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Introduction

Given the growing use of Lithium batteries in electric Unmanned Aerial Vehicles (eUAV), it is chosen to
conduct research regarding battery health management strategies. One of the biggest challenges that the
aerospace industry currently faces is the rapid rate of battery degradation which limits a battery’s capacity
and lifetime. In this report, the application of an eUAV battery health management strategy that reduces the
severeness of battery degradation is explored.

A potential method to decrease the battery degradation rate is by minimising the average State of Charge
(SOC) and Depth-of-Discharge (DOD) levels. Translating this to eUAV practices, a ‘mission-based’ battery
health management strategy is proposed that charges the battery to the estimated required level of SOC to
complete a flight. Moreover, the impact of varying DOD ranges is reviewed by regulating the flying range.

To evaluate the performance of the mission-based strategy, it is compared to two other battery health man-
agement approaches that charge the eUAV battery to 100% and 80% SOC. Although a more advanced model
is recommended before applying this model to real-life applications, this research provides insights and tools
to support operators in exploring and comparing the benefits of battery health management strategies.

The research is carried out as part of a master thesis of the Air Transport Operations track at the Faculty
of Aerospace Engineering at Delft University of Technology. This thesis report has the following structure.
Part I presents the scientific paper of the research. Thereafter, Part II contains a report of the Literature Study,
providing background information on the topic of maintenance in the aerospace industry as well as battery
health management and sustainability and cost assessment practices. Lastly, Part III provides supporting
work for the research presented in the scientific paper. An elaborate statistical analysis of the model is first
provided in Appendix 1, followed by an overview of the model limitations and recommendations for future
studies in Appendix 2.

xvii
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Abstract

In this research, a sustainability and cost assess-
ment of battery health management strategies
applied to Lithium batteries of an electric Un-
manned Aerial Vehicle (eUAV) is performed. A
mission-based strategy is proposed with the aim
to elongate battery lifetime. With this strategy,
the battery is charged to the estimated State of
Charge (SOC) level required to complete the
next flight. The mission-based strategy is com-
pared to two other strategies: the SOC 100%
strategy that always fully charges the battery
before flight, and, the SOC 80% strategy that
charges that battery to 80% before flying. The
three strategies are tested for a variety of flight
distances. The battery model is simulated using
Python Battery Mathematical Modelling (Py-
BaMM). A Monte Carlo (MC) simulation is
run to review the response to uncertainties in
initial battery compositions and operating con-
ditions. Ultimately, the strategies are evalu-
ated on environmental impact, financial costs
and flying efficiency. The results show that the
mission-based strategy outperforms the SOC
100%, yielding lower emissions and costs and
higher flying efficiency performance. However,
depending on the range flown, the SOC 80%
shows environmental, cost and flying efficiency
benefits that challenge the relevance of imple-
menting a mission-based battery health mana-
gement strategy.

Index Terms — electric Unmanned Aerial Vehicle
(eUAV), Monte Carlo (MC), Lithium battery, health
management, sustainability

1 Introduction

In line with the sustainability trends, an increase
in studies reviewing the use of alternative propul-
sion systems such as rechargeable batteries is observed
[18, 19, 60, 79, 83]. Within the aviation industry,
electrically powered aerial vehicles do not only bring
along environmental benefits, but also operational ad-

∗MSc Student, Air Transport and Operations, Faculty of
Aerospace Engineering, Delft University of Technology

vantages such as noise reduction and reactive thrust
[17, 83], making them are a popular subject for re-
search.

The prevailing used battery type in aviation is
Lithium [56, 60, 68, 78, 79]. The scope of this research
is set to Lithium batteries that are widely used in Un-
manned Aerial Vehicles (UAVs) [8, 18, 83]. When an
UAV is fully electric, it is also referred to as an elec-
tric UAV (eUAV). In aviation, UAVs and eUAVs are
favoured for a multitude of reasons such as their low
operating costs and ability to fly in dangerous or ex-
treme conditions [3, 33, 54, 75]. Applications include
military, search and rescue and agricultural operations.

One important field of study for batteries revolves
around their performance and reliability, characterised
by the battery’s capacity and internal resistance [49].
The capacity defines how much energy can be stored in
the battery, while the internal resistance sets a limit on
the maximum level of power that the battery is able to
deliver. Of these two parameters, capacity is commonly
used as the main component to evaluate a battery’s
performance and reliability [89]. These characteristics
form the guiding principles for safe flight.

