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Abstract

It is predicted that in about 100 years most of the earth’s fossil fuels will have been depleted. Currently, fossil
fuels still make up 80% of the Dutch energy production. Thus, to handle this depletion, the research on
renewable energy production and its usage is being stimulated by governments.

With the use of fossil fuel energy production, it is easy to increase production to meet the unexpected
peaks in energy demand by burning more fuels. However, with renewable sources this is not possible. Thus,
the way that the produced energy is being used needs to be altered. Furthermore, the amount of renewable
energy that is privately generated has increased over the last couple of years. The energy that has been gen-
erated for private use and is not needed at that time, can either be sent back into the grid for other users or
charged to a battery for later personal use. The electricity network that will regulate the buying and selling of
energy is called a smart grid.

When using a battery to store privately generated energy, the decisions that are made for the (dis)charging
of the battery are of great influence on the total energy cost at the end of the month. When implementing a
battery in a household or company that privately generates energy, these decisions need to be made within
a fixed time limit of 15 minutes. In this thesis, four mathematical optimisation methods are compared to
each other on result and run time. These methods are dynamic programming, local search, tabu search, and
simulated annealing.

Dynamic programming gives the solution with the lowest possible cost, but does not always have the low-
est average run time. The total cost of the solution resulting from local search does not come close enough to
the lowest possible cost generated by dynamic programming to be a viable alternative to dynamic program-
ming. Tabu search is an extension of local search, it could result in a solution with a total cost close enough to
the lowest possible cost if it runs more iterations than local search. However, due to this the average run time
will exceed the run time of dynamic programming. Therefore, it is also not a viable alternative for dynamic
programming. Simulated annealing has a shorter run time than dynamic programming when using a forecast
time of 1 day or less. The total cost of the solutions come very close to those of dynamic programming.

Therefore, while the run time of dynamic programming still fits within the available time limit, it is advis-
able to use this method to determine the charging decisions for a private battery in a smart grid. However,
the simulations that were run in for this thesis do not encompass the entire real-life case. If after the expan-
sion of the problem to be implemented in real-life the run time of dynamic programming were to exceed the
available time period, then simulated annealing would be a good alternative for implementation.
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1
Introduction

The current Dutch electricity network consists of consumers, electrical substations, suppliers, producers,
and network operators. A consumer is the end user of the energy, this could be for example a household
or company. An electrical substation either connects multiple power grids with each other or connects the
power grid to the low voltage grid. A supplier provides energy, this energy is either bought from a producer or
the supplier is also the producer. A producer produces energy to be sold to consumers. [28]

The network operation is divided in one national network operator, TenneT, and several regional network
operators. TenneT manages the transportation of electricity from producers via the power grid to electrical
substations. The regional network operators manage the lower voltage grids for the transportation of electric-
ity from electrical substations to consumers. [28] In figure 1.1 a simplified visual representation of the Dutch
electricity grid can be found, the arrows indicate the direction of energy transportation.

Consumer Electrical substation Supplier Producer

Regional network operator

TenneT

Figure 1.1: Schematic overview of the current Dutch electricity grid and the responsible parties for maintenance

Currently, over 80% of the Dutch energy is produced by burning fossil fuels. However, the fossil fuel
sources are running out and it is predicted that in less than 100 years the world will have run out of most
of its fossil fuels. Unfortunately, this potential decrease in energy production is not matched with the energy
demand. [36] To stimulate the production of renewable energy, the Dutch government started several initia-
tives in 2013. The goal of these initiatives is for the energy production to be almost entirely renewable in 2050.
[33] The results of these initiatives are clearly visible in the increase of the amount of solar panels that are in
private use, as can be seen in figure 1.2. At the end of 2017, 9% of Dutch households had solar panels installed
for private energy generation. [20].

With the increase of renewable energy sources, the electrical grid will also have to be altered. Currently,
the grid is designed to deliver publicly generated energy to the customers. However, with the rise of private
generation and consequently the rise of excess energy from private generation that is being sent back into the
grid, the distribution of energy is becoming a much more complex problem. As a solution for this problem,
the smart grid is introduced, which will be able to handle this change in energy distribution sources and
varying amounts, a definition can be found in definition 1.1.

Definition 1.1 A SMART GRID is an electricity network that can intelligently integrate the actions of all users
connected to it - producers, consumers, and those that do both - in order to efficiently deliver sustainable,
economic, and secure electricity supplies. [42]

1



2 1. Introduction

Figure 1.2: Number of private solar panels in the Netherlands over the years [20]

With the introduction of renewable energy sources and batteries in private setting, the flow of energy
within the household will change. Without these elements, the only flow of energy is the amount that is
bought from the grid directly to the appliances to meet the demand. With the introduction of a private energy
source, the generated energy could be used to meet the demand, be stored in a battery for later usage, or be
sold back to the grid. The energy that is stored in the battery could be discharged to help meet the demand or
be sold back to the grid. A schematic representation of these possible energy flows can be found in figure 1.3.
The amount of energy that is traded with the grid, will determine the size of the energy bill at the end of the
month. The decisions that are made for the (dis)charging of the battery, are of great influence on the amount
of energy that is traded with the grid and therefore on the size of the energy bill. To keep the size of the energy
bill as low as possible, the (dis)charging of the battery can be optimised to minimise the cost.

The charging decision that needs to be made for a battery for each time interval is whether or not energy
will be charged or discharged to the battery. And if this is the case, the amount of (dis)charged energy needs
to be determined. This amount must be feasible with the amount of energy that is available and the spec-
ifications of the battery. These specifications include the amount of energy that is currently charged to the
battery and the maximum capacity, since the battery can not have a negative charge or the amount charged
to it can not exceed the maximum capacity.

The amount of energy that is being traded with the grid is based on the amount of energy that has been
generated, the energy demand, and the charging decision that has been made for the battery. If the generation
and the discharging of the battery combined does not supply enough energy to meet the demand, then the
necessary amount of energy is bought from the grid to meet this shortage. Energy bought from the grid could
also be stored in the battery for later usage. If the demand has been met, then any excess energy from the
energy source or that has been discharged from the battery is sold back to the grid. Therefore, the charging
decisions that are being made for the battery have a big influence on the expenses of the user.

For making decisions for the charging of the battery, the month is divided into time intervals of 15 min-
utes. For each of these intervals a decision for the (dis)charging of the battery has to be made. The size of the
intervals is set to 15 minutes because of the fact that energy trading is done per 15 minutes. [27] This charging
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Grid

Battery

Demand

Private source

Figure 1.3: Schematic representation of the energy flow between the elements within an end user

decision is made in the 15 minute time interval prior and is based on the specific interval and a set of subse-
quent intervals. If only the interval itself were to be considered, the lowest cost decision would always be to
discharge completely and sell energy back to the grid, if possible.

1.1. Research specifications
As was mentioned earlier in this chapter, the flow of energy between an end user and the grid is no longer a
one-way street. Before energy was bought from the grid whenever there was a demand. With the introduction
of smart grids, conscious decisions need to be made regarding the trading of energy with the grid. Because it
would be very time consuming for the users if they had to make this decision themselves for each time inter-
val, this process needs to be automated to make this decision for them. This software would need to make any
decision regarding the use of energy. It will need to decide whether energy is charged to or discharged from
a battery, and the amount of energy that will be traded with the grid. A mathematical optimisation method
should be implemented in this software to help make these decisions, such that the end user benefits from
it. In this thesis, several different optimisation methods will be compared to each other to determine which
should be implemented in the software.

The thesis written by S. van der Kooij [40] discussed the determination of an optimal charging strategy
with the use of the mathematical optimisation method dynamic programming. Dynamic programming uses
(predicted) data for the energy demand, amount of generated energy, and the buying and selling price of
energy for multiple consecutive upcoming intervals. With this data, a decisions for the next time interval is
made which will result in the lowest cost at the end of this set of time intervals. Once this decisions is made for
the next interval, it is executed. While this decision is being executed, the entire decisions process is repeated
for the next time interval. The number of future time intervals that are used for this determination is the same
for the decision of each time interval.

The research conducted by Van der Kooij created a good foundation for the use of dynamic programming,
but still had a lot of opportunities for future work such as the integration of a private renewable energy source.
The duration of a dynamic programming approach can be very large, which is not desirable when the charg-
ing decision must be made within a short time period. If the method were to be implemented for every day
use, there is a time limit of 15 minutes for making the decision for the next interval. Therefore, it was decided
to focus this research on the comparison of mathematical optimisation methods for the determination of
charging decisions for a private battery in a smart grid. The considered methods besides dynamic program-
ming are local search, tabu search, and simulated annealing. The different mathematical methods will be
compared to each other on run time and result. Formulating this results in the following research question:
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What mathematical optimisation method should be used
for making charging decisions for a private battery in a smart grid?

To support this research question, several subquestions have been constructed. Each of these subques-
tions will be the main focus of the upcoming chapters of this thesis, these being:

(1) What research has currently been conducted on the implementation of smart grids?

(2) How can the problem be mathematically defined?

(3) Can other existing mathematical optimisation techniques, besides dynamic programming, be imple-
mented to determine the optimal charging strategy for a battery?

(4) How do the considered implementations hold up in a simulation of a real-life case regarding run time
and result?

1.2. Witteveen+Bos
This research has been performed in collaboration with the company Witteveen+Bos. This is a consultancy
and engineering firm established in 1946 in the Netherlands. Their 19 offices are located in 11 countries in
Europe, the former Soviet Union, and Southeast Asia. Their clients consist mainly of governments and other
companies and they specialise in projects regarding water, infrastructure, environment, and construction.
The internship was carried out at the section Smart Infra Systems. [44].

1.3. Structure
This thesis will be structured as follows. First, in chapter 2, a literature study for this thesis will be presented.
This will include the current developments in the area of smart grids, research that has been conducted, the
challenges that need to be overcome before smart grids can be implemented, and a short overview of research
specific to charging strategies of batteries in a smart grid. This overview is followed by an introduction to the
variables necessary to describe the process in a mathematical problem definition in chapter 3. In chapter 4,
a description is given of the four mathematical optimisation methods that will be compared on run time and
results. These methods are dynamic programming, local search, tabu search, and simulated annealing. These
methods will be tested and compared to each other with the use of simulations and real-life data, this will be
described in chapter 5. Lastly, chapter 6 will contain the conclusion and recommendations for future work
regarding this thesis.



2
Literature study

The amount of research regarding smart grids has been steadily increasing over the years. However, there is
still a long way to go before it can be fully implemented. In this chapter an overview of research relevant for
this thesis is presented. First, a short history of energy generation in the Netherlands is given, including the
goals set for the future. Next, several energy sources will be described and their renewability will be discussed.
This is followed by a short description of the changes that will need to be made with the implementation of
smart grids and a synopsis of smart grid initiatives that have been implemented in the Netherlands. Each
of these initiatives highlighted the challenges that need to be overcome before smart grids can be fully inte-
grated, including the current laws and regulations that limit the implementation. The chapter is concluded
by a short outline of conducted research regarding the use of dynamic programming for the decision-making
for private batteries in a smart grid.

Figure 2.1: Electricity production percentages in the Netherlands [4]

2.1. Electricity in the Netherlands
The first public power supply in the Netherlands was put into use in 1884 in Rotterdam; a set of batteries was
used to light a few buildings. Two years later, in 1886, the first official power plant was opened, a coal pow-
ered steam engine connected to two dynamos located in Kinderdijk. A year later, the regional energy compa-
nies united first under ‘Samenwerkende Electriciteits Productiebedrijven’ (Cooperating Electricity Produc-
tion Companies) and in 1998 under its successor TenneT. The latter was a consequence of the introduction
of the Electricity Law that secured the liberalization of the electricity market. This law stated that everyone

5
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was free to choose their own energy supplier and that there was one company, TenneT, that took care of the
network management. [41]

Over the years, the amount of renewable energy that is being generated has increased. However, fossil
fuels still covered over 80% of the total generation in 2016, see figure 2.1. [4] It is predicted that in less than
100 years the world will have run out of most of its fossil fuels, but the demand for energy will not have
decreased. Thus, there is still a long way to go to satisfy the ever-increasing demand for energy. [36]

Currently, the government, companies and citizens are investing in renewable energy sources. It is the
goal of the Dutch government to increase its national renewable energy percentage to 14% by 2020 and 16%
by 2023. [37]

2.1.1. Selling energy to the grid
With the rise of the private generation of energy, the users had to buy less energy from the grid to cover their
usage. However, when the owners of the source are at work or on a holiday, not all the energy that is being
generated may be used. This excess energy can be sold back to the grid, such that other users can use it and
it will not go to waste. The price for this sold back energy had to be determined.

Currently, for small and medium enterprises, and households, the energy that is sent back into the grid is
registered and subtracted from the total amount of energy taken from the grid to determine the eventual bill.
This is called net metering. [22] However, for larger companies, net metering is not possible. They already
receive a feed-in tariff per kWh they send back into the grid. When at the end of a billing period, the client
has generated more energy than they have used, they will receive a feed-in tariff per kWh they have sent back
into the grid. This tariff varies per energy provider. [21]

The original plan was for net metering to be possible up until 2023. However, due to the large increase
in acquisition of private renewable energy sources the cost of this has highly increased. So, this arrangement
will be in existence until 2020, after which the feed-in tariff will hold for all the (produced) energy that is
being sent back into the grid. [22] When this tariff holds, the purchase of a battery for private usage becomes
profitable when an algorithm is implemented that has as a goal to maximize the total reward.

To anticipate this change to a feed-in tariff for all customers, it is implemented in this thesis. The reward
for selling energy back to the grid is lower than buying energy from the grid, the reward depends on the
amount that is sent back into the grid and the energy supplier. Each supplier is free to set its own tariff, most
set this tariff to be equal to the bare energy price. [21]

2.2. Energy sources
Currently, fossil fuels is the main source for energy generation. However, due to the fact that the resources
can not be reused, other renewable energy sources are considered to take its place, see definition 2.1.

