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Abstract: One of the most rapidly emerging measures in infrastructure asset management is Structural
Health Monitoring (SHM), which aims at reducing uncertainty in structural performance by using
monitoring equipment. As earthen flood defence structures typically have large strength uncertainties,
such techniques can be particularly promising. However, insight in the key characteristics for
successful SHM for flood defences is lacking, which hampers the practical implementation. In this
study, we explore the benefits of pore pressure monitoring, one of the most promising SHM techniques
for earthen flood defences. The approach is based on a Bayesian pre-posterior analysis, and results
are evaluated based on the Value of Information (VoI) obtained from different monitoring strategies.
We specifically investigate the effect on long-term reinforcement decisions. The results show that,
next to the relative magnitude of reducible uncertainty, the combination of the probability of having a
useful observation and the duration of a SHM effort determine the VoI. As it is likely that increasing
loads due to climate change will result in more frequent future reinforcements, the influence of
scenarios of different rates of increase in future loads is also investigated. It was found that, in
all considered possible scenarios, monitoring yields a positive Value of Information, hence it is an
economically efficient measure for flood defence asset management both now and in the future.

Keywords: asset management; flood defences; levee; dike; structural health monitoring; Bayesian
decision model; value of information

1. Introduction

Over the past decades, the interest in infrastructure asset management has increased
significantly [1]. Asset management is defined by ISO 55000 as “the coordinated activity of an
organization to realise value from assets” [2]. Assets are here any “item, thing or entity that has
potential or actual value to an organization”. For infrastructure, these two rather wide definitions
are translated to a practical working definition that translates to finding strategies of construction,
inspection, renovation and maintenance that optimally balance performance, cost and risk over the
different life-cycle phases [3–5]. It has to be noted that, in literature, a similar definition is used for
life-cycle management (e.g., [4,6,7]).

An important development in the field of infrastructure asset management is the increasing
popularity of Structural Health Monitoring (SHM). SHM aims at using monitoring equipment (e.g.,
fiber optic sensors) to assess the development of the health of a structure, for instance by detection
of cracks. Ample examples of applications are available, such as monitoring of bridges [8], aircraft and
wind turbines [9]. In general terms, SHM aims at using in-field performance observations to better
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assess and predict the health of a structure. Decision analysis for SHM strategies typically uses Value
of Information (VoI) as a metric for the benefits of SHM [10]. The VoI indicates the expected increase of
utility due to the additional information. A Bayesian pre-posterior analysis is a popular method to
determine this utility value, for which the general approach has been outlined in [10–12], and examples
are given in [13,14] amongst others. This method is also used in this paper.

For earthen flood defences (also: dikes, embankments or levees), the performance is typically
the reliability of a structure, which is directly related to flood risk [15,16]. In the Netherlands,
target reliability levels have been derived based on various indicators of flood risk, and prescribed in
law [17,18]. The reliability of a flood defence is therefore the main performance indicator to be used in
finding optimal asset management strategies. It is found from reliability analysis of flood defences that
the most dominant uncertainty is typically the structural response of the subsurface and of the earthen
flood defence body under extreme circumstances [19].

One of the major contributions to the development of SHM for flood defences was the
FloodControl-IJkdijk research programme in the Netherlands [20]. In this program, numerous
monitoring techniques were evaluated and improved using test sites at both real and artificial flood
defences [21]. However, the focus was generally on technological development of techniques rather
than assessing their value in a decision support context. The specific focus of a SHM system depends
on the type of flood defence considered: for flood defences with relatively low reliability requirements,
the aim is typically to provide insight into anomalies and system responses during (frequently
occurring) crisis situations [22]. For flood defences with relatively high reliability requirements,
such observations will be rare, and SHM systems will be mostly aimed at reducing uncertainty in
reliability estimates [23,24].

Decision analysis on SHM for flood defences with high reliability requirements typically takes the
perspective of a single decision [25] rather than a sequence of decisions or an asset management strategy,
except for the cases considered in [23,26]. In [23], it was found for a sea dike that the Value of
Information of SHM varied with the period at which monitoring was applied, as well as the magnitude
of events that were observed during this period. Hence, to properly value SHM in asset management,
this uncertainty in the VoI has to be incorporated. Research in other applications has shown that
incorporating SHM as an integral part of asset management strategies can yield large benefits in terms
of increased performance, prolonged service life and decreased costs [13,27]. The magnitude of these
benefits depends on the characteristics of the application.

The aim of this study is to identify the characteristics of cases where SHM systems are expected to
yield the largest benefits. We use a set of case studies that have representative characteristics in terms
of uncertainty contributions of load and strength, based on previous flood risk analysis. Using these
cases, we identify key characteristics for which a pore pressure monitoring system is particularly
beneficial in terms of the VoI over the life-cycle. To obtain this, we calculate life-cycle cost for different
strategies that consist of dike reinforcements as well as monitoring campaigns of different durations.
To account for observations from monitoring campaigns, we use a Bayesian decision model that is
partly based on the model used in [26].

In Section 2, we discuss the rationale for monitoring of flood defences. In Section 3, we elaborate
the model structure as well as the case-specific assumptions for the cases that we consider. Section 4
presents the results for the cases. Sections 6 and 7 present discussion and conclusions of the study.

2. Flood Defence Monitoring from an Asset Management Perspective

About two decades ago, probabilistic methods for design and assessment of flood defences
emerged more broadly [28]. In the Netherlands, a probabilistic assessment of all primary flood
defences was conducted in the VNK2-project [29]. In this assessment, multiple failure modes were
considered, such as overtopping, revetment failure, piping erosion and inner slope instability. One of
the major findings was that, especially for geotechnical failure mechanisms such as piping and slope
instability, uncertainties in properties of the subsurface and dike body contributed significantly to the
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rather high failure probabilities that were found in many cases [29]. The practical consequence is that
massive earthen stability and piping berms or expensive structural measures such as diaphragm or
sheet pile walls are needed to ensure the failure probability requirement is met.

In most literature, uncertainty is classified as either epistemic or aleatory [30–32]. Epistemic
uncertainties are caused by lack of knowledge (or data), whereas aleatory uncertainties are caused by
intrinsic randomness. Epistemic uncertainty is therefore reducible by adding more knowledge or data,
while aleatory uncertainty is not [30]. A major part of the uncertainty in reliability analysis of piping
and slope stability is epistemic [23,25]. Hence, actions that reduce the uncertainty will lead to a more
accurate and often higher reliability estimate. It has to be noted that whether uncertainty is aleatory or
epistemic is typically a problem-specific issue: depending on the time and money available, a larger
portion of the uncertainty will be classified as epistemic and thus reducible.