To improve the performance and reliability of eUAV
batteries, several different battery health management
approaches can be identified. Firstly, most batteries
onboard an eUAV are linked to a Battery Management
System (BMS) that monitors several parameters in-
cluding the battery voltage, current, temperature and
State of Charge (SOC) [12, 47, 93]. The BMS provides
a battery protection by ensuring it does not exceed
operating limits. Depending on the level of sophis-
tication, a BMS could also be able to determine the
State of Health (SOH) and/or make End-of-Discharge
(EOD) and End-of-Life (EOL) estimations. Secondly,
in recent years, the benefit of implementing Prognos-
tics and Health Management (PHM) to enhance bat-
tery reliability and capabilities is being reviewed [64].
For batteries, PHM focuses on predictions of parame-
ters such as SOC, EOD, SOH and EOL [17, 89].

During one discharge cycle, a battery’s available ca-
pacity decreases with respect to the maximum capacity
at the start of the cycle [9, 89]. This is reflected by the
SOC, with a battery’s SOC being 100% when it is fully
charged. Additionally, the maximum achievable capac-
ity degrades over the course of multiple cycles com-
pared to the battery’s initial capacity at Beginning-of-
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Life (BOL). The status of maximum achievable capac-
ity is known as SOH, with a battery having 100% SOH
at BOL. The reduction of capacity due to cycling, also
known as battery ageing or degradation, does not only
affect the system’s performance and reliability, but also
has environmental and financial consequences as this
phenomenon is directly linked to the battery’s lifetime
[19, 83].

While battery ageing is unavoidable, there are sev-
eral factors that accelerate the degradation process.
For example, for cycle ageing, the severeness of SOH
degradation is heavily driven by the operating tem-
perature, rate of current, average SOC and Depth-of-
Discharge (DOD) [30, 41, 53, 80, 91]. Here, the average
SOC can be regulated by charging to a SOC level below
100%. Furthermore, the DOD relates to the amount
of energy extracted from the battery. Regulating these
parameters throughout eUAV operations could poten-
tially lead to battery lifetime elongation.

To determine which health management strategy is
most beneficial, an assessment of costs is a commonly
applied technique to evaluate and compare different
strategies [11, 90]. However, other metrics including
effectiveness [62], scientific performance [70] as well as
sustainability and/or social impact [28, 31] can also be
reviewed. The selection and weights of the relevant
parameters depend on the topic of concern and stake-
holders that are involved.

Following the aforementioned trends of sustainabil-
ity within aviation, it is chosen to conduct a re-
search on the implementation of health management
approaches for eUAV batteries. The research objec-
tive is to determine the environmental and cost-
benefit of a mission-based battery health mana-
gement strategy for Lithium batteries for elec-
tric Unmanned Aerial Vehicles. Specifically, this
research aims to achieve battery lifetime elongation by
modelling a mission-based battery health management
strategy that minimises the battery’s average SOC by
charging to a lower SOC before flight. The mission-
based strategy is compared to two alternative health
management strategies where the battery is always
charged to 100% SOC, and a strategy in which the
battery is charged to 80% SOC. The strategies are as-
sessed for a set of different DOD ranges to investigate
how the distance flown relates to the battery degrada-
tion rate. The battery models are tested by running a
Monte Carlo (MC) simulation to review the response
to small uncertainties. The MC incorporates stochastic
inputs to represent battery manufacturing impurities
in new batteries [6, 22, 61, 89] and in-flight variations in
battery power usage and flying times [65]. Ultimately,
an assessment of battery health management strate-
gies’ environmental emissions, monetary costs and ef-
ficiency with respect to downtime is carried out.

The academic contribution of this study consists of
three parts. Firstly, although lower SOC and DOD
levels are known to decrease battery degradation rate
[30, 91], no literature is found in which this battery
health management strategy is applied to eUAV ap-
plications. The second contribution lies in the pro-

posed framework to evaluate and compare eUAV bat-
tery health management strategies which can be used
in future eUAV battery analyses, covering three pil-
lars including sustainability, financial costs and effi-
ciency. Lastly, this research explores the use Python
Battery Mathematical Modelling (PyBaMM) [77] to re-
view new eUAV battery lifetime elongation methods.
PyBaMM is a simulation package launched in 2021 that
is able to efficiently solve battery models in Python.
This tool has not been used to model Lithium batter-
ies for eUAV applications before.