Definition 2.1 A RENEWABLE ENERGY SOURCE is an energy source that will not run out or will be replenished
in our lifetime. [24]

To compare the different energy sources to each other, a capacity factor is determined, see definition 2.2.
An overview for the capacity factors for renewable energy sources can be found in table 2.1. Nuclear and
coal fired power plants have the highest capacity factor, thus are the most efficient sources. However, these
methods are not entirely renewable, thus alternatives with a lower capacity factor need to be considered.

Definition 2.2 A CAPACITY FACTOR is the percentage of the theoretical maximal output that is generated by an
energy source. [8]

Solar panels are a renewable energy source, however they have the lowest capacity factor of all these
energy sources. This is because its generation is completely dependent on both the amount of sun that shines
on them throughout the day, and the orientation and location of the panels. [39]

Wind turbines are also a renewable energy source and they can generate energy throughout the entire
day, as long as there is wind. However, due to zoning regulations they can be forbidden to install. [39]

Biomass that is left over from production processes in for example the agriculture, can be used to generate
biogas, which can then be employed to generate heat. However, the biogas must be converted to green gas
before it can be sent back into the natural gas network, which makes the process more complex. Biogas is
considered to be a renewable energy source. [16]

With cogeneration, both electricity and heat are produced at the same time from one single fuel. This
fuel could be natural gas, fuel oil, or pellets. By generating multiple energy types, the energy source is used
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Generation type Capacity factor

Solar panels 10-25%
Wind turbines 25 %
Combined cycle gas plant 38%
Cogeneration 40%
Hydroelectric power plant 40 %
Coal fired power plant 80%
Nuclear power plant 89%

Table 2.1: Capacity factors of different type of energy sources [25], [29]

more efficient than without cogeneration. If the gas used with the cogeneration is green, then the generation
is completely free of CO2. [16] The renewability of cogeneration depends on the type of fuel that is used. Gas
fired plants are not renewable, however biomass fueled plants are renewable. [43]

In order to be able to generate renewable energy with hydro power, a source of flowing water is necessary.
The amount of energy that is generated depends on the amount of water and the vertical distance that it
travels. This source can generate a steady amount of energy through the entire day. [39]

Energy is generated in coal fired power plant by burning coal, this is a non-renewable energy source since
the coal can not be used again after the burning. It impacts the environment due to air and water pollution.
[15]

A nuclear power plant harvests powerful energy in the core of an atom, nucleus, by splitting it. The energy
itself is renewable, however the materials that are used in the plants are not. [24]

For businesses, the Dutch government has in 2018 a budget of e100 million to subsidies the installation
of renewable energy sources. The amount that is received is dependent on the type of device that is installed.
This amount varies between e500 and e2500. [32]

2.3. Smart Grids
As stated above, over 80% of the current electricity production is still generated by fossil fuels. Unlike most
other energy sources, this production is independent of environmental influences. Because of this, the pro-
duction of electricity is demand based, which means that end users can turn on any appliance requiring
electricity at any time and the production will increase to meet this demand. Most renewable energy sources,
on the other hand, are dependent of environmental circumstances such as wind power and cloud cover for
their generation. They are therefore supply based. This means that the electricity production cannot easily
be increased to meet any increase in demand there might be. The generation of energy will also no longer be
located at a few select factories, but spread out over multiple locations in the country. [41]

To handle this change in the system, the energy grid will have to undergo a transformation to keep up.
This envisioned new energy grid is called a smart grid. Currently, a lot of research is being conducted to
determine how such a smart grid would function in the best possible way.

2.4. Initiatives in the Netherlands
The most recent practical experiments with smart grids in the Netherlands were conducted between 2011
and 2015. [30]. This set of twelve projects was overseen by Innovative Program Intelligent Nets (IPIN), the two
main contributors involved with these projects were AgentschapNL and ‘Rijksoverheid voor Ondernemend
Nederland’ (government for entrepreneurial Netherlands). These so called ‘experimental gardens’ covered
different areas of society where possibilities for the implementation of smart grids are present. [1] Because
these were some of the first experiments that took place in the Netherlands, their scope was very broad.
However, the results did paint a clear picture of where the bottlenecks for general implementation are located.
An overview of these projects and their respective market areas can be found in table 2.2.

The category ‘Energy control systems and services’ contains the projects that focus on implementing new
systems for the use of smart grids, while the category ‘Flexible energy infrastructure’ contains projects that
experiment with the infrastructure to implement the use of smart grids.

Below follows a short description of each of the projects and their results are presented.
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XXXXXXXXXXXXXXX

Products
and services

Markets
Domestic and
consumers

Domestic and
business

Business and commercial
including grid
management

Industrial

Energy control
systems and
services

Couperus
Heijplaat
Lochem
PMC2
YESCON
Texel

INZET
ProSECco

EVANDER

Flexible energy
infrastructure

DeCent
TU Delft

MODIENET

Table 2.2: IPIN experimental gardens market combinations [31]

2.4.1. Energy control systems and services
Domestic and consumer
In the domestic and consumer market area, six experimental gardens were constructed, Couperus, Heijplaat,
Lochem, PMC2, YESCON and Texel. [1]

• Couperus is a newly constructed residential complex that does not contain gas pipes, the houses are
heated with the use of a collective geothermal storage and individual heat pumps.

• Heijplaat is a residential area in Rotterdam that is transformed into a sustainable and energy-neutral
district. A key element of this project is the usage of a feedback system, price incentive and active
steering to optimise the energy usage.

• The experimental garden LochemEnergie actively involves the participants to balance the supply and
demand of (sustainable) energy. With this cooperation the process of optimising energy usage is a lot
smoother than without.

• PowerMatching City II (PMC2) is a continuation of the earlier project PowerMatching City, it validates
the empirical value of smart grids and provides insight in the demands and wishes of end users.

• Your Energy moment: Smart Grid with the Consumer (YESCON) is situated in the newly build residen-
tial area Muziekwijk in Zwolle. Each of the houses is equipped with solar panels, facilities for electrical
vehicles and smart appliances that can remotely be turned on and off based on the current energy
usage.

• Cloud Power Texel is an initiative that has as goal to make its users and their community completely
independent of the main electricity grid by only using the energy generated by their own renewable
sources and sharing this with each other.

One of the main conclusions of these projects is the importance of user participation. Keeping them en-
gaged and interested in the innovations results in a smoother transition and implementation of smart grids
within the communities. [31]

Domestic and business
Two experimental gardens were implemented in the domestic and business market area, INZET and ProS-
ECco. [1]

• Intelligent Network Zeewolde and Energy Transition (INZET) is an initiative that has as goal to locally
use the locally generated energy from the several sustainable energy providers. The lack of generation
due to insufficient weather conditions are compensated with the use of bio gas.

• In Experimental garden Smart Energy Collective & Co (ProSECco) two main services were delivered;
flexibility in energy and the necessary information, which are integrated with the technologies present
at the locations to optimise the overall usage. This project was implemented at multiple locations
in different environments. These were Schiphol theGROUNDS (industry), Siemens and ABB (offices),
Gorinchem (all-electric residential), Heerhugowaard (gas and electricity residential) and Goes (district
heating residential).
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The above initiatives have a lot of potential, however, they encounter difficulties due to the current laws
and regulations. [31] In subsection 2.4.3 this is explained in more detail.

Business and commercial including grid management
The project EVANDER is situated in the business and commercial market area. [1]

• Electric Vehicles And Distributed Energy Resources (EVANDER) focuses on the integration of the (dis)charging
possibilities of electric vehicles and other storage systems. The excessive energy is to be traded with
other companies.

Just as for several other experimental gardens, the current laws en regulations restrict a proper implemen-
tation, see subsection 2.4.3. [31]

2.4.2. Flexible energy infrastructure
Business and commercial including grid management
In the business and commercial market area, two other projects were executed, DeCent and TU Delft. [1]

• The project DeCentralized electricity grid agriculture on direct current (DeCent) is located in the sus-
tainable agriculture area PrimA4a close to Schiphol, with the use of wind and solar power a direct cur-
rent grid is constructed and used to power the area.

• Intelligent heat net campus TU Delft uses the existing facilities to construct a geothermal grid for the
heating the campus.

With both of the projects good results have been achieved and could be extended to cover a lager area. [31]

Industrial
The last project, MODIENET, is located in the industrial market area. [1]

• Modular Intelligent Energy network for business parks (MODIENET) focusses on the demand control
of companies using their predicted flexibility.

Just as for several other experimental gardens, the current laws en regulations restrict a proper implemen-
tation, see subsection 2.4.3. [31]

2.4.3. Laws and regulations in the Netherlands
Currently, there are not many possibilities for the implementation of smart grids due to restrictions by the
law. [31] First off, there is a need for more flexible network management. The European law has exceptions
that allow for these implementations. However, the Dutch law is more restricting and therefore limiting possi-
bilities for more flexibility. Secondly, there are the storage regulations. Many possibilities exist for the private
storage of energy. In contrast, no clear regulations for storing energy in a public setting exist. Third is the
fact that mediation by a larger energy supplier is necessary for small users to trade energy among themselves.
Also, the energy suppliers have a big influence on the taxes that must be paid over the generation of energy.
Furthermore, it has been indicated by users that they want one set of rules for each location of self-generating
energy, whether this is at home, communally with other users, or at a third party. Lastly, different energy me-
ters have occasionally different functionalities. However, it is currently impossible for users to decide which
energy meter they want installed in their house, as these meters are provided by the energy supplier. They
can install an additional one of their own, which leads to higher cost and potentially not always to the com-
plete set of desired functionalities. [34] Thus, there is still a long way to go before smart grids can be fully
implemented while following the current (Dutch) law.
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2.5. Battery charging strategies
A significant part in the implementation of the private generation of renewable energy is determining what
to do with the generated energy that is not being used by the producer. This energy can be sold back into
the grid or it could be stored in a battery. In this thesis, several methods will be compared to each other on
run time and results for the decision-making considering charging or discharging a private battery in a smart
grid. The first method considered is the application of (stochastic) dynamic programming. When optimising
with dynamic program, the final solution will be optimal in regard of the objective function. Van der Kooij
started researching the implementation of this method in his thesis. Therefore, this was chosen as the first
method. Below follows a brief description of the method and the situation cases that were considered in the
aforementioned thesis. In chapter 4 the method is discussed in more detail and in section A.1 a numerical
example is presented.

2.5.1. Dynamic Programming
In the thesis written by Van der Kooij, the application of (stochastic) dynamic programming for the determi-
nation of charging decisions for a battery in a smart grid is researched. For this he considers three cases, each
an elaboration of the previous one.

Dynamic programming breaks a problem down in easier to solve, smaller (decision) problems. By solving
each of these smaller problems only once, and storing the solutions so that they can be called upon when
encountered a next time, the solution with the optimal reward is determined. In this case the decision prob-
lem is solved for each time period to either charge or discharge the battery and by which amount, given the
current state.

Three cases were considered in the aforementioned thesis:

Case 1. Stand-alone battery model
In this case, a household has a battery that can be (dis)charged in discrete steps in both time and charge.
It is assumed that the energy is bought or sold on the market in such insignificant quantities that it does
not influence the price. For each hour the decision is made for the amount of energy that will be (dis)
charged from the battery, the energy prices are fixed.

Case 2. Home battery model
This model is an elaboration of the previous model. The household now also has a (fixed) demand and
a smart electric vehicle that also needs to be charged. The energy from the battery can be used to satisfy
this demand at a later point in time.

Case 3. Price maker model
This model is again an elaboration of the previous models. Now the battery is considered a price maker:
its charging decisions influence the energy price. This can either be because it is large enough to have
an influence on the system, or it is a collective group of batteries following the same decision pattern;
they are a price maker together. In each of these cases, the decision also has to be made to either
optimise for the users own benefit or the collective benefit of all the users combined.

This research leaves a lot of room for further research, by adding uncertainty in the demands, adding
taxes for price makers, constructing a price function, or adding private generation of renewable energy. This
method will be the first to be considered in this thesis. However, due to its potential to be time-consuming,
other (faster) methods will be considered as well.

For the rest of this thesis, it is assumed that the consumer is not a price maker. Therefore, Case 2 will be
used as a starting point for the comparison of the different optimisation methods. This case will be extended
with a private energy source. The aspects of this case will be elaborated in chapter 3. In chapter 5 all the
methods described in chapter 4 will be tested with this case and compared to each other on result and run
time.



3
Problem definition

Before any method can be implemented, the problem needs to be defined mathematically. The goal of solving
the problem is to determine when to charge or discharge a private battery to minimise the energy bill at the
end of the month. This time period of one month is discretised in intervals of 15 minutes: T = {t1, . . . , tn}.
For each of these intervals, a decision needs to be made for the usage of the battery. Whether to charge or
discharge energy to it, or to not use it at all. If energy is (dis)charged to the battery, this amount of energy also
needs to be determined.

In this thesis, the problem setting will be an office building with a private energy source and facilities to
charge an electrical vehicle. However, the problem definition would still hold if all the variables were to be
scaled up or down. Therefore, it is also applicable to any building with a private energy source, a private
battery, a demand an a connection to the grid.

This chapter will start by introducing the variables and their restrictions to define this problem. This is
followed by some example situations. The chapter will be concluded with the mathematical definition of the
problem.

Grid

Battery

Demand

Private source

Figure 3.1: Schematic representation of the energy flow between the elements within an end user

3.1. Problem variables
The variables will be divided into two categories, independent and dependent variables. Independent vari-
ables are given (or estimated) at the start of the method, while independent variables have to be calculated
with the use of other variables. When an independent variable has the same value for each of the time in-
tervals, it is declared to be fixed. If a variable would need to be estimated, an uncertainty to this estimation
would be in place. In this chapter it will be indicated which variables would have this uncertainty, however,
for the rest of this thesis, the uncertainty will be ignored.

11
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In figure 3.1 a schematic flow chart of all the aspects of the problem can be found. In the rest of this
chapter all of these aspect will be highlighted and explained in more detail.

