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Chapter 1

Introduction

In this chapter we hope to demonstrate the problems of plan and schedule coordi-
nation through a detailed example. The example has a set of agents who desire to
(i) plan or schedule autonomously and (ii) attempt to achieve a joint goal. It re-
veals that without a coordination mechanism, if we allow agents to plan (schedule)
autonomously, then it can lead to failure in achieving their joint goal. The chapter
then moves on to provide an overview of the remaining chapters and also list the
research contributions of this thesis.

1.1 Motivating example

The need for coordinating plans and schedules arises in several domains such as
supply chains, distributed manufacturing and hospital patient treatment. Unfortu-
nately, despite the practical abundance of coordination problems, efficient mecha-
nisms to solve coordination problems are unavailable as these problems have been
shown to be computationally intractable. The motivating example below is an il-
lustration of the problem of plan and schedule coordination in the transportation
domain.

Crude oil is a naturally occurring mixture of hydrocarbons. It is the source of
several products such as petrol, diesel and kerosene. The huge number of consumable
products, specially the energy related ones, that can be derived from crude oil gives
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2 CHAPTER 1. INTRODUCTION

it a very central position in the economy of the world [Bacon 2011].
It is generally believed that crude oil was formed from biomass (from animal

and plant remains) getting compressed and heated by geological heat within layers
of earth over thousands of years. Geological formations that capture crude oil occur
at various places below the earth surface. Many times, these formations occur at
the bottom of the sea as well. Generally, because of their geology, crude oil drilling
installations (drilling rigs) do not contain facilities for refining crude oil. Therefore,
crude oil is transported to locations where such refineries exist.

Drilling rigs require large amounts of diesel to operate. However, because they
cannot refine the obtained crude oil, diesel has to be procured to operate the rigs.
Let us illustrate this journey of crude oil from below the earth to the refinery and
back into the machines that drill the earth.

Suppose Location A contains the drilling rig and Location C, Location D and
Location E contain the refineries. Diesel required to run the drills is transported
from these refineries to the rig at Location A. Crude oil is transported via Location
B to reach the refinery in Location C and Location D, whereas it can directly go
from Location A to Location E. The same route (in the reverse direction) is followed
for the transportation of diesel from the refineries to the drilling rig. The refinery
in Location D is close to a rail track and the refinery in Location E is close to an
airport. Therefore, different modes of transport have to be followed to reach each
of the locations. Further, the routes to be followed impose constraints on the order
of transportation activities. For instance, crude oil arriving through Ship 1 cannot
be transported from Location B until the truck from Location A has transported it
to Ship 1 and Ship 1 has in turn transported it to Location B. Similarly, diesel from
Location E has to be first transported by a truck to the plane which then transports
it to Location A and so on. These constraints that establish a partial order on the
set of (transportation) activities are referred to as precedence constraints and are
represented using the symbol ≺. Thus, t1 ≺ t2 implies that task t1 precedes task t2.

Each of the trucks, trains, ships and planes used for transportation is owned and
operated by companies that are different from the drilling or the refinery company.
This scenario is represented in Figure 1.1. The arrows represent the movement of
crude oil (diesel) containers. The tasks allocated to each company are shown in the
rectangular boxes above the transportation vehicle used by the company.

Each transportation company could be involved not just in transporting crude
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To Ship1 From Ship2Ship1 to Ship2

To Ship2From Ship1 Ship2 to Ship1

Location A Location B Location C

Ship 1 Ship 2

From Ship 1

To Ship 1

Location E

To Plane

From Plane

Location BTo

Location ATo

Location CTo

Location BTo

Location ETo

Location ATo

Figure 1.1: A multi-modal transportation scenario.
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To Ship 1

To Ship 2

From Ship 2

From Ship 1 Ship 2 to Ship 1

Ship 1 to Ship 2

Location A Location B Location C

Ship 1 Ship 2

Location BTo

Location BTo

Location CTo

Location ATo

Figure 1.2: Each transportation company makes an acyclic local plan but in combi-
nation it leads to a cycle in the global plan.

oil/diesel, but also other products (or probably involved in transportation activities
related to several drilling rigs). Transportation companies cannot exchange infor-
mation regarding their activities between themselves owing to information privacy
issues. Therefore, designing a local plan that best suits a company’s interests has
to be done autonomously. A local plan here refers to the intended order in which a
company wants to carry out its tasks. In our case,

a local plan for each of the transportation companies is a partial order
on the set of activities it has to accomplish.

We know that the transportation companies make local plans for their activities.
Therefore, we consider the global plan for all the tasks to be a combination of all
local plans. The question, however, is whether such a global plan is a feasible plan.

To ensure that drilling happens smoothly, the transportation companies have
to ensure that their local plans are coordinated. To see why feasibility could be
a problem, suppose now that the companies involved in transportation between
Location A and Location C make their plans as shown in Figure 1.2. The local
plan (a partial ordering of the tasks) for each of the transportation companies is
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indicated by a dotted arrow between the tasks of the company. Here a dotted arrow
from task t to a task t′ means that, task t is planned to be executed before task
t′. Consider now a global plan formed by the combination of local plans shown in
Figure 1.2. A directed cycle is formed between the partial orders (plans) of the truck
agent at Location A and Ship 1. This directed cycle means that Ship 1 intends to
carry the crude oil from the refinery before it transports diesel to the refinery. On
the other hand the truck wants to transport diesel first and then transport crude oil.
Clearly this situation implies that the global plan is infeasible. From this example
we now have a simple test to determine if a given global plan is coordinated — if
no directed cycle exists in the global plan then the plan is coordinated. Note here
that each transportation company’s plan is locally coordinated (because there are
no local cycles). However, in combination they result in an uncoordinated global
plan.

One solution to the problem would be to centrally develop a plan to perform
the whole transportation. However, this would not be practical because centrally
creating a plan for this transportation scenario could conflict with the other com-
mitments of the company. Another solution would be for each company to inform a
central coordinator about their plans. The central coordinator could then detect all
possible conflicts, resolve them and inform the companies regarding the changes they
have to make to ensure coordination. This solution too is unacceptable because this
might require companies to share private information or make cascading changes
that affect their other commitments. Therefore, we need a mechanism that coordi-
nates plans without requiring companies to part with any information regarding their
plans.

Suppose now that the precedence constraints To Ship1 ≺ From Ship 1; To Lo-
cation B ≺ To Location A; Ship 1 to Ship 2 ≺ Ship 2 to Ship 1; To Location C ≺
To Location B and To Plane ≺ From Plane, are added to the problem as shown in
Figure 1.3. Agents are then allowed to make their local plans based on this updated
problem. Notice now that whatever plan the truck agent in Location C, the train
agent in Location D or the Plane agent make, the global plan will be cycle free. This
means that it is possible to allow some degree of autonomy while still ensuring a
coordinated global plan.

This solution requires only 5 constraints whereas a centralised solution would
imply 8 constraints (one on each transportation company). This reduction in the
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To Ship 1

To Ship 2

From Ship 2

From Ship 1 Ship 2 to Ship 1

Ship 1 to Ship 2

Location A Location B Location C

Ship 1 Ship 2

From Ship 1

To Ship 1

Location D

Location E

To Plane

From Plane

Location ATo

Location ETo

Location BTo

Location ATo

Location CTo

Location BTo

Figure 1.3: A minimal set of coordination constraints.
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number of constraints implies that three agents, truck agent at Location C, the train
agent at Location D and the plane agent can choose to either transport crude oil first
or transport diesel first without affecting the feasibility of the global solution. We
see this increase in the amount of choices to agents (while retaining the feasibility)
as an increase in the amount of autonomy offered to the agents.

In other words, if we can ensure that the number of constraints added to make
the global plan feasible are minimum, then it is the maximum possible autonomy
one can guarantee. Unfortunately, earlier research by Valk [Valk 2005] has shown
that in general, this problem of finding the minimum number of constraints that
ensure coordination is Σp

2-complete. The complexity is derived from the problem of
verifying if a set of constraints is sufficient to ensure coordination and the problem
of finding a sufficient constraint set of minimum cardinality, both of which are NP-
hard in general. Therefore in this thesis, our first goal is to discover subclasses of
the general case where this problem can be solved more efficiently.

Let us now look at the same oil transportation scenario assuming that we have
more detailed information about it. In this more detailed or extended scenario, we
recognise that (i) the time taken for each of the transportation companies for their
activities is different and (ii) the capacity of each of these modes of transport is
different as well. Therefore we collect information regarding the travelling times of
each of the modes of transport and the number of vehicles used by each company
for this transportation job.

Ensuring that the drilling rig can operate unhindered, now requires a different
approach than earlier. We would have to also take the duration, the exact time
instant that each task starts and the number of vehicles used by each company into
consideration. In other words, we would have to coordinate the schedules of the
transportation companies. To illustrate that coordinating plans alone is insufficient
in this extended scenario, consider again the route between Location A and Location
C.

The durations mentioned below the vehicles indicate the time required for the
company to carry out its transportation tasks. To simplify our discussion, let us
assume that each company has infinite resources (number of vehicles) for performing
its tasks. Suppose, the whole transportation job starts at 0:00 hours on a Monday.
That is, the crude oil is available for transportation at Location A at 0:00 hours on
Day 1 and similarly, the diesel required for drilling is also available at the refinery
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To Ship1 From Ship2Ship1 to Ship2

To Ship2From Ship1 Ship2 to Ship1

Location A Location B Location C

2 hrs 24hrs 1hr 48hrs 2hrs

Ship 1 Ship 2

Location BTo

Location ATo

Location CTo

Location BTo

Figure 1.4: Schedule coordination problem.

Task Starting Time

To Ship 1 Day 1, 12:00 hours

To Location B (Ship 1) Day 2, 08:00 hours

Ship 1 to Ship 2 Day 3, 08:00 hours

To Location C Day 3, 16:00 hours

From Ship 1 Day 5, 12:00 hours

To Location A Day 5, 12:00 hours

Ship 2 to Ship 1 Day 5, 12:00 hours

To Location B (Ship 2) Day 6, 00:00 hours

From Ship 2 Day 6, 00:00 hours

To Ship 2 Day 6, 08:00 hours

Table 1.1: Schedules made by different agents for transportation activities between
Location A and Location C.

at Location c at 0:00 hours on Day 1. Now, suppose the various companies make
schedules as shown in Table 1.1. Notice that from the starting times of each of
the tasks we can easily derive the local plans (partial orders) of the transportation
companies. In fact, these local plans are also compatible with each other as can be
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To Ship 1

To Ship 2

From Ship 2

From Ship 1 Ship 2 to Ship 1

Ship 1 to Ship 2

Location A Location B Location C

Ship 1 Ship 2

Location BTo

Location ATo

Location CTo

Location BTo

Figure 1.5: A feasible plan, but an infeasible schedule.

seen in Figure 1.5. However, if transportation companies were to start their activities
as planned above then the whole operation would be infeasible. The truck company
at Location A cannot transport diesel to the drilling rig because Ship 1 would not
have brought it to Location A at the time when the truck leaves the shipping port.
The same holds for the truck company in Location B because Ship 2 will not have
arrived before it starts moving from the shipyard.

Suppose, we add the constraints shown in Table 1.2 to the problem. Then any
local schedule that respects these constraints will now be coordinated. Thus, both
the schedules in Table 1.3 are coordinated.

Notice that the local schedule of Ship agent (Ship 1) need not change along with
the schedule of the truck agent in Location A. It could continue to schedule its task at
Day 1, 03:00 hours, even when the truck agent starts its task at Day 1, 00:30 hours.
Note that if the Ship agent (Ship 1) now changes its schedule to Day 1, 03:30 hours,
it does not affect the feasibility of the overall schedule. Therefore, we can clearly
see that agents have the autonomy to choose from multiple local schedules without
affecting the feasibility of the global schedule. However, also note that agents are
not completely free, for instance, Ship agent (Ship 1) cannot change its schedule to
Day 1, 04:30 hours. Such a change would create an infeasibility. We therefore have
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Task Earliest starting time Latest starting time

To Ship 1 Day 1, 00:00 hours Day 1, 01:00 hours

To Location B (Ship 1) Day 1, 03:00 hours Day 1, 04:00 hours

Ship 1 to Ship 2 Day 2, 04:00 hours Day 2, 05:00 hours

To Location C Day 2, 06:00 hours Day 2, 07:00 hours

From Ship 2 Day 4, 07:00 hours Day 4, 08:00 hours

To Ship 2 Day 1, 00:00 hours Day 1, 01:00 hours

To Location B (Ship 2) Day 3, 01:00 hours Day 3, 02:00 hours

Ship 2 to Ship 1 Day 3, 03:00 hours Day 3, 04:00 hours

To Location A Day 4, 04:00 hours Day 4, 05:00 hours

From Ship 1 Day 4, 07:00 hours Day 4, 08:00 hours

Table 1.2: Coordination constraints are added to the scheduling problem to ensure
feasibility.

a trade-off between the autonomy allowed to agents and the overall makespan.

We have seen from the scenario in Figure 1.4 that coordinating plans is not
sufficient to ensure that the drilling operation can work unhindered. What we require
thus, is a mechanism that coordinates schedules. Further, such a mechanism must
also allow for agent autonomy for the same reasons as those for planning. Studying
this problem of coordinating schedules is the second goal of this thesis.

1.2 Structure of this thesis

In this thesis we deal with both the coordination of plans and schedules. In the first
part of the thesis we deal with the so called plan coordination problem (in Chapter
3). The general problem has been proven to be intractable [Valk 2005]. However,
there exist several practical problems such as supply chain management and hospital
patient treatment that exhibit special properties which can be exploited. Therefore,
we focus on defining restricted subclasses of this problem that are easier to solve
and then develop algorithms to solve these problems efficiently.

In the second part, we develop algorithms that ensure schedule coordination.
The mechanisms we develop aim at ensuring that (i) the global schedule (derived



1.2. THESIS STRUCTURE 11

Task Schedule 1 Schedule 2

Starting time Starting time

To Ship 1 Day 1, 0:00 hours Day 1, 0:30 hours

To Location B (Ship 1) Day 1, 3:00 hours Day 1, 3:00 hours

Ship 1 to Ship 2 Day 2, 4:00 hours Day 2, 4:30 hours

To Location C Day 2, 6:00 hours Day 2, 6:30 hours

From Ship 2 Day 4, 7:00 hours Day 4, 7:00 hours

To Ship 2 Day 1, 0:00 hours Day 1, 0:30 hours

To Location B (Ship 2) Day 3, 1:00 hours Day 3, 1:30 hours

Ship 2 to Ship 1 Day 3, 3:00 hours Day 3, 3:00 hours

To Location A Day 4, 4:00 hours Day 4, 4:30 hours

From Ship 1 Day 4, 7:00 hours Day 4, 7:30 hours

Table 1.3: Two feasible global schedules.

as a combination of local schedules) is always feasible (ii) agents can design their
schedules independently and (iii) also that the makespan of the global schedule is
as close to optimality as possible.

Schedule coordination includes notions of both time (durations, starting times)
and capacity (number of vehicles used). Thus we deal with the schedule coordination
problem in two chapters (i) Chapter 4, when there is unbounded capacity and (ii)
Chapter 5, when the capacity of agents is bounded. In Chapter 4 we develop an
efficient technique — ISA— that designs coordination constraints such that local
plans that satisfy these constraints shall always lead to a makespan minimal solution.

In Chapter 5, we study the case where agents have fixed bounds on their capacity.
Here we first show that the general problem is intractable and then devise algorithms
for various restricted classes of the problem. The algorithms we devise in this chapter
have varying degrees of success in ensuring makespan minimality, but they always
ensure that agents can develop schedules independently and that their local schedules
can always be combined to derive a feasible global schedule.

In Chapter 6, we perform an empirical evaluation of MISAn, an algorithm devel-
oped in Chapter 5 to show the practicality of its use.

The research contributions of this thesis are listed in the following section.
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1.3 Research contributions

This thesis contributes to research in multi-agent coordination in the following ways:

Plan coordination

• We study a class of plan coordination instances called the intra-free instances.
We represent graphs of intra-free instances using a compact representation
called agent dependency graphs. Using agent dependency graphs, we show
that the coordination verification problem for intra-free instances is solvable
in polynomial time, thus showing that limiting problem instances to intra-free
instances reduces the complexity of finding minimum coordination sets from
being Σp

2-complete to being NP-complete.

• We present a heuristic method, DP ∗ algorithm, for coordinating intra-free in-
stances. We also show that DP ∗ algorithm performs better than the current
state of the art depth partitioning method for solving intra-free plan coordina-
tion instances.

• We show that a restricted subclass of intra-free instances called the special
linear intra-free instances can be coordinated in polynomial time. We also
present a procedure to determine the coordination set in polynomial time.

Schedule coordination

• We present an efficient algorithm — ISA— to solve the case of coordinat-
ing schedules when agents have unbounded concurrency. ISA is derived from
the temporal decoupling algorithm of Hunsberger and is shown to be asymp-
totically faster than Hunsberger’s algorithm in solving schedule coordination
problems.

• We prove that the schedule coordination problem is NP-complete when agents
have bounded capacity. In addition, we prove that even when agents are
sequential and tasks are of unit duration, the complexity of the schedule coor-
dination problem stays NP-complete.
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• For the subclass of schedule coordination problems with sequential agents and
unit duration tasks, we propose a matching based algorithm MISAsq that is
adapted from ISA. The approximation ratio of this algorithm is found to
be not very good on the problem with a general task structure. Thus, we
develop further heuristics that exploit the task graph structure and improve the
approximation ratio in more restricted subclasses (grids and unequal chains)
of problem instances.

• Finally, we propose MISAn based on MISAsq to handle the general case of the
schedule coordination problem. We apply MISAn to the problem of coordi-
nating ground handling operations at an airport. By applying MISAn to this
real-world problem, we gain additional insights on the performance of the pro-
posed algorithm and in addition, the theoretical results that were thus far
derived are validated in an empirical setting.

Following is the list (in chronological order) of publications that resulted out of
the research carried out for this thesis.

• C. Yadati, C. Witteveen, Y. Zhang, M. Wu and H.La Poutré. Autonomous
Scheduling. In Proceedings of the Foundations of Computer Science, pages 73
– 79, 2008.

• C. Yadati, C. Witteveen, Y. Zhang, M. Wu and H. La Poutré. Autonomous
Scheduling with Unbounded and Bounded Agents. In Proceedings of the 6th
German conference on Multiagent System Technologies, MATES ’08, pages
195–206, 2008.

• A. terMors, C. Yadati, C. Witteveen and Y. Zhang. Coordination by design
and the price of autonomy. Autonomous Agents and Multi-Agent Systems,
volume 20, pages 308–341, 2010.

• C. Yadati, C. Witteveen and Y. Zhang. COORDINATING AGENTS: An
analysis of coordination in supply-chain management like tasks. In The 2nd
International Conference on Agents and Artificial Intelligence, volume 2, pages
218–223, 2010.
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• C. Yadati, C. Witteveen and Y. Zhang. Improving Task-Based Plan Coordi-
nation. In Collaborative Agents - Research and Development, volume 6066 of
Lecture Notes in Computer Science, pages 175–186. 2011.



Chapter 2

Plan and schedule coordination
mechanisms: An overview

In this chapter, we perform a survey of existing methods for plan and schedule co-
ordination. The survey basically categorises coordination methods into two broad
categories — methods that use communication and methods do not use communi-
cation. Since our interest is to allow for agent autonomy, we favor the methods
that do not use communication to achieve coordination. This survey also provides
the context to introduce our framework and define plan and schedule coordination
problems formally.

Whenever multiple autonomous decision makers come together to achieve a goal
beyond their individual capabilities, coordination is required. Coordination is a
necessity in a wide variety of problems — traffic control, disaster relief, hospi-
tal management, factory management, military operations and so on (cf. [Steeb
et al. 1981,Kovács and Spens 2007,Argote 1982,Cicirello and Smith 2004,Azarewicz
et al. 1989]). While it is easy to define the lack of coordination, the exact definition
of coordination seems to be application dependent. It is defined as the management
of dependencies between activities by some [Malone and Crowston 1994]. Others
define it as the integration and harmonious adjustment of individual work efforts
towards the accomplishment of a larger goal [Singh 1992]. The specifics of each
definition is probably inspired by the class of problems dealt by the author, but the

15
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motivation for coordination is in most situations the same.

Coordination is necessary because (see [Jennings 1996]) of the following reasons:

1. The decisions and actions of a single agent can affect the decisions and activities
of other agents in the system. For example, the decision of a car driver to switch
lanes can affect the speed and the lane taken by car drivers behind him.

2. Achieving the global goal requires that individual goals do not conflict with
each other. For example, vehicles must travel on the left (right) side of the
road, otherwise they may interfere with oncoming traffic.

The first point indicates the interdependency between agents and the second indi-
cates the difficulty with uncoordinated plans of agents. Clearly, if there are no traffic
rules to coordinate the behaviour of drivers, then the community of decision makers
(drivers) could quickly degenerate into chaos [Jennings 1996].

Agents take actions/decisions throughout the life time of a multi-agent system
and hence coordination also needs to occur throughout the life cycle of a system.
In this thesis however, we are interested only in coordinating plans and schedules of
agents in a multi-agent system. In other words, we are interested in coordination
problems that occur before a system is in operation.

Concerning plan coordination, Valk (see [Valk 2005]) has shown that coordinat-
ing autonomous plans is intractable in general. Therefore, our quest in this thesis is
to answer the following question concerning plan coordination:

• Do there exist subclasses of plan coordination problem instances where an
efficient process exists to find coordinated global plans?

Concerning schedule coordination, as far as we could find, there exists no result
which establishes the complexity of the problem. Thus, in this thesis, we try to
answer the following question regarding schedule coordination:

• Can we design a mechanism which guarantees that autonomously developed
schedules of agents, are always coordinated? Further, can we ensure that such
a coordinated global schedule also satisfies additional quality criteria such as
makespan minimality?
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Note that while requirements such as efficiency, quality and information privacy
have well established meanings, the requirement for autonomy is somewhat hazy.
For our purposes, we consider autonomy as the possibility for an individual agent
to determine its own plan, given a set of tasks to perform. That is, to decide on its
own which plan to construct independently from the other agents. Of course there
are limiting scenarios where the task constraints only allow for one solution, and in
general, the more alternative plans that can be constructed, the larger the autonomy
of an individual agent is. An elaborate discussion of autonomy and methods to
maximize it, however, is beyond the scope of this thesis.

Coordinated multi-agent systems A coordinated multi-agent system can be
broadly described using Figure 2.1. In this figure, we have a central system (problem
owner) which determines the allocation of tasks in the coordination problem to a set
of agents. These agents in turn develop a plan(schedule) for their local set of tasks,
which are then merged into the global plan(schedule) by the problem owner. The
coordination layer (the band in grey) ensures that this merging of local solutions
does not result in contradictions within the global solution.

In coordinated multi-agent systems, agents make independent decisions and take
actions to satisfy their own individual agent goals. However, the coordination layer
ensures that these agent goals

1. neither conflict with each other nor

2. conflict with the system goal.

The coordination layer, therefore, needs to interact with both the problem owner (an
entity other than any of the agents involved making plans or schedules), who defines
the system goal, as well as the agents in order to achieve coordination. Considering
the traffic example presented earlier, the multi-agent system contains drivers who
each need to go from a source to a destination. The system goal is to ensure that
traffic flow through the roads is smooth and accident free. The coordination layer
consists of traffic rules which ensure that agent goals and system goals are achieved.

The process of coordination is essentially a process of managing inter-agent de-
pendencies as pointed out by [Malone and Crowston 1994]. Differences between co-
ordinating mechanisms arise in how they manage these inter-agent dependencies. All
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Figure 2.1: Coordination in multi-agent systems.

coordination approaches can be broadly classified based on who initiates coordina-
tion. In most systems, (cf. [Smith and Peot 1996,Younes and Simmons 2003,Durfee
and Lesser 1987,Decker and Lesser 1992,Schubert and A.Gerevini 1995,Kutanoglu
and Wu 1999, Solberg and Lin 1992, Dewan and Joshi 2002, Kouiss et al. 1997, Liu
and Sycara 1995]) coordination is initiated by the agents themselves. That is, agents
make their individual plans (schedules) and later communicate with a coordination
layer. The coordination layer determines whether there are conflicts between agent
plans (schedules) and suggests changes to be made to individual plans (schedules)
(cf. [Cox and Durfee 2003,Durfee and Lesser 1987,Ephrati and Rosenschein 1993]).
To determine whether conflicts exist, the coordination layer can adopt one or both
of the following two approaches:

Method 1a: Analyse, determine and resolve conflicts centrally. In this method, a
central entity determines if the plan of any agent is creating conflicts
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and then suggests changes to the individual plans of agents. It
is easy to see that in this system agents need to be cooperative
to accept all the suggested changes (cf. [von Martial 1992, Ephrati
and Rosenschein 1994,Weerdt et al. 2003,Alami et al. 1998,Foulser
et al. 1992]).

Method 1b: Analyse, determine and resolve conflicts through agent interac-
tion. If this method is adopted, agents first have to themselves
determine if there are conflicts between their plans. They have
to then determine, ways to change their solutions so that conflicts
are avoided. This is a common approach adopted when agents are
non-cooperative (cf. [der Krogt and Weerdt 2005b,Wangermann and
Stengel 1998,Gerkey and Mataric 2002,Gerkey and Mataric 2003a]).

Notice that in both methods, the coordination layer acts as a communication or
an interaction layer that ensures conflicts do not arise. Hence, we also refer to these
methods as interaction or communication based methods. This situation is depicted
in Figure 2.2.

Few approaches, however, the attempt to coordinate is initiated by the prob-
lem owner itself (see [Korf 1987,Valk 2005]). Suppose agents are unable to interact
amongst themselves and are also not cooperative (examples include scenarios where
communication can compromise national security or information privacy needs). In
such situations, the system has to assume the initiative in ensuring that agents
can act independently of each other. This means that all inter-agent dependencies
have to be removed or made redundant before hand. One approach to ensuring that
inter-agent dependencies are redundant, is by adding additional (tighter) intra-agent
constraints such that together they imply the inter-agent constraints. The problem
of coordination in this situation, can be viewed as the following decomposition prob-
lem:

How to find a set of additional constraints, such that the original multi-agent
planning (scheduling) problem can be solved, by solving a set of single agent planning
(scheduling) problems independently?

This approach is illustrated in Figure 2.3. In this scenario, the coordination layer
acts as a decomposition layer which makes all inter-agent dependencies redundant.
Hence, we alternatively refer to these approaches as decomposition based approaches.
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Figure 2.2: Coordination initiated by agents. Notice that the coordination layer
acts as a communication layer between agents.

In this thesis we adopt this second approach. We shall see in further sections
that there are different methods of accomplishing this decomposition.

Both approaches to coordination have their own advantages as well as disadvan-
tages. While interaction allows agents to handle dynamic systems more effectively,
decomposition based approaches allow agents to maintain autonomy and can be
used if communication is not possible between agents.

Recall that our quest in this thesis was to ensure coordination while guaranteeing
autonomy to the maximum possible extent. Therefore, we are interested in develop-
ing efficient (polynomial time) procedures that ensure coordination when interaction
is not required. The motivation to study such systems comes from the fact that in
several real world situations such as multi-modal logistics and military reconnais-
sance, coordination has to be often achieved when agents cannot share their local
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Figure 2.3: Coordination initiated by the problem owner. Coordination layer ensures
decomposition.

plans (schedules). In fact, we think that in large multi-agent systems where agents
are selfish, it is more practical to expect that agents are unwilling or unable to share
their plans with other agents of the system. Therefore in this thesis we adopt the
stand that coordinating a system, is similar to decomposing it such that solutions
to all parts can be eventually combined to derive a solution to the global problem.

The rest of the chapter is organised in two parts. The first part discusses plan
coordination mechanisms, and the second part discusses schedule coordination mech-
anisms. When discussing plan coordination, we start with mechanisms where agents
interact cooperatively, then discuss mechanisms where they interact competitively
and finally we discuss mechanisms where they do not interact at all. Because our in-
terest is to design an efficient mechanism for coordination for non-interacting agents,
we also specify the framework and the formal problem description as a continuation
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of the discussion on decomposition based approaches.

In the second part, we discuss schedule coordination methods. Here again, we
start by discussing schedule coordination approaches that use communication. How-
ever, we next directly jump into discussing our framework for schedule coordination
methods. There are two causes for this jump. Firstly, the framework we use for
schedule coordination is an enriched version of the framework used for plan coor-
dination. Therefore, we believe that we can directly discuss this enriched version
without much ado. Secondly, we discuss the Temporal decoupling problem, which is
based on the Simple Temporal Network framework, in our discussion of decoupling
techniques. The simple temporal network framework, as we shall show later on in
Chapter 4, can also describe a class of schedule coordination problem instances.
Therefore, we believe that it would be better to first discuss our framework so that
the differences between the two frameworks are evident.

We end this chapter with a summary of all the methods used for both plan and
schedule coordination methods.

2.1 Plan coordination

Essentially the goal of the problem owner in a plan coordination problem is to come
up with a feasible plan for the entire set of tasks. Therefore, one can view it as a
planning problem. The only difference between traditional planning problems and
plan coordination problems is that, the problem owner in coordination problems
does not bother about the actual planning, but is concerned only with ensuring
that plans found by agents for their set of tasks can be coordinated to achieve a
feasible global plan. That is, for coordination, we are only interested in the partial
order in which tasks occur in the plans of agents. Therefore, we abstract from the
concrete plans of agents, only taking into account the precedence ordering of tasks.
As already pointed out, local plans of agents when combined together may conflict
with each other. Thus, the role of a plan coordination mechanism is to oversee that
agent plans,

1. do not conflict with each other and

2. they can be combined to achieve a feasible global plan.
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Further, it is desirable for agents that the coordination mechanism offers greater
amount of autonomy. Therefore, agents would desire that the coordination mecha-
nism imposes the fewest possible constraints on their planning.

Given this background let us now proceed to surveying the various methods
available in literature to achieve plan coordination.

The relevance of plan coordination in multi-agent systems has been well studied
in literature (cf. [Alami et al. 1998,Caridi and Sianesi 2000,Desjardins et al. 1999,Cox
and Durfee 2003, Cox and Durfee 2005, Cox et al. 2005]). As pointed out earlier,
plan coordination mechanisms can achieve their objective either by allowing inter-
action between agents or by decomposing the problem. Further, when allowed,
interactions could be between cooperative agents or competitive agents. Techniques
such as plan merging (cf. [von Martial 1992,Ephrati and Rosenschein 1994,Weerdt
et al. 2003,Weerdt 2003,Alami et al. 1998,Foulser et al. 1992]) and plan repair [der
Krogt and Weerdt 2005a, Arangú et al. 2008, Alami et al. 2002], which we will dis-
cuss later in this chapter, require agents to interact cooperatively between each
other, whereas techniques which employ market mechanisms (cf. [der Krogt and
Weerdt 2005b, Wangermann and Stengel 1998, Gerkey and Mataric 2002, Gerkey
and Mataric 2003a,Gerkey and Mataric 2003b]) require agents to interact competi-
tively (Section 2.1.1). Techniques that involve decomposition do not require agents
to interact at all (Section 2.1.2).

In discussing each of the plan coordination mechanisms we will use the following
simple instance of a plan coordination problem as a running example.

Example 2.1. Consider the situation in Figure 2.4(a). Two agents, A1 and A2 have
to prepare individual plans for their sets of tasks {t1, t2} and {t3, t4} respectively.
The catch, however, is that task t3 can only be started after task t1 and task t2 can
only be started after task t4.

Suppose A1 plans to perform t2 first and task t1 later. Similarly A2 plans to per-
form task t3 first and then task t4. In combination their plans create an infeasibility.
Task t1 cannot be started until task t2 is finished and task t2 cannot be started
until task t4 is finished, which in turn cannot be started until task t3 is finished.
However, task t3 also cannot be started since task t1 is not complete. Thus, this
combination of plans leads to a deadlock situation making the global plan infeasible.
This deadlock is indicated by the existence of the directed cycle (t1, t3, t4, t2, t1) in
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Figure 2.4: Running example. The solid arrow from t1 to t3 and t4 to t2 indicate the
precedence constraints t1 ≺ t3 and t4 ≺ t2 respectively. The dotted arrows between
tasks of individual agents represent the local plans of the agents.

Figure 2.4(b). We want plan coordination mechanisms to ensure that such cycles,
responsible for deadlocks, do not occur in a combined plan.

Referring to the example above, suppose agents A1 and A2 were allowed to
interact, either directly or through a central authority, then clearly the deadlock
could be detected and resolved. Deadlock detection could be accomplished by simply
verifying if the global plan has a directed cycle. Resolution of deadlocks when agents
are cooperative, would require one or both agents to change their plans so as to avoid
the deadlock. When they are non-cooperative, incentives have to be designed so that,
agents are willing to accept changes to their local plans. In the following text, we
shall deal with both these scenarios in greater detail.

2.1.1 Achieving coordination through interaction

As mentioned earlier the coordination layer functions as a communication layer
when interactions are the preferred way to achieve coordination. Typically, in
this approach agents initiate coordination. That is, agents first prepare their lo-
cal plans and then try to coordinate those plans (cf. [Alami et al. 1998,Ephrati and
Rosenschein 1993,Weerdt et al. 2003,Weerdt 2003,Weiss 2000]). Sometimes, agents



2.1. PLAN COORDINATION 25

prepare partial plans and communicate with other agents so that positive interac-
tions can be utilised and negative interactions can be avoided (cf. [der Krogt and
Weerdt 2005b,der Krogt and Weerdt 2005a,Fox et al. 2006]). In either case, agents
can be cooperative and accept the changes suggested or can be selfish and require
some incentive to do so.

Plan coordination through cooperative interaction Several authors have
propounded cooperation as an effective coordination tool (cf. [Alami et al. 1998,
Ephrati and Rosenschein 1993,Ephrati and Rosenschein 1994,Desjardins et al. 1999,
Jennings 1993,Malone and Crowston 1994]). Coordination through cooperation can
be achieved either during the process of merging local plans (partial plans) or after.

Plan merging techniques are used when plans are coordinated during the process
of combining local plans into a global plan. Plan merging is achieved by merging
operators. An operator can be conceived as a primitive task or activity that has
pre-conditions and effects. Plan merging is typically carried out to ensure that
redundant operations can be avoided [Foulser et al. 1992]. Examples of plan merg-
ing approaches are abundantly found in literature (cf. [von Martial 1992, Ephrati
and Rosenschein 1994, Weerdt et al. 2003, Weerdt 2003, Alami et al. 1998, Foulser
et al. 1992]).

Plan merging has also been used to ensure coordination of different aspects of
a plan (cf. [Weerdt et al. 2003, Weerdt 2003, Qutub et al. 1997]). Some researchers
such as [Weerdt et al. 2003] use plan merging to coordinate the efficient usage of
resources. Others such as [Alami et al. 1994] use plan merging to ensure that in a
multi-robot situation there is better reactivity. The idea of plan merging has also
been extended in [Qutub et al. 1997] to ensure that deadlocks are resolved within
a plan merging paradigm. This last objective (deadlock avoidance) is of greater
interest since it is closer to our requirements.

The general idea of deadlock avoidance through plan merging is to first ask agents
to construct a (partial) plan for a set of tasks. If a deadlock situation is detected,
that is, a sequence of pre-conditions and effects is found to be cyclic, then one of
the agents participating in the deadlock assumes the role of a coordinator. It then
proposes a solution for the deadlock according to which agents change their plans.
In this scheme, since authors assume that agents are cooperative there is no question
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of them rejecting the solution as long as it does not cause any further deadlocks.
Thus, in some sense the coordination constraint or the solution is imposed on the
remaining agents.

Example 2.2. Referring to our running example — we would first let both agents
prepare any local plans they desire. Suppose they make the plans as in Figure 2.4(b).
One of the agents, suppose A1, assumes the role of the coordinator and detects the
deadlock involving the four tasks. It can now propose a solution or a coordination
constraint where the plans of agent A2 are reversed. That is, task t4 is performed
before task t3. Since this modification does not cause any further deadlocks A2

changes its plan accordingly and a coordinated global plan is formed.

Suppose that a local plan cannot be merged (because it leads to an uncoordinated
situation). Furthermore, suppose that no agent is able to come up with a solution to
resolve the deadlock. In such a case, plan merging fails and agents might be required
to completely replan. Some researchers (cf. [Fox et al. 2006]) have argued that, it is
often more beneficial to repair an existing plan to resolve conflicts than replanning.

This means that the plan that existed before the deadlock was detected, could
be revised so that the deadlock situation is avoided. This idea of revising an existing
plan (through addition or deletion of constraints) is termed plan repair. Plan repair
can be employed either during planning, or after all the local plans have been con-
structed. In plan repair, local (partial) plans are communicated to a central repairer,
which then determines the set of revisions required to make the integrated joint plan
feasible. These changes are communicated back to the agents who incorporate the
changes into their local plans. This process is repeated until a complete and valid
global plan is computed (cf. [der Krogt and Weerdt 2005a,Arangú et al. 2008,Alami
et al. 2002]).

Example 2.3. With respect to our running example, suppose again that agents
make the plans as in Figure 2.4(b). The agents then communicate their plans to
a central authority. The central authority could find out that combining task t1
and t3 does not create a cycle. However, as soon as they include tasks t4 and t2 a
deadlock is created. Therefore, it revises the original plan. In the revised plann, it
could enforce that task t1 precedes t2 to avoid conflicts.



2.1. PLAN COORDINATION 27

Notice however that both plan repair and merging techniques, appeal for cooper-
ation to resolve conflicts. This need for cooperation, violates the planning autonomy
of agents. Agents are now forced to accept changes to their local plans. Further,
information privacy is not guaranteed: agents have to share information regarding
their plans. Hence if agents are strictly autonomous and conscious of their informa-
tion privacy needs, then both techniques may not be suitable in the current setup.

Plan coordination through competitive interaction We mentioned earlier
that, both plan repair and plan merging techniques require agents to be cooperative.
However, even when agents are non-cooperative, these techniques can be made to
work. Only now, each agent has to be suitably compensated for its cooperation.
From the solutions described for our running example earlier, it is evident that to
ensure coordination, it is enough that one agent changes its plans. Now if both
agents are adamant and not willing to change their plans, then the result is an
uncoordinated situation. However, if agents agree to compensate other agents for
changing their plans, then it is possible that a solution might emerge. Several
researchers have explored this idea and developed market protocols that facilitate
plan coordination (cf. [der Krogt and Weerdt 2005b,Wangermann and Stengel 1998,
Gerkey and Mataric 2002,Gerkey and Mataric 2003a,Gerkey and Mataric 2003b]).

Some researchers (cf. [der Krogt and Weerdt 2005b, Gerkey and Mataric 2002,
Gerkey and Mataric 2003a, Gerkey and Mataric 2003b]) use auctions to incentivise
agents to cooperate. Auction based mechanisms, typically involve the auctioning
of tasks themselves. In (cf. [Gerkey and Mataric 2002, Gerkey and Mataric 2003a,
Gerkey and Mataric 2003b]), tasks are auctioned off in an effort to make efficient
usage of resources and as a result constraints that ensure coordination are imposed
on the local plans of agents. In the plan coordination mechanism of [der Krogt and
Weerdt 2005b], agents first concurrently plan for a single goal, after which they take
part in an auction (if there is any) to exchange goals (tasks) and subgoals (tasks).
Then, they apply a plan repair technique to add another goal to their plan. They
then take part in an auction again. They continue to alternatively perform these
steps of adapting a plan using plan repair and taking part in an auction, until a
complete and valid global plan is computed. Another approach to avoid deadlocks
using auctions can be imagined. This approach is illustrated in the example below.
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Example 2.4. In our running example suppose that each agent gets some amount x
to perform its activities. Further suppose that the problem owner requests bids from
the agents quoting their price for taking an additional constraint. Agent A1 might
quote a price of y1 and agent A2 might quote a price of y2 for taking an additional
constraint. Based on the price they quote, the problem owner might decide to either
impose t1 ≺ t2 on agent A1 or t4 ≺ t3 on agent A2. Thus, if agent A1 wins the
auction, then it gets a profit of x+ y1 and agent A2 gets a profit of x.

Auctions are unidirectional, where sellers have no control over the compensation
that might be offered for their goods (or constraints in this case). Negotiations offer
a richer model of interactions. Here both parties involved can have a say in the final
outcome.

Example 2.5. In our example, suppose again as earlier that the whole operation
results in a profit of x. Further suppose that each agent gets paid an amount of
x
2 . Suppose agent A2 announces that if agent A1 can take an additional constraint,
then it would pay an additional amount of x

8 from its share of profits. Note that if
both agents agree to take additional constraints, then their share of profits remains
at x

2 . Whereas if both of them disagree to take additional constraints and their
plans contradict, then neither of them will get any profit. However, if agent A1 is
agreeable to such a compensation then by paying an additional amount of x

8 and
adding the constraint that t1 precedes task t2, agent A2 could ensure coordination.
This would imply that A1 would now need to modify its plan to accommodate the
constraints imposed by A2. On the other hand, if agent A1 is not agreeable to the
compensation, it might reject the offer and also inform the same to agent A2. Agent
A2 could then continue looking for an offer that is acceptable for agent A1.