This paper has the following structure. First, related
work on battery health management research is elabo-
rated on in section 2. Subsequently, the methodology
of this study is presented in several separate sections. A
description of the mission profile set-up is given in sec-
tion 3, followed by an elaboration of the framework of
the eUAV battery simulation and health management
strategies in section 4. Then, section 5 presents the
assessment metrics used to review the battery model
outputs. To conclude the methodology of this study,
a brief overview of the experimental set-up is given in
section 6. Section 7 presents the results of the exper-
iment, after which the model is validated by assessing
its robustness through the means of a sensitivity anal-
ysis in section 8. Finally, the research conclusion and
future recommendations are summarised in section 9.

2 Related Work
Model choices for this research are substantiated by
findings from literature. The following sections present
examples of related work featuring eUAV battery
health management and performance evaluation stud-
ies. Relevant research regarding battery health and
simulation practices are first elaborated on in sec-
tion 2.1. Secondly, examples of assessment frameworks
are given in section 2.2.

2.1 Battery Health
Given the global shift towards more sustainable fuel
alternatives, an increase in battery studies is observed
[17, 18, 79, 83]. This section first reviews literature
concerning battery health management practices re-
lated to Lithium batteries in section 2.1.1. Health ma-
nagement applications to enhance a battery system’s
performance and reliability is first elaborated on, af-
ter which sustainability-oriented health management
opportunities are highlighted. Then, section 2.1.2 dis-
cusses several battery modelling approaches providing
substantiation as to why PyBaMM is chosen to model
the eUAV batteries in this study.

2.1.1 Battery Health Management

By applying health management to battery systems,
operators aim to improve the system’s reliability and
performance by closely monitoring the battery’s capac-
ity and health [14, 23, 49, 54, 89]. For Lithium batter-
ies, it is especially important to monitor both the SOC
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and SOH, as voltage levels significantly drop when op-
erated beyond their safety limits. For eUAV applica-
tions, the SOC threshold is equal to 30% to avoid the
precipitous decrease in voltage that occurs beyond the
knee point while also ensuring the batteries are able to
provide the eUAV sufficient power to perform at least
two additional landing attempts [37, 72, 84]. The bat-
tery’s EOL is defined to be as soon as the SOH reaches
80% as flying with the battery beyond 70 - 80% SOH
is considered to be highly unsafe [49, 85, 87, 89]. Al-
ternatively, some researchers such as Viwanathan and
Knapp [83] state that internal increase of resistance
could define the EOL of an eUAV Lithium battery.
For Lithium batteries, this is defined to be when the
battery’s internal resistance is twice the value it had
at BOL [25, 49, 89]. Both capacity and resistance are
therefore advised to be taken into account when deter-
mining an eUAV’s battery’s EOL.

Similar to determining the Remaining Useful Life
(RUL) of a component for maintenance, most bat-
tery health management studies focus on predicting
the moment at which the battery reaches EOD and
EOL [7, 37, 68, 69, 75]. By incorporating prognostics,
experts aspire to move away from relying on fixed fly-
ing time and lifetime prescriptions as these are highly
conservative [17, 75].

Instead of exclusively applying battery health ma-
nagement methods to improve a battery’s reliability,
authors such as Iung and Levrat [40], advocate the in-
tegration of other factors such as minimal energy con-
sumption or effectiveness. Especially in the view of
sustainability, this offers great perspectives. For ex-
ample, Xu et al. [91] and Gao et al. [30] explored
the influence of different SOC and DOD levels on the
rate of battery degradation. From their studies, the re-
searchers found that battery ageing is less severe when
the battery is cycled at a lower average SOC with min-
imum DOD ranges. These batteries have, however,
been cycled under constant charging and discharging
conditions. Subsequently, in this research paper, it is
chosen to review how the lifetime of batteries operating
eUAV flights would respond to lower SOC and DOD
levels. Translating this to a battery health manage-
ment approach, two aspects are regulated. Firstly, a
battery is charged to a lower SOC level before flight
(instead of 100%). In order to ensure that the eUAV is
safely able to complete it’s flight, this initial SOC level
should be carefully estimated. In this research, this
strategy is referred to as being ‘mission-based’. Sec-
ondly, the DOD ranges are regulated by flying different
distances and seeing how the battery degradation rate
responds.

Rather than applying a potentially costly prognostic
battery health management strategy, researchers such
as Nair and Garimella [58] reviewed the option of set-
ting the BMS limits to a minimum of 20% and maxi-
mum of 80% SOC. By doing so, a lower average SOC
and DOD is also yielded. This strategy could be in-
putted as an alternative to always charging to SOC
100% before flight, and is addressed in this research as
the SOC 80% strategy.