3.1.1. Independent variables

Grid

Battery

Demand

Private source

Figure 3.2: The energy demand of the end user

The first aspect of the problem to be discussed is the demand of the customer for each time interval t ,
this can be separated into the demand for the charging of electrical vehicles (EVs), vt and the rest of the
users energy demand, dt . This separation is made because of the potential of the electrical vehicles to be
used as an additional battery from which energy could be discharged. In this thesis this possibility will not be
considered, but for future research this variable is separated. Both of these demands should be real and larger
than or equal to 0. The demand can not be known in advance with complete certainty, but can be estimated
on prior usage or an indication of the user.

dt , vt ∈R≥0 ∀t ∈ T (3.1)

In figure 3.2 the demand aspect is indicated in black. The demand can be satisfied with energy from the
private source, with energy discharged from the battery or energy bought from the grid. Therefore, the sum
of the energy flow of the arrows entering the demand node should be equal to the total demand. The values
of the energy flow of each of the arrows is not known in advance, these will be discussed in the next section.

Grid

Battery

Demand

Private source

Figure 3.3: The renewable energy generation by the end user

The next variable is the amount of energy that is generated for each time interval. This variable is indi-
cated by g t and should be real and larger than or equal to 0. The type of energy source does not need to
be specified, only the generation per time interval. The generated amount of energy can be predicted, for
example for solar panels this can be based on the weather forecast.
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g t ∈R≥0 ∀t ∈ T (3.2)

In figure 3.3 the generation aspect is indicated in black. The generated energy can be charged to the
battery, sold back to the grid, or used to meet the demand. Therefore, the sum of the energy flow of the
arrows leaving the private source should be equal to the generation. The values of the energy flow of each of
the arrows is not known in advance, these will be discussed in the next section.

Grid

Battery

Demand

Private source

Figure 3.4: The specifications of the private battery

A battery is introduced in the problem to store the leftover generated energy for later usage. Currently,
there exist multiple options when choosing a battery and due to the unknown possibilities of the future. The
properties of the battery are implemented as variables to make sure it can be easily adapted for each type of
battery. Five of the battery variables will introduced in this section.

In figure 3.4 the battery aspect is indicated in black. Because these variables are all properties of the
battery, no energy flow arrows are indicated. The energy flow of the arrows connected to the battery will be
discussed in the next section.

First up is the maximum capacity of the battery. This is the maximum amount of energy that can be stored
within, this is indicated by xmax . This value is fixed for each time interval and should be real and larger than
or equal to 0. The battery charge at the start of a time interval t is indicated by xt and should be a real number
between 0 and xmax . The value of xt is known with certainty at the start of interval t . However, the charging
decisions are made prior to the start of the interval, thus the value is not known with complete certainty. The
values at the start of previous intervals is known, as is the charging decision that is made for the previous
interval. Combining these will give a close estimate to the value of xt .

xt , xmax ∈R≥0 ∀t ∈ T (3.3)

xt ≤ xmax ∀t ∈ T

Definition 3.1 The MAXIMUM (DIS)CHARGING SPEED is in this thesis defined as the maximum amount of en-
ergy that can be (dis)charged to a battery during one time interval.

Besides the maximum capacity, each battery also has a limit on the (dis)charging speed, definition 3.1,
defined as umax . This value is the same for the charging and discharging of the battery. This is a fixed variable
and should be real and larger than or equal to 0. The value of umax is known in advance. In real life, the
(dis)charging of the battery is continuous, however for the simulations in this thesis it is discretised with a
small step size, ustep . This indicates the minimum amount of energy that is (dis)charged to the battery, if it is
(dis)charged at all. This step size is fixed and should be real and between 0 and umax , equation 3.4.

ustep ∈R
umax ∈R≥0 (3.4)

0 ≤ ustep ≤ umax
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The last independent variable of the battery is the round-trip efficiency η. It indicates the ratio between
the amount of energy stored in the battery and the amount of energy retrieved from the battery. This differ-
ence exists due to the conversion to DC-current for a battery and back to AC-current for the grid, and the loss
of energy in the chemical process of storing and withdrawing energy in the battery. This variable is fixed and
should be real and between 0 and 1.

The round-trip efficiency of the battery is taken into account by taking
p
η with both charging and dis-

charging of the battery. This will result in a total round-trip efficiency of η. For example, if η = 0.16 and
10kW h is charged and then discharged to the battery, then the resulting amount of energy should be equal
to 0.16×10 = 1.6. If this is divided over both the charging and discharging by multiplying by

p
η=p

1.6 = 0.4,
then this would result in 0.4×10 = 4 after charging and 0.4×4 = 1.6 after discharging.

η ∈R (3.5)

0 ≤ η≤ 1

The last independent variables to be introduced are those relating to the energy price. The bare price of
energy for a time interval t will be indicated by pt . The VAT is indicated by γ, if for example the VAT is equal
to 10%, then γ = 1.10. The fixed tax cost per kW h is indicated by τ, this consists of both the energy tax and
the tax for the storage of renewable energy. All of these variables should be real. The value of pt is known with
certainty shortly before the relevant time interval and γ and τ are fixed should be larger than or equal to 0.

pt ∈R ∀t ∈ T (3.6)

γ,τ ∈R≥0

In table 3.1 an overview of all the independent variables and their unit is given. The next section will intro-
duce and discuss all the dependent variables that need to be calculated with the use of other variables. When
the independent variable contained some uncertainty, then this uncertainty is passed on to the variables that
depend on it.

Symbol Description Unit

dt Demand of devices at time interval t ∈ T kW h
vt EV demand at time interval t ∈ T kW h
g t Amount of energy generated at time interval t ∈ T kW h
xt Battery charge at the start of time interval t ∈ T kW h
xmax Total capacity of battery kW h
ustep Step size of the (dis)charging of energy kW h
umax Maximum amount of energy that can be charged to the battery in one time interval kW h
η Round-trip efficiency
pt Energy price at time interval t ∈ T e/kWh
γ VAT
τ Fixed tax cost e/kWh

Table 3.1: Independent variables

3.1.2. Dependent variables
The first dependent variable is the amount of energy that is (dis)charged to the battery during time interval t ,
it is indicated by u(t ) and is a real number. This variable has a range of possible values. This range is defined
by a lower and upper bound for each time interval t , these are indicated by LBt and U Bt respectively. For
the lower bound of this range, the battery can not be discharged more than its current charge or more than
umax . For the upper bound of this range, the battery can not be charged more than its capacity or more than
umax . As stated above, the charging of the battery would be continuous in real life. However, in this thesis it
is discretised in steps of ustep , this results in equation 3.7.
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LBt = max{−umax ,−xt } ∀t ∈ T

U Bt = min{umax , xmax −xt } ∀t ∈ T (3.7)

u(t ) ∈ [LBt : ustep : U Bt ] ∀t ∈ T

Grid

Battery

Demand

Private source

Figure 3.5: (Dis)charging of the private battery

In figure 3.5 the arrows that influence the value of u(t ) are highlighted. The arrows exiting the battery
indicate the discharging of the battery and have a negative value. The arrows entering the battery indicate
the charging of the battery and have a positive value. The arrows exiting the battery indicate the discharging
of the battery and have a negative value. The variable u(t ) is equal to the sum of the values of these arrows.

As stated above, xt is the battery charge at the start of interval t and u(t ) is the amount of energy that is
charged to the battery during interval t . Thus, the battery charge at the start of interval t +1 is equal to the
sum of these two variables.

xt+1 = xt +u(t ) ∀t ∈ T (3.8)

Grid

Battery

Demand

Private source

Figure 3.6: Trading energy with the grid

The next dependent variable is the amount of energy that is traded with the grid at each time interval t ,
this is indicated by a(t ). This value is what is leftover when the demand is subtracted from the generation
and settled with the (dis)charging of the battery. If the remaining amount is positive, then more energy is
necessary to meet the demand or charge to the battery, thus this is bought from the grid. If the remaining
amount is negative, then this is excess energy that is sold back to the grid. As stated in the previous section, the
round-trip efficiency of the battery is taken into account by multiplying with

p
η. This results in equation 3.9.
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R 3 a(t ) =p
ηu(t )+ vt +dt − g t ∀t ∈ T (3.9)

In figure 3.6 the arrows that influence the value of a(t ) are shown. The arrows exiting the grid indicate the
buying of the battery and have a positive value. The arrows entering the battery indicate the selling of energy
and have a negative value. The variable a(t ) is equal to the sum of the values of these arrows.

Next up is the buying and selling price of the energy that is being traded with the grid. The buying price
of energy, pB (t ) depends on the bare energy price and the taxes and is represented in equation 3.10.

R 3 pB (t ) =
{
γpt +τ if pt > 0
pt +τ if pt ≤ 0

∀t ∈ T (3.10)

In chapter 2 the difference between net metering and a feed-in tariff was explained. In this thesis, a feed-
in tariff will be used to determine the selling price of energy. Most energy suppliers use the bare energy price
as a feed-in tariff, thus this will also be used in this thesis. This results in equation 3.11.

R 3 pS (t ) = pt ∀t ∈ T (3.11)

The last aspect of the problem definition, is the objective function. The eventual result of making de-
cisions for charging the battery is located in the energy bill at the end of the month, this is determined by
calculating the cost for each interval t . Thus, the objective function is defined as minimizing the sum of the
cost of the trading with the grid of each time interval t . Thus, for each interval either the amount of energy
bought from the grid is multiplied with the buying price or the amount of energy that has been sold back to
the grid is multiplied with the selling price, this results in equation 3.12.

R 3C (t ) =
{

a(t )pB (t ) if a(t ) > 0
a(t )pS (t ) if a(t ) ≤ 0

∀t ∈ T (3.12)

In table 3.2 an overview of all the dependent variables and their unit is given.

Symbol Description Unit
u(t ) Amount of energy that is charged to the battery at time interval t ∈ T kW h
a(t ) Amount of energy traded with the grid at time interval t kW h
pB (t ) Price of buying energy from the grid at time interval t e/kW h
pS (t ) Price of selling energy back to the grid at time interval t e/kW h
C (t ) Cost of trading with the grid at time interval t e

Table 3.2: Dependent variables
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3.2. Example situations
To illustrate the possible energy flows, this section includes four example situations. First up is a situation
where the private energy source generates enough energy to meet the demand and the excess energy that has
been generated is stored in the battery for later usage, see figure 3.7.

Grid

Battery

Demand

Private source

Figure 3.7: Example: meeting demand with energy from the private source and the excess is charged to the battery

Next up is the case when the private source does not generate enough energy to meet the demand. Now
energy is being discharged from the battery to cover this lack of energy, see figure 3.8.

Grid

Battery

Demand

Private source

Figure 3.8: Example: meeting demand with energy from the private source and by discharging the battery
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When no energy is being generated by the private source, for example with solar panels at night time, then
energy can be bought from the grid to meet the demand. At night, the energy cost is low, thus extra energy
can be bought and stored to the battery for later usage when the energy prices go up again, see figure 3.9.

Grid

Battery

Demand

Private source

Figure 3.9: Example: meeting demand with energy from the private source and by buying from the grid, extra energy is bought to charge
to the battery

However, if the energy source is not producing energy when the prices are very high, then it would be a
more profitable decision to use energy that had been stored in the battery to meet the demand. Energy from
the battery can then also be sold back to the grid for a higher profit, see figure 3.10.

Grid

Battery

Demand

Private source

Figure 3.10: Example: meeting demand with energy from the private source and selling the excess back to the grid
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3.3. Mathematical problem definition
Combining the variables and formulas given in the previous section results in the minimisation problem
described in equation 3.13. For this definition holds u = (u (t1) , . . . ,u (tn)).

To recap, the goal of the problem was to minimize the total cost at the end of the month. Therefore, the op-

timisation problem is a minimisation and the objective function is
∑

t∈T C (t ) with C (t ) =
{

a(t )pB (t ) if a(t ) > 0
a(t )pS (t ) if a(t ) ≤ 0

.

One of the main requirements, is for the energy demand to be met. This energy can be generated by the
private energy source, discharged from the battery, or bought from the grid. When there is an excess of energy,
this can be stored in the battery or sold back to the grid. In the end, no energy can be lost, which results in
the equation: a(t )−p

ηu(t ) = vt +dt − g t .
The charge of the battery at the start of an interval is equal to the charge of the battery at the start of the

previous interval combined with the (dis)charged amount: xt+1 = xt +u(t ).
The charge of the battery should be larger than or equal to 0 and smaller than or equal to the maximum

capacity of the battery: xt ≥ 0 and xt ≤ xmax .
For the (dis)charging of the battery, a lower and an upper bound were set. The lower bound was

LBt = max{−umax ,−xt } and the upper bound was U Bt = min{umax , xmax − xt }. Therefore, four different
inequalities can be derived: u(t ) ≥−umax , u(t ) ≥−xt , u(t ) ≤ umax , and u(t ) ≤ xmax −xt .

The three variable that need to be determined for each time interval t ∈ T are a(t ), xt , and u(t ). Each of
these variables must be a real number. The charging of the battery is discretised for the simulations. However,
this is not incorporated in the mathematical problem definition, because this definition represents the real-
life problem.

minimize
u

∑
t∈T

C (t )

subject to a(t )−p
ηu(t ) = dt + vt − g t , ∀ t ∈ T,

−xt+1 +xt +u(t ) = 0, ∀ t ∈ T,

xt +u(t ) ≤ xmax , ∀ t ∈ T,

−xt −u(t ) ≤ 0, ∀ t ∈ T,

u(t ) ≤ umax , ∀ t ∈ T,

−u(t ) ≤ umax , ∀ t ∈ T,

xt ≤ xmax , ∀ t ∈ T,

−xt ≤ 0, ∀ t ∈ T,

a(t ), xt ,u(t ) ∈R, ∀ t ∈ T

(3.13)





4
Optimisation methods

In this chapter, four different mathematical optimisation methods will be introduced and adapted such that
they could be used to solve the problem presented in equation 3.13. These methods are dynamic program-
ming, local search, tabu search, and simulated annealing. The methods will be presented as minimisation
methods, because the problem discussed in this thesis is also a minimisation.

