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Abstract

The transition towards a more sustainable future has been more prevalent and necessary in re-
cent years due to the increase of greenhouse gas emissions. With the increasing size of modern
cities, major concern is risen in the transport sector, becoming one of the main contributors
to greenhouse gas emissions. More specifically, road transport is the main contributor within
this sector, causing as much as 70 % of the total emissions [3]. As a consequence, the adoption
of Electric Vehicles (EVs) has become more prevalent in various countries as a replacement
of Internal Combustion Energy Vehicles (ICEVs), being the main cause of pollution within
road transport.
On the other hand, EVs are yet to be the perfect replacement due to 2 main bottlenecks,
significantly slower charging times compared to refilling Internal Combustion Energy vehi-
cle (ICEV), as well as Li-ion battery lifespan and deterioration over time, which is not an
issue in ICEVs, thus a charging profile needs to be determined to mitigate these factors as
much as possible. This brings the research proposal "Finding a model-based real-time control
charging strategy that mitigates charging times as well as degradation" .
To explore this research topic before developing a model-based control charging strategy, a
battery model as well as a degradation model are needed to be implemented, to capture
physical states of the battery such as State Of Charge (SOC) and of degrdation mechanisms
such as Solid Electrolyte Interphase (SEI) and lithium plating. First of all, 3 electro-chemical
Li-ion battery dynamical models have been implemented and/or simulated, the Pseudo 2-
Dimensional (P2D) model, the Electrolyte Enhanced Single Particle Model (SPMe) and the
Extended Single Particle Model (ESPM). The P2D model is considered a full order model,
highly accurate for a wide range of charge/discharge currents, which is taken as the base for
comparison. The SPMe is a simplified, less accurate model of the P2D, but faster in terms
of computational time. Both models are computationally heavy, inapplicable for real time
control applications, thus being infeasible for realtime control. The ESPM, a simplification
of SPMe, has been developed to tackle the computational time issue, while still maintain-
ing high accuracy performance. The P2D and SPMe are already available and simulation
data was obtained using the Python library PyBamm, whereas ESPM was unavailable, thus
implemented and simulated on MATLAB. Implementations of comparison between models
on MATLAB showed that ESPM can be used for a current range of at least 2C, showing
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above 90 % similarity in all model variables compared. In order to include degradation effects
in the control strategy, a detailed electro-chemical degradation model, incorporating the 2
main aging effects, SEI growth and lithium plating has been implemented and simulated on
MATLAB where degradation parameters were adjusted to fit the capacity fade specifications
for the LGM50 battery. Such degrdation effects were incorporated such that they could be
minimized seperately in the charging strategy.
Lastly, based on the models developed, an Nonlinear Model Predictive Control (NMPC) con-
trol strategy has been developed with the aim to achieve a tradeoff between charging time,
SEI growth and lithium plating as well as change of charge current with time while staying
between the feasible model and cell constraints. A Health Conscious Fast charging strategy
achieved a charging time of 34 minutes, while having a battery lifespan of approximately 800
charge/discharge cycles. This charging time matches typical DC Fast charging times, while
saving approximately 100 cycles from the LGM50 battery lifespan.

Hassan Sewailem Master of Science Thesis



Table of Contents

Acknowledgements xiii

1 Introduction 1
1-1 Background Of Electric Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1-2 Advantages and Disadvantages of EVs . . . . . . . . . . . . . . . . . . . . . . . 1
1-3 Batteries used in EVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1-4 Li-ion Battery Modelling Methods and Degradation Mechanisms . . . . . . . . . 3
1-5 Charging Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1-6 Thesis Goal and Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature Review 7
2-1 Li-ion Battery Dynamical Models . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2-1-1 P2D Model [21] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2-1-2 Electrolyte Enhanced Single Particle Model (SPMe) [28] . . . . . . . . . 13
2-1-3 The Extended Single Particle Model (ESPM) . . . . . . . . . . . . . . . 19
2-1-4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2-2 Li-ion Battery Degradation Models . . . . . . . . . . . . . . . . . . . . . . . . . 24
2-2-1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2-2-2 Accuracy of degradation model . . . . . . . . . . . . . . . . . . . . . . . 25
2-2-3 Other Methods in Literature . . . . . . . . . . . . . . . . . . . . . . . . 27

2-3 Charging Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2-3-1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2-3-2 Method 1 [44] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2-3-3 Result of method 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2-3-4 Method 2 [77] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2-3-5 Results of method 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2-3-6 Other methods in literature . . . . . . . . . . . . . . . . . . . . . . . . . 33

2-4 Literature Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Master of Science Thesis Hassan Sewailem



iv Table of Contents

3 Mathematical Modelling and Implementation 37
3-1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3-2 Battery Model Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3-2-1 ESPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3-3 Degradation Model Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3-3-1 SEI Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3-3-2 Lithium Plating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3-3-3 Diffusion Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3-4 Model Implementation and Simulation . . . . . . . . . . . . . . . . . . . . . . . 42
3-4-1 P2D Model and SPMe . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3-4-2 ESPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3-4-3 Degradation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3-5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3-5-1 Performance Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3-5-2 Battery Diffusion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3-5-3 Degradation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3-6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3-6-1 Battery Diffusion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3-6-2 Degradation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3-7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Charging Strategy Implementation 61
4-1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4-2 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4-2-1 NMPC Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4-2-2 NMPC Charging Strategy Formulation . . . . . . . . . . . . . . . . . . . 62

4-3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4-3-1 MATLAB Nonlinear Optimizer "fmincon" . . . . . . . . . . . . . . . . . 64
4-3-2 Choosing the weights Q and R . . . . . . . . . . . . . . . . . . . . . . . 66
4-3-3 NMPC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4-4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4-4-1 Constraint Satisfaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4-4-2 Charging Speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4-4-3 Degradation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4-4-4 Computational Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4-5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4-6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Conclusions and Recommendations 79
5-1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5-2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Hassan Sewailem Master of Science Thesis



Table of Contents v

A The Back of the Thesis 83
A-1 Battery and Degradation model (LGM50 5 Ah battery) . . . . . . . . . . . . . . 85

A-1-1 Symbol Definition and Parameter Sets . . . . . . . . . . . . . . . . . . . 85

B NMPC 87
B-1 Parameters per Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

B-1-1 State x and Input u Bounds . . . . . . . . . . . . . . . . . . . . . . . . 87
B-1-2 Weighting Matrices Q and R . . . . . . . . . . . . . . . . . . . . . . . . 88

Glossary 99
List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Index 101

Master of Science Thesis Hassan Sewailem



vi Table of Contents

Hassan Sewailem Master of Science Thesis



List of Figures

1-1 Strengths and weaknesses of lead-acid, Li-ion, Nickel Metal Hydride (NiMH) and
Nickel Cadmium (NiCd) batteries. [84] . . . . . . . . . . . . . . . . . . . . . . . 3

2-1 List of the main Lithium ion battery models found in literature. [34] . . . . . . . 8
2-2 Pseudo 2-Dimensional model diagram. [35] . . . . . . . . . . . . . . . . . . . . . 9
2-3 Comparison between experimental, P2D (Doyle-Fuller Newman (DFN)) and Full

Homogenized Macroscale (FHM) for the terminal voltage (V) against time (s) for
the different constant charging experiments [8]. . . . . . . . . . . . . . . . . . . 12

2-4 Schematic of the P2D and Single Particle (SP)/SPMe models of a lithium ion
battery. [40] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2-5 Comparison of the pore wall fluxes at the cc-neg interface and the pos-cc interface
simulated by SP, SPMe (ESP) and P2D models under 1C ((a) and (b) respectively)
3C ((c) and (d) respectively) / 4C ((e) and (f) respectively) rate discharges. [50]. 17

2-6 Plots of the terminal voltage profiles simulated by SP,SPMe (ESP) and P2D models
and the corresponding deviations under 1C ((a) and (b) respectively), 3C ((c) and
(d) respectively) and 4C ((e) and (f) respectively) rate discharges. [50]. . . . . . 18

2-7 The computation times of SP, SPMe (ESP) and P2D models. [50]. . . . . . . . 19
2-8 Plot of cell voltage (V) against time (s) and a current profile (C-rate) against time

(s) for the ESPM model (blue) as well as experimental data (red). [44] . . . . . 22
2-9 Plot of cell voltage (V) against time (s) and a current profile (C-rate) against time

(s) for the ESPM model (blue) as well as experimental data (red) [44] . . . . . . 22
2-10 Plot of the terminal voltage (V) against time (s) for charging (left plot) and dis-

charging (right plot) cases for both the ESPM and experimental data at charge/dis-
charge rates ranging from 1C to 6C. All curves overlap. [78] . . . . . . . . . . . 23

2-11 Computational times of a reduced order ESPM model (ROEM) and P2D model
under different experiment conditions. [38] . . . . . . . . . . . . . . . . . . . . . 24

2-12 A summary of the degradation mechanismss for the Li-ion battery [10] . . . . . . 25
2-13 Comparison of model results with experiment data in terms of discharge curves at

(a) C/3 (b) 1C (c) 2C and (d) 3C measured in the reference performance tests of
the cell after different number of cycles. [76] . . . . . . . . . . . . . . . . . . . . 26

Master of Science Thesis Hassan Sewailem



viii List of Figures

2-14 Experiment results for Constant-Current Constant-Voltage (CCCV) strategy at
different charging rates, fast charging strategy and health-conscious fast charging
for method 1. [44] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2-15 Capacity fade comparison between CCCV at different charge rates, fast charging
and health conscious fast charging strategies for method 1. [44] . . . . . . . . . 31

2-16 Simulation and experiment results for fast charging strategy for method 2. [77] . 33

3-1 Charging Experiment 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3-2 Charging experiment 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3-3 Charging Experiment 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3-4 Charging Experiment 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3-5 Cathode and Anode Surface Electrolyte Concentrations ce,surf,+ and ce,surf,− un-

der constant charging experiment conditions . . . . . . . . . . . . . . . . . . . . 44
3-6 Plot of P2D model data of the equilibrium electrolyte concentration per current

on the cathode current collector surfaces and its corresponding fitting function . 45
3-7 Plot of P2D model data of the equilibrium electrolyte concentration per current

on the anode current collector surfaces and its corresponding fitting function. . . 45
3-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3-9 Cycling Experiment Conditions for LGM50 Battery. Taken from LGM50 Battery

Specification Sheet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3-10 Degradation Capacity Fade Criteria for the LGM50 battery. Taken from the LGM50

Battery Specification Sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3-11 Experiment 1 (Fig.3-1) Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3-12 Experiment 2 (Fig.3-2) Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3-13 Experiment 3 (Fig.3-3) Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3-14 Experiment 4 (Fig.3-4) Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3-15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3-16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3-17 Plot of capacity fade against number of cycles for the LGM50 battery for 0.33C,

1C and 2C constant charging experiments. Discharging experiment is according to
Fig.3-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4-1 Model Predictive Control (MPC)/NMPC algorithm description [37]. . . . . . . . 62
4-2 Plot of the jsei against time (min) under a 2C constant charging experiment. The

peak abs(jjsei,max) = 0.00024 A
m·s . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4-3 Plot of the jsei against time (min) under a 2C constant charging experiment. The
peak abs(jjlpl,max) = 1.09e − 08 A

m·s . . . . . . . . . . . . . . . . . . . . . . . . . 67

4-4 Plot of SOC and the corresponding charging profile against time for the various
charging strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4-5 Plots of Anode and Cathode Electrolyte Concentrations ce,surf,+ and ce,surf,−
under various charging strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4-6 Original and zoomed in plots of SEI molar flux jsei ( A
m·s) against time (min) for

the various NMPC charging strategies. . . . . . . . . . . . . . . . . . . . . . . . 73

Hassan Sewailem Master of Science Thesis



List of Figures ix

4-7 Original and zoomed in plots of Lithium Plating molar flux jlpl ( A
m·s) against time

(min) for the various NMPC charging strategies. . . . . . . . . . . . . . . . . . . 74
4-8 Plot of the capacity (%) against the cycle number for for the various charging

strategies. 2 cycles correspond to one charge and one discharge. The method at
which this plot is obtained is closely similar to the methodology in Section 3-3-3 75

Master of Science Thesis Hassan Sewailem



x List of Figures

Hassan Sewailem Master of Science Thesis



List of Tables

3-2 Table of Variance Accounted For (VAF) between SPMe and P2D model as well
as between ESPM and P2D model for the results in Fig.3-11 to Fig.3-14. The
experiment numbers 1 to 4 follow experiments in Fig.3-1 to Fig.3-4 respectively. 55

3-1 Table of Root Mean Square Error (RMSE) between SPMe and P2D model as well
as between ESPM and P2D model for the results in Fig.3-11 to Fig.3-14. The
experiment numbers 1 to 4 follow experiments in Fig.3-1 to Fig.3-4 respectively. 55

4-1 Table of the maximum possible magnitude and squared magnitude of the 3 variables
to be minimized c̄s − cs,max,−, jsei, jlpl. . . . . . . . . . . . . . . . . . . . . . . 68

4-2 Summary of Charging Speed and Degradation Results per Strategy. . . . . . . . 75
4-3 Computational time (s) of the different charging strategies. . . . . . . . . . . . . 75

A-1 List of Symbols for the P2D,SPMe, ESPM and the electrochemical degradation
Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A-3 List of whole cell constants LGM50. . . . . . . . . . . . . . . . . . . . . . . . . 86
A-2 List of the LGM50 cell electrode parameters used for the P2D,SPMe,ESPM and

the electro-chemical degradation Model. c: Calculated, adj: Adjusted, N/A : Not
available. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Master of Science Thesis Hassan Sewailem



xii List of Tables

Hassan Sewailem Master of Science Thesis



Acknowledgements

I would like to thank my supervisors Ton van den Boom at TU Delft and Robinson Medina
Sanchez at TNO, for their assistance while writing this thesis.

Delft, University of Technology Hassan Sewailem
March 20, 2023

Master of Science Thesis Hassan Sewailem



xiv Acknowledgements

Hassan Sewailem Master of Science Thesis



Chapter 1

Introduction

1-1 Background Of Electric Vehicles

The transition towards a more sustainable future has been more prevalent and necessary in
recent years due to the increase of greenhouse gas emissions. The transport sector specifically
in modern cities plays a major role in such emissions due to the continuously increasing size of
modern cities which then results in pollution and other serious environmental problems [30].
Within this sector, road transport is the main contributor in the greenhouse gas emissions.
In fact, road transport represents 70 % of all the greenhouse gas emissions in the transport
sector [3], thus the main research and focus is on reduction of greenhouse gas emissions
within road transport. As a result, many countries have adopted the use of New Energy
Vehicles (NEVs), also known as Electric Vehicles (EVs) as a form of reducing the dependence
on fossil fuels used by conventional vehicles. Current EVs comprise mainly of plug-in hybrid
EVs, and plug-in fully EVs. The world’s largest market, China, committed to the development
and use of EVs to reduce the import of oil [70]. As a consequence, global sales of EVs have
dramatically increased in recent years having sales of 6750000 units in the year 2021, covering
a market share of 8.3 % almost double of the year 2020 [1]. The growth is likely to not stop
here, as the plans of Electric Vehicle (EV) companies, led by TESLA, is to increase production
volumes as well as sales. An example can be that TESLA intend on selling 20 million EVs
annually by 2030 according to their 2021 annual report.

1-2 Advantages and Disadvantages of EVs

There are many advantages for the adoption of EVs compared to the conventional vehicles.
The first obvious reason of EV is that they produce zero tailpipe emissions, meaning that they
do not produce any pollutants being CO2, nor nitrogen while driving. On top of that, the
battery manufacturing process even though it adversely affects the environment in terms of
greenhouse gas emissions, it is still considered more respectful to the environment than con-
ventional vehicles [63]. Moreover, EVs are more simple to make and less noisy as the engine

Master of Science Thesis Hassan Sewailem



2 Introduction

for EVs requires less parts, and no components are needed for noise/vibration reduction. This
also means that the possibility for breakdown of EVs is less than the conventional vehicles,
due to fewer components. The EV is also known to be more cost effective as the EV motor
being more efficient, with higher power density as well as higher power factor (ratio of power
drawn by the charger to the power actually utilized in charging) as opposed to the internal
combustion engines [56]. For example, the Well To Wheel (WTW) efficiency calculation in [5]
shows that if renewable energy is used to feed EVs, the WTW efficiency would be significantly
higher compared to the conventional Internal Combustion Energy vehicle (ICEV) with a range
efficiency between 40% to 70% as compared to the highest efficiency ICEV being 25% to 37%
for the diesel ICEV.
Despite the many advantages that EVs have over conventional Internal Combustion Energy
Vehicles (ICEVs), EVs are still far from a perfect replacement to the ICEV for several reasons.
First of all, in the industry, the charging times have still not reached the required standards
as they are still considered disturbingly higher than refuelling a tank in a conventional ICEV.
Typically, fully charging a battery pack takes from 4-8 hours [63]. Even with recent devel-
opments in fast charging, one of the fastest chargers in the industry has a charging speed
of 16.3 km/min for the Tesla Model S Long Range Plus [75], which is still unsatisfactory
compared to ICEVs. If a fast charging speed exceeds 32 km/min, it is assumed to satisfy
over 80 % of trips [14]. One other key disadvantage is battery degradation and capacity
fade, which is directly related to the charging strategy used as well as other environmental
conditions. Other battery related disadvantages include being costly, large and heavier than
carrying gasoline [63], however, they are insignificant to the 2 main disadvantages mentioned
being fast degradation and long charging times. As a result, the main focus of the literature
review is discussing different types of dynamical models for Li-ion batteries in EVs with the
incorporation of degradation mechanisms as well as reviewing different charging strategies
that have been seen previously in literature. This is in order to choose the best model for im-
plementation for the thesis. The criteria at which the models will be chosen will be discussed
in detail in the literature review.

1-3 Batteries used in EVs

In the current market, there are 4 leading battery types. They are the Lead-acid, Li-ion,
Nickel Metal Hydride (NiMH) and Nickel Cadmium (NiCd) batteries as they represent the
highest market shares [84]. A list of advantages and disadvantages of the 4 main battery types
can be found in Fig.1-1 below. The main focus of the literature and the thesis will be on Li-ion
batteries due to their outstanding specific energy and power, relatively long calendar and cycle
lives, high round trip efficiency and the recent extensive research and development globally
on Li-ion batteries as found in Fig.1-1. In order to simulate and monitor the behaviour of
Li-ion batteries to implement charging strategies, analytical models of the Li-ion battery are
needed. This is done to obtain relations between the different battery variables as well as
analytically determining control charging strategies for minimizing charging time as well as
degradation.
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Figure 1-1: Strengths and weaknesses of lead-acid, Li-ion, NiMH and NiCd batteries. [84]

1-4 Li-ion Battery Modelling Methods and Degradation Mecha-
nisms

The purpose of Li-ion battery modelling is simulation of the battery dynamics to resemble
real Li-ion battery behaviour, obtain reltions between the different internal physical states of
the battery and finally determining a charging control strategy with a specific objective. For
example, a common relation that is obtained for analysis is the Open Circuit Voltage (OCV)
against State Of Charge (SOC) for a certain charge current profile.
As a physical description of the Li-ion battery, the components of it include the anode,
cathode, the separator, the electrolyte and the 2 current collectors. While the battery is dis-
charging, the lithium ions are flowed in the electrolyte from the anode to the cathode, passing
through the semi-permeable separator and creating a flow of electrons [2]. The exact opposite
occurs when charging, meaning the lithium ions move from the cathode to the anode. To
obtain an accurate model of the battery, one can incorporate degradation mechanisms within
the battery model. There are 2 main causes of capacity fade which are Solid Electrolyte
Interphase (SEI) growth and lithium plating or deposition.
An SEI layer, which is a passivation layer [72] forms on the anode [75] in the first few cycles
of charging, causing irreversible capacity loss [75]. This layer formed protects from any side
reactions occurring with the electrolyte [19]. High temperatures are thought to be a possible
reason of formation of the SEI layer [79] [59], however, it is still uncertain what causes degra-
dation at high temperatures in conventional charging and discharging techniques [75].
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The other degradation mechanism is lithium deposition, which is also known as lithium plat-
ing [44]. This is caused when the lithium ions are flowed at a higher rate than the battery
can intercalate [44], thus at high charge currents this occurs. Consequently, the lithium
ions are transformed into metallic lithium causing capacity fade as well as hindering battery
performance [23]. This shows the complexity of modelling li-ion batteries and degradation
mechanisms.
In literature, 3 main methods are used to model Li-ion battery dynamics as well as degra-
dation. They are characteristic maps, equivalent circuit models and physics based electro-
chemical models.
Starting with characteristic maps, they are models that use real life charge/discharge ex-
periments or Full Order Models (FOMs) to obtain input-output relations between variables.
One example of a Full Order Model (FOM) being used by Lin and colleagues [44], a static
map has been obtained from a previously implemented FOM [45] which shows the SEI thick-
ness growth rate as well as lithium plating at different charge rates and different States Of
Charge (SOCs). Moreover, a first order transfer function to model Li-ion concentration at a
given charge rate with the support of the Extended Single Particle Model (ESPM) to sim-
ulate the Li-ion battery diffusion dynamics was obtained [44]. As for testing, it can be on
either customized cells (eg. 3 electrode test cells) or special experimental setups such as dila-
tion analysis [75]. For example, lithium plating can be tracked and measured using dilation
analysis [11]. This method was implemented which was later used to obtain characteristic
maps for health conscious fast charging [67]. Moreover, in a case study by Waldmann and
colleaugues [74], a customized 3-electrode cell was used to model the battery dynamics and
apply optimized charging algorithms by measuring anode voltages at different charge rates.
Secondly, equivalent circuit battery modelling mainly uses Resistor-Capacitor (RC) circuits to
model battery behaviour. In a recent study by Li and colleagues [42], a physics-based low or-
der RC electrical model was used, along with a thermal network model to model the dynamics
along with battery aging, then a Multistage Constant Current Constant Voltage (MCCCV)
charging strategy was applied. In addition, in another study by Zou and colleagues [82], a
second order RC model coupled with thermal model was used, then an optimization charging
strategy with the objective to minimize charging time as well as regulating battery tempera-
ture was implemented.
Lastly, physics based electro-chemical models are most commonly researched and used in lit-
erature due to their wide flexibility and simplicity in incorporating lithium deposition as well
as SEI growth. They include partial differential equations of the diffusion dynamics of the
lithium ions in each electrode. The main models used in literature are the FOM, also known
as the Pseudo 2-Dimensional (P2D) model [45], simplified P2D [34], Electrolyte Enhanced
Single Particle Model (SPMe) [39] and ESPM [51].
The focus of the thesis will be only on electro-chemical models, as they are the most widely
used in literature due to their high accuracy and flexibility to manipulate internal battery
states.