By decreasing the average SOC and DOD range that
an eUAV battery cycles through, the available capac-
ity for flight is also reduced. Nevertheless, this battery
health management strategy could still yield signifi-
cant benefits when combining this charging and flying
methodology with other pivotal solutions such as eUAV
battery swapping or wireless charging at power lines
[29, 51]. Additionally, the effects of average SOC and
DOD on battery degradation could provide insightful
understandings for optimisation problems concerning
eUAV hub location [2] and last-mile delivery models
with eUAVs and trucks [32, 57].

2.1.2 Battery Models

Battery health management models can be established
with the use of electrochemical or data-driven meth-
ods [4, 14, 23, 49, 54, 89]. Commonly, data-driven ap-
proaches are favoured since electrochemical models are
very complex. Moreover, data-driven approaches are
beneficial as they allow the user to include a broad
range of parameters such as voltage, current and tem-
perature. A wide variety of data-driven techniques ex-
ist including regression, filtering, and machine learning
applications.

To promote data-driven battery research, Dos Reis
et al. [20] recently published a paper providing an
overview of all available open-source Lithium bat-
tery data sets. Well-known data sets are for exam-
ple from the Prognostics Center of Excellence depart-
ment of National Aeronautics and Space Administra-
tion (NASA) [1], Center for Advanced Life Cycle En-
gineering (CALCE) [27] and Sandia National Labo-
ratories (SNL) [45]. Drawbacks of using these data
sets, however, are that the cycling conditions are case-
specific and not directly applicable to eUAV opera-
tions.

Alternatively, software can be used to model batter-
ies. An advantage of using a simulation programme is
its flexibility to tailor battery specifications and cycling
throughput values. On the downside, many software
tools are difficult to synthesize with other data process-
ing operating systems such as Matlab and Python or
require costly licences. Mitigating these shortcomings,
a package called ‘PyBaMM’ was recently launched by
a community of researchers [77]. The package allows
batteries to be modelled and simulated in a rapid and
versatile manner. Users can either choose to exploit
readily available Lithium or Lead-Acid battery param-
eter sets and ageing models, or implement their own
models.

To model an eUAV flight, battery data is required.
Although some research publications that provide doc-
umentation about the power usage for certain eUAV
manoeuvres are available [5, 16, 94], these papers lack
detailed battery information such as the voltage and
current levels the battery outputs during operation.
The open-source data set by Rodrigues et al. [65]
does specify in-flight energy use and battery cycling
information of a DJI Matric 100 eUAV quadcopter.
Together with PyBaMM, this battery data is used to
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generate the flight profiles for the battery model in this
study.

2.2 Sustainability and Cost Assessment

An assessment of battery health management strate-
gies can be done to review the benefits associated with
each approach. For the aerospace field specifically,
however, authors such as Saxena et al. [71] state that
the industry lacks a set of standardised performance
metrics to evaluate prognostic strategies. Similarly, Liu
et al. [50] conclude that battery health management
studies can have a variety of main objectives. Hence,
this research will combine a set of sustainability and
cost assessment parameters that are relevant to eval-
uate and compare eUAV battery health management
approaches.

For this study, the following evaluation metrics are
included: environmental impact, financial costs and ef-
fectiveness. Each of these parameters is briefly intro-
duced in the following section 2.2.1 to 2.2.3, along with
a battery health management example from literature.

2.2.1 Environmental Impact

In recent years, authors such as Franciosci et al. [28]
and Ghazi et al. [31] are promoting the use of more
sustainability related assessment parameters, instead
of solely focusing on financial and technical aspects.
Factors they list to assess the environmental impact
of a system are for example material resources, energy
consumption, noise emissions, pollutant emissions and
waste. Ghazi et al. [31] recognise the fact that the
establishment of a method to compare the impact of
different environmental parameters is a complex task.
Often, the opinion of the stakeholders plays an impor-
tant role in this evaluation process in order to conduct
a (weighted) trade-off.

In a study by Koiwanit [44] assessing the environ-
mental impacts of using eUAVs to deliver online shop-
ping, it is estimated that 80% of an eUAV’s battery
Global Warming Potential (GWP) originates from car-
bon emissions. Other environmental impact parame-
ters such as abiotic depletion and ecotoxicity are also
evaluated, but suffer from incomplete data. The eUAV
delivery system is evaluated with the use of a life-
cycle analysis that includes the BOL, operation and
maintenance and EOL activities. With the use of the
CML2001 model [34], the author concludes that the
production of parts at BOL sum up to be 99% of the
model’s total environmental footprint. Similarly, re-
viewing the life-cycle cost-benefit of a battery storage
system, Li et al. [48] concluded that BOL production
emissions equal 70-75% of the battery’s total emissions,
followed by operation emissions and EOL emissions
equal to 20-25% and 5%, respectively.