A technique called the principled negotiation technique was proposed in [Wanger-
mann and Stengel 1998] for coordinating agents. In this technique, agents repeat-
edly search for options (alternative global plans) that provide mutual gain. When an
agent finds a plan that suits its own interests best, it proposes the new global plan.
The other agents evaluate it and either accept it or reject it. If all agents accept
to it, the global plan is then implemented. However, if an agent rejects it, it sends
a message to the proposing agent regarding reasons for rejection. The proposing
agent, then uses this information to improve its search. If the negotiation succeeds
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then coordination in such a set up is ensured, because if the proposed global plan
has conflicts, then other agents simply reject it. Note that principled negotiation
is not a technique that involves competition in the strict sense. However, it is also
not too different from traditional negotiation since the only difference here seems to
be in the contents of an agent’s proposal. While in traditional negotiation agents
simply propose a share of profits and a plan for their set of tasks, in this method
the proposing agent is obliged to develop a global plan as well as a share of profits.
Thus, while the profits sharing part could be competitive, the part where an agent
proposes a global plan seems to be a cooperative activity.

Example 2.6. If principled negotiation was used on our running example, then one
of the agents say A1 would propose a global plan as well as a share of profits. It
could propose a global plan where,

• agent A2 is forced to take the constraint t4 ≺ t3 since, agent A1 plans to
perform t1 after task t2 and,

• A1 desires a profit of x
2 .

A2 could review this proposal and either accept or reject it. If it accepts the proposal,
the global plan proposed is confirmed.

Auctions and negotiations are effective methods because all agents can be sure
that the outcome of the process is the best they could hope for. Further, information
privacy concerns are well addressed in market mechanisms. However, one of the
possibilities is that the auction as well as the negotiation mechanism may end in a
disagreement. In such a case, one cannot guarantee that coordination is ensured.

Our interest in this thesis is to ensure that autonomous plans/schedules of agents
can be always coordinated. This implies that we are forced to choose methods which
come with a guarantee that there will be a coordinated solution. Thus, auction based
or negotiation based methods are not suitable for our purpose.

So far we have seen interaction based methods to ensure that a global plan is
coordinated. In these methods, we saw that if agents are cooperative, then coordi-
nation could be ensured, but planning autonomy of agents would be compromised.
On the other hand if we allowed agents to be non-cooperative, then we could ensure
planning autonomy, but we cannot ensure that a feasible global solution is always
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achieved. However, we are interested in methods that guarantee both the (i) ability
to autonomously plan and (ii) that these local plans can be always combined into
a coordinated global plan. In the next section, we shall study methods where in-
teraction between agents is not required, in the hope that they might assist us in
achieving both objectives mentioned above.

2.1.2 Plan coordination without interaction

In many practical situations it is against an agent’s interest to share any information
regarding its plan, possibly because it might handover competitive advantage to the
agent’s rivals and competitors (cf. [der Krogt and Weerdt 2005b]). But, the need for
coordination is intact. This section looks at mechanisms that ensure coordination,
but do not require agents to interact.

So far in the previous approaches, inter-agent dependencies were managed
through interaction between agents. Suppose that the internal constraints of an
agent are more restrictive than the ones imposed by inter-agent dependencies, then
any valid local solution also satisfies inter-agent dependencies. That is, inter-agent
dependencies would then become redundant.

Therefore, the answer to avoiding conflicts, is to design a set of coordination
constraints that allow us to decompose the global problem into subproblems, such
that every solution to each of the subproblems can be merged into a global solution.
More specifically, we need a decomposition of the global problem such that all valid
local solutions can be always combined into a valid global solution.

Decompositions can be brought about in at least two ways :

• Problem level: Here the constraints are such that every instance of the
problem can be decomposed due to the same set of constraints.

• Instance level: Here coordination constraints are designed to decompose
each instance of the problem separately. However, the mechanism adopted to
design these constraints is the same.

Suppose now that a large class of problem instances become uncoordinated for
the same reason. For instance, in a traffic situation, a large number of vehicular
accidents happen between vehicles going in opposite directions. In such a case, a
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convention or norm for instance, to drive on the left (right) side of the road, can
be stipulated to avoid uncoordinated situations. Such laws, which can be used to
coordinate a large number of problem instances are known as social laws. Social
laws, offer planning autonomy to agents, but add restrictions that disallow a subset
of these plans and hence ensure coordination. Let us next study social laws is greater
detail.

Social Laws Social laws are problem level coordination constraints used to ensure
decomposition. In other words, social laws (cf. [Moses and Tennenholtz 1992,
Shoham and Tennenholtz 1995]) assure us that for each problem instance, all agent
plans that do not violate these laws will always be mergeable into a global plan. A
popular example for social laws is the set of traffic rules. For a given country, traffic
rules are designed to ensure that in any traffic situation there will be no conflicts as
long as drivers adhere to these rules.

Example 2.7. For our running example, if we had a social law saying that agents
must not be idle, then A1 would be forced to perform t1 first and similarly agent A2

would be required to perform t4 first.

Clearly this would solve the example problem instance. Not only this instance,
but it would solve all problem instances where all tasks have either predecessors or
successors but never both. It is easy to see that in any directed cycle of the global
plan, all tasks succeed and precede each other and hence result in an infeasibility.
The rule ensures that predecessor-free tasks never have to succeed successor-free
tasks. Therefore deadlocks (cycles) can never be formed.

Social laws can be unduly restrictive. Consider the following example as an
illustration.

Example 2.8. Suppose we have the situation shown in Figure 2.5. Here, three
agents have been allocated with 6 tasks, the precedence relationships between tasks
are as shown. In this case, all tasks are either predecessor free or successor free.
Applying the same rule as earlier implies that tasks t1 and t3 would be preferred over
tasks t2, t4 respectively. Indeed, this does result in an acyclic global plan. However,
observe that in this instance, no coordination constraints are actually necessary. In
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Figure 2.5: Social laws can be overly restrictive in certain cases. It is impossible to
create a directed cycle in the above scenario.

other words, the instance is already coordinated. In such cases, rules as above are
unnecessarily restrictive to the agents.

As seen in the example of Figure 2.5 social laws can be overly restrictive. Fur-
thermore, even when the application area is fixed, plans could become uncoordinated
in a large variety of ways. Thus, it is not realistic to expect a single set of social laws
to be able to achieve coordination without being overly restrictive. Therefore, we
turn to the next strategy — instance level decomposition — to achieve our objective.

Coordination protocols A social law can be seen as a solution for each instance
of a coordination problem. As pointed out earlier, designing social laws can be un-
realistic in several cases. Therefore in such situations, one can resort to developing
social law like solutions that are tailored for each instance of a coordination prob-
lem. Such laws are termed coordination protocols and such coordination techniques
are known as instance level decomposition techniques. Several authors (cf. [Jen-
nings 1996,Gerson 1976,Valk 2005]) have designed coordination protocols for plan-
ning. We are specifically inspired by Valk’s coordination protocol (cf. [Valk 2005])
for two reasons:

1. His protocol guarantees that a solution will always be found and

2. It also guarantees that the solution so found will always have a minimum
number of coordination constraints.
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The second point is particularly impressive, since we can now guarantee that agents
will be minimally restricted in constructing their plans.

Unfortunately though, Valk (cf. [Valk 2005]) showed that this problem of find-
ing a minimum set of coordination (decomposition) constraints, is a Σp

2- complete
problem. The problem derives its complexity from two sources:

• it is co-NP-complete to verify if an arbitrary set of constraints is sufficient to
decompose the plan coordination problem and

• it remains NP-hard to find a minimum set of constraints even if we could find
an arbitrary set of constraints that decompose the plan coordination problem
in polynomial time.

There is still hope. Valk himself points out that all plan coordination problem
instances are not equally hard. In some cases, we can efficiently verify if a given
solution indeed decomposes the original problem. Our attempt in the first part of
the thesis is to identify such a class of efficiently verifiable problems. The motivation
is that it might be possible to develop good approximation algorithms to solve the
coordination problem for this class of instances. Further, it could also allow us to
identify subclasses of this class of problem instances where solving the coordination
problem can also be done efficiently.

Several researchers such as [Buzing et al. 2006, terMors and Witteveen 2005,
terMors 2004, Steenhuisen et al. 2006] have adapted Valk’s framework to describe
plan coordination problems. Owing to its simplicity and also the close relevance of
results obtained from Valk’s framework to our work, we too adopt his framework
for describing plan and schedule coordination problems in this thesis.

Let us now describe Valk’s framework in detail and also state the coordination
problem formally using his framework.

2.1.3 Framework and problem definition

In Valk’s framework, problem instances consist of a set of tasks T = {t1, . . . , tm},
allocated to a set A = {A1, . . . , An} of n autonomous agents, according to a task
allocation function φ : T → A. The set of tasks in T , are partially ordered by set
of ≺ of precedence relations, where ti ≺ tj indicates that task ti must be completed
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Figure 2.6: Task graph of our running example.

before task tj can start. Thus, a plan coordination instance can be represented
as a tuple Π = 〈T,A,≺, φ〉. We denote the set of tasks allocated to agent Ai by
Ti = φ−1(Ai).

Example 2.9. Our running example, can be described using Valk’s framework as
Π = 〈T = {t1, t2, t3, t4}, A = {A1, A2},≺= {t1 ≺ t3; t4 ≺ t2}, φ(t1) = φ(t2) =
A1;φ(t3) = φ(t4) = A2〉.

Note that φ−1 induces a partitioning {Ti = φ−1(Ai)}ni=1 of T . Likewise, the
precedence relation ≺i is the precedence relation ≺ restricted to Ti. Frequently, we
denote a plan coordination instance also as Π = 〈{Ti}ni=1,≺〉. The only difference
between the two representations is that, in the latter representation, partitions of
the task set are explicitly mentioned in the latter, but the set of agents and the
allocation function are implicit.

Plan coordination instances can be conveniently represented as directed graphs.
Given a plan coordination problem Π = 〈T,A,≺, φ〉, we can draw a directed graph
GΠ = (T,E≺) corresponding to it, where the set of nodes of GΠ is the set T of tasks.
An edge is added to (t, t′) ∈ E≺ whenever t ≺ t′. We refer to such a graph GΠ as
the task graph of the given problem Π.

Recall that we are dealing with situations where agents wish to be autonomous
and hence care only about the set of activities they are responsible for. In other
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words, agents need to be only presented with a subproblem of the global planning
problem. This subproblem instance provided to an agent is termed as the local
planning instance.

Definition 2.1. Local planning instance for agent Ai: Given a plan coordi-
nation problem Π = 〈T,A,≺, φ〉 and an agent Ai ∈ A, a local planning instance
Πi belonging to agent Ai is a tuple Πi = 〈Ti,≺i〉, where Ti ⊆ T is the set of tasks
allocated to Ai and ≺i⊆≺ is the set of precedence constraints restricted to Ti.

An agent Ai can solve its local planning problem Πi by making a plan for exe-
cuting the set of tasks Ti, taking into account the partial order ≺i. Every agent can
use its own favourite planning tool to accomplish such a plan. What is important
for coordination purposes, however, are not all the details of the plan, i.e., all the
actions planned by an agent to complete its tasks. Instead, we only need to know in
which partial order the tasks in Ti will be completed according to the concrete plan
agent Ai will construct. That is, we only need to know the partial order imposed on
Ti as a consequence of this concrete plan. Since ≺i is always a subset of this partial
order, we consider the local plan of agent Ai for its local planning problem Πi to be
a refinement of ≺i.

Definition 2.2. Local plan for agent Ai: Given a local planning instance Πi =
〈Ti,≺i〉, a local plan ψi of Ai is a tuple ψi = 〈Ti,≺∗i 〉 where ≺∗i is a partial ordering
of Ti that refines ≺i, i.e., ≺i⊆≺∗i⊂ Ti × Ti.

Example 2.10. Consider agent A1 from our running example. Its local planning
instance can be described as Π1 = 〈{t1, t2}, ∅〉. A possible local plan for A1 could
be ψ1 = 〈T1, {t1 ≺1 t2}〉.

Each of the agents can only plan for its own set of tasks, but we need to combine
these plans to derive a plan for the entire set of tasks. We call such a combination
as a global plan. Formally, we define a global plan as follows:

Definition 2.3. Global plan: Given a plan coordination instance Π = 〈{Ti}ni=1,≺〉
a global plan Ψ is a tuple Ψ = 〈T,≺∗〉 where ≺∗ is a partial ordering of T that refines
≺. That is,

≺ ⊆ ≺∗ ⊂ T × T
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Figure 2.7: The solid arrow from t1 to t3 and t4 to t2 indicate the precedence
constraints t1 ≺ t3 and t4 ≺ t2 respectively. The dotted arrows between tasks of
individual agents represent the local plans of the agents.

Plans can be combined in different ways. As noted earlier, if agent autonomy
was not a concern, then we could use plan merging and repair techniques to combine
local plans. However, in our setting, we are not allowed to modify local plans. That
is, each local plan should occur as an integral part of the total global plan. Therefore,
a global plan in our case is always the result of a union of local plans and should
satisfy all given constraints. In other words, the precedence order ≺∗ in a global
plan Ψ = (T,≺∗) should always satisfy

≺∗1 ∪ . . .∪ ≺∗n ∪ ≺⊆≺∗ (2.1)

Unfortunately, local plans cannot always be combined to obtain a global plan.
This is because, ≺∗1 ∪ . . .∪ ≺∗n ∪ ≺ might be a cyclic relation inducing ≺∗ to be
cyclic. As an illustration, consider the following example.

Example 2.11. Consider the situation in Figure 2.7. The plan coordination in-
stance corresponding to the figure can be described as Π = 〈{{t1, t2}, {t3, t4}}{t1 ≺
t3; t4 ≺ t2}〉. The local planning instance of agent A1 denoted Π1 = 〈{t1, t2}, ∅〉
and that of agent A2 denoted Π2 = 〈{t3, t4}, {}〉. The local plans constructed
are depicted in Figure 2.7 and specified by Ψ1 = 〈{t1, t2}, {t2 ≺∗1 t1}〉 and
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Ψ2 = 〈{t3, t4}, {t3 ≺∗2 t4}〉. Combining the local plans and the inter-agent con-
straints we derive {t2 ≺∗ t1, t3 ≺∗ t4, t1 ≺∗ t3, t4 ≺∗ t2}. Clearly, this results in
a cyclic dependency, involving all tasks. Therefore, a global plan cannot be found
from these local plans. Notice though that the local plans are acyclic.

Fortunately, it is possible to avoid such cycles. It has been shown by Valk
[Valk 2005] and others [terMors 2004] that in general, by adding a suitable set of
constraints to a given coordination instance it is always possible to guarantee the
existence of a global plan. As an illustration consider the following example.

Example 2.12. Suppose now that we have a plan coordination instance Π =
〈T,A,≺, φ〉 that is similar to the instance in Figure 2.7, but contains an additional
constraint t1 ≺ t2. Now, both the plans of A2 i.e., t3 ≺∗2 t4 and t4 ≺∗2 t3 result in
a partial order when combined with t1 ≺ t2. That is, both {t1 ≺ t2, t3 ≺2 t4} and
{t1 ≺ t2, t2 ≺2 t3} are partial orders on T . Notice that agent A1 is prohibited from
creating a local plan, t2 ≺∗1 t1. Clearly therefore, the constraint t1 ≺ t2, avoids any
cyclic relationship that can be formed in the union of local plans.

These additional constraints are called coordination constraints and the set of
coordination constraints is known as a coordination set.

Definition 2.4. Coordination set: Given a plan coordination instance Π =
〈T,A,≺, φ〉, a coordination set ∆ =

⋃n
i=1 ∆i is a set of intra-agent (local) prece-

dence constraints, such that every set of ψi
n
i=1 of feasible local plans always results

in a feasible global plan for Π∆ = 〈T,A,≺ ∪∆, φ〉.

Example 2.13. Referring back to Figure 2.7, we could have several possible sets
of additional constraints. For instance, ∆′ = {t1 ≺1 t2}; ∆′′ = {t4 ≺2 t3}; ∆′′′ =
{t1 ≺1 t2, t4 ≺2 t3}. All the three sets of constraints are coordination sets. In ∆′,
the coordination constraint ensures that none of agent A2’s plans — 〈T2, t3 ≺2 t4〉
or 〈T2, t4 ≺2 t3〉 — can create a cycle. By similar reasoning in ∆′′ the coordination
constraint disallows a cycle in the global plan despite agent A1 being allowed to
choose any plan. ∆′′′ clearly results in an acyclic global plan but it rules out any
choice for either agent in picking a suitable plan.

Clearly, it is better for the agents to find a coordination set which is as small
as possible. Small coordination sets allow agents to construct a greater number of
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valid local plans. In other words, smaller coordination sets allow greater flexibility
to the agents in their planning. However, finding the smallest coordination set is
not always easy. In fact, Valk in [Valk 2005] shows that this problem of finding
a minimum sized coordination set is intractable. This intractable problem (and
solutions to it), termed the plan coordination problem, forms the core of this thesis.

Plan coordination problem The essence of the plan coordination problem is to
find a minimal coordination set. However, this is a two step process. Firstly, we
have to ensure that a given additional set of constraints is indeed a coordination set.
Secondly, we have to ensure that there exists no other coordination set with lesser
cardinality. Each of these steps has been shown to be intractable (cf. [Valk 2005]).
The first problem to determine whether a given set of constraints is sufficient to
ensure coordination is termed as the Coordination verification problem (CVP) (cf.
[Valk 2005]). Formally, the Coordination verification problem(CVP) and can be
defined as below.

Definition 2.5. Coordination verification problem (adapted from
[Valk 2005]): Given a coordination instance Π = 〈{Ti}ni=1,≺〉 and a set of con-
straints ∆, such that ∆ ⊆

⋃n
i=1 {Ti × Ti}, is the set ∆ a coordination set for Π?

One of our requirements is to ensure that agents have maximum possible au-
tonomy. Therefore, it seems reasonable to concentrate on methods that result in
a coordination set of minimum cardinality. This problem of determining a mini-
mum set of coordination constraints is what we call as the coordination problem
(CP) [Valk 2005]. Formally,

Definition 2.6. Coordination problem (adapted from [Valk 2005]): Given,
a coordination instance Π = 〈{Ti}ni=1,≺〉 and an arbitrary integer K does there exist
a coordination set ∆ ⊆

⋃n
i=1{Ti × Ti} such that |∆| ≤ K?

Note that to determine a minimum set of coordination constraints, we also have
to answer whether such a set of constraints is sufficient (otherwise we could always
simply return an empty set). Valk (cf. [Valk 2005]) showed that the CVP is co-NP-
complete. Based on the complexity of solving the CVP, he also showed that the
decision version of the coordination problem was Σp

2 - complete.
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It is clear from the complexity of the coordination problem that any algorithm
that hopes to find a minimal coordination set would in general be intractable. One
could hope that there probably existed some approximation technique for solving
them efficiently. Unfortunately however, Valk (cf. [Valk 2005]) shows that this prob-
lem is unlikely to be in APX. This implies that in general we cannot hope to find an
approximation algorithm which guarantees that the cardinality of the coordination
set derived is within a constant factor of the minimum cardinality coordination set.
Therefore in our next subsection, we restrict our scope to subclasses of the plan
coordination problem that can be solved, or at least approximated, efficiently.

2.1.4 Problem statement

As pointed out earlier, we hope to find a class of coordination instances where co-
ordination problem can be solved easily. Extensive study of the complexity of the
plan coordination problem using Valk’s framework has been carried out already
by various researchers (cf. [Valk 2005, terMors and Witteveen 2005, Steenhuisen
et al. 2006, Steenhuisen et al. 2008, Buzing et al. 2006]). Different aspects that
affect the complexity of this problem have been studied by them:

Number of tasks Suppose we restrict the number of tasks, then [Steenhuisen
et al. 2006] proved that the CVP becomes polynomially solvable only if the
number of tasks is less than 3 for each agent.

Number of agents Suppose instead of the tasks, we are able to fix the number
of agents. In this case, [Steenhuisen et al. 2006] proved that the verification
problem is polynomially solvable. As an easy consequence, the coordination
problem is in NP for this case. However, this would imply that we would
have to have different mechanisms for each fixed number of agents. This
approach would be inconvenient since, in several situations such as multi-
modal transport, the number of agents might change frequently and each time
such a change happens we would require to run a different mechanism to solve
the verification problem.

Task graph structure Researchers such as [terMors 2004,Valk 2005] have shown
that, some classes of coordination instances are efficiently solvable. In par-
ticular, [terMors 2004] showed that if each agent has either at most one task
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with incoming arcs, or at most one task with outgoing arcs,1 then the coor-
dination problem for instances in this class is in NP. He further showed that
the coordination problem was efficiently solvable if each agent had either a
totally ordered set of incoming or a totally ordered set of outgoing arcs. More
generally, Valk, in [Valk 2005], showed that if agents were free of the so called
locplan cycles then coordination verification could be done efficiently.

Studying subclasses where either the number of tasks or the number of agents is
restricted, does not yield any new, easier to solve, class of coordination instances.
There already exists research (cf. [Steenhuisen et al. 2006]) which identifies the
classes where CVP can be efficiently solved.

Restricting problem instances based on their task graph structure is a more
hopeful ground for further research. Buoyed by the success of [terMors 2004], we
hope that more general classes of coordination instances where CVP can be solved
efficiently can be found through the study of task graph structures. In summary,
our objective of finding easier to solve coordination problem instances can be stated
as follows:

• Does there exist an efficiently identifiable class of plan coordination problems
instances where CVP can be efficiently performed?

• If so, can we design an approximation algorithm for CP, which exploits the
polynomial solvability of CVP?

• Finally, does a class of coordination problem instances exist within this class
of efficiently verifiable problem instances, such that even CP can be solved
polynomially for that class?

The first question is answered affirmatively in Section 3.1.1. We then design an
algorithm — DP ∗ algorithm which exploits the polynomial solvability of CVP in
Section 3.2. Finally, in Section 3.3 we show that there does exist a class of co-
ordination problem instances which can be efficiently solved. Since we can find a
positive answer to the last question, we have achieved what we initially set out for

1Given an agent Ai, incoming arcs result from precedence constraints {ti ≺ tj |tj ∈ Ti} and
ti 6∈ Ti. Out going arcs result from precedence constraints {ti ≺ tj |ti ∈ Ti} and tj 6∈ Ti.
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— to devise a way of efficiently guaranteeing plan coordination, although in a very
restricted sense.

2.2 Schedule coordination

So far, we have only discussed coordination mechanisms for plans. However, recall
that we set out to look for mechanisms that might involve temporal information
as well. Therefore, we would also require to study existing literature to achieve
schedule coordination. Temporal information in scheduling problems is presented in
many forms:

• Durations of tasks (see [Roundy et al. 1991, Prabhu and Duffie 1994, Liu and
Sycara 1995, Burke and Prosser 1991, Maturana and Norrie 1996, Agarwal
et al. 1995,Babayan and He 2004,Wang et al. 2008]).

• Release times of tasks (see [Wang et al. 1997, Baptiste 1999, Baptiste
et al. 2004]).

• Deadlines (see [Liu and Sycara 1995, Burke and Prosser 1991, Maturana and
Norrie 1996]).

Additionally, scheduling problems also involve explicit resource constraints. Pres-
ence of temporal information expectedly changes the texture of the (plan) coordi-
nation problem. For instance:

1. Schedules typically require to specify the time instant at which a task will
start getting processed.

2. A coordinated global plan might allow more than one task to be simultane-
ously processed. However, such a plan might be infeasible due to resource
constraints.

The presence of temporal information also affects the system goal. In plan co-
ordination, the system goal was to simply ensure that the global plan was con-
flict free or in other words feasible. In terms of global plan quality, that is the
best one can offer, since no other information is available. On the other hand
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in schedules, the presence of temporal information allows us seek a more so-
phisticated system goal. Several system goals such as minimizing tardiness (see
[Roundy et al. 1991, Prabhu and Duffie 1994]), meeting deadlines (see [Liu and
Sycara 1995, Burke and Prosser 1991, Maturana and Norrie 1996]) and minimising
makespan (see [Agarwal et al. 1995, Babayan and He 2004, Wang et al. 2008]) have
been pursued as system goals for scheduling in literature.

In this thesis, we choose to evaluate global schedules based on their makespan.
That is, we seek to ensure that a feasible global schedule is always attained and has
a makespan which is as small as possible. Further, we hope to ensure that agent
autonomy is never compromised in achieving such a global schedule. That is, we
would like to ensure that (i) agents can independently construct local schedules and
(ii) whatever individual schedules agents select, they can be merged into a feasible
global schedule. We could achieve this in two ways:

1. Centrally develop a global schedule. Split the global schedule into individual
schedules according to the tasks allocated to them. In this method, agents are
forced to select the centrally developed solution.

2. Split the problem into individual subproblems in such a way that whatever
the solution chosen by the agents, a global solution can be formed by merging
individual solutions.

The first approach clearly violates agent autonomy by allowing no choice to the
agents in the construction of a schedule for their tasks. The second approach how-
ever, allows agents to choose any suitable schedule for their tasks as long as it satisfies
the constraints of the sub problem they are faced with. Our interest is to assure
agents of autonomy and hence, we choose to adopt the second approach. Thus, in
summary, we are seeking to design schedule coordination mechanisms which:

1. Guarantee that a global schedule is feasible.

2. Ensure that agents can independently design schedules for their set of tasks,
while

3. ensuring that makespan of such a global schedule is minimum.
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Figure 2.8: Running example to illustrate schedule coordination methods.

Before we develop methods to achieve our goals, we would like to present a brief
survey of different schedule coordination techniques and also present a framework
to describe schedule coordination problems. To assist us in understanding different
scheduling techniques, we make use of the simple example shown in Figure 2.8.

Example 2.14. In this example, there are 8 tasks t1, . . . , t8 allocated to agents
A1, A2 and A3. The precedence constraints between tasks are shown as directed
arcs and durations of tasks are shown below each task in the figure. The objective
of each agent in this example is to autonomously construct a schedule specifying the
starting time for each of its tasks. The system objective or the coordination problem
is to ensure that the schedules constructed by agents do not violate precedence
constraints when merged whil ensuring a minimal makespan for the global schedule.

We present our study of relevant literature in the following sequence. We start
with a brief survey of interaction based methods and then discuss the schedule
coordination framework. We end this section with a discussion of decomposition
based methods for schedule coordination.
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2.2.1 Schedule coordination through interaction

When interaction between agents is allowed, it usually also means that complete
information privacy cannot be maintained. At least, the information regarding rele-
vant parts of their schedules has to be exchanged. However, by allowing for interac-
tion, we can draw from a large volume of research comprising of several interesting
research areas. One such area is that of distributed scheduling.

The process of coordinating schedules can also be visualised as a process of de-
veloping a feasible global schedule in a distributed way. Viewed this way, research in
distributed scheduling becomes relevant to our problem. Distributed scheduling can
be described as the process where, smaller parts of a scheduling problem are solved
by local decision makers and then through the use of some interaction mechanism a
coordinated global solution is achieved [Toptal and Sabuncuoglu 2009].

Thus techniques used for distributed scheduling might benefit us in solving the
schedule coordination problem, when interaction is allowed. Many interaction pro-
tocols have been used to ensure that an efficient coordinated schedule is obtained.
These interaction protocols can be broadly grouped under 5 categories — coopera-
tion (cf. [Kouiss et al. 1997, Decker and Lesser 1992]), iterative refinement (cf. [Liu
and Sycara 1995]), bidding (cf. [Kutanoglu and Wu 1999]), iterative bidding (cf. [Sol-
berg and Lin 1992]) and negotiation (cf. [Dewan and Joshi 2002]). In this section
we review mechanisms that use these interaction protocols.

Schedule coordination through cooperation In cooperative distributed
scheduling mechanisms, agents communicate with each other and determine a sched-
ule that is feasible. It is important to note that while agents in cooperative
systems do communicate, the intention is to achieve the global goal rather than
serve individual goals. Abundant number of distributed cooperative scheduling
systems have been presented in literature (see [Ramamritham et al. 1989, Durfee
and Lesser 1991, Decker and Lesser 1992, Prabhu and Duffie 1994, Gou et al. 1998,
Malewicz et al. 2006]). In general, when cooperation is used as the basis of de-
veloping a distributed schedule, agents (local decision makers) are expected to be
able to make changes to their existing schedule. In that sense, the only differ-
ence between centralised systems and cooperative mechanisms is the fact that in
a centralised mechanism, all decisions are made by a single entity whereas, in a



2.2. SCHEDULE COORDINATION 45

t1 t2
t3t4t5

t6
t7 t8

t5 t5

t2
t3

0 1 2 3 4 5 6

Figure 2.9: Initial schedules for tasks.

cooperative mechanism only the coordination decisions are taken collectively.

Example 2.15. Let us turn to our example to illustrate the general idea behind
using cooperation for developing a distributed schedule. Suppose the agents have
the schedule shown in Table 2.1 (the same schedule is pictorially depicted in Figure
2.9).

A1 A2 A3

Task Timepoint Task Timepoint Task Timepoint

t1 0 t3 4 t6 3

t2 2 t4 3 t7 4

t5 0 t8 5

Table 2.1: Initial schedules for tasks.

Clearly, this schedule is not feasible because task t7 starts at time point 4 whereas
task t4 which succeeds task t7 starts at time point 3. Similarly t2 starts earlier than
t4 and t6 starts earlier than t3. Now because the agents are cooperative and hence
willing to make changes to their schedules, they interact between themselves and
could decide upon the schedule shown in Figure 2.10.

This schedule is clearly feasible as no precedence constraints are violated. This
schedule has a makespan of 6 time units which is also the minimum makespan
possible for this problem instance.

In this scheme of coordination, there are four critical steps :
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Figure 2.10: Coordinated schedule through cooperation.

1. Information exchange.

2. Detection of precedence constraint violation.

3. Determining the solution and

4. finally making the suggested changes to local schedules.

Clearly, the first and the last steps violate the idea of autonomy. If agents are
autonomous, then it is unrealistic to expect them to share information. Suppose we
were to design a workaround for this issue by assuming a setting where agents are
only communicating with a problem owner who has all the information. Even in such
a case, imposing a solution (or a part of the solution) on the agents would violate
autonomy. Thus, while coordination can be guaranteed in this scheme, autonomy
cannot be guaranteed.

Schedule coordination through iterative refinement Suppose agents submit
only partial solutions to their local subproblems. Then many rounds of refinement
might be required to arrive at a complete global schedule. Although this scheme
does not eliminate the privacy and autonomy concerns, this method is still important
since agents now can reveal only parts of their plans rather than the entire plan. In
some sense, this reduces the amount of information sharing they require to do. Some
researchers such as [Liu and Sycara 1995], have employed this idea of iteratively re-
fining schedules to solve distributed job shop scheduling problems. In their strategy,
one of the agents is chosen to be an anchor and this agent is allowed to optimize
its schedule to satisfy its local efficiency criteria. The additional constraints, that
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result out of such optimization, are then communicated to the remaining agents,
who determine if they can compute local schedules if the additional constraints are
present. If they can, then the process is stopped and a global schedule is derived.
Otherwise, they communicate the constraints that violate their local schedules to
the anchor agent, which then modifies its current solution accordingly. The whole
process is repeated until a global solution is found.

Example 2.16. Considering our running example again, the agents could start
with the initial schedule being the one in Figure 2.9 and finally reach the schedule
in Figure 2.10 as follows.

In the first iteration suppose agent A3 is chosen as an anchor. Agent A3 now
optimises its local schedule according to its own criteria and specifies that task t7
would be performed at time point 0, task t8 would be performed at time point 1
and finally task t6 would be performed at time point 2. This schedule imposes the
following additional constraints — task t3 should have finished by time point 2, task
t5 should be complete by time point 1 and task t4 cannot start before time point 1.
Clearly the first two constraints cannot be satisfied by agent A2. Therefore A2 now
informs the same to agent A3. As a result of this interaction, A3 now modifies its
schedule such that t7 starts at time point 0, t8 starts at time point 3 and t6 starts at
time point 6. This process, as is easy to see, results in the schedule in Figure 2.10.

This technique is reminiscent of the plan-repair techniques we discussed earlier.
It expectedly suffers from the same drawbacks. As explained in the discussion on
plan-repair techniques, this technique requires agents to constantly keep exchanging
information so that a coordinated global schedule is arrived at. Further, if the
anchor agent is unwilling to make changes into its schedule then it might result in
a situation where no schedule is possible. Similarly, if the non-anchor agents refuse
the additional constraints then too a global schedule might be impossible.

Now suppose that the anchor agent were to propose a compensation scheme to
the other agents, then the regular agents might be more enthused to accept the
suggested additional constraints. A variant of this idea where instead of an anchor
agent a centralised job owner proposes and compensates for additional constraints
has been extensively investigated. This idea forms the basis of the next two inter-
action protocols that we present.
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Schedule coordination through auctions Auctions, have caught the imag-
ination of several researchers as potential mechanisms to achieve solutions for a
multitude of problems in a distributed way. Distributed scheduling has also ben-
efited through the use of auctions. In auction based systems, jobs are announced
through a manager agent and bids are requested for their processing. Agents prepare
bids by considering their own capabilities and the best bid is chosen by the man-
ager agent according to some pre-determined criteria. The Contract-Net protocol
(see [Smith 1980]) is a seminal work that employs bidding. Several other systems
which employ bidding (cf. [Parunak 1987,Shaw and Whinston 1988,Lima et al. 2006])
use the contract-net protocol as a basis for distributed scheduling. Some bidding
mechanisms stop at a single iteration, whereas others allow agents to revise their
bids after each iteration. For instance, in the system of [Dewan and Joshi 2002], each
auction continues for several rounds until the winning bid meets certain criteria of
the auctioneer. Such iterative bidding mechanisms are also found in (see [Dewan and
Joshi 2002,Lau et al. 2005,Lau et al. 2006,Liu and Sycara 1995]). Notice that in such
systems, the allocation of tasks is not fixed, it could vary based on the winner of the
auction. Further, if nobody wins an auction, then such a task will not be scheduled.
This implies that one cannot even guarantee that a feasible schedule will result out
of the process. The benefit though is that auctions guarantee complete autonomy
to the agents. Our quest however requires a guarantee that a global schedule will
be achieved.

Example 2.17. Referring to our example from Figure 2.8, let us suppose that
tasks t1, t3, t6 are part of job J1 tasks t7, t4, t2 belong to job J2 and tasks t5, t8
belong job J3. As is the case with most auction based systems in literature there
is no pre-determined allocation of tasks. Thus, we ignore the allocation in our
running example. Further, suppose that all jobs have the same owner. The job
owner announces its requirement through a manager agent and requests for bids.
Each bid from the agents consist of two pieces of information — (i) the time point
at which the job is performed and the (ii) cost of performing the job.

Suppose each bid is a 4-tuple 〈a ∈ A , t ∈ T, σ() : T → R, p() : T → R〉 specifying
the agent id, a task id, its proposed starting time and the cost for performing the
task. Now suppose that the job owner receives bids from 4 different agents as shown
in Table 2.2:
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A1’s bids 〈A1, t1, 0, 10〉 〈A1, t2, 4, 4〉 〈A1, t6, 6, 5〉
A2’s bids 〈A2, t3, 3, 15〉 〈A2, t7, 0, 14〉 〈A2, t4, 6, 4〉
A3’s bids 〈A3, t5, 0, 5〉 〈A3, t8, 5, 5〉
A4’s bids 〈A4, t1, 0, 50〉 〈A4, t2, 1, 30〉 〈A4, t4, 3, 20〉

Table 2.2: Bids received by agents for performing the tasks in Figure 2.8.

Clearly, the only tasks whose allocation can be decided by the job owner are
t1, t2, t4, because, there is a single bid for the remaining tasks. The only valid
schedule possible in this case would require that tasks t2, t4 are allocated to agent
A4.

Note that several kinds of bids can be used in such auctions. The bid structure
that was shown in the example could have additional constraints that specify that
all or none of an agent’s bids must be selected. In such cases finding an allocation
of tasks, such that a feasible schedule is possible, itself becomes a challenge.

Schedule coordination through negotiation Negotiation is another popular
mechanism for distributed scheduling (cf. [Solberg and Lin 1992,Kim and B. C. Paul-
son 2003, Kaplansky and Meisels 2007, Wu et al. 2009b]). In general, negotiations
are employed in distributed scheduling for two possible reasons — to construct a
feasible global schedule and to improve the efficiency of a global schedule.

Example 2.18. Consider again our running example from Figure 2.8. If negoti-
ations were used, we just have a set of tasks (with precedence constraints among
them) and a set of agents who can perform those tasks. If the negotiation is about
allocation of tasks then, the same solution as that of auctions could also be achieved
through negotiations. Only now, we could have two different settings — one where
the agents negotiate with job owner regarding the starting time of tasks and the
cost of performing the tasks or a second setting where there is no central job owner
and agents negotiate among themselves to decide who performs which task.

Suppose, they have the schedule of Figure 2.9 initially. They could arrive at the
schedule of Figure 2.10 through negotiation about modifications to their schedules
as well as the share of profits they receive as follows. Suppose that agent A1 derives
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a profit of p1, A2 derives a profit of p2 and agent A3 derives a profit of p3 by
scheduling as in Figure 2.9. Agent A2 starts the negotiation with A3, with the
proposal consisting of the list of changes it requires agent A3 to make to its schedule
— (start task t7 at time 0; start task t8 at time 3). It also proposes the additional
profit px that A2 is willing to pay agent A3. Agent A3 could reject the offer and in
turn propose a new offer, where it could give the list of changes to the schedule of
A2 that it desires — (start t4 at time point 3) as well as the share of profits py it is
willing to give A2. If agent A2 agrees then the final schedule would be the same as
that of Figure 2.10.

Negotiations and auctions offer the possibility that agents could retain their
autonomy while arriving at a coordinated solution. They also offer the possibility
of easily extending to settings where shared resources are present. Researchers [Wu
et al. 2009b, Wu et al. 2009a], have tried to build negotiation models for solving
schedule coordination problems in the recent past. As noted earlier the possibility
of failure to reach an agreement greatly diminishes their applicability for solving
schedule coordination problems.

Summarising the discussion so far, interaction between agents allows for many
different approaches to achieve coordination. As we have seen so far, when interac-
tion based methods allow for autonomy of decision making, as in the case of auctions
and negotiations, they do not guarantee that a solution can be found. On the other
hand when interaction based methods can guarantee that a solution is found, they
compromise on autonomy of decision making as in the case of cooperation and iter-
ative refinement. Neither compromise, the compromise on not achieving a solution
or the compromise of autonomy, is acceptable to us. Therefore, we next study
decomposition based techniques for schedule coordination.

As a slight departure from our approach towards plan coordination techniques,
we first describe the framework we use to describe schedule coordination problems in
the next subsection and then describe relevant literature. This change allows us to
point out the differences between our framework and the Simple Temporal Network
(STN) framework — a competing framework that could also be used to describe
a class of schedule coordination problems. Further, the framework we employ to
describe schedule coordination problems is a straightforward enrichment of Valk’s
framework we used to describe plan coordination problems and hence, we hope that
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the reader is already familiar with it and can easily grasp the changes necessitated
by scheduling.

2.2.2 Framework and problem definition

Schedule coordination problem can be thought of as a constraint system where
the starting point of each task is a temporal variable. The durations of tasks,
precedence relationships between tasks and agent capacities act as constraints in
developing a schedule. As with plans, if this constraint system can be decomposed
into subproblems such that every solution for each of the subproblems can be merged,
then we can be sure that schedules are coordinated. Notice that a decomposition that
ensures schedule coordination does not require to actually generate a schedule. All it
requires is to somehow design a set of constraints, such that every local schedule that
honours these constraints is bound to lead to a makespan minimal global schedule.
Thus, in reality we require to address a decomposition problem that can be stated
as follows:

Given an instance of the schedule coordination problem, find a makespan
minimising decomposition.

Temporal information in scheduling problems we consider, pertains to the dura-
tion required to process each task.2 This duration can be expressed as a function
l : T → Z. As mentioned earlier, agents in a schedule coordination instance can have
limits on the number of tasks they can perform simultaneously. These constraints
usually occur because of the number of resources agents can use to accomplish their
tasks. To capture such capacity constraints we define a function c : A→ Z+ ∪ {∞}
assigning to each agent Ai its concurrency bound c(i). This concurrency bound is
the upper bound on the number of tasks agent Ai is capable of performing simulta-
neously.

All tasks in the system need not be available for processing right in the beginning.
They may become available at some arbitrary instant in time. This time at which
a task is available for processing is called its release time and is encoded as r :
T → Z. Finally, tasks also have deadlines d : T → Z within which they need

2In our thesis we choose to only deal with integer durations.
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to be processed. For the sake of simplicity we always assume that release times
and deadlines are initialised as r() = 0 and d() = ∞. In summary, we say that
Π = 〈T,A,≺, φ, l(), c(), r(), d()〉 is a scheduling instance.

As mentioned earlier, our idea is to use decomposition as a means to solve the
schedule coordination problem. We aim to derive a set of decomposition constraints
which will enable agents to (i) allow agents to develop local schedules autonomously,
and (ii) ensure that the autonomously developed schedules can be always combined
and finally, (iii) ensure that the global makespan is as small as possible.

Similar to planning, each agent is now given a local scheduling instance Πi =
〈Ti,≺i, l(i), c(i), r(), d()〉 for which the agent prepares a local schedule σi.

Definition 2.7. Local schedule for agent Ai: Given a local scheduling instance
Πi = 〈Ti,≺i, l(i), c(i), r(), d()〉, a local schedule for Πi is a function σi : Ti → Z such
that:

• For every t ∈ Z+, |{t ∈ Ti | t ∈ [σ(t), σ(t) + l(t)]}| ≤ c(i), that is, the
concurrency bounds for agent Ai should be respected.