There are several options for reducing ground-related uncertainties, such as soundings (e.g.,
cone penetration testing, borings), geophysical measurements, or monitoring of the pore pressure [32].
Reducing uncertainty in the structural response of parts of the structure that will remain in place
for years, such as the subsurface, will influence asset management decisions for a very long time.
However, if a longer time horizon is considered, a decision on SHM in the present will also be
influenced by uncertainties in future development, such as the potential increase in loads due to
climate change and deterioration rate of the structure. In the future, these uncertainties might become
more prevalent than the uncertainty in the present strength. Henceforth, if we consider the long-term
benefits of SHM for flood defences, we also have to account for these uncertainties.

Bayesian decision models are based upon an important distinction between the state of a system
and the belief of a decision maker about that state and were first introduced by [10]. These models
support decisions by translating sets of actions for acquiring information, and actions following from
this information, into estimates for utility. The general goal of such models is to assess the value of
certain information in a particular decision problem. A general formulation of such a model is given
in Figure 1. The decision tree presented here consists of four levels:

• The action to acquire information i ∈ I, where I is the set of all possible information
acquiring actions.

• The outcome of the action to acquire information, z ∈ Z, where Z is the set of all possible
outcomes. Note that z is used to update the belief of the decision maker about the state θ (see the
last bullet).

• The action a ∈ A following the obtained information, where A is the set of all possible actions.
Here, it should be noted that this can be formulated by a decision rule which maps different
outcomes a ∈ A to outcomes z ∈ Z. This yields a decision rule d(z) that assigns an a to each z.
Hence, we use a set of decision rules d(z) ∈ A.

• The state of nature θ ∈ Θ where Θ is the a priori set of all possible states of nature.

Figure 1. Decision tree for the choice whether to obtain information i ∈ I, modified from [10]. Levels I
and A are choices by the decision maker, whereas levels Z and Θ are governed by chance. Level A
consists of decision rules d(z) which map actions to outcomes of z. The result is a utility over a
combination of the levels u(i, z, d(z), θ).
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Based on the input values for the different levels of the decision tree, one can compute a utility
u(i, z, d(z), θ) for each combination of information and action (i and d(z)) and realization for the state
of nature θ. However, typically we do not know the outcome z of a yet to be obtained information,
and here Bayesian pre-posterior decision analysis provides a structured framework to evaluate
combinations of i ∈ I and d(z) ∈ D(z) and obtain the optimal combination based on the a priori
information using [11]:

u(i, d(z)) = max
i∈I,d(z)∈D(z)

EΘ[Ez|Θ[u(i, z, d(z), Θ)]]), (1)

where D(z) is the set of possible decision rules and Θ is the prior distribution of state of nature.
By comparing this utility to the utility without information i:

u(d(z)) = max
d(z)∈D(z)

EΘ[u(d(z), Θ)]), (2)

one can obtain the Value of Information of the action to acquire information i:

VoI = u(i, d(z))− u(d(z)). (3)

Various studies on inspection and Structural Health Monitoring decision trees such as the one in
Figure 1 have been extended with additional levels (see, e.g., [11,33]). While decision trees are insightful,
they have as a disadvantage that they grow exponentially when multiple sequential decisions are
considered [10]. As an analysis of an asset management strategy for 100–200 years consists of multiple
sequential and dependent decisions (i.e., a decision in t + 1 should account for findings at t), simply
repeating a decision tree is not practical for this type of problem. Sequential decision problems can be
solved by defining policies or strategies, which are sets of decision rules that indicate what action has
to be taken under which circumstances at which time step t [11,26,34]. An example is an inspection
strategy where an inspection is carried out at interval δt, possibly followed by a repair given that some
parameter X < x. The disadvantage of using policies is that it might not yield an optimal solution,
although it was found by [35] that the solution can be close to that obtained with other methods that
are capable of finding an optimal solution, provided that the heuristics are well formulated. Such a
heuristic approach can be combined with any type of time-dependent (Bayesian) decision model [34].
In this study, we use a Bayesian decision model based on First Order Reliability Method calculations
for the flood defence reliability in each year. This approach will be further outlined in Section 3.

As our main aim is to examine pore pressure monitoring for various types of flood defences,
there is a significant number of parameters that can be varied in order to obtain a policy. Of specific
importance is that the outcome of a monitoring action is uncertain as the information obtained depends
on the extremity of the observed water levels. Typically, more extreme observations lead to more
information [23]. Thus, the VoI of a single monitoring action is also uncertain, and dependent on the
duration of the action and observed hydraulic loads—or in general terms: even if an action to acquire
information i is carried out at year t, it depends on the observed water levels whether observation z
can be used to update the belief. In addition, there is considerable uncertainty in future developments,
particularly the impact of climate change. Current sea level rise scenarios for the Netherlands range
between +0.5 and +3.0 m for the end of the century [36]. If sea level rise is much higher than anticipated,
this will dictate the investment pattern for future reinforcements. In such a case, while SHM outcomes
might be favourable, the service life extension will be negligible (i.e., a reinforcement is needed in
any case), meaning that the VoI of pore pressure monitoring might be reduced for high rates of sea
level rise. To obtain insights in the VoI, given different rates of future sea level rise, we analyse the VoI
conditional on different rates.



Infrastructures 2019, 4, 56 5 of 20

3. Methodology

In this paper, a pre-posterior Bayesian decision model is used to derive the cost and VoI of
different monitoring strategies for different possible posterior states. These states are a description of
the system, should all epistemic uncertainties be reduced. Strategies are defined as sets of heuristic
policy rules, and contain all activities taken during the considered time period. Figure 2 gives an
overview of the methodology, including the subsections in which each part is discussed in more detail.
The figure consists of two main parts: the top part concerns how input is derived for runs of the
Bayesian decision model. An influence diagram that represents the Bayesian decision model is shown
in the bottom part. For most blocks in the diagram, parameters are given that relate to the parameters
in Figure 1. It has to be noted that, in this model, observations z are translated to posterior failure
probabilities (P(Z < 0|Θ, z), while, in Figure 1, z was directly translated to actions through decision
rule d(z). Several strategies are evaluated using a set of sampled possible posterior states that are
consistent with the prior beliefs. As the failure model is important for all other sections, its general
set-up is discussed first in Section 3.1. Next, Section 3.2 describes how prior distributions Θ are
translated to samples of posterior states of the system θ and observations z; this concerns the left part
of the figure (left of the dotted line). Section 3.3 deals with the right part of the figure, most notably
how heuristic decision rules for monitoring and reinforcement (i and d(Pf)) are used to update Pf,state
and Pf,bel. In Section 3.4, how the utility for each run can be translated to estimates for the cost and
Value of Information is discussed.