The goal for the use of these methods is to find a feasible solution, see definition 4.1, that minimises the
objective function (so the most profitable charging strategy) as fast as possible. Dynamic programming is
known to always give the optimal reward solution. However due to the fact that each possible battery charge
for each time interval is considered, it can take a very long time to compute. Heuristics methods are known
to have a shorter run time, but do not always give the optimal reward solution. Local search was chosen as
the first heuristic method due to the fact that it is simple to implement and if there are no local optima it will
always give the optimal value solution. Because tabu search is an extension of local search this was chosen as
the next method. Simulated annealing was chosen because of its reputation of being able to quickly solve for
large, discrete spaces. [45]

Definition 4.1 A SOLUTION is an ordered set of numbers that indicate the battery charge at the end of each time
interval. A solution is FEASIBLE when there is no negative charge, no charge larger than the maximum capacity
of the battery, and when the absolute difference between the charges of two consecutive time intervals is less
than the maximum charging speed.

The solution space of the problem, is represented as the set of possible battery charge values for each time
t . For the heuristic methods, the neighbours of a solution are considered, see definition 4.2. The neighbour-
hood of a solution S, N (S), is the set of all the neighbours of S. In figure 4.1 an example of a solution with all
its neighbours is represented, its neighbourhood.

Definition 4.2 A NEIGHBOUR of solution S is defined as a feasible solution that has a different battery charge
at one time t than S.

To keep the example simple, the starting charge, u0, is set to 0, xmax = 2, ustep = 1 and umax = 1. Therefore,
the possible decisions for each time instance are either charging by 1, discharging by 1 or doing nothing. The
red arrows in the neighbour images indicate the difference from the initial solution.

Now for each time interval the possible charging en discharging decisions will be discussed to determine
if they result in a feasible solution and therefore a neighbour.

• For the time interval 0, the charge u0 was fixed. Therefore, there are no neighbours with a different
charge for interval 0.

• Considering time interval 1. If the charge u1 were to be increased to 2, then it is an infeasible solution
because |u0−u1| = 2 > 1 = umax . If the charge u1 were to be decreased to 0, then |u1−u2| = 2 > 1 = umax .
Thus there are no neighbours with a different charge for interval 1.

21
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0 0 0 0

1 1 1

2 2

1 2 3

(a) Initial solution
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(b) First neighbour on t = 2
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(c) Second neighbour on t = 2

0 0 0 0

1 1 1

2 2

1 2 3

(d) Neighbour on t = 3

Figure 4.1: Example of a neighbourhood

• Next is time interval 2. If the charge u2 were to be increased to 3, then it is an infeasible solution because
u2 = 3 > 2 = xmax , |u1−u2| = 2 > 1 = umax , and |u2−u3| = 2 > 1 = umax . When the charge u2 is decreased
to 1 or 0, then these are feasible solutions, thus neighbours of the initial solution, see Figure 4.1b and
Figure 4.1c. If the charge of u2 were to be decreased to −1, then it is an infeasible solution because
u2 =−1 < 0, |u1 −u2| = 2 > 1 = umax , and |u2 −u3| = 2 > 1 = umax . Thus there are two neighbours with
a different charge for interval 2.

• Finally, time interval 3. When the charge u3 is increased to 2, a feasible solution is found, see Fig-
ure 4.1d. If the charge of u3 were to be increased to 3, then u3 = 3 > 2 = xmax and |u2 −u3| = 2 >
1 = umax . If the charge of u3 were to be decreased to 0, then it is an infeasible solution because
|u2 −u3| = 2 > 1 = umax . Thus there is one neighbour with a different charge for interval 3.

4.1. Dynamic programming
Dynamic programming starts at the last interval of the considered time period. For this interval, there exists
a set of possible charge values that the battery could have at the start of the interval. For each of these values,
a value at the end of the interval has to be determined. This is done by choosing the value that results in the
lowest cost. This determined change in charge and the cost are saved.

Then working backwards in time, each of the other intervals is considered. Again for each of the possible
charge values that the battery could have at the start of the interval, the value at the end of the interval is de-
termined. This time not only the cost for the current interval, but also the cost of all the subsequent intervals
have to be considered. The cost of the subsequent intervals for each value is already determined in previous
steps and can be taken from where it is stored. This new chain of battery charge values for each interval and
the total cost is saved again.

When all the time periods have been considered, the solution originating from the starting charge with
the lowest total cost is selected as the final solution. [45]

An algorithmic representation can be found in algorithm 4.1. In this algorithm, the function C (x) deter-
mines the cost value for the new charge x and Cost (i , j ) stores this value for interval i with starting charge j .
A numerical example of this method can be found in appendix A.1.
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Algorithm 4.1: DYNAMIC PROGRAMMING

P=number of time instances
i = T
for j = 0 : stepsi ze : xmax do

m− = max{−umax ,− j }
m+ = min{umax , xmax − j }
xi = j +argmink∈[m−,m+]{C ( j +k)}
Cost (i , j ) =C (xi )

end
for i = T −1 : −1 : 0 do

for j = 0 : stepsi ze : xmax do
m− = max{−umax ,− j }
m+ = min{umax , xmax − j }
xi = j +argmink∈[m−,m+]{C ( j +k)+Cost (i +1, j +k)}
Cost (i , j ) =C (xi )

end
end
return solution with the lowest cost C

4.2. Local search
The heuristic method local search starts with a (random) feasible solution to the problem and looks at its
neighbours for an improvement. The neighbour with the lowest total cost will then be chosen, but only if it is
lower than the total cost of the current solution. Then the neighbours of the new solution will be considered.
This process will be repeated until no improving neighbour can be found.[45]

The downside to this algorithm is the potential to end up in a local optimum. Where all of its neighbours
have a higher total cost, but there might exist a completely different solution with a lower total cost, that can
not be reached from this point.

An algorithmic representation can be found in algorithm 4.2. In this algorithm C (S) represents the total
cost of solution S. A numerical example of this method can be found in appendix A.2.

Algorithm 4.2: LOCAL SEARCH

Choose an initial solution S
while ∃P ∈N (S) st C (P ) <C (S) do

Set S = argminP∈N (S){C (P )}
end
return S

4.3. Tabu search
Tabu Search is an extension of local search. The difference between the methods can be found in the selec-
tion of the new solution to consider. For local search, the neighbour that improves the most on the current
solution is chosen. For tabu search, the neighbour with the lowest total cost is selected, even if it does not im-
prove on the current solution. During the entire process, the lowest cost solution that has been encountered
is saved and selected as the final solution. A stopping criterion is introduced to determine when to end the
method.

To prevent the possibility of entering a loop of solutions, recently visited solutions are declared ‘tabu’ for
a set amount of iterations. This is done to prevent getting stuck in a local optimum, such as the problem can
be with local search.[45]

The largest problem for this method is located in the way solutions are stored in the tabu list. Storing an
entire solution in the list and checking each of these can take up a lot of time. In this case, the altered time
interval is declared tabu. Therefore, any neighbour where this interval is changed has become tabu. This will
exclude the previous solution, but potentially some other neighbours as well. This larger set of tabu solutions
is tolerated in order to possibly prevent ending up in a local optimum.
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The number of problems that are tabu, the size of the tabu list, can cause problems as well. If there is no
limit on the size, or if it is just too big, checking the tabu list takes up a lot of time and it may occur that the
global optimum can’t be reached due to the tabu solutions blocking it. If it is too small, the tabu might not
prevent getting stuck in a local optimum.

If no stopping criterion is placed upon this method, it will run indefinitely. The stopping criterion can
either be a set number of iterations or a set number of iterations without finding an improvement for the
best solution. Two algorithmic representations can be found in algorithm 4.3, on the left it runs for a set
number of iterations, on the right until a set number of iterations without improvement on the best solution.
In this algorithm T L represents the list of tabu items, T Lmax the maximum size of this list, N (S) \ T L the
neighbourhood without the tabu solutions, and I the number of iterations for the stopping criterion. Both
of these stopping criterion will be considered when simulating tabu search as a comparison. A numerical
example of this method using the latter stopping criterion can be found in appendix A.3.

Algorithm 4.3: TABU SEARCH

Choose an initial solution S
Set Sbest = S, T L = {}, T Lmax , I
counter = 0
while counter < I do

S′ = argminP∈N (S)\T L{C (P )}
i = altered time state
Set S = S′
if C (S) <C (Sbest ) then

Sbest = S
end
counter ++
if si ze(T L) < T Lmax then

T L = T L
⋃

i
else

T L = T L(2 : end)
⋃

i
end

end
return Sbest

Choose an initial solution S
Set Sbest = S, T L = {}, T Lmax , I
counter = 0
while counter < I do

S′ = argminP∈N (S)\T L{C (P )}
i = altered time state
Set S = S′
if C (S) <C (Sbest ) then

Sbest = S
counter = 0

else
counter ++

end
if si ze(T L) < T Lmax then

T L = T L
⋃

i
else

T L = T L(2 : end)
⋃

i
end

end
return Sbest

4.4. Simulated annealing
Simulated Annealing is a heuristic method that is derived from nature. Heating a solid metal until it becomes
a liquid and then very slowly decreasing the temperature again results in a solid metal with neatly arranged
molecules. This method can be interpreted for this problem as over multiple iterations slowly approaching
the global optimum by at the beginning choosing the next solution almost at random and in the end only
choosing those whose total cost is better or not a lot worse than the total cost of the current solutions. Thus
it gravitates to solutions with a low total cost over time.

From a starting solution, a random neighbour is selected. If this neighbour has a lower total cost than the
current solution, it is chosen as a new solution. If it has a higher cost, it is chosen as the new solution with a
probability depending on the difference in total cost of both the solutions and how far along in the process
the check is being made. The further in the process, the lower the probability of choosing a worse solution.

The stopping criterion of the problem is dependent on four variables: a control parameter P , a stopping
criterion Pmi n , a set number of iterations M , and decrease variable α. For each value of P , M iterations are
executed, afterwards the value of P is decreased by multiplying it by α. This is repeated until P becomes
smaller than Pmi n . As the value of P decreases, the probability of choosing a worse solution decreases as
well. The smaller the difference between the total cost of the two solutions, the larger the probability of
choosing the neighbour as the new solution. [45] The values for P , Pmi n , M , and α are of large influence on
the running time and efficiency of the method. An algorithmic representation can be found in algorithm 4.4
and a numerical example of this method can be found in appendix A.4.
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Algorithm 4.4: SIMULATED ANNEALING

Choose an initial solution S
Set P , M , Pmi n , α
while P > Pmi n do

repeat
Randomly select S′ ∈N (S)
if C (S′) <C (S) then

S = S′
else

With probability exp
(−|C (S′)−C (S)|

P

)
, set S = S′

end
until M times;
P =α×P

end
return S

4.5. Comparison
In table 4.1, an overview of the methods is given with their specifications regarding result and run time.

Dynamic programming is a method that checks each of the possible solutions, and will therefore find
the global optimum. However, this might take a long time to compute. Local search looks from a starting
solution to similar solutions with a lower objective function, it stops when none can be found. This method
is not guaranteed to find the global optimum, it may end up in a local optimum. Tabu search is an extension
of local search. It will also consider solutions with a worse objective function, this is done to prevent ending
up in a local optimum. However, it still is not guaranteed to find the global optimum. A stopping criterion is
necessary for this problem and is, together with the specifications of the tabu list, of great influence on the run
time. Simulated annealing was the final considered method. It is based on annealing in nature and converges
to the global optimum, but is also not guaranteed to achieve it. The stopping criterion for simulated annealing
considers multiple variables, each of these variables influences the run time and the eventual solution that is
found.

PPPPPPPPMethod
Reward Run time

Dynamic programming Global optimum Depends on the size of the solution space

Local search
Local optimum
Potentially global optimum

Depends on the size of the neighbourhood

Tabu search
Local optimum
Potentially global optimum

Depends on:
- size of the neighbourhood
- stopping criterion
- size of the tabu list
- how tabu solutions are stored

Simulated annealing
Converges to global optimum
No guarantee

Depends on the stopping critertion
and therefore on the choice of variables

Table 4.1: An overview of the specifications of the methods presented in this chapter





5
Simulations

In the previous chapter, four methods have been described to determine the charging decisions when using a
battery in combination with a renewable energy source in a private setting. The goal is to minimize the total
cost of the solution. To compare the methods, they were programmed in MATLAB, several simulations were
run to determine the result and run time of the methods

This chapter will first describe the data that was used for these simulations and their sources. This is
followed by the specifications for the simulations that were run. Next are the variations in variables for each
of the methods that were simulated and their results. Based on these results, the methods are compared to
each other on run time and result and a conclusion is constructed for the applicability of the methods.

5.1. Data
For each of the methods, a program was written in MATLAB to run the simulations. They were all run on a
Lenovo Yoga 700-14ISK laptop. [17] The simulations were run with data for the month August of 2018, with
time intervals of 15 minutes. These simulations were run after the month had ended, thus all the data was
known with certainty. However, if the methods were to be implemented in real-life, then not all data would
be known and uncertainties would be in place. These uncertainties are not taken into account for these
simulations.

If one of these methods were to be implemented in real-life, a simulation would have to be run for at the
start of each of the time intervals to make sure the charging decisions are still concise with potential newly
added data. For a month with 31 days and time intervals of 15 minutes, this would be 2976 simulations for
that month. Simulations were run for different forecast time. For each forecast time, the time intervals of
the month are divided into sets of the size of this forecast time. A simulation is run for each of these sets,
thus each time interval is only considered in one simulation. For example, if the forecast time of 1 day is
taken, then a simulation is run for each day of the month. Thus 31 simulations in total. The methods will be
compared to each other on average run time per iteration and the sum of the cost of all the iterations.

All the independent variables need to be assigned before the simulations can be run. The first indepen-
dent variable is the demand of office building and the demand of charging electrical vehicles, dt and vt . For
the energy demand, the total usage of one of the buildings of Witteveen+Bos for August was used: 16,860
kWh. The usage for each interval of 15 minutes was not known. Therefore, this had to be approximated. The
‘Nederlandse Energie Data Uitwisseling’ (Dutch Energy Data Exchange) has defined a set of user profiles to
estimate the energy usage of customers for each 15 minute interval of every day. The profile of categories
E3B/E3C was chosen, because this encompassed the energy usage of the building. The data indicates for
each 15 minute interval of the year, the percentage of total annual usage. Because only August is considered,
the percentages are scaled to a month. [26] The data that is used for the simulations is visualized by figure 5.1.