1-5 Charging Strategies

The main purpose of this study is to find a new charging strategy or improve on previous
charging strategies that minimize charging time as well aging of the battery. Conventional
charging strategies include Constant-Current Constant-Voltage (CCCV) charging [80], pulse

Hassan Sewailem Master of Science Thesis
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current charging and pulse voltage charging [64] [31]. Although being efficient charging meth-
ods for lithium ion batteries, these traditional methods are not performing at a sufficient level
in today’s market in terms of charging speed and battery lifespan [44]. With recent efforts in
this field, more advanced charging strategies have been developed. Examples can be optimiza-
tion based techniques such as Adaptive Multistage CCCV (AMCCCV) [42], Nonlinear Model
Predictive Control (NMPC) [37] etc. Optimization based charging strategies are the most
common in the industry at the moment. There are other methods using neural networks [22],
fuzzy logic [32] and the traditional MCCCV [33] [6].
The focus of the literature review and as a result the thesis will be on optimization based
charging strategies as they support the electro-chemical models for the battery, leading to the
most accurate results. Also, parameters and constraints can be easily modified to reach the
global/local optimum desired.

1-6 Thesis Goal and Structure

Based on previous studies, an electro-chemical battery dynamic model coupled with a degra-
dation model will be chosen for implementation on MATLAB throughout the thesis. After
simulation and validation of the model, a charging strategy is then determined tackling the
research proposal "Finding a model-based real-time control charging strategy that mitigates
charging times as well as degradation". The thesis report will be structured as follows: the
first chapter, Introduction, explains the need for the transition to EVs, the current limi-
tations that incorporating EVs impose, with the main ones being battery degradation and
charging times. Moreover, the introduction discusses how to approach the research ques-
tion being "How to minimize battery degradation and charging times using a model-based
charging control strategy?". Research subquestions include, "Which electro-chemical battery
dynamical model should be used?", "Which degradation model should be used?" and "What
type of control strategy to be used?".
The answers to the research questions and subquestions can be found in the second chap-
ter, Literature Review, discussing the previous research already done in tackling the same
topic, where the first section, "Li-ion Battery Models", highlights the main electro-chemical
battery models available in literature, with a performance analysis and discussion in terms
of range of charge/discharge currents the model is accurate and computational complexity.
The second section in this chapter, "Degradation Models", explains one of the main electro-
chemical degradation models currently used in research, with a performance analysis with
respect to experimental results. The third section, "Charging Strategies", discusses the main
charging strategies available in literature, with a comparison of results in terms of charging
time and battery degradation. The last section "Thesis Proposal", concludes the literature
review with explaining the reasoning behind the choices made in terms of what would be
implemented moving forward with the thesis, as well as the target to be achieved from this
implementation.
The third chapter, Model Implementation, describes the battery model and degradation
model dynamics that are chosen for implementation shown in sections "Battery Model Dynam-
ics" and "Degradation Model Dynamics" respectively. The section "Methodology" describes
the details of practical implementation of the battery and degradation models, "Results"
presenting the models results for verification of the models chosen, showing accuracy and
computational complexity, and finally a "Discussion" section discussing the results obtained.
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The next chapter is Charging Strategy Implementation, having the same structure as
the previous chapter, with the sections "Model Formulation", "Methodology", "Results" and
"Discussion".
The final chapter is Conclusions and Recommendations which gives a summary of the
work done in the Thesis and compares it with what is state of the art in section "Conclu-
sions", then explaining what further extensions could be made on this work in the section
"Recommendations".
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Chapter 2

Literature Review

2-1 Li-ion Battery Dynamical Models

In literature, extensive research is being done on finding an accurate model for the Li-ion
battery that does not fail in severe charge/discharge current cases, while also not being
computationally expensive. A list of the different types of models found in literature can be
seen in Fig.2-1. In this section, some of the main electro-chemical models in literature will
be explained, as well as a performance analysis will be performed in terms of computational
burden, and accuracy compared to the real Li-ion battery. The goal from such analysis is
finding a model to be used that is accurate enough for a wide range of charging currents,
while having low enough computational complexity to be applicable for real time control
applications. For all models, the symbol definitions and parameter values can be found in
Tables A-1, A-2 and A-3 in Appendix A-1.
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8 Literature Review

Figure 2-1: List of the main Lithium ion battery models found in literature. [34]

2-1-1 Pseudo 2-Dimensional (P2D) Model [21]

The P2D is one of the most popular models used in literature for its high accuracy and de-
tail [35]. It has been widely reviewed in literature and validated for a variety of lithium based
cells and a wide range of charge current densities [73]. It is a galvano-static, iso-thermal
electro-chemical model, meaning that the dynamical equations do not change with changing
currents and temperature is assumed to be constant throughout charging/discharging [73].
The conductivity of the current collectors is large enough to assume that there are no signifi-
cant changes at the current collector in the y and z spaces, thus the P2D model assumes the
electro-chemical dynamics to be one dimensional [35], specifically the x direction. In order to
take into account the movement of lithium both in the solid and liquid (electrolyte) phases
over 1 dimension, small spherical solid particles are fused with the electrolyte. The changes
in concentration of lithium within these particles are computed over the radial domain, where
r is the radial position within one of the particles. As a result, in the model dynamics, 2
dimensions are considered, being the x direction and the pseudo r direction, which gives it
the name pseudo 2-dimensional model. The P2D model can be shown in Fig.2-2.
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2-1 Li-ion Battery Dynamical Models 9

Figure 2-2: Pseudo 2-Dimensional model diagram. [35]

Solid Phase Diffusion Dynamics

The diffusion dynamics in the solid matrix phase are governed by the local rate of insertion
and Fick’s second law [54],

∂cs,j
∂t

= Ds,j

(
∂2cs,j
∂r2 + 2

r

∂cs,j
∂r

)
. (2-1)

As a physical description of the equation above, the evolution of the solid phase concentration
cs,j in electrode j = +/− (positive/negative) with time t has both a first and second order
dependency with respect to the radial position inside the solid particle r. The rate at which cs,j
changes with time depends mainly on the solid phase diffusivity constant Ds,j. The boundary
conditions are as follows,

jj = −Ds,j
∂cs,j
∂r

at r = Rp,

∂cs,j
∂r

= 0 at r = 0,

and cs,j(t = 0, r) = cs,0.

(2-2)

The molar flux per electrode jj is considered the input to the P2D model and Rp is the particle
radius.

Electrolyte Phase Diffusion Dynamics

The rate of change in concentration with respect to time in the electrolyte follow the dynamics
below,

ε
∂ce,j
∂t

= ∂

∂x

(
Deff

e,j
∂ce,j
∂x

)
+ ajj

(
1 − t0

+

)
. (2-3)
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where ε = 1 and jj = 0 in the separator phase (0sep < xsep < Łsep) [21] according to Fig.2-2.
It can also be seen that there is a second order dependency with respect to the horizontal
spacial position x for the evolution of ce,j with time and the direct dependency on the input
jj.The solid and liquid phases are coupled with the input jj using the Butler-Volmer kinetics
below [20],

jj = i0,j
F

(
exp

(
αintF

RT
(ηint,j)

)
− exp

(
−αintF

RT
(ηint,j)

))
, (2-4)

where ηj = Φs,j −Φe,j −Uint,j and Uint,j = U (cs,surf,j) which varies per cell electrode chemistry.
i0,j is the Li-ion exchange current density, defined by the following equation [29],

i0,j = Fkj (cs,max,j − cs,surf,j)0.5 (cs,surf,j)0.5
(

ce,j
ce,0,j

)0.5

(2-5)

where kj is the temperature dependent reaction rate constant at electrode j and cs,surf,j is the
solid phase concentration on the surface of electrode At the positive current collector, the
boundary conditions are as follows,

∂ce,j
∂x

(x = L) = 0 (2-6)

At the internal boundary, the flux and concentration are assumed to be continuing and follow
the same solid and liquid phase dynamics. At the negative current collector, Φe,−(x = 0) is
set to 0, and the Butler-Volmer kinetic expression is used,

∂ce,−
∂x

(x = 0) = −
I
(
1 − t0

+
)

FDeff
e,j

. (2-7)

Finally, the initial condition for the electrolyte concentration in electrode j given by,

ce,j(t = 0, x) = ce,0,j. (2-8)

The state of charge, which is referred to as SOC is derived from the solid phase concentration
evolution for all electro-chemical models, where it is given as [37],

SOC = c̄s,−
cs,max,−

(2-9)

where c̄s,− is the volume averaged solid phase concentration at the negative electrode (anode)
and cs,max,− is given as the maximum solid phase concentration in the anode.

Voltages and Potentials

The cell voltage is given as

Vcell = ϕs,+(x = L) − ϕs,−(x = 0) − Rcell · I, (2-10)

where Φs,j is the solid phase potential in electrode j and Rcell is the internal cell resistance,
which was taken to be zero. The rate of change in Φs,j [21],

I − is,j = −σ
∂Φs,j
∂x

. (2-11)
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2-1 Li-ion Battery Dynamical Models 11

The change in the electrolyte current density is given by,

aFjj = ∂ie,j
∂x

, (2-12)

The evolution of the potential in the liquid phase with respect to x is as follows,

∂Φe,j
∂x

= − I

κeff
+ RT

F

(
1 − t0

+

)(
1 + ∂ ln fA

∂ ln ce,j

)
∂ ln ce,j

∂x
, (2-13)

Thus, in the electrodes, there are six equations and six unknowns (ce,j, Φe,j, cs,j, ie,j, jj , and
Φs,j). [37]

Accuracy of the P2D model

The P2D model is widely used in battery modelling due to its high accuracy at a wide range
of charge/discharge current densities. This can be validated from the study by Arunachalam
and colleagues [8], where several comparisons were performed between the P2D (named Doyle-
Fuller Newman (DFN) in their study) and experimental data of the real battery used. A Full
Homogenized Macroscale (FHM) was also included for comparison in this study, however, the
focus in this section is on the accuracy of the P2D (DFN) model with respect to experimental
data.
Looking at the terminal voltage data for 1C constant discharging experiment (at 23◦ C) in
Fig.2-3 (a), it can be seen that the P2D model voltage data follows the experimental data in
a one to one fashion. Even when increasing the C-rate to 15C as shown in Fig.2-3 (b), it can
be seen that while the accuracy of the P2D (DFN) model slightly drops with respect to the
experimental data, the dynamical behaviour is still followed with high accuracy.
As a result, from the study made by Arunachalam and colleagues [8], it can be concluded that
the P2D model is applicable up to a current C-rate of 15C. Since such a range is higher than
any range that batteries can withstand, thus the P2D model is used as a base for comparison
in thesis for less accurate models, rather than experimental data, due to unavailability of an
experimental setup.
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(a) Terminal Voltage (V) vs time t (s) plot
for the experiment, FHM and P2D (DFN)

model data at 1C constant discharging
experiment. [8]

(b) Terminal Voltage (V) vs time t (s) plot
for the experiment, FHM and P2D (DFN)
model data at 15C constant discharging

experiment. [8]

Figure 2-3: Comparison between experimental, P2D (DFN) and FHM for the terminal voltage
(V) against time (s) for the different constant charging experiments [8].

Computational aspects of the P2D model

Although the P2D model is a useful tool due to its high accuracy for a wide range of currents,
it has some drawbacks. First of all, it is computationally expensive as it involves solving a set
of tightly coupled, high order Partial Differential Equation (PDE). One example of a high
order PDE in the P2D model can be found in Eq.2-1, where the second order dependency
with radius as well as the dependency with time with such boundary conditions makes the
PDE extremely difficult to solve. In fact, no analytical solution is yet to be available for the
P2D model [24] [12]. The numerical methods that solve such a PDE for all solid particles are
slow, making feasibility for realtime control applications difficult for such a complex model.
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2-1 Li-ion Battery Dynamical Models 13

Rahimian and colleagues [36] simulated the P2D model for multiple discharge rates, and
it showed an average runtime of 11.2 s for simulating 4000s, making it infeasible for some
applications such as real time control [29]. In addition, applying a Kalman filter would be
difficult for such a highly complex model.
Since an analytical solution is unavailable for the model, several numerical methods to solve
the P2D model have been developed in literature. The main methods include Finite-Difference
method, Finite-Element method, Finite-Volume method and orthogonal projection method
[34]. Finite-Difference and Finite-Volume methods are the most widely used as they can be
solved efficiently by commercial software. Commercial software is generally used to simulate
complex geometries and batteries, for example COMSOL and AutoLion [15] [36].
Recent efforts have been made to tackle the issue of the high computational time of the P2D
model by either simplifying this model using model order reduction techniques or finding faster
numerical methods than the ones mentioned above [29]. The main focus of this literature will
be on reduced order models rather than going in depth on numerical solutions. One of the
most common models would be the Electrolyte Enhanced Single Particle Model (SPMe). An
analytical solution exists under some conditions and has computational time is similar to that
of equivalent circuit models [29], thus solutions can be found almost instantly in some cases.
It will be explained in detail in the next section.

2-1-2 Electrolyte Enhanced Single Particle Model (SPMe) [28]

Figure 2-4: Schematic of the P2D and Single Particle (SP)/SPMe models of a lithium ion
battery. [40]

As an attempt to make a lower order model than the P2D model, the SP model was developed
[28]. In the SP model, both electrodes are considered to be spherical particles with equal size
due to the fact that it is assumed that current is uniformly distributed across all particles
in the electrode. This heavily simplifies the dynamics of the model as the reactions such as
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diffusion, transportation, diffusion induced stress are taken to have a uniform impact on each
particle [39]. The schematics showing the differences between the P2D and the SP model can
be found in Fig.2-4. On the other hand, the assumption made on the fact that the electrolyte
concentration is assumed to be a constant value limits the applicability of the model at high
charge/dicsharge current rates [28].
As a result the SPMe was developed, which has the same solid phase dynamics as the SP,
with the inclusion of a dynamical model for the electrolyte dynamics, similar to that of the
P2D model.

Solid Phase Dynamics

In recent research, an improved version of the SP model called the SPMe which incorporates
electrolyte dynamics has been developed. The solid phase diffusion dynamics are governed
by Fick’s second law [54], given by,

∂cs,j
∂t

= Ds,j
r2

∂

∂r

(
r2 ∂cs,j

∂r

)
, (2-14)

where cs,j is the concentration of lithium ions in the solid phase , t is time, r is the radial
position in the sphere, Ds,j is the temperature dependent solid phase diffusion coefficient and
the subscript j = +/− represents the positive/negative electrode. The initial and boundary
conditions for the equation above are given by,

cs,j(t = 0) = cs,0,j, (2-15)

(
Ds,j

∂cs,j
∂r

)
r=0

= 0, (2-16)

(
Ds,j

∂cs,j
∂r

)
r=Rj

= −jj, (2-17)

where jj being the molar flux at the surface of the sphere at the solid-electrolyte interface. In
order to couple the solid phase with the solution phase, the Butler-Volmer equation is used
as in the P2D model [20] in Eq.2-4. The state of charge per electrode, SOCj, is given as
the ratio of the solid phase concentration cs,j in electrode j, with the maximum solid phase
concentration cs,j,max in electrode j, given as,

SOCj = cs,j
cs,j,max

. (2-18)

The initial and surface state of charge is given as,

SOC0,j = cs,0,j
cs,j,max

,

SOCj, surf =
cs,j|r=Rp

cs,j,max
.

(2-19)
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Electrolyte Phase Diffusion Dynamics

The liquid/electrolyte phase diffusion dynamics and boundary conditions are as follows,

∂ (εece,j)
∂t

= ∂

∂x

(
Deff

e,j
∂

∂x
ce,j

)
+

1 − t0
+

F
jj,

∂ce,j
∂x

∣∣∣∣
x=0

= ∂ce,j
∂x

∣∣∣∣
x=L

= 0,

(2-20)

where ce,j is the lithium ion concentration in electrolyte, εe is the electrolyte phase volume
fraction, Deff

e,j is the effective electrolyte phase Li+ diffusion coefficient. t0
+ is the transference

number jj is defined as the molar flux in the electrolyte at electrode j, given by Eq.2-4. In
literature, the intercalation molar flux jj for the SPMe and approximate versions of it is often
approximated from Eq.2-4 to the following,

j± = ∓I

F · a± · L±
, (2-21)

when electrode surface variables are only considered.

Voltages and Potentials

The voltages and potentials for the SPMe are taken to be the same as the P2D model from
Eq.2-10 to Eq.2-13.

Accuracy of the SPMe

Since the P2D model was determined to be highly accurate for a wide range of charge den-
sities, the accuracy of the SPMe can be determined by comparing it with the P2D model.
This has been done in a previous study by Luo and colleagues [50], where as seen in Fig.2-
5, the molar fluxes for the P2D model, SP model and the SPMe under 1C, 3C and 4C
Constant-Current Constant-Voltage (CCCV) charging and discharging strategies [50]. Under
1C charging/discharging, it can be noticed from Fig.2-5 (a) and Fig.2-5 (b) that the SPMe
(red line) molar flux follows the same trajectory as the P2D model (blue line) with high
accuracy, where charging at 1C in Fig.2-5 shows almost a one to one similarity, whereas for
1C discharging there are minor deviations, but the shape is still followed. As for the SP
model, due to the fact that the the electrolyte concentration is modelled as a constant, the
molar flux under all charging/discharging rates will be a constant, which is seen in all plots in
Fig.2-5. For 3C CCCV charging and discharging in Fig.2-5 (c) and Fig.2-5 (d) respectively,
when comparing the SPMe with the P2D molar fluxes, both trajectories follow each other,
however, with lower accuracy compared to 1C. Again for 3C charging/discharging, the SP
molar flux is constant at all times. Lastly, for 4C charging and discharging in Fig.2-5 (e) and
Fig.2-5 (f) respectively, it can be seen that the SPMe molar flux shows a similar shape to the
P2D model, however, there is a large deviation in magnitude between the two models across
the charging/discharging period.
Another measure for determining the accuracy of the SPMe is comparing the terminal voltage
at multiple C-rates across the charging/discharging period to models which are known to be
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highly accurate, such as the P2D model. This has been done previously as seen in Fig.2-6,
where the terminal voltage was plotted against time for the P2D, SP ad the SPMe models
at 1C, 3C and 4C discharging rates [50]. The deviation in the terminal voltage between the
SPMe and P2D as well between the SP model and P2D model for the 1C, 3C and 4C rates
were also plotted in Fig.2-6. Starting with the terminal voltage at 1C discharge in Fig.2-6
(a), it can be seen that for both the SP and SPMe models, the shape of the voltage profile
is followed where all lines overlap across the discharging period. However, the deviation plot
in Fig.2-6 (b) shows that the SP model deviates more with respect to the P2D model, with
a maximum deviation of around 0.027 V, compared to a maximum of around 0.003 V in the
SPMe. At 3C discharge, it is more evident in the terminal voltage plot against time in Fig.2-6
(c) that the SP model fails to follow the P2D model, whereas the SPMe model follows the
P2D model in almost a one to one fashion. The terminal voltage deviation plot in Fig.2-6
(d) further proves this, with the SP model having a maximum deviation of around 0.08 V
with respect to the P2D model, whereas the SPMe has a maximum deviation magnitude of
0.02 V. Lastly, at 4C discharge, the terminal voltage plot in Fig.2-6 (e) shows that SP model
completely fails to follow the same trajectory as the P2D model across the whole discharging
period, whereas the terminal voltage for the SPMe model follows that of the P2D model,
with some deviations between the times 4 min and 6 min. The terminal voltage deviations
in Fig.2-6 (f) show that the SP model at this C-rate becomes highly inaccurate, having a
maximum deviation magnitude of 0.45 V with respect to the P2D, whereas the SPMe still
shows good performance with a maximum deviation of 0.08 V. As a result, it was concluded
in [50] that the SP model can be only be used for up to 1C charge/discharge and the SPMe
model can be used for up to 4C charge/discharge rates.
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2-1 Li-ion Battery Dynamical Models 17

Figure 2-5: Comparison of the pore wall fluxes at the cc-neg interface and the pos-cc interface
simulated by SP, SPMe (ESP) and P2D models under 1C ((a) and (b) respectively) 3C ((c) and
(d) respectively) / 4C ((e) and (f) respectively) rate discharges. [50].
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Figure 2-6: Plots of the terminal voltage profiles simulated by SP,SPMe (ESP) and P2D models
and the corresponding deviations under 1C ((a) and (b) respectively), 3C ((c) and (d) respectively)
and 4C ((e) and (f) respectively) rate discharges. [50].