Figure 2. Overview of the methodology. The top part shows in general how the input values are related
to each other. The bottom part shows an influence diagram for the Bayesian decision model that is
run for each sampled state. Dashed arrows indicate how general input is transferred to the model
per sample. The dotted line in the middle indicates in which section (Section 3.2 or Section 3.3) the
various parts are discussed. Parameters in blocks relate to Figure 1.
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3.1. Time-Dependent Failure Probability Model

While in the decision tree in Figure 1 the state of the observed variable could be translated to
utility directly, in our case, the utility depends on the failure probability of the flood defence. Hence,
we have to translate observations (z in the decision tree) to a failure probability. In the decision model,
we assess the performance of the flood defence by means of a fragility curve [37]. A fragility curve
denotes the probability of failure given a realization of some parameter; for flood defences, typically
the water level h is used, so Pf|h. For the simple limit state function Z = hc − h, with hc the critical
water level (at which failure occurs) (in m +ref) and h the water level [in m +ref] and Z < 0 denotes
failure, it holds that:

Pf = P(Z < 0) = P(h > hc) =
∫

h
P(h > hc|h) · fh(h)dh =

∫
h

Fhc(h) · fh(h)dh, (4)

where Pf is the annual failure probability for the flood defence section considered. We assume that the
uncertainty in h is fully aleatory and has irreducible meaning that no measure is available to reduce
this uncertainty.

Over time, both hc and h will change due to, respectively, deterioration (e.g., settlement) and
climate change induced increase in extreme water levels. The time-dependent limit state function is
then described by:

Z(t) = [hc(t)− ∆hc(t)]− [h + ∆h(t)], (5)

where ∆hc(t) and ∆h(t) denote the deterioration, respectively, water level increase in meters. In our
decision problem, we consider the Value of Information from pore pressure monitoring. Pore pressure
monitoring would reduce a part of the uncertainty in hc(t). Hence, within the constraints of our
decision problem, we consider all other uncertainties to be irreducible. It has to be noted that, in [26],
uncertainty reduction in ∆hc(t) and ∆h(t) was also considered. For ∆hc(t), this was found to have
a very limited effect, whereas ∆h(t) is better dealt with using Value of Information conditional on
different scenarios for ∆h(t). Both are considered to be deterministic in evaluations of this Bayesian
decision model in Section 5.1; in Section 5.2, we will consider multiple scenarios for ∆h(t).

While pore pressure monitoring can reduce a part of the uncertainty in hc(t), there is also an
irreducible part. It should be noted that this part is irreducible by pore pressure monitoring, but there
might be other methods to reduce this uncertainty. However, we do not consider these in our
decision problem. We can describe the uncertainty in hc as follows:

hc ∼N(µhc , σirr), (6)

µhc ∼N(µ, σ), (7)

where µhc denotes the mean of a possible state of the flood defence. σirr denotes the part of the
uncertainty that is irreducible in the decision problem. How this definition is translated into values for
Pf,state and Pf,bel is discussed in the following sections.

3.2. Environment

3.2.1. General Input

The environment describes the state space of the flood defence that consists of all sampled
posterior states (θ ∈ Θ in the decision tree). Equation (5) shows that there are four random variables in
the Limit State Function that determine this state. In our analysis, we only consider observations of
parameter hc. Based on our prior belief (Θhc ), there are many possible posterior states for parameter hc

in Figure 1), which is reflected by the fact that µhc is normally distributed with mean µ and standard
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deviation σ (see Equation (7)). This distribution of µhc reflects the epistemic uncertainty of our state
space [10]. Thus, it holds that:

Θhc ∼ N(N(µ, σ), σirr), (8)

θhc,j ∼ N(µj, σirr) with j = 1, 2, . . . , n, (9)

where n is the number of samples drawn from µhc (Equation (7)) and θhc,j is the jth sample of a possible
posterior state.

For the variables governed by a temporal process (∆hc(t) and ∆h(t)), we use deterministic
variables for the rate. In reality, both variables will contain at least some uncertainty, but it was shown
by [26] that reducing uncertainty in ∆hc(t) has little influence on decisions. For ∆h(t), some recent
scenarios show that sea level rise in 2100 might range between 0.5 and 3 m [36], although this has
been nuanced by [38]. In the pre-posterior analysis, we do not include this uncertainty such that the
effect of monitoring of hc is more clear from the results. Thus, the prior distribution is a deterministic
distribution with a certain annual rate ∆h(t). To assess the effect of different future rates of ∆h(t), we
analyse the Value of Information conditional upon ∆h(t). Thus, for each possible value, a separate
pre-posterior analysis will be carried out. This will be discussed further in Section 5.2.

3.2.2. Decision Model

For every time step, Equation (5) is re-evaluated in order to account for the temporally
changing variables. Thus, for every time step, a failure probability Pf,state = P(Z < 0|θ) is computed.
A reinforcement decision might incrementally change the belief of hc for the next time step. For
strategies where monitoring equipment is installed, an observation of hc is sampled from the state.

3.3. Decision-Making

3.3.1. General Input

Decisions are defined using strategies consisting of heuristic decision rules Sj. A heuristic rule
typically has the form: if some_variable is larger than some_threshold, we take some_action. The model
contains decision rules for monitoring and reinforcement. We consider three different sets of decision
rules for monitoring (i ∈ I in Figure 1):

• Strategy a: no monitoring.
• Strategy b: monitoring is started if the failure probability Pf,bel > 0.5 · Preq, where Preq is the

reliability requirement. Monitoring is stopped after 25 years.
• Strategy c: continuous monitoring starting at t = 1.

For reinforcement decisions, the same rules are used in all calculations: if Pf,bel(t) < Preq, a
flood defence is reinforced such that Pf,bel(t + tdesign) = Preq. Here, tdesign is the design period of
the flood defence. In terms of the decision tree in Figure 1, this means that we have only one set of
d(Pf) ∈ A, which is identical for all t.

3.3.2. Decision Model

In order to obtain pre-posterior estimates for the cost of each strategy, we evaluate a set of possible
posterior states j. For each sampled posterior state j (see Equation (9)), the belief estimate of the
reliability (Pf,bel(t) = P(Z < 0|Θ, z(t)) in the decision model is recalculated for every time step in
order to account for the temporally changing variables and reinforcement decisions. Additionally,
observations from monitoring can result in an updated belief using the observations from monitoring
up to time t, z(t). The initial belief of hc is defined as: Θhc ∼ N(N(µ, σ), σirr).

If monitoring equipment is present, an observation of the state might be made, depending on the
extremity of the observed circumstances, while, in [23], it was found that more extreme circumstances
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gradually increase the VoI; here, we use a discrete threshold value to distinguish between years with
and without useful observation. Whether an observation at t = i is useful is determined by the
following condition:

P(hi > H) < Pthresh, (10)

where P(hi > H) is the annual exceedance probability of a randomly sampled water level hi, and Pthresh
is a predefined threshold value that has to be exceeded for an observation to be useful for updating
the belief of hc. Analogous to a Probability of Detection for inspections, this can be interpreted as
a Probability of Observation [11,33]. As both prior and posterior of hc are normally distributed,
the conjugate distributions can be used to obtain the posterior distribution at time t, hc|z(t) [10]:

hc|z(t) ∼ N(
nz̄

n′ + n
,

√
σ2

irr
n′ + n

+ σ2
irr), (11)

where the prior weight is given by n′ = σ2
irr/σ′ with σ′ =

√
σ2 − σ2

irr, n is the number of observations
obtained until t, and z̄ = ∑(z(t))/n is the mean of the observations up to t. The observations are
random samples from the considered state θhc,j (see Equation (9)). The effect of this approach is that, for
longer periods of monitoring, the expected number of useful observations will increase. In addition,
for a short period of monitoring, the number of useful observations can vary, and there might not be
any information obtained at all.