For the demand of the charging of electric vehicles at the office, it is assumed that the company has the use
of one Engie BusinessLine. This is a charging hub that regulates and distributes energy over a set of electric
vehicles. It has a power of 11kW per hour, thus 2.75kW per 15 minutes, this is divided over all the vehicles
that are present. It is assumed that the first vehicle arrives at 07:00 and the last vehicles leaves at 18:00, at
night and in weekends, no vehicle is charging. [9] The data that is used for the simulations is visualized by
figure 5.1, the summed data of both of the demands is presented as well.

27
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Figure 5.1: Total energy demand of August 2018

The next independent variable is the energy generation, g t . The available generation data of renewable
energy sources for the Netherlands was known for intervals of 10 minutes, while the generation data of wind
power for Belgium was given for 15 minutes intervals. Since Belgium is located directly next to the Nether-
lands, it was assumed that the generated amounts would not be very different, thus the data from Belgium
was used. However, this data is the total amount of generated wind power of Belgium, thus it was first scaled
down from MW to kW and then divided by 20 to be a similar magnitude as the rest of the data. [7] The data
that is used for the simulations is visualized by figure 5.2.

Figure 5.2: Energy generation of August 2018

As a battery, the Tesla Powerwall 2.0 was selected. This is a battery specifically designed to store leftover
self-generated energy. This battery has a capacity of 13.5kWh, it has an efficiency of 90% and its power is equal
to 5kW. Thus the maximum (dis)charging speed is set to be 1.25kWh for each interval of 15 minutes. [38] The
battery charge at the beginning of the first day of the month is set to 0, simulating the case of introducing a
battery to an existing system. The starting charge at the start of each of the following days will be set to the
last charge of the battery of the previous day for continuity. An overview of the fixed variables for the battery
can be found in table 5.1.

Variable Value

η 0.90
xmax 13.5kW h
umax 1.25kW h
xst ar t 0kW h

Table 5.1: Values used for variables of the battery in the simulations
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The last variables that need to be assigned are the energy prices. The buying and selling price, pB (t )
and pS (t ), are dependent variables, however they depend only on a set of independent variables that will be
assigned in advance. The actual energy prices, pt , of this day in the Netherlands are taken. These prices are
per hour, thus for each of the 4 intervals of the hour, the same price is used. The price is given including
21% VAT, but excluding energy tax, which is set at 12.654 ct/kWh, and the tax for storage of renewable energy,
1.597 ct/kWh. The price without the VAT, pt , is calculated and the taxes are included as variables such that
the buying and selling price can be determined. An overview of the these fixed variables for the energy price
can be found in table 5.2. [6] The data that is used for the simulations is visualized by figure 5.3.

Variable Value

γ 1.21
τ 0.14251

Table 5.2: Values used for variables of the energy price in the simulations

Figure 5.3: Buying and selling price of energy of August 2018

For local search, tabu search and simulated annealing, a valid initial solution has to be determined. This
is set to be the solution where the battery is not used; nothing is charged or discharged from it. This solution
is always valid.

For several of the data variables, such as the energy price and the generation data, an uncertainty is in
place. This uncertainty becomes larger when the prediction is made for a moment further in the future. In
these simulations, it is assumed that all the data is known. Therefore is this uncertainty excluded.

5.1.1. Data variations
To compare these methods with each other, multiple simulations will be run. The comparison criteria will be
the run time and result. The simulations will vary from each other in forecast time and data ratios. If one of
these methods were to be used in real-life, the maximal duration of the method would have to be less than 15
minutes to be done in time for the upcoming interval. However, the run time is not only dependent on the
methods, but also on the computer it runs on. Thus, solutions found with any of these methods that exceed
this time limit will not immediately be discarded.

The first aspect of the methods that will be varied, is the forecast time. These simulations will be run
with the original data set. Due to the uncertainty of several of the data variables, the reliability of the results
becomes smaller when the forecast time increases. This is not taken into account when running the simula-
tions, but will be considered at the conclusion. The size of the neighbourhood depends on the forecast time,
thus the differences in run time should be clearly visible. The chosen forecast times are:

• 1 hour

• 12 hours

• 1 day
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• 1 week

• 1/2 month

• 1 month

Next is the ratio between the data for the demand, the energy price, and the generation. Because these
aspects have a big influence as well, these are varied for each simulation. The methods are compared for
seven simulations, with different variations for the generation and demand data, which will result in a differ-
ent ratios between the values of demand, generation and price. They are all run with the same forecast time
of 1 day. The different data variations and their abbreviation used in the tables are:

• The original data
(G D)

• The generation data is multiplied by 10
(G×10 D)

• The demand data is multiplied by 10
(G D×10)

• The generation and demand data are multiplied by 10
(G×10 D×10)

• The generation data is divided by 10
(G/10 D)

• The demand data is divided by 10
(G D/10)

• The generation and demand data are divided by 10
(G/10 D/10)

To illustrate these data ratio variations, consider this example for one time instance. Let the generation
be g = 8, the demand be d = 5, and the price be p = 3. In table 5.3 an overview of the values of each of these
variables can be found for the different data ratio variations. By varying only the generation and the demand,
the ratio between all three of the variables differs for each of the simulations.

hhhhhhhhhhhhhhhExample variables
Data ratio G

D
G×10
D

G
D×10

G×10
D×10

G/10
D

G
D/10

G/10
D/10

Generation (g ) 8 80 8 80 0.8 8 0.8
Demand (d) 5 5 50 50 5 0.5 0.5
Price (p) 3 3 3 3 3 3 3

Table 5.3: Example of the data ratio variations

5.2. Results
The variations in forecast time and data ratio are run for each of the methods and the results and run time are
rounded to integers. For each of these simulations, both the case of no battery usage and the worst case are
determined as a context. In the case of no battery usage, no energy is charged or discharged to the battery. Any
excess energy is directly sold back to grid and any energy shortage is covered by buying energy from the grid.
For the worst case, the battery is in use, but the charging decisions are determined that result in the highest
possible cost. Dynamic programming was used to determine this worst case, but with a maximisation instead
of a minimisation. These results can be found for the forecast time and data ratio variations in table 5.4 and
table 5.5 respectively.

In table 5.4, the total cost of the no battery case is for each of the simulations about the same value. This
makes sense because it uses the same data set for each of the simulations. The differences in cost are caused
by rounding errors. As stated earlier, the time intervals of the month are divided into set of the size of the
forecast time for the simulations. The methods are run for each of these sets, and therefore optimise for
this set. Therefore, the total cost for the worst case is maximized for each of these sets. Because the different
variations have different run times, this results in different total cost for each of the simulations. For a forecast
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````````````Case
Forecast time

1 hour 12 hours 1 day 1 week 1/2 month 1 month

No battery e1163 e1163 e1163 e1161 e1160 e1163
Worst case e1174 e1213 e1215 e1216 e1215 e1218

Table 5.4: Total cost in euros of the forecast time simulations with no battery and the worst case

XXXXXXXXXXCase
Data ratio G

D
G×10
D

G
D×10

G×10
D×10

G/10
D

G
D/10

G/10
D/10

No battery e1163 e-22808 e48146 e7581 e5351 e-1953 e566
Worst case e1215 e-22756 e48164 e7629 e5372 e-1878 e696

Table 5.5: Total cost in euros of the data ratio simulations with no battery and the worst case

time of 1 hour, only 4 time intervals are considered per simulation. Thus there are not a lot of possibilities
to differ this solution from the no battery case. However, with the other forecast times, the number of time
intervals do allow a greater difference from the total cost of the no battery case.

In table 5.5 a different data set is used for each of the variations, thus the results can not be directly com-
pared to each other. However, it is clearly visible that the total cost increases for the variations where the
ratio between the demand and generation results in a higher demand, and the total cost decreases for the
variations where the ratio between the demand and generation results in a higher generation.

The simulations described in the previous section are run for each of the methods. For dynamic program-
ming and local search, only one set of iterations has been run for each of the simulations because there is no
variation in variables possible. However, for tabu search and simulated annealing several variables have to be
chosen, thus multiple combinations of these variables are run to find the combination with the lowest total
cost and the lowest average run time.

For tabu search and simulated annealing, different variables are considered until either the total cost of
the solutions is ‘close enough’, see definition 5.1, or the run time exceeds the run time of dynamic program-
ming for the same simulation. The lowest possible cost will be the solution found with dynamic program-
ming, the highest possible cost is the worst case solution. For example, if the lowest possible cost is 0 and
the highest possible cost is 100, then a solution would be close enough if its total cost would be smaller than
or equal to 5. These close enough values will be determined in the next section when the total cost from
dynamic programming is known.

Definition 5.1 The result of a solution is considered to be CLOSE ENOUGH to the lowest possible cost if, consid-
ering the difference between the highest and lowest possible cost, the cost of the solution has a difference of less
than 5% from the lowest possible cost.

5.2.1. Dynamic programming
The first method to be considered is dynamic programming, this will always result in the solutions with the
lowest possible cost. The run times and cost for the forecast time variations can be found in table 5.6

````````````Result
Forecast time

1 hour 12 hours 1 day 1 week 1/2 month 1 month

Average run time 2s 49s 101s 836s 1806s 3239s
Total cost e1162 e1122 e1120 e1115 e1114 e1117

Table 5.6: Average run time in seconds and total cost in euros of the forecast time simulations for dynamic programming

Similar with the worst case, the total cost for the simulations for a forecast time of 1 hour does not differ
a lot from the no battery case. While for larger forecast times, there are more possibilities to differ from total
cost of the no battery case. The average run time of the simulations increases as the forecast time increases.
This is again to the fact that for larger forecast times, more time intervals are considered in a simulations and
therefore there are more solutions to be considered.

Now that the lowest possible cost for the forecast time variations are determined, the minimum cost val-
ues for a solution to be close enough can be determined. In table 5.7 these minimum values are given for
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each of the forecast time variation.

````````````Result
Forecast time

1 hour 12 hours 1 day 1 week 1/2 month 1 month

Minimum value e1163 e1127 e1125 e1120 e1119 e1122

Table 5.7: Benchmark values for the total cost to be close enough to the lowest possible cost for the forecast time simulations

In figure 5.4, the ranges of the cost for each of the forecast time variations are given. The dots represent
from left to right the lowest possible total cost as determined with dynamic programming, the close enough
benchmark, the total cost when no battery is used, and the highest possible total cost (worst case). When the
total cost of a solution is located between the two leftmost dots, then it is considered to be close enough.

Figure 5.4: The cost ranges for each of the forecast time simulations.
The dots represent from left to right: lowest possible cost, close enough benchmark, cost without a battery, and highest possible cost

The run times and cost for the data ratio variations can be found in table 5.8.

XXXXXXXXXXResult
Data ratio G

D
G×10
D

G
D×10

G×10
D×10

G/10
D

G
D/10

G/10
D/10

Average run time 101s 90s 117s 98s 117s 89s 102s
Total cost e1120 e-22853 e48131 e7537 e5335 e-1988 e528

Table 5.8: Average run time in seconds and total cost in euros of the data ratio simulations for dynamic programming

The average run times of the simulations do not differ a lot. Because all of them have the same forecast
time, the number of different solutions is the same. The small differences are caused by the differences in
values which result in different solutions.

Now that the lowest possible cost for the data ratio variations are determined, the minimum cost values
for a solution to be close enough can be determined. In table 5.9 these minimum values are given for each of
the data ratio variation.

XXXXXXXXXXResult
Data ratio G

D
G×10
D

G
D×10

G×10
D×10

G/10
D

G
D/10

G/10
D/10

Minimum value e1125 e-22848 e48133 e7542 e5337 e-1983 e536

Table 5.9: Benchmark values for the total cost to be close enough to the lowest possible cost for the forecast time variations

In figure 5.5, the ranges of the cost for each of the data ratio variations are given. The dots represent
from left to right the lowest possible total cost as determined with dynamic programming, the close enough
benchmark, the total cost when no battery is used, and the highest possible total cost (worst case). When the
total cost of a solution is located between the two leftmost dots, then it is considered to be close enough.
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Figure 5.5: The cost ranges for each of the data ratio simulations.
The dots represent from left to right: lowest possible cost, close enough benchmark, cost without a battery, and highest possible cost

5.2.2. Local search
For local search, one simulation was run for each forecast time and data ratio variation. The run times and
total cost for the forecast time variations can be found in table 5.10. The average run times that exceed those
of dynamic programming as presented in table 5.6 and the total cost that subceed the minimum values de-
termined in table 5.7 are made bold.

````````````Method
Forecast time

1 hour 12 hours 1 day 1 week 1/2 month 1 month

Average run time 0.03s 18s 133s 6583s - -
Total cost e1162 e1158 e1158 e1115 - -

Table 5.10: Average run time in seconds and total cost in euros of the forecast time simulations for local search

For the forecast time of 1 week, the average run time exceeds the run time of dynamic programming for
the simulations for 1 week, 1/2 month, and 1 month. Due to the fact that the run time of local search is longer
if the size of the neighbourhood becomes larger, it follows that the simulations for 1/2 month and 1 month
will also exceed the run time of dynamic programming. Thus these simulations are not run. For the forecast
times of 1 hour the total cost is close enough to the lowest possible total cost. However, for the other forecast
time variations, it is not.

In figure 5.6, scatter plots are presented for each of the simulation that were run. In these plot the total
cost is set out against the average run time. The horizontal line indicates the close enough benchmark and
the vertical line indicates the run time of the simulation with dynamic programming. Thus the goal is for the
solution to end up in the lower left corner.

The run times and total cost for the forecast time variations can be found in table 5.11. The average run
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Figure 5.6: Scatter plots of the results of forecast time simulations of local search.
The horizontal line indicates the close enough benchmark and the vertical line indicates the run time of the simulation with dynamic

programming.

times that exceed those of dynamic programming as presented in table 5.8 and the total cost that subceed the
minimum values determined in table 5.9 are made bold.