Computational aspects of SPMe

The main advantage that lies in the SPMe compared to more accurate models is its low
complexity. The low complexity allows for an analytical solution to exist, and has one of the
fastest simulation speeds amongst other models. In previous research by Luo and colleagues
[50], multiple simulations for the SP, SPMe and P2D at different discharge/charge rates were
performed, as seen in Fig.2-7. Looking at the experiment that took the longest simulation
time, being the 4C Federal Urban Driving Schedule (FUDS), it can be seen that the simulation
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time obtained for the SPMe (ESP) model was 527.43 ms, 1006 times faster than the P2D with
a simulation time of 530.7 s and 14.9 times slower than the SP model, with a simulation time
of 35.247 ms. Although the SPMe model is significantly faster than P2D model, in some cases
the simulation times are high enough such that real time control would not be applicable. As
a result, efforts to further reduce the complexity of the SPMe model have been made which
simplifies the dynamics from polynomial order Partial Differential Equations (PDEs) to be
first order Ordinary Differential Equations (ODEs) while keeping the accuracy similar to the
SPMe. In the next section, the Extended Single Particle Model (ESPM) will be discussed.

Figure 2-7: The computation times of SP, SPMe (ESP) and P2D models. [50].

2-1-3 The Extended Single Particle Model (ESPM)

The SPMe is widely used in literature for its fast computation times which allow the ap-
plication of various real time control techniques, such as Model Predictive Control (MPC).
However, from the previous section it was concluded that in some cases, the simulation time
can be high enough such that real time control cannot be used. As a result, recent efforts have
been made in literature to overcome such a limitation by extending to the SPMe and making
assumptions on what shape of the solid phase concentration profiles might look like. The
method that is discussed is called polynomial profile approximation [34]. Polynomial profile
approximation assumes that the solid phase concenctration has an n-th order shape, then
using a volume averaging technique, a the concentration and rate of change of concentration
are averaged across the volume of the sphere. Using this method, the solid phase SPMe dy-
namics are reduced from a PDE that has a second order dependency on the sphere radius and
first order dependency on time, to a linear state space model. The performance of multiple
orders of polynomial profile approximations will be discussed. As for the electrolyte phase
dynamics in SPMe, they are either kept unchanged in the ESPM, or they are approximated
using various approximation techniques which reduces the electrolyte dynamics to first order
ODEs [44], [83] and [78].

Solid Phase Diffusion Dynamics

One variant of the polynomial profile approximation for the solid phase diffusion dynamics
is the 2-term polynomial approximation, where the solid phase concentration at electrode j,
cs,j, is assumed to have a parabolic concentration profile as follows,

cs,j(r, t) = a(t) + b(t)
(

r2

R2
p

)
, (2-22)
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da(t)
dt

+ r2

R2
p

db(t)
dt

− 6Ds,jb(t)
R2

p
, (2-23)

where a(t) and b(t) are constants to be determined for each electrode j. The boundary
condition at r = 0 is automatically satisfied. The boundary condition at r = Rp becomes

2Ds,j
Rp

b(t) = −jj (2-24)

Since the most important solid phase terms in battery modelling are the volume averaged
solid concentration at electrode j, c̄s,j, and the surface concentration at electrode j, cs,surf,j to
monitor electro-chemical behaviour, cs,j is averaged across the volume of the sphere as follows,

c̄s,j(t) =
∫ Rp

r=0
3 r2

R2
p

cs,j(r, t)d
(

r

Rp

)
. (2-25)

Placing Eq.2-22 in Eq.2-25, the following is obtained,

c̄s,j(t) = a(t) + 3
5b(t) (2-26)

Evaluating cs,j(r, t) in Eq.2-22 at the surface of the sphere, the surface concentration cs,surf,j
is obtained,

cs,surf,j(t) = a(t) + b(t) (2-27)

Solving for a(t) and b(t) in Eq.2-26 and Eq.2-27,

a(t) = −3
2cs,surf,j(t) + 5

2 c̄s,j(t)

b(t) = −5
2 c̄s,j(t) + 5

2cs,surf,j(t)
(2-28)

Now, cs,j can be written in terms of the volume-averaged- concentration c̄s,j and the surface
concentration cs,surf,j as follows,

cs,j(r, t) = −3
2cs,surf,j(t) + 5

2 c̄s,j(t) +
(

−5
2 c̄s,j(t) + 5

2cs,surf,j(t)
)

r2

R2
p

. (2-29)

To obtain 2 equations that show the evolution of both c̄s,j and cs,surf,j, the solid phase con-
centration evolution equation from the SPMe in Eq.2-14 is volume averaged as follows,∫ Rp

r=0
3 r2

R2
p

[
∂cs,j
∂t

− Ds,j
1
r2

∂

∂r

(
r2 ∂cs,j

∂r

)]
d

(
r

Rp

)
= 0. (2-30)

Plugging in Eq.2-29 in Eq.2-32,
d

dt
c̄s,j(t) + 3 jj

Rp
= 0. (2-31)

To obtain cs,surf,j, Eq.2-22 is evaluated using Eq.2-28, we get

Ds,j
Rp

[cs,surf,j(t) − c̄s,j(t)] = −jj
5 (2-32)
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Electrolyte Phase Diffusion Dynamics

As for the electrolyte phase dynamics, they are either kept unchanged as in Eq.2-20 to Eq.2-
21, or they are approximated using multiple techniques found in literature. One example of
an approximation is by using concentration data from the full order P2D model, giving rise
to a first order transfer function [44] given by,

G(s) = ce,surf,j(s)
ce,surfeq,j(s) = 1

∆Tjs + 1 , (2-33)

where ce,surfj(s) is the instantaneous electrolyte concentration (in Laplace domain) near cur-
rent collector of electrode j. ce,surfeq,j(s) is the equilibrium electrolyte concentration at a given
charge rate near current collector of electrode j. ∆Tj is the time constant for the diffusion
dynamics.

Accuracy of different types of ESPM

In this section, the accuracy of the polynomial polynomial profile approximation for the SPMe
is analyzed and compared with experiments.
First of all, a previous study by Lin and colleagues [44], implemented a 2-term polynomial
approximation for the solid phase diffusion dynamics, whereas for the electrolyte phase dy-
namics, the electrolyte dynamics found in the original SPMe [40] were simplified into a first
order Ordinary Differential Equation (ODE) using a first order transfer function arising from
the electrolyte concentration as well as equilibrium electrolyte concentration at the anode
current collector surface.
It can be seen from Fig.2-8, that the cell voltage was plotted against time for a charge current
range between 0C and 6C. At 6C, in the first 50s of the charging, it can be noticed that
the shape of the cell voltage is followed comparing simulation to experiment, but there is a
deviation in magnitude indicating that the model would not be accurate for charging at 6C
for a prolonged time. After 50s, the current is instantly dropped to 3C, and it can be seen
that the model shows high accuracy compared to the experiment for the rest of the charging
period.
The model was then tested for a charging profile, as seen in Fig.2-9. At 5C charging in the
first 50s, the cell voltage shape follows is similar for both the simulation and the experiment
with minor deviations in magnitude. For the rest of the charging period when the charge
current is reduced, the simulation emulates the experiment with high accuracy. To conclude,
the model has very high accuracy for current rates up to 3C, moderate accuracy up to 5C
and low accuracy beyond 5C.
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Figure 2-8: Plot of cell voltage (V) against time (s) and a current profile (C-rate) against time
(s) for the ESPM model (blue) as well as experimental data (red). [44]

Figure 2-9: Plot of cell voltage (V) against time (s) and a current profile (C-rate) against time
(s) for the ESPM model (blue) as well as experimental data (red) [44]

Another study by Yin and colleagues [78] used a 3-term polynomial approximation for the solid
phase diffusion dynamics, whereas for the electrolyte diffusion dynamics, it was approximated
to a first order 5-state state space model [78] [65]. It can be seen in Fig.2-10, that the reduced
order model terminal voltage was plotted against experiment for charging (left plot) and
discharging (right plot) current rates ranging from 1C to 6C, where there is almost a one to
one resemblance in the shape and magnitude of the simulation compared to the experimental
data. As a conclusion, the 3 parameter model shows higher accuracy than the 2 parameter
model for a wider current range, and the 3 parameter model shows very high accuracy for a
C-rate range of until at least 6C.
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Figure 2-10: Plot of the terminal voltage (V) against time (s) for charging (left plot) and
discharging (right plot) cases for both the ESPM and experimental data at charge/discharge
rates ranging from 1C to 6C. All curves overlap. [78]

Computational aspects of ESPM

Previous research has analyzed the computational price of the ESPM has been analyzed.
In a previous study by Li and colleagues [38], a 3-term polynomial approximation for the
solid phase diffusion dynamics has been implemented for an SPMe model. For the elec-
trolyte dynamics, a polynomial profile approximation was implemented for the electrolyte
concentration [38]. It was then analysed and compared with the P2D model on the basis
of computational complexity as seen in Fig.2-11. The low computational complexity in the
reduced-order SPMe model (ROEM) is evident, having a maximum computational time 22.3
ms for a duration time of 14547 s under 2C FUDS experiment conditions. This is 3596 times
faster than the P2D model, with a computational time of 80.18 s for the 2C FUDS experi-
ment conditions. Comparing this ratio with maximum ratio in computational time between
the P2D and SPMe (ESP) being 1083 as seen in Fig.2-7 under 2C discharge experiment con-
ditions, it can be concluded that reduced order SPMe model is computationally lighter than
the unapproximated SPMe. For all cases presented in Fig.2-11, it can be seen that such a
model is suitable for real time control, with an average comptational time of 18.25 ms, for
duration of at least 242.45 minutes, being the maximum duration time found in Fig.2-11.
As a result, since the 3-term polynomial approximation of the solid phase diffusion dynamics
in the SPMe was found to be accurate enough to be used for a wide range of charging/dis-
charging currents up to at least 6C, as well as being computationally light enough for real
time control even for duration times as high as 242.45 minutes, it will be the model of choice
moving forward with the thesis.
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Figure 2-11: Computational times of a reduced order ESPM model (ROEM) and P2D model
under different experiment conditions. [38]

2-1-4 Conclusion

In this chapter, the P2D. SPMe and ESPM models have been presented in detail and com-
pared with each other in terms of accuracy across a range of charge/discharge current densities,
as well as the computational complexity of each model.
For the P2D model, it was shown that while it has the highest accuracy, it cannot be used due
to the high computational complexity, making it infeasible for real time control applications.
The SPMe and ESPM significantly lower computational time than the P2D model, and real
time control is applicable. Among SPMe and ESPM, the ESPM showed the highest accuracy.
As a result, the best trade-off achieved between accuracy and computational complexity is
the ESPM, which will be the model of choice moving forward in the thesis.

2-2 Li-ion Battery Degradation Models

2-2-1 Description

A key component in battery modelling to depict the dynamics as accurately as possible is
incorporating capacity fade in the model. Before introducing the model, the key aspects of
degradation need to be discussed. These are loss of lithium inventory, loss of active material
in the anode and loss of active material in the cathode [10].
First of all, the loss of lithium material includes the loss of lithium ions due to parasitic
reactions such as Solid Electrolyte Interphase (SEI) growth, lithium plating, decomposition
reactions etc. These types of reactions are irreversible and their main causes are time, high
temperatures, high current loads and high ratio between open circuit voltage and the State
Of Charge (SOC). Loss of active material in the anode is material that is no longer available
for insertion of lithium due to particle cracking, loss of electrical contact or blocking of sites
in the anode that used to be active in the resistive surface layers [10]. Loss of active material
in the cathode is active mass that is no longer available in the cathode due to unusual changes
in the structure particle cracking or electrical contact loss. A summary of the different types
of degradation mechanisms can be found in Fig.2-12.
With all the degradation mechanisms mentioned previously, the most dominant aging mech-
anism in the early charge/discharge cycles is said to be the growth of SEI [76]. It is a layer
formed on the anode in the early stages of the charging process. For the SEI growth dy-
namics, it is mainly affected by acitivity on the film surface, such as surface kinetics and
diffusion rate of Ethyl Carbonate (EC) at the film surface [62]. As a result, the dynamics
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of the SEI formation is governed by the tafel kinetics at the anode [57]. On the other hand,
in recent studies [13], [81], it was shown that the nonlinear aging behaviour after prolonged
cycling is not dominated by SEI growth, but rather lithium plating. It is one of the main
aging processes in the later stages of cycling as to lithium plating may not only promote
further degradation, but it may also have a negative impact on the safety of LiBs [7]. During
fast charging, lithium-ions can be deposited on the surface of the graphite anode rather than
being intercalated into the interstitial space between the graphite anode’s atomic layers [17].
In general, the deposited lithium can be reversible or irreversible. The irreversible portion
can react with the electrolyte to form a secondary SEI layer, or it can form a high-impedance
“dead” lithium film that is electrically isolated from the graphite anode and remains irre-
versible, increasing internal resistance. As a result, it can be concluded that the linear aging
in the early cycles of the li-ion battery life is dominated by the SEI growth dynamics, whereas
the nonlinear aging behaviour near the end of the life of the battery is dominated by lithium
plating. The main focus of this literature would be discussing and analyzing physics based
models that capture SEI growth and lithium plating dynamics.

Figure 2-12: A summary of the degradation mechanismss for the Li-ion battery [10]

This is now changed to jtot since it will include the flux arising from the SEI growth as well
as the lithium plating mechanisms. In this case, a simplified P2D thermal model that is con-
sidered as the degradation model is incorporated on such battery model [76]. However, any of
the electro-chemical battery models discussed in section 2 can be applied on the degradation
model too. Since this has been implemented from scratch during the thesis, it is included in
the model implementation chapter from Eq.3-12 to Eq.3-20

2-2-2 Accuracy of degradation model

In the same research [76], the accuracy of the degradation model incorporated in an electrochemical-
thermal model in their previous work [26] [68] has been tested. The comparison was made
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with experimental data, where the experiment was performed on a Li-ion pouch cell fabri-
cated by EC power for plug-in Electric Vehicle (EV) applications.
The variables that were compared against experimental data can be found in Fig.2-13 where
the cell voltage is plotted against the discharge capacity (Ah) at the different stages of the
age of the battery, for (a) a C/3 discharge rate, (b) 1C discharge rate, (c) 2C discharge rate
and (d) 3C discharge rate. Starting with Fig.2-13 (a), (b), (c), it can be seen that the bat-
tery model with degradation accurately depicts the cell voltage with respect to the discharge
capacity at C/3, 1C and 2C, where the experimental data is followed with similar accuracy
at the different stages of the battery life cycle. On the other hand, at a discharge rate of 3C
as in Fig.2-13 (d), the battery model with degradation accurately represents the cell voltage
with respect to the discharge capacity until a cycle number of around 2900. The model fails
at a high discharge rate of 3C, when the battery starts showing highly nonlinear behaviour
at the end of the battery life at a cycle number of 3300. The voltage undershoot behaviour
that occurred at cycle 3300 Fig.2-13 (d) was said to be associated to cells discharging at low
temperatures [76], and poor electrolyte performance at freezing temperatures.

Figure 2-13: Comparison of model results with experiment data in terms of discharge curves at
(a) C/3 (b) 1C (c) 2C and (d) 3C measured in the reference performance tests of the cell after
different number of cycles. [76]
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2-2-3 Other Methods in Literature

Examples of physics based degradation models include [58], where a solvent diffusion model to
capture the SEI growth behaviour in Li-ion cells incorporating the carbon anodes was intro-
duced. The model predicted that the SEI thickness increases proportionally with the square
root of time. Moreover, a phase field model was developed to simulate the micro-structure
morphology evolution that happens during SEI growth [27]. To incorporate thermal effects,
the SEI growth dynamics were modelled using a one dimensional thermal-electrochemical
model [48]. In addition, a statistical physics based model based on the Fokker-Plank equa-
tion [55] is used to model SEI growth [71]. Studies attempted to depict more accurately the
SEI thickness evolution by including stress generation effects on the SEI growth [60]. There
are other studies on the different modelling methods for degradation, specifically SEI growth

2-3 Charging Strategies

2-3-1 Introduction

Based on the electro-chemical battery model as well as the degradation model chosen, the
charging strategy to be chosen should align with such models. Based on the choice, the
charging strategy needs to follow certain criteria. First of all, the control mechanism needs to
be implementable in real time in order apply such control strategy in real world applications.
This means that the battery model chosen must be computationally light or can be simplified
to have low simulation times as well as relatively high accuracy. As a result, a strategy based
on the SPMe or the ESPM would be the model of choice. The second criteria would be that
the control strategy should have the objectives of minimizing the aging/degradation of the
battery as well as minimizing the charging time. Lastly, the strategy chosen should have
been validated experimentally and have proven results. Based on these criteria, the following
representative charging strategies are chosen from previous research.

2-3-2 Method 1 [44]

The first discussed charging strategy used uses a variant of the ESPM where it uses a 2
term polynomial approximation of the solid phase diffusion dynamics [44]. The electrolyte
dynamics were simplified by obtaining a static map from the full order P2D model of their
previous work [46] which predicts the Li-ion concentration at the surface of the anode collector
with respect to the charge rate. From there, a first order transfer function was obtained
that predicts the instantaneous electrolyte concentration when given an input equilibrium
concentration. As for the degradation mechanisms, an electro-chemical model based on [76]
was used to obtain a 3D static maps that show SEI and lithium plating growth as a function of
the charge rates and SOC in the battery model. The static maps represented the degradation
(SEI or Lithum plating growth) mechanism rate at a given charge rate as well as anode SOC.
Finally, the charging strategy previously proposed in is an open-loop optimization based
strategy which aims to minimize the following cost function [44],

min
I(t),If

∫ tf

t0
(α · 1 · dt + β · fSEI(t) · dt + γ · fplating (t) · dt) , (2-34)

Master of Science Thesis Hassan Sewailem



28 Literature Review

where (tf − t0) is the charge time, fSEI(t) is the SEI growth rate, fplating(t) is the lithium
plating rate, α, β, γ are the weighting factors to penalize charging time, SEI growth rate and
Lithium plating accordingly. The optimization variables are the input current I(t) and final
time tf , with the state variables, xi,avg (electrode SOC) and ce,j (electrolyte concentration).
The cost function was further simplified by converting from the time domain to the SOC
domain. To do so, the anode SOC is divided into small ∆SOC intervals, where in each
interval the following variables are computed,

tchar = ∆SOC · S− · F · Rp · cs,−,max
3 · I(SOC) ,

δSEI = fSEI(SOC, I) · tchar ,

δplating = fplating (SOC, I) · tchar ,

(2-35)

where tchar is the charge time for the segment △SOC, fSEI is the SEI growth rate, fplating is
the lithium plating rate. This leads to the following cost function,

min
I(SOC)

∫ SOChi

SOClo
(α · tchar + β · δSEI + γ · δplating ) , (2-36)

where anode electrode SOClo = 0.017 (fully discharged) and SOChi = 0.61 (fully charged). It
can be seen now that the thickness of the SEI layer δSEI, thickness of the lithium plating layer
δlpl and charging time tchar are minimized in the new control problem, and the optimization
variables reduce to be only the input charging current I(SOC) and now the electrolyte con-
centration ce is the only state variable which increases the complexity of the control problem.
After the time to SOC conversion, the state variable SOC is eliminated, and optimization
variable tf is also eliminated. The optimization variable is now the input current I(SOC)
only. The only state variable is the electrolyte concentration ce near the anode current col-
lector. The above time to SOC conversion technique simplifies the optimal control problem
significantly.
The optimal control problem has the following constraints on the maximum discharge cur-
rent, the normalize solid surface concentration in each electrode x−,surf = cs,surf,−

cs,max,−
and x−,surf =

cs,surf,+
cs,max,+

, also known as the surface SOC, and the terminal cell voltage Vcell,

0 < I(SOC) ≤ Imax,

ce,j > 0,

0 ≤ x−, surf ≤ 1,

0 ≤ x+,surf ≤ 1,

Vcell < 4V.