A reinforcement is carried out if the flood defence no longer meets the required minimum annual
failure probability requirement Preq. In such a case, the mean µ of hc is iteratively increased such that it
holds for the belief of hc that:

P(Z(t + tdesign) < 0) > Preq, (12)

where tdesign is the design period in years. In case of a reinforcement, the coefficient of variation of the
belief of hc is assumed to be the same before and after reinforcement.

3.4. Evaluation

For each evaluation of a strategy for a sampled possible state θ, three discounted cost components
are computed for the evaluated period of n years: the Expected Annual Damage (EAD) due to flooding
or risk costs (CEAD), the cost of monitoring equipment (Cm) and cost of dike reinforcement (Cr).
The overall discounted cost of a strategy for a sample θ ∈ Θ over a period of n years can be written as:

cs|θ = CEAD + Cm + Cr =
n

∑
t

cEAD(t) + cm(t) + cr(t)
(1 + r)t , (13)

where cEAD(t) is the cost component of the EAD at time t and cm(t) and cr(t) are the costs for
monitoring and reinforcement at time t. Note that these are equal to 0 if no reinforcement or monitoring
is done at a specific time step t. r is the discount rate, for which a value of 3% is prescribed in
the Netherlands.

In this paper, we study the Value of Information (VoI) of different asset management strategies
based on their performance over a time span of 200 years. If we consider a strategy sj where information
is acquired, the VoI can be calculated as the difference in expected costs based on all samples θ with
the expected costs of baseline strategy a (E(ca)):

VoI(sj) = E(ca)− E(csj) with: (14)

E(csj) =
∑N csj|θ

N
, (15)

where VoI(sj) is the Value of Information for strategy sj and N is the number of samples of θ that
are considered.
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If a VoI is conditional upon a value for an observed parameter (in our case hc), it is defined as a
conditional Value of Information (cVoI) or option value [10,39]. This can be used to assess the VoI
given the possible outcomes of monitoring (e.g., the VoI given θ or z). To assess the influence of future
uncertainty on the Value of Information, we use a slightly modified formulation of this concept in
Section 5.2. Here, we do not formulate the VoI conditional on the monitored parameter itself (hc),
but rather on a different model parameter, namely the value for the change in water level ∆h = hj.
Thus, the cVoI for a strategy sj can be obtained using the following equation:

cVoI(sj|∆h = hj) = E(cA(∆h = hj))− E(csj(∆h = hj)). (16)

It has to be noted that this cVoI is formulated differently than the conditional Value of Information
concept given by [10].

4. Case Study

In order to determine the VoI of pore pressure monitoring, we consider a set of parameterized
cases, based on values obtained in actual probabilistic assessments such as VNK2 [29]. Each case is
obtained by modifying input distributions such that the initial reliability index β is around 4 (with
β = −Φ−1(Pf)). We parameterize in two ways: first, we consider different sets of the α influence
coefficients in the design point obtained from FORM calculations. A high α influence coefficient
indicates that the uncertainty in a parameter has a major influence on the obtained reliability index
β [40]. From probabilistic calculations throughout the Netherlands, it is found that, for instance, for
the failure mode piping erosion, the α2 of the strength can vary between 0.1 and 0.9. Additionally, we
vary the extent to which the uncertainty in the strength is epistemic and reducible. The highest VoI is
expected to be encountered for cases with a large α of the strength, of which a major part is epistemic.

Additionally, we consider two different threshold values at which an observation can be made
(Pthresh). The default threshold represents a flood defence at a lowland river with larger floodplains
bounded by summer dikes. Hence, one would expect a relatively high threshold (Pthresh = 1/10 year−1)
in Equation (10), as water has to overflow the summer dike before obtaining a measurement. We also
consider a lower threshold which represents a location without summer dikes in a delta region
relatively close to the sea (Pthresh = 1/2 year−1).

For the costs of reinforcement, the relation for dike ring 16 given in [41] is used, with which the
exponentially increasing costs of an incremental increase in hc can be obtained. The costs for installing
monitoring equipment are assumed to be €200,000. All other input values as well as prior design point
values are shown in Table 1.

For each considered case, 250 different posterior states are sampled from the state space. In some
cases, samples are drawn from the state space that have a very low reliability after 50 years (β < 2)
and have a probability smaller than 1/N, where N is the sample set. Such samples result in extremely
high risk costs that dominate the Total Cost computation. Therefore, all samples where β(t = 50) < 2
are removed from the state space; other approaches to cope with this will be discussed in Section 6.
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Table 1. All input data for cases A, B, C and D. The top part shows all input distributions, the middle
part shows the initial design point values for the influence of the strength uncertainty and epistemic
part of the strength uncertainty, as well as the prior reliability index βprior. The bottom part shows the
threshold Pthresh for the normal case and a lower threshold, safety standard Pnorm, planning period
tplan and discount rate r for each case.

Name Unit Distribution Case

Type Values A B C D

Input distributions

µhc m +ref Normal
µ 7.56 6.12 5.76 5.88
σ 1.03 0.58 0.42 0.50

σirr 0.2 0.2 0.2 0.2

h m +ref Gumbel a 3.2
b 0.2

∆h mm/yr Determ. 8

∆hc mm/yr Determ. 5

Initial design point
βprior - 3.96 4.00 4.01 4.03

α2
hc

- 0.74 0.57 0.34 0.41
α2

µhc
- 0.69 0.51 0.28 0.39

Other input

Pthresh -/yr
Default: 0.1
Lower: 0.5

Pnorm -/yr 1/3000

tplan yr 50

r %/yr 3

5. Results

5.1. Benefits of Monitoring for a Deterministic Future

Our first analysis concerns the benefits of monitoring without uncertainty in future development
(temporal changes in load and resistance are deterministic). In order to better understand the way
individual samples of posterior states θ are dealt with, we examine the influence of monitoring
on the reliability β in time for two sampled posterior states for Case B. This is shown in Figure 3.
Figure 3a shows a relatively unfavourable sample of µhc , which means that the posterior reliability
after obtaining observations is lower than the prior estimate. Figure 3b shows a favourable sample;
here, the posterior reliability is higher than the prior. For each strategy, two computations of β are
shown: one for the sampled posterior state βstate, this indicates the reliability should all epistemic
knowledge be reduced. A second line is shown for the development of the decision makers’ belief
over time βbelief. The left pane shows that, in strategies with monitoring (b and c), reinforcement is
done earlier than without monitoring, provided that observations are obtained which confirm the
unfavourable µhc . Hence, life-cycle costs will be higher with monitoring, but risk costs will be lower.
In Figure 3b, the sampled µhc is much more favourable and, for strategy c, reinforcement is postponed
by about 85 years. For strategy b, the reinforcement is not postponed, as there is no useful observation
in the first 20 years of monitoring (indicated by the line marked with circles). However, in the entire
sample set, there are realizations with a similar θhc , where there are observations and the reinforcement
is also postponed for strategy b. The ratio between cases with and without postponed investment
depends on the value of Pthresh.
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(a) Unfavourable sample (b) Favourable sample

Figure 3. Two calculations of β in time for samples xi ∈ xn for Case B. The left pane shows an
unfavourable sample (βstate > βbelief), the right pane a favourable sample. Circled markers on the line
for strategy b indicate presence of monitoring equipment. Dotted vertical lines indicate a reinforcement.