• For every pair t, t′ ∈ Ti, if t ≺ t′, then σi(t) + l(t) ≤ σi(t′)

As earlier, each agent schedules its own tasks whereas we require a global schedule
for all the tasks. Such a global schedule can be defined as follows.

Definition 2.8. Global schedule: Given a scheduling instance Π = 〈T,A,≺,
φ, l(), c(), r(), d()〉, a global schedule for it is a function σ : T → Z+ determining the
starting time σ(t) for each task t ∈ T such that:

• For each task t ∈ T, σ(t) = σi(t) if t ∈ Ti and

• for every pair t, t′ ∈ T , if t ≺ t′, then σ(t) + l(t) ≤ σ(t′).

As stated earlier, with schedule coordination, we seek more sophisticated system
goals than simply ensuring a feasible global schedule. Thus, we also would like to
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achieve makespan minimality. Therefore, we prefer a global schedule σ such that
maxt∈T {σ(t) + l(t)} ≤ maxt∈T {σ′(t) + l(t)}, where σ′(t) is any other feasible global
schedule.

In summary, this schedule coordination problem termed as the Coordinated au-
tonomous scheduling (CAS) problem can be stated as follows:

Definition 2.9. CAS problem: Given a scheduling instance Π = 〈T,A,≺,
φ, l(), c(), r(), d()〉, the CAS problem is to guarantee that a feasible global schedule
σ can be obtained by imposing upon each agent a set of additional constraints Ci,
such that if Ci is specified for the scheduling instance Πi = 〈Ti,≺i, l(i), c(i), r(), d()〉
of agent Ai, then all locally feasible schedules σi satisfying their local constraints Ci

can be merged into a globally feasible schedule σ for the original total scheduling
instance.

Once we can ensure that the global schedule is feasible, we further want to ensure
that the makespan of each global schedule is minimum.

Consider the situation in our running example. We can represent it as the CAS
problem shown in the illustration.

Example 2.19. The coordination instance in Figure 2.8 has eight tasks t1, . . . , t8
and three agents A1, A2, A3. φ(t1), φ(t2) = A1 and φ(t3), φ(t4), φ(t5) = A2 and the
remaining tasks, t6, t7 and t8 are allocated to A3. The set of precedence constraints
are — t1 ≺ t3, t3 ≺ t6, t7 ≺ t4, t4 ≺ t2 and t5 ≺ t8. The durations of tasks are as
follows. l(t1) = 1, l(t2) = 2, l(t3) = 2, l(t4) = 1, l(t5) = 3 and the remaining tasks
t6, t7, t8 have a duration of 1. Each agent has a concurrency bound of 1. That is,
c(i) = 1 ∀i ∈ {1, 2, 3}. The release times are all equal to 0 and the deadline for each
task is equal to ∞. Thus,

Π =〈{t1, . . . , t8}, {t1 ≺ t3, t3 ≺ t6, t7 ≺ t4, t4 ≺ t2, t5 ≺ t8},
l(t1) = l(t4) = l(t6) = l(t7) = l(t8) = 1, l(t2) = l(t3) = 2, l(t5) = 3

c(1) = 1, c(2) = 1, c(3) = 1

r(t) = 0 ∀t ∈ T
d(t) =∞ ∀t ∈ T 〉
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From the description of the CAS problem instance it is easy to see that the local
scheduling problems faced by the agents are the following:

Π1 = 〈{t1, t2}, ∅, l(t1) = 1, l(t2) = 2, c(1) = 1, r() = 0, d() =∞〉
Π2 = 〈{t3, t4, t5}, ∅, l(t3) = 2, (t4) = 1, l(t5) = 3, c(1) = 1, r() = 0, d() =∞〉
Π3 = 〈{t6, t7, t8}, ∅, l(t6) = 1, l(t7) = 1, l(t8) = 1, c(1) = 1, r() = 0, d() =∞〉

The CAS problem now is to design a set of constraints C such that any schedule
for Π1,Π2,Π3 can be combined into a feasible solution for Π. That is, we have to
design a set of constraints C such that:

σ(t) = σi(t), ∀ t ∈ Ti

Further, we desire to ensure that maxt∈T {σ(t) + l(t)} is minimum.

Suppose, we just focus on decomposing the CAS problem and ignore the con-
currency constraints. In that case, there exists another well studied problem called
the Temporal decoupling problem (TDP), which has an objective similar to the CAS
problem. Furthermore, solution to a TDP is a decomposition of a given linear tem-
poral constraint system. Most importantly, it has been shown that the TDP can be
solved in polynomial time (see [Hunsberger 2002b]).

TDP is based on the Simple temporal Network (STN) framework which is a pop-
ular framework to describe temporal constraint systems. We hope that by studying
STN and TDP, we can derive a method to solve CAS problems in polynomial time.
Therefore, we next briefly describe the essentials of the STN framework and then
proceed to describe Hunsberger’s solution for TDP.

2.2.3 Schedule coordination through decomposition

Scheduling can also be seen as a planning mechanism using the notion of time. We
have seen from our problem definition that the structure of the scheduling problem
is quite simple. The precedence relations in the problem can be easily expressed as
simple linear constraints involving differences between time points. Researchers pro-
posed in [Dechter et al. 1991] that constraints among time points could be grouped
together and expressed as a network of temporal constraints called the Simple tem-
poral network (STN). STNs can be used to represent
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• temporal constraints among tasks of an agent,

• durations of tasks and

• precedence relationships among tasks.

The standard operations on STNs— propagation of constraints, determination of
solutions and addition of extra constraints without losing solvability — all take
polynomial time. In this section, we review the basic concepts in STN theory and
also briefly describe the Temporal decoupling problem.

Definition 2.10. Simple temporal network (STN)(adopted from [Dechter
et al. 1991]): A STN is a pair S = (T , C), where T is a set {z, t1, . . . , tN} of time
point variables and C is a finite set of binary constraints on those variables.

Each constraint in an STN has the form ti − tj ≤ δ, for some real number
δ. The constraints in the set C are also called explicit constraints. The variable z
represents an arbitrary fixed reference point on the time line. Note that in an STN ,
all constraints are difference constraints upper bounded by a constant. Hence, we
have to express tj − ti ≥ l(ti) as ti − tj ≤ −l(ti).

Solutions to STNs associate a real value with each time point variable. That is,

Definition 2.11. Solution to an STN (adopted from [Dechter et al. 1991]):
Given an STN S = (T , C), a solution to it is a complete set of variable assignments

z = 0; ti = w1; t2 = w2; . . . ; tN = wN , where wi ∈ R,

that satisfies the constraints in C.

STNs are usually represented using directed graphs termed as Distance graphs.
Suppose we have the following constraints tj − ti ≤ 20 and ti − tj ≤ −10, the graph
representation would be as in Figure 2.11.

Example 2.20. Suppose we had a deadline of 8 time units on the tasks in Example
2.19. It is easy to see that, this is the same as imposing a deadline of 8 time units
to complete tasks t6, t2 and t8. This deadline of 8 time units can be expressed as
a constraint on the temporal distance between the time variables representing the
starting times of tasks. That is, one could specify the following:
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Figure 2.11: A simple distance graph.

t3 − t1 ≥ 1; t3 − t1 ≤ 3; t6 − t3 ≥ 2; t6 − t3 ≤ 3
t4 − t7 ≥ 1; t4 − t7 ≤ 2; t2 − t4 ≥ 1; t2 − t4 ≤ 3
t8 − t5 ≥ 3; t8 − t5 ≤ 4
t6 − z ≤ 7; t2 − z ≤ 7; t8 − z ≤ 7

Once such a linear system of temporal constraints is developed, we only need to
fine tune these constraints such that the temporal interval within which a task can
be performed does not interfere with either the interval of its predecessor task(s) or
its successor task(s). If we are able to do this, then we can just give the resulting
intervals to each agent and ask them to schedule independently. Since the intervals
do not overlap, any schedule they choose can be merged. Or in other words the
system is decomposed.

The distance graph representation of the STN described above is shown in Fig-
ure 2.12. In Figure 2.12, the maximum possible temporal distance between two
time point variables is indicated using a positive number and the minimum possible
distance is indicated using a negative number. Thus, task t4 cannot start within
1 time unit of t7 nor can it start later than 2 time units of t7. Notice that tasks
t6, t2, t8 cannot start later than 7 time units from the point the first task starts get-
ting processed. This constraint ensures that all tasks are completed before 8 time
units.

For the example in 2.20, a solution could be to start t1, t7, t5 at time instant 0,
t3, t4, at time instant 1, t2 at time instant 2 and finally t6, t8 at time instant 3.

STNs which do not allow any solutions are called inconsistent and conversely
STNs which allow at least a single solution are called consistent (see [Dechter
et al. 1991]).

Based on the distance graph, a matrix which captures the shortest distance
between every pair of time points in the distance graph can be computed. Such a
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Figure 2.12: Converting the temporal constraints of Example 2.20 into an STN

matrix is termed a Distance matrix and is denoted by D. The entries in a distance
matrix D[ti, tj ] denote the length of the shortest path from time point ti to time
point tj . In other words, they represent the strongest implicit constraint between
the two time point variables. Typically, distance matrices are computed using Floyd
-Warshalls all pairs shortest path algorithm [Floyd 1962]. The time complexity of
this computation is well known to be O(T 3).

Temporal decoupling problem (TDP) Notice from Example 2.20 that, if each
agent were to independently develop schedules, agent A1 might want to start process-
ing task t1 at time instant 4, whereas agent A2 might want to start t3 at time instant
2. Clearly, when combined these two schedules create an infeasibility. Therefore,
we require some method to ensure that such infeasibility does not arise even when
agents schedule independently. This problem is known as the Temporal decoupling
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problem (TDP) (see [Hunsberger 2002b]).

Informally, the TDP arises when the set of temporal variables in a given STN
are partitioned into several STNs and it is required to ensure that any solution
to the subSTNs can be merged into a solution of the whole STN . Fortunately,
Hunsberger in [Hunsberger 2002b], has developed an efficient procedure to solve the
TDP. Clearly, TDP cannot arise if there is no partitioning of time point variables.
However, the z variable must exist in each partition so that a solution to the TDP
can be found. The z variable functions as a common clock for all the partitions.
Such partitions which include a common clock are called z-partitions. Formally,

Definition 2.12. z-partition (adopted from [Hunsberger 2002a]): T1, . . . , Tn
are said to z-partition T if

•
n⋂

i=1

Ti = {z}, i.e., the z time point variable is the only common reference point

for all partitions and hence the only element common to all of the partitions.

•
n⋃

i=1

Ti = T , i.e., every time point variable in T belongs to some partition Ti.

We can now formally define the Temporal decoupling problem (TDP) as follows.

Definition 2.13. Temporal decoupling problem (TDP)(adopted from
[Hunsberger 2002a]): A temporal decoupling of an STN S = (T , C) is a set
of STN {S1 = (T1, C1), . . . ,Sn(Tn, Cn)}, such that:

• each of the STN in the set {S1 = (T1, C1), . . . ,Sn(Tn, Cn)} are consistent,

• T1, . . . , Tn, z-partition T ,

• merging any solutions for S1, . . . ,Sn yields a solution for S.
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z

New constraints

l1

Ti

Tj

D[τi, z]

D[z, τj ] = l2

τi

τj

δ

Figure 2.13: Temporal decoupling process.

Hunsberger’s algorithm is based on the following idea. Suppose there exists a
constraint tj − ti ≤ δ. Also suppose that D[z, ti] = l1 and D[z, tj ] = l2 and that
l1 + δ > l2. By adding a constraint z − ti ≤ (l1 − l2 − δ), the consistency of the
STN is not harmed. However, adding such a constraint would make the constraint
tj− ti ≤ δ redundant. In other words, we are tightening the constraints between the
z and time point variables ti, tj by removing the slack (l1− l2−δ). If tj and ti belong
to different partitions, then the inter-partition constraint between ti and tj is now
redundant. Similarly, we could render each inter-partition constraint redundant by
adding constraints as above. Or in other words, we could remove each of the inter-
partition constraints and as a result decouple the STN . Figure 2.13 represents the
process.

Example 2.21. Referring back to the Example in 2.20, one could apply Huns-
berger’s method and derive the set of tightened constraints shown in Table 2.3:

Clearly, now it does not matter whether agent A2 schedules task t5 at time point
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0 ≤ t1 − z; t1 − z ≤ 1

4 ≤ t2 − z; t2 − z ≤ 7

1 ≤ t3 − z; t3 − z ≤ 2

1 ≤ t4 − z; t4 − z ≤ 3

0 ≤ t5 − z; t5 − z ≤ 2

4 ≤ t6 − z; t6 − z ≤ 7

0 ≤ t7 − z; t7 − z ≤ 1

5 ≤ t8 − z; t8 − z ≤ 7

Table 2.3: A possible set of constraints added by Hunsberger’s method.

Task Interval

t1 [0,1]

t2 [4,7]

t3 [1,2]

t4 [1,3]

t5 [0,2]

t6 [4,7]

t7 [0,1]

t8 [5,7]

Table 2.4: A solution to the original CAS problem instance.

0 or time point 1 or time point 2. In all three cases, agent A3’s schedule for task t8
will not violate the precedence constraint between the two tasks. It is easy to verify
that it is the same for all tasks. This means that we have achieved a decoupling.

Notice from the example that the solution derived from the TDP can be trans-
lated back into a solution for the CAS problem. That is, we could specify the time
intervals for each task within which they need to be scheduled.

Now it is easy to see that, as long as agents schedule tasks within the specified
intervals, the makespan is never going to exceed 8.

We have seen so far that CAS problems can possibly be solved by (i) first rep-
resenting them as STNs and (ii) then solving the TDP that represents the CAS
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problem and finally, (iii) translating the solution from TDP to a solution of the
CAS problem. Therefore, we could in principle use Hunsberger’s algorithm to solve
the CAS problem instances where agents have unbounded concurrency. While this
is good news, there are several shortcomings of such a solution.

• A major shortcoming is the inability to deal with concurrency constraints.

• While any given deadline can be met, we do not know if the resulting global
makespan is the least possible.

• Finally, it is likely that we can avoid the Floyd Warshall’s algorithm to deter-
mine the distance matrix. This can be an expensive computation if the set of
tasks/time point variables is large.3

Thus, our first challenge would be to

design an efficient way of decoupling any given, concurrency constraint
free, CAS problem instance.

We hope to adapt Hunsberger’s solution to the TDP to achieve this. Once such a
method is found we would then like to

design an efficient way of decoupling CAS problem instances with con-
currency constraints.

We hope that we will be able to adapt the mechanism derived to solve the case when
there are no concurrency bounds to also handle the case when there are concurrency
bounds. In either case, we would like to ensure that the makespan of the global
solution is as small as possible.

The additional necessity to ensure makespan minimality can be tricky. In fact,
as we shall prove in Chapter 5, for a general task graph, it is NP-complete to obtain
a makespan minimal decomposition if capacity constraints are involved. Therefore,
when capacity constraints are involved, our primary focus shall be to obtain a de-
composition so that agents can independently construct their schedules. Once we
are able to ensure a decomposition, we can study subclasses of problems where we
can give better guarantees on the global makespan.

3We will discuss this in greater detail in Chapter 4.
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2.3 Summary

In this chapter, we studied various methods that can be used to coordinate plans and
schedules of autonomous agents. Broadly, they were based on two important criteria
— interaction and decomposition. When agents could interact, then methods such
as plan repair, plan merging and iterative refinement could be employed if they are
cooperative. However, when agents are competitive instead of cooperative, then
market based methods such as auction and negotiation could be used to achieve
coordination. When agents cannot interact at all, we resort to decomposition based
techniques to achieve coordination.

Information privacy is a major problem with interacting systems, the other is-
sue is the necessity for interaction itself. In several systems for example— adhoc
communication networks— it is almost always assumed that communication links
between agents are failure prone. Therefore, to achieve true autonomy and en-
sure coordination we must look into decomposition based methods for coordination.
We described Valk’s plan coordination framework that is suitable for using decom-
position for coordination. We extended it to also describe schedule coordination
problems. Finally, using the framework we were able to formally also define the
plan and schedule coordination problems that we seek to solve in this thesis.

The summary of plan coordination methods we reviewed and the reasons why
they were not chosen are summarised in Table 2.5.

Based on the insights we gained though the review of the plan coordination
methods, we attempt to answer the following open problems

1. Does there exist an easily identifiable class of plan coordination problems in-
stances where CVP can be efficiently performed?

2. Can we design an approximation algorithm for CP, which exploits the fact
that CVP is polynomially solvable?

3. Does there exist a class of coordination problem instances such that even CP
can be solved polynomially for that class?

Similar to the summary table for plan coordination methods, Table 2.6 sum-
marises the various distributed scheduling methods as well as reasons why they
were deemed unsuitable for our work.
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Method Information Disadvantages
exchanged

Plan merging Exchange of partial Sharing of partial/full
plans and plans and the requirement that
deadlock agents are able to make changes
information. to their local plans imply a

compromise on autonomy.

Plan repair Exchange of partial Same as above
or full plans and
required changes.

Auction Exchange of bids. There may be no bids
to perform some task(s) or the bids
for some tasks may be prohibitively
costly leading to a failed auction.

Principled Proposals None of the proposals
negotiation for schedule may be agreeable.

changes and
compensation.

Social laws — Impractical because
coordination instances
have little in common.

Table 2.5: Various plan coordination methods and reasons why they are unsuitable.

Apart from distributed scheduling methods we also researched the temporal de-
composition approach of Hunsberger. As noted earlier, this method could not be
used for our purposes because of its inability to handle capacity constraints. How-
ever, the STN framework can be used to describe schedule coordination problem
that we deal with in a very basic case — case when there are no concurrency con-
straints. Thus, our challenge can now be stated as follows.

Can a decoupling technique be developed such that it

1. ensures that every local schedule for the decomposed problem can
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Scheduling Disadvantages
method

Cooperation Information regarding local scheduling
is shared and agents are required to
make changes to their local schedules.
Thus compromising autonomy.

Iterative refinement Same as above.

Bidding, iterative bidding Absence of bidders for a task or infeasibility
of a bid might lead to a failed auction.

Negotiations Agents may not arrive at a set of proposals
that result in a feasible schedule.

STN based techniques Inability to handle
concurrency constraints and absence of a
guarantee on minimality of makespan.

Table 2.6: Various distributed scheduling methods and reasons why they are unsuit-
able.

be merged into a feasible global solution

2. ensures concurrency constraints are not violated and

3. also minimises the global makespan?

So far we have seen several methods that assist us in coordinating plans and
schedules. We have also seen that if we do not allow for interaction, then the best
way forward is to attempt decomposition. Based on this insight, in the next chapter
we deal with the problems related to plan coordination. In Chapter 4 and Chapter
5 we apply the same learning to solve problems related to schedule coordination.

In Chapter 3, we first examine if there exist subclasses of plan coordination
problems which can be solved more efficiently than the general case. Later we
design approximation algorithms that allow us to coordinate such subclasses of plan
coordination problems. In Chapter 4 we show that if resource constraints are absent,
then we can encode problems in our framework as STNs. Thus, we are sure that
there exists at least one method to solve schedule coordination problems efficiently.
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In fact, we go on to show that we can avoid the process of encoding a given CAS
problem into an STN and yet solve it using a method derived from Hunsberger’s
method. We also show that our method is more efficient in solving the CAS problem
instances when compared with Hunsberger’s method.

In Chapter 5, we study CAS problems with resource constraints and establish
their complexity. We later develop approximation algorithms for each of the variants
and show approximation bounds for the respective algorithms. Finally, in Chapter 6
we compare the performance of an algorithm, MISAn, developed in Chapter 5 against
an optimal solution to measure the loss in makespan efficiency when task graphs have
very general structures. We perform this comparison based on an empirical anal-
ysis of MISAn in coordinating the scheduling activities for ground handling service
providers at an airport.





Chapter 3

Tractable plan coordination

In Chapter 2 we presented the state of the art research in plan coordination methods.
In general, the problem of coordinating plans of agents using decomposition is known
to be Σp

2-complete. Therefore, we also stated that we seek to identify subclasses of
plan coordination problem instances where at least coordination verification (CVP)
can be efficiently performed. Once such a subclass is found, we would like to de-
velop approximation methods that exploit the fact that CVP can be efficiently solved.
Further, we also seek to detect if there exist subclasses of efficiently verifiable plan
coordination instances, where even the plan coordination problem can be solved ef-
ficiently. This chapter is focussed on (i) finding a subclass of plan coordination
instances where coordination verification can be performed efficiently, (ii)develop a
plan coordination method that exploits such a class of coordination instances and (iii)
discover, if any, subclasses that exist within this subclass of coordination instances,
where plan coordination can be performed efficiently.

We discussed in Chapter 2 that our best hopes lie in detecting special properties
of task graphs that enable efficient verification. To motivate the existence of such
structures and hence such subclasses of problem instances, let us first look at an
example of plan coordination that arises in a simple supply chain.

Example 3.1 (Supply chain management). Figure 3.1 depicts a simple supply chain
network, where four different enterprises are involved — a product manufacturer, a
cross dock, a raw material supplier and a retailer. A cross dock is an enterprise which

67
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Manufacturer Crossdock Retailer

Raw material supplier

send (P1, P2)

make (P1, P2)

receive (R1, R2)

ship (P1, P2)

ship (R1, R2) mine (R1, R2)

sell (P1, P2)

Figure 3.1: Example supply chain scenario. The arrows represent the flow of material
in the supply chain.

does not produce anything but is simply involved in distribution of products and raw
materials. Each enterprise has to perform some specific tasks such as send(P1, P2),
ship(R1, R2), or sell(P1, P2). Flow of goods between enterprises induces precedence
constraints on tasks to be performed. For example, goods cannot be sold before they
are shipped to the retailer and unless the raw material is mined for, they cannot
be shipped to the manufacturer and so on. These dependencies are indicated by a
directed arrow between tasks.

Each enterprise wants to make a plan for its set of tasks. Such a plan for the
manufacturer, for example, might be to wait first for the receipt of R1 and R2 before
sending P1 and P2. Such a plan is a partially ordered set of precedence constraints
respecting the internal (intra-agent) dependency constraints.

Suppose now that the cross dock plans to send raw materials R1 and R2, after
sending products P1 and P2 and the manufacturer decides to send P1 and P2, after
receiving R1 and R2. Both plans are valid local plans since they do not violate
any internal constraints. However, when these plans are combined together we have
an infeasible joint plan as shown in Figure 3.2: it contains a dependency cycle. If
enterprises could communicate with each other regarding their plans, then quite
easily such a dependency cycle can be avoided. However, enterprises in this system
are unwilling to communicate with their partners about their own plans for reasons
such as information privacy. Therefore, we require a method which does not require
agents to interact but still ensures that such dependency cycles are not formed in
the global plan.



69

Manufacturer Crossdock Retailer

Raw material supplier

send (P1, P2)

make (P1, P2)

receive (R1, R2)

ship (P1, P2)

ship (R1, R2) mine (R1, R2)

sell (P1, P2)

Figure 3.2: Plan deadlock between activities send(P1, P2), ship(P1, P2), ship(R1, R2)
and receive(R1, R2) in the supply chain of Figure 3.1. The deadlock is shown as
dotted arcs between the activities.

One simple solution for coordinating plans, is to add a large set of coordination
constraints before agents make their local plans. These constraints are such that
each agent is left with only a single possible local plan. That is, suppose we add the
following precedence constraints — receive(R1, R2) ≺ make(P1, P2); make(P1, P2) ≺
send(P1, P2); send(R1, R2) ≺ send(P1, P2) to the original instance and then let agent
formulate their plans. The constraints already imply a unique plan for both the
manufacturer and the crossdock. In fact, this is equivalent to a centralised solution
where agents have no choice in picking an appropriate plan and hence not suitable.
However, acyclicity of the global plan can be guaranteed in a simpler way by just
adding a single precedence constraint: ship(R1, R2) ≺ ship(P1, P2). This allows
the manufacturer to plan its tasks in any order. Therefore, this solution is more
preferable to the earlier one where none of the agents had any choice. In other words,
coordination mechanisms that find a minimum set of coordination constraints are
more preferable to ones which add larger sets of coordination constraints.

Recall from the previous chapter that plan coordination instances are described
by a tuple Π = 〈T,A,≺, φ〉. The supply chain situation that was discussed in
Example 3.1 can be formally represented as a plan coordination instance as shown
below.

Example 3.2. The manufacturer, the crossdock, the retailer and the raw material
supplier can be represented as agents A1, A2, A3, A4 respectively and the actions
of agents correspond to the tasks in Π = 〈T,A,≺, φ〉. Because of the flow of raw
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materials and products, the following precedence constraints are imposed on this set
of tasks: mine(R1, R2) ≺ ship(R1, R2); ship(R1, R2) ≺ receive(R1, R2);
send(P1, P2) ≺ ship(P1, P2); ship(P1, P2) ≺ sell(P1, P2). The allocation of tasks
also corresponds to the allocation of actions of the agents.

As explained in the example, the coordination problem faced by the agents can
be solved by adding the coordination set ∆ = {ship(R1, R2) ≺ ship(P1, P2)}. Inci-
dentally, this set ∆ is also the minimum coordination set.

It is easy to check if the coordination set for the simple supply chain scenario
in Example 3.1, is indeed sufficient for coordination. However, the same cannot
be said in general. Valk [Valk 2005] shows that verifying whether a coordination
set is sufficient is an intractable problem. That said, not all coordination problems
are equally hard. As noted in the previous chapter, Valk himself indicates that
there could be classes of problems where coordination verification can be efficiently
performed.

In Example 3.1, note that tasks allocated to the same agent do not have any
precedence constraints between each other. This means that for every i the prece-
dence relation ≺i is empty. This property, called the intra-freeness property, ensures
that coordination verification can be done efficiently. We present a more elaborate
proof that confirms that the CVP for plan coordination instances with this intra-
freeness property can be efficiently solved later in the chapter. Coordination in-
stances with this property are termed intra-free instances and are the focal point of
this chapter.

In the next section, we will show that the coordination verification problem for
intra-free instances is indeed polynomially solvable. Thus reducing the coordination
problem to an NP-complete problem — a step lower in the complexity hierarchy
than the general coordination problem. As we will see, these results will allow
us to develop a new (and better) approximation algorithm — the Advanced depth
partitioning algorithm (DP ∗) — to solve intra-free coordination instances in Section
3.2. We show that the DP ∗ algorithm improves upon the existing state of the art
depth partitioning approach as it never constructs a coordination set bigger than the
one constructed by depth partitioning. Finally, in Section 3.3.2 we present a special
class of intra-free instances called the Special linear intra-free instances (SLIF) where
even the coordination problem can be efficiently solved.
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3.1 Intra-freeness and tractable coordination verifica-
tion

Let us start our study by formally defining the property of intra-freeness.

Definition 3.1. Intra-free instance: A coordination instance Π = 〈{Ti}ni=1,≺〉
is intra-free if, for every Ti, the corresponding subgraph GΠi = (Ti,≺i) of the task
graph GΠ is the empty graph (Ti, ∅). That is, there are no precedence relations
between tasks assigned to the same agent. Intra-free instances are described by
the tuple Π = 〈{Ti}ni=1,≺, ∅〉. The empty set here indicates that each set ≺i in
Π = 〈{Ti}ni=1,≺〉 is empty.

If an instance is intra-free, then every task t is either an isolated node in GΠ or
is adjacent to a task t′ assigned to another agent.

For our analysis, we define a special subclass of intra-free coordination instances.
We call it the class of strictly intra-free instances, which will be of special importance
in proving properties of intra-free coordination instances:

Definition 3.2. Strictly intra-free instance: An intra-free coordination instance
Π = 〈{Ti}ni=1,≺〉 is called strictly intra-free if, for every i, the set Ti of nodes in the
graph GΠi can be partitioned in two disjoint subsets In(Ti) and Out(Ti) such that

1. In(Ti) consists of nodes t with out-degree equal to 0 (out(t) = 0) and

2. Out(Ti) consists of nodes t with in-degree equal to 0 (in(t) = 0).

The nodes in In(Ti) are called sinks and the nodes in Out(Ti) are called sources.
Strictly intra-free instances are described as the tuple Π = 〈{Ti}ni=1,≺, strict〉. To
differentiate between intra-free instances and strictly intra-free instances, we use the
word strict within the tuple Π = 〈{Ti}ni=1,≺, strict〉.
Example 3.3. Consider the task graph in Figure 3.3. The coordination instance
can be described as the tuple Π = 〈{{t1, t2}, {t3, t4, t5}}, {t1 ≺ t3, t1 ≺ t4, t5 ≺
t2}, strict〉. Tasks t1, t5 are sources and tasks t2, t3, t4 are sinks.

Notice that in strictly intra-free coordination instances, we do not have tasks t
with both out(t) > 0 as well as in(t) > 0. That is, we exclude intra-free instances
such that there are tasks t′, t′′ in other partition blocks Tj , Tk such that t′ ≺ t and
t ≺ t′′.
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A1 A2

t1

t3

t2

t4

t5

Figure 3.3: Strictly intra free instance.

3.1.1 Agent dependency graphs

The rather surprising result we prove now is that for intra-free coordination in-
stances, the coordination verification problem can be reduced to checking the acyclic-
ity of a (smaller) graph called the agent dependency graph. Because checking for
acyclicity of a graph is in P [Christofides 1975], the coordination verification prob-
lem for intra-free coordination instances is in P as well.

Definition 3.3. Agent dependency graph: Given a task graph GΠ of an intra-
free instance Π = 〈T,A,≺, φ, ∅〉, the agent dependency graph derived from GΠ is a
graph GA = (V,E), where V = {vi : Ai ∈ A} is the set of nodes corresponding to
agents and E = {(vi, vj) : (t, t′) ∈≺ and t ∈ Ti, t′ ∈ Tj} is the dependency relation
between them.

Example 3.4. Consider the Supply Chain example (Example 3.1), where seven
tasks are allocated to four agents. Its task graph is shown in Figure 3.4(a). Fig-
ure 3.4(b) shows its corresponding agent dependency graph.

We start by first proving some results for strictly intra-free coordination in-
stances. Then we will show that intra-free instances in general can be easily trans-
formed to strictly intra-free coordination instances. We show that the properties
holding for strictly intra-free instances also hold for this larger class of instances.
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(a) Task graph (b) Agent dependency
graph

A1 A2 A3

A4

v1 v2

v3

v4

t1

t2

t3

t4

t5

t6

t7

Figure 3.4: The task graph of an intra-free instance and its corresponding agent
dependency graph.

Recall that given a task graph GΠ = (T,≺) and a partitioning {Ti}ni=1 of the
set of nodes T , the coordination verification problem for intra-free instances comes
down to, deciding whether for all possible acyclic extensions GΠi

∗ = (Ti,≺) of the
subgraphs GΠi = (Ti, ∅), the resulting extension GΠ

∗ = (T,≺ ∪ ≺∗1 ∪ . . .∪ ≺∗n) of
GΠ is still acyclic. While the problem to decide whether a given graph is acyclic is
in P, the CVP is intractable [Valk 2005] for general coordination instances.

3.1.2 Coordination verification through agent dependency graphs

There is an obvious connection between the coordination verification problem for
Π = 〈{Ti}ni=1,≺, ∅〉 and the acyclicity of GA. The only cycles that can occur in any
CVP instance Π = 〈{Ti}ni=1,≺, ∅〉 are inter-agent cycles and therefore, if the agent
dependency graph does not contain a cycle then the intra-free instance also does not
contain one:

Proposition 3.1. Let Π = 〈{Ti}ni=1,≺, ∅〉 be an intra-free coordination instance
and GA its associated agent dependency graph. Then GA is acyclic implies that Π
is coordinated, i.e., Π is a yes-instance of the coordination verification problem.

Proof. If GA is acyclic, the only cycles that could occur in any extension of GΠ are
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Figure 3.5: Coordinated instance of a task graph.

cycles within a task set Ti of an agent Ai. These are excluded, since each individual
extension 〈Ti,≺∗i 〉 of 〈Ti,≺i〉 has to be an acyclic refinement of ≺i.

In general, Proposition 3.1 is true for every coordination instance. However,
the converse is not true: even if GA is cyclic, we might have a yes-instance of
Π = 〈{Ti}ni=1,≺, ∅〉. That is, after adding the coordination arcs, the agent depen-
dency graph can still contain a cycle, although the instance now is coordinated. For
instance, the agent dependency graph for the Example in 3.1 remains the same even
after addition of the coordination arc. Therefore, it is not possible to detect from
just the agent dependency graph whether an instance is coordinated.

Example 3.5. Consider the scenario in Example 3.1. This coordination instance is
represented by the task graph shown in Figure 3.4(a). The agent dependency graph,
as shown in 3.4(b), contains a cycle: v1 is dependent upon v2 vice-versa. However,
if an additional constraint t5 ≺ t4 is given to agent A2 as shown in Figure 3.5 then,
whatever plan A1 chooses, it does not affect the feasibility of the total plan. That
is, the instance is coordinated. However, the agent dependency graph remains the
same.

Interestingly, if Π = 〈{Ti}ni=1,≺, ∅〉 is a strictly intra-free coordination instance
we can actually show that the converse holds, too:

Proposition 3.2. Let Π = 〈{Ti}ni=1,≺, strict〉 be a strictly intra-free coordination
instance and GA its agent dependency graph. Then the following holds: GA is acyclic
iff Π is a yes-instance of the coordination verification problem.
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Proof. The if direction has been shown in Proposition 3.1. Here, we have to show
that Π = 〈{Ti}ni=1,≺, strict〉 is not coordinated if GA contains a cycle. So, let GA

contain a simple cycle (v1, v2, . . . , vk, v1). Since the coordination instance is strictly
intra-free, there must exist a sequence of tasks

(ti1,2, ti2,1, ti2,2, . . . , tik,1, tik,2, ti1,1)

such that for j = 1, . . . , k, we have

tij ,1, tij ,2 ∈ Tij
tij ,2 ≺ tij+1,1 and

tik,2 ≺ ti1,1

But then, it immediately follows that the empty precedence relation ∅ in GΠj =
(Tj , ∅) has a simple acyclic extension {tij ,1 ≺∗ tij ,2} such that the graph G∗T =
(Tj ,≺ ∪ ≺∗) where ≺∗ is the union of extensions ≺∗ij contains a cycle. Hence,

Π = 〈{Ti}ni=1,≺, strict〉 is not coordinated.

Note that these results hold for strictly intra-free coordination instances. It is,
however, very easy to generalize them to intra-free coordination instances. We can
transform intra-free instances to strictly intra-free instances by applying the follow-
ing task-splitting procedure on tasks that violate the strict intra-freeness property.

To perform task splitting, given an arbitrary intra-free coordination instance
Π = 〈{Ti}ni=1,≺, ∅〉, consider the transitive closure GΠ

+ = (T,≺+) of its task graph
where, ≺+ is the transitive closure on the precedence relationships in GΠ. For every
i and every t ∈ Ti such that in(t), out(t) > 0, do the following:

1. Split t into two tasks t1 and t2,

2. For each precedence constraint t′ ≺ t add a precedence constraint t′ ≺ t1 and
add t2 ≺ t′, whenever t ≺ t′ ;

3. Remove t and all precedence constraints it is mentioned in.

We call the strictly intra-free instance Π′ obtained by the above procedure as the
strictly intra-free variant of Π. To show that the task splitting procedure results in
an intra-free instance with only sources and sinks, observe the following:
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ta t1 t2t
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(a) Intra free instance (b)Equivalent
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Figure 3.6: Converting to strictly intra-free instance.

• The only tasks unaffected by the procedure are those tasks which are already
sinks or sources,

• If a task t is split into t1, t2 then there exists no path between t1 and t2.

It is easy to see that at the end of this procedure there are no tasks with both in
degree and out degree greater than 0 since, every task that does not satisfy this
property is split into a sink and a source.

Example 3.6. Figure 3.6 illustrates the task-splitting procedure. Note that the
transitive closure of the precedence relationship between tasks ta, t, tb is represented
by the dashed arrow (ta, tb). The task t of agent A2 has been split into two tasks
t1 and t2. We can now simply verify that when the strictly intra-free variant is
coordinated, the intra-free instance must be also coordinated.

We need to show now that the task splitting procedure preserves all the coordi-
nation properties. Therefore, we obtain the following proposition.

Proposition 3.3. An intra-free coordination instance Π is coordinated whenever its
strictly intra-free variant Π′ is coordinated.

Proof. We only prove the if-part. The only-if part goes analogously. Suppose the
contrary that the strictly intra-free variant Π′ = 〈{T ′i}ni=1,≺′, strict〉 is coordinated
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while the intra-free instance Π = 〈{Ti}ni=1,≺, ∅〉 is not. Then for every i, i =
1, 2, . . . , n, there exists some partially ordered extension ≺∗i of 〈Ti,≺i〉 such that
≺∗=≺ ∪ ≺∗1 ∪ . . .∪ ≺∗n is cyclic. Given ≺∗, create the following extension ≺′∗ of ≺′:

For every (t, t′) ∈≺∗ such that t, t′ ∈ Ti

• if both t, t′ have been split, add (t1, t
′
2) to ≺′∗,

• else if t has been split add (t1, t
′) to ≺′∗,

• else if t′ has been split add (t, t′2) to ≺′∗,

• else add (t, t′) to ≺′∗.

It is not difficult to see that for every i, i = 1, 2, . . . , n, 〈T ′i ,≺′∗i 〉 is a partial order,
but 〈{T ′i}ni=1 ≺′∗〉 is not. Hence Π′ cannot be coordinated.

Let us illustrate the proof with a simple example.

Example 3.7. Consider the situation in Figure 3.7. The original intra-free instance
is shown in Figure 3.7(a). Tasks t3, t4 are the only tasks in the instance that can be
split. The strictly intra-free equivalent of the instance in Figure 3.7(a) is shown in
Figure 3.7(c). If there exists a cyclic extension of the intra-free instance as shown in
Figure 3.7(b), then we can create a similar cyclic extension in the strictly intra-free
version. Consider the cycle t3 ≺ t5 ≺ t6 ≺ t4 ≺ t3. To create a cycle in the strictly
intra-free version, let us first consider t4 ≺ t3. In the strictly intra-free version, t3 is
split into t13 and t23 and t4 is split into t14, t

2
4. Now as noted in the proof, we add a

constraint t14 ≺ t23. Similarly, for the constraint t5 ≺ t6, since, neither task is split,
we also add t5 ≺ t6 to the strictly intra-free version. Clearly this creates a cycle
t14 ≺ t23 ≺ t5 ≺ t6 ≺ t14. The existence of such a cyclic extension for the strictly
intra-free instance contradicts the assumption that it was coordinated.

Based on these results we can now claim that the coordination verification prob-
lem for intra-free instances reduces to checking the acyclicity of the corresponding
agent dependency graph of the strictly intra-free variant. Thus, the following theo-
rem holds:

Theorem 3.4. Coordination verification for intra-free instances can be performed
in polynomial time.
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Figure 3.7: (a) Intra-free instance. (b) Equivalent strictly intra-free instance.(c)
Cyclic extension of intra-free instance. (d) Cyclic extension of strictly intra-free
instance.

Proof. From Propositions 3.1 and 3.2 we know that if the agent dependency graph
is acyclic then the intra-free instance is coordinated. Further, because of the task
splitting procedure and Observation 3.1.2 we know that it is enough to verify if the
strictly intra-free variant is coordinated or not. Testing the acyclicity of a graph can
be done in polynomial time [Cormen et al. 1990]. Thus, we claim that coordination
verification can be done in polynomial time for intra-free instances.
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3.2 Approximation algorithms for intra-free plan coor-
dination

In the previous sections it was established that coordination verification for intra-
free instances could be achieved efficiently. One might hope therefore that, finding
a minimum coordination set is also tractable in the case of intra-free coordination
instances. This turns out to be wrong. We show below that the problem of finding
such a minimum set of coordination constraints is NP-complete:

Proposition 3.5. The decision version of coordination problem for intra-free coor-
dination instances is NP-complete.

Proof. Theorem 3.4 shows that if we are given a coordination set for an intra-free
instance it is possible to efficiently verify whether the coordination set ensures that
global plans are always acyclic.

We now prove the NP-hardness of the intra-free coordination problem by reducing
the Directed feedback vertex set problem to the plan coordination problem.

Definition 3.4. Directed feedback vertex set problem: The Directed feedback
vertex set problem is, given a directed graph G = (V,E) and a K ∈ Z+, to decide
whether there exists a subset of at most K nodes from V whose removal will render
the remaining graph G acyclic.

Let I = (G = (V,E),K) be an instance of the directed feedback vertex set
(FVS) problem [Festa et al. 1999]. We obtain an instance Π = 〈{Ti}ni=1,≺, ∅〉 of the
intra-free coordination problem by

1. duplicating tasks: T = V ∪ {v′ : v′ ∈ V } and

2. for every v ∈ V creating an agent Av having the tasks v and v′ to complete
and

3. adding constraints v′i ≺ vj , whenever (vi, vj) ∈ E.