(2-37)

The method used to solve this optimization problem is Dynamic Programming (DP).

2-3-3 Result of method 1

The strategy was tested experimentally on a graphite/LiFePO4 energy cells with 400 mAh
nominal capacity. More details on the setup and the test conditions can be found in [44].
The strategies implemented were CCCV with charge rates of 1C, 2C, 3C, 4C, 5C, and a fast

Hassan Sewailem Master of Science Thesis



2-3 Charging Strategies 29

charging strategy was used with β and γ in Eq.2-36 being 0 and α being 1, and a health-
conscious fast charging strategy has been used with α = 1 and β = γ = 5.
The experimental results can be shown in Fig,2-14. Starting with the cell voltage against
time, it can be seen that all strategies cycle the battery between a cell voltage of 2.6 V
and 3.6V. Looking also at the charge current against time, it can be seen that the health
conscious fast charging strategy undergoes 3 stages. The first stage is when a constant high
charge current is applied of around 4.2C for about 45s until the electrolyte concentration at
the anode collector is almost reduced to 0. Then, in the second stage, the current is gradually
lowered to to around 2.4C in order to avoid full lithium depletion in the electrolyte. Lastly,
in the third stage, the charge current is gradually lowered further in order to avoid lithium
plating to minimize the aging of the battery.
It can be seen in Fig.2-14, that with the fast charging strategy, a charge time of 1158s (about
20 minutes) was achieved whereas the health-conscious fast charging strategy achieved a
charging time of 1747s (about 30 minutes). The charging times for the CCCV strategy at the
different charging rates can be found in current vs time plot in Fig.2-14, where it can be seen
that fast charging and health conscious fast charging strategies achieve a 63.4 % and 45.5
% faster charging time respectively compared to the 1C CCCV charging strategy. The fast
charging strategy outperforms all CCCV charging strategies as well as the health conscious
fast charging strategy in terms of charging time.
On the other hand, looking at the long term effects each strategy has on the capacity fade,
it can be seen that the health conscious fast charging strategy comes out on top. To test
the aging of the battery, 7 identical Li-ion cells were were cycled 300 times using the 7
different strategies mentioned in Fig.2-15. The discharge strategy used for cycling the cells
was the 1C CCCV strategy. It can be seen from Fig.2-15 that using the health conscious
fast charging, the capacity fade experienced across the 300 cycles was minimal with the
normalized capacity reducing from 100 % to 95 %, showing similar aging performance to 1C
CCCV strategy, but at almost twice the charging rate. The fast charging strategy shows
significantly poorer performance having the normalized capacity reducing from 100 % to 40
% after 300 cycles, making the battery unusable since a battery becomes at the end of its life
when the normalized capacity reduces to around 80%. It can also be noticed that the 3C, 4C
and 5C CCCV charging strategies that show relatively good charging time performance (still
fast charging is better), have even worse effects on the capacity fade of the battery compared
to the fast charging strategy, with the worst performing one being 4C CCCV, having the
normalized capacity reduce to 0 % at the 110th cycle. As a result, the best trade-off between
charging time and the health of battery is achieved only by the health conscious fast charging
strategy.

Master of Science Thesis Hassan Sewailem



30 Literature Review

Figure 2-14: Experiment results for CCCV strategy at different charging rates, fast charging
strategy and health-conscious fast charging for method 1. [44]
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Figure 2-15: Capacity fade comparison between CCCV at different charge rates, fast charging
and health conscious fast charging strategies for method 1. [44]

2-3-4 Method 2 [77]

Nonlinear Model Predictive Control (NMPC) Formulation

The second optimization based charging strategy to be discussed uses NMPC as a solver.
NMPC is an advanced feedback control law with its main applications being stabilization
and reference tracking problems [25]. This also makes it suitable for Battery Management
System (BMS) applications to find optimal charging protocols.
The battery model used is based on a Full Order Model (FOM) of the P2D model in section
2-1-1, then it was simplified into a Reduced Order Model (ROM) [41] to reduce the complexity
for real time control purposes. The ROM simplifies solid phase concentration of the Li-ion
using a biquadratic polynomial approximation, in a similar manner to the 2-term polynomial
approximation in the ESPM discussed in section 2-1-3. In addition, it can access internal
immeasurable states such as ion concentrations side reaction rate, lithium plating rate and
SOC. The accuracy of prediction of SOC is improved by a Sigma-Point Kalman Filter (SPKF)
[77] [9]. The degradation mechanisms incorporated in the model is the side reactions which
mainly includes SEI growth and the other degradation mechanism included in the model is
the lithium plating/stripping rate. The model for such mechanisms used is the main electro-
chemical degradation model dynamics discussed in section 2-2 of this chapter.
The optimal control problem used in [77] minimizes the following cost function,

J = min
I(k)

k=N∑
k=1

(
α · I(k) + βq̇SR

loss (k)
)

, (2-38)

where α and β are the weighting factors that adjust the trade-off. between fast charging and
aging processes. I(k) is the charging current at time step k. N is the control horizon which is
generally equal to the prediction horizon which represents the length of the charging process.
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q̇SR
loss is the rate of ion loss over the volume of the composite anode, which is calculated using

the side reaction, rate as follows

q̇SR
loss (k) =

∫ δ−

x=0

(∣∣∣jLi
side (l, k)

∣∣∣)Adl. (2-39)

The constraints include the model dynamics, input, and states as follows

Imin ⩽ I(k) ⩽ Imax,

SOC(k) ⩽ SOCmax,

Vcell(k) ⩽ Vcell,max,

cs,surf,− ⩽ cs,max,−.

(2-40)

It can be seen from the charging strategy the minimization of the lithium plating rate was not
considered, which does not align with the pre-set objectives being the taking into account both
SEI growth as well as lithium plating in the charging strategy. While lithium plating rate can
be included in the cost function, Yin and Yul Choe [77] proposed a pulse discharging strategy
to promote lithium stripping. In other studies, a 2C pulse discharging current with a frequency
of 20mHz was concluded and validated experimentally to be the optimal [4] [66]. However,
in the study by Yin and Yul Choe [77], they proposed an optimization based discharging
strategy with the aim to completely recover the plated lithium. The optimization variables
used were the charging time tc, discharging time td and the amplitude of the discharging
current Id.

2-3-5 Results of method 2

In order to analyze the performance of the charging strategy developed, a simulation was
performed on a 3.10 GHz desktop computer using a control/prediction horizon of 5 and a
sampling time of 1 s. The method of determining such parameters is discussed [77]. The al-
gorithm used to solve the optimization problem is Sequential Quadratic Programming (SQP)
due to its robustness and constraint handling properties [49]. With such an algorithm and
control/prediction horizon, the maximum and average execution time of the optimization
problem were found to be 0.5s and 0.064s respectively, making it a suitable real time con-
trol algorithm. After simulation of the model under the real time control algorithm with
the different combinations of the weighting factors α and β as seen in Fig.2-16, the battery
parameters such as charging current (A), cell terminal voltage (V), the surface Li-ion concen-
tration (mol/cm3) and the reference temperature (◦C) against charging time (min) as seen
in Fig.2-16 a),b),c),d), respectively. It can be seen that in Fig.2-16 a),b),c) that the imposed
constraints (black dashed lines) are not violated and the edge of the constraints are reached
for all combinations of the α and β weighting factors. In Fig.2-16d), it can be seen that the
reference temperature stays within the range -1.5 ◦C and 38.9 ◦C. It is mentioned in [77] that
at high charging currents, a high temperature is required to slow down the lithium plating
rate whereas when the charging current is low, a low reference temperature is required to
slow down side reaction (SEI formation) rate. While this is the case as seen in Fig.2-16 a)
andFig.2-16 d), this should be further validated as there is no definitive answer in literature
on the temperature effects on the lithium plating and SEI growth.
As for the performance of the charging strategy in terms of charging time and the degradation
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of the battery, the charging time (min) for each simulation as well as the ion loss (Ah) were
plotted against the ratio of the weighting factors β/α as illustrated in Fig.2-16 e) and Fig.2-16
f) respectively. From Fig.2-16e), it can be noticed that as the ratio β/α increases, the time
it takes to charge to 40% (pink line), 80% (orange line) and 100% (blue line) increases expo-
nentially, thus a low β/α optimizes charging time, having a lowest charging time of 48 min to
reach 100 % at β/α = 0 and highest charging time to reach 100% of 95 min at β/α = 25000.
On the other hand, in Fig.2-16f) as the ratio β/α increases, the ionic losses decrease, empha-
sizing the reduction of side reactions with increasing β. The highest degradation occurs when
β = β/α = 0 having ionic losses of 0.0255 Ah whereas the lowest occurs at β/α = 25000 with
ionic losses being 0.0149 Ah.

Figure 2-16: Simulation and experiment results for fast charging strategy for method 2. [77]

2-3-6 Other methods in literature

There are various other optimization based charging methods discussed in several studies. In
this section, some of the most recent charging methods will be discussed.
A recent study developed a new health aware fast charging algorithm is developed from a
computationally efficient, linear time varying MPC [83]. The battery model developed is an
electro-chemical SPMe augmented with a thermal model. A reduction technique was then
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used to simplify the dynamics further, resulting in an ODE that arose from a PDE due to
2 assumptions made for the simplified model. The degradation model used is an electro-
chemical model similar to the one in the study by Yang and colleagues [76], however, in this
study, side reactions (SEI growth) is considered as the only degradation mechanism. The
battery charging algorithm is then formulated as a linear time varying MPC algorithm based
on the ROM developed. This method continuously linearizes the nonlinear model around a
reference point, in order to reduce computational complexity for real time control purposes.
The method was shown to perform 22% better than the standard CCCV in terms of charging
speed. The charging strategy is also computationally efficient, with an execution time of
3.3 ms, suitable for real time control applications. The battery degradation is not shown
in this study, but the algorithm is shown to satisfy the current and temperature constraints
imposed [83], which are known to be the main degradation causes. This method was not
chosen since details on the results for the degradation performance were not shown, raising
uncertainty with how well the method tackles degradation.
Another study implemented ROM SPMe model was used for the battery model, where the
dynamics are transformed from nonlinear PDE to a linearized ODE model, for complexity
reduction [78]. The degradation model used is an electro-chemical one, similar to the study
by Yang and colleagues [76], with side reactions only considered. Additionally, an Extended
Kalman Filter is used, to reduce the dynamic error which is caused from initial average Li-ion
concentration and SOC values. The charging strategy used was based on a CCCV charging
mechanism, with constraints on the capacity degradation, terminal cell voltage and surface
concentrations. The method starts with constant charging current at maximum C-rate, with
the constraints monitored continuously. If one of the constraints are violated, the constant
charging current is reduced based on predefined change in SOC. This continuously occurs
until stopping condition is satisfied. For this method, the health conscious fast charging
strategy achieved the slowest charging time compared to fast charging strategies cases that
do not consider degradation. The health conscious fast charging strategy charges a 15.7Ah
Li-ion battery in 40 min, 27% slower than the fastest charging strategy. However, it achieved
significantly lower degradation for the battery, with ionic losses of 1.85 × 10−3 Ah, 40%
lower than the fastest charging strategy. This method was not chosen since real time control
applicability was not shown, nor any information on the computational times of the methods
implemented.
The last study to be discussed is by Lin and colleauges [47], where the battery model is an
ESPM using the two term polynomial approximation. The electrolyte diffusion dynamics
were simplified using a static map of the electrolyte concentration against a range of charging
currents, where a first order transfer function was obtained. A thermal model based on the
Arrhenhuis’ correlation [43] was also incorporated to the ESPM. The degradation was not
well modelled in this paper, as it was only incorporated as an electrolyte film resistance in the
in the ESPM rather than monitoring the behaviour of the physical degradation states such
as SEI and lithium plating molar fluxes. The charging strategy used is an optimization based
charging strategy that minimizes the charging time, charging losses, as well as the temperature
rise, having penalty factors α, β and γ to tradeoff between the optimization variables. The
results were shown experimentally, proving the algorithm feasibility in real world applications.
The trade-off between the 3 optimization variables, depending on the weighting factor choices
were shown in detail. This method was not fully used as the electro-chemical degradation
model is not incorporated, thus not showing how the main aging mechanisms change with
time.
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2-4 Literature Discussion

In this literature review, the following topics are covered: a general introduction Electric
Vehicles (EVs), which includes the background on EVs and the current problems in the road
transport sector in terms greenhouse gas emissions, some advantages and disadvantages that
the adoption of EVs bring, a comparison of the different types of batteries used in EVs, where
it was that the Li-ion battery will be studied in this report due to its high overall perfor-
mance, then a brief introduction on the different types of Li-ion battery models, degradation
models used in literature, where it was concluded that electro-chemical models will be the
main focus due to their high accuracy, ability to access immeasurable states and flexibility
in tuning various battery parameters in the model. Lastly, an introduction on the different
types of health conscious charging strategies for Li-ion batteries in EVs, where optimization
based charging strategies will be used, as they are the most recently developed in literature,
they support the electro-chemical battery/degradation models, they do not require previous
input/output data and constraints can be easily incorporated in the optimization problem.
In the second section, an in depth analysis on 3 types of electro-chemical models were dis-
cussed, the P2D model, the SPMe and the ESPM. Due to the relatively high accuracy under
a wide range of charge/discharge current densities as well as the low computational complex-
ity, allowing for real time control to be applicable, a version of the ESPM will be the chosen
model for the thesis. More specifically, the ROM by Yin and colleagues [78] will be the model
of choice, as the diffusion dynamics are represented as ODE, simplifying the complexity of
the model significantly. The third section discusses the different types of electro-chemical
degradation models used in research where it was concluded that the dominating degradation
mechanisms are the SEI growth rate and the lithium plating rate, thus an electro-chemical
degradation model capturing both mechanisms will be considered in this report, also, since
they are applicable to all the models mentioned. It presented high accuracy in almost all
cases except at the end of the battery cycle life at high (3C) discharge currents. More specif-
ically, the degradation models presented by Lin and colleagues [44], as well as Yang and
colleagues [76], as they are considered the most complete, showing the 2 main degradation
mechanisms as well as having high accuracy.
Lastly, 2 different optimization based health conscious fast charging strategies were discussed,
analyzed and compared with each other. Then, a brief overview on some of the other charging
strategies available in research were discussed. Since the optimization strategies presented
in this literature review each have a unique element them, it was concluded that a combi-
nation of multiple studies were used. First of all, the cost function from method 1 [44] was
chosen as it showcases both objectives required, being minimizing the charging time as well
as degradation. On top of that, the degradation mechanisms, being the SEI growth and the
lithium plating are shown separately in the cost function, adding an extra element of detail
for analysis of the 2 mechanisms. Moreover, the NMPC formulation in the study by Yin
and colleagues [77] was chosen for such a cost function and constraints due to the ease of
implementation of the method/constraints and fast computational time.
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Chapter 3

Mathematical Modelling and
Implementation

3-1 Introduction

As concluded in the literature, a Reduced Order Model (ROM) based on the Electrolyte En-
hanced Single Particle Model (SPMe) using a polynomial profile approximation for the solid
phase diffusion dynamics was chosen for implementation [69], whereas a transfer function
model with the equilibrium electrolyte concentration as input and the instantaneous elec-
trolyte concentration as output for each electrode was chosen to obtain the surface electrolyte
concentration dynamics [44]. As for the degradation dynamics, the full order electro-chemical
model shown in [76] coupled with the battery dynamics. The next section will show the full
battery and degradation model equations in detail. The symbol definitions, units and param-
eter values for the model equations presented in this chapter can be found in Table A-1 and
Table A-2.

3-2 Battery Model Dynamics

3-2-1 Extended Single Particle Model (ESPM)

The ESPM is an extension to the SPMe model in which the solid phase diffusion dynamics
in Eq.2-14 are approximated by making the assumption that the solid li-ion concentration
has a polynomial profile shape as well as using volume averaging techniques to obtain volume
averaged concentrations and fluxes. Furthermore, as part of the ESPM and some cases for
the SPMe the molar flux in Eq.2-4 is approximated such that it is linearly dependent on the
charge/discharge current. The approximated molar flux was used for the ESPM whereas the
molar flux governed by the Butler Volmer equation in Eq.2-4 was used for the SPMe. As
for the electrolyte dynamics, they could remain the same as Eq.2-20, but for the charging
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strategy, avoiding electrolyte depletion is only needed from the strategy. Since the electrolyte
concentrations on one of the anode or cathode surfaces depletes before electrolyte at any
x position in the cell for charging or discharging respectively, the electrolyte behaviour on
the electrode surfaces capture the information needed for implementing the control strategy.
The degradation dynamics also require electrolyte information, however, since degradation
mechanisms of interest occur on the surface of the anode, only electrode surface electrolyte
information is needed. This leaves an opportunity to further approximate the electrolyte
dynamics by obtaining a linear transfer function model that captures the electrolyte con-
centration evolution on the electrode surfaces. A version of this was implemented for the
ESPM. Due to the fact that only electrode surface variables are considered, the x spatial
dependency is also removed, simplifying the dynamics further, compared to the nonlinear,
spatially dependent dynamics in Eq.2-20.

Solid Phase Diffusion Dynamics [69]

The solid phase dynamics for the ESPM model portrays the evolution of two main state
variables, the volume averaged solid phase concentration, c̄s,j(t), and the volume averaged
solid phase concentration flux q̄j(t) and one output variable being the solid phase surface
concentration cs,surf,j(t). The reason for addressing these variables in specific is that, the cs,j
for computing the State Of Charge (SOC) and cs,surf,j is used to compute the open circuit
voltage Uocv. The state evolution of c̄s,j(t) given as follows,

d

dt
c̄s,j(t) + 3 jj

Rp
= 0 (3-1)

where jj is the molar flux as in Eq.2-4, however, since only surface variables are relevant
for the ESPM, the spatial dependency can be removed, and the molar flux on the electrode
surfaces can be written as follows,

jj,approx = j · I

F · aj · Lj
. (3-2)

The state evolution of the volume-averaged flux q̄j(t) is given as,

d

dt
q̄s,j(t) + 30Ds,j

R2
p

q̄s,j(t) + 45
2

jj
R2

p
(3-3)

The output equation for the surface concentration is given as,

35Ds,j
Rp

[cs,surf,j − c̄s,j(t)] − 8Ds,jq̄s,j(t) = −jj (3-4)

The full derivation for the equations above can be found in [69].

Electrolyte Phase Diffusion Dynamics [44]

To simplify the electrolyte diffusion dynamics shown in Eq.2-20, a linear relationship can be
generated from the full order Pseudo 2-Dimensional (P2D) model which predicts the Li-ion
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concentration at the surface of the anode collector with respect to the charge rate (explained
further in section 3-3). From there, a first order transfer function was obtained given by,

G(s) = ce,surf,j(s)
ce,surfeq,j(s) = 1

∆Tjs + 1 , (3-5)

where ce,surfj(s) is the instantaneous electrolyte concentration (in Laplace domain) near cur-
rent collector of electrode j. ce,surfeq,j(s) is the equilibrium electrolyte concentration at a given
charge rate near current collector of electrode j. ∆Tj is the time constant for the diffusion
dynamics. It can also be noticed that only electrode current collector surface variables were
considered. The reasoning behind this is that in the charging strategy, a constraint only
needs to be imposed on surface electrolyte concentrations, to avoid battery damage, making
the electrolyte concentration across the rest of space x irrelevant. It can be seen that the
electrolyte dynamics simplified from a nonlinear PDE in Eq.2-20, to a linear PDE.