This is shown on a more general level by Figure 4. Here, the VoI for strategies b and c compared to
reference strategy a is represented by a (Gaussian) kernel density estimation (KDE). It can be observed
that for strategy b (in red) there are two peaks in density, whereas for strategy c there is only one peak.
As the first reinforcement is after about 50 years, for strategy c, the probability of not having any
useful observation before that time is quite small (about 1/200). As strategy b only monitors for a
limited amount of time, this probability is much larger (about 30%), thus two modes are found in the
KDE estimation for each case. The left mode corresponds to cases where the first reinforcement is
not postponed, either because observations have not been obtained, or because the posterior strength is
still insufficient. The right mode corresponds to cases where it is postponed. This difference illustrates
how important it is to include the uncertainty on whether an observation will be obtained during the
envisaged monitoring period. The influence on subsequent reinforcements is not clearly visible from
the KDE estimates, as the life-cycle costs are significantly lower due to discounting.
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Figure 4. Value of Information (VoI) for cases A to D. Thick lines represent a Gaussian Kernel Density
Estimation. Bars denote the histograms of the underlying samples. Dotted lines represent computed
expected Value of Information for both strategies b and c, for which values are shown in the left top of
each figure.

Theoretically, it is expected that E(VoI) decreases if the relative contribution of reducible
uncertainty in µhc decreases. In Figure 4, we can see that this is indeed the case: cases with a
lower influence coefficient of reducible uncertainty in the strength αµhc

have a lower E(VoI). Figure 5
shows this more clearly, also for an additional case where αµhc

is even smaller. From this figure, we see
that the E(VoI) clearly increases with larger influence of epistemic uncertainty.

Figure 5. Relation between αµhc
and E(VoI).

In relative terms, it is important to note that the Total Cost for all cases is on average in the order
of 50–60 M€, where it is low for most samples, but the average is strongly influenced by cases where
the flood defence strength is more unfavourable than expected, and the risk costs are above the a
priori estimate. It is found that on average the Total Cost for strategy b is between 40% and 70% of the
reference strategy a, and for strategy b between 25% and 60%.
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It was shown before that monitoring benefits strongly depend on the duration of monitoring and
the probability of having a useful measurement before the next major investment decision. Hence, we
compare case B with an identical case where it holds that Pthresh = 1/2 year−1 rather than the
default value Pthresh = 1/10 year−1. We would expect the left density peak to be significantly smaller
for strategy b in case B with a lowered threshold. Say that there are 10 years before the planned
reinforcement, the probability of having no useful observation for a lower threshold compared to the
default case B is a factor

P(B)
P(B low threshold)

=
(1− Pthresh)

t

(1− Pthresh,lower)t =
(1− 0.1)10

(1− 0.5)10 ≈ 357 (17)

smaller, where P(B) is the probability of having no observation, for case B, and t is the period up
to the next major decision. Figure 6 shows KDE-estimates for both cases. Here, it can be observed
that, for case B with a lower threshold, there are no longer two peaks in density for strategy b (in
red): KDE-estimates are very much alike for both strategies b and c. This illustrates the importance of
including the relation between monitoring duration and expected (number of) observations.

Figure 6. VOI for case B with default and lower threshold. Thick lines represent a Gaussian kernel
Density Estimation and bars the histograms of underlying data. For B, it holds that Pthresh =

1/10 year−1 for B low threshold Pthresh = 1/2 year−1.

5.2. The Effect of Future Uncertainty on the Value of Information of Monitoring

In the previous section, we assumed deterministic changes of load and resistance. However,
in reality, especially the future development of the load is very uncertain, amongst others due to sea
level rise (SLR) and changing hydrological conditions. Contributing factors such as Antarctic ice sheet
mass loss might or might not result in an increasing acceleration of global sea level rise, for which
high-end estimates are in the order of 3 m by the end of the 21st century [36,42]. Recent publications
have argued that these estimates are likely too high but that there are many remaining uncertainties
towards the precise contribution of ice sheet mass loss to sea level rise [38]. Studies on sea level rise
observations have found some indication of acceleration from satellite observations [43], whereas others
have not found this from tidal gauges [44,45]. For river discharges, the effects of a changing climate
vary per region, but there are several examples of catchments where discharges, and thus water levels,
are expected to increase [46]. Given the large uncertainty that exists, it is of interest to identify actions
that are beneficial in a wide variety of future scenarios.
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In the context of this paper, the exact rate of water level increase is not directly of interest to the
question whether SHM should be used to reduce epistemic uncertainties, but rather the question of
whether the Value of Information is sensitive to the range of possible future scenarios. Hence, in this
section, we explore whether an investment, in efforts to reduce epistemic uncertainties, is robust in the
sense that the VoI is positive for the entire range of possible rates of water level increase.

In this section, we explore this for Case B from the preceding section, which has a commonly
encountered value for influence coefficient αhc . We consider a range of scenarios with increases in
water levels ∆h(t) between 0 and 3 cm per year, in line with the ranges given by [36,47]. We assume
that ∆h(t) changes from the original value to the scenario rate at t = 50 years; this is shown in Figure 7.

Figure 7. Cumulative water level increase ∆h(t) in centimeters per year for all considered scenarios.

Figure 8a shows the Conditional VoI given different rates of ∆h(t). Here, we see that the VoI
increases for both strategies b and c for higher rates of water level increase. In Figure 8b, the ratio of
the Total Costs with and without monitoring is shown for the different scenarios, including 5/95%
upper and lower bounds. This ratio is quite stable, as aside from the increase in VoI, also the total
investment costs increase significantly as there are more reinforcements needed to maintain the
reliability requirement. In addition, the overall uncertainty reduces slightly for more extreme rates of
water level increase. This is explained by the fact that the two modes observed in the KDE estimates
disappear for high rates of water level increase (see Figure A1). This is caused by the fact that the total
cost is not completely dominated by the first reinforcement, but also by the number of consecutive
reinforcements which increases for high rates of water level increase. Hence, the KDE estimates become
smoother for more extreme changes.
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(a) Conditional Value of Information (b) Relative reduction of Total Cost (c(sj)).

Figure 8. Conditional and Relative VoI for different rates of water level increase after t = 50 for Case B.
Relative VoI is the Conditional VoI normalized by the Total Cost.