It is not difficult to see that the resulting instance 〈T,≺〉 is strictly intra-free, since
for tasks v′ we have in(v′) = 0 and for tasks v we have out(v) = 0.
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Observe that G has a feedback vertex set of size K, whenever K coordination arcs
are needed to ensure that 〈T,≺, strict〉 is coordinated. Suppose W ⊆ V is a feedback
vertex set G of size K. Construct the coordination set ∆ = {(v′ ≺ v) : v ∈ W}.
Adding these constraints makes it impossible to use both v and v′ in any cyclic
extension of GT . Hence, it has exactly the same effect as removing the node Aw

from the agent dependency graph. Since W is a feedback vertex set, this is precisely
the set of agent nodes that render the agent dependency graph acyclic. Further,
since we can verify both the sufficiency of the coordination set as well as the size
of the coordination set in polynomial time, we conclude that the decision version of
the coordination problem is also NP-complete.

Let us understand the proof of Proposition 3.5 through a simple illustration.

Example 3.8. Consider the situation in Figure 3.8. The instance of the FVS
problem I = (G = (V,E),K) has a vertex set V = {v1, . . . , v6}, edge set E =
{(v1, v2)(v2, v3)(v6, v5)(v5, v4)} and let K = 4. We construct an instance of the
intra-free plan coordination problem as follows:

1. We create a set of tasks T = {t1, . . . , t6, t′1, . . . , t′6},

2. The set of precedence constraints ≺= {(t′1 ≺ t2), (t′2 ≺ t3), (t′6 ≺ t5), (t′5 ≺ t4)},

3. We create 6 agents A = {A1, . . . , A6} and

4. Finally, due to our allocation function, T1 = {t1, t′1}, T2 = {t2, t′2}, T3 =
{t3, t′3}, T1 = {t4, t′4}, T5 = {t5, t′5}, T6 = {t6, t′6}.

Now suppose, the feedback vertex set contains the vertices v1, v2, v3, v4, then we can
construct a solution to the intra-free coordination instance by adding the following
arcs: (t′1 ≺ t1), (t′2 ≺ t2), (t′3 ≺ t3), (t′4 ≺ t4). Quite clearly, the only agents who can
still make local plans are A5 and A6. A6 cannot be part of any inter-agent cycle as
it has only out going inter-agent arcs. A5 alone cannot create an inter-agent cycle,
and hence the instance is coordinated.

Although Proposition 3.5 clearly indicates that finding the least number of con-
straints required to coordinate a given coordination instance is NP-hard, we might
apply approximation algorithms to find an approximate solution to this problem.
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Figure 3.8: Transforming a feedback vertex set into a coordination set.

The Depth partitioning (DP) algorithm [Steenhuisen et al. 2008] is such an algo-
rithm that finds a sufficient, but not necessarily minimum, number of coordination
constraints required to coordinate a given instance.

This algorithm can be stated as follows:

1. Take the partially ordered set (T,≺) of all tasks and determine the depth
depth(t) of each task t ∈ T with respect to the precedence relation ≺. This
depth is defined as follows:

depth(t) =

{
0 6 ∃t′ ∈ T [t′ ≺ t]
1 +max{depth(t′) : t′ ≺ t} else
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2. For each task set Ti and each pair of tasks t, t′ ∈ Ti, add a coordination
constraint t ≺ t′ whenever depth(t) < depth(t′).

It is not difficult to show that the coordination set thus obtained is always suffi-
cient to guarantee that the planning instance obtained is coordinated [Steenhuisen
et al. 2008]:

Proposition 3.6. The DP algorithm results in a set of constraints sufficient to
ensure coordination of the given plan coordination instance Π.

Proof. (adopted from [Steenhuisen et al. 2008]) Suppose the contrary, 〈{Ti}ni=1,≺
∪∆〉 is not plan coordinated. Then there must exist some cycle c = (t1, t2, ..., tm, t1)
where c contains (i) at least two tasks ti and tk belonging to different agents and
(ii) at least two tasks connected via a local plan. However, notice that

1. traversing from one task t to another task t′ via an inter-agent constraint in c
strictly increases the depth: depth(t) < depth(t′) and

2. traversing from one task t to another task t′ via an intra-agent constraint in c
does not decrease the depth: depth(t) ≥ depth(t′).

Therefore, the depth of the first task t1 occurring in c should be strictly less than
the depth of the last task tm in c or depth(t1) < depth(tm) which contradicts the
precedence constraint tm ≺ t1 creating a cycle. Hence, such a cycle c cannot exist
and the instance is plan coordinated.

The drawback of the DP algorithm, is that the algorithm adds a constraint
whenever there are two tasks of different depths, without paying attention to whether
such an addition is strictly necessary or not. We propose a more frugal way of
applying depth partitioning while ensuring coordination. Instead of using the depth
partitioning principle for every agent we will provide a filter to select between those
agents where depth partitioning needs to be applied, and those where we do not need
to apply it. This means that no constraints are applied between tasks which cannot
form a cycle. In most cases, this leads to a reduction in the number of coordination
constraints. We call this algorithm as the Advanced depth partitioning algorithm or
DP ∗.

The basic idea is to use the agent dependency graph as such a filter:
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1. Whenever the agent dependency graph is acyclic, we do not need to add any
coordination constraints.

2. Whenever the agent dependency graph contains a cycle, we know, since the
coordination instance is intra-free that at least some coordination arcs have to
be added.

(a) We can use an approximation of the minimum feedback vertex set to
select an agent Ai occurring in the feedback set.

(b) We then apply the Depth partitioning algorithm to the task set Ti asso-
ciated with this agent Ai. In general, this will remove some of the cycles
in the agent dependency graph.

3. In order to make the instance intra-free again, we split the task set Ti into
the k depth levels of the tasks induced by applying the depth partitioning
algorithm.

4. These task sets Ti,1, Ti,2, . . . , Ti,k then together with the other task sets con-
stitute an intra-free coordination instance again, and can be represented by k
agents Ai,1, . . . , Ai,k in the resulting agent dependency graph.

5. In order to ensure that these agents will not be chosen again in a feedback
vertex set, we include them in a blackout list of vertices, and test the acyclicity
of the agent dependency graph again.

We iterate this process until the agent dependency graph is acyclic.

Technically then, we need to use an approximation algorithm for the Blackout
feedback vertex set problem to indicate which agents create the cycle.

Definition 3.5. Blackout feedback vertex set (B-FVS) problem [Garey
and Johnson 1979]: The Blackout feedback vertex set (B-FVS) problem is the
following: given a directed graph G = (V,E), a blackout set B ⊆ V and a K ∈ Z+,
to decide whether there exists a subset F ⊆ V with F ∩B = ∅ and |F | ≤ K, nodes
from V whose removal will render the remaining graph G acyclic.
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An approximation algorithm for this problem has been proposed in [Even
et al. 1998]. Their algorithm finds a feedback vertex set having an approxima-
tion ratio of O(log|V |loglog|V |) where V is the set of vertices. The DP ∗ algorithm
can be stated as in Algorithm 1.

Algorithm 1 Advanced depth partitioning algorithm (DP ∗)

Require: An intra-free coordination instance Π = 〈{Ti}ni=1,≺, ∅〉; A =
{A1, A2, . . . , An}.

Ensure: A set of coordination constraints C added to GΠ to make it coordinated.
1: Compute depth(t) for every t ∈ T ;
2: let GA = (VA, EA) be the agent dependency graph associated with GΠ, the task

graph of Π = 〈{Ti}ni=1,≺, ∅〉;
3: B = {Ai : all tasks t ∈ Ti having the same depth };
4: C = ∅;
5: while GA contains a cycle do
6: F = BlackoutFV S(GA, B);
7: select Ai ∈ F ;
8: for every pair of tasks t, t′ ∈ Ti do
9: if depth(t) < depth(t′) then

10: add t ≺ t′ to C;
11: end if
12: end for
13: Split Ti in k subsets Ti,1, . . . Ti,k such that depth depth(t)∀t ∈ Ti,k = k;
14: T = (T − Ti) ∪ {Ti,1, . . . Ti,k};
15: let GA be the new dependency graph associated with GΠ;
16: add the nodes Ai,j corresponding to the sets Ti,j to B;
17: end while
18: return C

Example 3.9. Consider the situation in Figure 3.9. It has three agents A1, A2, A3

needing to perform the tasks t1, . . . , t8. In the first step the blackout set B is
empty and the feedback vertex set algorithm is free to choose any agent into its
feedback vertex set. Suppose it picks agent A3, i.e., F = {A3}. In agent A3, we
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Figure 3.9: An example of applying the Advanced depth partitioning algorithm.

first add coordination constraints t6 ≺ t3, t6 ≺ t8 and t8 ≺ t3. We then split
the agent into three agents A3,1, A3,2, A3,3. We then add these agents into B, i.e.,
B = {A3,1, A3,2, A3,3} and check if the agent dependency graph has a cycle. It
turns out that the agent dependency graph still has a cycle, and the blackout FVS
algorithm returns F = {A1}. So we now constrain A1 by adding constraint t1 ≺ t4.
The agent dependency graph now becomes acyclic. Thus, the procedure returns
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four constraints t6 ≺ t3, t6 ≺ t8, t8 ≺ t3 and t1 ≺ t4. Notice here that DP algorithm
would add constraints between all tasks that have different depth (among tasks of
each agent), resulting in two more constraints t7 ≺ t2 and t7 ≺ t5.

We now show that the Advanced depth partitioning algorithm DP ∗ is correct.

Proposition 3.7. Let Π = 〈{Ti}ni=1,≺, ∅〉 be an intra-free plan coordination instance
and ∆, the set of additional precedence constraints returned by DP ∗. Let GΠ be its
task graph. Then, the instance Π′T = 〈T,≺ ∪ ∆〉 is plan coordinated.

Proof. We first show that the algorithm terminates, and then show that ∆ is suffi-
cient. For each iteration of the while loop in DP ∗, the number of agents who can be
constrained reduces because once Ai has been constrained, each of the Ai,j agents
that result by splitting it enter the Blackout set (all tasks within Ti,j have the same
depth). In the worst case, all nodes enter the blackout set B, resulting in an empty
feedback vertex set. Thus, we can be sure that the algorithm terminates.

Termination already implies that the resulting agent dependency graph is acyclic.
We know from Proposition 3.1 that if the agent dependency graph is acyclic then
the associated coordination instance is coordinated. Therefore, it implies that the
set of coordination constraints applied by DP ∗ algorithm is sufficient to ensure
coordination.

The real benefit of the DP ∗ algorithm is that in a large number of cases, the co-
ordination set returned by it is much smaller than the one returned by DP algorithm.
The reason for this improved performance is the following:

• The DP algorithm applies coordination constraints among tasks of all agents,
whereas the DP ∗ algorithm applies it on a small number of agents chosen by
a FVS algorithm.

For each agent Ai that needs to be constrained, we could potentially require Ti − 1
constraints in the worst case. Therefore, it naturally follows that if the feedback
vertex set excludes even a single agent Ai, the potential savings in terms of number
of coordination constraints could be Ti − 1. Typically, the feedback vertex set is a
much smaller set than the set of agents in most cases. Suppose that the difference
in the size of these sets is x. This would mean that the potential saving in the
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number of coordination constraints due to DP ∗ is
∑m

i=1(Ti − 1) where, Ai 6∈ FV S.
While the exact number of coordination constraints saved due to DP ∗ is instance
dependent, we can easily show that the coordination set derived out of it is never
larger than the DP algorithm. Thus,

Proposition 3.8. The coordination set ∆ returned by the DP ∗ algorithm is never
larger than the coordination set ∆′ returned by the DP algorithm.

Proof. Let the set of agents having tasks of different depths be denoted by Ad : Ad ⊆
A. It is easy to see that ∆′ has coordination constraints for tasks belonging to each
of the agents in Ad. In the DP ∗ algorithm, if an agent belongs to the set A − Ad,
then either it belongs to the blackout set or no constraints are added between tasks
in those agents because their depths are the same. Therefore, agents in A−Ad can
never contribute to ∆. Therefore, the only agents that can be constrained in the
DP ∗ algorithm are also the agents in Ad. Consequently, |∆| ≤ |∆′|.

3.3 Tractable cases of plan coordination

In the previous sections, we have seen that real world problems such as supply chain
management problems reveal simpler structures for coordination. It was shown that,
coordination problems with intra-freeness property were simpler to coordinate than
the general case. For example, Proposition 3.5 states that for the class of intra-free
instances it is NP-complete to find a minimum coordination set while in general the
problem is Σp

2-complete. However, motivated again by the fact that we were not
only able to verify the solution for problems such as the one in Example 3.1 but
also find them easily, we search further within the class of intra-free instances with
a hope of finding a class of problem instances that can be coordinated in polynomial
time.

Not surprisingly, real world problems with simpler structures for coordination
exist. Domains such as supply chain management [Yadati et al. 2010] and hospital
patient treatment [Yadati et al. 2011] have coordination problems that can be solved
efficiently. However, these instances have two very special properties that allow for
efficient coordination:
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Figure 3.10: A single product supply chain system.

• These problems exhibit a linear structure. That is, tasks in these problems
are always preceded by utmost a single task and succeeded by utmost a single
task. As we will show in the next section, this linearity also is not enough to
ensure that minimum coordination sets can be found.

• All chains in the instance either correspond to the ordering of agents or con-
tradict it in a pairwise fashion (a more precise definition is presented later in
this section).

As an illustration that simpler classes of coordination problems exist, consider
the following example of a simple single product supply chain.

Example 3.10. Consider a simple single product supply chain comprising of three
agents — a Manufacturer, a Distributor and a Retailer. The manufacturer has to
decide between being a push system or a pull system.

If the manufacturer decides to be a push system, then clearly he needs to pri-
oritise manufacturing the product over waiting for the demand. In case he wants
to be a pull system, then he has to first wait for the demand and then manufacture
the product. Similarly, the distributor in a push system sends the products to the
retailer first so that the retailer in turn can push the product into the market. On
the other hand, in a pull system the retailer first makes a demand, which is passed
on through the distributor to the manufacturer.

If the manufacturer and distributor decide to be push systems, then any decision
of the retailer does not create a deadlock. Similarly, it is not hard to see that
if the retailer and the distributor decide to be pull systems, the instance is again
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coordinated. A deadlock can occur however, if the manufacturer decides to be a pull
system and the distributor decides to be a push system.1

From Example 3.10, it appears as if coordinating instances where tasks with a
maximum of a single predecessor and a single successor are easier to coordinate.
However, it can be shown that this is still an intractable problem in general. Fortu-
nately, there does exist a subclass — special linear intra-free — of instances where a
minimum coordination set can be efficiently found. In the next section, we first es-
tablish the intractability of finding a minimum coordination set for linear intra-free
instances and then discuss special linear intra-free instances, where the coordination
set can be efficiently found.

3.3.1 Linear intra-free instances

Consider again the problem scenario presented in Example 3.10. It was already
shown that this belonged to the class of intra-free instances. Notice also that max-
imum in and out-degree of tasks in this scenario was 1. That is, all tasks have
at most a single predecessor and a single successor. Intra-free instances with such
special partial orders are termed as Linear intra-free instances. They can be defined
as follows:

Definition 3.6. Linear intra-free instance: A given intra-free plan coordination
instance Π = 〈{Ti}ni=1,≺, ∅〉 is linear if each task t ∈ T has in(t) ≤ 1 and out(t) ≤ 1.
Linear intra-free instances are represented as Π = 〈{Ti}ni=1,≺, linear〉.

It might appear that all linear intra-free coordination instances can be easily
coordinated. However, it is not so. In fact, one can reduce the decision version of
the Directed feedback arc set problem (DFAS) which is a well known NP-
complete problem to this problem. The decision version of DFAS can be stated as
following:

Definition 3.7. Directed feedback arc set problem (DFAS) [Garey and
Johnson 1979]: Given a directed graph G = (V,A) and an integer K, does there

1A deadlock can also occur if manufacturer and retailer decide to be pull systems and the
distributor decides to be a push system.
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exist a set of arcs A′ ⊂ A such that A′ consists of at least one arc from each directed
cycle in G and |A′| ≤ K?

The general idea behind the reduction is that every node x is split into two nodes
x and x′. The node x together with all its predecessors {xy : y ∈ P (x)} is allocated
to one agent, say Ai and the node x′ together with all successors {xy : y ∈ S(x)}
is allocated to a different agent Aj . Agents are connected via the arcs (x ≺ x′)
encoding nodes and (xy ≺ yx) encoding arcs. So in total we have 2|V | agents.

Proposition 3.9. Given a linear intra-free instance Π = 〈{Ti}ni=1,≺, linear〉 and
an integer M it is NP-complete to find a coordination set ∆ such that |∆| ≤M .

Proof. Consider a graph G = (V,E) of the DFAS problem and a positive integer K

• For every x ∈ V let S(x) = {y : (x, y) ∈ E} denote the set of successors of x.

• For every x ∈ V let P (x) = {y : (y, x) ∈ E} denote the set of predecessors of
x.

Next, create the coordination instance Π = 〈T,A,≺, φ〉 through the following steps:

1. For every x ∈ V , add tx, t
′
x to T ,

2. For every (x, y) ∈ E, add txy, tyx to T ,

3. For every x ∈ V , add tx ≺ t′x,

4. For every (x, y) ∈ E, add txy ≺ tyx,

5. Finally, for every x ∈ V , partition T such that Tx = {tx ∪ tz : z ∈ P (x)} and
Tx′ = {t′x ∪ tz : z ∈ S(x)}.

The encoding ensures that the instance is intra-free and satisfies in(x) = 1 and
out(x) = 1 for every task. It is now not that difficult to see that if (x, y) occurs in
the feedback set, a coordination arc (ty ≺ tyx) has the effect of blocking one or more
cycles.2 Conversely, if it had a coordination arc (ty ≺ tyx) or a coordination arc
(txy ≺ t′x) for the intra-free instance (x, y) can be added to feedback set. Further,
since we can verify if the size of the coordination set is lesser than M in polynomial
time, we claim that the problem is NP-complete.

2Alternatively, we could also add (txy ≺ t′x).
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Figure 3.11: Reducing from the feedback arc set to the problem of coordinating
linear intra-free instances.

Let us illustrate the reduction through a simple example.

Example 3.11. Consider the DAG in Figure 3.11. We are given the DAG in
Figure 3.11(a). To transform it into an instance of the linear intra-free coordination
problem, we first compute the set of successors Sx and the set of predecessors Px
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for each node x in the FAS problem instance:

Sa = {b};Sb = {c};Sc = {d};Sd = {a};
Pa = {d};Pb = {a};Pc = {b};Pd = {c}.

We then create the tasks ta, t
′
a, tb, t

′
b, tc, t

′
c, td, t

′
d because of nodes a, b, c, d in the FAS

problem instance. We next create tasks tad, tab, tbc, tba, tcb, tcd, tdc, tda and add the
edges (ta ≺ t′a); (tab ≺ tba); (tb ≺ t′b); (tbc ≺ tcb); (tc ≺ t′c); (tcd ≺ tdc); (td ≺ t′d); (tda ≺
tad). Finally we partition the task set as follows:

Ta = {ta, tad};Ta′ = {t′a, tab};Tb = {tb, tba};Tb′ = {t′b, tbc};
Tc = {tc, tcb};Tc′ = {t′c, tcd};Td = {td, tdc};Td′ = {t′d, tda}.

to obtain the plan coordination instance in Figure 3.11(b). Notice that the resulting
instance is a linear intra-free instance.

If a solution to the FAS problem instance was the arc (a, b), then the correspond-
ing coordination set would be the arc (tb ≺ tba).

3.3.2 Special linear intra-free (SLIF) instances

We now know that linear intra-free instances cannot be efficiently plan coordinated
and therefore, we seek subclasses of linear intra-free instances which can be coor-
dinated efficiently. The search is motivated by the fact that in real life, situations
such as the single product supply chain are coordinated quite easily.

In order to facilitate our discussion further, let us first classify task chains into
two types — imitating and contradicting chains. Given an ordering of agents, an
imitating chain is always pairwise consistent with the ordering of agents. On the
other hand, if a chain has exactly the reverse order for each pair of agents, then we
call it a contradicting chain.

Definition 3.8. Imitating and contradicting chains: Suppose, we are given a
linear intra-free instance Π = 〈{Ti}ni=1,≺, linear〉 and a total ordering < on the set
of agents A. If a pair of agents satisfy A′ < A′′ then each pair of tasks ti ∈ T ′ and
tj ∈ T ′′ such that ti ≺ tj belong to an imitating chain. On the other hand, if tj ≺ ti
then they belong to a contradicting chain.
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Notice that the supply chain scenario presented in Example 3.10, satisfies this
special property that all chains are either imitating or contradicting chains. We call
such linear intra-free instances as special linear intra-free instances (SLIF). Formally
then, a SLIF instance can be defined as follows:

Definition 3.9. Special linear intra-free instance (SLIF): A given linear intra-
free instance Π = 〈{Ti}ni=1,≺, linear〉 is a SLIF instance, if all the chains in Π are
either imitating chains or contradicting chains. Because we also require to know the
agent ordering, SLIF instances are represented as Π = 〈{Ti}ni=1,≺, <〉.
Example 3.12. To illustrate a SLIF instance, consider the scenario in Figures
3.12(a) and (b). The order of agents is reflected in the indices of the agents in both
figures. In Figure 3.12 (a) the single imitating chain comprises tasks t1, t3, and t5
allocated respectively to agents A1, A2 and A3. Whereas, the contradicting chain
comprises of tasks t6, t4 and t2 allocated to agents A3, A2 and A1 respectively. In
Figure 3.12 (b), the imitating chain has t1, t3, t5, t7 and the contradicting chain has
tasks t8, t6, t4, t2. On the other hand in Figure 3.12 (c), the task chain t3 ≺ t5 ≺ t1 is
not pairwise consistent with the indices of the agents and hence is not an imitating
chain. Similarly, the task chain t4 ≺ t2 ≺ t6 is not a contradicting chain for the
same reason.

Let us now proceed to develop a procedure to coordinate SLIF instances. Sup-
pose, the coordination instance has a single imitating chain and a single contradicting
chain. If the two chains have n > 1 agents in common, then we would require n− 1
constraints to stop all cycles. This is because, if we let any two of these agents un-
constrained, a simple cycle can be formed between their tasks. The result of adding
coordination arcs on the scenario in Figure 3.12 (a) is shown in Figure 3.13.

This basic idea of letting only a single agent free of constraints can be extended
to handle multiple pairs of imitating and contradicting chains. Suppose, there are k
imitating and l contradicting chains in the task graph such that each chain involves
the same set of agents. In this case, we would have to add coordination constraints
between k× l pairs of chains. Suppose each chain has m agents, then we would have
to constrain at least m − 1 agents for each pair. Thus, we would in total require
(m− 1)× k × l constraints to coordinate the problem.

Now suppose that the imitating chains and the contradicting chains are all of
different lengths, and also involve different subsets of agents. In this case the only
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Figure 3.12: Imitating and contradicting chains.
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Figure 3.13: Constructing the coordination set for SLIF instances.

change is that, instead of adding m − 1 constraints, one would require to compute
the number of agents that are common to the imitating and contradicting chains
and add constraints between their tasks. Suppose there are x such agents, then one
would require x− 1 constraints to coordinate those two chains.
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Generalising further, if we had k such pairs of imitating and contradicting chains,

we would have to add

k∑
i=1

xi−1 constraints. Here xi denotes the number of common

agents between the ith pair of imitating and contradicting chains. WLOG, we could
fix that the agent with the highest index (last in the ordering of agents) among
the common agents is always left free. In theory, we could leave any one of the
xi agents free of constraints. However, doing so would require that the direction
of precedence constraints be reversed for all agents that follow the agent that was
left free. Therefore, for the sake of simplicity we choose to leave the last agent
in the ordering free of constraints. Thus, to ensure that a given SLIF instance is
coordinated, we would have to first (i) find out all the imitating and contradicting
chain pairs and (ii) add coordination arcs between tasks of common agents of each
pair of imitating and contradicting chains (taking care to leave out the highest
indexed agent free of constraints). See Algorithm 2 for an overview of this procedure.

Algorithm 2 SLIF coordination algorithm.

Require: A SLIF instance Π = 〈{Ti}ni=1,≺, <〉
1: List all imitating chains I1, . . . , Ip each of length l(I1), . . . , l(Ip).
2: List all contradicting chains D1, . . . , Dq with lengths l(D1), . . . , l(Dq).
3: for each pair (Ip, Dq) such that they have 2 or more agents in common do
4: Given the ordering among agents common to (Ip, Dq), let Al represent the

last agent according to the ordering;
5: add a constraint ti ≺ tj for each ti ∈ I and tj ∈ D such that ti, tj ∈ Ti and

Ti 6= Tl;
6: end for

To illustrate this simple procedure, let us consider an example.

Example 3.13. The task graph in Figure 3.14 has 2 imitating chains and 3 contra-
dicting chains spread over 5 agents. The order of agents is reflected in the indices of
the agents in both figures. The pair of chains involving agents A1, A2 and A3 require
2 constraints as shown in the figure and similarly the pair of chains involving agents
A4 and A5 require a single constraint. Finally, the pair of chains involving A3 and
A4 require another single constraint. So in all we would require 4 constraints to
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Figure 3.14: Coordinating a special linear intra-free instance.

minimally coordinate this instance. The required constraints are shown as dashed
arcs in the figure.

Suppose, we were to employ the depth partitioning approach to solve the above
instance. In such a case, we would apply a total of 7 coordination constraints
t1 ≺ t2; t6 ≺ t5; t6 ≺ t7; t8 ≺ t7; t10 ≺ t9; t10 ≺ t11 and t12 ≺ t13 to solve the
coordination problem. Similarly suppose, we were to use DP ∗ and the FVS is
comprised of agents A1, A3 and A4 we would find a coordination set t1 ≺ t2; t6 ≺
t5; t6 ≺ t7; t8 ≺ t7; t10 ≺ t9; t10 ≺ t11 of size 6.

Let us now prove that the SLIF coordination algorithm is correct.

Proposition 3.10. The SLIF coordination algorithm is correct.

Proof. Clearly the algorithm terminates, because there are finite number of imitating
and contradicting chains in a given instance.

Assume that agent indices reflect the total order on the set of agents. Let us
denote the imitating chain as Ip and the contradicting chain as Dq and let the tasks
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in each of the chains be:

Ip = {t1p, t2p, . . . , tlp} (3.1)

Dq = {tlq, tl−1
q , . . . , t1q} (3.2)

The indices on task tip indicate that the task belongs to the pth chain and Ai. Now
let Ap,q denote the set of agents that are common to both chains and let l be the
highest index for any agent in Ap,q.

The SLIF coordination algorithm adds

tip ≺ tiq ∀Ai ∈ {Ap,q} − {Al} (3.3)

If Al chooses to add the constraint tlp ≺ tlq, this in effect would create a total order
among the tasks of Ip, Dq. That is, it would imply that

t1p, t
2
p, . . . , t

l
p ≺ tlq, tl−1

q , . . . , t1q (3.4)

Clearly, there can be no cycle between tasks of Ip and Dq if the tasks belonging to
them are totally ordered.

On the other hand, if Al chooses to impose tlq ≺ tlp, then because of Algorithm

2 already the tasks of Ip − tlp, Dq − tlq are totally ordered. Further adding tlq ≺ tlp
implies that there tlp can never precede tlq. Therefore, a directed cycle is again
impossible. The same argument holds for every pair of imitating and contradicting
chains. Further, we always choose to make tasks in the imitating chain to precede
those in a contradicting chain. This means that cycles involving tasks of 3 or more
chains also cannot occur. Thus, we claim that the SLIF coordination algorithm
results in a sufficient coordination set and hence we claim that the algorithm is
correct.

Having shown that Algorithm 2 results in a sufficient coordination set, let us
now proceed to show that this set is also the minimum coordination set.

Proposition 3.11. The SLIF coordination algorithm results in a minimum coordi-
nation set.
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a1

a2 a3 a4 a5

Figure 3.15: Example non-linear scenario.

Proof. To prove the minimality it is enough to notice that for any pair of imitating
and contradicting chains, the maximum number of agents that can be left uncon-
strained is one. Otherwise, a global cycle can be formed between the two agents who
are left unconstrained. Thus, the number of constraints resulting from the procedure
is the minimum required to ensure coordination.

Chain structures are relatively easier to analyse. Specially since, between each
pair of chains, it does not matter whether we choose Al to be the highest numbered
agent or the lowest numbered agent.

However, the procedure we apply for constructing the minimum coordination set
cannot be applied on other kinds of intra-free instances. In fact, it is easy to show
counter examples where the procedure used for SLIF instances can backfire. As one
such counter example, consider the structure shown in Figure 3.15.

Deciding to leave agent A1 free of constraints would imply that we would have
to constrain all the remaining agents. But, deciding to constrain A1 would imply
that no further coordination constraints need be applied. The difference between
these two decisions can be very significant as evidenced by a ratio of nearly n−1 : 1,
where n is the number of agents. Thus, an arbitrary choice of which agent to leave
free of coordination constraints can lead to a significant improvement or degradation
of the result.

Observe that although the scenario in Figure 3.15 served as a counter example,
it was still possible to construct an optimal coordination set for the scenario. To find
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the optimal coordination set for this scenario, it was sufficient to add a coordination
constraint between the fork and the join in the figure. It is still an open problem
to decide whether there exist more general structures where this idea of constraining
forks and joins leads to optimal coordination sets.

3.4 Summary

In this chapter, we stated in the introduction that our intention was to search for
tractable subclasses of coordination problems. In our search, we first observed that
one of the components contributing to the complexity of the general coordination
problem is the fact that coordination verification was intractable. But, we observed
that some real world problems had simpler structures which could be exploited.

We showed that, the property of intra-freeness allows coordination verification to
be done efficiently. Intra-free instances were characterised by agents whose tasks did
not have any precedence constraints between them. We showed that, if coordination
instances were intra-free, complexity of solving the coordination problem reduces
to being NP-complete. To efficiently solve the coordination verification problem for
intra-free instances, we showed that, it was enough to determine whether a more
compact representation of task graphs — agent dependency graphs — had a cycle.

We proceeded further to investigate a subclass of intra-free instances, where we
could also find a minimal coordination set efficiently. Instances of this subclass were
termed SLIF instances, and we developed a simple sequence of steps that could
efficiently determine an optimal set of coordination constraints. We also showed
that, there existed classes of intra-free instances where this procedure can yield
arbitrarily bad results.

However, it was noted that finding optimal coordination sets for this class of
counter examples also was quite easy. It remains an open problem to determine
if there exist more general classes of intra-free instances where a polynomial time
procedure can yield an optimal coordination set.

Table 3.1 summarises the various problems we studied in this chapter. The gen-
eral coordination instance is known to be Σp

2-complete whereas we have shown that
intra-free instances are NP-complete. Similarly, we have also shown that a specific
class of intra-free instances — SLIF instances — can be efficiently coordinated.
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Coordination instance CVP CP

General case co-NP-complete Σp
2 complete

Intra-free instances P NP-complete

SLIF instances P P

Table 3.1: The plan coordination complexity hierarchy.

Currently, in this chapter, we presume that smaller coordination sets are better
than larger ones. However, in several real situations, the number of constraints
added are of lesser importance than the quality of global plans. For instance, agents
might be willing to accept more constraints on their planning for the sake of a more
efficient global plan or a more cost effective global plan. In such cases, reducing
the number of coordination constraints may not be sufficient. In our next chapter,
we design mechanisms to handle scenarios where coordination also comes with a
guarantee on the quality of the global solution. Specifically, we design methods that
ensure makespan minimality of the global solution.



Chapter 4

Coordinated autonomous
scheduling: The unbounded
concurrency case

In Chapter 3, we dealt with the plan coordination problem, and as mentioned earlier
in Chapter 2, we deal with the schedule coordination problem in this chapter. The
objective of this chapter is to find an efficient method to decompose a given CAS
problem instance, when capacity constraints are absent. We rely upon another well
known method called the Temporal decomposition method designed by Hunsberger
and obtain a faster and simpler method for decomposing CAS problems.

In several systems such as distributed job shops [Kjenstad 1998] or disaster relief
operations [Aldunate et al. 2006], a global solution that meets additional criteria
such as makespan minimality or minimal response time is more useful than a global
solution that is simply feasible. In fact, it would be better, specially in scenarios
similar to disaster management, that tasks are completed as quickly as possible.
Motivated by such situations, in this chapter, we focus on ensuring that the global
plans are makespan minimal, in addition to ensuring feasibility and autonomy.

Clearly, insisting that tasks need to be finished in a finite amount of time does
not require temporal information. However, insisting that tasks be completed with
minimal makespan does require temporal information. As mentioned in Chapter 2,

101
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to enable such a computation, we enriched the planning framework to accommodate
temporal information.

While our framework to handle schedule coordination problems is enriched, we
still use the same notion of autonomy. We still maintain that, as long as agents
are able to design their schedules without needing to interact with one another,
autonomy needs are met. Thus in short, we have two quality objectives — agent
autonomy and makespan minimality.

As an illustration of the problems encountered in this chapter consider the fol-
lowing example:

Example 4.1. Consider a simple distributed job shop problem instance, which
requires 2 jobs J1 and J2 to be processed with minimal makespan. Job J1 involves
three tasks (operations) t1, t2 and t3 that have to be processed by three machines
M1,M2 and M3 respectively. Job J2 has two tasks t4 and t5 that need to be processed
on machines M1 and M2 respectively. Machine M1 is owned by agent A1 and
similarly machines M2 and M3 are owned by agents A2 and A3 respectively. Tasks
t1, t3 and t5 take 2 units in time and the remaining tasks t2 and t4 take a single
unit of time to be processed. All tasks ti have a release time r(ti) = 0 and deadline
d(ti) =∞. The tasks of the job shop problem instance have precedence constraints
t1 ≺ t2 ≺ t3 and t4 ≺ t5. As usual, each machine can process a single task at any
point in time and each task can be processed by a single machine at any point in
time. The job shop problem is shown in Figure 4.2(a).

We have to now develop a mechanism that ensures that every local schedule
developed by each of the agents A1, A2, and A3 can always be merged to produce
a makespan minimal global schedule. The corresponding task graph is shown in
Figure 4.1.

A solution to such a problem instance is an assignment (schedule) σ : T → Z+

of values to tasks, meeting all the constraints specified. Intuitively, for each task
t ∈ T , σ(t) determines its starting time.

In particular, we would like to first ensure that agents can develop local schedules,
such that they can be combined into a feasible global schedule, without needing to
interact with each other. That is, we would like to specify for each agent a part
of the scheduling instance such that each agent Ai determines a schedule σi for its
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Figure 4.1: Task graph representation of the job shop problem in Example 4.1.
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Figure 4.2: (a) Job shop problem. (b) A possible invalid schedule. (c) Optimal
schedule.
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part of the instance, independently from the others. We further would like to ensure
that, the global schedule derived from such local schedules has minimal makespan.

The central problem in schedule coordination is that, allowing full autonomy to
agents in finding their own schedule can easily result in a suboptimal or even an
infeasible global schedule. As an illustration of this problem, consider the following
example:

Example 4.2. Consider the situation shown in Figure 4.2(b), where agents create
their own schedules without the mechanism imposing any additional restriction.
Machine A1 schedules task t1 at time instant 0 and task t4 at time instant 2. Agent
A2 schedules task t5 at time instant 1 and task t2 at time instant 3 and agent A3

schedules to carry out task t3 at time instant 3. These schedules of agents A1, A2, A3

are all locally feasible (they do not violate any intra-agent constraints). However,
in combination they result in a global schedule that is infeasible (because task t4 is
not completed by time instant 1 and task t2 is not complete by time instant 3).

Note that it is not enough to simply ensure that schedules are coordinated. We
also require that the makespan is minimum. Therefore, our goal in this chapter is
to develop a coordination mechanism that solves the CAS problem but also ensures
that the global makespan is minimum. Incorporating makespan minimality, our
definition of the CAS problem from Chapter 2, can be restated as follows:

Definition 4.1. CAS problem: Given a scheduling instance Π = 〈T,A,≺,
φ, l(), c(), r(), d()〉 and any set of locally feasible schedules σi chosen by each of the
agents Ai for their part 〈 Ti,≺i, ri(), di(), c(i), li() 〉 of the scheduling instance, the
CAS problem is to ensure that the merged schedule σ = σ1 t σ2 . . . t σn

• is always a feasible global schedule and

• the makespan of this global schedule is minimal.

Henceforth, we always refer to this revised definition of the CAS problem in
this thesis. We refer to the scheduling problem faced by each agent as the CAS
subproblem and denote it by Πi = 〈 Ti,≺i, ri(), di(), c(i), li() 〉.
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Makespan minimality adds a new dimension to our effort in the sense that often
autonomy and makespan minimality are at loggerheads with each other. As an
illustration consider the following example:

Example 4.3. Consider another situation similar to the one in Figure 4.2(a), where
a mechanism imposes the following additional restrictions to the agents: Agent A1

has to complete task t1 before time 2. That is, the deadline d(t1) for starting task
t1 is 0. Agent 2 receives an additional constraint r(t2) = 2 and d(t2) ≤ 5. Finally,
agent A3 receives d(t3) = 3. Then, as shown in Figure 4.2(c), we have a global
schedule which is not only feasible but also has minimum makespan. However, in
this schedule agents have no autonomy at all. There is a unique schedule that
satisfies all (including the additional restrictions) the constraints.

What we are aiming for, is to design schedule coordination mechanisms that
ensure makespan minimality and maximize autonomy. In this chapter, we will show
that we can realize both aims in the special case where agents are not concurrency-
bounded. To achieve this goal, we resort to results in the STN domain. Specifically,
we employ Hunsberger’s temporal decoupling algorithm to derive an algorithm that
solves CAS problems.

This chapter is organised as follows. We will investigate the CAS problem for
the case where concurrency (capacity) constraints for each of the agents are absent.
Here, we will derive an efficient algorithm that solves the CAS problem perfectly.
This algorithm is derived from Hunsberger’s temporal [Hunsberger 2002b] decou-
pling algorithm. In the process of deriving our algorithm, first, we will show how
to specify our CAS problem as a special case of the temporal decoupling problem
in STNs. Next, we will show that due to the simplified structure of our problem,
we can derive a surprisingly simple algorithm achieving schedule coordination as a
special case of his temporal decoupling algorithm. This algorithm will also be much
more efficient than the original temporal decoupling algorithm. Finally, we will show
that our algorithm called the Interval Scheduling Algorithm ISA solves the schedule
coordination problem while ensuring that agents have maximal autonomy: there is
no other algorithm that guarantees more autonomy to the individual agents while
ensuring minimal makespan.

However, when agents have bounds on their concurrency, makespan efficiency can
no longer be guaranteed. This forms the subject matter of Chapter 5. In Chapter
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5, we generalise ISA to handle concurrency constraints. This generalised version
guarantees autonomy, but it also shows that the loss in makespan efficiency can be
quite high.

4.1 Solving CAS problems through decoupling STNs:
the unbounded concurrency case

The CAS problem specification allows agents to return ‘any’ feasible local schedule:
a correct solution to the problem guarantees that, every locally feasible solution can
be merged into a makespan minimal solution to the global problem. If the individual
subproblems derived from the global scheduling problem exhibit such a property, we
say that such a collection of subproblems constitutes a decoupling of the original CAS
instance. The CAS problem therefore can be considered as specifying a decoupling
problem in the scheduling domain.

Recall that in Chapter 2, we pointed out that in the STN domain, there exists an
analogous problem when dealing with the decoupling of Simple temporal network
(STN) instances. This corresponding problem is called the Temporal decoupling
problem (TDP) and can be solved in polynomial time by applying Hunsberger’s
algorithm. It is not difficult to see the correspondences between these two problems
(STNs were introduced in Section 2.2.3):

• In both problems, there is a set of agents A = {Ai}ni=1, each responsible for
solving a set C of constraints.

• In both problems, there are constraints c ∈ C that are coupled in the sense that,
the variables occurring in c belong to different agents Ai; these constraints are
called inter-agent constraints.

• In both problems, the goal is to achieve a decoupling of the set C of con-
straints. That is, each agent Ai is able to find a solution for its individual set
of constraints Ci in such a way that the solution proposed by individual agents
can always be merged to constitute a global solution to the original set C.

The individual sets of constraints Ci constitute the local subproblem of agent
Ai. Hunsberger’s algorithm succeeds in finding these sets Ci by tightening a subset
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of intra-agent constraints. That is, constraints having only variables belonging to a
single agent, such that inter-agent constraints are implied by the local constraints
without affecting the consistency of the original problem. This allows each agent Ai

to solve its local set of constraints Ci in a completely autonomous fashion, while still
ensuring that a global solution can be found by merging the local solutions returned.

Since we are looking for an algorithm that ensures a decoupling of the global CAS
problem, such that every schedule of an individual agent can be merged to form a
makespan efficient global solution of the original problem, it seems worthwhile to
obtain such an algorithm by reducing the CAS problem to the TDP. This reduction
should have the following properties:

1. Given a CAS problem instance Π an STN SΠ is obtained such that any solution
σ of SΠ can be directly related to a solution σ′ of Π.

2. Hunsberger’s algorithm can be used to decouple the resulting STN SΠ into a
set {Si}ni=1 of decoupled STNs.

3. For each individual Si an instance of the CAS subproblem Πi can be con-
structed.

4. For every set {σi}ni=1 of individual solutions σi of Πi, their merge σ = σ1 t
. . . t σn is a solution to Π. That is, {Πi}ni=1 is a decoupling of Π.

So, in this reduction Hunsberger’s algorithm is used as a subroutine to obtain
the set of decomposed STNs which in turn are translated back to a set {Πi}ni=1 of
CAS subproblems constituting a decomposition of the original CAS instance Π.

We foresee three problems in constructing this reduction.