Voltages and Potentials

The cell output voltage is then defined as the solid phase potential difference,

Vcell = ϕs,+(x = L) − ϕs,−(x = 0) − Rcell · I(t), (3-6)

where Φs,+ and Φs,− are the positive and negative electrode potentials respectively, given by,

Φs,±(t) = 2RT

F
asinh

 ∓I(t)
2a±L±reff

√
c0

scs,surf±(t) (cs,max ±(t) − cs,surf±(t))

+U± (cs,surf±(t))+Rf ± I(t)
a±L±

(3-7)
where U± (cs,surf,±(t)) is open circuit potential per electrode for the LGM50 5 Ah battery cell,
given by [18],

U+ (cs,surf,+) = −0.8090 · cs,surf,+
cs,max,+

+ 4.4875 − 0.0428

× tanh
(

18.5138
(

cs,surf,+
cs,max,+

− 0.5542
))

− 17.7326

× tanh
(

15.7890
(

cs,surf,+
cs,max,+

− 0.3117
))

+ 17.5842

× tanh
(

15.9308
(

cs,surf,+
cs,max,+

− 0.3120
))

,

U−(cs,surf,+) = 1.9793 · e
−39.3631

cs,surf,−
cs,max,− + 0.2482 − 0.0909

× tanh
(

29.8538
(

cs,surf,−
cs,max,−

− 0.1234
))

− 0.04478

× tanh
(

14.9159
(

cs,surf,−
cs,max,−

− 0.2769
))

− 0.0205

× tanh
(

30.4444
(

cs,surf,−
cs,max,−

− 0.6103
))

.

(3-8)
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The SOC is given by the following equation,

SOC = c̄s,−
cs,max,−

. (3-9)

As for the electrolyte potential at the electrode surfaces, Φe,surf,±, it is given by [40],

Φe,surf,± =
(

Φ0,e,surf,± + (1 − t+)2 · R · T

F

)
log

(
ce,surf,+
ce,surf,−

)
, (3-10)

where Φ0,e,surf,± is the initial electrolyte potential at the surface of the positive/negative
electrode. Finally, the terminal voltage, also known as the open circuit voltage is defined as,

Uocv = U+(cs,surf,+) − U−(cs,surf,−). (3-11)

3-3 Degradation Model Dynamics

The main influence that the electro-chemical degradation model by Yang and colleagues [76]
has is the influence of the Solid Electrolyte Interphase (SEI) and lithium plating growth on
the total molar flux. Without incorporation of degradation mechanisms, the total molar flux
was only considered to be the intercalation molar flux such as in Eq.2-4 or Eq.3-2. With the
degradation model included, the total pore wall flux, jtot, is now defined as the sum of the
intercalation flux, SEI flux and lithium plating flux,

jtot = jint + jSEI + jlpl, (3-12)

where jsei is the SEI molar flux, jlpl is the lithium plating molar flux and jint is the intercalation
molar flux, which is governed by Eq.3-2 for the ESPM, with the intercalation overpotential
having an additional term dependent on the film resistance Rfilm to incorporate degradation
compared to the overpotential below Eq.2-4,

ηint = ϕs,− − ϕe,− − jtot
a

Rfilm − Uint,-. (3-13)

where Uint = U−(SOC−) as in Eq.3-8 is the equilibrium potential for lithium intercalation re-
action, and Rfilm is the resistance of the surface film. Note that only anode molar wall fluxes
are considered for the degradation since SEI and lithium plating are only formed on the anode.

3-3-1 SEI Growth

For the SEI growth dynamics, it is mainly affected by acitivity on the film surface, such as
surface kinetics and diffusion rate of Ethyl Carbonate (EC) at the film surface [62]. As a
result, the dynamics of the SEI formation is governed by the tafel kinetics at the cathode [57]
seen below,

jSEI = −aFk0,SEIc
S
EC exp

(
−αc,SEIF

RT

(
ϕs,−(x = 0) − ϕe,surf,− − jtot

a
Rfilm − USEI

))
, (3-14)
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where k0,SEI is the kinetic rate constant, αc,SEI ia the charge transfer coefficient with regards to
SEI, USEI is the equilibrium potential of SEI formation reaction, and cS

EC is the concentration
of EC on the surface of graphite, which is calculated based on the mass conservation of EC,

−DEC
cS

EC − c0
EC

δfilm
= jSEI

F
. (3-15)

where DEC is the diffusivity of EC , c0
EC is the concentration of EC in the bulk electrolyte,

and δfilm is the thickness of the surface film.

3-3-2 Lithium Plating

With regards to Lithium plating, it is assumed to be irreversible in this model [76], meaning
that the removal of plated lithium in the discharge process is considered to be insignificant.
As a result, the pore wall flux with respect to Lithium plating, jlpl, can be expressed by the
cathodic tafel equation below,

jlpl = −ai0,lpl exp
(

−αc,lplF

RT

(
ϕs,−(x = 0) − ϕe,surf,− − jtot

a
Rfilm

))
, (3-16)

where i0,lpl is the exchange current density of Li deposition and αc,lpl is the charge transfer
coefficient with regards to lithium plating.

3-3-3 Diffusion Equations

The diffusion equations with regards to SEI growth and Lithium plating can be expressed as,

∂cSEI
∂t

= −jSEI
2F

− jlpl
2F

β,

∂cLi
∂t

= −jlpl
F

(1 − β),
(3-17)

where cSEI and cLi are the molar concentrations of SEI and lithium metal per unit volume
of the electrode. The parameter β represents the fraction of the Lithium plating that is
converted to SEI. Since the graphite surface film constitutes of the both the SEI and the
Lithium plating material, the thickness of the film δfilm will include the volume of the SEI
and Lithium metal together as seen in the equation below,

δfilm = 1
a

(
cSEI · MSEI

ρSEI
+ cLi · MLi

ρLi

)
, (3-18)

where M and ρ are molar weight and density respectively. The left term in the bracket is the
specific volume of SEI, and the right term is the specific volume of lithium metal. Since the
removal of Lithium material is not taken into account in this model, the Lithium material
would be isolated from the electron conduction matrix. As a consequence, the film resistance
is directly affected by the SEI only as given below, As stripping of lithium metal is neglected
in this model (i.e. all lithium is lost once plated), the plated lithium is considered to be
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isolated from the main electrode matrix. Hence, resistance of surface film is determined by
SEI only, i.e.

Rfilm = δfilm · rSEI, (3-19)

where rSEI is the SEI resistivity. As mentioned above, one feature of the present model is that
lowering of anode porosity due to surface film growth is considered, which is implemented
through relating the change of anode porosity with the increase of surface film thickness via
the following expression:

dε

dt
= −a

dδfilm
dt

. (3-20)

3-4 Model Implementation and Simulation

This section explains how the Li-ion battery models in section 2-1-1, 2-1-2, 3-1-1 and 3-2 have
been implemented and/or simulated. The charging experiment conditions, parameter values
and software used per model are also stated.

3-4-1 P2D Model and SPMe

Since the P2D model is known to be most accurate for a wide range of currents, it will be
used as a base for comparison to the SPMe and ESPM models. The full P2D model and
SPMe has been simulated as per Eq.2-1 to Eq.2-13 and Eq.2-14 to Eq.2-20 using the Python
library PyBamm according to the parameter values in table A-2.

Modelliing Experiment Conditions

Since the battery is initially charged, a discharging experiment at current C/10 was performed
to fully deplete the battery to reach the terminal voltage Vcell,min, then the experiments in
Fig.3-1, Fig.3-2, Fig.3-3 and Fig.3-4 have been performed for the solid and electrolyte phase
dynamics. The reasoning behind the constant charging experiments is to test the model under
a constant current over a prolonged period of time and to check what is the maximum current
range capability for the SPMe and ESPM models. The differing current experiment in Fig.3-3
and Fig.3-4 is to check if the SPMe and ESPM remain accurate under large changes in current
in the charging process.

Figure 3-1: Charging Experiment 1.

Figure 3-2: Charging experiment 2.
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Figure 3-3: Charging Experiment 3.

Figure 3-4: Charging Experiment 4.

3-4-2 ESPM

Since the ESPM shown in Section 3-2-3 is unavailable in any software, it was implemented
and simulated on MATLAB. The simulation data for the P2D and SPMe was obtained from
Python and the model comparison was performed on MATLAB.

Solid Phase Diffusion Model

The ESPM solid phase diffusion model from Eq.3-1 to Eq.3-4 was implemented as a linear
state space model with the following state matrices,

A =


−30 · Ds,+

R2
p,+

0 0 0

−30 · Ds,−
R2

p,−
0 0 0

0 0 0 0
0 0 0 0

 , B =


45

2Rp,+·F ·a+·L+
45

2Rp,−·F ·a−·L−

0
0

 ,

C =
[8Rp,+

35 0 1 0
0 8Rp,−

35 0 1

]
, D =

 Rp,+
35Ds,+·F ·a+·L+

Rp,−
35Ds,−·F ·a−·L−

 .

(3-21)

The solid phase states xs and outputs ys are as follows,

xs =


q+
q−
c̄s,+
c̄s,−

 ys =
[
cs,surf,+
cs,surf,−

]
(3-22)

Electrolyte Phase Diffusion Model

The electrolyte phase diffusion model in Eq.3-5 was implemented by first obtaining a relation
between the charge current with the equilibrium electrolyte concentration at the surface of the
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electrodes ceeq,j . Using from the full order P2D PyBamm model, 36 constant current charging
experiments from a range 0C-2C were performed to obtain the equilibrium electrolyte con-
centration per current on the surface of each electrode. 3 examples of the results from the
constant charging experiments can be found in Fig.3-5. The equilibrium electrolyte concen-
trations were obtained by taking the last data point for rach charging case. For example,
under 0.5C constant charging in Fig.3-5 (a), the equilibrium cathode and anode electrolyte
concentrations would be 1264 mol

m3 and 701 mol
m3 respectively. Under 1C constant charging in

Fig.3-5 (b), the equilibrium cathode and anode electrolyte concentrations would be 1594 mol
m3

and 440 mol
m3 respectively. Under 2C constant charging in Fig.3-5 (c), the equilibrium cathode

and anode electrolyte concentrations would be 2400 mol
m3 and 110 mol

m3 respectively.

(a) ce,surf,− and ce,surf,+ and the
corresponding current profile the 0.5C

constant charging experiment.
Equilibrium ce,surf,− is 701 mol

m3

Equilibrium ce,surf,+ is 1264 mol
m3

(b) ce,surf,− and ce,surf,+ and the
corresponding current profile the 1C

constant charging experiment.
Equilibrium ce,surf,− is 440 mol

m3

Equilibrium ce,surf,+ is 1594 mol
m3

(c) ce,surf,− and ce,surf,+ and the
corresponding current profile the 2C

constant charging experiment.
Equilibrium ce,surf,− is 110 mol

m3

Equilibrium ce,surf,+ is 2400 mol
m3

Figure 3-5: Cathode and Anode Surface Electrolyte Concentrations ce,surf,+ and ce,surf,− under
constant charging experiment conditions
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From the 36 cathode and anode equilibrium points and its corresponding charging C-rate,
the fitting function was obtained as shown in Fig.3-6 and Fig.3-7 where the equilibrium
concentrations and its respective C-rate can be found.

Figure 3-6: Plot of P2D model data of the equilibrium electrolyte concentration per current on
the cathode current collector surfaces and its corresponding fitting function

Figure 3-7: Plot of P2D model data of the equilibrium electrolyte concentration per current on
the anode current collector surfaces and its corresponding fitting function.

It can be noticed that the is a parabolic relation between ceeq,j and I, having the following
functions per electrode,

ceeq,surf,+ = 5.65361 · I2 − 88.5289 · I + 1008.36,
ceeq,surf,− = 3.40358 · I2 + 124.921 · I + 989.228,

(3-23)
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which means the input of the transfer function in Eq.3-5 is indirectly the charging current.

ceeq,surf,+ = 0.05 · I2 − 90.1 · I + 998.1,
ceeq,surf,− = 3.40358 · I2 + 124.921 · I + 989.228,

(3-24)

Obtaining Electrolyte Concentration Transfer Function G(s)

Using the information above, the surface equilibrium electrolyte concentration ce,surfeq,−ce,surf,j
and the corresponding surface instantaneous electrolyte concentration ce,surf,j at the anode and
cathode were plotted as seen in Fig.3-8 (a) and Fig.3-8 (b) respectively, for a varying current
profile with the range 0C-2C found in Fig.3-8 (c). The following data input output data
was then used to obtain a transfer function using the MATLAB function "tfest". After the
transfer function was tested, some manual tuning of the parameter ∆Tj was done having the
value per electrode as in Table A-2, to further improve the accuracy of the model.

(a) Plot of the Anode Surface
Equilibrium Electrolyte

Concentration ce,surfeq,− ( mol
m3 )

and the corresponding Anode
Surface Instantaneous

Electrolyte Concentration
ce,surf,j ( mol

m3 ) against time t (s).

(b) Plot of the Cathode Surface
Equilibrium Electrolyte

Concentration ce,surfeq,− ( mol
m3 )

and the corresponding Cathode
Surface Instantaneous

Electrolyte Concentration
ce,surf,j ( mol

m3 ) against time.

(c) Corresponding charging
C-rate profile vs time t (s)

Figure 3-8
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3-4-3 Degradation Model

The degradation model dynamics from Eq.3-12 to Eq.3-20 was implemented on MATLAB
using the variables in the solid and electrolyte phase diffusion dynamics for the ESPM and
the degradation parameter values found in Table A-2. The method at which the model was
implemented on MATLAB will be discussed in the next section.

System Dynamics

Since the degradation model has nonlinear dependencies in the molar flux equations, it could
not be implemented as a state space model. In addition, linearization would also not be
straightforward, due to the highly complex jacobian calculations as well as variables changing
at a fast rate. As a result, the nonlinear model was kept unchanged and discretized for
MATLAB simulation.
Starting with the SEI molar flux evolution, Eq.3-12 and Eq.3-15 were combined with Eq.3-14,
leading to the following,

jSEI(k + 1) = −aFk0,SEI(
−jSEI(k)·δfilm(k)

F · DEC
+

c0
EC) exp

(
−αc,SEIF

RT

(
ϕs,−(x = 0)(k) − ϕe,surf,−(k) − jint(k) + jsei(k) + jlpl(k)

a
Rfilm(k) − USEI

))
.

(3-25)

The index k was introduced to simplify the circular dependency of jsei due to the jsei appearing
in Eq.3-12 and Eq.3-15. The same occurs for the lithium plating molar flux, Eq.3-12 was
combined with Eq.3-16 giving the following,

jlpl(k+1) = −ai0,lpl exp
(

−αc,lplF

RT

(
ϕs,−(k) − ϕe,−(k) − jint(k) + jSEI(k) + jlpl(k)

a
Rfilm(k)

))
.

(3-26)
As for the diffusion equations in Eq.3-17, it can be seen that they are partial differential
equations, however, since all the variables within this equation are evaluated on the surface,
the spatial dependency is removed, changing the Partial Differential Equation (PDE) to an
Ordinary Differential Equation (ODE). The ODE is then approximated using the forward
difference numerical method as follows,

f ′(t) ≈ f(ti+1) − f(ti)
Ts

, (3-27)

where Ts is the sampling time. This is done in order to reduce computational time per
iteration in MATLAB, rather than computing many derivatives/integrals per iteration in the
ODE. This brings the diffusion equations to be as follows,

cSEI(k + 1) = cSEI(k) + Ts · (−jSEI(k)
2F

− jlpl(k)
2F

β),

clpl(k + 1) = clpl(k) + Ts · (−jlpl(k)
F

(1 − β)).
(3-28)
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Lastly, the film thickness δfilm and film resistance Rfilmare considered to be the outputs of the
degradation and are computed after simulation of the dynamics as follows,

δfilm(k) = 1
a

(
cSEI(k) · MSEI

ρSEI
+ cLi(k) · MLi

ρLi

)
, (3-29)

Rfilm(k) = δfilm(k) · rSEI, (3-30)

Battery Simulation Initialization

To emulate the real life experiment as much as possible, the degradation model is cycled
for both charging and discharging cases. The battery is first initialized to be in the fully
discharged case with the parameter in Table A-2, then after the battery is fully charged, it
is initialized with the variables at the final time step for the battery to be discharged. As a
result, the initial states for system varies every discharge cycle.

Capacity Fade Calculation

The battery capacity fade per charge/discharge cycle is computed as follows [52],

Qloss =
∫ t=Tcharge

t=0
Jloss(t)S−dt, (3-31)

where Jloss are the molar flux losses due to SEI and lithium plating given by,

Jloss(t) = JSEI(t) + Jlpl(t). (3-32)

To reduce computational complexity, the following rectangular numerical approximation was
used, ∫ b

a
f(t)dt ≈ ∆t [f (t(a + 1)) + f (t(a + 2)) + · · · + f (t(b))] , (3-33)

leading to the following,

Qloss =
k=

Tcharge
Ts∑

k=1
Jloss(k)S−Ts, (3-34)

where Sj is the superficial surface area given by,

Sj = ajVj. (3-35)

This means the capacity of the battery is updated per cycle as such,

Qnew = Qnom −
cycle=cyclecurr∑

cycle=1
Qloss(cycle), (3-36)

where Qnew is the new capacity, Qnom is the nominal capacity, cycle is the cycle number
and cyclecurr is the current cycle. The anode maximum solid phase concentration cs,max,− in
Eq.(eq ref)is also reduced per cycle as follows,

cs,max,− = cs,max,− ·
(

Qnew
Qnom

)
. (3-37)
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Degradation Validation Method

Since there is no electro-chemical degradation model for the LGM50 battery, there are no
available degradation parameters in research. As a result, the degradation parameters in
Table A-2 were chosen from a battery with similar properties, and 2 parameters, k0,SEI and
i0,lpl were tuned, thus being considered fitting constants, to match the LGM50 capacity fade
behaviour.
The only information for capacity fade found for the LGM50 battery, was in its specification
sheet, where the battery was cycled under the conditions in Fig.3-9.

Figure 3-9: Cycling Experiment Conditions for LGM50 Battery. Taken from LGM50 Battery
Specification Sheet.

Under the conditions mentioned, it was given that the battery fully fades (reaches %80 of
nominal capacity) after 500 charge/discharge cycles as shown in Fig.3-10.

Figure 3-10: Degradation Capacity Fade Criteria for the LGM50 battery. Taken from the LGM50
Battery Specification Sheet

As a result, the parameters were tuned such that the cycle life criteria are followed. Since
there are infinite combinations of the k0,SEI and i0,lpl that could achieve this, the parameters
were chosen such that jlpl is a few orders of magnitude lower than jSEI in the first cycle, since
aging is dominated by SEI in the first cycles and the nonlinear aging due to lithium plating
occurs near the end of the cycle life.
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3-5 Results

3-5-1 Performance Indicators

The two measures used to assess the accuracy of ESPM and SPMe are the Root Mean Square
Error (RMSE) and the Variance Accounted For (VAF). The RMSE is given by,

RMSE =

√∑Tcharge
∆t

k=1 (yk − ŷk)
Tcharge

∆t

(3-38)

where yk is the measured output, which in that case would be the P2D model data, and ŷk
is the predicted output, which in that case would be either ESPM or SPMe data. The VAF
gives the % similarity between two signals,

VAF =
(

1 − var (y − ŷ)
var (y)

)
· 100% (3-39)

where "var" is the variance.

3-5-2 Battery Diffusion Model

In this section, the terminal voltage, cathode/anode surface electrolyte concentration and the
corresponding current profile for the P2D model, SPMe and the ESPM based on experiments
in Fig.3-1 to Fig.3-4 will be presented for the battery diffusion model subsection. This is
done to graphically compare the ESPM accuracy with the P2D and SPMe models for the
range of constant currents 0C-2C for a prolonged period of time, as well as show whether the
model stays accurate for rapid variation of the currents within the same range. The reasoning
behind choosing these variables in specific is that the terminal voltage Uocv is a function of the
SOC as shown in Eq.3-11 which is a function of the cathode/anode solid phase concentration
cs,±, thus showing the accuracy of model in terms of terminal voltage would be a suitable
representative on how accurate the solid phase model behaves. As for the electrode electrolyte
concentrations, it would be straightforward to state that it would be a good representative of
the performance of the electrolyte phase dynamics.
Starting with the 1C constant charging experiment in Fig.3-11, it can be seen that in subplot
(a), the shape of terminal voltage, Uocv, is followed in similar manner for all models, where
there is a minor positive deviation between the ESPM and P2D with an RMSE of 0.065 V
and VAF of 97.82% and a small negative deviation between the SPMe and P2D with an
RMSE of 0.0378 V and a VAF of 99.85%. This makes the SPMe more accurate by 1.6 times
for terminal voltage in this case . As for the electrolyte concentration at both the anode
and cathode current collector surfaces in subplot (b) and (c) respectively, there is almost a
one to one fashion between the ESPM and the SPMe at the cathode, both a similar minimal
magnitude of deviation between the P2D model, with an RMSE of 11.79 mol/m3 and 17.02
mol/m3 for the ESPM and SPMe as well as a VAF of 98.03 % and 98.34 % compared to the
P2D respectively. This makes the ESPM more accurate than SPMe more accurate by 1.55
times for this variable at 1C constant charging current. As for subplot (c), the deviation in
magnitude for the electrolyte concentration at the anode collector surface is noticeably more
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apparent, with the ESPM and SPMe having an RMSE of 17.24 mol/m3 and 31.46 mol/m3

as well as a VAF of 91.75 % and 90.95% compared to the P2D respectively. This makes the
ESPM more accurate than the SPMe by 1.82 times for this variable at 1C constant charging.
The current profile can be found in subplot (d) where -5 A corresponds to 1C charging.
The values for RMSE and VAF can be found at experiment 1 in Table 3-1 and Table 3-2
respectively.