6. Discussion

Probabilistic calculations of flood defence reliability often show that strength uncertainties have
a major influence on flood defence reliability estimates. In practice, reduction of such uncertainties
often results in a major change in such estimate [23,24,48], leading towards different reinforcement and
maintenance decisions. The general aim of this paper is to show in what circumstances reduction of
epistemic strength uncertainty improves asset management decisions for flood defences, focusing on
long-term reinforcement investments. We paid specific attention to the fact that often monitoring
results depend on observed loads.

There are various ways in which the influence of epistemic uncertainty on reliability estimates
can be reduced, most notably the inclusion of survival observations in general due to correlation
of resistance parameters in time [49], survival of past extreme events [48,50] or actively reducing
uncertainties by monitoring or site investigation. The latter has been investigated in this paper,
and neither of the former two are considered in the computations. This means that all failure
probabilities that are computed are not conditional on previous years. In [49], it was shown that,
especially for lower reliability indices and high temporal correlation of the resistance, conditional
reliability estimates were significantly higher. Therefore, in this paper, we might slightly overestimate
the VoI of Case A. For other cases, this will be less of an issue as the difference between conditional
and unconditional reliability estimates is much smaller.

In this paper, we have defined the dike strength using general fragility curves rather than a
specific failure mechanism. The reason is that the aim of this paper is to give insight in the relative
influence of reducible and irreducible uncertainty on monitoring benefits, rather than elaborate this
for a specific mechanism. Pore pressure monitoring is used as illustration since this is one of the
most commonly applied monitoring techniques for earthen flood defences. The general principle is
valid for any monitoring method for which the obtained information is dependent on observed loads.
For the relative influence of uncertainties, we derived a set of cases based on existing flood defence
reliability assessments. In principle, it is possible to do the analysis for specific cases with specific
failure mechanisms and other monitoring methods, as was already illustrated in [23]. This would also
allow for better accounting for measurement uncertainty.

Often, VoI analysis is based upon investment cost reduction only, whereas here we have also
included the risk costs. This is particularly important as risk costs increase exponentially with an
increase in failure probability when the resistance is lower than expected. Hence, monitoring has
two potential benefits: reducing risk for unfavourable posterior outcomes and reducing investment
costs for favourable posterior outcomes. In line with what is experienced in practice, in most of the
cases, the posterior after monitoring is favourable. A point of attention towards the approach used
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is that some samples contain posterior states that have very high failure probabilities. In such cases,
the risk exponentially increases, resulting in single samples that have a very large influence on the
VoI estimates. As these specific samples are often unrealistic, all samples for which β(t = 50) < 2
have been excluded. Potentially, more elegant solutions to this are including survival observations or
conditional failure probabilities, which will likely result in the same effect.

From the results with deterministic temporal changes, we see that there is a strong relation
between the influence coefficient of reducible uncertainty in critical height αµhc

and the VoI that is
obtained (Figure 4), which is in line with the original hypothesis. In addition, the Pthresh at which
valuable observations are obtained has a significant influence on VoI outcomes (Figure 6). Design
loads for flood defences typically have very small probabilities of exceedance, meaning that deriving
meaningful information from observed loads often requires that monitoring equipment is present
during a relatively rare event. Hence, the fact that the VoI increases with observations of more extreme
events has to be included in a decision analysis for a monitoring campaign. This can then be used to
derive which duration of a monitoring campaign yields the highest Value of Information.

The final analysis presented deals with the effect of large uncertainty in future load conditions.
In such cases, the investment required to deal with this uncertainty in design can be large. Hence, it
is of interest to identify investment options that are beneficial in a wide variety of scenarios. In the
analysis, it was shown that the conditional VoI can be a useful measure for this. A particular advantage
is that it gives more insightful information than an expected VoI, which is of specific interest if there
are other large uncertainties aside from the epistemic uncertainty that is reduced. It was shown that
both the considered monitoring strategies have a positive VoI and yield a significant reduction of Total
Cost in all considered future scenarios. Thus, investments in reducing epistemic uncertainties are
concrete and economically efficient options for preparing for potentially large future changes in load
conditions.

7. Conclusions

This paper has explored the benefits of Structural Health Monitoring for flood defences for
long-term investments, specifically types of monitoring where the amount of information obtained
depends on observed loads. A Bayesian pre-posterior decision model and the concept of Value
of Information have been used to quantify the benefits of different monitoring strategies. It has
been shown that the Value of Information is directly related to the relative influence of epistemic
uncertainties, which can be easily obtained from probabilistic computations. In many cases, a
monitoring campaign of some duration will be needed to reduce epistemic uncertainty. This has
been investigated by comparing different threshold values at which information is obtained. The value
of this threshold was found to have a major influence on monitoring outcomes and this aspect should
therefore be considered in determining the duration of monitoring campaigns.

Many investments in flood defences have to consider large uncertainties in future loads due
to climate change uncertainty. Therefore, the Value of Information of different scenarios for future
load increase on a flood defence has also been considered. The Value of Information conditional on
different rates of increase was found to be positive for all investigated rates. As Total Costs increase for
higher rates of change, the relative cost reduction was similar over all different rates. Thus, Structural
Health Monitoring aimed at reducing epistemic uncertainty is an economically efficient investment in
preparation of potentially large future changes.
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Appendix A. Kernel Density Estimates for Six Cases of Water Level Increase

Figure A1. Gaussian Kernel Density Estimates for six rates of water level increase after t = 50. Bar
plots indicate histograms of strategies b (in red) and c (in green).

References

1. Frangopol, D.M.; Soliman, M. Life-cycle of structural systems: recent achievements and future directions.
Struct. Infrastruct. Eng. 2015, 5, 1–20.

2. ISO. NEN-ISO 55000: Asset Management—Overview, Principles and Terminology (ISO55000:2014 (Corr. 2014-03),
IDT); Technical Report; Nederlands Normalisatie-instituut: Delft, The Netherlands, 2014.

3. Institute of Asset Management. Asset Management—An Anatomy; Technical Report; Institute for Asset
Management: Bristol, UK, 2014.

4. Klerk, W.; den Heijer, F. A framework for life-cycle management of public infrastructure. In Life-Cycle of
Engineering Systems: Emphasis on Sustainable Civil Infrastructure, Proceedings of the Fifth International Symposium
on Life-Cycle Civil Engineering (IALCCE 2016), Delft, the Netherlands, 16–19 October 2016; lCRC Press/Taylor &
Francis Group: Boca Raton, FL, USA, 2016.

5. Cagle, R.F. Infrastructure Asset Management: An Emerging Direction; AACE International Transactions:
Morgantown, WV, USA, 2003; pp. PM21–PM26.