• The first problem is that, unlike the TDP problem, the CAS problem needs
a global schedule with minimum makespan. Although one could argue that
in STNs, scheduling every time point variable at its earliest time will always
result in a minimum makespan schedule, enforcing such a set of constraints
as the result of decoupling would mean that agents are forced to choose a
specific assignment of values to the variables. This is equivalent to enforcing
a centralised schedule and thus would remove agent autonomy.
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As we will show in the next subsection, however, this problem can be easily
solved. As a result, it is not difficult to see that any global solution of the
STN that can be obtained as the result of merging local solutions, is always a
makespan efficient global solution. Consequently, it is also a makespan efficient
global solution of the original CAS problem.

• The second problem concerns the use of bounded concurrency constraints in
CAS problems. It is well-known that STNs do not allow for encoding bounded
concurrency constraints and it seems that the reduction to temporal decoupling
approach cannot be used in this case.

Therefore, before we deal with the bounded concurrency case in the next chap-
ter, we focus on dealing with the simpler problem of encoding CAS problems
with unbounded concurrency in this chapter.

• The third problem concerns the overhead caused by performing the decoupling
on the STN version of the problem instead of performing it on the CAS in-
stance itself. Since CAS problems are encoded as special STNs, and temporal
decoupling requires the rather expensive computation of distance matrices of
an STN (O(n3)) and for each temporal decoupling step an incremental update
of this matrix (O(n2) per iteration), it might be that translating the decou-
pling algorithm directly to the special case of CAS problem instances would
simplify the procedure considerably.

We will show that indeed this is the case and there exists a linear-time al-
gorithm to solve the original CAS problem. Furthermore, as we will show,
this algorithm, the so-called Interval splitting algorithm (ISA), in some sense
is the best we can hope for as a decoupling algorithm ensuring both maximal
autonomy and minimal makespan: there is no other algorithm that is able to
ensure more autonomy while guaranteeing minimal makespan.

In the next section, first we will present our reduction of CAS instances to STN
instances in such a way that the only solutions of the resulting STN are minimal
makespan solutions. Then, we will show how Hunsberger’s temporal decoupling al-
gorithm can be translated to a decomposition algorithm operating on CAS-instances
directly, thereby avoiding the high computation overload.
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4.2 Reducing the CAS problem to the temporal decou-
pling problem

Given a CAS problem instance Π = 〈T,A,≺, φ, l(), c(), r(), d()〉 with unbounded
concurrency, we reduce it (without minimal makespan constraints) to an STN S =
(T , C) instance as follows:

Step 1 T = T ;
That is, each task ti in the CAS instance is represented as a time point
variable ti denoting the starting time of task ti. Note that in a CAS
problem instance, the completion time of task ti ∈ T is determined by
ti + l(ti). In the subsequent discussion ti will denote either the task or the
starting time of the task. We hope context will provide enough support
to distinguish between these closely related concepts.

Step 2 Add a constraint ti − tj ≤ −l(ti) ∈ C, for every precedence constraint
ti ≺ tj in Π;
That is, for each precedence constraint ti ≺ tj we ensure that the starting
time of tj minus the starting time of ti is at least equal to the duration
of ti. Note that in an STN , all constraints are difference constraints
upper bounded by a constant. Hence, we have to express tj − ti ≥ l(ti)
as ti − tj ≤ −l(ti).

Step 3 Add a new variable z (the time reference point) to T . This variable has
a fixed value 0.

Step 4 For each ti ∈ T , add the constraints z− ti ≤ −r(ti) and ti− z ≤ d(ti) ex-
pressing the meaning of release times and deadlines, respectively. Again,
note that the deadline d(ti) of a task specifies the last moment in time ti
might start. Note that we assume for every ti ∈ T , the release time r(ti)
satisfies r(ti) ≥ 0. The deadline of a task might be a finite number or
take the value ∞.

The following observation is a straight-forward consequence of the easy reduction
stated above.
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Observation 4.1. Let Π = 〈T,A,≺, φ, l(), c(), r(), d()〉 be a CAS problem instance
and S = (T , C) the STN obtained from Π by applying the reduction above. Then
any solution σ to S = (T , C) is also a solution to Π and vice-versa.

This straight forward reduction, however, does not guarantee makespan mini-
mality of a global solution. To solve the problem of makespan minimality, we resort
to results from [Dechter et al. 1991]. Using our notation this result can be stated as
follows:

Observation 4.2. Let D be the distance matrix (we introduced distance matrices
in section 2.2.3) belonging to a consistent STN S = (T , C). Then, for every t ∈ T ,
the earliest possible time t can be executed is given by σ0(t) = −D[t, z] and the
latest possible time t can be executed is given by σ1(t) = D[z, t].

Hence, we have the following easy consequence:

Observation 4.3. If D is the distance matrix of the STN S = (T , C) derived from
a CAS instance Π, then

• the earliest starting time of a task ti ∈ T equals −D[ti, z];

• the earliest possible completion time of all the tasks t ∈ T is given by

m = max
ti∈T
{−D[ti, z] + l(ti)}

. So m is the makespan of Π.

This observation implies the following result:

Proposition 4.1. Let Π = 〈T,A,≺, φ, l(), c(), r(), d()〉 be a consistent CAS problem
instance. Further, let D be the distance matrix of STN S = (T , C) = (T , C) derived
from Π and let m = maxti∈T {−D[ti, z] + l(ti)}.
Finally, let SΠ = (T , C ∪ {ti − z ≤ m− l(ti) : ti ∈ T }). Then

1. SΠ is consistent;

2. Every solution σ of SΠ is a minimal makespan solution for Π.
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Proof. Given a consistent STN S = (T , C), the STN SΠ = (T , C ∪ {ti − z ≤
m− l(ti) : ti ∈ T } is consistent, too, since at least the earliest possible time solution
σ0 for S satisfies all the additional (makespan) constraints.
The second condition holds since every solution σ assigns to every task ti ∈ T a
starting time such that σ(ti) ≤ m − l(ti), ensuring that every task is completed
before or at the minimal makespan m.

Therefore, we can ensure that all solutions to S = (T , C) are makespan minimal
solutions if we perform the following additional steps:

Step 5 Construct the distance matrix D belonging to S = (T , C) and let m =
max
ti∈T
{−D[ti, z] + l(ti)}.

Step 6 For each ti ∈ T such that ti is a ≺-maximal element of T , add a constraint
ti − z ≤ m − l(ti) ∈ C. That is, for each successor-free task ti task, add
a constraint binding its maximum completion time value to m − l(ti).
We will refer to these constraints as makespan minimising constraints in
future references to them.

Example 4.4. Consider the CAS problem instance Π introduced in Example 4.1
again. Its task graph representation has been given in Figure 4.1. By applying the
reduction steps stated above, the following STN SΠ = (T , C) is obtained:

T = { t1, t2, t3, t4, t5, z }
C = { −2 ≤ t5 − t1 ≤ 2; 0 ≤ t2 − t1 ≤ 4;

0 ≤ t3 − t2 ≤ 3; 0 ≤ t5 − t4 ≤ 3;
0 ≤ t1 − z ≤ 0; 0 ≤ t4 − z ≤ 0;
0 ≤ t3 − z ≤ 5; t5 − z ≤ 5 }

The distance graph of the STN is shown in Figure 4.3 and the distance matrix is
shown in Table 4.1.
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Figure 4.3: The distance graph associated with S = (T , C).

Table 4.1: Distance matrix of S = (T , C) given in Figure 4.3.

z t1 t2 t3 t4 t5
z 0 0 2 3 2 3

t1 0 0 2 3 2 3

t2 -2 -2 0 1 0 1

t3 -3 -3 -1 0 -1 0

t4 0 0 2 3 0 3

t5 -1 -1 1 2 -1 0

4.3 Solving the CAS problem by temporal decoupling

Given the reduction from a CAS problem instance Π to SΠ, we can apply Huns-
berger’s temporal decoupling algorithm to the latter using the partitioning of the
tasks as induced by the task assignment function φ.



4.3. SOLVING CAS 113

The result of applying the Temporal decoupling algorithm on SΠ will be an STN
S∗Π such that the entries D[z, t] and D[t, z] are modified for all time points t involved
in inter-agent constraints and all inter-agent constraints are implied by the local
constraints.

From this STN S∗Π we can easily assemble the individual (local) scheduling
instances Πi belonging to agent Ai by specializing all the elements of Π to i and
updating the release times and deadlines for each task t ∈ Ti by using the entries in
the distance matrix belonging to S∗Π.

Summarizing, the following algorithm (see Algorithm 3) gives a high-level
overview of solving the CAS problem by reducing it to the TDP.

Algorithm 3 Solving the CAS problem by reduction to TDP

Require: A CAS problem instance
Π = 〈T,A,≺, φ, l(), c(), r(), d()〉;

Ensure: A decoupling {Πi}ni=1 of Π;
1: Construct S = (T , C) from Π applying the reduction;
2: Perform the TD algorithm to obtain a decoupled STN S∗Π, let D denote the

distance matrix of such a decoupled STN S∗Π;
3: for all Ai ∈ A do
4: Let Πi be the restriction of Π to i;
5: for all t ∈ Ti do
6: set di(t) := min{di(t), D[z, t]};
7: set ri(t) := max{ri(t),−D[t, z]};
8: end for
9: end for

10: return {Πi}ni=1

It is not difficult to see that this algorithm is correct: Note that if we consider an
instance Π′ composed of all the instances Πi created by the algorithm from Π and
reduced this instance to an STN using the reduction specified before, we obtain
the STN S∗Π which is the result of decoupling S = (T , C). Then, using the fact
that S∗Π is a temporal decoupling of S = (T , C) and the correspondence between Π
and S = (T , C), it follows that for every set of solutions {σi}ni=1 where σi |= Πi it
holds that their merge σ is a model of S = (T , C), and therefore σ |= Π. Therefore,



114 CHAPTER 4. THE UNBOUNDED CONCURRENCY CASE

t1

t2

t3

t4

t5

t6

t7

t8

z

t1 t2

t3 t4 t5

t6

t7 t8

1

2

3

4

2

3

3

3

A1 A2 A3

-1

0

-3

-2

-4

0

-3

6

6

7

(a) (b)

-2

0

Figure 4.4: (a) An example task graph (b) the distance graph of the corresponding
makespan minimal STN .

{Πi}ni=1 is a decoupling of Π and we have the following result.

Proposition 4.2. Given a CAS problem instance Π, Algorithm 3 computes a tem-
poral decoupling {Π}ni=1 of Π.

Example 4.5. Consider the task graph shown in Figure 4.4 (a). 8 tasks have
been allocated among three agents and their durations are shown below them. The
corresponding STN S = (T , C) is shown in Figure 4.4 (b). The distance matrix of
the same is given in Table 4.2.

There are three inter-partition edges where there is a ‘slack’. This slack, termed
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z t1 t2 t3 t4 t5 t6 t7 t8
z 0 3 0 4 2 6 3 7 6

t1 0 0 0 4 2 6 3 7 6

t2 0 3 0 4 2 6 3 7 6

t3 -1 -1 -1 0 3 5 2 6 5

t4 -2 1 -2 2 0 4 1 5 4

t5 -2 1 -2 2 0 0 1 5 4

t6 0 3 0 4 2 6 0 7 6

t7 -4 -4 -4 -3 -2 2 -1 0 2

t8 -6 -3 -6 -2 -4 0 -3 1 0

Table 4.2: Distance matrix for the S = (T , C) in Figure 4.4(b).

the Zero path shortfall (ZPS) value1 allows us to identify edges that can be tightened:

ZPS(t1, t3) =0 + 4− 1 = 3

ZPS(t3, t7) =− 1 + 7− 3 = 3

ZPS(t6, t8) =0 + 6− 3 = 3

We first choose to decouple the edge (t3, t1). Thus, we need to find δ1, δ2 such that

−D[z, t1] ≤ δ1 ≤ D[t1, z]

−D[t3, z] ≤ δ2 ≤ D[z, t3]

Substituting values we get,

−3 ≤ δ1 ≤ 0

1 ≤ δ2 ≤ 4

We choose to set δ1 = −3 and δ2 = 4. This results in two additional constraints:
z − t1 ≤ −3 and t3 − z ≤ 4. Updating the distance matrix, we observe that edges
(t7, t3) and (t8, t6) have a ZPS value greater than 0. After decoupling them as earlier,
we derive the constraints: z − t3 ≤ −4; t7 − z ≤ 7; z − t6 ≤ 0; t8 − z ≤ 6. The
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z t1 t2 t3 t4 t5 t6 t7 t8
z 0 3 0 4 2 6 3 7 6

t1 0 0 0 4 2 6 3 7 6

t2 0 3 0 4 2 6 3 7 6

t3 -4 -1 -4 0 -2 2 -1 3 2

t4 -2 1 -2 2 0 4 1 5 4

t5 -2 1 -2 2 0 0 1 5 4

t6 -3 3 0 4 2 6 0 7 6

t7 -7 -4 -4 -3 -2 2 -1 0 2

t8 -6 -3 -6 -2 -4 0 -3 1 0

Table 4.3: Distance matrix after decomposition.

final distance matrix is given in Table 4.3. The release dates and deadlines for each
of the tasks in Π derived from Table 4.3 are as follows:

r1(t1) = 0; d1(t1) = 3

r1(t2) = 0; d1(t2) = 0

r2(t3) = 4; d2(t3) = 4

r2(t4) = 2; d2(t4) = 2

r2(t5) = 2; d2(t5) = 6

r2(t6) = 0; d2(t6) = 3

r3(t7) = 7; d3(t7) = 7

r3(t8) = 6; d3(t8) = 6

Updating the distance graph based on the new set of release times and deadlines
we obtain the graph in Figure 4.5. Note that ri(t

′) ≥ dj(t) + l(t) whenever t ≺ t′.
Therefore, as long as the task is scheduled within its release time and deadline
interval, there is no danger of any precedence constraint being violated. To illustrate

1ZPS of a proper edge E : (tj − ti ≤ δ) is given by ZPS(E) = D(ti, z) +D(z, tj)− δ
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Figure 4.5: Updated distance graph. The darker, broken lines represent the updated
release times and deadlines.

that, now suppose the three agents design the following three schedules:

σ1(t1) = 3 σ1(t2) = 0;
σ2(t3) = 4 σ2(t4) = 2;
σ2(t5) = 4 σ2(t6) = 3;
σ3(t7) = 7 σ3(t8) = 6

It is easy to see that these local schedules can be merged to obtain a valid global
schedule because they do not violate any precedence constraint when merged. Fur-
ther, since the deadlines do not allow for a schedule of length greater than 9. It
follows that all schedules that honour the updated release times and deadlines can
be merged to obtain a global schedule with a minimum makespan (which in this
case is 9).

As mentioned before, using this temporal decoupling method requires several
rather expensive computations: the distance matrix D has to be constructed (costs
O(n3) where n is the number of time points in the STN) and furthermore D has to
be updated after each temporal decoupling step in which an inter-agent constraint is
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removed (costs O(n2) per step). Therefore, we are looking for a simplification of the
temporal decoupling method to solve our original CAS problem. This simplification
will be accomplished stepwise, first using the translation of CAS instances to STN
instances and then will be applied directly to the CAS instance.

4.3.1 Towards an efficient temporal decoupling algorithm for the
CAS problem

Using Algorithm 3, requires us to apply Hunsberger’s temporal decoupling algo-
rithm. This in turn requires us to compute the distance matrix D of an STN S.
As we will show in this subsection, this computation is not needed because of the
following reasons:

1. Only a small part of the distance matrix for the derived STN instance SΠ is
needed to perform a decoupling of SΠ;

2. This part can be computed directly by applying a simple linear algorithm to
the CAS instance Π;

3. The necessary tightening of constraints to remove inter-agent constraints (the
temporal decoupling steps) can be performed without recomputing other parts
of the distance matrix D and requires linear time;

4. The result of the temporal decoupling can be represented directly in the form
of individual CAS instances, being the result of decomposition of the original
CAS instance.

As a result, we will construct an algorithm doing the same job as Algorithm 3, but
not relying on a reduction to SΠ and performing the decoupling in linear time.

Computing earliest and latest starting times

We start with a derivation of the earliest and latest starting times for the tasks
t ∈ T . Given a CAS problem instance Π, as a consequence of Observation 4.2, we
know that the earliest and latest possible starting times of a task t ∈ T can be
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obtained from the first row and first column of the distance matrix D belonging
to its corresponding STN SΠ. We will now show how the first row and the first
column of the distance matrix D associated with SΠ can be computed in linear time
without using the reduction to STNs.

Given a task t we define the set of predecessors and the set of successors of t as
follows:

Definition 4.2. Predecessor and successor of task t: Given a CAS problem
instance Π = 〈T,A,≺, φ, l(), c(), r(), d()〉, let � denote the transitive reduction of
T .2 Then, the set pred(t) = {t′| t′ � t} is the set of all predecessor tasks of tasks t
and succ(t) = {t′| t� t′} denotes the set of all successor tasks of t.

Denoting the earliest starting time of a task t by est(t) and the latest starting
time of t by lst(t), we have the following result:

Observation 4.4. For every task t ∈ T it holds that

est(t) = max{r(t), max
t′∈pred(t)

{est(t′) + l(t′)} } (4.1)

Proof. By easy induction on the depth of task t ∈ T w.r.t. ≺: clearly if pred(t) = ∅,
the earliest starting time of t equals r(t) ≥ 0. Proceeding inductively, assume
that all tasks with depth k or smaller have been assigned their earliest starting
time. Consider a task at depth k + 1 and its set of predecessors pred(t). Every
task t′ ∈ pred(t) has depth k. Hence, est(t) equals the maximum of r(t) and the
maximum of all earliest finishing times est(t′) + l(t′) of tasks t′ ∈ pred(t).

Note that the minimum makespan m of the set of tasks T equals the minimum
duration required to complete all tasks. Hence, we immediately have

Observation 4.5. m = maxt∈T {est(t) + l(t)}

Analogously, the latest starting times lst(t) of tasks t can be determined as
follows:

2t� t′ if there exist no t′′ ∈ T such that both t ≺ t′′ and t′′ ≺ t′.
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Observation 4.6. For every task t ∈ T it holds that

lst(t) = min{ min{d(t),m− l(t)}, min
t′∈succ(t)

{lst(t′)− l(t)} } (4.2)

Proof. Analogously to the proof of Observation 4.4, but now with induction on the
height of task t in the ordering ≺ of T , and noticing that the latest starting time of
tasks without ≺-successor in T is determined by m− l(t) and d(t).

Computing est and lst values enable us to easily check whether a given CAS
problem instance Π is feasible. That is, checking whether there exists at least one
solution σ satisfying Π.

Proposition 4.3. Any given Π = 〈T,A,≺, φ, l(), c(), r(), d()〉 is feasible iff, for every
t ∈ T , we have lst(t)− est(t) ≥ 0.

Proof. It suffices to show that if for every t ∈ T we have lst(t) − est(t) ≥ 0,
there exists a solution σ satisfying all constraints. Consider the smallest assign-
ment σ0(t) = est(t) ≤ lst(t) for all t ∈ T . It is easy to see that this assignment
satisfies all constraints of Π since for all t ≺ t′ we have σ0(t) + l(t) ≤ σ0(t′) by
definition of est(t). Moreover, σ0(t) ≥ r(t) and σ0(t) ≤ d(t) by definition of est(t)
and lst(t) and the fact that est(t) ≤ lst(t).

The (inductive) definitions of est(t) and lst(t) can be used to build easy algo-
rithms to find the earliest and latest starting times of the tasks as they appear in
the first row and column of the matrix D belonging to SΠ as discussed before:

Proposition 4.4. The first row and column entries of the distance matrix D be-
longing to SΠ for a given CAS problem instance Π = 〈T,A,≺, φ, l(), c(), r(), d()〉 can
be computed in linear time.

Proof. Note that the values est(t) and lst(t) can be computed in linear time using a
topological sort of T [Cormen et al. 1990]. Using the fact that the entries −D[ti, z]
and D[z, ti] in the distance matrix D associated with the STN SΠ specify the
smallest and largest makespan solutions for t ∈ T , respectively, we immediately
derive that



4.3. SOLVING CAS 121

1. −D[t, z] = est(t);

2. D[z, t] = lst(t).

Hence, the first row and column entries of the distance matrix D belonging to SΠ

can be computed in linear time.

Incremental solvability and solution interval sets

It is well-known that the distance matrix D of a (consistent) STN S exhibits an
important property: incremental solvability.3 In its simplest form this means that for
every variable ti and for every value v ∈ [−D[ti, z], D[z, ti] ], there exists a complete
solution σ such that σ(ti) = v, i.e., every value in the interval [−D[ti, z], D[z, ti] ]
can be chosen to extend a partial solution {ti = v} to a complete solution σ for S.

As we mentioned before, our goal is to specialize the temporal decoupling
method to CAS problem instances avoiding a costly reduction to STNs. As a
further step, we now specify this property of incremental solvability w.r.t. the set
IΠ = {[est(t), lst(t)] : t ∈ T} of intervals for a given CAS instance Π as follows:

Definition 4.3. Solution interval set: Given a CAS problem instance Π =
〈T,A,≺, φ, l(), c(), r(), d()〉, we say that a set I = {[vi, wi ] : ti ∈ T} is a solu-
tion interval set for Π if there exists a solution σ for Π such that for every ti ∈ T it
holds that vi ≤ σ(ti) ≤ wi.

Definition 4.4. Incremental solvability: We say that a solution interval set I
allows for incremental solvability if, for every ti ∈ T and every choice of σ(ti) ∈
[vi, wi ] it holds that there exists a complete solution σ extending σ(ti), such that
for every tj ∈ T , we have vj ≤ σ(tj) ≤ wj .

From the definitions of solution set and incremental solvability, it is immedi-
ately evident that a solution interval set IΠ = {[est(ti), lst(ti)] : ti ∈ T} allows for
incremental solvability:

3This property is also called backtrack-free solvability.
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Proposition 4.5. Let SΠ be an STN derived from a CAS instance Π = 〈T,A,≺,
φ, l(), c(), r(), d()〉 and let est() and lst() be the functions assigning the earliest start-
ing time and the latest starting time for tasks in T , respectively. Then the solution
interval set IΠ = {[ est(ti), lst(ti) ] : ti ∈ T} is a solution interval set for Π allowing
for incremental solvability.

Using this idea of a solution interval set I for a CAS problem instance Π allowing
for incremental solvability, we will now try to reformulate the TDP algorithm as
specified by Hunsberger in such a way that decoupling is performed operating on
solution interval sets instead of using the distance matrix DΠ associated with SΠ.

Specifying temporal decoupling step without using the distance matrix
D

Basically, Hunsberger’s Temporal decoupling method for STNs consists of a series of
temporal decoupling steps. In each such step, the first row and first column entries
of the distance matrix D are adapted in order to ensure that, for a given pair of
temporal variables ti and tj belonging to different agents, it holds that the inter-agent
constraints they participate in are implied by the first row and first column entries
they participate in. That is, it is ensured that the entries D[ti, z], D[tj , z], D[z, ti] and
D[z, tj ] (specifying the lower and upper bound for local constraints) are tightened
in such a way that

D[ti, z] +D[z, tj ] ≤ D[ti, tj ]

and

D[tj , z] +D[z, ti] ≤ D[tj , ti].

At the end of each such a step, we should update other entries of D as a conse-
quence of changing D[ti, z] and D[z, ti] in order to ensure that the modified distance
matrix D′ enjoys incremental solvability when starting the next step.

In our case, using the before mentioned equalities D[ti, z] = −est(ti) and
D[z, tj ] = lst(tj), the temporal decoupling step stated above simplifies to the fol-
lowing:

1. Adapt the values est(ti), lst(ti), est(tj) and lst(tj) ensuring that both lst(tj)−
est(ti) ≤ D[ti, tj ] and lst(ti)− est(tj) ≤ D[tj , ti];
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2. Adapt the entries of D as the consequence of these local changes to ensure
that the modified matrix D′ enjoys incremental solvability.

Note that these equations require the values D[ti, tj ] and D[tj , ti] to be known in
order to specify whether or not these inequalities are violated or not. Of course,
we would like to remove the dependency on these entries in executing a temporal
decoupling step. Therefore, we distinguish two cases:

1. ti and tj are not ≺-related.
In this case, the temporal distance tj − ti between the two tasks is bounded
above by max{lst(tj)− t(ti), lst(ti)−est(tj)}. Hence, D[ti, tj ] = max{lst(tj)−
est(ti), lst(ti)−est(tj)}. Then it follows that the inter-agent constraint tj−ti ≤
D[ti, tj ] is always implied by the sum of local constraints:

(tj − z) + (z − ti) ≤ D[z, tj ] +D[ti, z] = lst(tj)− est(ti) ≤ D[ti, tj ]

of the two intra-agent constraints tj − z ≤ D[z, tj ] and z − ti ≤ D[ti, z].
Hence, the inter-agent constraint is already implied by these local intra-agent
constraints. The same holds true for ti − tj ≤ D[tj , ti].
We conclude that we do not need to bother about temporal decoupling if the
tasks ti and tj are not ≺ related.

2. ti ≺ tj (or vice-versa).
In this case, ti should be completed before tj starts, i.e., we should have that
ti − tj ≤ −l(ti), i.e., D[tj , ti] ≤ −l(ti). Clearly, if lst(ti) + l(ti) > est(tj), this
inter-agent constraint is not implied by the local constraints ti ≤ lst(ti) and
tj ≥ est(tj). In other words, if this latter inequality holds, the inter-agent
constraint will be violated whenever, for example, one agent chooses the latest
possible time for starting ti and the other agent chooses the earliest possible
time for tj . The case for tj ≺ ti is treated completely analogous to this case.

Summarizing, we conclude that

1. only in case ti and tj belong to different agents, and ti ≺ tj , we have to check
whether the local constraints imply the inter-agent constraint ti− tj ≤ −l(ti),
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2. to ensure that this inter-agent constraint is implied means that we have to
adapt the values est(ti) and lst(tj) in order to ensure that ti + tj ≤ −l(ti) is
implied and,

3. for checking the decoupling conditions, we can completely remove the depen-
dency upon the entries D[ti, tj ] in the distance matrix D.

Now it is time to look at the way the changes of the local constraints are per-
formed in a temporal decoupling step to further simplify this step and make its
execution completely independent of the entries D[tj , ti].

According to the TD method, in executing a temporal decoupling step for ti and
tj to imply a constraint ti − tj ≤ D[tj , ti], we have

1. to find two values δi and δj such that (D[z, ti]− δi) + (D[tj , z]− δj) ≤ D[tj , ti]
and

2. to add the constraints ti − z ≤ D[z, ti]− δi and z − tj ≤ D[tj , z]− δj .

Remember that in our case we only have to adapt local constraints in case ti ≺ tj .
Suppose that it is true then, we have

1. to find two values δi and δj such that (lst(ti) − δi) − (est(tj) + δj) ≤ −l(ti).
By rearranging terms we derive that δi + δj ≥ lst(ti) + l(ti)− est(tj);

2. to add the constraints ti ≤ lst(ti)− δi and −tj ≤ −est(tj)− δj .
This means that we have to change lst(ti) to lst(ti) + δi and to change est(tj)
to est(tj) + δj .

Let us now determine suitable values δi and δj such that we can change the corre-
sponding est(tj) and lst(ti) values.

From the required inequality

δi + δj ≥ lst(ti) + l(ti)− est(tj)

it follows that

1. by setting

δi = δj =
lst(ti) + l(ti)− est(tj)

2
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and

2. changing lst(ti) to lst(ti)− δi and then est(tj) to est(tj) + δj

the temporal decoupling step can be performed resulting in the implica-
tion/elimination of the inter-agent constraint ti + tj ≤ −l(ti).

Algorithm 4 is a first specification of performing a temporal decoupling step
without making any reference to the distance matrix D:

Algorithm 4 Performing a temporal decoupling step.

Require: An interval solution set I = {[est(ti), lst(ti)] : ti ∈ T}, two tasks ti, tj ∈ T
such that ti ≺ tj belong to different agents, and lst(ti) + l(ti) > est(tj);

Ensure: est(tj) and lst(ti) values are modified such that lst(ti) + l(ti) ≤ est(tj)
and a new interval solution set I ′ is obtained

1: let δi =
lst(ti)+l(ti)−est(tj)

2 ;
2: let est(tj) := est(tj) + δi;
3: let lst(ti) := lst(ti)− δi;
4: return the new interval solution set I ′ = {[est(ti), lst(ti)] : ti ∈ T}.

Refining the temporal decoupling step to ensure incremental solvability

It can easily be shown that whenever I is an interval solution set, I ′ is a solution
interval set, too. Moreover, as a result of applying the temporal decoupling step,
it is easy to see that for every solution σ based on I ′ we have that the inter-agent
constraint ti + tj ≤ −l(ti) is automatically satisfied: the new intervals for ti and tj
ensure that σ(ti)+ l(ti) ≤ σ(tj). There is, however, one catch: I ′ does not guarantee
incremental solvability, whereas IΠ did.

To show the occurrence of this lack of incremental solvability, consider the fol-
lowing example:

Example 4.6. Consider a set of 6 jobs: T = {t1, t2, t3, t4, t5, t6}. It holds that
t1 ≺ t2 ≺ t3 and all these jobs have a duration of 3. Furthermore, t4 ≺ t5 ≺ t6 and
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these jobs have a duration of 1. Computing IΠ, we derive

est(t1) = 0, lst(t1) = 0
est(t2) = 3, lst(t2) = 3
est(t3) = 6, lst(t3) = 6
est(t4) = 0, lst(t4) = 6
est(t5) = 1, lst(t5) = 7
est(t6) = 2, lst(t6) = 8

Suppose that t4 and t5 belong to different agents. Since we have lst(t4) + l(t4) =
6 + 1 > est(t5) = 1, the inter-agent constraint t4 + 1 ≤ t5 is not implied.

Now applying Algorithm 4 to this example with t4 ≺ t5,

1. a value δ4 = lst(t4)+l(t4)−est(t5)
2 = 6+1−1

2 = 3 is determined

2. lst(t4) is updated to 6− 3 = 3 and est(t5) to 1 + 3 = 4.

This results in the following interval solution set I ′:

est′(t1) = 0, lst′(t1) = 0
est′(t2) = 3, lst′(t2) = 3
est′(t3) = 6, lst′(t3) = 6
est′(t4) = 0, lst′(t4) = 3
est′(t5) = 4, lst′(t5) = 7
est′(t6) = 2, lst′(t6) = 8

Although the constraint t4 + l(t4) = t4 +1 ≤ t5 now is implied, the resulting interval
solution set I ′ is no longer incrementally solvable: if we choose σ(t6) = 2, there is
no solution σ(t5) occurring in the interval [est′(t5, lst

′(t5)] = [4, 7].

The careful reader might have noticed that the decoupling step as performed by
the algorithm above results in interval solution sets I ′ where some properties I, and
in particular IΠ are preserved, but others are lost. First of all, the algorithm never
returns an interval solution set where intervals are not covered by the input I: such
interval solution sets I ′ are covered by the solution interval set I given as input.
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Definition 4.5. Covering: Given an interval solution set I for a CAS problem
instance Π we say that an interval solution set I ′ = {[est′(ti), lst′(ti)] : ti ∈ T} is
covered by I = {[est(ti), lst(ti)] : ti ∈ T} if, for every ti ∈ T , we have est(ti) ≤
est′(ti) ≤ lst′(ti) ≤ lst(ti).

A property, however that is not preserved by Algorithm 4 is (est, lst)-
monotonicity:

Definition 4.6. Monotonicity: Given an interval solution set I for a CAS problem
instance Π we say that an interval solution set I ′ = {[est′(ti), lst′(ti)] : ti ∈ T} is
(est, lst)-monotonic if for every pair ti, tj ∈ T it holds that whenever ti ≺ tj then
est′(ti) + l(ti) ≤ est′(tj) and lst′(ti) ≤ lst′(tj)− l(ti).

Example 4.7. To illustrate the idea of (est, lst)-monotonicity, let us consider Ex-
ample 4.6 again. It is easy to check that IΠ is (est, lst)-monotonic. If we look at
I ′, however, we see that est′(t3) > est′(t4) while t3 ≺ t4 and the same holds for the
lst-values.

As it turns out both properties of interval solution sets are necessary to guarantee
the preservation of incremental solvability:

Proposition 4.6. Let I ′ = {[est′(ti), lst′(ti)] : ti ∈ T} be a solution interval set for
a CAS problem instance Π such that I ′ is covered by IΠ and is (est, lst)-monotonic.
Then I ′ also guarantees incremental solvability.

Proof. Consider an arbitrary ti ∈ T and a value σ(ti) ∈ [est′(ti), lst
′(ti)]. Since I ′ is

covered by IΠ, σ(ti) ∈ [est(ti), lst(ti)] and can be chosen arbitrarily. We extend σ(ti)
as follows: for every tj ≺ ti, we choose σ(tj) = est′(tj); for every tj such that ti ≺ tj
or tj is not ≺-related to ti, we choose σ(tj) = lst′(tj). By the covering property, it
follows immediately that for every ti, σ(ti) ∈ [est(ti), lst(ti)].

We now prove that σ satisfies Π and is makespan minimal. Consider an arbitrary
tk, tl ∈ T such that tk ≺ tl. We distinguish the following cases:

Case (1:) tk, tl ≺ ti.
Then σ(tk) + l(tk) = est′(tk) + l(tk). By (est, lst)-monotonicity,
est′(tk) + l(tk) ≤ est′(tl) = σ(tl). Hence, σ(tk) + l(tk) ≺ σ(tl) sat-
isfying the constraint tk + l(tk) ≤ tl;
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Case (2:) tk ≺ ti and tl = ti.
Then σ(tk) + l(tk) = est′(tk) + l(tk) ≤ est′(ti) ≤ σ(ti)

Case (3:) tk ≺ ti and (ti ≺ tl or ti and tl are not ≺-related).
Then σ(tk) + l(tk) = est′(tk) + l(tk) ≤ est′(tl) ≤ lst′(tl) = σ(tl).

Case (4:) (tk = ti and ti ≺ tl) or (ti and tl are not ≺-related).
Then σ(ti) ≤ lst′(ti) ≤ lst′(tj)− l(ti) ≤ lst′(tl) = σ(tl).

Case (5:) (ti ≺ tk or ti and tl are not ≺-related) and (ti ≺ tl or ti and tl are not
≺-related).
Then σ(tk) = lst′(tk) ≤ lst′(tl)− l(tk) < lst′(tl) = σ(tl).

We conclude that σ satisfies all constraints, showing that I ′ guarantees incremental
solvability.

This solution is also makespan minimal: since I ′ is covered by I0 it follows that
the makespan m′ based on I ′ cannot be larger than m, the makespan based on IΠ.
Since there exists at least one tk ∈ T such that m = est(tk) + l(tk) = let(tk) + l(tk),
we have [est(tk), est(tk)] ∈ IΠ. Hence, by covering, [est(tk), est(tk)] ∈ I ′ as well and
σ′(tk) = est(tk). Therefore, m′ ≥ m. Hence, since m′ ≤ m, it follows m = m′.

Since Algorithm 4 preserves covering but might return an interval solution set
that is not (est, lst)-monotonic, we have to restore the latter property. This can be
easily taken care of by propagating the changed est-values upward in the ≺-chain and
propagating the changed lst-values downwards in the ≺-chain. The improved version
of this algorithm for executing a temporal decoupling step then can be specified as
follows (see Algorithm 5):

Note that the (est, lst)- propagation process restores (est, lst)-monotonicity.

Example 4.8. Let us illustrate the effect of applying Algorithm 5 to Example 4.6.
After changing lst(t4) to 3 and est(t5) to 4, we have to adapt the est values of the
successors of t5. Hence, est(t6) = maxtl∈prec(t6){est′(tl) + l(tk)} = est′(t5) + 1 =
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Algorithm 5 Performing a temporal decoupling step — refined.

Require: An incrementally solvable interval solution set I = {[est(ti), lst(ti)] :
ti ∈ T}, two tasks ti, tj ∈ T such that ti ≺ tj belong to different agents, and
lst(ti) + l(ti) > est(tj);

Ensure: est(tj) and lst(ti) values are modified such that lst(ti) + l(ti) ≤ est(tj)
and a new incrementally solvable interval solution set I ′ is obtained

1: let δi =
lst(ti)+l(ti)−est(tj)

2 ;
2: let est(tj) := est(tj) + δi;
3: let lst(ti) := lst(ti)− δi;
4: let t = ti
5: for all t ∈ T such that ti ≺ t, starting with t ∈ succ(ti) do
6: est(t) = maxt′∈prec(t){est(t′) + l(t)};
7: end for
8: for all t ∈ T such that t ≺ tj , starting with t ∈ prec(tj) do
9: lst(t) = mint′∈succ(t){lst(t′)− l(t)};

10: end for
11: return the new interval solution set I ′ = {[est(ti), lst(ti)] : ti ∈ T}.

4 + 1 = 5. Now we have obtained a new interval solution set I ′ where

est′(t1) = 0, lst′(t1) = 0
est′(t2) = 3, lst′(t2) = 3
est′(t3) = 6, lst′(t3) = 6
est′(t4) = 0, lst′(t4) = 3
est(t5) = 4, lst′(t5) = 7
est(t6) = 5, lst(t6) = 8

The reader might check that indeed I ′ is an interval solution set which satisfies
(est, lst)-monotonicity.

As a consequence of the preceding discussion, the correctness of the temporal
decoupling step as performed by Algorithm 5 immediately follows :

Proposition 4.7. Given an incrementally solvable interval solution set I =
{[est(ti), lst(ti)] : ti ∈ T}, two tasks ti, tj ∈ T such that ti ≺ tj belonging to different



130 CHAPTER 4. THE UNBOUNDED CONCURRENCY CASE

agents, and lst(ti) + l(ti) > −est(tj). Let I ′ be the solution interval set resulting
from performing the temporal decoupling step to ti, tj by Algorithm 5. Then

1. I ′ is covered by I and I ′ is incrementally solvable;

2. For every choice of σ(ti) and σ(tj) based on I ′ there is a complete extension
σ satisfying all constraints.

An efficient temporal decoupling algorithm for CAS problem instances

Each temporal decoupling step effectively ‘removes’ an inter-agent constraint by
tightening local constraints. Once a constraint is implied by such a tightening step
it remains implied also if other steps might follow. Since every temporal decoupling
step performed preserves incremental solvability, the temporal decoupling algorithm
basically is an iteration of temporal decoupling steps. So, it suffices to specify how as
a result of applying these temporal decoupling steps, the final decoupling into CAS
subproblems is obtained. But this is easy: for each local instance Πi, we only need
to guarantee that changes in the est and lst values are propagated by modifying the
r(t) and d(t) values of the tasks involved. Hence, our temporal decoupling algorithm
for CAS problem instances can be specified as follows:

At first sight temporal decoupling might take more than linear time: if there
are p tuples in the precedence relation ≺ and n tasks, a single execution of the
temporal decoupling step might cost O(n) time to propagate the updated est and
lst-values and we would end up with an algorithm taking O(p.n), i.e., quadratic in
the input size. Linear time, however, can easily obtained if we perform the temporal
decoupling steps in topological order. Then, following the topological order, for every
pair ti � tj we do either (i) nothing, or (ii) we perform a temporal decoupling step
and we adapt the est, lst values locally and we keep record of these adapted values
or (iii) we propagate a stored adapted est-value and adapt the current ti, tj values
and keep record of the adapted value. Hence, we ensure that during execution of
the temporal decoupling steps, the est-values are updated. This sweep will cost
O(n+ p) time. Hereafter, we update the lst-values, performing a sweep downward.
This sweep will cost O(n + p) time, too. hence, the total time needed is O(n + p),
i.e., linear in the size of the input instance.

As a consequence, we have the following result:
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Algorithm 6 Temporal Decoupling for Coordinated Scheduling.

Require: A CAS problem instance Π = 〈T,A,≺, φ, l(), c(), r(), d()〉
Ensure: A temporal decoupling {Πi}ni=1 of Π

1: Compute the set I = {[est(t), lst(t)] : t ∈ T};
2: while there exist ti � tj in T such that ti and tj belong to different agents and
lst(ti) + l(ti) > est(tj) do

3: apply Algorithm 5 to I;
4: let I := I ′;
5: end while
6: for all Ai ∈ A do
7: Let Πi be the restriction of Π to Ti;
8: for all t ∈ Ti do
9: set di(t) := lst(t) in Πi;

10: set ri(t) := est(t) in Πi;
11: end for
12: end for
13: return the decoupling {Πi}ni=1

Proposition 4.8. Temporal decoupling for CAS problem instances can be performed
in linear time.

Let us now illustrate the decoupling of a CAS problem instance.

Example 4.9. Consider again the job shop problem instance in Example 4.1 shown
in Figure 4.6. We assume r(t) = 0 and d(t) =∞ for every task t ∈ T . We compute
a decoupling following Algorithm 6 First step, we perform a topological ordering of
all the tasks to determine the est values of all tasks. This results in:

est(t1) = 0; est(t2) = 2; est(t3) = 3;

est(t4) = 0; est(t5) = 1

Notice that the minimal makespan m = 3 + 2 = 5. Now we compute the lst-values:

lst(t1) = 0; lst(t2) = 2; lst(t3) = 3;

lst(t4) = 2; lst(t5) = 3.
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Figure 4.6: Overlapping constraints can lead to infeasible schedules.

As a result we obtain the following interval solution set IΠ:

t1 = [0, 0]; t2 = [2, 2]; t3 = [3, 3];

t4 = [0, 2]; t5 = [1, 3].