(a) Terminal Voltage Uocv (V) vs time
t (s)

(b) Cathode Surface Electrolyte
Concentration ce,surf+ ( mol

m3 ) vs time t
(s)

(c) anode Surface Electrolyte
Concentration ce,surf− ( mol

m3 ) vs time t
(s)

(d) Corresponding Charge Current I
(A) vs time t (s)

Figure 3-11: Experiment 1 (Fig.3-1) Results

As for the 2C constant charging experiment results shown in Fig.3-12, a lot of similarity is
shown to the 1C constant charging experiment in terms of the performance of the SPMe
compared to the ESPM with respect to the P2D model. Starting with the terminal voltage in
subplot (a), it can be noticed that the SPMe shows almost a one to one similarity compared
to the P2D model with an RMSE of 0.0099 V and VAF of 99.84 %, performing better than in
the 1C constant charging experiment. The ESPM, however, expectedly performed worse than
the 1C constant charging experiment, with an RMSE of 0.0913 and VAF of 92.33 % compared
to the P2D model. As a result, the SPMe performs 9.22 times better than the ESPM for such
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conditions. As for the cathode and anode current collector surface electrolyte concentrations
in subplot (b) and (c) respectively, yet again, it can be seen that ESPM performed better
than SPMe, with the ESPM and SPMe having an RMSE at the cathode of 46.03 mol/m3 and
68.56 mol/m3 as well as a VAF of 99.65 % and 98.98 % compared to the P2D respectively,
meaning the ESPM performed 1.48 times better for that case . At the anode in subplot (c),
the electrolyte concentration for the ESPM clearly performs better than the SPMe, with the
ESPM and SPMe having an RMSE of 28.89 mol/m3 and 90.70 mol/m3 as well as a VAF of
96.20 % and 95.58 % compared to the P2D model respectively making the performance of
both models are similar in terms of RMSE, whereas the VAF shows otherwise, with ESPM
performing better by 3.14 times than the SPMe for this variable at such conditions. The
current profile can be shown in subplot (d). The values for RMSE and VAF can be found at
experiment 2 in Table 3-1 and Table 3-2 respectively.

(a) Terminal Voltage Uocv (V) vs time
t (s)

(b) Cathode Surface Electrolyte
Concentration ce,surf+ ( mol

m3 ) vs time t
(s)

(c) Anode Surface Electrolyte
Concentration ce,surf− ( mol

m3 ) vs time t
(s)

(d) Corresponding Charge Current I
(A) vs time t (s)

Figure 3-12: Experiment 2 (Fig.3-2) Results

The models were then tested under the varying charging current experiment in Fig.3-3 to
show how the approximated models behave under rapid variation of current. The results for
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this experiment can be found in Fig.3-13. It can be seen that for the terminal voltage in
subplot (a), the SPMe is unaffected showing very high accuracy whereas the ESPM accuracy
reduced, with the ESPM and SPMe having an RMSE 0.1612 V and 0.0115 V as well as a VAF
of 93.42 % and 99.92 % compared to the P2D model respectively, thus the SPMe performing
14.7 times better in that case. As for the cathode surface electrolyte concentration in subplot
(b), the accuracy is not heavily influenced with rapid variation of current, with the ESPM
and SPMe having an RMSE of 14.8 mol/m3 and 28.11 mol/m3 as well as a VAF of 99.87
% and 99.75% compared to the P2D respectively, making the ESPM 2 times better than
SPMe for that case. Similarly, the accuracy of the ESPM and SPMe are minimally affected
for variation in current for the anode collector surface concentration in subplot (c), with an
RMSE of 8.21 mol/m3 and 37.84 mol/m3 as well as a VAF of 99.97 % and 99.1 % compared
to the P2D model respectively with the ESPM performing 4.61 times better for this variable
at that case. The charge current profile in [A] can be found in subplot (d). The values for
RMSE and VAF can be found at experiment 3 in Table 3-1 and Table 3-2 respectively.

(a) Terminal Voltage Uocv (V) vs time
t (s)

(b) Cathode Surface Electrolyte
Concentration ce,surf+ ( mol

m3 ) vs time t
(s)

(c) Anode Surface Electrolyte
Concentration ce,surf− ( mol

m3 ) vs time t
(s)

(d) Corresponding Charge Current I
(A) vs time t (s)

Figure 3-13: Experiment 3 (Fig.3-3) Results
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To further validate the varying charge current profile case, the varying current experiment in
Fig.3-4 results were plotted as shown in Fig.3-14. Similar results were shown for that case,
with ESPM and SPMe having an RMSE of 0.1224 V and 0.0066 V as well as a VAF of 94.98
% and 99.98 for the terminal voltage case in subplot (a), an RMSE of 23.51 mol/m3 and
23.14 mol/m3 as well as VAF of 99.69 % and 99.81 % for the cathode surface electrolyte
concentration case in subplot (b), an RMSE of 17.77 mol/m3 and 31.52 mol/m3 as well as a
VAF of 99.79 % and 99.38 % for the anode surface electrolyte concentration case in subplot
(c), all compared to the P2D model. This means the SPMe performs better by 19 times for
the terminal voltage, whereas same performance is shown for the cathode surface electrolyte
concentration and the ESPM performs better by 1.77 times for the anode surface electrolyte
concentration. The charging current profile in [A] can be found in subplot (d). The values
for RMSE and VAF can be found at experiment 4 in Table 3-1 and Table 3-2 respectively.

(a) Terminal Voltage Uocv (V) vs time
t (s)

(b) Cathode Surface Electrolyte
Concentration ce,surf+ ( mol

m3 ) vs time t
(s)

(c) Anode Surface Electrolyte
Concentration ce,surf− ( mol

m3 ) vs time t
(s)

(d) Corresponding Charge Current I
(A) vs time t (s)

Figure 3-14: Experiment 4 (Fig.3-4) Results
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V ariable Experiment no. VAF SPMe vs P2D VAF ESPM vs P2D

Uocv (V) 1 99.85 97.82
Uocv (V) 2 99.84 92.33
Uocv (V) 3 99.92 93.42
Uocv (V) 4 99.98 94.98
ce,surf+ 1 98.34 98.03
ce,surf+ 2 98.98 99.65
ce,surf+ 3 99.75 99.87
ce,surf+ 4 99.81 99.69
ce,surf− 1 90.95 91.75
ce,surf− 2 95.58 96.20
ce,surf− 3 99.10 99.97
ce,surf− 4 99.38 99.79

Table 3-2: Table of VAF between SPMe and P2D model as well as between ESPM and P2D
model for the results in Fig.3-11 to Fig.3-14. The experiment numbers 1 to 4 follow experiments
in Fig.3-1 to Fig.3-4 respectively.

V ariable Experiment no. RMSE SPMe vs P2D RMSE ESPM vs P2D

Uocv (V) 1 0.0378 0.0605
Uocv (V) 2 0.0099 0.0913
Uocv (V) 3 0.0115 0.1612
Uocv (V) 4 0.0066 0.1224

ce,surf+ (mol
m3 ) 1 17.02 11.79

ce,surf+ (mol
m3 ) 2 68.56 46.03

ce,surf+ (mol
m3 ) 3 28.11 14.80

ce,surf+ (mol
m3 ) 4 23.14 23.51

ce,surf− (mol
m3 ) 1 31.46 17.24

ce,surf− (mol
m3 ) 2 90.70 28.89

ce,surf− (mol
m3 ) 3 37.84 8.21

ce,surf− (mol
m3 ) 4 31.52 17.77

Table 3-1: Table of RMSE between SPMe and P2D model as well as between ESPM and P2D
model for the results in Fig.3-11 to Fig.3-14. The experiment numbers 1 to 4 follow experiments
in Fig.3-1 to Fig.3-4 respectively.

3-5-3 Degradation Model

For this subsection, 3 constant charging experiments, 0.33C, 1C and 2C were performed and
were cycled 1000 times, meaning 500 charge cycles and 500 discharge cycles were performed.
The discharge cycle performed is according to Fig.3-9. The 0.33C charging experiment was
performed under the conditions in Fig.3-9. The 1C and 2C charge experiments were performed
such that battery is fully charged and the total simulation time (resting + charging) is the
same for all experiments for a fair comparison.
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As a recap from the methodology section, the two main criteria that are expected to be
followed after properly tuning k0,sei and i0,lpl are as follows,

• In the first charging cycle, the magnitude of jsei is a few orders higher than jlpl.

• Under the experiment conditions in Fig.3-9, the battery is cycled and shows capacity
fade behaviour according to Fig.3-10.

After several ajustments, the degradation tuning parameters following both criteria were cho-
sen to be k0,sei = 2.481.14 × 10−13 and i0,lpl = 21.14 × 10−3, where they can also be found
in Table A-2. Firstly, for the 3 constant charging experiments, the SEI and lithium plat-
ing molar fluxes jsei and jlpl from the first charging cycle were plotted as in Fig.3-15 and
Fig.3-16. Comparing the magnitude of the jsei and jlpl it can be seen that jsei has an order
of magnitude of 10−4, 4 orders of magnitude higher than jlpl with an order of magnitude of
10−8, following the first criteria, since the degradation is dominated by jsei in the first few
cycles, then the effect of lithium plating becomes more prevalent in the last few cycles, and
mostly at high charge/discharge rates. It can also be noticed that the magnitude of jsei and
jlpl increases as the current increases, with jsei having an average value of −1.4771.14 × 10−8,
−1.53651.14 × 10−6 and −5.68e1.14 × 10−6 A

m·s across the charging period for 0.33C, 1C
and 2C charging experiments respectively. The same occurs with jlpl, with an average of
−1.621.14×10−13, −3.391.14×10−11 and −1.621.14×10−10 A

m·s for 0.33C, 1C and 2C charg-
ing experiments respectively. The shape of jsei and jlpl for the different currents can be seen to
be closely similar to each other as seen for 0.33C in Fig.3-15 (a) and Fig.3-16 (a) respectively,
for 1C and 2C showed in the zoomed in plots in Fig.3-15 (b) and Fig.3-16 (b), where a gradual
increase in magnitude occurs, then a peak in jsei and jlpl right before the end of a charging
period, and finally as the battery goes to rest (0C), jsei and jlpl settle at an equilibrium point
which is non-zero, meaning the model incorporates calendar aging as well. Note that as the
battery settles from a higher current, the peak jsei and jlpl increases drastically, specifically
at high charge rates. For example, tripling the current from 0.33C to 1C changes such a
peak jsei from −6.321.14 × 10−6 A

m·s to −1.81.14 × 10−5 A
m·s , 2.85 times increase, whereas

doubling the current from 1C to 2C increases the peak jsei from −1.81.14 × 10−5 A
m·s to

0.00024 A
m·s , increasing by 11.1 times, showing the significance of degradation at high charge

rates. The same case goes for jlpl where tripling the current from 0.33C to 1C changes such a
peak jlpl from −1.561.14 × 10−10 A

m·s to −5.321.14 × 10−10 A
m·s , 3.41 times increase, whereas

doubling the current from 1C to 2C increases the peak jlpl from −5.321.14 × 10−10 A
m·s to

−1.091.14×10−8 A
m·s , increasing by 69.87 times. When the battery is at rest, jsei settles at an

equilibrium of −4.061.14×10−6 A
m·s for all charge cases, whereas jlpl settles at an equilibrium

of −9.321.14 × 10−11 A
m·s for all charge cases.
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(a) Plot of the jsei ( A
m·s ) for 0.33C, 1C

and 2C constant current charging
strategies.

(b) Zoomed in plot of the SEI molar
flux jsei ( A

m·s ) for 0.33C, 1C and 2C
constant current charging strategies.

Figure 3-15

(a) Plot of the Lithium plating molar
flux jlpl for 0.33C, 1C and 2C constant

current charging strategies.

(b) Zoomed in plot of the Lithium
plating molar flux jlpl for 0.33C, 1C and
2C constant current charging strategies.

Figure 3-16

The updated capacity per cycle is then plotted for the 1000 cycles (500 charge/discharge
cycles) for the 3 charge experiments as shown in Fig.3-17. It can be seen in Fig.3-17 that the
capacity fade model under the conditions in Fig.3-10 is captured in this model, since under
0.33C constant charging, the capacity reaches 80% of its nominal capacity. The nonlinear re-
lationship between current and capacity fade is shown, since tripling the current from 0.33C
to 1C causes only a 6.9 % decrease in the capacity reaching 74.5% after 500 charge/discharge
cycles, whereas doubling the current from 1C to 2C causes a 22.8% decrease in the capac-
ity reaching 57.5% of its nominal capacity after 500 charge/discharge cycles, showing the
degradation significantly increases at high charge rates.
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Figure 3-17: Plot of capacity fade against number of cycles for the LGM50 battery for 0.33C,
1C and 2C constant charging experiments. Discharging experiment is according to Fig.3-9.

3-6 Discussion

3-6-1 Battery Diffusion Model

Overall, it can be concluded that for terminal voltage estimation, the SPMe outperforms the
ESPM by on average 11.1 times, whereas for the electrolyte concentration, the ESPM on
average is more accurate by 1.25 and 2.85 times for the cathode and anode respectively. Even
though the SPMe shows higher accuracy for the terminal voltage, the VAF for the ESPM is
higher than 90 % for all the experiments performed, meaning the ESPM would be applicable
for use for modelling the terminal voltage the range of currents 0C-2C. At higher charging
C-rates, the accuracy for specifically the terminal voltage reduces, having VAF below 90 %,
thus not being shown. For the electrolyte concentration, it can be concluded that it can be
used for the range of currents 0C-2C, as shown in the result plots, as well the minimal RMSE
and VAF near 100 % for most cases.
The reason for the differences in Uj between the ESPM and the P2D/SPMe would be the
initial jumps in terminal voltage in the first time step then the shape is followed for all cases.
The reason for this is how the molar fluxes and solid phase concentrations are modelled for
the ESPM compared to the P2D and SPMe. Since terminal voltage Uj is directly influenced
by the solid phase concentration cs,surf,j as in Eq.3-11 or below Eq.2-4, a deeper look is taken
on the cs,j or c̄s,j evolution equations that are directly proportional with cs,surf,j. Starting with
the ESPM, it can be seen that rate of change of the volume averaged solid phase concentration
c̄s,j in Eq.3-1 is linearly dependent on the molar flux jj. Looking at the equation for jj in
Eq.3-2, it can be seen that it is only a function of the current I. As a result, when initially
current switches from 0C to any value, an initial positive or negative jump of concentration
occurs depending on the electrode which results in the initial jump in terminal voltage. As
for the P2D and SPMe, the nonlinear dependencies of the rate of change in cs,j observed in
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Eq.2-1 or Eq.2-14 as well as the nonlinearity jj seen in Eq.2-4, results in a smoother overall
Uj curve with changing currents.

3-6-2 Degradation Model

The results have mainly shown that the capacity fade conditions in Fig.3-10 are followed un-
der the experiment conditions in Fig.3-9, and the nonlinear relation between the current and
the capacity fade is shown from the curvature in the capacity fade lines as cycles progress.
The second validation criteria is also followed by looking at the SEI and lithium plating molar
fluxes jSEI and jlpl in Fig.3-15 and Fig.3-16 respectively, where jlpl is shown to be 3 orders
of magnitude lower than jsei. Since the 2 criteria are followed, it could be concluded that
the capacity fade model represents a good approximation of how the LGM50 capacity fade
behaviour. On the other hand, there are infinite combinations of k0,sei and i0,lpl degradation
fitting parameters that could satisfy the 2 criteria mentioned, thus to further improve the
model, real experimental degradation validation data for the LGM50 battery is needed to
correct on the capacity fade model currently developed.
For the degradation molar fluxes jsei and jlpl, the main discussion point is the sudden peaks
of jsei and jlpl occurring at the the instant the battery goes to rest and fully charged for all
strategies, then settling at an equilibrium jsei and jlpl, showing the influence of calendar aging.
The peaks occur due to the slow response of the surface electrolyte concentrations ce,surf,−
and ce,surf,+ with respect to change in current. Looking at the variables in the exponent in
jsei and jlpl Eq.3-14 and Eq.3-16 respectively, as the current goes to 0, it can be seen that
the solid phase electrode potential Φs in Eq.3-7 instantly goes to 0 as well as j− (Eq.3-2)
in jtot (Eq.3-12) goes to 0 due to the explicit relation with current. As for the electrolyte
potentials at the surface of the anode Φe,− in Eq.3-10, there is an explicit dependence with
the electrolyte concentrations at the surface of the electrodes. For example, when the current
changes to 0 from any current, it takes 2 samples for the electrolyte surface concentration to
reach equilibrium, as shown in Fig.4-5 (a) and (b) (Note: this plot is referred to once here,
but will be explained in detail in the next chapter), meaning that Φe,− is the dominant term
influencing both jsei and jlpl at these time instances. Similarly, it takes the jsei and jlpl 2
samples to reach equilibrium, the first sample it reaches the peak, then the second sample
reaching the rest value. Moreover, the larger the difference in anode and cathode surface
concentrations leads to a larger peak in both jsei and jlpl. The influence of the jsei and jlpl
from the previous time step in jtot is neglected due to having insignificantly low orders of
magnitude.
The nonlinear relation between the current and the capacity fade is due to the exponential
relation between the current in jint (Eq.3-2) in jtot (Eq.3-12) in the degradation molar flux
equations jsei and jlpl in Eq.3-14 and Eq.3-16 respectively. Also, the significant change in the
capacity fade with changing current show that high charge rates show to be the main aging
mechanism. A more in depth analysis on relation between current and capacity fade will be
given in the next chapter.
As for the constant relation of the resting equilibrium jsei and equilibrium jlpl with time,
given that the capacity fade equation is given by Eq.3-31, shows that the relation of capacity
fade due to calendar aging is linear with time, since the integral of a constant function is a
linear function.
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3-7 Conclusion

In this chapter, the solid phase, electrolyte phase and the degradation models were discussed,
in detail. Starting with solid phase model the P2D model and the SPMe, experiment condi-
tions as well simulation methodology were discussed. As for the ESPM, since this model has
been implemented from scratch in MATLAB, the model equations were introduced, as well
as how it was implemented and simulated on MATLAB.
For the electrolyte phase dynamics, the linear transfer function model arising from the P2D
model was described, as well as the methodology at which how the transfer function was
obtained using MATLAB and Python (PyBamm) was explained.
Following this, the results for the full battery model implemented were shown and discussed,
in which it was concluded that the battery model is applicable for the range of current 0C-2C.
Afterwards, the equations for the degradation model implemented were introduced, then the
method at which how they are implemented on MATLAB was shown, and lastly the results
for the degradation model were shown and discussed, where it was concluded that while the
real degradation parameters for the LGM50 battery are not available, the degradation model
is still a good representative of how the capacity fade of this battery would behave, since the
2 degradation validation criteria of followed. However, accuracy can be significantly improved
if real degradation data is available for the LGM50.
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Chapter 4

Charging Strategy Implementation

4-1 Introduction

As concluded in the literature, the charging strategy to be implemented is an optimization
based charging strategy, where in particular a combination of 2 papers were chosen. A varia-
tion of the cost function by Lin and colleagues [44] that tackles the 2 main aging mechanisms,
Solid Electrolyte Interphase (SEI) and lithium plating growth, as well as the charging time,
combined with the NMPC formulation discussed by Yin and colleagues [77]. As a note, while
some inspiration is taken from previous studies, the following method combined with the bat-
tery and degradation model being applied implemented, is considered new. This is discussed
in more detail in the "Conclusions and Recommendations" chapter. The symbol definitions,
units and parameter values can be found in Table A-1 and A-2 in Appendix A-1.