Infrastructures 2019, 4, 56 18 of 20

6. Frangopol, D.M.; Kong, J.S.; Gharaibeh, E.S. Reliability-Based Life-Cycle Management of Highway Bridges.
J. Comput. Civil Eng. 2001, 15, 27–34, doi:10.1061/(ASCE)0887-3801(2001)15:1(27). [CrossRef]

7. Pandey, M.D.; Yuan, X.X.; van Noortwijk, J.M. The influence of temporal uncertainty of
deterioration on life-cycle management of structures. Struct. Infrastruct. Eng. 2009, 5, 145–156,
doi:10.1080/15732470601012154. [CrossRef]

8. Ko, J.M.; Ni, Y.Q. Technology developments in structural health monitoring of large-scale bridges. Eng. Struct.
2005, 27, 1715–1725, doi:10.1016/j.engstruct.2005.02.021. [CrossRef]

9. Thöns, S. Monitoring Based Condition Assessment of Offshore Wind Turbine Support Structures.
Ph.D. Thesis, ETH Zurich, Zürich, Switzerland, 2012,

10. Raiffa, H.; Schlaifer, R. Applied Statistical Decision Theory; Cambridge University Press: Cambridge, MA,
USA, 1961.

11. Thöns, S. On the Value of Monitoring Information for the Structural Integrity and Risk Management.
Comput.-Aided Civil Infrastruct. Eng. 2018, 33, 79–94. doi:10.1111/mice.12332. [CrossRef]

12. Thöns, S. Quantifying the Value of Structural health Information for Decision Support:
Guide for Scientists. Technical Report, COST Action TU1402. 2019. Available online:
https://www.cost-tu1402.eu/-/media/sites/cost-tu1402/documents/deliverables/guidelines/tu1402-guide
-for-scientists-v3.ashx (accessed on 29 August 2019)

13. Straub, D. Value of information analysis with structural reliability methods. Struct. Saf. 2014, 49, 75–85.
doi:10.1016/j.strusafe.2013.08.006. [CrossRef]

14. Goulet, J.A.; Der Kiureghian, A.; Li, B. Pre-posterior optimization of sequence of measurement and
intervention actions under structural reliability constraint. Struct. Saf. 2015, 52, 1–9. [CrossRef]

15. CIRIA. International Levee Handbook; lCIRIA: London, UK, 2013.
16. Voortman, H.; Vrijling, J. Optimal design of flood defence systems in a changing climate. Heron

2004, 49, 75–93.
17. Kok, M.; Jongejan, R.; Nieuwjaar, M.; Tanczos, I. Expertise Netwerk Waterveiligheid (ENW). In Fundamentals

of Flood Protection; Ministerie van Infrastructuur en Milieu: The Hague, The Netherlands, 2017.
18. Jonkman, S.; Voortman, H.; Klerk, W.; van Vuren, S. Developments in the management of flood

defences and hydraulic infrastructure in the Netherlands. Struct. Infrastruct. Eng. 2018, 14, 895–910.
doi:10.1080/15732479.2018.1441317. [CrossRef]

19. Kanning, W. The Weakest Link: Spatial Variability in the Piping Failure Mechanism of Dikes. Ph.D. Thesis,
Delft University of Technology, Delft, The Netherlands, 2012.

20. De Vries, G.; Koelewijn, A.; Hopman, V. IJkdijk Full Scale Underseepage Erosion (Piping) Test: Evaluation
of Innovative Sensor Technology. In Proceedings of the International Conference on Scour and Erosion,
lSan Francisco, CA, USA, 7–10 November 2010. doi:10.1061/41147(392)63.

21. Smart Levee Guideline. Available online: http://www.dijkmonitoring.nl/en/ (accessed on 29 August 2019)
22. Pyayt, A.L.; Kozionov, A.P.; Mokhov, I.I.; Lang, B.; Meijer, R.J.; Krzhizhanovskaya, V.V.;

Sloot, P.M. Time-frequency methods for structural health monitoring. Sensors 2014, 14, 5147–5173,
doi:10.3390/s140305147. [CrossRef]

23. Klerk, W.; Kanning, W.; van der Meer, M.; Nieuwenhuis, J. Structural health monitoring in life-cycle
management of dikes: A case study in the north of the Netherlands. In Life-Cycle of Engineering Systems:
Emphasis on Sustainable Civil Infrastructure, Proceedings of the Fifth International Symposium on Life-Cycle Civil
Engineering (IALCCE 2016), Delft, the Netherlands, 16–19 October 2016; lCRC Press/Taylor & Francis Group:
Boca Raton, FL, USA, 2016.

24. Schweckendiek, T.; Vrouwenvelder, A. Reliability updating and decision analysis for head monitoring of
levees. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2013, 7, 110–121. [CrossRef]

25. Schweckendiek, T. On Reducing Piping Uncertainties: A Bayesian Decision
Approach. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2014,
doi:10.4233/uuid:f9be2f7e-7009-4c73-afe5-8b4bb16e956f.

26. Klerk, W.; den Heijer, F.; Schweckendiek, T. Value of information in life-cycle management of flood defences.
In Safety and Reliability of Complex Engineered Systems, Proceedings of ESREL 2015, Zurich, Switzerland; CRC
Press/Taylor & Francis Group: Boca Raton, FL, USA, 2015; pp. 931–938.

27. Biondini, F.; Frangopol, D.M. Life-Cycle Performance of Deteriorating Structural Systems under Uncertainty:
Review. J. Struct. Eng. 2016, 142, F4016001, doi:10.1061/(ASCE)ST.1943-541X.0001544. [CrossRef]

http://dx.doi.org/10.1061/(ASCE)0887-3801(2001)15:1(27)
http://dx.doi.org/10.1080/15732470601012154
http://dx.doi.org/10.1016/j.engstruct.2005.02.021
http://dx.doi.org/10.1111/mice.12332
http://dx.doi.org/10.1016/j.strusafe.2013.08.006
http://dx.doi.org/10.1016/j.strusafe.2014.08.001
http://dx.doi.org/10.1080/15732479.2018.1441317
http://dx.doi.org/10.3390/s140305147
http://dx.doi.org/10.1080/17499518.2013.791034
http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0001544


Infrastructures 2019, 4, 56 19 of 20

28. Vrijling, J. Probabilistic design of water defense systems in the Netherlands. Reliab. Eng. Syst. Saf.
2001, 74, 337–344, doi:10.1016/S0951-8320(01)00082-5. [CrossRef]

29. Jongejan, R.B.; Maaskant, B. Quantifying flood risks in the Netherlands. Risk Anal. Off. Publ. Soc. Risk Anal.
2015, 35, 252–264, doi:10.1111/risa.12285. [CrossRef] [PubMed]

30. Der Kiureghian, A.; Ditlevsen, O. Aleatory or epistemic? Does it matter? Struct. Saf. 2009, 31, 105–112.
[CrossRef]

31. Van Gelder, P. Statistical Methods for the Risk-Based Design of Civil Structures. Ph.D. Thesis, Delft University
of Technology, Delft, The Netherlands, 2000.

32. Baecher, G.B.; Christian, J.T. Reliability and Statistics in Geotechnical Engineering; John Wiley & Sons Ltd.:
Chichester, UK, 2003; Volume 47, doi:10.1198/tech.2005.s838.

