhu 0.13 0.10 0.17 0.13
Sum: 2.32 2.30 2.65 242

V. CONCLUSION

Here we will be answering the research questions as men-
tioned in chapter I:

How can monthly streamflow measurements from a sub-
sample of headwater catchments in the Valley be used to
determine total pre-monsoon baseflow contributions to the
Valleys water balance?

Based on the three methods we evaluated that it is possible
to determine pre-monsoon baseflow contributions from a sub-
sample of head water catchments to a certain extent. This was
possible by using either Spatial Analysis, a Regression Model,
or Black Box. When we look at the results, we can observe
that the methods were capable of estimating baseflow values
for the known watersheds that were close to the measured
baseflow values. This is interesting, since the methods use dif-
ferent techniques and different input data. The scatter plots in
Figure 8 show that the methods performed best for watersheds
with smaller baseflow values. When we compared the three
methods, Regression Model seemed to perform slightly better
than the other two. However, the differences in outcome were
relatively small. When we validated the methods, we could
conclude that the methods find sufficient comparable baseflow
values which made the output by the three different methods
reliable. Also, for the unknown watersheds, the ranges for
the estimated baseflow values were comparable. On average,
the Regression Model came up with the highest baseflow
values, while Spatial Analysis seemed to give the lowest
estimations. Based on the above, it was difficult to point out

which method was the best to use in the end. Since the final
baseflow estimations were all in the same order of magnitude,
we decided to use the average baseflow values of all three
methods. The average baseflow contribution of the area outside
the water balance by the three methods is 2.4 m?>/s. This
average is the best approximation of reality that we could get.

Can these estimates of pre-monsoon baseflow be used in a
water balance to estimate net groundwater pumping?

As presented in chapter IV-B, we were able to make an
assumption for the net groundwater pumping in the Valley.
This calculation was done using the following assumptions:

o There is no precipitation during the pre-monsoon period
o The change in storage (AS) was assumed to be a constant
o Recharge to the shallow aquifer was assumed to be zero

Based on a population of 3.5 million people in the densely
built areas surrounding Kathmandu, Bhaktapur, and Lalitpur,
we found a net ground water extraction of 96 L/person/day
during pre-monsoon.

VI. DISCUSSION

One of the main constraints we encountered in this research
was the lacking amount of pre-monsoon discharge data. S4W-
Nepal did a great effort in collecting discharge and precip-
itation data over the past three years. However, the amount
of measurements per location and the spread of the locations
throughout the Valley made it difficult to process the data
and train our models in a proper way. The known watersheds
were most densely located in the north-eastern part of Valley,
and only a few were located in the western and south-eastern
region. Because the Regression Model and Black Box used
similarities in characteristics to predict the contribution in
baseflow, they had difficulties in estimating the baseflow for
watersheds in other parts of the Valley than where the mea-
surements were taken. Another issue with the baseflow data
was the threshold that we used. Since we had too little data, we
were forced to lower the threshold from five to two discharge
measurements during the pre-monsoon period, which made
the baseflow values less reliable. At the same time, we should
also realise that the flow measurements were taken manually
by using a SonTek FlowTracker. This measurement technique
also introduces uncertainties. One should therefore realise that
the final measured baseflow values are only an approach of
reality and the final result will never be more precise than the
input that we used.

Another point of discussion was the research on the char-
acteristics. In the beginning of our research we found some
nice relations between characteristics (linear and polynomial)
using BLUE and WLS fit. However, due to the limited amount
of data points, several fits were strongly influenced by points
that also could be assigned as outliers. This made it doubtful
to use the relations for the Regression Model and the Black
Box. After we added the eight additional baseflow data points
and performed the characteristics research again, the scatter
plots between the characteristic and the specific baseflow
showed even less correlation and the scatter plots became
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more cloudy. Due to limited time we were not able to add
more characteristics, or perform more in depth research on the
existing characteristics. It would have been interesting to add
more information about the recharge areas, elevation and soil
types and to check their relation with the baseflow. Although,
the real problem was not the number of characteristics, but
the limited data points. This made it difficult to perform the
comparison of characteristics as we had in mind. If one would
have more data points, this method could give better results.

To obtain the precipitation data per watershed we used
the IDW interpolation method in combination with the mea-
sured precipitation data from DHM and S4W-Nepal. IDW
interpolation is a common used interpolation method which
works well. Although, it might had been better to use Kriging
instead. Especially Co-Kriging, with elevation as additional
input, would have been preferred. But for convenience we
decided to keep working with IDW interpolation.