4-2 Model Formulation

4-2-1 Nonlinear Model Predictive Control (NMPC) Description

The Model Predictive Control (MPC) is a multi-variable, feedback optimization based control
method, which is currently widely popular as it is one of the few feedback control strategies
with constraint handling properties. The general linear MPC algorithm is that at each time
step, a convex, quadratic programming problem is solved as many times as the number of
time steps within a prediction horizon. This then gives an optimal predicted trajectory with
the length of the prediction horizon and an optimal input trajectory with the length of the
control horizon. The first input is then chosen as the optimal one for that time step, then the
problem is shifted one step into the future. The same procedure is then repeated every time
step across the simulation horizon. A summarized step by step description of the algorithm
can be found in Fig.4-1.
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62 Charging Strategy Implementation

Figure 4-1: MPC/NMPC algorithm description [37].

An extension to MPC is NMPC, when the model dynamics are nonlinear, making the opti-
mization problem to be solved more complex, due to the change of constraints from linear to
nonlinear, and the cost function changing from a quadratic to a non-convex function. As a
result, non-convex optimization algorithm is required to solve this problem, increasing com-
putational cost.
In the case of the charging strategy formulation, since there are nonlinear dynamics, for ex-
ample in the degradation dynamics from Eq.3-14 to Eq.3-17, an NMPC charging strategy will
be formulated and solved. The computational time will then be assessed to check real time
control applicability, and whether further simplifications to the control problem are needed.

4-2-2 NMPC Charging Strategy Formulation

The general NMPC cost function to be solved looks as follows,

J (x(k + i), u(k + i)) = φ (x(k + i), u(k + i)) ∀k = 1, ..., NT, i = 1, . . . , p

Subject to:
x(k + i + 1) = f (x(k + i), u(k + i)) k = 1, . . . , NT, i = 1, . . . , p

uLB ⩽ u(k + i) ⩽ uUB, k = 1, . . . , NT, i = 1, . . . , m

xLB ⩽ x(k + i) ⩽ xUB k = 1, . . . , NT, i = 1, . . . , p

(4-1)

where NT is the simulation horizon (sum of charging and resting period), i is the step in the
prediction/control horizon, p is the prediction horizon which is taken to be the same as the
control horizon m to reduce complexity of the problem, x is the state vector, u is the input to
be optimized in the control problem, xUB and xLB are upper and lower bounds on the states
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respectively, and uUB and uLB are upper and lower bounds on the input, with

x =



q̄+
q̄−
c̄s,+
c̄s,−

ce,surf,+
ce,surf,−

csei
clpl
jint
jsei
jlpl



, u = I. (4-2)

Thus there are nx = 11 states and nu = 1 inputs. Following [16], the cost φ given as,

φ =
p∑

i=1

(
x(k + i) − xset

)T
Q
(
x(k + i) − xset

)
+

m∑
i=1

(u(k + i) − u(k + i − 1))T R (u(k + i) − u(k + i − 1))
(4-3)

where Q is an nx × nx square diagonal matrix penalizing the difference between the states
and the reference state vector xset. R is an nu ×nu matrix penalizing the change in the input.
Q, R and xset are chosen in way such that the following cost is minimized,

φ =
p∑

i=1

(
(c̄s,−(k + i) − cs,max,−)2 · q4 + (jsei(k + i))2 · q10 + (jlpl(k + i))2 · q11

)
+

m∑
i=1

(u(k + i) − u(k + i − 1))T R (u(k + i) − u(k + i − 1))
(4-4)

The values for NT,m,p can be found in section 4-3-3 and uLB, uUB, xLB,xUB, Q and R can
be found in the appendix Section B-2.
It can be seen that the optimal current profile is chosen based on a the minimization of the
square of 3 main variables, the c̄s,− − cs,max, jsei and jlpl. Starting with c̄s,− − cs,max, the
purpose of this is for the volume-averaged anode concentration to track a reference volume-
averaged concentration for the fully charged case. Since, there is a direct relation between
this variable and the State Of Charge (SOC) as in Eq.3-9, this variable is responsible for
tracking the SOC towards an SOC for the fully charged case. As a result, the penalty
weighting for this variable influences the charging time. As for the jsei and jlpl, since these
variables are directly proportional with the capacity fade, minimizing such variables would
correspond to minimizing the capacity fade per cycle and how much weighting penalty on each
variable corresponds to how much influence on removing SEI or lithium plating degradation
respectively.
As for the constraints in Eq.4-1, the first constraint is an equality constraint which represents
the battery and degradation model for the Extended Single Particle Model (ESPM) described
in Section 3-1 and 3-2. This is used as a verification that the state is correctly updated each
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time step. The second and third constraints are inequality constraints that bound the states
and inputs to be within acceptable ranges. The main bound constraints are as follows,

cs,max,− × stoicd,− ≤ c̄s,− ≤ cs,max,− × stoicc,−,

cs,max,+ × stoicc,+ ≤ c̄s,+ ≤ cs,max,+ · stoicd,+,

ce,surf,− ≥ 0,

ce,surf,+ ≥ 0
0 ≤ I ≤ 2C

(4-5)

where the first 2 constraints are to prevent overcharging and undercharging, and the second
2 constraints are to prevent battery permanent damage.

4-3 Methodology

Details on how the NMPC problem above was formulated and simulated using MATLAB are
given.

4-3-1 MATLAB Nonlinear Optimizer "fmincon"

The MATLAB function "fmincon" is a nonlinear solver, that finds the local/global minimum
of a constrained optimization problem. The function has the following form,

u∗ = fmincon(fun, u0, A, b, Aeq, beq, lb, ub, nonlcon, options), (4-6)

where u∗ is the optimal solution obtained, which in this case is the optimal current profile for
a certain prediction/control horizon, fun is the cost function to be minimized, which in this
case is in Eq.4-3, u0 is the initial solution to the problem across a certain prediction/control
horizon, having the following input arguments, A and b are used to set up the linear inequality
constraints of the problem, which is left unused for this case, Aeq and beq are the linear
equality constraints, which are also unused, lb and ub are lower and upper bounds on u,
thus bounding the current, nonlcon is used to formulate the nonlinear/linear inequality and
equality constraints, options are the solver options.

Setting up "fun"

The first argument considered in the problem is the cost function fun, which takes the sym-
bolic vector u which is the vector to be optimized. The symbolic vector u has the same
length as the initial solution u0, which is the length of the prediction/control horizon, since
an optimal state trajectory of length nx ·(p+1) is obtained from an optimal solution of inputs
u∗ of length nu · (p). An initial state vector x0 is given, and the cost function to be minimized
is then written as follows,

u∗ = min
u

(
Xp(u) − Xset

p

)T
Qp
(
Xp(u) − Xset

p

)
+

(u(2 : p) − u(1 : p − 1))T Rp−1 (u(2 : p) − u(1 : p − 1))
(4-7)
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where,

Xp =


x0
x1
...

xp


{nx(p+1)}

up−1 =


u0
u1
...

up−1


{nu×p}

Qp =


Q 0 0 . . . 0
0 Q 0 . . . 0
...

...
...

...
0 0 0 . . . Q


{(nx·(p+1))×(nx·(p+1))}

Rp−1 =


R 0 0 . . . 0
0 R 0 . . . 0
...

...
...

...
0 0 0 . . . R


{nu·(p+1)×(nu·(p+1))}

(4-8)

Setting up "nonlcon"

The argument nonlcon is a function with 1 input u, and 2 outputs ceq, which represents
the nonlinear or linear equality constraints and cineq for the nonlinear or linear inequality
constraints. Both types of constraint sets consist of constraints for each time step of the
prediction/control horizon. This function will be used for the state inequality constraints
cineq. As for the state equality constraints (state dynamics), they will be neglected since
they are indirectly included in the fmincon arguments, for example to obtain the state
trajectory p steps in the future, for obtaining both cost function in fun and cineq across the
prediction/control horizon. The format of cineq is as follows,

cineq ≤ 0. (4-9)

Following such format, cineq can be split as follows,

cmin = −Xp(p · nx + 3 : p · nx + 6) + xmin,

cmax = Xp(p · nx + 3 : p · nx + 4) − xmax,

cineq =
[

cmin
cmax

]
.

(4-10)

where,

xmin =


cs,max,− · stoicd,−
cs,max,+ · stoicc,+

0
0

xmax =
[

cs,max,− · stoicc,−
cs,max,+ · stoicd,+

]
(4-11)

It can be seen that the lower bound constraints have been imposed on state 3 to state 6, being
c̄s,+ to ce,surf,− and upper bound on states 3 and 4, being states c̄s,+ and c̄s,− respectively
following Eq.4-2, thus covering the state inequality constraints in Eq.4-5. It can also be
noticed that constraints were only imposed on the final time step of the prediction horizon.
This is done to reduce complexity, as the bound state constraints do not vary with time, and
constraining only the last time step of the prediction horizon would ensure that the states
chosen would not violate the constraints for all previous steps within a prediction horizon.
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Setting up "lb" and "ub"

The arguments lb and ub in fmincon are used to set lower and upper bounds for the solutions
respectively across a prediction horizon, thus covering the last inequality constraint on the
charging current. Since the charge current bound is across the prediction horizon, lb and ub
will be vectors looking as follows,

lb =


−10
−10

...
−10


{p×1}

ub =


0
0
...
0


{p×1}

(4-12)

where -10 [A] represents 2C charging.

Setting up "options"

The argument options in fmincon are the solver options. They are mostly kept as the
default options, but 2 main options are adjusted to reduced the computational complexity,
’MaxFunctionEvaluations’ and ’TypicalX’. ’MaxFunctionEvaluations’ is the maximum num-
ber of function evaluations allowed in the optimization algorithm, which has been reduced
from the default value of 3000 to 500, which was tested to minimally influence the local/global
optimal solution. ’TypicalX’ is an option which gives a guess on what the optimal solution
profile (current profile) might look like for a certain prediction horizon. This is set to the
optimal current profile for the prediction horizon at the previous time step of the charging
period. This showed to significantly increase computational speed. The algorithm to solve
the optimization problem was kept to the default one, being the ’interior point method’ due
to the ability to handle large, sparse problems, and the fastest compared to the rest of the
algorithms available in fmincon.

Obtaining Optimal Charge Profile

For each step of the charging period, an optimal charge profile with the length of the prediction
horizon is obtained using fmincon. From that charge profile, only the first current point is
applied, the dynamics are shifted one step with that current, and the process is repeated until
the constraints are violated, or the preset charging period done.

4-3-2 Choosing the weights Q and R

The method used to choose the penalty weighting Q, is choosing the base Q in a way such
that normalizes the 3 main states to have an equal contribution to the cost. For example,
looking the first state cost (c̄s,− − cs,max,−)2 in Eq.4-4, the range of values this cost term can
take are [0, (cs,max,− − stoicd,− · cs,max,−)2]. As a result, an initial value for q4 is q4,base =

1
(cs,max,−−stoicd,−·cs,max,−)2 .
As for the second term in the cost, jsei2 in Eq.4-4, first to determine the maximum value the
j2

sei, an constant charging experiment with the maximum possible current while satisfying
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the constraints (in this case 2C) was performed, since this would achieve the maximum
possible jsei. From this experiment, the peak j2

sei,max was recorded and the weighting q10
was chosen to be q10 = 1

j2
sei,max

. The same procedure was performed jlpl and q11 was chosen
to be q11 = 1

jlpl,max2
. This would then result in having an equal cost contribution for the 3

variables, when solving the optimization algorithm. The weights are then adjusted according
to the charging goals. Results of the max current (2C) constant charging experiments for jsei
and jlpl, showing the peak values for both, can be found in Fig.4-2 and Fig.4-3 respectively.
A table of the peak values for the (c̄s,− − stoicd,− · cs,max,−)2 , j2

sei,max, j2
lpl,max and their

corresponding base weights can be found in Table.4-1. The same approach is performed, for
obtaining the weighting on R, where the maximum magnitude obtained for the change in
current is 2C (abs(-10) A ) and the square peak magnitude is 2C2 (100), thus the base weight
for R is 1

100 .

Figure 4-2: Plot of the jsei against time (min) under a 2C constant charging experiment. The
peak abs(jjsei,max) = 0.00024 A

m·s .

Figure 4-3: Plot of the jsei against time (min) under a 2C constant charging experiment. The
peak abs(jjlpl,max) = 1.09e − 08 A

m·s .
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Variable Peak Magnitude Peak Squared Magnitude Base q

c̄s, − cs,max,− 29583 875153889 1.14e-9
jsei 0.00024 5.76e-8 1736111
jlpl 1.09e-8 1.1881e-16 8.41e15

Table 4-1: Table of the maximum possible magnitude and squared magnitude of the 3 variables
to be minimized c̄s − cs,max,−, jsei, jlpl.

4-3-3 NMPC Parameters

Sampling Period Ts

The sampling period has been chosen to be 60 s since it is the highest Ts where the battery and
degradation dynamics do not fail, as well reducing computational time. A higher sampling
period heavily reduces accuracy, as well as the solid/electrolyte phase model going unstable.

Prediction Horizon p and Control Horizon m

The prediction Horizon p has been chosen to be p = 5 samples, meaning the NMPC algorithm
looks 5 minutes in the future when computing an optimal current for a specific time instance.
After some trials, 5 minutes was seen to be sufficient, with the optimal solution minimally
affected at higher values for p, meaning that the optimal solution is almost the same with
increasing p, thus the lowest value not affecting the optimal solution significantly was chosen
to save computational time per iteration. The control horizon m was chosen to be equal
to the prediction horizon for the same reason being reducing the complexity of the NMPC
problem.

Simulation Horizon NT

The simulation horizon was chosen in a way such that the full charging period is captured for
all charging strategies, as well as not increasing simulation time per strategy heavily. NT = 80
(80 minutes) was chosen for all strategies, meaning the total simulation time for all strategies
are the same for a fair capacity fade comparison.

4-4 Results

The NMPC control charging strategy has been performed for 6 different cases as follows,

• Case 1 "Fast": Only charging speed focus with q4 =, q10 = 0 and q11 = 0 and R = 0 in
Eq.4-3

• Case 2 "SEI focus": Only SEI growth reduction focus with q4 = 1.14 × 10−11, q10 =
17361110 and q11 = 0 and R = 0 in Eq.4-3

• Case 3 "LPL focus" : Only Lithium Plating growth reduction focus with q4 = 1.14 ×
10−11, q10 = 0 and q11 = 8.41 × 1014 and R = 0 in Eq.4-3.
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• Case 4: Both SEI and Lithium Plating growth reduction focus with q4 = 1.14 × 10−11,
q10 = 1736111 and q11 = 8.41 × 1015 and R = 0 in Eq.4-3.

• Case 5 "Health Conscious Fast + Delta u": Tradeoff between charging speed and degra-
dation as well as penalizing the changing current with q4 = 1.14 × 10−9, q10 = 1736111
and q11 = 8.41 × 1015 and R = 0.01 in Eq.4-3.

the first case being focusing only on charging speed, the second case focusing mainly on
reduction of the SEI growth, the third case focusing on the reduction lithium plating growth,
fourth focusing on penalizing both degradation mechanisms, the fifth being penalizing the
3 variables as well as the change in input current in a way to achieve health conscious fast
charging. The results can be found in Fig.4-4, Fig.4-5, Fig.4-6, Fig.4-7 and Fig.4-8.

4-4-1 Constraint Satisfaction

In order to check how each strategy performs in terms charging speed and whether the con-
straints in Eq.4-5 are satisfied, the SOC, current (A) and the surface electrolyte concentration
(mol

m3 ) at the anode and cathode were plotted against time (min) in Fig.4-4 and Fig.4-5 respec-
tively. It can be noticed that the constraints are all followed, where no over or undercharging
occurs since the SOC stays within the specified limits for all charging cases in Fig.4-4 (a).
The current profiles for all charging cases stay within the specified [0 2C] ([-10 0] A) as seen
in Fig.4-4. Lastly, the surface electrolyte concentrations at the anode and cathodes in Fig.4-5
(a) and Fig.4-5 (b) respectively, where it can seen that the electrolyte concentrations are
always above 0, following the constraints.

4-4-2 Charging Speeds

As for charging speeds, by looking at the SOC plot in Fig.4-4 (a), the fastest charging strategy
is the "Fast" charging strategy, having a charge time of 31 minutes. The corresponding current
profile is expectedly a constant max charge current (-10 A) satisfying the bounds throughout
the whole charge period. The slowest strategies are the ones focusing only on either one or
both degradation mechanisms, with the slowest being "Degradation focus" with a charge time
of 74 minutes, followed by "SEI focus" with a charge time of 60 minutes, then "LPL focus"
with a charge time of 40 minutes. The corresponding charge profiles have a similar shape,
showing a nonlinear response to the degradation, SEI and lithium plating focus strategies.
The "Health Conscious Fast +Delta u" charging algorithm, focusing on both charging speed
and degradation, turned to be the second fastest charging algorithm, with a charging time of
34 minutes. One thing noticed about the corresponding current profile in Fig.4-4 (b), is that
there are no sharp peaks or changes in current and the current profile is smooth throughout
the charging period. This shows the effect of penalizing the changing current, compared to
the rest of the other strategies that do not include change in current influence, where sharp
fluctuations are noticed.
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(a) Plot of the SOC against time (min) for the various
charging strategies.

(b) Plot of the current profile I (A) against time (min) for
the various charging strategies.

Figure 4-4: Plot of SOC and the corresponding charging profile against time for the various
charging strategies.
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(a) Plot of the anode surface electrolyte concentration
ce,surf,− ( mol

m3 ) against time (min) for the various charging
strategies.

(b) Plot of the cathode surface electrolyte concentration
ce,surf,+ ( mol

m3 ) against time (min) for the various charging
strategies.

Figure 4-5: Plots of Anode and Cathode Electrolyte Concentrations ce,surf,+ and ce,surf,− under
various charging strategies.

4-4-3 Degradation Results

For degradation, it can be noticed from jsei and jlpl plots in Fig.4-6 and Fig.4-7 respec-
tively that the highest peak was shown for the "Fast" charging strategy, having a peak
jsei,max = −0.00012 and peak jlpl,max = −1.09 × 10−8. It also showed the highest aver-
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age, with average jsei,avg = 3.57 × 10−6 and average jlpl,avg = −2.25 × 10−10. Consequently,
the capacity fade was highest for the "Fast" charging strategy shown in Fig.4-8, losing 8.1 %
of its capacity 550 cycles.
At the other end of the spectrum, the strategy showing the least degradation is the "Degra-
dation Focus" strategy, where from Fig.4-6 and Fig.4-7 (b) respectively it can be noticed
that peak jsei,max = −3.75 × 10−6 and peak jlpl,max = −1.9 × 10−10 and average jsei,avg =
−7.43×10−7 and jlpl,avg = −2.98×10−11 are the lowest amongst all other charging strategies.
The "SEI focus" showed similar behaviour to the "Degradation focus" strategy as noticed in
Fig.4-6 and Fig.4-7, showing a peak jsei,max = −4.70 × 10−6 and jlpl,max = −2.48 × 10−10. as
well as jsei,avg = −1.09 × 10−6 and jlpl.avg = −4.63 × 10−11. The similarity is reflected in the
capacity fade plot, where the "Degradation focus" and "SEI focus" lost 6.3% an 6.4% capacity
after 550 cycles respectively.
The "LPL focus" strategy showed higher degradation, having a peak jsei,max = −1.09 × 10−5

and jlpl,max = −6.6 × 10−10 as well as average jsei,avg = −6.9 × 10−7 and average jlpl,avg =
−2.74 × 10−11. The higher degradation is reflected in the capacity fade plot in Fig.4-8, losing
7 % capacity after 550 cycles.
Lastly, the "Health Conscious Fast +Delta u" charging showed the lowest degradation af-
ter the strategies focusing only on either one or both degradation mechanisms, having a
peak jsei,max = −2.9 × 10−5 and peak jlpl,max = −2.07 × 10−9 as well as average jsei,avg =
−2.23×10−6 and average jlpl,avg = −1.14×10−10 by looking at Fig.4-6 and Fig.4-7 respectively.
As for capacity fade, it can be seen from Fig.4-8, that the "Health Conscious Fast+Delta u"
charging strategy caused a loss of 7.1% capacity of 550 cycles. A table summarizing the most
important results can be found in Table 4-2.
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(a) Plot of the jsei ( A
m·s ) against time (min) for the various

charging strategies.

(b) Zoomed in plot of the jsei ( A
m·s ) against time (min) for

the various charging strategies.

Figure 4-6: Original and zoomed in plots of SEI molar flux jsei ( A
m·s ) against time (min) for the

various NMPC charging strategies.
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(a) Plot of the jlpl ( A
m·s ) against time (min) for the various

charging strategies.

(b) Zoomed in plot of the jlpl ( A
m·s ) against time (min) for

the various charging strategies.