Notice the starting time intervals of tasks t4, t5. These intervals allow agent A1 to
start t4 at time 1, while A2 also can choose to start t5 at time instant 1. However,
if these schedules are merged, we violate the precedence constraint between t4 and
t5 σ(t4) < σ(t5) + 1. To ensure that this constraint is always implied, we perform a
decoupling on t4 ≺ t5: first we compute a suitable δ value:

δ =
lst(t4)− est(t5) + l(t4)

2
= 1

Hence, we reset the intervals for tasks t4, t5 as follows:

t4 = [0, 1]; t5 = [2, 3]

Now we perform the last decoupling step.

1. Agent A1 receives the tasks t1 and t4 with the following constraints: d(t1) = 1,
d(t4) = 1;

2. Agent A2 receives the tasks t2 and t5 with the constraints r(t2) = d(t2) = 2
and r(t5) = 2, d(t5) = 3;
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3. Agent A3 receives the task t3 with constraints r(t3) = d(t3) = 3.

Now if each agent schedules its tasks satisfying these constraints, there can be no
violations of precedence constraints.

A very simple decoupling algorithm: the Interval scheduling algorithm
(ISA)

In the previous part we developed Algorithm 6 that would ensure a complete tem-
poral decomposition of any given CAS problem. Algorithm 6 was based on Huns-
berger’s temporal decoupling method and was reliant on the correspondence between
CAS problem instances and STN .

Interestingly, there is an easier way to solve CAS problems. This simpler way
is based on the realisation that to achieve a decomposition of the CAS problem we
need to only ensure the following properties:

• whenever the original CAS problem admits a solution, all decomposed in-
stances of the CAS problem must admit a solution and

• each set of solutions to the decomposed CAS problems can be merged to obtain
a solution to the global CAS problem.

In the sequel, we show that to preserve these properties, we do not need to perform a
full temporal decomposition, but can achieve the same result by interval separation.
Here, interval separation simply means that we perform the temporal decoupling
step on all the tasks that have overlapping intervals in parallel and irrespective of
whether both tasks belong to the same agent or not. Therefore, instead of having
to ‘propagate’ the updated est() and lst() values, we simply separate all intervals
that could possibly violate incremental solvability. Based on this idea we propose
the Generalised Interval based scheduling algorithm (ISA).

The output of this simple algorithm is a modified set of release dates and dead-
lines corresponding to each task in the CAS problem instance. With these modified
release times and deadlines, it can be ensured that any solution to the CAS subprob-
lems of this CAS problem instance can be merged to obtain a solution to the original
problem instance. A complete description of the algorithm is given in Algorithm 7.
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Algorithm 7 Generalised Interval based Scheduling (ISA).

Require: A CAS-instance Π with the set IΠ = {[est(t), lst(t)]; t ∈ T};
Ensure: A CAS-instance Π′ with modified release times and deadlines of tasks in

T ;
1: for all t ∈ T do
2: for all t′ ∈ T such that t� t′ and lst(t) + l(t) > est(t′) do

3: δt,t′ = lst(t)−est(t′)+l(t)
2 ;

4: end for
5: δt = maxt�t′{δt,t′};
6: d(t) = lst(t)− bδtc;
7: r(t′) = est(t′) + dδte;
8: end for

The idea of ISA is that by modifying deadline and release times of tasks in a
given CAS-instance Π, for every partitioning {Ti}mi=1 of tasks, the corresponding set
of instances {Πi}mi=1 induced by {Ti}mi=1 is a decomposed set of CAS-instances. This
means that every set of solutions to this set of instances can be merged to a solution
of Π itself.

Let us now prove that ISA is correct.

Theorem 4.9. Algorithm ISA is correct. That means, if Π is a CAS instance,
{Ti}mi=1 a partitioning of T , and Π′ is the CAS instance computed by ISA, then the
set {Π′i}mi=1 induced by {Ti}mi=1 is a decomposed set of CAS instances and every set
{σi} of solutions for {Π′i}mi=1 can be merged to a solution σ for Π.

Proof. Obviously, ISA halts whenever a CAS instance Π is given as input. Therefore,
it suffices to prove that

1. whenever Π is consistent, each of the decomposed instances Π′i is also consis-
tent, and

2. every set of solutions {σi}mi=1 where σi is a solution for Πi is mergeable to a
solution σ for Π.

To prove the first part, suppose that Π is a consistent CAS problem instance. Then,
by Proposition 4.3, we have lst(t) ≥ est(t) for all t ∈ T . Now consider an arbitrary
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part Π′i. We show that for every t ∈ Ti we have est′(t) ≤ lst′(t) where the est′ and
lst′ values are computed from Πi according to the modifications applied to Π by
ISA.

Suppose on the contrary that there exists a task ti in Π′ such that ti ∈ Tj for
every chain of tasks up to ti, ti is the first task such that est′(ti) > lst′(ti). Since
est′(ti) ≥ r(ti) and lst′(ti) ≤ d(ti), we distinguish the following two cases:

1. r(ti) < d(ti). Then there must exist some t′ ≺ ti such that est′(t′) = est′(ti)−
l(t′) > lst′(ti) − l(t′) = lst′(t′). But then we have a contradiction, because t′

occurs before ti and est′(t′) > lst′(t′). So this case cannot hold.

2. r(ti) ≥ d(ti). According to ISA we have

r(ti) = est(ti) +
lst(t′) + l(t′)− est(ti)

2
=
est(ti) + lst(t′) + l(t′)

2
and

d(ti) = lst(ti)−
lst(ti) + l(ti)− est(t′′)

2
=
lst(ti) + est(t′′)− l(ti)

2

Since lst(t′) + l(t′) ≤ lst(ti) and est(ti) + l(ti) ≤ est(t′′), it follows that

r(ti) =
est(ti) + lst(t′) + l(t′)

2
≤ est(ti) + lst(ti)

2
and

d(ti) =
lst(ti) + est(t′′)− l(ti)

2
≥ est(ti) + lst(ti)

2

Therefore, r(ti) ≤ d(ti), contradicting the assumption and this case cannot
hold.

Hence, we must conclude that for all tasks t ∈ Πi we have est′(t) ≤ lst′(t).
Therefore, every Πi is consistent.

The proof of the second part is simple. Since we know that every decomposed
part Π′i is consistent, it has a solution σi. Take a set {σi}mi=1 of those solutions,
arbitrarily chosen. We show that the merge σ =

⋃m
i=1 σi is always a solution to Π.

First note that any solution to Π′ is a solution to Π, since ISA restricts the set of
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possible solutions to Π. We now show that σ is a solution to Π′. Since σ is composed
of solutions to the decomposed parts, it suffices to show that whenever t, t′ belong
to different parts and t ≺ t′, we have σ(t) + l(t) ≤ σ(t′). So suppose t ∈ Ti and
t′ ∈ Tj . Then we have to show that σi(t) + l(t) ≤ σj(t). Since t ≺ t′, we have that

σi(t) ≤ d(t) ≤ lst(t)− bδt,t′c and

σj(t) ≥ r(t′) ≥ est(t′) + dδt,t′e

Now δt,t′ =
lst(t)− est(t′) + l(t)

2
. Hence,

σi(t) ≤
lst(t) + est(t′)− l(t)

2
and

σj(t) ≥
lst(t) + est(t′) + l(t)

2

Therefore, σj(t)− σi(t) ≥ l(t).

Example 4.10. To illustrate the procedure, consider again the situation in Example
4.6. The temporal decoupling step of ISA computes the intervals for tasks t4 and t5
as follows:

δ4 = lst(t4)−(est(t5)+l(t4)
2 = 3

lst′(t4) = lst(t4)− bδ4c = 3
est′(t5) = est(t4) + dδ4e = 4

This results in intervals [0, 3] and [4, 7] for tasks t4 and t5 respectively. The difference
now is that, ISA does not stop at this point. It continues further and performs
interval separation on the precedence constraint between t5 and t6 as well. As a
result, lst(t5) = 6 and est(t6) = 7. No other pair of tasks has an interval overlap
and the procedure halts. The updated set of values are as follows:

est′(t1) = 0, lst′(t1) = 0
est′(t2) = 3, lst′(t2) = 3
est′(t3) = 6, lst′(t3) = 6
est′(t4) = 0, lst′(t4) = 3
est(t5) = 4, lst′(t5) = 6
est(t6) = 7, lst(t6) = 8
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With these intervals, it is easy to see that incremental solvability is restored.

Proposition 4.10. Algorithm ISA computes a solution in O(|T | + | ≺ |) time for
any given CAS problem instance Π = 〈T,A,≺, φ, l(), c(), r(), d()〉.

Proof. By performing a topological sort, we can find out the est and lst values of
each task in time linear to the sum of tasks and the edges O(|T | + | ≺ |). The
remaining computations can be done in time linear to the number of edges in the
CAS problem. Thus, the overall asymptotic time complexity of finding a decoupling
for STNCAS through ISA is O(n + p), where n is the number of tasks and p the
number of tuples in the precedence relation ≺.

Solutions to SΠ are guaranteed to be makespan minimal and ISA which is derived
from applying Hunsberger’s algorithm on SΠ naturally also guarantees makespan
minimality. Thus, the following theorem.

Theorem 4.11. ISA always ensures a minimum makespan.

4.3.2 ISA and maximal autonomy

There is another nice property of ISA as well. One can prove that the intervals
generated by ISA cannot be modified without either violating a precedence con-
straint or violating optimality. In other words it guarantees maximal autonomy.
This property can easily be proven by noticing that the ISA algorithm generates a
set of constraints C = {C(t) | t ∈ T} such that:

• For every task t such that succ(t) = ∅ we have d(t) = depth(T )− l(t), in other
words, no task can be scheduled such that it exceeds the depth of the task
graph.

• For every t such that pred(t) = ∅ it holds that r(t) = 0. That is, no task can
be scheduled before time 0.

• For every pair of tasks t, t′ such that t ≺ t′ it holds that r(t′) = d(t) + l(t).
In other words, there exist no ‘holes’ between the release times and deadlines
that are larger than the processing time of the preceding task.
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This implies that any strict weakening C ′ of C would contain a constraint C(t) =
[est(t), lst(t)] such that either,

Case (a:) est(t) < 0 or

Case (b:) lst(t) > est(T )− l(t) or

Case (c:) there exists some t′ such that t ≺ t′ and lst(t) + l(t) > est(t′) or

Case (d:) there exists some t′ such that t′ ≺ t and lst(t′) + l(t) > est(t).

Clearly, case (a) leads to an infeasible schedule because task processing cannot start
before time point 0. Case (b) would imply that some C ′-satisfying schedules are not
makespan efficient as they would allow for schedules longer than the critical path
length. Cases c or d cannot also hold, because it would lead to some C ′-satisfying
schedules violating a precedence constraint. Hence, such a weakening cannot exist
and we have the following proposition:

Proposition 4.12. Any strict weakening the of the set C of constraints imposed by
ISA either leads to a infeasible schedule or leads to a non optimal makespan.

In summary, we have the following property:

Theorem 4.13. ISA ensures a maximally autonomous set of constraints and a
makespan efficient global schedule.

4.4 Summary

We have so far seen that there are two possible ways to decouple a CAS problem.

1. We reduce a given CAS problem instance into a SΠ, then apply Hunsberger’s
algorithm to derive the decoupling constraints.

2. Derive an efficient method from Hunsberger’s method which can decouple CAS
problems instances directly.
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The basic idea in assuring a valid decoupling is to tighten local constraints ‘just
enough’ to make inter-agent constraints redundant. Hunsberger’s method, while
more general, requires repeated computations of the distance matrix, which can be
expensive. Therefore we developed an algorithm ISA, based on the second approach
listed above. ISA uses the idea of interval separation to achieve decoupling. ISA
was shown to result in not only makespan minimal schedules but also schedules
guaranteeing maximal autonomy.

The main drawback of ISA in its current form, is that it can only be applied
to situations when the concurrency bounds on agents are very large (at least large
enough to process as many of the tasks that need to be simultaneously processed
within the intervals ISA computes for them). It is not surprising since the STN
framework from which ISA is derived, cannot accommodate capacity information.
However, ISA serves as an excellent starting point to explore problems of higher
complexity — problems with finite bounds on the concurrency of agents.

Naturally, we would next like to solve this class of CAS problems. It is of quite
common occurrence that agents can only perform a limited number of tasks simulta-
neously. Therefore, if we could develop a mechanism to handle CAS problems with
bounded concurrency agents, then it would be useful in practical situations. Thus,
in the next chapter we explore this so called class of bounded CAS (bCAS) problems
and design a solution for bCAS problem instances. In doing so, we have two choices
— either develop a completely new approach to handle CAS problem instances with
concurrency constraints or adapt ISA to handle concurrency constraints. We choose
to adapt ISA to handle these situations. The choice being motivated by the inherent
simplicity of ISA.





Chapter 5

Solving CAS problems: The
bounded concurrency case

Chapter 4 discussed the case of coordinating schedules when agents had unbounded
concurrency. In this chapter we study the case where agents have bounds on their
concurrency. We show that the CAS problem becomes intractable once capacity con-
straints are introduced. We further investigate subclasses of CAS problem instances
and show that ISA based algorithms can be effectively used to coordinate some very
restricted subclasses.

When agents have unbounded concurrency, the only constraints on scheduling
are the precedence constraints between tasks. As was pointed out earlier, there exist
many scenarios where there is a bound on the capacity of the agent. For instance, in
an emergency air evacuation scenario, the agent responsible for planning helicopters
may have limited number of helicopters available for evacuation. Similarly, in several
logistics scenarios, there is a limitation on the number of trucks that can be used
for transporting goods.

Notice that in situations as above, problems derive constraints from

• the precedence relationships of tasks and

• the concurrency constraints.

Concurrency constraints occur in many situations because resources are expensive.

141
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For example, in a job shop, procuring a machine with higher speed or procuring more
machines to augment capacity might be too costly in comparison with the benefits
derived out of a smaller makespan. As we will see in this chapter, once agents have
limits on concurrency (capacity), ISA is not sufficient. The intervals computed by
ISA may require agents to use more capacity than is available to them to design
a valid schedule. In such cases, agents might be willing to compromise on the
optimality of the global makespan so that their resource (concurrency) constraints
are not violated.

In this chapter, we develop a coordination mechanism that computes intervals
such that local schedules of agents can be combined to derive a global schedule
with a small makespan. As noted earlier, addition of concurrency constraints makes
the problem harder (NP-complete) in general and therefore expecting a makespan
efficient solution would be unwise. Therefore, we investigate the makespan efficiency
and the price of autonomy,1 of the mechanism in different subclasses of problem
instances. We start by establishing the complexity in the general case and then
study a subclass of problem instances known as chain structured bCAS instances.
Within this subclass we further look at the class of grids and unequal chains. Our
results in this chapter further strengthen the view that makespan efficient solutions
to the CAS problem (in general) are impossible to derive efficiently unless P=NP.

5.1 The complexity

We start by establishing the complexity of finding a solution to the CAS prob-
lem when agents have bounds on their concurrency. To distinguish CAS prob-
lems where agents have bounded concurrency, we denote such problem instances as
Πb = 〈T,A,≺, φ, l(), c() ≤ B, r(), d()〉 where, B ∈ Z+. In the following text we will
refer to this version of the CAS problems as the bCAS problem.

Recall that in the previous chapter, we were able to show that ISA results in a
makespan minimal schedule. More precisely, in the unbounded case we were able
to find a set C of additional constraints that could ensure a minimum makespan M
for the total set of tasks. Finding such a set C, so that any set {σi}ni=1 of locally
feasible schedules would result in a makespan M , given that agents are bounded,

1Price of autonomy is defined in section 5.1.
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i.e., agents can perform only a fixed number of tasks at any given point in time, is
an intractable problem.

Theorem 5.1. Given a bCAS problem Πb = 〈T,A,≺, φ, l(), c() ≤ B, r(), d()〉 and
a positive integer M , the problem to decide whether there exists a set of interval
constraints C such that the scheduling instance ensures a solution with makespan M
is NP-complete.

Proof. We reduce the Partitioning problem (see [Garey and Johnson 1979]) (Given
a set S of integers, is there a subset S′ of S such that

∑
s∈S′ s =

∑
s∈S̄ s, where

S̄ = S − S′?) to the bCAS problem.

We convert an instance of Partitioning to an instance of the bCAS problem
in the following way:

• Let dS =
∑

s∈S s. WLOG, we can assume dS to be even.

• Create the set of tasks T = {ts|s ∈ S} ∪ {ta, tb, tc, td}.

• For every task ts ∈ T − {ta, tb, tc, td}, l(ts) = s.
Let l(ta) = dS

2 , l(tb) = 1, l(td) = 1 and l(tc) = dS
2 .

• Let ≺ = {(ta ≺ tb ≺ tc), (ta ≺ td ≺ tc)}.

• Let agent A1’s capacity c(A1) = 2 and T1 = T .

• Let r() = 0 and d() =∞ for all t ∈ T .

• Finally, let M = dS + 1.

Now it is not difficult to see that there exists a set of interval constraints C al-
lowing for a makespan (M) efficient autonomous scheduling solution iff the partition
instance S has a solution: exactly in that case, agent A1 is able to use:

1. One of its capacities to process one subset of its set of tasks in the interval
[0, l(ta)], start tb at time instant l(ta) and complete the remaining subset of
tasks in the interval [l(ta) + 1, dS + 1] and
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Resource 1

Resource 2

t1 t2 t3 t5 t6t7t4 td

ta tb tc

Figure 5.1: Schedules of agent A1 in the reduction.

2. Use the other capacity to process ta in the interval [0, l(ta)], start td at l(ta)
and finish tc at time instance dS + 1.

Clearly, it is trivial to verify whether the resulting makespan is less than M . There-
fore, we claim that our problem is NP-complete.

Notice that the problem is NP-hard even with only one agent, so it follows that
it stays NP-hard when multiple agents are involved. The difficulty lies in the fact
that the agent cannot efficiently schedule its local tasks.

Let us illustrate the reduction through the following example.

Example 5.1. Suppose we have a set S = {1, 2, 3, 4, 5, 6, 7}. The partitioning
problem is to now find a subset S′ such that∑

s∈S′

s =
∑

s∈S−S′

s

Suppose we were able to find such a solution efficiently (i.e., in polynomial time)
then we could also efficiently solve the following bCAS problem:

T = {t1, . . . , t7, ta, tb, tc, td}
ta ≺ tb ≺ tc; ta ≺ td ≺ tc
l(t1) = 1; l(t2) = 2; l(t3) = 3; l(t4) = 4; l(t5) = 5; l(t6) = 6; l(t7) = 7

l(tb) = 1; l(td) = 1
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The solution of the bCAS problem above would be the following:

l(ta) =

∑7
i=1 l(ti)

2
= 14

l(tc) =

∑7
i=1 l(ti)

2
= 14

T1 = T

c(A1) = 2

r(t) = 0; ∀t ∈ T
d(t) =∞; ∀t ∈ T

Let M =
∑7

i=1 l(ti) + 1 = 29. Now, suppose we have efficiently found the subset
S′ with

∑
s∈S′ s = 14.

One subset of tasks that results in a total duration of 14 is {t1, t2, t4, t7}. This
implies that we can schedule tasks t1, t2, t4 and t7 in any order to be performed by
agent A1 within the interval [0, 14]. Task td is performed at time instant 14 and
the tasks {t3, t5, t6} can be scheduled in the interval [15, 29] using the first resource.
With the second resource, task ta can be performed in the interval [1, 14], task tb at
time instant 14 and task tc in the interval [15, 29]. The schedules of agent A1 are
shown in Figure 5.1.

Because of the intractability of the bCAS problem, we are forced to lower our
expectation regarding the minimality of makespan. Thus, in this chapter we try to
ensure that solutions to the bCAS problem satisfy three things:

1. Agents should be able to construct their schedules autonomously. That is,
they should not be required to communicate with other agents.

2. The intervals given to the agents to schedule their tasks should allow them to
construct at least a single valid local schedule within their concurrency bounds.

3. The makespan of the global schedule should be as low as possible.

We have shown it is NP-complete to find a solution for the bCAS problem.
In such cases, it is important to understand the loss in terms of makespan that



146 CHAPTER 5. THE BOUNDED CONCURRENCY CASE

mechanisms such as ISA (which ensure autonomy) would incur. To measure this
trade off, we define a ratio called the price of autonomy. Intuitively, the price of
autonomy of any scheduling mechanism to solve a bCAS problem is the measure of
the trade off between optimal makespan and the worst case makespan derived from
the mechanism. Formally,

Definition 5.1. Price of autonomy: Given a mechanism M to solve a bCAS
problem instance, the price of autonomy is the ratio of the worst case makespan
resulting fromM to the optimal makespan. Price of autonomy is denoted by Pa.

If the price of autonomy of a mechanism to solve bCAS problems is high then we
know that the mechanism may not be very desirable when makespan considerations
are very critical. In such cases one might consider a slight compromise on autonomy
by imposing additional restrictions on local scheduling of agents. On the other hand,
if the price of autonomy is low then we can expect that the mechanism will perform
well.

The ISA algorithm discussed in the previous chapter was derived based on the
TD algorithm of Hunsberger. Therefore, quite naturally, our first step would be to
find out if there exist results in the STN world that can assist us in solving CAS
problems.

As indicated earlier, the STN framework while very useful in handling temporal
constraints, cannot accommodate resource constraints. Fortunately, there exists lit-
erature in the STN community where authors have dealt with resource constraints.
In [Policella et al. 2007], the authors devised a two phased paradigm called the
Precedence constraint posting (PCP) paradigm to address this problem. In this
paradigm, the first layer is the time layer. Here temporal aspects of the scheduling
problem are represented through a STN , and by propagating temporal constraints,
an interval [est(t), lst(t)] is determined for each time point. The second layer — the
resource layer — analyses the contentions for a set of shared resources over time.
It produces a resource profile graph which indicates the request for each resource
given the intervals from the first layer. Based on this resource profile analysis, the
resource layer posts additional constraints to the problem ensuring that resource
conflicts are absent. The time layer takes over again and computes a new set of
intervals for each of the time points.
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In the context of a bCAS problem, the idea that an agent Ai can perform c(i)
tasks simultaneously implies that Ai has enough resources to carry out c(i) jobs
simultaneously. In other words, concurrency constraints are essentially resource
constraints. Unlike traditional resource constraints, however, resources in bCAS
problems are exclusive and not shared between agents. However, the general idea of
separating resource constraints and precedence constraints of [Policella et al. 2007]
can be useful in devising solutions to the bCAS problem. We present a coordination
mechanism for solving bCAS problems based on this general idea in the following
subsection.

5.2 A general bCAS mechanism

In our proposed coordination mechanism, the first phase identifies time intervals for
scheduling tasks based on ISA. Then in a second phase, given these time intervals
for each agent Ai, due to its resource constraints, there may exist some tasks {t|t ∈
Ti} that cannot be scheduled within the given intervals, i.e., this set of tasks are
conflicting. From Theorem 5.1, we know that determining an efficient schedule for
an agent is NP-hard. It follows that determining conflicting tasks is also NP-hard.
Suppose conflicting tasks can be found by some exact, exponential-time algorithm.
After such conflicting tasks are detected, one way to resolve a pair of conflicting
tasks t and t′ is to add a precedence constraint t ≺ t′ (or t′ ≺ t). The result of
such a conflict resolution is then fed into the first phase and a new set of intervals
is computed. We continue this iterative process until there are no more conflicts
within any agent.

The general coordination mechanism M for solving the bCAS problem is de-
scribed as follows:

Phase 1: Given a bCAS instance Πb = 〈T,A,≺, φ, l(), c() ≤ B, r(), d()〉, compute
time intervals [est(t), lst(t)] for all the tasks t ∈ T using ISA.

Phase 2: Resolve conflict between any two conflicting tasks t, t′ of an agent by
adding a precedence constraint t ≺ t′ (or t′ ≺ t) to the partial order ≺.

Go to Phase 1 with the updated bCAS instance Πb and iterate until no conflicts
exist for any agent.
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The output of the above mechanism is a set of time intervals for all the tasks in
T that enable feasible scheduling for each agent Ai ∈ A.

There are three problems arising from this general coordination mechanism.

Question 1: In Phase 2, how to detect conflicting tasks efficiently?

Question 2: Once conflicts have been detected, what strategy should be used in
order to decide which conflicts of which agent should be resolved?

Question 3: What is the consequence of using different conflict resolution strategies
on the makespan of the global schedule?

Concerning Question 1, as we have shown in Theorem 5.1, it is hard for agents
to even detect their own resource conflicts. That is, there is no polynomial time
algorithm that can be used to answer Question 1. Therefore, it follows naturally
that there is no polynomial-time algorithm to find feasible local schedules for agents
that can be combined to an optimal global schedule. Some special treatments are
required, which we will discuss in the later sections.

Answering questions 2 and 3 lead to questions on the price of autonomy of
using any particular coordination method. One can imagine that small makespan
schedules are easier to obtain if we take full control over agents’ conflict resolution,
without bothering about agent autonomy. As an illustration, let us consider the
following example.

Example 5.2. Consider the situation in Figure 5.2. Three agents A1, A2, A3 have
to find local schedules such that the global schedule is optimal. Suppose also that
each agent has capacity 1. All tasks of agent Ai are given an interval [i − 1, i − 1]
by ISA. Thus, each agent has to resolve three conflicting tasks.

If we now impose that agent A1 shall always schedule t1 first, t2 next and thirdly
t3 and run ISA on the resulting updated partial order, then clearly the other two
agents do not have any conflicts any longer. The resulting makespan is 5, which is
optimal.

Although the above example demonstrates a possible solution, it contradicts our
purpose of coordination, that is, ensuring autonomy of agents. Therefore, we need to
develop a conflict resolution strategy that takes into account the autonomy of agents,
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Figure 5.2: Constraining an agent completely can sometimes lead to optimal
makespan.

and then analyses the price of autonomy of the resulting coordination mechanism
MISA.

Definition 5.2. Autonomous coordination mechanism MISAsq: The mecha-
nism MISA works as an iterative two-phase mechanism as the general mechanism M ,
except that in Phase 2, MISA randomly selects an agent Ai ∈ A which has conflicting
tasks t, t′, and resolves conflicts between them based on the preference (t ≺ t′ or
t′ ≺ t) of Ai.

Example 5.3. Consider again the scenario in Figure 5.2. Instead of imposing
an ordering on the tasks of agent A1, we now ask A1 to inform us of its preference
between task t1 and task t2, and suppose A1 chooses t2 ≺ t1. We regenerate the time
intervals using ISA, and randomly select another agent, say A2, who has conflicts.
Agent A2 decides to execute t4 before t5. The time intervals are updated again. As
another random choice, agent A3 is chosen to tell its preference between conflicting
tasks. Suppose A3 prefers performing t8 before t9. The resulting makespan of MISA

becomes 6.
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The mechanism MISA considers the autonomy of participating agents. However,
the price is that an agent may make bad local choices in determining the ordering
of its tasks, and these unfortunate decisions may lead to a global schedule with its
makespan far from the optimal. Thus, the price of autonomy of mechanism MISA

could be high. Actually, in the next subsection, we show that in general, the price
of autonomy of MISA is not bounded by any constant.

5.3 Solving bCAS with unit tasks and sequential agents

We have shown that it is NP-complete to ensure makespan minimality of solutions,
to a general bCAS instance Πb = 〈T,A,≺, φ, l(), c() ≤ B, r(), d()〉. This is a direct
conclusion from the fact that detecting resource conflicts for each agent is NP-hard.

In this section, we identify a class of bCAS instances in Πb where the existence
of conflicts raised in the coordination mechanism can be efficiently detected. Within
this class, all tasks have unit duration. Furthermore, for the purpose of simplicity,
we assume agents are sequential, i.e., c(i) = 1 for each Ai ∈ A. The bCAS instances
of the class that we study in this section are defined as Πb = 〈T,A, φ,≺, l() = 1,
c() = 1, r(), d()〉. We shall deal with bCAS instances with non-sequential agents
later in the chapter.

We first demonstrate that for the class of bCAS instances described by
Πb = 〈T,A, φ,≺, l() = 1, c() = 1, r(), d()〉, resource conflicts can be efficiently re-
solved using the idea of bipartite matching. However, unfortunately, later we prove
that it is still NP-hard to find an optimal solution with minimal makespan for the
general task structure. In addition, we prove that the price of autonomy of the
autonomous coordination mechanism MISA is not bounded by a constant.

Matching based ISA

In this subsection, we first use ISA to determine the time intervals for unit dura-
tion tasks. As we have shown earlier, if the agents had unbounded concurrency,
they would be able to find a schedule satisfying all the constraints. If agents are
sequential, this might not be possible. Due to resource constraints, an agent may
have conflicting tasks. Given the earliest starting time est(tj) and the latest starting
time lst(tj) of each task tj ∈ Ti of agent Ai, we say tj is conflicting with some other
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task tk of agent Ai as long as two intervals [est(tj), lst(tj)] and [est(tk), lst(tk)] have
overlapping time points that do not allow them to be simultaneously scheduled.
Fortunately, an efficient procedure to determine whether a given agent is able to
find a sequential schedule for all tasks t ∈ Ti exists.

Consider the bipartite graph Gi = (Ti ∪ Ii, Ei) where,

• Ii is the set of all time points occurring in the intervals C(t) = [est(t), lst(t)]
of tasks t ∈ Ti and

• (t, n) ∈ Ei iff n ∈ C(t).

If we are able to find a maximum matching (see [Cormen et al. 1990]) involving all
tasks of Ti, it immediately implies that we can schedule each of the tasks in Ti at
exactly the time points they are matched with.2 To find a matching, we use the
Ford -Fulkerson method (see [Ford and Fulkerson 1957]).

The Ford-Fulkerson method for finding maximum flow in networks is a popular
method to achieve maximum bipartite matching. In this method, a flow network is
created for each agent with a special source u and a special sink w. To this network,
directed arcs are added (i) from u to all predecessor free nodes and (ii) from all
successor free nodes to w. The flow over each edge is restricted to 1. As long as
there is an augmenting path (a path with available capacity is called an augmenting
path), we send flow along one of these paths. Then we find another path and so on.

In our case, for each agent Ai we have the bipartite graph Gi = (Ti∪ Ii, Ei) with
directed edges from tasks in Ti to time points in Ii. We construct the maximum
flow network from this bipartite graph as follows:

1. We add two more nodes u and w.

2. We next add directed edges (u, t) to every node t ∈ Ti and

3. (n,w) for every node n ∈ Ii.

4. We then set the capacity of every edge to be equal to 1.

Figure 5.3 summarises the construction. In this figure C(t1) = [0, 0]; C(t2) = [1, 1]
and C(t3) = [2, 2].

2We assume integer values for schedules σ(t).
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Figure 5.3: Bipartite matching through Ford-Fulkerson method for sequential agents.

Now if we are able to find a maximum flow equal to |Ti|, it implies that a
sequential schedule is possible. On the other hand, if the maximum flow is less than
|Ti| then it implies that there exist at least a pair of tasks that are conflicting.

The Ford-Fulkerson method can be used to solve the maximum matching on a
bipartite graph Gi = (Ti∪Ii, Ei) in O((|Ti|+|Ii|)|Ei|) time (see [Cormen et al. 1990]).

Autonomous coordination mechanism MISAsq

The updated autonomous coordination mechanism MISAsq works as follows. In
Phase 1, it calls the ISA to compute a set of time intervals for all tasks. After
detecting conflicts using the proposed matching-based algorithm, in Phase 2, it asks
a randomly selected agent to add a precedence constraint t ≺ t′ (or vice-versa)
between its conflicting tasks t and t′. The mechanism then calls the ISA algorithm
again on the extended coordination instance.

This (i) calling the ISA algorithm, (ii) matching and (iii) extending the prece-
dence relation can be repeated until we are guaranteed that for each agent there
exists at least one sequential schedule. Note that this procedure must halt because
conflicts can never reoccur.

The complete mechanism, for achieving a solution to bCAS problems with se-
quential agents and unit duration tasks, is given as Mechanism MISAsq in Algo-
rithm 8.

Let us illustrate the complete process through the following example:

Example 5.4. Consider the situation in Figure 5.4 (a). Four unit duration tasks
have been distributed among two sequential agents. The intervals derived through
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Algorithm 8 Autonomous coordination mechanism MISAsq using the matching
based sequential adaptation of ISA

1: Inputs: constraint intervals [est(t), lst(t)] for all the tasks t ∈ T as computed
by ISA.

2: Outputs: Revised est(t) and lst(t) for each t ∈ T to enable sequential schedul-
ing.

3: while there exists a (Ti, Ci) not allowing for a maximal matching Mi containing
Ti for a randomly selected agent Ai do

4: agent Ai takes a task t contained in Mi and a conflicting task t′ not occurring
in Mi;

5: add t ≺ t′ or t′ ≺ t to the partial order (T,≺);
6: run ISA on the updated partial order (T,≺) and update the set of constraint

intervals C
7: end while

ISA are also shown. The corresponding bipartite graph is shown in Figure 5.4 (b)
(the bipartite graphs for both the agents are similar and hence we show only one in
the figure). It is easy to see that there does exist a maximum bipartite matching for
the graph. This in turn implies that agent A1 can design a valid schedule for its set
of tasks within the given intervals.

Now suppose we have a new situation as shown in Figure 5.5 (a). Agent A1

has 3 tasks instead of the two as in Figure 5.4 (a). Clearly, agent A1 cannot find a
sequential schedule which is reflected in its corresponding bipartite graph in Figure
5.5 (b). On the other hand agent A2 can find a sequential schedule as is reflected in
its bipartite graph.

One way of solving conflicts would be to add precedence constraints between
conflicting tasks. The result of such an operation for the situation in Figure 5.5 is
shown in Figure 5.6.

The final set of intervals for agent A1’s tasks in Figure 5.5 would be: t1 =
[0, 0]; t2 = [1, 1]; t3 = [2, 2].

One may hope that since resource conflicts can be efficiently resolved, the prob-
lem of finding a minimal makespan schedule can be efficiently solved too. Unfortu-
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Figure 5.4: (a) After applying ISA; (b) the corresponding maximum bipartite match-
ing.

nately, it turns out be false. We now prove that the bCAS problem with unit tasks
and sequential agents stays NP-hard using the well known 3-Machine Unit-time
Job-shop scheduling problem [Lenstra and Kan 1979].

Definition 5.3. 3-Machine, Unit-time Job-Shop scheduling:(adapted from
[Lenstra and Kan 1979]): Given 3 machines M1,M2,M3, each of which can process
at most one job at a time, k jobs J1, . . . , Jk where Jj(j = 1 . . . , n) consists of a chain
of unit-time operations, the hth of which has to be processed on machine µjh with
µjh 6= µj,h−1 for h > 1 and an integer Mjobshop, does there exist a schedule with
length at most Mjobshop?

Theorem 5.2. Given a bCAS problem Πb = 〈T,A,≺, φ, l() = 1, c() = 1, r(), d()〉,
with unit tasks, sequential agents and a positive integer MbCAS, the problem to decide
whether there exists a set of constraints C such that the scheduling instance allows
for a solution with makespan MbCAS is NP-hard.

Proof. We reduce the 3-machine job-shop scheduling problem to the bCAS problem
as follows. Given an instance of the job-shop scheduling problem as defined above,
define O = {µj,h|j = {1, . . . , n}, h > 1} as the set of all operations and construct
the following bCAS problem.
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Figure 5.5: (a) Task graph with the intervals computed by ISA. (b) The correspond-
ing bipartite graphs and possible matchings. If we can find a maximum matching
for agent A1, then it implies we have a sequential schedule for its tasks. In this case,
however, it is not possible.
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Figure 5.6: Resolve conflicts that disallow maximal matching by adding precedence
constraints between tasks.

• A = {A1, A2, A3} corresponding to the three machines.

• T = {tj,h|µj,h ∈ O} corresponding to each of the operations µj,h.

• Tj = {tj,h} if µj,h is associated with machine Mj .
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• tj,h ≺ tj+1,h for each j ∈ {1, . . . , n} .

• r() = 0; and d() =∞.

• l() = 1; and c() = 1.

• MbCAS = Mjobshop.

We next show that there exists a solution to the job-shop problem instance
if and only if there exists a solution to the bCAS instance with unit tasks and
sequential agents: Let σ() : O → N be a scheduling function that results in a mini-
mum makespan schedule for the job-shop problem instance. To obtain a makespan
minimal solution to the bCAS problem, we add a constraint [σ(µj,h), σ(µj,h)] cor-
responding to each task tj,h, within which it must be scheduled. Clearly, the
precedence constraint between any two tasks tj,h and tj+1,h is not violated since
σ(µj,h) ≤ σ(µj+1,h)− 1 and since the makespan of the job-shop problem is less than
Mjobshop, the bCAS problem also has a makespan less than MbCAS.

Suppose on the other hand, that we had a set of interval constraints [est(t), lst(t)]
that ensure that the global makespan of the bCAS problem is less than MbCAS.
Clearly, such a set of interval constraints cannot violate any precedence constraint.
Otherwise, this would imply that agents can no longer hope to construct a schedule
for their local CAS-problems, so that the local schedules can be merged into a
feasible global schedule. One can easily derive a makespan minimal schedule for
the job-shop problem by simply scheduling each operation µj,h at any time point
within the interval [est(tj,h), lst(tj,h)]. Further since MbCAS = Mjobshop, we claim
that the bCAS problem is NP-complete even when we can efficiently detect resource
conflicts.

So far, we developed an autonomous coordination mechanism for solving a given
class of bCAS instances Πb, and showed that solving this class of bCAS instances
remains NP-hard, although every agent can efficiently detect its resource conflicts.
To resolve conflicts, we proposed a mechanism MISAsq that ensures autonomy of
agents. We now investigate the consequence of using such an autonomous coordina-
tion mechanism on the makespan of the global schedule.
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Unfortunately, as we will show shortly, the performance of MISAsq can be ar-
bitrarily bad in terms of the worst case makespan. More specifically, we demon-
strate that: (i) there exists a set of instances within Πb = 〈T,A,≺, φ, l() = 1, c() =
1, r(), d()〉, where applying MISAsq results in a makespan equal to |T |; and moreover
(ii) the price of autonomy of MISAsq can be arbitrarily close to the number of agents
|A|.

Proposition 5.3. MISAsq can result in a worst case makespan of |T |.

Proof. The longest chain that any acyclic task graph can form is the number of
tasks. Notice that once a total order on the tasks in T is imposed, the length of the
chain is |T |. In such a case, task with depth i will be assigned by ISA an interval
[i, i] for 0 ≤ i ≤ |T | − 1, and there is no conflict between any two tasks and every
agent has a conflict-free schedule. Thus we conclude that a trivial upper bound on
the makespan generated by ISA is |T |.

We now show that for a class of task graphs, the makespan generated by MISAsq

can reach this upper bound |T |.
Let us look at an example instance shown in Figure 5.7 with 3 agents. The

tasks are classified into 6 groups with different depths from 0, 1, . . . , 6, i.e., group
j consisting of tasks with depth j − 1, for 1 ≤ j ≤ 6. The tasks are assigned to
agents in a way such that Ai has all tasks in groups j · 3 + i for j = 0, 1. As an
example, A1 has all tasks belonging to group 1 and group 4, with depths 0 and 3
respectively. The precedence constraints of tasks are shown in the figure, where the
highest numbered task in group j is constrained by every task in group j − 1 while
the lowest numbered task in group j is only constrained by one task in group j − 1.
For instance, t1 precedes t4, t5 and t6, t2 precedes tasks t5 and t6 and t3 precedes t6.

In this instance, assume all agents resolve conflicts such that higher indexed
tasks always precede the lower indexed ones. For instance, A1 adds constraints
t3 ≺ t2 ≺ t1 and t12 ≺ t11 ≺ t10. Then the makespan of the whole system would
be equal to |T | = 18, i.e., it reaches the worst case makespan that can be generated
by any mechanism that uses ISA. Note that this result holds when we increase the
size of the coordination instance by adding more agents, or by adding more tasks to
each task group, as long as the instance structure stays same as Figure 5.7.

Proposition 5.4. The price of autonomy of mechanism MISAsq can be arbitrarily
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Figure 5.7: A coordination instance that shows MISAsq results in a worst case
makespan of |T |.

close to |A|, where |A| is the number of agents in Πb.

Proof. We now show the price of autonomy that MISAsq can achieve with the class
of instances as shown in Figure 5.7 is arbitrarily close to |A|. We will look at a
generalisation of the coordination instance in the figure. Suppose there are |A| = n
agents, each having p groups of tasks. Each task group contains k tasks. The
structure of the precedence constraints among tasks is same as that in Figure 5.7.
So, according to Proposition 5.3 the worst case makespan MISAsq can obtain is
|T | = k · p · n.

The makespan given such instances can not be less than p · n− 1 + k, since p · n
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is the longest chain in the original task graph. Suppose this is not true and there is
a smaller makespan m < p · n− 1 + k. Take the last task of the last agent An. This
task has to be completed at time m. Hence, the first task in the last task group of
An must start at time m− k < p · n− 1. However, a task of An can only start if all
the p ·n− 1 tasks preceding it in the chain have been completed, that takes p ·n− 1
time in total. This leads to a contradiction.

Hence, the makespan is at least p ·n− 1 +k. In addition, this optimal makespan
is only possible when n ≥ k, since if not, agents cannot start to execute their next
group’s tasks until all p tasks in the previous group are completed.