The method of interpolation was also a point of discussion
when we look at Spatial Analysis. We only tested the relation
between baseflow and natural land-use and between baseflow
and the combination of natural and agricultural land-use.
On the other hand, if we had chosen to use Co-Kriging, it
would have been possible to add a second parameter to the
interpolation technique and thereby obtaining better results.
Simultaneously, the main advantage of the Spatial Analysis
method is that it needs only little input data to give relative
good results.

For the Regression Model and Black Box we compared
several characteristics to find the optimal combination that
gave the best result. This choice was made based on the
combination of characteristics that gave the lowest MAPE
value. If, instead, we had chosen to base our decision on the
boxplots, another combination of characteristics had maybe
been chosen to be the best.

For the Regression Model and the Black Box we decided
to remove two known watersheds: Godawari river (Balkot02)
and Balkhu river (BK02)) from the training data since they
resulted in MAPE values of around 900%. It is still difficult
to explain why both models were not capable of modeling the
behaviour of those two watersheds. One reason could be the
location of BKO02, which is the only basepoint that is located
in the western part of the Valley. Therefore, the Regression
Model and Black Box might have difficulties in predicting the
behavior of watersheds in that area. This would also reduce the
reliability of their estimations of other unknown watersheds in
that region. For Balkot02 groundwater recharge might play a
role in disturbing the baseflow estimations. We do not know
if this might give problems in other regions as well.

It is remarkable that the watersheds BAOS5, BA06, MH02
and MHO3 were overestimated by all three methods. Those
watersheds have in common that they cover a relative big
area and that they have a high baseflow value. A reason for
the mismatch between the calculated baseflow values and the
measured baseflow values could be water extraction for human
purposes or the presence of groundwater recharge areas within
the watershed.

The three methods all have their pros and cons. Spatial
Analysis is the quickest and easiest method to use. Also, when

little data is available, it is still able to give relative good
results. Regression Model and Black Box need sufficient input
data to train their algorithms. This was a problem within our
research. Still, although the MAPE is still more than 30% for
both methods, we can state that the results were surprisingly
comparable, also with respect to the output of Spatial Analysis.
An advantage of Regression Model over Black Box is the
fact that Regression Model is easier to understand, while the
machine learning part still act as a Black Box and does not
give all the insights we would desire. We think that when we
would have access to more datapoints, Regression Model and
Black Box might surpass the results of Spatial Analysis, since
their model takes more characteristics into account. However,
for now, all methods are performing comparably well.

Finally, we have to discuss the assumptions that were
taken for constructing the water balance. To estimate the net
groundwater pumping a lot of assumptions were made. We
have to assume a relative big error in the baseflow estimations
which equals the surface water inflow to our water balance.
Furthermore, we did not take any connections between the
deep aquifer, the shallow aquifer, and the subsurface flow into
account. Also, we were not able to include any information
about groundwater extractions. More research on these fluxes
would make the estimation of net groundwater pumping more
reliable and precise.

VII. RECOMMENDATION

Based on our experiences we came up with the following
recommendations for further research on the baseflow contri-
butions in the Valley:

Firstly, it would be useful to spread the discharge mea-
surements more throughout the Valley to have more training
possibilities for the models. As a result of the spread, the
corresponding watersheds will have more differentiating char-
acteristic values (e.g. orientation and land-uses). Furthermore,
measuring points located near the boundary of built area would
immediately provide baseflow that can be used for setting up
the water balance.

Moreover, the recurrence of the flow measurements (once
per month) is on the low side. We would suggest to see
whether it is possible to generate rating curves for different
locations based on the data that is already available. The
advantage of rating curves is that citizens can measure water
level instead of flow, which is much easier to execute. The
water levels can then be related to the discharge based on the
rating curve that was generated.

Thirdly, more research is required on the influence of
characteristics on the baseflow. Especially the influence of
soil types on the baseflow generation needs to be investigated
in more detail. Moreover, the spatial map of precipitation
could be optimised by using Co-Kriging instead of IDW
interpolation.

Next, regarding the Regression Model and Black Box, it
would be interesting to see how much better the models
perform when more baseflow data is used to train the models.