Figure 4-7: Original and zoomed in plots of Lithium Plating molar flux jlpl ( A
m·s ) against time

(min) for the various NMPC charging strategies.
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Figure 4-8: Plot of the capacity (%) against the cycle number for for the various charging
strategies. 2 cycles correspond to one charge and one discharge. The method at which this plot
is obtained is closely similar to the methodology in Section 3-3-3

Charging Strategy Charging Time (min) Capacity Fade (%) After 550 Cycles Cycle number at 80 % Capacity
Fast (1) 31 8.1% 1358

SEI focus (2) 60 6.4 % 1720
LPL (3) 40 7 % 1571

Degradation focus (4) 74 6.3 % 1750
Health Conscious Fast + Delta u (5) 34 7.1 % 1550

Table 4-2: Summary of Charging Speed and Degradation Results per Strategy.

Charging Strategy Average CPU time per iteration (s) Ts = 30s Average CPU time per iteration (s) Ts = 60s
Fast (1) 6.6172 4.2933

SEI focus (2) 76.0602 14.82
LPL focus (3) 45.8917 17.2449

Degradation focus (4) 65.7082 18.9207
Health Conscious Fast + Delta u (5) 36.4646 6.6172

Table 4-3: Computational time (s) of the different charging strategies.

4-4-4 Computational Time

The computational time per iteration for all charging strategies were assessed for Ts = 30s
and Ts = 60s. For Ts = 60s, an average computational time per iteration 12.37 s over all
strategies, showing that real time control is applicable at this sampling period, since CPU
time is significantly lower than the sampling time. On the other hand, reducing the sampling
period to Ts = 30s heavily increases the computational time having an average computational
time of 46.15 s, thus real time control is not applicable for this case. The average CPU time
per iteration for each strategy can be found in Table 4-3.
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4-5 Discussion

Starting with the charging times, the main charging strategy, "Health Conscious Fast + Delta
u" showed to be 1.13 times slower than the fastest charging strategy "Fast", and ‘2.17 times
faster than the slowest strategy "Degradation Focus" charging strategy. The difference in
charging speeds is reflected on the current profiles of each of the strategies in Fig.4-4 (b),
where the average current is highest for the "Fast" strategy Iavg = −10A, and lowest for
"Degradation Focus" with Iavg = −5.1472A and second highest for the "Health Conscious
Fast +Delta u" strategy with Iavg = −9A. Looking at the volume averaged concentration at
the anode c̄s,j in Eq.3-1, it can be seen that the rate of change of c̄s,j is directly proportional
with the intercalation molar flux at the anode j−, which is given in Eq.3-2, which is seen
to be directly proportional to the magnitude of the charge current. As a result, a higher
average charge current would result a faster increase in SOC since c̄s,− is related to the SOC
by Eq.3-9. The magnitude of the rate of change in c̄s,−, a direct consequence of the penalty
weights on the terms in the cost function in Eq.4-4. For example, the "Fast" strategy only
penalizes c̄s,− − cs,max,−, making it the only cost contributor in the cost function, thus the
NMPC algorithm outputs the maximum charging current satisfying the constraints such that
c̄s,− reaches cs,max as quickly as possible.
As for the degradation, the main charging strategy "Health Conscious Fast + Delta u" ex-
perienced significantly lower degradation than the "Fast" strategy, have 1.6 times less total
degradation average flux jsei,avg + jlpl,avg. Moreover, 197 charge+discharge (98 charge/dis-
charge) cycles in "Health Conscious Fast + Delta u" are saved before full battery deterioration.
On the other hand, the strategy with the least degradation "Degradation Focus" achieved 2.05
times less jsei,avg + jlpl,avg than the "Health Conscious Fast + Delta u", as well as saving 200
cycles before battery full deterioration. The table showing the main degradation results can
be found in Table 4-2. The reason for the significant differences yet again mainly is result-
ing from the current dependency in jtot term in both Eq.3-14 and Eq.3-16, thus the higher
average current in a certain current profile would result in higher degradation. The differ-
ences in degradation for the varying current profiles is more apparent due to the exponential
dependency of current with jsei and jlpl in Eq.3-14 and Eq.3-16, with the current being the
main dominating term in the exponent, since all terms in the exponent, Φs,−, Φe,− and j−
in jtot are directly dependent on the current I. As a result, since the there is a nonlinear
proportional dependency of the current with jsei and jlpl, penalizing the either jsei or jlpl in
the cost function in Eq.4-4 would result in a reduction in the overall average current as well
as a change in the current in a nonlinear fashion.
To conclude the discussion regarding charging time and degradation, the "Health Conscious
Fast + Delta u" achieves a suitable trade-off between charging time and degradation, since the
charging time achieved is close to the "Fast" charging strategy while achieving significantly
lower degradation.
A more in more depth analysis on the variables plotted is also performed. Starting with
the SOC in Fig.4-4 (a), minor discrepancies in the final SOC value are noticed between each
charging strategy, when in reality the final SOC for all strategies should be the same. This is
mainly due to the stopping condition applied on the model, where it assesses if the next state
violates the SOC constraints, the battery is put to rest for the next time instance. With the
varying currents at that specific time instance as well as the high sampling period Ts = 60
s, the discrepancies in the final SOC are noticed. One way to reduce this is to reduce the
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sampling period Ts such that the model is run for less time at a specific current, reducing the
differences in the final SOC. However, reducing the Ts, would result in an increased compu-
tational time. For example, making Ts = 30s, increased since double the number of samples
are used.
As for the electrolyte concentration at the surface of the electrodes ce,surf,− and ce,surf,+ in
Fig.4-5 (a) and (b) respectively, the LGM50 battery is near the edge of the constraint for
the 2C charge current, with ce,surf,− approaching an equilibrium of 85 mol

m3 . Comparing this
with the recommended charge rate of 0.7C in the LGM50 specification which achieves an
equilibrium ce,surf,− of 530 mol

m3 , it can be seen that such a threshold is placed such that the
electrolyte concentration at the surface of the anode is kept within safe bounds. However,
with the new results, while there could be a risk with 2C charging rate, it still keeps the anode
surface electrolyte concentration not fully depleted and is the maximum possible charge rate
allowable for the LGM50 battery.
Lastly, it was concluded that the NMPC strategy is applicable for real time control at Ts = 60s,
but not Ts = 30s. The reason for this is that for Ts = 30s, the number of samples per NMPC
iteration doubled, as well as the prediction/control horizon p = m doubled to match the same
simulation conditions as for the Ts = 60s, significantly increasing complexity.

4-6 Conclusion

In this chapter, the NMPC/MPC algorithms have been briefly described, then the NMPC
charging strategy formulation has been described, where the cost function and constraints
in terms of the physical states were shown. The method at which the NMPC charging
strategy has been implemented using the "fmincon" function in MATLAB has been explained.
Moreover, results on the most relevant variables have been shown and discussed, where it
was shown that the "Health Conscious Fast + Delta u" strategy achieved the best trade-off
between charging time and degradation. Lastly, it was concluded that the real time control is
applicable using NMPC strategy on the battery diffusion and degradation model developed
for a sampling period Ts = 60s, as opposed to not be applicable for Ts = 30s.
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Chapter 5

Conclusions and Recommendations

5-1 Conclusions

This study developed real-time control health conscious Fast Charging Strategy based on
the steps below. An Extended Single Particle Model (ESPM) physics based Li-ion battery
dynamical model was implemented, where for the solid phase dynamics, a 3-parameter ap-
proximation from the Single Particle (SP) has been used and for the electrolyte dynamics,
a transfer function model obtaining the equilibrium electrolyte concentrations on the surface
of the current collectors has been implemented. The model implemented was validated to
be accurate for a charge range of [0,2C], by comparing it with data from the highly accurate
Full Order Model (FOM), known as the Pseudo 2-Dimensional (P2D) model. Along side this
model, an electro-chemical degradation model based on the study by Yang and colleagues [76]
was implemented, showing the main aging mechanisms in the battery, being the Solid Elec-
trolyte Interphase (SEI) growth, lithium plating. The degradation model was validated as in
the 2 criteria previously mentioned, being that at the first charge cycle jsei is a few orders
of magnitude higher than jlpl, and second criteria being that the capacity fade behaviour is
followed as per the LGM50 battery specification sheet, shown in Fig.3-17. Using the bat-
tery diffusion and degradation model, a Nonlinear Model Predictive Control (NMPC) based
charging strategy has been developed with the aim to minimize a combination of charging
time, SEI growth and lithium plating growth. It was then concluded that the health conscious
fast charging strategy has similar charging times to the traditional DC fast charging strategy,
while increasing cycle life by 14.1 %.
The implementation of the combination of the physics-based battery model (ESPM), mainly
the 3 parameter approximate solid phase diffusion model and electro-chemical degradation
model, applicable in real time control applications has not been implemented before in lit-
erature, and is considered an extension to the work done by Lin and colleagues [44] , since
a variation of the methods used have been incorporated in my thesis. The extensions would
be the solid phase diffusion model, where instead of the 2-parameter model, a 3 parameter
model has been used to improve accuracy for a wider range of currents. As for the degradation
model, the extension made is the incorporation of the full electro-chemical degradation model
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in the study by Yang and colleagues [76] instead of obtaining a static SEI and lithium plating
map from the electro-chemical degradation model in the work by Lin and colleagues [44].
First of all, the model Lin and colleagues [44] have obtained is only applicable to the battery
used in the study, and if another battery is used, the full process of obtaining the static maps
would need to be implemented again, as opposed to implementation of the electro-chemical
degradation model, where just some degradation parameters need to be adjusted. Moreover,
the static maps obtained by Lin and colleagues [44] show that at 0C charge rate, there is no
degradation, which in reality is not the case, since calendar aging is another significant form of
degradation. As explained previously, the electro-chemical degradation model implemented
incorporated calendar aging effects, having an equilibrium jsei and jlpl when the battery is at
rest, showing the linear relation between capacity fade and time.
On the other hand, since there is no electro-chemical capacity fade model for this specific
battery (LGM50), nor any experimental data for degradation, the degradation model param-
eters were chosen such that the 2 main criteria mentioned previously are followed, which are
SEI molar flux should be a few orders of magnitude higher than the lithium plating molar
flux, and the capacity fade of the battery follows the criteria in Fig.3-10 under experiment
conditions in Fig.3-9. Such criteria would give an estimate on how the capacity fades per
cycle for the LGM50 battery, but would not guarantee an exact model of it.
Lastly, the NMPC charging strategy is considered an extension to work done by Lin and
colleagues [44], where they have implemented an open loop optimization based strategy has
been implemented minimizing the same 3 variables as in the thesis. The optimization based
strategy was solved using dynamic programming. In this thesis, a closed loop strategy was
performed, which also takes into account future states when deciding an optimal charge cur-
rent at a certain time step.

5-2 Recommendations

It was concluded that [0C 2C] charge range is sufficient for the LGM50 battery, however, for
other batteries, such a C-rate range could need to be enlarged. A possible extension to the
solid phase diffusion model is incorporation of an Extended Kalman Filter as in paper [9],
to correct for the errors in terminal voltage between the ESPM and P2D model, however,
computational time and whether real-time control is feasible after such an addition needs to
be researched.
As for the degradation model, an extension to it could be the incorporation of a temperature
model since the temperature is assumed to be a constant in the thesis. Such an addition
would mean that the temperature effects on degradation would be more realistic, since the
temperature would be changing over the charge/discharge period. The study made by Yin
and collleagues [77] is one example where a temperature model is incorporated in the battery
model. Again, computational complexity would need to be reassessed if such an addition
would be implemented. Since the study by Okane and colleagues [53] used the LGM50 bat-
tery, showing the effect of varying different degradation parameters on the loss of lithium
inventory in the LGM50 battery using an electro-chemical degradation model similar to the
one used in the present work, an extension could be to combine the work done in the present
work and Okane and colleague’s [53] work, then finding the exact degradation parameters
using experimental degradation validation.
Lastly, an extension to the NMPC charging strategy implemented in the thesis, is the incorpo-

Hassan Sewailem Master of Science Thesis



5-2 Recommendations 81

ration of additional constraints, such as limit output cell voltage to be within a certain range
to avoid battery over-voltage (not applicable for a range of [0 2C]), or posing constraints on
the temperature, if a temperature model is included in the future.
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Appendix A

The Back of the Thesis

Appendices are found in the back.
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A-1 Battery and Degradation model (LGM50 5 Ah battery)

A-1-1 Symbol Definition and Parameter Sets

Symbol Definition Unit

cs,j Solid phase concentration in electrode j mol
m3

r Radial distance from center of Li-ion particle m
Rp Particle Radius m
Ds,j Solid phase diffusivity in electrode j m2

s
Deff

e,j Electrolyte Effective Diffusivity in electrode j m2

s
jj Intercalation Molar Flux in electrode j A

m·s
i0,j Intercalation Exchange Current Density A

m2

ηint,j Intercalation Overpotential V
Φs,j Solid Phase potential in electrode j V
Φe,j Electrolyte Potential in electrode j V
Uint,j Intercalation open circuit potential in electrode j V

cs,max,j Maximum Solid Phase Concentration in Electrode j mol
m3

jSEI Solid Electrolyte Interphase (SEI) Molar Flux A
m·s

a Electroactive Surface Area 1
m

F Faradays Constant C
mol

k0,SEI SEI reaction rate constant m
s

cS
EC Surface Ethyl Carbonate (EC) Bulk electrolyte Concentration mol

m3

c0
EC Initial Surface EC Bulk electrolyte Concentration mol

m3

R Universal Gas Constant J
K·mol

t0
+ Transference Number -

ie,j Electrolyte Current Density A
m2

T Temperature K
DEC EC Diffusivity m2

s
Rfilm Film Resistance Ω
USEI Equilibrium SEI Open Circuit Potential V
αc,SEI SEI Charge Transfer Coefficient -
δfilm Film Thickness m
jlpl Lithium Plating Molar Flux A

m·s
i0,lpl Lithium Plating Exchange Current Density A

m2

αc,lpl Lithium Plating Charge Transfer Coefficient -
jtot Total molar flux A

m·s
CSEI SEI concentration mol

m3

CLi Lithium Plating Concentration mol
m3

MSEI SEI Molar Mass kg
mol

ρSEI SEI Molar Density kg
m3·mol

MLi Lithium Plating Molar Mass kg
mol

ρLi Lithium Plating Molar Density kg
m3·mol

ωSEI SEI Volume Fraction -
κSEI SEI Ionic Conductivity S

m
ϵ Anode porosity -

stoicc Stoichiometry for the fully charged case -
stoicd Stoichiometry for the fully discharged case -

L Electrode Thickness m
A Electrode Plate Area m2

W Electrode Width m
ce,0,j Initial Electrolyte Concentration mol

m3

σ Electronic Conductivity of Solid Matrix S
m

αint Intercalation Reaction Rate Constant -
Vcell Cell Voltage V
Vcell Cell Voltage V
κeff Ionic Conductivity of Electrolyte S

m
x Horizontal Position in Cell m

∆Tj Electrolyte Diffusion Dynamics Time Constant per Electrode j m
fA Activity Coefficient in the Salt -

Vcell Cell Output Voltage V
Uocv,min Cell Terminal Voltage For The Fully Discharged Case V
Uocv,max Cell Terminal Voltage For The Fully Charged Case V

Qcap Cell Capacity Ah
ce,surf,j Electrolyte Concentration near Current Collector Surface of Electrode j mol

m3

ce,surfeq,j Equilibrium Electrolyte Concentration near Current Collector Surface of Electrode j mol
m3

cs,surf,j Solid Phase Surface Concentration at Electrode j mol
m3

cs,j Solid Phase Concentration at Electrode j mol
m3

c̄s,j Volume Averaged Solid Phase Concentration at Electrode j mol
m3

qs,j Solid Phase Concentration Flux at Electrode j mol
m3·s

q̄s,j Volume Average Solid Phase Concentration Flux at Electrode j mol
m3·s

Rcell Cell Internal Resistance Ω
ce,j Electrolyte Phase Concentration in Electrode j mol

m3

VSEI SEI Volume m3

reff Reaction Rate Constant –
Sj Superficial Surface Area m2

Table A-1: List of Symbols for the Pseudo 2-Dimensional (P2D),Electrolyte Enhanced Single
Particle Model (SPMe), Extended Single Particle Model (ESPM) and the electrochemical degra-
dation Model.
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Vcell,min 2.5
Vcell,min 4.2

Qcap 5
t+ 0.2594
F 96485
R 8.3144
T 298

Rcell 0

Table A-3: List of whole cell constants LGM50.

Constant Cathode Separator Anode

Ds 1.48e-15 [18] - 1.74 × 10−15 [18]
De - - -
a 3.8218 × 10−13 c - 3.8395 × 105 c

k0,SEI - - 2.48 × 10−13 adj

i0,lpl - - 2 × 10−3 adj

c0
EC - - 4541.0 [61]

DEC - - 2 × 10−18 [76]
USEI - - 0.4 [76]
αc,SEI - - 0.6 [61]
i0,lpl - - 10−5 adj

αc,lpl - - 0.7 [61]
ρSEI - - 0.6 [76]
ρLi - - 0.62 [76]

ωSEI - - 0.62 [76]
κSEI - - 5 × 10−6 adj

stoicc 0.2661 [18] - 0.9014 [18]
stoicd 0.9085 [18] - 0.0279 [18]

L 75.6 × 10−6 [18] - 75.6 × 10−6 [18]
A 0.1027 [18] - 0.1027 [18]
W 6.5 × 10−2 [18] - 6.5 × 10−2 [18]
ce,0 1000 [18] 1000 [18] 1000 [18]
∆T 35adj - 45adj

cs,max 51765 [18] - 29583 [18]
rSEI - - 200000 [61]
VSEI - - -
fA N/A N/A N/A

Table A-2: List of the LGM50 cell electrode parameters used for the P2D,SPMe,ESPM and the
electro-chemical degradation Model. c: Calculated, adj: Adjusted, N/A : Not available.
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Appendix B

Nonlinear Model Predictive
Control (NMPC)

B-1 Parameters per Strategy

B-1-1 State x and Input u Bounds

The upper and lower bounds for the state and input vectors in Eq.4-2 are as follows,

xlb =



−∞
0
0
0
0
0
0
0

−∞
−∞
−∞



xub =



0
∞

cs,max,+
cs,max,−

∞
0
0
0

−∞
−∞
−∞


ulb = −10 uub = 0

(B-1)

Master of Science Thesis Hassan Sewailem



88 NMPC

B-1-2 Weighting Matrices Q and R

"Fast" Strategy

Q =



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 1.14×10−9 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0


R = 0

(B-2)

"SEI focus" Strategy

Q =



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 1.14×10−11 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 17361110 0
0 0 0 0 0 0 0 0 0 0 0


R = 0

(B-3)

"LPL focus" Strategy

Q =



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 1.14×10−11 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 8.41 ×1014


R = 0

(B-4)
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"Degradation focus" Strategy

Q =



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 1.14×10−11 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1736111 0
0 0 0 0 0 0 0 0 0 0 8.41×1015


R = 0

(B-5)

"Health Conscious Fast + Delta u" Strategy

Q =



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 1.14×10−9 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1736111 0
0 0 0 0 0 0 0 0 0 0 8.41×1015


R = 0.01

(B-6)
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Glossary

List of Acronyms

P2D Pseudo 2-Dimensional
EV Electric Vehicle
EVs Electric Vehicles
ICEV Internal Combustion Energy vehicle
ICEVs Internal Combustion Energy Vehicles
NEVs New Energy Vehicles
WTW Well To Wheel
SEI Solid Electrolyte Interphase
RC Resistor-Capacitor
MCCCV Multistage Constant Current Constant Voltage
NiMH Nickel Metal Hydride
NiCd Nickel Cadmium
OCV Open Circuit Voltage
FOM Full Order Model
FOMs Full Order Models
SPMe Electrolyte Enhanced Single Particle Model
ESPM Extended Single Particle Model
CCCV Constant-Current Constant-Voltage
AMCCCV Adaptive Multistage Constant-Current Constant-Voltage (CCCV)
NMPC Nonlinear Model Predictive Control
FUDS Federal Urban Driving Schedule
MPC Model Predictive Control
SOC State Of Charge

Master of Science Thesis Hassan Sewailem



100 Glossary

SOCs States Of Charge
EC Ethyl Carbonate
DP Dynamic Programming
BMS Battery Management System
SPKF Sigma-Point Kalman Filter
ROM Reduced Order Model
SQP Sequential Quadratic Programming
ODE Ordinary Differential Equation
PDE Partial Differential Equation
ODEs Ordinary Differential Equations
PDEs Partial Differential Equations
SP Single Particle
RMSE Root Mean Square Error
VAF Variance Accounted For
DFN Doyle-Fuller Newman
FHM Full Homogenized Macroscale

List of Symbols

A(s) Answer function
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