We now show that the best case makespan p ·n− 1 + k can be achieved. We use
the example in Figure 5.7 where n = k = 3 and p = 2. Assume all agents resolve
conflicts such that lower indexed tasks always precede the higher indexed ones, then
the makespan of the conflict free schedule would be p · n− 1 + k = 8.

Together with Proposition 5.3, we compute the price of autonomy Pa of MISAsq:

Pa =
k · p · n

p · n− 1 + k

For the worst case Pa, k = n. thus we have Pa = p·n2

p·n−1+n . When p approaches
infinity, i.e., when agents have more and more groups of tasks to complete, we have
limp→∞ Pa = n = |A|.

As we have shown, with autonomous coordination mechanism MISAsq, the global
makespan could hit the upper bound of the makespan generated by any non-trivial
algorithm. We demonstrated this by applying MISAsq to a class of coordination
instances which have a special coordination structure. We then concluded that in
general, the price of autonomy of MISAsq cannot be bounded by a constant and can
be as close as the number of agents in the coordination instance.

There are several possible directions to circumvent such undesirable coordination
outcomes. First of all, as we found out in our discussion of planning problems, not all
problems are equally hard. It was possible for us to identify subclasses of problems
which can be solved with better guarantees on the solution quality than in the
general case. Therefore, we follow the same strategy here. More specifically, we now
investigate a class of coordination instances with special task structures called chain
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structured bCAS problems. We hope that the performance of MISAsq will be better
for problem instances in this special subclass.

5.4 Performance of MISAsq, given bCAS problems with
special task structures

We expect the performance of MISAsq to vary for different classes of task graphs.
Therefore in this section, we study a class of bCAS problem instances with a special
structure — chains— and evaluate the performance of MISAsq on it. Chain structures
are characterised by tasks having a maximum of one predecessor and one successor.

Definition 5.4. Chain structured bCAS problem instances: A given bCAS
problem instance Πb = 〈T,A,≺, φ, l() = 1, c() = 1, r(), d()〉 is considered a chain
structured instance if it holds for all t ∈ T that in(t) ≤ 1 and out(t) ≤ 1.

A simple subclass of chain structured instances is the class of grids where all
the chains have the same length and all tasks of each depth are assigned to a single
agent.

Definition 5.5. Grids: An (n,k) grid is a set of k task chains each of length n
and a set of n agents such that agent Ai has to perform all tasks at depth i in the
chains.

We now investigate the performance of MISAsq, on a grid structured instance Πb.
Firstly, we establish the best makespan that can be achieved for Πb with grids.

Proposition 5.5. Given a grid Πb = 〈T,A,≺, φ, l() = 1, c() = 1, r(), d()〉, the
minimal makespan for a conflict free schedule for all agents in an (n, k) grid is
n+ k − 1.

Proof. First we need to show that the makespan cannot be less than n + k − 1.
The proof is similar to the proof provided for Proposition 5.4. Suppose there is a
smaller makespan m < n+k−1. The first task of the last agent An must have been
completed at time m−(k−1). Therefore, this task must start at time m−k < n−1.
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However, a task of agent An can only start if all the n− 1 tasks preceding it in the
chain have been completed. Hence it is a contradiction.

We now show that there is a critical path of length n+k−1 in an (n, k) grid such
that no agent has a scheduling conflict for its set of tasks. Construct an arbitrary
linear order (t1,1, . . . , t1,k) of the set of tasks T1 = {t1,1, . . . , t1,k} of agent A1. The
resulting critical path in the (n, k) set of chains has length n+ k − 1.

Given this order (t1,1, . . . , t1,k), the ISA will produce for every task ti,j an upper
and a lower bound: est(ti,j) = lst(ti,j) = (i + j − 2). This implies that for every
agent Ai there is a conflict-free schedule, ensuring that the last task tn,k of the last
agent is started at time (n+ k − 2), and thus is completed at time n+ k − 1.

The above proposition establishes the optimal makespan for scheduling a grid.
Our next step is to establish the worst case makespan resulting from MISAsq when
dealing with grids.

Proposition 5.6. MISAsq results in a worst case makespan of n ·k = |T | if the input
is a (n, k) grid.

Proof. To prove the proposition all we require to show is that there exists at least
one situation where a series of bad decisions by MISAsq leads to a makespan of n · k.
We next show that such an example situation exists.

Consider the situation in Figure 5.8. For ease of discussion let us view the
(6,9) grid as being composed of three (6,3) sub-grids. Now suppose MISAsq starts
resolving conflicts between tasks belonging to agent A6. It can first resolve the
conflict between tasks (t46 ≺ t47) of the first sub-grid and then the t49 ≺ t50 of the
second sub-grid and finally tasks t52 ≺ t53 of the last sub-grid. After these three
steps, there are still conflicts that do not allow for a sequential schedule. Therefore,
MISAsq adds precedence constraints t47 ≺ t48, t50 ≺ t51, t53 ≺ t54.

After adding these constraints, A5 has conflicting tasks since ISA provides the
intervals [4, 4] to tasks t37, t40 and t43, [4, 5] to tasks t38, t41 and t44, [5, 6] to t39, t42

and t45. MISAsq repeats the process of resolving conflicts of agent A6 on agent A5,
but with a crucial difference. It now makes the predecessor of task t46 to succeed the
predecessor of t47 and similarly, it makes the predecessor of t49 to succeed predecessor
of t50 and predecessor of t52 to succeed predecessor of t53 and so on.
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Figure 5.8: Worst case sequence of steps of MISAsq on a grid. Label sX indicates
that a conflict resolution constraint is added between two tasks ti, tj in step X. The
solid arcs represent the precedence constraints that are part of the original problem.

MISAsq then repeats this process of (i) choosing the deepest agent with conflicting
tasks, (ii) strictly alternating between sub-grids for conflict resolution and finally
(iii) alternating the direction of precedence constraints.

At this stage MISAsq has created three chains of length k
3 · n from our original

(6,9) grid. However, conflicts still remain. But now the conflicts are between tasks
belonging to different sub-grids. These conflicts can be resolved first between tasks
of the first and second sub-grids t48 ≺ t49 and then between second and third sub-
grids t51 ≺ t52 in each agent, again starting from A6 and proceeding to A1. This
results in a chain of length 54 as shown in the figure.

The construction shows clearly that MISAsq results in a makespan of n · k thus
proving the proposition.

It follows that the price of autonomy of MISAsq increases with the number of
agents.
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Lemma 5.7. The price of autonomy of MISAsq is |A|2 if the input to it is a grid.

Proof. Given the worst case performance of MISAsq and the optimal makespan on
grids, we have the price of autonomy Pa = n·k

n+k−1 . This ratio is maximal when
n = k. Thus we have:

Pa =
n2

2n− 1
=

|A|2

2|A| − 1
≈ |A|

2
.

Unfortunately, as we have seen, even for such simple coordination instances as
grids, the price of autonomy of mechanism MISAsq is unbounded. Therefore, it seems
that we will have to compromise on agent autonomy if better global makespan is
more desirable. One idea of restricting agent autonomy for efficiency is that the
mechanism could make some specific choices when resolving conflicts. Such specific
choices can be made based on the information of coordination instances. This idea
becomes obvious when we look again at the result of Proposition 5.4, where we have
proved that when the bCAS instance is a grid and we let the first agent A1, i.e.,
the agent whose tasks are all at depth 0 in the grid, completely resolve its conflicts
before the other agents, then the optimal makespan is obtained. Note that the order
in which agent A1 orders its tasks does not matter. In this strategy, a total order is
established among all source tasks first and hence we call this strategy as the source
first heuristic.

Recall that we are dealing with chain structured tasks in this section. Therefore,
while we know that the source first heuristic results in optimal makespan for grids,
we would next like to investigate whether this heuristic ensures good makespan for
all chain structured bCAS problem instances. Thus we next investigate if the source
first heuristic is effective in the case of unequal chain instances.

Performance of MISAsq with source first heuristic on unequal chains We
have seen that for grids, minimal makespan can be ensured if we use the source first
heuristic. Buoyed by this fact, we hope to find that this heuristic would benefit more
general types of chain structured instances. We now investigate the case of unequal
chains. Unequal chain problem instances differ from grids in that they do not have
any restriction on the lengths of the chains in the task graph.
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Definition 5.6. Unequal chains: Unequal chain problems instances are bCAS
problem instances such that, their task graph consists of a set

⋃l
i=1mi task chains,

where the ith task chain has a length of ni. Furthermore, agent Aj is assigned to
perform all tasks at depth j in the chains. All tasks have unit length (1).

Note that in unequal chain problem instances, we still have the restriction that
all tasks allocated to an agent have the same depth. Therefore, quite clearly, if we
apply MISAsq along with the source first heuristic, we would first resolve all conflicts
in T1. Further notice that, as a result of allowing different chain lengths, agent A1

has the largest number of tasks to perform since each chain has a task at depth level
0. To analyse the performance of MISAsq on unequal chain problem instances, let us
first denote the cardinality of the agent A1 as Tmax and further denote the length
of the longest chain of the chain graph as Lmax.

Suppose we adopt the source first heuristic, then the following proposition shows
that we cannot hope to always obtain minimal makespan schedules if MISAsq were
given an unequal chain graph as input. It also establishes that the worst case
makespan using source first heuristic is bounded by a constant.

Proposition 5.8. Given an unequal chain problem instance with sequential agents,
the price of autonomy of MISAsq is arbitrarily close to 2 if the source first heuristic
is used.

Proof. Since all tasks allocated to an agent have the same depth, totally ordering
the tasks of agent A1 is enough to remove conflicts in all other agents. To show
that this indeed is the case, suppose that the tasks of agent A1 are totally ordered.
Now consider any arbitrary agent Ai and any two chains m1,m2 such that m1 has
a length of n1 and m2 has a length of n2. Let t1 be the first task in m1, t2 the first
task in m2, tx the task in m1 belonging to Ai and ty the task in m2 belonging to Ai.
Suppose that the source first heuristic adds the precedence constraint t2 ≺ t1. As
a consequence, depth(tx) > depth(ty) always because of the precedence constraint
between t2 and t1. This implies that the predecessor of tx has the same depth as
ty. However, the predecessor of tx belongs to an agent other than Ai. Therefore,
tasks tx and ty do not conflict. Extending this argument, we could claim that once
tasks in T1 are totally ordered, for any other agent, the depths of all their tasks are
different. Consequently, the est() values for their tasks are unique (within the set of
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tasks allocated to an agent). Since the duration is 1 for all tasks, none of the tasks
have any more conflicts.

Now let us look at the makespan of such a solution. Recall that in a unequal
chain instance Tmax = T0. Therefore, the longest possible makespan is equal to
|T0|+Lmax − 1, which occurs when the longest chain is scheduled last. Clearly, the
minimum possible makespan cannot be less than max{|T0|, Lmax}. Otherwise, there
would be at least one single task that cannot be accommodated in the schedule.

|T0|+ Lmax − 1

max{|T0|, Lmax}
≈ 2 (5.1)

Thus proving that the price of autonomy of MISAsq is arbitrarily close to 2 if source
first heuristic is used by MISAsq on an unequal chain graph.

We have seen that the source first heuristic cannot ensure optimal makespan in
the case of unequal chains. However, it is still effective since it offers a constant
factor upper bound. Unfortunately, it is not an universal strategy that works on
any coordination instance. For example, for the instance in Figure 5.7, the worst
makespan |T | holds no matter whether we ask some specific agent to resolve conflicts
first or not. This has been shown in the proof for Proposition 5.4. Therefore, there
is still a case for finding heuristic strategies that can be applied over more general
classes of bCAS problem instances. We leave it to future research to develop an
universal strategy that achieves a good makespan while not compromising agent
autonomy.

So far we have discussed the performance of MISAsq when bCAS problem was
chain structured. Disappointingly, we also showed that even with an additional
heuristic for conflict resolution, MISAsq was effective only if all tasks allocated to an
agent had the same depth and the instance was chain structured, as in the case of
grids and unequal chains. We have already shown in Proposition 5.3 that if the task
graph is not chain structured, then there exists a class of bCAS problem instances
that result in MISAsq giving a worst case makespan of |T |. However, the good news is
that MISAsq always ensures that agents can construct their schedules independently.

Notice that the Ford-Fulkerson method played a crucial role in designing solu-
tions for chain structured instances. Without the ability to detect resource conflicts
efficiently, a solution to the bCAS problem would have been impossible. However,
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we made an important assumption before applying the Ford-Fulkerson method. We
assumed that tasks were always of unit duration and that agents were sequential.
Clearly, this need not be true. Therefore, in the next section we deal with bCAS
problem instances where agents are non-sequential and tasks are of non unit dura-
tion.

5.5 Adapting MISAsq for general bCAS instances Πb

If agents are non-sequential and tasks are of various durations, MISAsq cannot be
applied directly. This is illustrated in the following example:

Example 5.5. Consider again the job shop scheduling problem of Example 4.1.
Clearly task durations are not homogeneous. In fact more often than not, tasks
differ in the time they take to get processed. All our effort in finding suitable
schedules until now would go a waste in such scenarios. We can neither use MISA

because we cannot assume that agents have unbounded concurrency nor can we use
MISAsq because we cannot find a maximum matching if the tasks are of different
lengths.

Hence, we need to adapt MISAsq in order to solve general bCAS instances.

Handling non-sequential agents

Our first step is to generalise MISAsq so that it can handle non-sequential agents. It
is rather straightforward to do that. The trick to this generalisation is in the way
we construct the flow network from the bipartite graph.

The construction of the flow network still relies on the same bipartite graph
Gi = (Ti ∪ Ii, Ei). The only change would be to set the capacity of the edges to the
sink node w to be equal to c(i).

If we can find a maximum flow fi whose value |fi| is equal to the number of tasks
|Ti|, i.e., |fi| = |Ti|, we can then be sure that the agent Ai can find a valid schedule
such that its concurrency bound is not violated. In case we are unable to do so, we
know that for some task t, fi(s, t) = 0. We say that task t ∈ Ti is not contained in
the maximum flow if fi(s, t

′) = 0, and t′ is conflicting with some other task t ∈ Ti
where fi(s, t) = 1. If this is the case, we resort to our earlier technique of adding
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precedence constraints between conflicting tasks: we take a task t contained in the
maximum flow fi and a conflicting task t′ not in fi whose time interval is overlapped
with t’s intervals. Whenever such a pair of tasks are found, we add t ≺ t′ or t′ ≺ t
to resolve the conflict. We continue doing so until we are able to find a maximum
flow whose value is |Ti|.

Let us illustrate the method through the following example.

Example 5.6. Figure 5.9 shows how to use the idea of flow network built for
detecting conflicts among 4 tasks of agent A. Assume initially that ISA assigns
the following time intervals for the tasks: t1 : [0, 0], t2 : [0, 0], t3 : [0, 0], t4 : [1, 1].
Suppose agent A’s concurrency is 2. We then build a flow network as shown in
the left graph of Figure 5.9. We can use the Ford-Fulkerson method (see [Ford and
Fulkerson 1957]) to find the maximum flow f . It is not difficult to see that the
value of f is 3. Suppose f(s, t1) = f(s, t2) = f(s, t4) = 1 and f(s, t3) = 0. We add
a precedence constraint t2 ≺ t3 between the conflicting tasks t2 and t3. If we run
ISA again, the resulting intervals of 4 tasks become: t1 : [0, 0], t2 : [0, 0], t3 : [1, 1],
t4 : [1, 1]. Based on these intervals, a new flow network has been constructed, as
shown in the right graph of Figure 5.9. The maximum flow that can be found has
value 4. Thus, no more conflicts exist within agent A.

As we have shown, one of the attractive features of the unit (or homogeneous)
duration tasks case is the existence of a polynomial decision procedure for deciding
whether there exists a schedule satisfying the constraints ci(t) for an agent Ai.
Unfortunately, in most real life scenarios such an assumption is impractical. Once
the assumption of homogeneous durations is dropped, with non-sequential agents,
even finding a single agent schedule would be NP-hard as was shown in Theorem
5.1.

Fortunately, we can reuse MISAsq to solve bCAS problems with heterogeneous
durations through a simple transformation. The idea behind the transformation is
based on the fact that in several systems, tasks can be stopped and restarted. Tasks
which can be stopped and restarted at arbitrarily points during their processing
are called preemptive tasks. This process of stopping a task during execution and
resuming their execution later is called preemption. The idea of preemption has been
successfully used over the years for several scheduling problems including process
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Figure 5.9: Maximum flow for detecting conflicts with a non-sequential agent.

scheduling and data transmission among others. Therefore, we hope that preempting
tasks might allow us to solve bCAS problems with heterogeneous durations. We next
present a straightforward adaptation of MISAsq to compute intervals for preemptive
tasks.

Dealing with heterogeneous tasks

We can reuse MISAsq if we assume that tasks can be preempted. This allows agents
to complete a part of task t, then start some other tasks and then process a next
part of t and so on. If this is allowed, we can reduce a bCAS problem instance with
arbitrary duration tasks to a bCAS problem instance with unit duration tasks as
follows:

1. Each task t ∈ T with duration l(t) is split into unit parts t1, . . . , tl(t) and
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2. We add the constraints tj ≺ tj+1 for j = 1, . . . , l(t)− 1 and finally,

3. Every precedence constraint t ≺ t′ is replaced by the constraint tl(t) ≺ t′1.

Note that the splitting task procedure is only polynomial for those instances
where the durations l(t) are not super-polynomial in the number of tasks |T |. Oth-
erwise, the splitting of tasks into unit duration tasks would result in a super poly-
nomial number of unit-duration tasks. To illustrate the consequence of allowing
tasks to have large durations, suppose we have a situation where the set of tasks T
contains a task ti with l(ti) = 2|T |, the MISAsq mechanism would have an input of
size 2|T | tasks. As a result it could take an exponential amount of time to compute
the schedules.

Let us illustrate the above through an example.

Example 5.1. Consider the job shop problem of Example 4.1. We split task t1 into
t11 and t21. Similarly we split task t5 into t15 and t25 and task t3 into t13 and t23 (see
Figure 5.10). If we run ISA with this set of tasks, we get the following starting time
intervals for the tasks:

t11 = [0, 0]; t21 = [1, 1]; t2 = [2, 2]; t13 = [3, 3]; t23 = [4, 4]

t4 = [0, 1]; t15 = [2, 3]; t25 = [4, 4]

To determine if agents can find a sequential schedule (we assume sequential
agents for ease of explanation) we run the matching procedure. We start with agent
A1. Suppose tasks t11 and t21 are part of the matching but t4 is not. We then add a
precedence constraint t21 ≺ t4 and rerun ISA. The new set of intervals are as follows:

t11 = [0, 0]; t21 = [1, 1]; t2 = [2, 2]; t13 = [3, 3]; t23 = [4, 4]

t4 = [2, 2]; t15 = [3, 3]; t25 = [4, 4]

It is now possible to find a maximum matching for all agents implying that agents
can find sequential schedules within the suggested intervals.

This idea of preemption can be developed further to also handle non-preemptive
tasks. The idea is to somehow ensure that all parts of a task are scheduled consec-
utively. That is, we could first treat them as preemptive tasks, then break them up
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Figure 5.10: Reducing the job shop problem to an equivalent unit-duration case if
preemption is allowed.

into unit duration tasks and then some how ensure that all parts of each task gets
a consecutive interval and finally, combine the tasks and their intervals and execute
it as one whole task. In summary, we could derive a non-preemptive schedule as
follows:

1. We first preempt tasks into unit duration tasks so that we can decide whether
there exists a feasible schedule for every agent.

2. If there is a conflict between two tasks tpa and tqb where tpa and tpb are the pth and
qth parts of tasks ta, tb respectively, then we make all preempted parts of task
ta to precede all preempted parts of task tb by adding a precedence constraint

t
l(ta)
a ≺ t1b .

3. Finally we merge the preempted parts of tasks and run ISA on them again to
get a conflict free schedule.

This process of first splitting and then merging tasks is called pseudo preemption.
Due to step 2 of the procedure, all parts of each task always get consecutive intervals.
Therefore, they can always be merged into a single unbroken interval. Once such
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an interval is derived, we can run the task within that interval in an uninterrupted
way.

We have so far developed methods based on ISA that ensure scheduling auton-
omy. However notice that in general, bCAS problem instances need not have nice
task graph structures such as grids. This means that heuristics such as source first
heuristic will be ineffective in such scenarios. However, one could benefit from the
general idea of resolving conflicts in an agent completely before proceeding to resolve
conflicts in other agents. The intuition is that, in case a particular problem instance
has some agent which is allocated a large portion of predecessor free tasks, then as
soon as all conflicts in this agent are resolved, the whole instance would have much
fewer conflicts (because many successors of these tasks are now conflict-free). This
might help reduce the global makespan as it did in the case of unequal chains. In
the very least it might offer a chance to complete conflict resolution faster. Thus
in this updated mechanism called MISAn, we arbitrarily choose an agent for conflict
resolution, resolve all conflicts within the agent and then proceed to resolve conflicts
among other agents. The complete mechanism is given as Algorithm 9.

Example 5.7. For the job shop problem of Example 4.1 the intervals computed
by ISA are shown in the Figure 5.11a. Although the tasks are non-preemptive we
preempt them for scheduling purposes into unit duration tasks and compute the
intervals for them as shown in Figure 5.11b. We find that in the example task t11, t

2
1

together with t4 are conflicting for time points 0 and 1 and tasks t2, t
1
5 are also

conflicting for time point 2 as evidenced by the intervals shown in Figure 5.11b.
The conflicts for agent A1 are shown in the left graph of Figure 5.11c. To resolve
the conflicts, we add precedence constraints between all parts of task t1 and task t2
as shown in Figure 5.11c to resolve the conflicts and then combine the tasks back
to finally compute a non-preemptive interval for the tasks as shown in the Figure
5.11d. The final makespan is still 5.

5.6 Summary

We started our study in this chapter with a hope to extend ISA so that we could
ensure minimum makespan in bCAS problem instances. However, we immediately
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Algorithm 9 Updated mechanism MISAsq for non-preemptive tasks (MISAn)

1: Inputs: constraint intervals [est(tk), lst(tk)] for all the tasks tk ∈ T as com-
puted by ISA.

2: Outputs: Revised est(tk) and lst(tk) for each tk ∈ T to enable scheduling.

3: Split each task tk into a chain of unit duration tasks t1k ≺ t2k ≺ . . . ≺ t
l(tk)
k

and compute the constraint intervals [est(tlk), lst(tlk)] for each unit duration task
using ISA;

4: for each agent Ai do
5: while there exists a (Ti, Ci) not allowing for a maximum flow |fi| = |Ti| do
6: take a task tla contained in fi and an overlapping task tjb not occurring in

fi;

7: add t
l(ta)
a ≺ t1b to the partial order (T,≺);

8: run ISA on the updated partial order;
9: end while

10: combine all the parts of each task ta, and add ta ≺ tb if t
l(ta)
a ≺ t1b ;

11: run ISA on the updated partial order (T,≺) and update the set of constraint
intervals C

12: end for

found out that solving bCAS problems to ensure makespan minimality would in
general be intractable. The intractability was traced to the agent’s inability to
detect and resolve resource conflicts optimally. We then tried to investigate if there
were any subclasses of bCAS problems with special task graph structures where
conflict detection and resolution could be efficiently performed. Fortunately, for the
case when agents were sequential and tasks had unit durations, resource conflicts
could be efficiently detected through the use of the well known maximum matching
procedure of Ford and Fulkerson. However, this extended algorithm which used ISA
and maximum matching called MISAsq, still did not ensure makespan minimality.
Therefore, we looked at even more special structures, namely chain structured task
graph instances. However, even for this class of instances we showed that MISAsq

could not ensure makespan minimality. We then investigated if additional heuristics
could help reduce the makespan. We found that the source first heuristic while
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Figure 5.11: An example to illustrate MISAsq (Algorithm 9).

effective in case of grids was less effective in the case of unequal chains.

Thus, in this chapter we have shown that ensuring autonomy comes at a cost
in terms of efficiency. Even for special classes of bCAS problem instances, namely
grids, the price of autonomy is not bounded by any constant. Additional heuristics
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such as the source first heuristic, while effective against grids and unequal chains,
also cannot help much when faced with more general classes of chain structured
problems. Naturally, these negative results hold for general bCAS instances as well.
We leave the design and development of more advanced heuristics that could improve
the performance of algorithms such as MISAsq to future research.

Another important aspect is that of heterogeneous task durations and heteroge-
neous concurrency bounds. We were able to show in this chapter that MISAsq could
be generalised to MISAn where both these issues can be effectively handled.

Although we have discovered that the price of autonomy is quite large in the
worst case, all is not over yet. What is interesting still, is to understand the perfor-
mance of algorithms such as MISAn when faced with real life applications. Practical
applications could have task graph structures which are neither similar to Figure 5.7
nor a grid. In such cases, specially when agents have heterogeneous capacities, we
are still unaware of how MISAn will perform. Thus, to evaluate MISAn in practical
settings we will perform an empirical analysis of MISAn in the next chapter.



Chapter 6

Empirical analysis

At the end of Chapter 5, we developed algorithm MISAn, which designs a set of in-
tervals within which tasks can be autonomously scheduled. However, we also showed
that MISAn could not guarantee minimum global makespan in the general. Therefore,
in this chapter we test its effectiveness empirically.

In many practical scenarios, for instance when batch processing machines are
involved, agents can be non-sequential (with concurrency bounds greater than 1).
In such cases, the analysis we performed in the previous chapter may not be sufficient
to estimate the performance of MISAn. Therefore, in this chapter we would like to
understand the loss in efficiency (makespan) of MISAn when:

1. general task graphs are input to it and

2. when agents have non-unit and heterogeneous capacities.

In this chapter, we attempt to gain this understanding empirically. To perform
empirical analysis, we choose the problem of coordinating schedules among ground
handling service providers in an airport as a test domain. To explain why this
domain was picked for our testing, we first enumerate a set of properties that are
required to be satisfied by problem domains so that we can apply MISAn:

1. Task graphs representing the problem must be acyclic.

2. Allocation of tasks to agents must be known.

175
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3. Durations of tasks must be known and should not be super-polynomial in the
number of tasks.

4. Finally, data from real instances of the problem must be available.

Several practical problems such as shop scheduling, terrain exploration and military
operations, contain instances that satisfy the first three properties. We have already
seen, in examples used in the previous chapter, that job shop scheduling problems
can be modelled as CAS problems and hence could be also used for evaluating the
performance of MISAn. While there do exist some benchmarking data sets avail-
able for shop scheduling problems (cf. [Demirkol et al. 1998]), the focus of shop
scheduling problems is to develop a central schedule whereas our effort is to allow
for autonomous scheduling. Therefore this domain was not suitable for our purpose.

Problems in terrain exploration also exhibit properties mentioned above. Mul-
tiple exploration vehicles/teams would have to coordinate their exploration tasks
so that they are able to complete their exploration as soon as they possibly can.
Exploration tasks would have precedence constraints emerging from the routes that
exploration teams have to follow, and further since the terrain is unexplored there
is little hope of establishing communication between the teams. While this problem
seems exciting, lack of practical data is a big drawback. Further, in most cases,
exploration vehicles in practice are centrally controlled (cf. [Seeni et al. 2010]).

Military operations involving different teams could also be required to coordinate
in silence and possibly disarm or destroy a hostile target. Quite obviously, getting
access to such data is, to horribly understate the problem, very difficult.

Consider the problem of coordinating schedules among different service providers
for ground handling activities in an airport. This problem deals with operations an
air craft has to undergo once it lands in an airport, so that it is ready for its next
flight. This set of operations is an acyclic partial order of tasks that need to be
performed by multiple service providers. Service providers, however, might each
have to serve different subsets of air crafts that arrive in the airport. Therefore,
service providers would prefer to develop schedules for their tasks in a decentralised
way.

As we have shown earlier, allowing agents (service providers) to schedule in-
dependently might lead to unnecessary delays and hence their schedules must be
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coordinated. Thus, this problem meets all the properties we require for an empiri-
cal analysis of MISAn. The idea of using this problem was inspired by the work in
(cf. [Leeuwen et al. 2007]). Here the authors use Hunsberger’s method to design
robust schedules for ground handling service providers. Since Hunsberger’s method
can be successfully applied, we assumed that MISAn, a distant cousin of Hunsberger’s
method, could also be applied to this scenario. Fortunately, we were also able to
obtain the arrival and departure data for a single day from Amsterdam (Schiphol)
airport and therefore we chose this problem for our empirical analysis.

In the next section, we first present our expectations regarding the performance
of MISAn. We then present an overview of the ground handling problem in Section
6.2 and then present a formal definition of the scheduling ground handling activities
(SGHA) problem. In Section 6.4 we present an ILP model to optimally solve the
SGHA problem and in Section 6.5 we present our experimental results and their
analyses.

6.1 Expected behaviour of ISAN

We expect several parameters such as task graph structure, number of tasks and
amount of work, to affect the performance of MISAn. In particular, we expect the
following parameters to have a significant impact on its performance:

Task graph structure MISAn computes a set of starting time intervals of the
form [est(t), lst(t)] for each task t in the given problem instance. The longest
makespan from these set of intervals can be computed by

|T |
max
i=1

(lst(ti) + l(ti)). (6.1)

In the previous chapter, we showed examples of problem instances where the
longest makespan generated by MISAn for these problem instances could be
as long as the number of tasks. However, not all problem instances need to
be as bad. If problem instances resemble the structure in Figure 5.7, then
MISAn could result in makespan lengths close to its worst case performance.
On the other hand, if the problem instances resemble grids, then MISAn could
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result in optimal makespan as well. We believe that given an arbitrary prob-
lem instance, the performance of MISAn lies somewhere between these two
extremes. Recall also from the previous chapter that, tasks are rarely of unit
duration in practical scenarios. These non-unit duration tasks also have a say
in the ultimate input to MISAn (because of pseudo preemption). In summary,
the structure of the partial order and the duration of tasks are expected to
significantly influence the performance of MISAn.

Agent order Conflict resolution process in MISAn has a significant influence on its
performance. Recall that MISAn randomly picks an agent to completely resolve
its conflicts and proceeds to resolve conflicts in another randomly picked agent
and so on. If the underlying task graph is a grid or an unequal chain, and
if it happens that conflict resolution picks the first agent (whose tasks are of
depth 0), then we already know from our previous chapter that it results in
a shorter global makespan. However, it is not the case in general. Thus, we
expect that the order in which agents are picked for conflict resolution has a
significant impact on the global makespan.

Agent concurrency The concurrency of an agent is another factor that determines
the number of conflicts that occur during matching (within MISAn). One can
easily expect that higher values of concurrency result in lower number of con-
flicts and hence a better global makespan. Thus we expect that MISAn would
result in lower makespan whenever concurrency bounds are raised.

Number of tasks in the system Consider the bipartite matching procedure that
is part of MISAn. As the number of tasks increase, it can be expected that
greater number of tasks have conflicts. Given that agents have a bound on
their concurrency we expect that as the number of conflicts increase, there
are greater number of opportunities for MISAn to make bad choices during
conflict resolution and hence global makespan resulting from MISAn could also
increase. Therefore, we expect that the global makespan suffers when the
number of tasks increase.

Amount of work per agent We define work as the sum of durations of all tasks
allocated to an agent. It seems sensible to expect that agents with greater
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amount of work influence the makespan more significantly than agents with
lesser amount of work. As a consequence, providing greater number of re-
sources (concurrency in our case) to agents with greater amount of work could
be expected to reduce the global makespan more than providing other agents
with greater concurrency.

Given these expectations, we would like to evaluate and learn about the perfor-
mance of MISAn. Before we embark on testing its performance, in the next section,
we describe the problem of coordinating the schedules of ground handling activities
at airport in detail.

6.2 Ground handling problem at an airport

Ground handling in airports refers to all the activities that need to be performed
on an air craft after it has landed in an airport, and prior to its take off. The
International Air Transport Association (IATA), proclaims that: “Ground handling
covers the complex series of processes required to separate an air craft from its load
(passengers, baggage, cargo and mail) on arrival and combine it with its load prior
to departure.”

Broadly, ground handling processes can be grouped into two major categories
- terminal operations and airside operations. Terminal operations include services
inside the airport terminal such as staffing the transfer counters, customer service
counters and airline lounges. Airside operations include services that are performed
on the air craft itself. Airside operations involve more complex tasks as well as
greater diversity of equipment. Ashford (cf. [Ashford et al. 1997]) provides an ex-
haustive list of services that make up airside operations of an air craft. Airside
activities have to be performed in a specified sequence. This sequence in which
airside activities are performed on an air craft is termed the turnaround process.
Different air crafts require different turnaround processes. The specific turnaround
process associated with an air craft is specified by the manufacturer of the air craft.
The technical specification manuals also specify the durations of each of the activities
in the turnaround process of an air craft.

Given this background, suppose now that there are several service providers
in the airport who handle different activities of ground handling. For instance,
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there might be multiple service providers who supply food to the air crafts, based
on the specific agreements the airline companies have. In such a case, developing
a centralised schedule for all the ground handling activities might not be a wise
decision, since a failure or delay by any one of the service providers might require
the entire schedule to be recomputed. Therefore, it is desirable to allow agents
autonomy in constructing their local schedules. The problem then, as we pointed out
earlier, is that unless these local schedules are coordinated, the global schedule might
involve significant delays. Thus, we require some mechanism that while guaranteeing
autonomy to agents, also reduces the overall makespan. In this chapter, we will
evaluate MISAn to see if it can satisfy such a requirement.

To limit the scope of our experiments, we were forced to make several restricting
assumptions on the test domain. The next section presents this list of assumptions
that were made.

Assumptions Ground handling is not an isolated process, it is closely tied to
several other processes that happen within an airport. Safety regulations restrict
air crafts of different models to use specific sets of runways leading to delays in the
landing and taking-off of planes. Similarly, gate allocation needs to balance between
available gates and preferences of airline companies. Taxiing of air crafts can also
severely affect the overall efficiency of the airport as suboptimal taxiing routes can
have cascading effects. Variations in any of these processes is likely to adversely
affect ground handling. Handling the entire problem is immensely complicated and
beyond the scope of our research. Therefore, we are forced to make assumptions
regarding the other processes that affect ground handling. Below is a list of such
assumptions.

• We assume that all air crafts arrive on time. This implies that flights arrive at
the airport on time and that they are able to land and taxi to the gate without
any delays.

• We assume that the gate allocation problem has been solved and the most suit-
able gate has been allocated to air crafts and further that all this information
is known prior to scheduling.
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• We assume that the driving distances between air crafts have already been fac-
tored in the turnaround process. That is, either the driving distances between
gates is insignificant or that it is already part of the durations of activities in
the turnaround process.

• Each air craft manufacturer specifies a minimum and maximum duration for
performing each of the ground handling activities. However, sometimes there is
a difference in the actual amount of time required for the turnaround process.
But because our model requires a single duration for a task, we assume that
the time required to perform a ground handling activity is some random value
within the bounds specified by the manufacturer.

• We assume that all durations are in integral minutes. Thus, the total duration
over a day of operations is equal to 1440 minutes.

• Airports and airline companies allocate tasks to different service providers
based on their own internal procurement mechanisms. However, since our
focus is not to study the allocation process we simply allocate tasks to a set
of agents in our set up based on intuition.

6.3 Modelling the ground handling operations of an air-
port

In performing our experiments, we choose to focus on a subset of ten ground handling
activities — arrival, moving and initial set up, cargo handling and repair, galley
servicing, fuelling, boarding, de-boarding, toilet cleaning, providing potable water
and finally towing. The choice of these activities is based on the fact that moving
and towing of the air craft happen at the very beginning and end of the turnaround
process respectively and thus any delays in the turnaround process will necessarily
be reflected in these activities. The remaining activities represent the processes that
happen during the turnaround process.

Whenever an activity j is to be performed on flight f , we represent it as the task
tjf . The set of all such tasks tjf is represented by T . We allocate the ten activities
(including the arrival activity) among six agents A1, . . . , A6 based on the type of
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Activity Encoding Agent responsible Duration range
(in minutes)

Arrival t1i A1 -

Moving and initial set up t2i A2 1-3

Cargo handling and repair t3i A3 1-102

Galley servicing t4i A4 5-69

Deboarding t5i A6 5-25

Potable water servicing t6i A5 2-21

Toilet cleaning t7i A5 10-21

Fuelling t8i A5 9-70

Boarding t9i A6 5-11

Towing t10
i A2 1-6

Table 6.1: Ground handling activities, their encoding as tasks and their allocation
to agents.

activity. The encoding of activities and their allocation to agents is as shown in
Table 6.1.

Each air craft model typically has a different turnaround process specified. How-
ever, based on available data, we were able to classify these processes into four types
of turnaround processes. The first turnaround process consists of 5 activities as
shown in Figure 6.1. The next turnaround process pertains to air crafts that do not
require galley servicing (possibly because they are cargo air crafts). This turnaround
process is shown in Figure 6.2(a). In some cases, cargo handling is not required,
possibly because the air craft might have only stopped for refuelling or because of
bad weather conditions. Such cases result in a third sequence of ground handling
activities shown in Figure 6.2(b).

Finally, the last type of turnaround process requires all the 10 activities to be
performed. This sequence is shown in Figure 6.3. Boeing provides detailed technical
specifications for each of the ground handling activities on its air crafts. Thus, we
choose to associate this sequence of activities with all the Boeing air crafts arriving
on the day.

In performing our experiments we use the arrival and departure data on a typical
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Figure 6.1: Air crafts can have a turnaround process of 5 activities.

day in Schiphol in the year 2005. The data set has close to 50 different types of
air crafts each of which has been classified into one of the four types (based on the
turnaround processes). If the air craft manufacturer already specifies the turnaround
process then we associate it with the given turnaround process. However, in many
cases, this information is not available. Therefore, we pick the most similar air craft
and use its turnaround process. In case we cannot find any similar air craft, then we
simply pick one of the four turnaround processes randomly and associate it with the
air craft. The focus of our experiments is the ground handling process and not the
arrival of the air craft itself. Further, once the air craft has arrived at the terminal,
any of the ground handling activities can start (as long as they do not violate the
partial order imposed by the precedence constraints between activities). Therefore,
we model the release times for all of the ground handling tasks of an air craft to be
equal to its arrival time.

We next model a special agent A1 with large enough capacity (500 in our case)
and allocate all arrival tasks to this agent. A1 cannot create any delay (because of
resource constraints) on its own. In all our experiments, this agent is ignored since
it cannot influence the makespan obtained from MISAn.

Modelling the problem of scheduling ground handling activities as a CAS problem
is straight forward. All the ground handling tasks tjf to be performed in a single
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Figure 6.2: Some air crafts do not require galley servicing and some do not require
cargo handling.

day can be modelled as elements of the set of tasks T . Each turnaround process
imposes partial order constraints on subsets of these tasks thus resulting in a task
graph G = (T,≺). Each agent Ai is allocated a set of tasks Ti as already described.
Each agent can perform a maximum of c(i) tasks simultaneously and each task tjf
takes a fixed duration l(tjf ) to be completed. This so called problem of scheduling
ground handling activities or the SGHA problem therefore can now be described as
Π = 〈T,A,≺, φ, l(), c(), r(), d()〉 where r() = arrival time of the air craft and the
deadline d() =∞.

Recall that our intention in this chapter is to evaluate the performance of MISAn.
We aim to perform this evaluation by comparing the results (makespan) obtained
from MISAn with that of a centralised solution. Thus, in the next section we construct
an Integer linear program (ILP) to determine the optimal (centralised) makespan
for the SGHA problem.
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Figure 6.3: Boeing air crafts require all the 10 ground handling activities.

6.4 ILP model of the SGHA problem

The ILP formulation for the SGHA problem is similar to the classical job shop prob-
lem with arbitrary precedence constraints and a makespan minimization objective.
The ILP model for the SGHA problem is designed to solve the case where agents
are sequential. This restriction was necessitated by the limits on our hardware.

In formulating the ILP for the SGHA problem, we use the following indices.

i = agent index, i ∈ {1, . . . , N}
j = task index, j ∈ {1, . . . ,M}
k = time index, k ∈ {1, . . . , 1440}
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For the SGHA problem, we use the following parameters.

durj = duration for task j

ai,j =

{
1 if agent i has to perform task j

0 otherwise

precj,g =

{
1 if task j precedes task g where g ∈ {1, . . . ,M}
0 otherwise

ci = concurrency bound of agent i

The decision variables that we use to determine the solution to the SGHA problem
are:

sj = the starting time of task j,

yi,j =

{
1 if task j can precede task i

0 otherwise

We use Cmax to denote the overall makespan. We also use a constant, L = 100000
to ensure mutual exclusion.

The ILP formulation of the problem can be now stated as:

Minimise Cmax (6.2)

Subject to:

(sj + durj)precj,g ≤ sg ∀j, g ∈ {1 . . .M} (6.3)

Lyj,gai,j + (sj − sg) ≥ durg (6.4)

L(1− yj,g)ai,j + (sg − sj) ≥ durj ∀j, g ∈ {1 . . .M} (6.5)

(sj + durj)ai,j ≤ Cmax ∀i ∈ {1 . . . N} and ∀j ∈ {1 . . .M} (6.6)

sj ≥ 0 ∀j ∈ {1 . . .M}; (6.7)

yj,g ∈ {0, 1} (6.8)

The ILP model is based on the well known Manne’s model for job-shop problems
(cf. [Manne 1960]). Constraint set 6.3 ensures that precedence relationships are not
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violated, while constraint sets 6.4 and 6.5 ensure that tasks are not pre-empted.
Finally, constraint set 6.6 ensures that the global makespan is not less than the
local makespan of any agent.