Finally, the net groundwater estimation could be done more
precisely when more research on the different fluxes (e.g.
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interaction between the aquifers and the subsurface flow and
actual groundwater extractions by companies).
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APPENDIX A
OUTPUT OF THREE MODELS FOR KNOWN WATERSHEDS

Measured Spatial Analysis Regression Model Black Box

Layer Area [m2] | Q [m3/s] ?Ls}zzgfzc] Q [m3/s] ?lefs’fgfzc Q [m3/s] %/271:;1?; Q [m3/s] ?LS};Z:;?;]
BAO1 2485598 0.0139 5.5801 0.0165 2397096 | 0.0200 8.0508 0.0231 9.2826
NAO1 9211998 0.1029 11.1724 0.0921 9197487 | 0.1038 11.2694 | 0.1268 13.7700
BAO02 14174337 | 0.1408 9.9356 0.1139 13869999 | 0.1323 9.3327 0.1376 9.7074
NAO02 12677816 | 0.1547 12.1993 0.1301 12653199 | 0.1393 10.9890 | 0.1387 10.9389
BAO3 15697733 | 0.1155 7.3546 0.1280 15360579 | 0.1480 9.4261 0.1677 10.6829
BAO35 29828548 | 0.2701 9.0551 0.2730 29400930 | 0.3074 10.3062 | 0.2397 8.0362
BAO5 56630308 | 0.1809 3.1940 0.4637 52361946 | 0.3066 5.4141 0.3257 5.7516
BKO02 12068213 | 0.0131 1.0847 0.0180 10470564 | 0.0131 1.0894 0.0546 4.5209
BMO15 1829572 0.0293 16.0201 0.0269 1796301 | 0.0189 10.3330 | 0.0150 8.1881
BMO02 3291886 0.0170 5.1764 0.0438 3116529 | 0.0221 6.7236 0.0313 9.5130
DBO1 3548433 0.0461 12.9973 0.0434 3543930 | 0.0407 11.4783 | 0.0450 12.6863
Balkot02 46199868 | 0.0149 0.3227 0.1043 42356808 | 0.0104 0.2251 0.0974 2.1091
HMO1 5683875 0.0339 5.9554 0.0350 5614011 | 0.0526 9.2551 0.0359 6.3099
KKO1 2714046 0.0045 1.6433 0.0052 2649582 | 0.0112 4.1406 0.0088 3.2486
MHO1 8989658 0.0674 7.5008 0.0732 8589087 | 0.0441 4.9043 0.0279 3.1069
MHO02 57176385 | 0.3696 6.4647 0.4142 52428870 | 0.2389 4.1788 0.3522 6.1602
NKO3 41842246 | 0.1039 2.4824 0.1310 39009087 | 0.0976 2.3327 0.1684 4.0244
BM_extral | 40634278 | 0.3162 7.7816 0.3382 32664996 | 0.3177 7.8181 0.2245 5.5245
BM_extra2 | 12399538 | 0.0642 5.1776 0.1243 11571768 | 0.0719 5.7975 0.0776 6.2574
DB_extral | 4905792 0.0592 12.0572 0.0510 4105179 | 0.0302 6.1507 0.0232 4.7391
DB_extra2 | 10175321 | 0.0538 5.2824 0.0965 8286408 | 0.0810 7.9618 0.0716 7.0411
BAO6 65951319 | 0.2673 4.0522 0.4728 54789462 | 0.4130 6.2616 0.3636 5.5126
BA_extral | 55861624 | 0.2583 4.6239 0.4574 51656202 | 0.3183 5.6973 0.3124 5.5918
MHO03 63256915 | 0.3421 5.4081 0.4440 56991870 | 0.2345 3.7074 0.4184 6.6144
NK _extral | 22747555 | 0.0902 3.9653 0.0734 21119085 | 0.0808 3.5507 0.1025 4.5039