33. Straub, D.; Faber, M.H. Risk based inspection planning for structural systems. Struct. Saf. 2005, 27, 335–355,
doi:10.1016/j.strusafe.2005.04.001. [CrossRef]

34. Luque, J.; Straub, D. Risk-based optimal inspection strategies for structural systems using dynamic Bayesian
networks. Struct. Saf. 2019, 76, 68–80, doi:10.1016/j.strusafe.2018.08.002. [CrossRef]

35. Luque, J.; Straub, D. Algorithms for optimal risk-based planning of inspections using influence diagrams.
In Proceedings of the 11th International Probabilistic Workshop, lBrno, Czech Republic, 6–8 November 2013;
pp. 247–261.

36. Le Bars, D.; Drijfhout, S.; De Vries, H. A high-end sea level rise probabilistic projection including rapid
Antarctic ice sheet mass loss. Environ. Res. Lett. 2017, 12, 044013, doi:10.1088/1748-9326/aa6512. [CrossRef]

37. Bachmann, D.; Huber, N.P.; Johann, G.; Schüttrumpf, H. Fragility curves in operational dike reliability
assessment. Georisk 2013, 7, 49–60, doi:10.1080/17499518.2013.767664. [CrossRef]

38. Edwards, T.L.; Brandon, M.A.; Durand, G.; Edwards, N.R.; Golledge, N.R.; Holden, P.B.; Nias, I.J.; Payne, A.J.;
Ritz, C.; Wernecke, A. Revisiting Antarctic ice loss due to marine ice-cliff instability. Nature 2019, 566, 58–64,
doi:10.1038/s41586-019-0901-4. [CrossRef]

39. Hanemann, W.M. Information and the concept of option value. J. Environ. Econ. Manag. 1989, 16, 23–37,
doi:10.1016/0095-0696(89)90042-9. [CrossRef]

40. Hohenbichler, M.; Rackwitz, R. First-order concepts in system reliability. Struct. Saf. 1983, 1, 177–188,
doi:10.1016/0167-4730(82)90024-8. [CrossRef]

41. Eijgenraam, C.; Brekelmans, R.; Hertog, D.D.; Roos, K. Optimal Strategies for Flood Prevention. Manag. Sci.
2016, 63, 1644–1656, doi:10.1287/mnsc.2015.2395. [CrossRef]

42. DeConto, R.M.; Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature
2016, 531, 591–597, doi:10.1038/nature17145. [CrossRef] [PubMed]

43. Nerem, R.S.; Beckley, B.D.; Fasullo, J.T.; Hamlington, B.D.; Masters, D.; Mitchum, G.T. Climate-change-driven
accelerated sea-level rise detected in the altimeter era. Proc. Natl. Acad. Sci. USA 2018, 115, 2022–2025,
doi:10.1073/pnas.1717312115. [CrossRef] [PubMed]

44. Vermeersen, B.L.; Slangen, A.B.; Gerkema, T.; Baart, F.; Cohen, K.M.; Dangendorf, S.; Duran-Matute, M.;
Frederikse, T.; Grinsted, A.; Hijma, M.P.; et al. Sea-level change in the Dutch Wadden Sea. Geologie en
Mijnbouw/Neth. J. Geosci. 2018, 97, 79–127, doi:10.1017/njg.2018.7. [CrossRef]

45. Baart, F.; Rongen, G.; Hijma, M.; Kooi, H.; de Winter, R.; Nicolai, R. Zeespiegelmonitor 2018; Technical Report,
Deltares Report 11202193-000-ZKS-0004; Deltares: Delft, The Netherlands, 2019.

46. Van Pelt, S.C.; Beersma, J.J.; Buishand, T.A.; van den Hurk, B.J.; Schellekens, J. Uncertainty in the future
change of extreme precipitation over the Rhine basin: the role of internal climate variability. Clim. Dyn.
2015, 44, 1789–1800, doi:10.1007/s00382-014-2312-4. [CrossRef]

47. Haasnoot, M.; Bouwer, L.; van Alphen, J. Planning for rapidly accelerating sea-level rise for the Dutch coast.
In Proceedings of the 20th EGU General Assembly Conference, Vienna, Austria, 4–13 April 2018; Volume 20,
p. 7840.

48. Schweckendiek, T.; van der Krogt, M.; Teixeira, A.; Kanning, W.; Brinkman, R.; Rippi, K. Reliability Updating
with Survival Information for Dike Slope Stability Using Fragility Curves. In Geo-Risk 2017; American
Society of Civil Engineers: Reston, VA, USA, 2017; pp. 494–503, doi:10.1061/9780784480700.047.

http://dx.doi.org/10.1016/S0951-8320(01)00082-5
http://dx.doi.org/10.1111/risa.12285
http://www.ncbi.nlm.nih.gov/pubmed/25565553
http://dx.doi.org/10.1016/j.strusafe.2008.06.020
http://dx.doi.org/10.1016/j.strusafe.2005.04.001
http://dx.doi.org/10.1016/j.strusafe.2018.08.002
http://dx.doi.org/10.1088/1748-9326/aa6512
http://dx.doi.org/10.1080/17499518.2013.767664
http://dx.doi.org/10.1038/s41586-019-0901-4
http://dx.doi.org/10.1016/0095-0696(89)90042-9
http://dx.doi.org/10.1016/0167-4730(82)90024-8
http://dx.doi.org/10.1287/mnsc.2015.2395
http://dx.doi.org/10.1038/nature17145
http://www.ncbi.nlm.nih.gov/pubmed/27029274
http://dx.doi.org/10.1073/pnas.1717312115
http://www.ncbi.nlm.nih.gov/pubmed/29440401
http://dx.doi.org/10.1017/njg.2018.7
http://dx.doi.org/10.1007/s00382-014-2312-4


Infrastructures 2019, 4, 56 20 of 20

49. Klerk, W.; Kanning, W.; Kok, M. Time-dependent reliability in flood protection decision-making in the
Netherlands. In Safety and Reliability—Safe Societies in a Changing World, Proceedings of the ESREL 2018,
Trondheim, Norway, 17–21 June 2018; lCRC Press/Balkema-Taylor & Francis Group: Boca Raton, FL, USA,
2018; pp. 3167–3174.

50. Schweckendiek, T.; Vrouwenvelder, A.; Calle, E. Updating piping reliability with field performance
observations. Struct. Saf. 2014, 47, 13–23, doi:10.1016/j.strusafe.2013.10.002. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.strusafe.2013.10.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Flood Defence Monitoring from an Asset Management Perspective
	Methodology
	Time-Dependent Failure Probability Model
	Environment
	General Input
	Decision Model

	Decision-Making
	General Input
	Decision Model

	Evaluation

	Case Study
	Results
	Benefits of Monitoring for a Deterministic Future
	The Effect of Future Uncertainty on the Value of Information of Monitoring

	Discussion
	Conclusions
	Kernel Density Estimates for Six Cases of Water Level Increase
	References