````````````Method
Data ratio G

D
G×10
D

G
D×10

G×10
D×10

G/10
D

G
D/10

G/10
D/10

Average run time 133s 97s 92s 79s 113s 98s 182s
Total cost e1158 e-22814 e48145 e7575 e5349 e-1956 e564

Table 5.11: Average run time in seconds and total cost in euros of the data ratio simulations for local search

For about half of the data ratio simulations, the run time exceeds the run time of dynamic programming.
The total cost of the simulations was in none of the variations close enough to the lowest possible cost.

In figure 5.10 at the end of this chapter, scatter plots are presented for each of the simulation that were
run. In these plot the total cost is set out against the average run time. The horizontal line indicates the close
enough benchmark and the vertical line indicates the run time of the simulation with dynamic programming.
Thus the goal is for the solution to end up in the lower left corner.

Thus for most of the iterations with local search, the run time exceeded the run time of dynamic program-
ming and the results are not the global optimum. A change in initial solution could improve on the result, but
finding this other solution would take extra time. Besides, there is no guarantee that a solution that quickly
finds the optimum for one simulation will also yield the same result in another simulation.

5.2.3. Tabu search
For tabu search there were two possible options for a stopping criterion: a total number of iterations (‘total
criterion’) or a number of consecutive iterations without finding an improvement on the lowest cost solution
found so far (‘unchanged criterion’). For both of these options the forecast time, the size of the tabu list and
the number of iterations can be varied.

For the size of the tabu list, three different options were considered: {0.25T,0.5T,0.75T }. Where T was
the number of time intervals. For each of these options for list size, the number of iterations were first set
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to 0.5T and simulations were run. Then the simulations were run with each time an increase of 0.5T for
the number of iterations until either the run time exceeded the run time of dynamic programming from the
respective simulations found in table 5.6 and table 5.8, or until the total subceeded the values from table 5.7
and table 5.9.

As stated before, tabu search is an extension of local search, it continues when local search stops in a local
optimum. One of two situations can occur. First, if the selected number of iterations is less than the number
of iterations necessary for local search to reach the local optimum, then the cost of the solution will be worse
than the cost of the solution found with local search. Due to the fact that the method is stopped before the
local optimum has been reached. With the exception of the forecast time of 1 hour, the cost of the solutions
found with local search are not close enough to the lowest possible cost. Thus the solutions found with tabu
search would also not be close enough. Second, if the selected number of iterations is more than or equal
to the number of iterations necessary for local search to reach the local optimum, then the run time of tabu
search will exceed the run time of local search. Due to the fact that more iterations are run, which requires
more time. Because for several of the simulations the run time of local search already exceeded the run time of
dynamic programming, it follows that the run time for tabu search will also exceed the run time of dynamic
programming. Therefore, there exists a set of simulations where for local search the run time exceeds the
run time of dynamic programming and the total cost is not close enough. For this set of simulations, no
simulations were run for tabu search.

It is clear that the simulations with the unchanged criterion will have at least as many iterations as the
simulations with the total criterion. Therefore, the run time for the unchanged criterion simulations will
exceed the run time for the total criterion simulations. Thus, if the run time for the total criterion simulations
already exceeds the run time of dynamic programming, then the simulations with the unchanged criterion
will not be run as they will also exceed this run time.

The average run time and the total cost for the forecast time variations and the data variations can be
found at the end of this chapter in table 5.12 and table 5.13 respectively. The average run time that exceeded
the run time of dynamic programming as presented in table 5.6 and table 5.8 and the total cost that subceed
the minimum values determined in table 5.7 and table 5.9 are made bold.

In figure 5.7, figure 5.8, and figure 5.9 scatter plots are presented for each of the simulation that were run.
In these plot the total cost is set out against the average run time. Each of the dots represent a simulation. For
each chosen value for T Lmax , they represent the different values for the number of iterations. Because the
run time increases with the number of iterations, they are in order from left to right in accordance with the
values from the aforementioned result tables. The horizontal line indicates the close enough benchmark and
the vertical line indicates the run time of the simulation with dynamic programming. Thus the goal is for the
solution to end up in the lower left corner.

Figure 5.7: Scatter plots of the results of forecast time variations of tabu search with the total criterion.
The horizontal line indicates the close enough benchmark and the vertical line indicates the run time of the simulation with dynamic

programming.



36 5. Simulations

Figure 5.8: Scatter plots of the results of forecast time variations of tabu search with the unchanged criterion.
The horizontal line indicates the close enough benchmark and the vertical line indicates the run time of the simulation with dynamic

programming.

Figure 5.9: Scatter plots of the results of data ratio variations of tabu search with the total criterion.
The horizontal line indicates the close enough benchmark and the vertical line indicates the run time of the simulation with dynamic

programming.

For the forecast time of 1 hour, the total cost of the solution is close enough but not equal to the lowest
possible cost solution. For every other forecast time and for each of the data variations, the average run time
exceeds the run time of dynamic programming before the total cost became close enough.

Thus, for most of the simulations the average run time for tabu search exceeded the run time of dynamic
programming. Just as for local search, changing the initial solution would not guarantee better results.
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5.2.4. Simulated Annealing
For simulated annealing, four variables need to be defined. The control parameter P , stopping criterion Pmi n ,
set number of iterations M , and decrease variable α. The control parameter P is set to the largest absolute
difference between the total cost of the initial solution and the total cost of its neighbours, such that each of
these could be chosen as the nexzt solution. The stopping criterion Pmi n is set to be equal to P

M .
The number of iterations M and the decrease variable α are varied during the simulations. The value

of α is usually located between 0.8 and 0.99. For the simulations, three different values for α were chosen:
{0.8,0.9,0.99}. For each of these values of α, the number of iterations M is first set to T . For the next combi-
nation, M is set to 2T and for each of the following simulations it is increased again by 2T . These simulations
are run until either the run time exceeds the run time of dynamic programming from table 5.6 and table 5.8,
or until a solution has been found whose total cost is smaller than the values determined in table 5.7 and
table 5.9. The average run time and the total cost for the forecast time and data ratio variations can be found
at the end of this chapter in table 5.14 and table 5.15 respectively. The run times that exceeded and the total
cost that subceeded the aforementioned values, are made bold.

In figure 5.11 and figure 5.12 at the end of this chapter, scatter plots are presented for each of the sim-
ulation that were run. In these plots the total cost is set out against the average run time. Each of the dots
represent a simulation. For each chosen value for α, they represent the different values for the number of
iterations M . Because the run time increases with the number of iterations, they are in order from left to right
in accordance with the values from the aforementioned result tables. The horizontal line indicates the close
enough benchmark and the vertical line indicates the run time of the simulation with dynamic programming.
Thus the goal is for the solution to end up in the lower left corner.

For the lower forecast times variations, the cost of the solution comes close enough to the lowest possible
cost before the run time exceeds that of dynamic programming. However, for forecast times of 1 week or
longer, the run time exceeds that of dynamic programming before the cost of the solution becomes close
enough.

Since for these simulation the assumption is made that all the data for the entire month is known, large
forecast times could be used for the simulations. However, in real-life there will always be an uncertainty in
the data. This uncertainty increases, the further away the considered time interval is. This would result in an
unreliable prediction of the eventual cost when large forecast times are used.

For each value of α, increasing the value of M always results in solutions with a total cost close enough to
the lowest possible cost. The average run time of all the simulations differs for the different values of α and
M . The larger the value of α or M , the longer the average run time. The value of α is of more influence, thus
this should first be chosen to be small while M is increased.

5.3. Comparison
Now the different methods will be compared to each other. Dynamic programming always results in the
solutions with the lowest possible cost. For local search the solutions that were found were usually local
optima that were not close enough to the lowest possible solution. Also, the average run times exceeded
those of dynamic programming most of the times. Tabu search is an extension of local search. When its run
time is less than that of local search, its final solution will have a higher cost. Local search often exceeded
the run time of dynamic programming, consequently the same holds for tabu search. Therefore, these two
heuristic methods would not be advisable alternatives to dynamic programming.

The last considered method was simulated annealing, several variables can be varied to compare their
results to each other. Combinations are found for which the total cost of the solution comes very close to the
lowest possible cost. When considering the forecast time variations, it shows that when the forecast time is
1 day or less, the run time of simulated annealing is always less than the run time of dynamic programming.
However, when the forecast time becomes 1 week or more, the run time with the selected variables exceeds
the run time of dynamic programming. Due to the uncertainty of several of the data variables, a forecast time
of more than a week will probably yield unreliable results.

In conclusion, when taking a forecast time of a day or less, a fixed, small value of α and the variable of M
sufficiently high, then simulated annealing will result in a solution that has a total cost that is close enough to
the lowest possible cost and its run time will be lower than that of dynamic programming.
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Figure 5.10: Scatter plots of the results of data ratio variations of local search.
The horizontal line indicates the close enough benchmark and the vertical line indicates the run time of the simulation with dynamic

programming.
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Table 5.15: Average run time in seconds and total cost in euros of each of the data ratio simulations for simulated annealing
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Figure 5.11: Scatter plots of the results of forecast time variations of simulated annealing.
The horizontal line indicates the close enough benchmark and the vertical line indicates the run time of the simulation with dynamic

programming.
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Figure 5.12: Scatter plots of the results of data ratio variations of simulated annealing.
The horizontal line indicates the close enough benchmark and the vertical line indicates the run time of the simulation with dynamic

programming.



6
Conclusion and Recommendations

6.1. Conclusion
In this thesis, the question ‘What mathematical optimisation method should be used for making charging
decisions for a private battery in a smart grid?’ has been researched. The focus was put on the use of a private
battery in a smart grid in combination with a private renewable energy source. Four methods have been
compared to each other on run time and result. These methods were dynamic programming, local search,
tabu search, and simulated annealing.

The goal of this optimisation of the use of a battery is to minimise the monthly energy bill. Therefore, the
total cost of the determined solution of each of the methods is the first comparison criterion. A benchmark
was set for the total cost, for which the solution was determined to be ‘close enough’ to the lowest possible to-
tal cost. It was considered close enough if considering the difference between the lowest and highest possible
cost, it would be within a 5% difference from the lowest possible cost.

As the decision for the (dis)charging is made for each time interval, the second comparison criterion is the
run time of the method. This time interval would be 15 minutes. Because the run time highly depends on the
specifications of the computer on which the calculations are run, it is not considered as a definite restriction.

For dynamic programming it is guaranteed that the solution that will be given, has the lowest possible
cost. For the simulations with a forecast time of 1 week or lower, the average run time is still less than 15
minutes. The average run time for the forecast time of 1 week does come very close to 15 minutes.

The total cost of the solutions given by local search, do not come close enough to the lowest possible cost
to be considered a viable alternative. The average run time of local search can exceed the run time of dynamic
programming for a forecast time of 1 day and more.

Tabu search is an extension of local search. If it has a lower average run time than local search, then the
cost of the solution will be higher. The cost of the solutions of local search were not close enough to the
solution with the lowest possible cost, thus those of tabu search would also be too high. If tabu search has a
higher average run time than local search, then it will exceed the average run time of dynamic programming
at the same instances as local search.

For simulated annealing, the cost from the solutions come very close to those of dynamic programming.
The average run time depends on the forecast time and the choice of variables. When the forecast time is kept
to 1 day or less, then the average run time is shorter than the average run time of dynamic programming.
When the forecast time is over 1 week, then it may exceed the average run time of dynamic programming.
However, due to the uncertainty of several of the data variables, a forecast time of more than a week will
probably yield unreliable results. Thus when taking a forecast time of a day or less, simulated annealing will
result in a solution that has a total cost that is close enough to the lowest possible cost and its average run
time will be lower than that of dynamic programming.

Thus, it is advisable to let the forecast time not exceed one day for both reliability and run time. The
simulations that were executed are not a complete representation of a real-life case. Making the adjustments
to fit a real-life situation will increase the run time of the methods due to the added complexity. As long as
the run time of dynamic programming does not exceed the available time limit after these adjustments, it
should be used to determine the charging decisions that result in the solution with the lowest possible cost.
However, if the run time does exceed the 15 minute limit, then the switch to simulated annealing should be
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made which has a lower average run time. Simulated annealing does not guarantee to give the solution with
the lowest possible cost, but it comes close enough.

6.2. Recommendations
In this thesis, a start has been made to construct an algorithm to determine the optimal charging decision
for each time of the day. However, there is still a long way to go before this can be fully implemented. Several
suggestions to continue on this work follow below.

6.2.1. Genetic algorithm
The heuristic method genetic algorithm could also be considered for implementation. This method is based
on Darwin’s theory of evolution. It starts with a set of solutions and constructs new solutions with mutations,
crossovers, and selections. It could be researched if this different approach results in solutions close enough
to those found with dynamic programming, but with a shorter average run time than dynamic programming.

6.2.2. Electric vehicles as batteries
An electric vehicle could be used as an extra battery by discharging the stored energy to satisfy the customer’s
demand. Adding this extra battery to the methods could improve the use of private generated energy and
would bring the methods closer to reality.

6.2.3. Uncertainties
In real life, most of the data used is unknown. Weather and demand is constantly changing. Adding this
uncertainty to the methods would increase the difficulty and run time of these method but would also bring
them closer to reality.



A
Examples

In this appendix, an example of each of the considered methods is given. The data used for these examples is
given in equation A.1, a timespan of 4 intervals is considered. Here xst ar t is the starting charge of the battery,
xmax is the capacity of the battery and xstep is the set amount of the battery can be charged or discharged
with for each of the 4 time instances. The demand is indicated by the vector d , the amount of generated
energy by vector g and the energy price by vector p. To keep the examples simple, it is assumed that energy
is bought and sold for the same price.