RESEARCH PROJECT, MSC CIVIL ENGINEERING, DELFT UNIVERSITY OF TECHNOLOGY, SEPTEMBER 2019

APPENDIX B
OUTPUT OF THREE MODELS FOR UNKNOWN WATERSHEDS

Measured Spatial Analysis Regression Model Black Box

Layer | Area [m2] | Q [m3/s] ?LS/EZ;ISZC] Q [m3/s] ?lefs’z:fzc] Q [m3/s] %/Efgf;] Q [m3/s] &S/I;Z:ﬁ;]
BK_nl 3523362 unknown | unknown | 0.0046 2836665 0.0147 4.1676 0.0123 3.4848
BK_n2 647386 unknown | unknown | 0.0006 489762 0.0087 13.4869 0.0079 12.2310
BK_n3 1209115 unknown | unknown | 0.0016 1107288 0.0055 4.5532 0.0111 9.1600
BK_n4 3635717 unknown | unknown | 0.0058 3035916 0.0068 1.8814 0.0120 3.2980
BK_n5 4500806 unknown | unknown | 0.0075 3574350 0.0274 6.0879 0.0215 4.7865
BK_n6 4500831 unknown | unknown | 0.0106 4053465 0.0026 0.5871 0.0223 4.9651
BK_n7 1186669 unknown | unknown | 0.0029 836550 0.0223 18.7708 0.0082 6.9221
BK_n8 3377436 unknown | unknown | 0.0054 1854099 0.2118 62.7225 0.0331 9.7881
BK_n9 24834811 | unknown | unknown | 0.0349 20922876 | 0.0628 2.5286 0.1377 5.5430
BK_nl0 | 38046645 | unknown | unknown | 0.0609 31369104 | 0.1477 3.8824 0.2411 6.3379
BM_nl 15129375 | unknown | unknown | 0.1068 12577149 | 0.0945 6.2453 0.1568 10.3668
BM_n2 3388731 unknown | unknown | 0.0224 2795598 0.0181 5.3290 0.0372 10.9681
BM_n3 2894389 unknown | unknown | 0.0199 2404701 0.0134 4.6343 0.0190 6.5748
BM_n4 12792267 | unknown | unknown | 0.0626 8551062 0.3654 28.5677 0.0906 7.0819
BM_n5 242954 unknown | unknown | 0.0001 24336 0.0755 310.5642 | 0.0020 8.3114
BM_n6 13151481 | unknown | unknown | 0.0416 10951200 | 0.0667 5.0739 0.1059 8.0553
BM_n7 22319729 | unknown | unknown | 0.1511 18001035 | 0.1745 7.8194 0.2258 10.1182
MH_nl 15468603 | unknown | unknown | 0.1213 14741532 | 0.1094 7.0742 0.0876 5.6663
MH_n2 12491051 | unknown | unknown | 0.0811 11964186 | 0.0651 5.2118 0.0596 4.7685
MH_n3 7625312 unknown | unknown | 0.0576 6817122 0.0358 4.6935 0.0620 8.1334
MH_n4 10490484 | unknown | unknown | 0.0863 9332856 0.0465 4.4333 0.0776 7.3970
MH_n5 28256016 | unknown | unknown | 0.2042 26964288 | 0.1805 6.3869 0.1551 5.4894
HM_nl 22570133 | unknown | unknown | 0.1304 20738835 | 0.0854 3.7856 0.1709 7.5707
HM_n2 12322300 | unknown | unknown | 0.0710 11151972 | 0.0225 1.8267 0.0959 7.7836
HM_n3 11209622 | unknown | unknown | 0.0604 10642437 | 0.0203 1.8148 0.0446 3.9783
HM_n4 | 46829603 | unknown | unknown | 0.2649 43051905 | 0.1285 2.7432 0.3194 6.8203
HM_n5 4389234 unknown | unknown | 0.0267 4071717 0.0211 4.8100 0.0473 10.7752
HM_n6 7299342 unknown | unknown | 0.0428 6287814 0.0353 4.8394 0.1023 14.0176
HM_n7 14198468 | unknown | unknown | 0.0834 12514788 | 0.0626 4.4104 0.1637 11.5303
HM_n8 19636743 | unknown | unknown | 0.1080 16524144 | 0.0925 47118 0.2112 10.7533
HM_n9 3220507 unknown | unknown | 0.0148 2453373 0.0397 12.3175 0.0342 10.6243
HM_nl10 | 10108209 | unknown | unknown | 0.0408 9436284 0.0129 1.2768 0.0491 4.8593
GW_nl 18591020 | unknown | unknown | 0.0479 18084690 | 0.0854 4.5950 0.0552 2.9686
GW_n2 | 9557474 unknown | unknown | 0.0261 8879598 0.0153 1.5979 0.0356 3.7265
GW_n3 8995658 unknown | unknown | 0.0175 8009586 0.0040 0.4488 0.0794 8.8303
GW_nd4 | 35534478 | unknown | unknown | 0.0863 33071103 | 0.0365 1.0264 0.0999 2.8103
KK_nl 1647418 unknown | unknown | 0.0025 1419093 0.0022 1.3609 0.0085 5.1473
KK_n2 9714405 unknown | unknown | 0.0208 8870472 0.0028 0.2918 0.0421 4.3353
KK_n3 3838260 unknown | unknown | 0.0064 2699775 0.0634 16.5062 0.0281 7.3285
KK_n4 14377150 | unknown | unknown | 0.0281 13057785 | 0.0000 0.0024 0.0581 4.0446
NK_nl 14950149 | unknown | unknown | 0.0437 14012973 | 0.0428 2.8596 0.0622 4.1583
NK_n2 3725803 unknown | unknown | 0.0124 3487653 0.0041 1.0891 0.0099 2.6452