The integer programming model of the SGHA problem that was developed in this
section is used to generate constraints for each given instance of the SGHA problem.
These constraints are then input to a CPLEX solver. We use the optimal makespan
computed by the solver for comparison against the longest possible makespan for
the same instance obtained through MISAn. In the next section, we shall deal in
detail regarding the experiments we performed to solve the SGHA problem using
MISAn.

6.5 Experimental design and results

In Section 6.1, we listed a set of parameters, that we expect to have a significant
impact on the performance of MISAn. We also explained expected effects of varying
these parameters on the performance of MISAn. In this section we perform experi-
ments to test whether indeed the parameters listed earlier influence the performance
of MISAn as expected.

In general, one could use the data from the entire day to perform our experiments.
However, computing an optimal solution for such a large data set was beyond our
computational set up. Therefore, we divide each day into slots of 3 hours and
compute the minimum makespan for each slot.

6.5.1 Measurements

To infer the effect of each of these parameters, we measure either the performance
ratio or the longest possible makespan resulting from MISAn in each of our experi-
ments.

Performance ratio In case of sequential agents, it is straight forward to obtain
the performance ratio. The performance ratio for sequential agents is simply

maxN
i=1(lst(ti) + l(ti))

optimal makespan
(6.9)
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For agents with larger concurrency bounds, we can only measure the longest
makespan of MISAn. Therefore, we simply compare the resulting makespan values
instead of computing the performance ratio.

Hardware and software set up We use a Linux machine with 3 GB RAM and
2 GHz processor to run MISAn. MISAn itself is coded using Java. We also use a Java
program to generate all the constraints in the ILP and write it out into a .LP file
(dot LP file). This .LP file is later used as input to a CPLEX solver on a machine
with 16 GB RAM.

We use Algorithm MISAn to perform all our experiments. We implement the
various steps of MISAn in the following way:

• We first create an empty master list of tasks. This list is populated in the
following way. Suppose we have a flight f and its moving activity t2f has a

duration of 10 minutes. Suppose that this activity is followed by t3f . We now

split t2f into 10 parts each of unit duration and add into the master list. We

ensure that part x of t2f precedes part x+1 by adding part x+1 to the successor
list of part x and part x to the predecessor list of part x+ 1. Finally, we add
part 1 of task t3f to the successor list of part 10 of t2f (and part 10 of t2f to the

predecessor list of part 1 of t2f ). The master list is ready when all activities of
all flights have been split and the precedence constraints are established.

• Conflict resolution strategy prefers agents according to a random binary vari-
able. That is, whenever a conflict between two tasks t, t′ is detected, the
implementation adds either t ≺ t′ or t′ ≺ t based on whether a random binary
variable is 0 or 1.

Data overview It was already mentioned that we divide the arrivals of air crafts
into 8 slots. Each such slot has a different number of plane landings and hence a
different number of tasks. The number of tasks in each slot is shown in Table 6.2.
It is easy to see that different slots have different number of tasks to be scheduled.
Slot 4 has the largest number of tasks — 810 — while slot 7 has the fewest number
of tasks — 80. In all the slots apart from the 6 and 7, A5 has the most work to do
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Slot Number of tasks Number of air crafts

0 215 24

1 125 14

2 720 94

3 580 74

4 810 105

5 715 91

6 605 86

7 80 10

Table 6.2: Number of tasks per slot.

as is evident from Table 6.3. In slot 6, agent A4 has the most work to perform and
in slot 7 A6 has the maximum amount of work.

Agent Slot 0 Slot 1 Slot 2 Slot 3

2 70 44 336 270

3 476 522 1647 1449

4 497 396 1612 1391

5 608 604 2082 1593

6 379 209 1040 900

Agent Slot 4 Slot 5 Slot 6 Slot 7

2 365 318 328 30

3 1550 1249 709 98

4 1682 1456 1009 134

5 1841 1594 824 126

6 1222 1128 802 137

Table 6.3: Work (total time of all tasks) allocated to each agent in each slot.
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6.5.2 Experimental set up

We divide the experiments into two scenarios based on whether agents are sequential
or not.

Scenario 1 In this scenario, agents are always sequential. Using sequential agents
we can determine the following aspects of MISAn’s performance:

• We can determine the performance ratio of MISAn when confronted with more
general task graphs and non-unit task durations.

• We can determine whether the number of tasks has a significant impact on the
performance ratio.

• We can also determine the effect of different agent orders on the performance
ratio.

The first and second points can be determined simply by running MISAn on different
instances of the problem and measuring its performance ratio.

To determine whether different agent orders result in significant improve-
ment/deterioration of the performance ratio, we pick slot 6, and then force MISAn

to perform the matching procedure on agents in random order. The choice of slot 6
is based on the fact that slot 6 had the maximum number of tasks among all slots
for which we were able to find an optimal makespan. By measuring the performance
ratio each time, we can clearly determine whether agent order has a significant role
to play.

Scenario 2 Primarily, in this scenario we seek to ascertain the effects of changing
(increasing) agent concurrency and hence in all the experiments, we can expect to
have at least one agent which has a concurrency bound greater than 1. Further, all
experiments in this scenario have a fixed agent order: A2, A3, A4, A5, A6. There are
two questions with respect to concurrency that we would like to specifically answer:

• will increasing concurrency of all agents help in reducing the makespan?

• how does increasing the concurrency of a subset of agents compare with the
scenario when the concurrency of all agents are increased?
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To answer the first question we first fix that all agents have concurrency bounds
greater than 1 and further that they are all the same. We run MISAn and then
measure the longest makespan. We increase the concurrency value gradually, and
measure its effects on the makespan. This experiment should tell us two things:

1. whether increasing concurrency in general helps in improving the performance
of MISAn and

2. whether there exists some threshold value of concurrency such that increasing
concurrency beyond this value does not lead to significant improvements in
makespan.

To answer the second question we partition agents into 2 sets — the first set
comprising 4 agents and the second set comprising a single agent.1 We then fix the
concurrency value of all agents in the first set to some arbitrary non-unit value and
perform two experiments — in the first experiment we set the concurrency value of
the agent in the second set to be greater than that of the first and then measure the
resulting longest makespan and in the second experiment, we do the reverse. That
is, set the concurrency value of the agent in the second set to be lesser than that of
the agents in the first set and again measure the longest makespan.

We then repeat this procedure with different agents in the second set. Based on
the makespan values we can easily see whether increasing or decreasing the concur-
rency value of each of the agents has the same effect.

6.5.3 Results of experiments in Scenario 1

The running time required for the solver (for solving the ILP formulation) and the
heuristic are given in Table 6.4. For slots 2, 4 and 5, the CPLEX solver went out
of memory and hence we do not consider them further. The implementation allows
MISAn to make a random choice regarding the direction of the precedence relation
between conflicting tasks. Therefore, to account for this randomness, we ran 150
experiments for each time slot with the fixed agent order A1, A2, A3, A4, A5, A6 to
obtain the longest makespan values from MISAn. The performance ratio for each of
the slots is shown in Table 6.5.

1Recall that A1 is ignored from our experiments.
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Slot Optimal MISAn

0 13024 85

1 8124 70

2 - 213

3 65743 125

4 - 325

5 - 320

6 56765 200

7 1 2

Table 6.4: Running times required (in seconds).

Optimal Average Performance ratio

Slot 0 890 1367.1 1.54

Slot 1 846 1569.83 1.87

Slot 3 2266 3877.40 1.71

Slot 6 2097 3186.3 1.52

Slot 7 1468 1734.18 1.18

Table 6.5: Performance ratio for sequential agents.

Next we experimented with random orderings of agents and recorded the longest
makespan for slot 6 in Table 6.6. For each agent order we again performed 50
experiments and recorded the longest makespan. Slot 6 was chosen since it had the
maximum number of tasks (i.e., 605. See Table 6.2) among slots where we were able
to obtain the optimal makespan.

6.5.4 Analysis of results in Scenario 1

The table of run times is along expected lines as the problem is known to be in-
tractable in general. It clearly shows that trying to obtain the optimal solution for
larger instances of the problem may not be a practical option.

It is easy to see from Table 6.5 that the performance ratio is almost always
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Agent order Makespan Agent order Makespan Agent order Makespan

5,4,2,6,3 3156 3,2,5,4,6 3217 2,6,4,3,5 3402

6,4,3,5,2 3544 4,5,6,2,3 3160 6,3,2,5,4 3816

4,5,3,6,2 3157 5,3,6,4,2 3151 5,2,6,3,4 3160

6,4,2,5,3 3453 5,2,4,6,3 3131 6,5,2,3,4 3465

3,5,2,6,4 3151 4,2,6,5,3 3314 3,4,5,6,2 3154

4,2,5,3,6 3169 4,3,6,5,2 3630 3,5,2,4,6 3194

2,4,5,6,3 3192 5,4,3,6,2 3157 6,5,2,4,3 3483

2,6,3,5,4 3529 4,6,2,3,5 3445 6,5,3,4,2 3573

5,2,4,3,6 3144 3,2,4,5,6 3313 3,6,2,5,4 3413

5,2,3,6,4 3166 6,2,5,3,4 3501 5,4,3,2,6 3167

Table 6.6: Maximum value of the longest makespan (from 50 experiments) for slot
6 for different agent orders.

greater than 1.5. In fact, the only slot where it is less than 1.5 is the last slot —
slot 7. This could be attributed to the fact that the number of plane landings in
this slot (10) is very low in comparison with all other slots. The above observation
might indicate that the number of tasks in a slot heavily influences MISAn. However,
it is not always true. Slot 1 has the second least number of tasks (i.e., 125. See
Table 6.2) but it results in the worst performance ratio (i.e., the ratio is over 1.8.
See Table 6.5). Moreover, slot 6 has the largest number of tasks to perform (605)
among all slots. However, MISAn is able to perform very well (i.e., 1.54, second best
among all slots) on slots 6. Therefore, we wonder if the number of tasks does not
influence MISAn, then what does influence it?

To understand this phenomenon, let us present a simple example. Consider the
situation in Figure 6.4(a). Here there are two chains of three tasks each and each task
takes unit duration for processing. We know that if a preference is made between
t1 and t4, then the remaining tasks of the chains that follow them do not have any
conflicts. On the other hand, if the chain lengths are dissimilar, as in the case of
Figure 6.4(b), then choosing the longest chain (t1 ≺ t4 ≺ t6) to be executed first
and the chain t2 ≺ t6 next and finally the task t3 would result in a makespan of 3.
If our choices were flipped, that is t3 ≺ tt ≺ t1 then the makespan would be 5 (close
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Figure 6.4: Lengths of partial orders affects approximation ratio.

to twice the minimum possible). Therefore, if the chains have equal lengths then
we can expect MISAn to result in schedules of lower makespan (because it resolves
conflicts arbitrarily). More generally if chain lengths are similar, then we can expect
that MISAn will result in an performance ratio closer to 1.

Now we shall establish that the chains in slot 6 have a similar length. Suppose
that the chain lengths are different, then there could be only two reasons — they
could have widely differing turnaround durations or planes in the slot could be
arriving with a large inter-arrival gap. Let us now examine if either of these two
things occur in slot 6. Let us first start with turnaround durations.

A simple check of the standard deviation of servicing times of air crafts in each
slot gives us an insight into the service times required for air crafts in each slot.
Figure 6.6 plots the same. Notice that the standard deviation in the service times
of air crafts in slot 6 is lesser than that of slot 1. Implying that the chains are of
similar lengths in slot 6.

Now suppose the tasks of agent A1 in Figure 6.4(a) are all available at different
times. This in effect would imply that the situation is similar to the Figure 6.4(b),
since the difference in times at which tasks are available has to be also factored in.
The number of times several air crafts land simultaneously in slot 6 is 41 where as
in slot 1 it is 0. This fact further strengthens the premise that large portions of the
task graph are similar in slot 6 in comparison with slot 1 (a partial snapshot of the
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Figure 6.5: A partial snapshot of the task graph in slot 6 for agent A2.
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Figure 6.6: Standard deviation in service times of air crafts.

tasks in slot 6 is given in Figure 6.5).

Thus we have established that the time required to process air crafts in slot 6
are similar. This may explain the better performance ratios in slot 6 than in slot 1.

Summarising the above arguments we can conclude that the difference in partial
order lengths has a significant effect on the performance of MISAn.

Let us next analyse the results of different agent orderings. Not surprisingly,
the difference between the best value and the worst value is quite high as seen in
Table 6.6. The worst makespan is 21.9% greater than the minimum makespan.
Therefore confirming our expectation that agent order has a significant impact on
the performance ratio.
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Figure 6.7: Performance of MISAn for different capacities of agents. Each data point
is the average longest makespan for a given capacity and slot computed over 50
experiments.

6.5.5 Results of experiments in Scenario 2

The result of the experiments recorded in the graph of Figure 6.7 pertain to the
first set of experiments under Scenario 2 where all agents had the same value of
concurrency. Concurrency bounds were increased from 1 to a maximum of 100 and
at each concurrency value we ran the algorithm 50 times to obtain the results in
Figure 6.7. We next experimented by allocating different capacities to agents. As
explained earlier we split agents into two groups — one containing 4 agents and
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the second containing the remaining agent. We fixed that agents in the first group
would have a concurrency value of 20 and in each experiment we evaluated the
overall makespan in two scenarios — one when the single agent in the second group
had a capacity of 30 and the second when the single agent had a capacity of 10. We
performed experiments by altering the concurrency of each agent for slots 0, 1, 3, 6
and 7 (50 runs for each agent and for each slot). The results are shown in Figure
6.8.

6.5.6 Analysis of results in Scenario 2

In Scenario 2 we again divided the experiments into two sets — first where all
agents have same concurrency and the second where agents have different amounts
of concurrency.

The results from the graph of Figure 6.7 indicate that makespan values recorded
a decrease when agent concurrency was increased. The graph in Figure 6.7 also
shows that the makespan values stabilise as the concurrency of agents approaches
some threshold value (≈ 50).

The idea that makespan values do not improve after the concurrency values hit
a threshold value is quite easy to understand. A simple explanation for this phe-
nomenon would be that for a given task graph if the maximum number of conflicting
tasks for an agent is less than the concurrency bound, then MISAn would essentially
function as ISA and would not require any conflict resolution and hence result in
minimal makespan.

For the second set of experiments, we observed that makespan values definitely
decrease with an increase in concurrency. Increasing concurrency of agents with most
work to do, results in greater reduction of makespan than increasing concurrency of
agents with the least amount of work. For instance agent A5 and agent A3 make
the biggest difference to the makespan values in almost all the slots. This is hardly
surprising since these agents have the maximum amount of work to do in all these
slots. Similarly, agent A4 records a bigger improvement in slot 6 since it has the
highest amount of work in to do in slot 6, i.e., 1682 tasks (refer Table 6.3) compared
to all the other slots. Note here that while increasing the capacity of these two
agents results in the biggest differences, they need not result in the best makespan.
A case point being slot 3 where increasing the concurrency of agent A6 to 30 results
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Figure 6.8: Performance of MISAn for different capacities of agents. The filled area
indicates the average makespan when the capacity for the agent was increased to
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in better makespan than increasing the concurrency of either agent A5 or agent A3.
A possible explanation for this could be that the agent order has a cascading effect
with respect to the conflicts and agent A6 bears the brunt of it in slot 3. Thus
increasing its capacity relieved agent A6 from a large number of conflicts and hence
resulted in a better makespan.

In addition to answering our expectations, the analysis of results in Scenario 2 can
be fruitfully employed to determine optimal capacity levels for agents. For instance,
based on Figure 6.8, agents A3 and A5 could be allotted more resources in all slots
apart from slot 3 where agent A6 could be allocated more. Similarly, we also know
that increasing the capacity beyond 50 may not result in considerable gain. The
speed of the algorithm allows several experiments to be performed in reasonable
amounts of time and hence allow for fine tuning the capacity levels required for
agents over different time slots.

6.6 Summary

In this chapter we set out to evaluate the performance of MISAn in a general setting
where task graphs could be non-chain structured and agents could have heteroge-
neous capacities. We found that several parameters affect the performance of MISAn.
We observed through our experiments in Scenario 1 that:

• Although the number of tasks has an impact on the performance ratio, the
difference in partial order lengths in a given instance has a greater impact
on the performance of MISAn. We showed that when the differences between
partial order lengths was smaller, the approximation ratio was better.

• Agent order affects the makespan resulting from MISAn significantly.

We next experimented with agents having concurrency bounds greater than 1
to ascertain the impact of concurrency on the makespan derived from MISAn. The
results of our experiments can be summarised as follows:

• Increasing concurrency of agents in general helps in reducing makespan.
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• While increasing the concurrency of the agent with most work to do helps, the
results might be better if the concurrency values are directly proportional to
the amount of work.

Apart from offering a useful solution directly, MISAn could be put to use in other
ways too:

• MISAn could be used to generate useful cuts that a solver such as CPLEX
could use to further improve upon its solution. Cuts are nothing but a set of
additional constraints that can be added to an Integer program (or an MIP),
so that the size of the feasible region is reduced without losing any potential
integer solution. In our case, the longest makespan obtained from MISAn can
be used as a cut. That is, we could add the following constraint to the ILP
model in Section 6.4:

Cmax < Longest makespan for the instance derived from MISAn

Clearly, this results in a reduction in the number of feasible solutions for the
problem and hopefully allows a solver to discover the optimal solution faster.

• MISAn can be used to evaluate resource allocation strategies that result in
better makespan values. This can be done by a method similar to our approach
in the second set of experiments. That is, one could do the following:

. Increment the concurrency bound for all agents and then run MISAn until
the makespan value does not show any remarkable improvement (or until
the global makespan is less than or equal to a desired value).

. Compare the global makespan resulting from the chosen resource alloca-
tion strategy with the makespan from the previous step. If the difference
is small then we can claim that the resource allocation strategy is a good
strategy.

Having evaluated the performance of MISAn in a practical setting, we notice that
there are several possible improvements to our work. Further, there are many ways
our work can be extended to derive further insights into this problem of coordinat-
ing the plans and schedules of autonomous agents. Thus, in the next chapter we
summarise our findings and point out future directions for research.





Chapter 7

Conclusions and future work

In this thesis, we have seen so far that when communication between agents who are
trying to plan for a common goal is untenable, then ensuring coordination between
their plans and schedules is an intractable problem in general. Fortunately, not all
plan and schedule coordination problems are equally hard.

With the above background, we formulated a series of questions in Chapter
2. These questions pertained to (i) finding classes of plan coordination problem
instances for which effective coordination protocols could be designed and (ii) de-
signing a decoupling mechanism for schedule coordination problems.

In this final chapter, we first summarise and evaluate whether the research ques-
tions we posed in Chapter 2 have been answered. In Section 7.2, we first point
out some immediate extensions to our current work. We then also briefly discuss a
couple of other areas which require a more extensive effort.

7.1 Summary

It is interesting to note that in most cases of plan coordination we face in day-to-day
lives, coordination is achieved through communication and cooperation. Researchers
have already proved that without communication and cooperation, plan coordination
problems fall in the Σp

2-complete class in general. However, we often find that despite
lack of communication and cooperation, enterprises do manage to coordinate joint

203
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activities. This may suggest that there exist classes of problems which are somehow
easier to solve than the general class of problems. Our attempt was to identify the
characteristics of such classes of problems and exploit them. Therefore, we focussed
on finding subclasses based on the topological structure of the task graph.

7.1.1 Plan coordination

Recall from Chapter 2 that we had asked the following questions regarding plan
coordination problems:

1. Does there exist an easily identifiable class of plan coordination problems in-
stances where CVP can be efficiently performed?

2. Can we design an approximation algorithm for CP, which exploits the fact
that CVP is polynomially solvable?

3. Does there exist a class of coordination problem instances such that even CP
can be solved polynomially for that class?

Suppose the task graph structure of the plan coordination instance is such that
there are no precedence constraints between tasks allocated to the same agent. This
property, known as the intra-freeness property, is the focus of Chapter 3. We found
that given an intra-free instance, we could represent it as a much smaller agent
dependency graph. Using these agent dependency graphs we showed that if problem
instances satisfied the intra-freeness property then CVP could be efficiently solved,
thus answering the first question we posed positively.

Later, we also designed an algorithm, the DP ∗ algorithm, which improves upon
the state of the art algorithm for plan coordination. The DP ∗ algorithm relies on
finding a blackout feedback vertex set which can be used to filter the set of tasks
on which coordination constraints must be applied. The DP ∗ algorithm uses the
fact that the underlying task graph is intra-free and hence the verification problem
can be efficiently solved. Thus, we managed to find a positive answer to the second
question that was posed as well.

Finally, to answer the third question, we dug deep to find a special subclass
of intra-free instances called the SLIF instances. We showed that there was an
efficient algorithm to solve the plan coordination problem. However, SLIF instances
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constitute a severely restricted class of intra-free instances. It would not be wrong to
say that we have just managed to show that such classes do exist. Thus, we consider
that we have managed to only partially find a solution to the third question.

The plan coordination problem inherently is a very hard problem and hence
even slight generalisations of polynomially solvable subclasses can be intractable.
However, looking for other topological structures that might allow for easier solving
of coordination problems is still a worthy effort.

7.1.2 Schedule coordination

In practical applications of plan coordination, it is often not enough to claim that a
task t would be done after task t′. Decision makers require more concrete informa-
tion regarding the time by which a task is completed. This requirement motivated
us to look into developing coordinated schedules instead of coordinating plans. In
Chapter 2 we stated the following research questions regarding schedule coordina-
tion:

Can a decoupling technique be developed such that it

1. ensures that every local schedule for the decomposed problem can be merged
into a feasible global solution,

2. ensures concurrency constraints are not violated and

3. also minimises the global makespan?

We answered the first question positively. The idea behind the solution is to
first notice that the task graph is now slightly different from the one in plan coor-
dination. The task graph for schedule coordination also has lengths corresponding
to the duration of tasks. This graph of precedence constraints between tasks and
duration information can be represented as a simple temporal network (STN). It
has already been shown by Hunsberger (see [Hunsberger 2002a]) that any STN can
be temporally decomposed in an efficient way. Therefore, we started with a basic
algorithm where we transformed any given instance of the CAS problem into an
instance of the temporal decoupling problem and applied Hunsberger’s algorithm to
obtain a set of decomposed scheduling problems which can each be autonomously
solved.
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The general STN specification allows for the specification of both a minimum
and maximum interval between temporal points, but CAS problem instances only
specify the duration of task. Due to this property, we showed in Chapter 4 that a
faster, simpler and more efficient method can be derived from Hunsberger’s approach
to solve CAS problem instances. This modified algorithm called ISA, associates with
each task a starting time interval derived from the depth and height of the task in
the task graph. The depth and height of each node in a directed acyclic graph can be
computed in time linear in the number of nodes. This allows ISA to be more efficient
when compared to Hunsberger’s algorithm. Furthermore, ISA guarantees that the
global makespan is minimum as well as that each agent has maximal autonomy.

The second and third questions are more tricky. ISA cannot accommodate con-
straints on agent capacity. Chapter 5 deals with this issue. Unfortunately, once we
add capacity constraints, CAS problem becomes NP-complete. One of the difficul-
ties with this bounded capacity version of the CAS problem (bCAS problem) is that
it can be shown that it is already NP-hard to detect all possible conflicts between
tasks. Therefore, we extended ISA into MISAsq so that we could handle agents with
unit capacity and unit duration tasks. The idea behind this extension was to use
the initial intervals suggested by ISA to construct a bipartite graph where conflicts
between intervals could be efficiently detected. Unfortunately, despite the efficient
conflict detection mechanism, the overall aim of achieving makespan minimal global
schedules still remains NP-complete. Even when we restrict problem instances to
very special structures such as grids, we have shown that MISAsq like algorithms can
yield very bad global makespan. We also showed that with the help of additional
heuristics such as the source first heuristic, there is hope of better performance by
MISAsq like algorithms. Therefore, we were only able to partially answer the second
and third questions.

Although the worst case performance bounds of algorithms such as MISAsq are
theoretically bad, we hoped that in a general scenario, the results would be better.
Therefore, we experimentally tested the performance of MISAn in Chapter 6. In this
chapter we applied MISAn to coordinate the schedules of ground handling operators
in an airport. In a series of experiments conducted using this scenario, we found
that as long as the lengths of the various partial orders in a given task graph were
similar, the performance of MISAn was reasonable. However, the real benefit of
applying MISAn for coordinating schedules in a practical setting would probably be
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more to provide a first cut solution and probably also understand the impact of
adding/removing capacity.

Again, it is to be noted that CAS problems inherently are hard problems. There-
fore, developing more fine tuned heuristics to achieve decoupling seems to be the
most profitable solution strategy for these problems.

While it is evident that coordination problems in general are intractable, the cu-
rious researcher can explore several possible directions. Thus, in the next section we
first point out immediate extensions to our work in plan and schedule coordination.
We then point out a couple of other areas where a more comprehensive strategy has
to be employed to even describe the problem.

7.2 Future work

Plan and schedule coordination problems occur in various contexts and settings.
There could be settings similar to ours, and there could be settings where there
are other kinds of restrictions such as unreliable agents, incomplete tasks etc. In
our thesis, we have mostly limited ourselves to problems that could be described
by Valk’s framework for coordination problems (with slight extensions of course!).
However, we believe that in each setting, coordination problems come with their own
set of unique challenges that are very interesting for further research. This section
is devoted to looking at a small set of such challenges.

Even within the immediate reach of this framework and our current set of al-
gorithms, are several problems that are not only interesting but also practically
relevant. Therefore, we next describe such a set of immediate extensions to our
work. We then point out some other settings where Valk’s framework might be
inadequate to describe the problem.

7.2.1 Immediate extensions

There are several other extensions to our version of the coordination problem.
Mainly, we could look at these extensions in two classes — improving existing so-
lution techniques and extending problem settings. In what follows, we describe
such immediate improvements and extensions for plan and schedule coordination
problems.
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Plan coordination: While it is true that the class of SLIF instances can be
efficiently solved, it is also true that this class is severely restricted. A single fork or
a join in the task graph could possibly render our algorithm completely ineffectual.
Therefore, an immediate extension could be to find an approximate method, that
solves plan coordination problem instances where task graphs have a given maximum
degree of nodes.

As far as extending the existing problem setting is concerned, one could consider
the case where tasks share disjunctive constraints between them. Pijper (see [Pi-
jper 2010]) already has proved that finding a minimum coordination set for problem
instances with disjunctive constraints is also Σp

2 -complete. However, we still do not
even have approximate methods to find coordination sets in such cases.

Another set up would be to associate cost factors into the mix. If each constraint
costs some value, then finding a minimum cost coordination set could be of greater
practical value than finding a minimum cardinality coordination set. We suspect
that this problem is also Σp

2-hard, since the coordination verification problem has to
be still solved. The only difference is that instead of finding a minimum cardinality
coordination set we now need to find a coordination set whose sum of costs is mini-
mum. A simple test that strengthens this view of the complexity is to associate unit
cost to each constraint. Now it is easy to see that minimum cardinality coordination
set is the same as a minimum cost coordination set.

Schedule coordination: An immediate improvement to the existing algorithms
for solving CAS problem instances, would be to develop a more sophisticated conflict
resolution strategy. Clearly, heuristics such as the source first heuristic, emphasise
the fact that task graph structure can be further exploited to gain better perfor-
mance. However, the real challenge would be to develop a heuristic that can be used
to generate closer to optimal solutions for general classes of CAS problem instances.
A more sophisticated conflict-resolution heuristic could possibly allow us to deal
with the second and third questions effectively.

There are other immediate extensions to our set up that could be considered
for further research. In our set up we have considered that capacities of agents are
independent, that is, agents do not share resources. However in several cases this is
not true. It would be interesting to consider coordination problems when resources
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are shared. While there has been some effort in the multi-agent route planning
community, regarding such problems (see [ terMors 2010]), there has not been much
effort in ensuring that agents can simultaneously plan.

If resources required to perform a task are not exclusive to an agent then, one
could employ some market mechanism to determine the usage of the resource. Mar-
ket mechanisms such as auctions and negotiations also allow users to pursue indi-
vidual goals which could be different from the global goal. Auction based methods
for distributed scheduling might also come in handy. The paper by Wellmann et
al. (see [Wellman et al. 2001]) describes auction protocols that can be employed to
schedule resources in a distributed scheduling system.

Negotiation is another powerful idea that can be applied to derive coordinated
schedules. The paper by Kaplansky and Meisels (see [Kaplansky and Meisels 2007])
uses negotiation as a basis to derive a global schedule. In their system, individual
scheduling agents with their own goals need to find a coordinated global schedule.
Their set up guarantees that the negotiations always end in an agreement but does
not ensure the optimality of the solution derived from such negotiations. It would
be interesting to study the gain in optimality if some scheduling agents had more
negotiating power than the others.

In our set up we have also not considered situations where tasks could share
simultaneity constraints between them. That is, suppose a heavy object has to be
lifted by a set of agents, this task requires that all of them lift the object at the same
time. If such constraints are brought into the mix, it is still an open question to
determine whether we can still decompose the problem so that agents can schedule
simultaneously. Just as in plan coordination, we have also not considered disjunctive
constraints for schedule coordination problems. Similarly cost based coordination
was also not considered. In fact, Wu et al. (see [Wu et al. 2009b]) consider a variant
of our problem where notions of cost are introduced. They use a negotiation protocol
to arrive at a final set of constraints that guarantee the best mix of profit as well as
autonomy.

7.2.2 Other related areas

In the previous section we saw that there are several immediate extensions to our
work on plan and schedule coordination. In this section, we shall examine a couple of
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areas — on-line coordination and task allocation, that have a very close connection
to plan and schedule coordination problems.

On-line coordination Plans and schedules are usually made so that they can be
reused. However, this is true only if the problem instance is static. It is a whole new
challenge if one has to coordinate situations where tasks arrive one by one. In fact in
such scenarios, the idea of coordination itself might need to change. It can no longer
be the avoidance of cycles in the task graph since, many tasks that can be part of a
cycle might have already been performed and are no longer relevant to the planner.
Tasks also cannot be considered uniformly since each task has a different life time.
Therefore, temporal effects have to be considered even during plan coordination.

There are umpteen practical problems where on-line scenarios are common. For
example in a hospital, patients might arrive asynchronously over time, coordinat-
ing the plans and schedules of different departments which have to offer treat-
ments/diagnosis to these patients is very crucial. Similarly in an airport scenario, all
planes do not arrive at the same time, they require that ground handling operations
must be coordinated to ensure that there are no delays.

GPGP (see [Decker and Li 1998]) has been applied in developing plans for pa-
tient treatment in hospitals. In GPGP agents need to make commitments on their
activities and hence are not robust in the face of small and frequent changes. De-
composition based methods can offer agents greater degree of flexibility as well as
robustness in the face of minor changes. So far, to the best of our knowledge no
efforts have been made to coordinate plans or schedules in on-line scenarios using
decomposition based techniques. The inherent difficulty being the changing nature
of the problem instance.

One possible direction to pursue would be to look at stochastic on-line scheduling.
This area has only recently gained recognition. Chou et al. (see [Chou et al. 2006])
have proved the asymptotic optimality of the on-line WSEPT (weighted shortest
expected processing time) rule for single machine scheduling problem 1|rj |ΣwjCj

assuming that weights and processing times can be bounded both ways (from above
and below) by constants. Megow et al. (see [Megow et al. 2006]) consider the
machine scheduling problems 1||E[ΣwjCj ] and 1|rj |E[ΣwjCj ]. Here the objective
represents the expected weighted completion time. They prove that a simple on-line
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scheduling policy can provide a performance guarantee that matches the currently
best known performance guarantee for stochastic parallel machine scheduling. The
common denominator in all these settings is the fact that the settings are all cen-
tralised. While this area seems to be receiving attention, the same has not been the
case for distributed versions of the problem. Therefore, it might be worthwhile to
pursue research in this direction.

Task Allocation Allocation of tasks plays a big role in coordination. Suppose
each agent is allocated with a single task, then it is easy to see that there can be no
plan deadlocks. Similarly, if task allocation was such that each agent was intra-free,
then coordination verification becomes polynomially solvable. In our thesis we have
so far assumed that task allocation is given to us by the problem owner. However, if
task allocation is not given, then the problem of allocating tasks such that minimum
number of coordination constraints are required has been shown to be Πp

3-complete
by Buzing et al. (see [Buzing et al. 2006]).

On the other hand, the complexity of the problem where we are given an initial
allocation and allowed to make a given finite number of changes to the allocation,
so as to achieve minimum cardinality coordination is still open. It is suspected that
this problem is at least Σp

2 hard since it always requires to compute a minimum
cardinality coordination set. Approximation algorithms that solve this problem are
also not known.

Hierarchical planning technique has been used for task allocation by a few re-
searchers (see [Freeman 2003]). Here a top level agent breaks up its overall goal and
distributes tasks among its subordinate agents, who in turn breakup their tasks to
their subordinates and so on. However, the difficulty seems to be that this does not
ensure makespan optimality of the derived schedules. Besides the difficulty of en-
suring makespan optimality, this sort of task allocation requires that several agents
are able to perform task allocation and there is some sort of a command hierarchy
amongst the agents.

Another interesting idea would be to associate profits to tasks and costs to
coordination constraints, and determine if there exists some allocation of tasks such
that a minimum cost coordination set can coordinate plans. Market mechanisms
which allow agents to negotiate about these two parameters might have interesting
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consequences to the general area of plan coordination. One could also take this
further and evaluate the trade-off between schedules thus derived and the profits
made.
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Summary

Whenever multiple agents come together to achieve a common goal,
coordination between them becomes a vital part of their success. The
problem of coordination between agents becomes even more vital in the
absence of both cooperation and communication between them. This
thesis addresses the issue of coordinating plans and schedules of agents
when (i) they require to achieve a common goal and (ii) neither com-
munication nor cooperation can be expected from them.

Earlier work on plan coordination mechanisms determined that the
problem of coordinating plans is Σp

2 complete in general. However, the
problem of discovering subclasses of plan coordination problem instances,
which are easier to solve was only partially addressed. Further, even
when a plan can be coordinated, it does not naturally mean that it
can be executed properly. That is, a coordinated plan may still be not
implementable in practice. This phenomenon is evident when one is
dealing with coordination instances which have temporal constraints.
In the presence of temporal constraints, a coordinated plan becomes
implementable only if the schedules are also coordinated. Therefore, it
motivates us to look into the problem of coordinating schedules. To the
best of our knowledge, there exists no previous work which studies this
problem of coordinating schedules in a decentralised setting.

Our attempt is thus to address these two gaps,(i) finding subclasses
of plan coordination problem instances which are easier to solve than
the general class and (ii) the problem of coordinating schedules, in this
thesis.

We approach the first problem by studying the structure of the graph
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of precedence constraints called the task graph and show that there in-
deed is a class of plan coordination problem instances called the Intra-free
plan coordination instances, which can be solved more easily than the
general case. We design an algorithm that improves upon the state of the
art algorithm for plan coordination, by exploiting the intra-free struc-
ture of problem instances and show that this algorithm is indeed better
than the existing state-of-the-art algorithm for coordination. Further, we
also show that there exists a subclass of intra-free instances called the
class of Special linear intra-free instances for which the plan coordination
problem can be solved efficiently.

We next study the problem of schedule coordination. Solving the
schedule coordination problem is akin to decomposing a temporal net-
work when capacity constraints are not imposed on agents. Therefore,
we use and improve upon existing techniques for temporal decomposition
and solve the schedule coordination problem. In the process we derive
a faster and simpler algorithm called Interval scheduling algorithm, that
solves the schedule coordination problem efficiently. Further it also en-
sures that the global makespan is minimum.

Unfortunately, once capacity constraints are introduced into the
schedule coordination problem, we show that there exists no algorithm
that can solve it efficiently and also ensure that the global makespan is
minimum, unless P = NP .

One of the issues that we face with schedule coordination in the pres-
ence of capacity constraints is that of efficiently detecting conflicts. We
show that as long as the durations of tasks are not super polynomial in
the number of tasks, we can detect conflicts and resolve them efficiently.
However, this still does not ensure the minimality of the global makespan.
In fact, despite restricting the structure of the precedence constraints be-
tween tasks very severely, this problem remains NP-complete. Further,
we show that even approximation algorithms tend to have very bad ap-
proximation ratios.

Fortunately however, we are able to show that if one could exploit the
structure of the precedence relationships then, it is possible to improve
the approximation ratios.
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While the algorithms we develop for schedule coordination perform
badly in terms of makespan minimality in the worst case, we do not
have any theoretical result to predict their performance in a general
setting. Therefore, we also perform empirical analysis of the schedule
coordination algorithm to test its effectiveness in a practical setting.
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Samenvatting

Wanneer meerdere agenten samen komen om een gemeenschappelijk
doel te verwezenlijken, wordt de coördinatie tussen hen een essentieel
onderdeel van hun succes. Het coördinatieprobleem wordt nog belan-
grijker indien er geen samenwerking en communicatie tussen de agenten
is. Dit proefschrift behandelt het vraagstuk hoe de plannen en tijdss-
chema’s van agenten te coördineren indien (i) ze een gemeenschappelijke
doelstelling moeten bereiken, en (ii) coöperatie noch communicatie van
hen verwacht kan worden.

Eerder werk op het gebied van plan-coördinatie mechanismen hebben
vastgesteld dat het plan-coördinatieprobleem Σp

2-compleet is in zijn
algemeenheid. Echter, het probleem om subklassen van het plan-
coördinatieprobleem te ontdekken die eenvoudiger zijn op te lossen,
is slechts ten dele geadresseerd. Bovendien, zelfs wanneer een plan
gecoördineerd kan worden, volgt het niet vanzelfsprekend dat het plan
ook correct uitgevoerd kan worden. Dit betekent dat een gecoördineerd
plan nog niet in de praktijk uitvoerbaar hoeft te zijn. Dit fenomeen
wordt duidelijk als men te maken heeft met coördinatie problemen die
temporele constraints hebben. Met de aanwezigheid van temporele con-
straints zijn gecoördineerde plannen alleen uitvoerbaar indien de tijdss-
chema’s ook gecoördineerd worden. Voor zover ons bekend bestaat er
geen eerder werk dat dit probleem van het coördineren van tijdsschema’s
bestudeert in een gedecentraliseerde opzet.

Onze poging is om deze twee lacunes, namelijk (i) het vinden van
subklassen van het plan-coördinatieprobleem die makkelijker op te lossen
zijn dan het algemene geval, en (ii) het tijdsschema-coördinatieprobleem,
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in dit proefschrift te adresseren.
We benaderen het eerste probleem door de structuur van de graaf

van de precedentierelatie — de taakgraaf genoemd — te bestuderen en
we tonen aan dat er inderdaad een klasse van plan-coördinatie prob-
lemen is, genaamd Intra-free plan coordination, die eenvoudiger op te
lossen is dan het algemene geval. We ontwerpen een algoritme dat de
bestaande state-of-the-art voor plan-coördinatie verbetert door gebruik
te maken van de intra-free structuur van de instanties en we tonen aan
dat dit algoritme inderdaad beter is dan het bestaande state-of-the-art
algoritme. Verder tonen we aan dat er ook een subklasse van intra-free
instanties bestaat genaamd Special linear intra-free instanties waarvoor
het plan-coördinatieprobleem efficiënt kan worden opgelost.

Vervolgens bestuderen we het probleem van tijdsschema-coördinatie.
Het oplossen van het tijdsschema-coördinatieprobleem is verwant aan het
opslitsen van een temporeel netwerk indien er geen capaciteitscontraints
aan de agenten worden opgelegd. Daarom gebruiken en verbeteren we
bestaande technieken voor temporele decompositie bij het oplossen van
het tijdsschema-coördinatieprobleem. We ontwikkelen daarbij een sneller
en eenvoudiger algoritme genaamd Interval scheduling algorithm, dat het
tijdsschema-coördinatieprobleem efficiënt oplost. Verder garandeert het
algoritme dat de globale tijdsspanne minimaal is.

Helaas kunnen we aantonen dat, zodra capaciteitsconstraints be-
trokken worden bij het tijdsschema-coördinatieprobleem, er geen algo-
ritme bestaat dat het probleem efficiënt kan oplossen en kan garanderen
dat de globale tijdspanne minimaal is, tenzij P = NP .

Eén van de problemen waar we tegenaan lopen bij tijdschema-
coördinatie met capaciteitscontraints is het efficiënt detecteren van con-
flicten. We laten zien dat zolang de duur van de taken niet boven-
polynomiaal is in het aantal taken, dan kunnen we conflicten efficiënt
detecteren en oplossen. Echter, dit garandeert nog steeds niet de mini-
maliteit van de globale tijdsspanne. En ondanks de zeer sterke beperk-
ing op de structuur van de precedentierelatie blijft het probleem NP-
compleet. Verder tonen we zelfs aan dat approximatie algoritmes dikwijls
een erg slechte approximatie ratio’s hebben.
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Echter, we kunnen gelukkig aantonen dat als men erin slaagt om de
structuur van de precedentierelatie aan te wenden, dan is het mogelijk
om de approximatie ratio’s te verbeteren.

Hoewel de algoritmes die we ontwikkelen voor tijdsschema-
coördinatie slecht presteren op het gebied van tijdsspanne in het slecht-
ste geval, hebben we geen theoretisch resultaat om te voorspellen hoe
de prestaties zijn in algemene gevallen. Daartoe voeren we ook een em-
pirische analyse uit van het tijdsschema-coördinatiealgoritme om de ef-
fectiviteit ervan te testen in een praktische omgeving.
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