The goal is to minimise the total cost, which is determined by the formulas in equation A.2.
For each instance, there are 3 possible decisions: charging by 1, discharging by 1, or neither. If the state

is 0, discharging is impossible because the battery charge can not be negative and if the state is 2, charging is
impossible due to the maximum capacity of the battery. If a solution does not adhere to these requirements,
it is deemed infeasible.

xst ar t = 0, xmax = 2, xstep = 1

d =


3
8
4
5

 , g =


1
3
4
2

 , p =


1.8
1.2
2

0.8

 (A.1)

Ci (ui ,di , gi , pi ) = (
ui +di − gi

)
pi

ui = xi −xi−1

Ctot al =
4∑

i=1
Ci (ui ,di , gi , pi )

(A.2)

A.1. Dynamic programming
With dynamic programming, the optimal solution is found by backtracking an optimal path for each charging
state from the last instance. The first step is determining each charging decision that can be made for each
state for each instance, figure A.1.

0 0 0 0 0

1 1 1 1

2 2 2

1 2 3 4

Figure A.1: All possible charging and discharging options
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A.1.1. Third to fourth time instance
Starting with the third to fourth instance, which has 3 possible states. All the options for the states are repre-
sented in Figure A.2a.

0 0 0 0 0

1 1 1 1

2 2 2

1 2 3 4

(a) All options for the fourth instance

0 0 0 0 0

1 1 1 1

2 2 2

1 2 3 4

2.4

1.6

1.6

(b) Optimal charging decisions for the
fourth instance

Figure A.2: Fourth instance

Only the difference between the charging state of instance 4 and the charging state of instance 3 is of
influence to the cost function.

If u4 = 1 (charging), then C4 =
(
u4 +d4 − g4

)
p4 = (1+5−2)×0.8 = 3.2

If u4 = 0 (neither), then C4 =
(
u4 +d4 − g4

)
p4 = (0+5−2)×0.8 = 2.4

If u4 =−1 (discharging), then C4 =
(
u4 +d4 − g4

)
p4 = (−1+5−2)×0.8 = 1.6

Thus the best choice is to discharge, if this is not possible nothing should be done. This solution is repre-
sented in Figure A.2b and the total cost for each decision path from the third instance is placed above each of
the states.
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A.1.2. Second to third time instance
Next is considering all the options for the second to third instance, Figure A.3a.

0 0 0 0 0

1 1 1 1

2 2 2

1 2 3 4

2.4

1.6

1.6

(a) All options for the third instance

0 0 0 0 0

1 1 1 1

2 2 2

1 2 3 4

2.4

0.4

−0.4

(b) Optimal charging decisions for the
third instance

Figure A.3: Third instance

Again determining the cost for each of the charging decisions.
If u3 = 1 (charging), then C3 =

(
u3 +d3 − g3

)
p3 = (1+4−4)×2 = 2

If u3 = 0 (neither), then C3 =
(
u3 +d3 − g3

)
p3 = (0+4−4)×2 = 0

If u3 =−1 (discharging), then C3 =
(
u3 +d3 − g3

)
p3 = (−1+4−4)×2 =−2

The eventual goal is to minimise the total cost, thus for now minimising C3 +C4.

For state 2:
If u3 = 0, then C3 +C4 = 0+1.6 = 1.6
If u3 =−1, then C3 +C4 =−2+1.6 =−0.4
The best choice is to discharge.

For state 1:
If u3 = 1, then C3 +C4 = 2+1.6 = 3.6
If u3 = 0, then C3 +C4 = 0+1.6 = 1.6
If u3 =−1, then C3 +C4 =−2+2.4 = 0.4
The best choice is to discharge.

For state 0:
If u3 = 1, then C3 +C4 = 2+1.6 = 3.6
If u3 = 0, then C3 +C4 = 0+2.4 = 2.4
The best choice is to do nothing.

This solution is represented in Figure A.3b and the total cost for each decision path from the second
instance is placed above each of the states.
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A.1.3. First to second time instance
Next is considering all the options for the first to second instance, Figure A.4a.
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2.4
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−0.4

(a) All options for the second instance
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1 2 3 4

7.6

6.4

(b) Optimal charging decisions for the
second instance

Figure A.4: Second instance

Again determining the cost for each of the charging decisions.
If u2 = 1 (charging), then C2 =

(
u2 +d2 − g2

)
p2 = (1+8−3)×1.2 = 7.2

If u2 = 0 (neither), then C2 =
(
u2 +d2 − g2

)
p2 = (0+8−3)×1.2 = 6

If u2 =−1 (discharging), then C2 =
(
u2 +d2 − g2

)
p2 == (−1+8−3)×1.2 = 4.8

The eventual goal is to minimising the total cost, thus for now minimising C2 +C3 +C4.

For state 1:
If u2 = 1, then C2 +C3 +C4 = 7.2−0.4 = 6.8
If u2 = 0, then C2 +C3 +C4 = 6+0.4 = 6.4
If u2 =−1, then C2 +C3 +C4 = 4.8+2.4 = 7.2
The best choice is to do nothing.

For state 0:
If u2 = 1, then C2 +C3 +C4 = 7.2+0.4 = 7.6
If u2 = 0, then C2 +C3 +C4 = 6+2.4 = 8.4
The best choice is to charge.

This solution is represented in Figure A.4b and the total cost for each decision path from the second
instance is placed above each of the states.
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A.1.4. Initial to first time instance
Last is considering all the options for initial to first instance, Figure A.5a.
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(b) Optimal charging decisions for the first
instance

Figure A.5: First instance

Again determining the cost for each of the charging decisions.
If u1 = 1 (charging), then C1 =

(
u1 +d1 − g1

)
p1 = (1+3−1)×1.8 = 5.4

If u1 = 0 (neither), then C1 =
(
u1 +d1 − g1

)
p1 = (0+3−1)×1.8 = 3.6

The goal is to minimising the total cost, thus for now minimising Ctot al =C1 +C2 +C3 +C4.

For state 0:
If u1 = 1, then Ctot al = 5.4+6.4 = 11.8
If u1 = 0, then Ctot al = 3.6+7.6 = 11.2
The best choice is to do nothing.

This solution is represented in Figure A.5b and the total cost for each decision path from the second
instance is placed above each of the states.

Now the solution with the lowest total cost has been found, figure A.6, with a total cost of 11.2.
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Figure A.6: Optimal solution of dynamic programming
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A.2. Local search
For local search, an initial solution is defined and from this solution all similar ‘neighbour’ solutions are con-
sidered to find a better one. This is continued until no better solution is present in the ‘neighbourhood’. In
this case the neighbourhood is defined as changing the charge of one of the instances by 1 while keeping a
feasible solution.

A random feasible initial solution is represented in Figure A.7a, the total cost is written above the starting
charge of 0.

A.2.1. First iteration
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Figure A.7: First iteration

Considering the neighbours of the initial solution:

• For the first instance, changing the charge will only lead to infeasible solutions.

• For the second instance, the charge can be changed to 1, Figure A.7b. It has a total cost of 15.8, this is
worse than the total cost of the initial solution.

• For the third instance, the charge can be changed to 1, Figure A.7c. It has a total cost of 13.8, this is
better than the total cost of the initial solution and for now the best neighbour solution.

• For the fourth instance, the charge can be changed to 1, Figure A.7d. It has a total cost of 14.2, this is
better than the total cost of the initial solution, but it is not the best neighbour solution.

All the neighbours are considered and a better solution has been found, Figure A.7c, with a total cost of
13.8.
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A.2.2. Second iteration
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Figure A.8: Second iteration

Considering the neighbours of the current solution:

• For the first instance, changing the charge will only lead to infeasible solutions.

• For the second instance, the charge can be changed to 1, Figure A.8b. It has a total cost of 14.6, this is
worse than the total cost of the current solution.

• For the third instance, the charge can be changed to 2, Figure A.8c. It has a total cost of 15, this is worse
than the total cost of the current solution.

• For the fourth instance, the charge can either be changed to 1 or 0, Figure A.8d and Figure A.8e respec-
tively. The first neighbour has a total cost of 13, the second neighbour has a total cost of 12.2. Both
improve on the total cost of the current solution, the total cost of the latter is lower and is for now the
best neighbour solution.

All the neighbours are considered and a better solution has been found, Figure A.8e, with a total cost of
12.2.
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A.2.3. Third iteration
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Figure A.9: Third iteration

Considering the neighbours of the current solution:

• For the first instance, changing the charge will only lead to infeasible solutions.

• For the second instance, the charge can either be changed to 1 or 0, Figure A.9b and Figure A.9c respec-
tively. Both of these solutions have a total cost that exceeds the total cost of the current solution.

• For the third instance, changing the charge will only lead to infeasible solutions.

• For the fourth instance, the charge can either be changed to 1 or 2, Figure A.9d and Figure A.9e respec-
tively. Both of these solutions have a total cost that exceeds the total cost of the current solution.
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No better neighbouring solution has been found, thus the method is done. The best solution that has been
found with a total cost of 12.2, figure A.10. This is worse than the solution found by dynamic programming,
this must be a local optimum.
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Figure A.10: Optimal solution of local search
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A.3. Tabu search
Tabu search is similar to local search, the difference is that with tabu search the neighbouring solution with
the lowest total cost is chosen to continue with, even if this is not better than the current solution. A list of
tabu solutions is being kept to prevent cycling and a stopping criterion is introduced to end the method. The
method keeps track of the solution with the lowest total cost found so far. If a neighbouring solution with a
lower total cost than the current best is found, but is tabu. Then the tabu is ignored and it is still chosen as a
new solution.

In this case, the tabu solutions are indicated by which instances have been altered in the previous itera-
tions. The size of the tabu list is set to 2, the oldest tabu is replaced by a new tabu if the list is full. The stopping
criterion is set to two consecutive iterations of no improvement on the best solution.

The same feasible initial solution as for local search is being used, Figure A.11a. The list of tabu instances
is noted beneath the starting charge 0.

A.3.1. First iteration
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Figure A.11: First iteration

Considering the neighbours of the initial solution:

• For the first instance, changing the charge will only lead to infeasible solutions.

• For the second instance, the charge can be changed to 1, Figure A.11b. It has a total cost of 15.8, this is
worse than the total cost of the initial solution.

• For the third instance, the charge can be changed to 1, Figure A.11c. It has a total cost of 13.8, this is
better than the total cost of the initial solution and for now the best neighbour solution.

• For the fourth instance, the charge can be changed to 1, Figure A.11d. It has a total cost of 14.2, this is
better than the total cost of the initial solution, but it is not the best neighbour solution.

All the neighbours are considered and a better solution has been found, Figure A.7c, with a total cost of
13.8. Tabu list: {3}.
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A.3.2. Second iteration
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Figure A.12: Second iteration

Considering the neighbours of the current solution:

• For the first instance, changing the charge will only lead to infeasible solutions.

• For the second instance, the charge can be changed to 1, Figure A.12b. It has a total cost of 14.6, this is
worse than the total cost of the current solution.

• The third instance is tabu.

• For the fourth instance, the charge can either be changed to 1 or 0, Figure A.12c and Figure A.12d re-
spectively. Both of these solutions have a lower total cost than the current solution. The latter has the
lowest cost and is for now the best neighbour solution.

All the neighbours are considered and a better solution has been found, Figure A.12d, with a total cost of
12.2. Tabu list: {3,4}.
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A.3.3. Third iteration
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Figure A.13: Third iteration

Considering the neighbours of the current solution:

• For the first instance, changing the charge will only lead to infeasible solutions.

• For the second instance, the charge can either be changed to 1 or 0, Figure A.13b and ?? respectively.
The total cost of both of these solutions are worse than the total cost of the current solution. The former
has the lowest cost of the two.

• The third instance is tabu.

• The fourth instance is tabu.

No better neighbouring solution has been found, thus the best neighbouring solution is chosen. This is
Figure A.13b with a total cost of 13, the best total cost is 12.2 of the solution in Figure A.12d. Tabu list: {4,2}.
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A.3.4. Fourth iteration
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Figure A.14: Fourth iteration

Considering the neighbours of the current solution:

• For the first instance, the charge can be changed to 0, Figure A.14b. It has a total cost of 12.4, this is
better than the total cost of the current solution but worse than the total cost of the best solution.

• The second instance is tabu.

• For the third instance, the charge can be changed to 0, Figure A.14c. It has a total cost of 11.8, this is
better than the total cost of the current solution and of the best solution.

• The fourth instance is tabu.

All the neighbours are considered and a better solution has been found, Figure A.14c, with a total cost of
11.8. Tabu list: {2,3}.
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A.3.5. Fifth iteration
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Figure A.15: Fifth iteration

Considering the neighbours of the current solution:

• For the first instance, the charge can be changed to 0, Figure A.15b. It has a total cost of 11.2, this is
better than the total cost of the current solution and of the best solution.

• The second instance is tabu.

• The third instance is tabu.

• For the fourth instance, the charge can be changed to 1, Figure A.15c. It has a total cost of 12.6, this is
worse than the total cost of the current solution.

All the neighbours are considered and a better solution has been found, Figure A.15b, with a total cost of
11.2. Tabu list: {3,1}.
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A.3.6. Sixth iteration
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Figure A.16: Sixth iteration

Considering the neighbours of the current solution:

• The first instance is tabu.

• For the second instance, the charge can be changed to 0, Figure A.16b. It has a total cost of 12, this is
worse than the total cost of the current solution.

• The third instance is tabu.

• For the fourth instance, the charge can be changed to 1, Figure A.16c. It has a total cost of 12, this is
worse than the total cost of the current solution.

No better neighbouring solution has been found, thus the best neighbouring solution is chosen. Both of
the neighbours have the same value, the solution from Figure A.16b is chosen at random, with a total cost of
12, the best total cost is 11.2 of the solution in Figure A.15b. Tabu list: {1,2}.
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A.3.7. Seventh iteration
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Figure A.17: Seventh iteration

Considering the neighbours of the current solution:

• The first instance is tabu.

• The second instance is tabu.

• For the third instance, the charge can be changed to 1, Figure A.17b. It has a total cost of 13.2, this is
worse than the total cost of the current solution.

• For the fourth instance, the charge can be changed to 1, Figure A.17c. It has a total cost of 12.8, this is
worse than the total cost of the current solution.

No better neighbouring solution has been found, this is twice in a row thus the method is done. The best
solution that has been found has a total cost of 11.2, figure A.18. This is better than the solution found by local
search and the same as found by dynamic programming, this is the optimal value.
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Figure A.18: Best solution found with tabu search
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A.4. Simulated annealing
Simulated annealing is based on the process of annealing in metallurgy. From a starting solution, a random
neighbour is chosen. If this neighbour is a better solution, it is accepted as a new solution. If it has a worse
solution, it is accepted with a probability depended on the difference in solution value and how far along in
the process the check is being made. The later in the process, the lower the probability of accepting a worse
solution.

In advance of the start of the method, an initial solution and four variables have to be determined. The
initial solution is chosen equal to the initial solutions in local search and tabu search, Figure A.19a. Next is
choosing a starting ‘temperature’ Tst ar t , a minimum temperature Tmi n , a reduction valueα, and a set number
of iterations for each temperature M . In this section, C represents the current solution and N the randomly
selected neighbour.

M = 4

Tst ar t = max{|Ctot al (N)−Ctot al (initial solution)|} = max{0.8,1.2,0.8} = 1.2

Tmi n = Tst ar t
M = 1.2

4 = 0.3

α= 0.8.

A.4.1. First iteration for T = 1.2
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Figure A.19: First iteration for T = 1.2

A random neighbour is selected, Figure A.19b, this neighbour has a lower total cost, thus is accepted as the
new solution.

A.4.2. Second iteration for T = 1.2
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Figure A.20: Second iteration for T = 1.2

A random neighbour is selected, Figure A.20b, the neighbour has a lower total cost than the current solution.

For p = exp
(−|Ctot al (N )−Ctot al (C )|

T

)
= exp

(−0.8
1.2

)= 0.5134, and r a random number between 0 and 1

(r = 0.6763), the neighbour is accepted if r < p. Thus, the neighbour is not accepted.
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A.4.3. Third iteration for T = 1.2
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Figure A.21: Third iteration for T = 1.2

A random neighbour is selected, Figure A.21b, this neighbour has a lower total cost, thus is accepted as the
new solution.

A.4.4. Fourth iteration for T = 1.2
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Figure A.22: Fourth iteration for T = 1.2

A random neighbour is selected, Figure A.22b, the neighbour has a lower total cost than the current solution.

For p = exp
(−|Ctot al (N )−Ctot al (C )|

T

)
= exp

(−0.8
1.2

)= 0.5134, and r a random number between 0 and 1

(r = 0.6170), the neighbour is accepted if r < p. Thus, the neighbour is not accepted.

Four iterations have been executed for T = 1.2. Now calculating the new value for T :
T =α×T = 0.8×1.2 = 0.96 > 0.3 = Tmi n , thus the method is continued.
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A.4.5. First iteration for T = 0.96
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Figure A.23: First iteration for T = 0.96

A random neighbour is selected, Figure A.23b, the neighbour has a lower total cost than the current solution.

For p = exp
(−|Ctot al (N )−Ctot al (C )|

T

)
= exp

(−0.2
0.96

)= 0.8119, and r a random number between 0 and 1

(r = 0.9910), the neighbour is accepted if r < p. Thus, the neighbour is not accepted.

A.4.6. Second iteration for T = 0.96
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Figure A.24: Second iteration for T = 0.96

A random neighbour is selected Figure A.24b, the neighbour has a lower total cost than the current solution.

For p = exp
(−|Ctot al (N )−Ctot al (C )|

T

)
= exp

(−0.8
0.96

)= 0.4346, and r a random number between 0 and 1

(r = 0.5303), the neighbour is accepted if r < p. Thus, the neighbour is not accepted.
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A.4.7. Third iteration for T = 0.96
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Figure A.25: Third iteration for T = 0.96

A random neighbour is selected, Figure A.25b, the neighbour has a lower total cost than the current solution.

For p = exp
(−|Ctot al (N )−Ctot al (C )|

T

)
= exp

(−0.2
0.96

)= 0.8119, and r a random number between 0 and 1

(r = 0.8853), the neighbour is accepted if r < p. Thus, the neighbour is not accepted.

A.4.8. Fourth iteration for T = 0.96
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Figure A.26: Fourth iteration for T = 0.96

A random neighbour is selected, Figure A.26b, the neighbour has a lower total cost than the current solution.

For p = exp
(−|Ctot al (N )−Ctot al (C )|

T

)
= exp

(−0.8
0.96

)= 0.4346, and r a random number between 0 and 1

(r = 0.1117), the neighbour is accepted if r < p. Thus, the neighbour is accepted.

Four iterations have been executed for T = 0.96. Now calculating the new value for T :
T =α×T = 0.8×0.96 = 0.768 > 0.3 = Tmi n , thus the method is continued.
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A.4.9. First iteration for T = 0.768
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Figure A.27: First iteration for T = 0.768

A random neighbour is selected, Figure A.27b, the neighbour has a lower total cost than the current solution.

For p = exp
(−|Ctot al (N )−Ctot al (C )|

T

)
= exp

( −0.8
0.768

)= 0.5410, and r a random number between 0 and 1

(r = 0.8062), the neighbour is accepted if r < p. Thus, the neighbour is not accepted.

A.4.10. Second iteration for T = 0.768
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Figure A.28: Second iteration for T = 0.768

A random neighbour is selected, Figure A.28b, the neighbour has a lower total cost than the current solution.

For p = exp
(−|Ctot al (N )−Ctot al (C )|

T

)
= exp

( −1.2
0.768

)= 0.2096, and r a random number between 0 and 1

(r = 0.8062), the neighbour is accepted if r < p. Thus, the neighbour is not accepted.
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A.4.11. Third iteration for T = 0.768

0 0 0 0 0

1 1 1 1

2 2 2

1 2 3 4

13.8

(a) Current solution

0 0 0 0 0

1 1 1 1

2 2 2

1 2 3 4

14.6

(b) Randomly selected neighbour

Figure A.29: Third iteration for T = 0.768

A random neighbour is selected, Figure A.29b, the neighbour has a lower total cost than the current solution.

For p = exp
(−|Ctot al (N )−Ctot al (C )|

T

)
= exp

( −0.8
0.768

)= 0.5410, and r a random number between 0 and 1

(r = 0.7442), the neighbour is accepted if r < p. Thus, the neighbour is not accepted.

A.4.12. Fourth iteration for T = 0.768
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(b) Randomly selected neighbour

Figure A.30: Fourth iteration for T = 0.768

A random neighbour is selected, Figure A.30b, the neighbour has a lower total cost than the current solution.

For p = exp
(−|Ctot al (N )−Ctot al (C )|

T

)
= exp

( −1.2
0.768

)= 0.2096, and r a random number between 0 and 1

(r = 0.5071), the neighbour is accepted if r < p. Thus, the neighbour is not accepted.

Four iterations have been executed for T = 0.768. Now calculating the new value for T :
T =α×T = 0.8×0.768 = 0.6144 > 0.3 = Tmi n , thus the method is continued.
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A.4.13. First iteration for T = 0.6144
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(b) Randomly selected neighbour

Figure A.31: First iteration for T = 0.6144

A random neighbour is selected, Figure A.31b, the neighbour has a lower total cost than the current solution.

For p = exp
(−|Ctot al (N )−Ctot al (C )|

T

)
= exp

( −0.8
0.6144

)= 0.6117, and r a random number between 0 and 1

(r = 0.8821), the neighbour is accepted if r < p. Thus, the neighbour is not accepted.

A.4.14. Second iteration for T = 0.6144
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(b) Randomly selected neighbour

Figure A.32: Second iteration for T = 0.6144

A random neighbour is selected, Figure A.32b, the neighbour has a lower total cost than the current solution.

For p = exp
(−|Ctot al (N )−Ctot al (C )|

T

)
= exp

( −1.2
0.6144

)= 0.2096, and r a random number between 0 and 1

(r = 0.1456), the neighbour is accepted if r < p. Thus, the neighbour is accepted.
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A.4.15. Third iteration for T = 0.6144
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Figure A.33: Third iteration for T = 0.6144

A random neighbour is selected, Figure A.33b, this neighbour has a lower total cost, thus is accepted as the
new solution.

A.4.16. Fourth iteration for T = 0.6144
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(b) Randomly selected neighbour

Figure A.34: Fourth iteration for T = 0.6144

A random neighbour is selected, Figure A.34b, this neighbour has a lower total cost, thus is accepted as the
new solution.

Four iterations have been executed for T = 0.6144. Now calculating the new value for T :
T =α×T = 0.8×0.6144 = 0.4915 > 0.3 = Tmi n , thus the method is continued.
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A.4.17. First iteration for T = 0.4915
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(b) Randomly selected neighbour

Figure A.35: First iteration for T = 0.4915

A random neighbour is selected, Figure A.35b, this neighbour has a lower total cost, thus is accepted as the
new solution.

A.4.18. Second iteration for T = 0.4915
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(b) Randomly selected neighbour

Figure A.36: Second iteration for T = 0.4915

A random neighbour is selected, Figure A.36b, the neighbour has a lower total cost than the current solution.

For p = exp
(−|Ctot al (N )−Ctot al (C )|

T

)
= exp

( −0.8
0.4915

)= 0.1964, and r a random number between 0 and 1

(r = 0.4917), the neighbour is accepted if r < p. Thus, the neighbour is not accepted.
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A.4.19. Third iteration for T = 0.4915
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Figure A.37: Third iteration for T = 0.4915

A random neighbour is selected, Figure A.37b, the neighbour has a lower total cost than the current solution.

For p = exp
(−|Ctot al (N )−Ctot al (C )|

T

)
= exp

( −0.8
0.4915

)= 0.1964, and r a random number between 0 and 1

(r = 0.8104), the neighbour is accepted if r < p. Thus, the neighbour is not accepted.

A.4.20. Fourth iteration for T = 0.4915
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(b) Randomly selected neighbour

Figure A.38: Fourth iteration for T = 0.4915

A random neighbour is selected, Figure A.38b, the neighbour has a lower total cost than the current solution.

For p = exp
(−|Ctot al (N )−Ctot al (C )|

T

)
= exp

( −0.8
0.4915

)= 0.1964, and r a random number between 0 and 1

(r = 0.1765), the neighbour is accepted if r < p. Thus, the neighbour is accepted.

Four iterations have been executed for T = 0.4915. Now calculating the new value for T :
T =α×T = 0.8×0.4915 = 0.3932 > 0.3 = Tmi n , thus the method is continued.
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A.4.21. First iteration for T = 0.3932
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Figure A.39: First iteration for T = 0.3932

A random neighbour is selected, Figure A.39b, the neighbour has a lower total cost than the current solution.

For p = exp
(−|Ctot al (N )−Ctot al (C )|

T

)
= exp

( −0.8
0.3932

)= 0.1307, and r a random number between 0 and 1

(r = 0.9338), the neighbour is accepted if r < p. Thus, the neighbour is not accepted.

A.4.22. Second iteration for T = 0.3932
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Figure A.40: Second iteration for T = 0.3932

A random neighbour is selected, Figure A.40b, this neighbour has a lower total cost, thus is accepted as the
new solution.
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A.4.23. Third iteration for T = 0.3932
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Figure A.41: Third iteration for T = 0.3932

A random neighbour is selected, Figure A.41b, the neighbour has a lower total cost than the current solution.

For p = exp
(−|Ctot al (N )−Ctot al (C )|

T

)
= exp

( −0.8
0.3932

)= 0.1307, and r a random number between 0 and 1

(r = 0.3784), the neighbour is accepted if r < p. Thus, the neighbour is not accepted.

A.4.24. Fourth iteration for T = 0.3932
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Figure A.42: Fourth iteration for T = 0.3932

A random neighbour is selected, Figure A.42b, the neighbour has a lower total cost than the current solution.

For p = exp
(−|Ctot al (N )−Ctot al (C )|

T

)
= exp

( −0.8
0.3932

)= 0.1307, and r a random number between 0 and 1

(r = 0.2660), the neighbour is accepted if r < p. Thus, the neighbour is not accepted.

Four iterations have been executed for T = 0.3932. Now calculating the new value for T :
T =α×T = 0.8×0.3932 = 0.3146 > 0.3 = Tmi n , thus the method is continued.
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A.4.25. First iteration for T = 0.3146
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Figure A.43: First iteration for T = 0.3146

A random neighbour is selected, Figure A.43b, the neighbour has a the same total cost, thus it is accepted.

A.4.26. Second iteration for T = 0.3146
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Figure A.44: Second iteration for T = 0.3146

A random neighbour is selected, Figure A.44b, this neighbour has a lower total cost, thus is accepted as the
new solution.
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A.4.27. Third iteration for T = 0.3146
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Figure A.45: Third iteration for T = 0.3146

A random neighbour is selected, Figure A.45b, the neighbour has a lower total cost than the current solution.

For p = exp
(−|Ctot al (N )−Ctot al (C )|

T

)
= exp

( −0.8
0.3146

)= 0.0786, and r a random number between 0 and 1

(r = 0.3383), the neighbour is accepted if r < p. Thus, the neighbour is not accepted.

A.4.28. Fourth iteration for T = 0.3146

0 0 0 0 0

1 1 1 1

2 2 2

1 2 3 4

11.8

(a) Current solution

0 0 0 0 0

1 1 1 1

2 2 2

1 2 3 4

12.4
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Figure A.46: Fourth iteration for T = 0.3146

A random neighbour is selected, Figure A.46b, the neighbour has a lower total cost than the current solution.

For p = exp
(−|Ctot al (N )−Ctot al (C )|

T

)
= exp

( −0.6
0.3146

)= 0.1485, and r a random number between 0 and 1

(r = 0.3973), the neighbour is accepted if r < p. Thus, the neighbour is not accepted.

Four iterations have been executed for T = 0.3146. Now calculating the new value for T :
T =α×T = 0.8×0.3146 = 0.2517 < 0.3 = Tmi n , thus the method is ended.

The value of T has become smaller than Tmi n , thus the method is ended. The final solution that has been
found is figure A.47, with a total cost of 11.8. This is not equal to the optimal solution that had been found
with dynamic programming, but is still quite good.

0 0 0 0 0

1 1 1 1

2 2 2

1 2 3 4

11.8

Figure A.47: Optimal solution of simulated annealing
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