To determine the emissions for production, estima-
tions based on the battery specifications and energy
in kWh are commonly made [35, 52, 66]. For opera-
tion, charging emissions are often country-based and
must therefore be analysed locally [24, 48]. Note that

emissions vary vastly depending on each battery type,
application and location. Therefore, if possible, it is
highly recommended to validate results before drawing
conclusions.

On a larger scale, Goodchild and Toy [32] and Sto-
laroff et al. [76] compared Greenhouse Gas (GHG)
emissions yielded from the use of eUAVs versus trucks
for last-mile package delivery. Here, when charging an
eUAV, they state the importance of considering the ef-
ficiency of transferring electricity from the power plant
to its motors. On average, the studies suggest that this
efficiency factor is equal to 0.78 [32, 76].

2.2.2 Financial Costs

When assessing economic costs, the most obvious main
objective is to minimise the total costs. However, van
den Bergh et al. [81] point out that other aims such
as minimum downtime and minimal delays can also be
distinguished. To quantify the costs, Kent and Mur-
phy [42] describe three methodologies: (1) an analogy
approach where costs are based on historical or actual
data, (2) a parametric method using formulas to cost
relations and finally, (3) an engineering estimation con-
cept through the use of an extensive cost breakdown.
To review the financial costs over the lifetime of a com-
ponent, metrics such as Return on Investment (ROI),
Payback Period and Net Present Value (NPV) are com-
monly applied [26, 63, 90].

In the light of reviewing the costs of Lithium battery
health management strategies, Liu et al. [50] assessed
the economic performance of several battery charging
approaches. In their model, the authors included the
initial cost of the battery, the charging costs of the
battery as well as the resale opportunities at the bat-
tery’s EOL. In another study, Li et al. [48] analysed
the costs of a battery storage system and concluded
that the system’s life-cycle costs mainly consisted of
the initial costs at BOL and charging costs.

2.2.3 Efficiency

In a study reviewing maintenance approaches, Pecht
and Rafanelli [62] analysed the effectiveness of a sys-
tem to take its availability, dependability and capabil-
ity into account. Here, availability refers to the system
being usable at the beginning of a period of desired
usage. Moreover, dependability indicates the probabil-
ity of the system failing during operation. Lastly, the
systems capability shows at which level of performance
the system is able to carry out its function.

3 Mission Profiles
In the previous sections, an introduction and substanti-
ation of the research topic has been given. The follow-
ing sections 3, 4, 5 and 6 describe the methodology of
this study regarding eUAV flights, battery simulation,
performance assessment and MC set-up.

In order to test the battery health management
strategies defined for this research, this section presents
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the framework of the missions that the eUAV executes.
To simulate a cycle that a battery undergoes during a
flight, eUAV flight data tracked for a DJI Matrice 100
quadcopter by Rodrigues et al. [65] is used. In sec-
tion 3.1 an overview of the flight layout is presented.
Secondly, the flight distance flown is discussed in sec-
tion 3.2, after which the input data for the flight pro-
files is elaborated on in section 3.3.

3.1 Flight Outline
To model discharge cycles that an eUAV battery un-
dergoes, flight missions are defined. As the focus of
this paper lies on determining the benefit of applying a
mission-based approach for eUAV battery health ma-
nagement, a flying plan is proposed during which an
eUAV performs ‘simple’ manoeuvres to reach a ran-
domly assigned ‘target’. The eUAV flies to the target
by carrying out actions including take-off, cruise and
landing. For each flight, the following steps are exe-
cuted:

1. The eUAV is initially positioned at a hub where it
is able to charge its battery.

2. Then, a mission target is randomly generated
within the maximum defined distance that the
eUAV is able to fly, given the maximum capacity
of the battery.

3. Once the target is known, the eUAV flies to the
target and back to the hub, by:

• performing a vertical take-off to the desired
cruise altitude,

• cruising at the set altitude to the target,

• vertically landing at the target,

• resting for a short time,

• executing a vertical take-off to the inputted
cruise altitude,

• cruising at the set altitude back to the charg-
ing hub, and,

• vertically landing at the hub.

4. A new target mission is then generated (continue
to loop from step 1).

The maximum distance that the eUAV is able to fly is
limited by the battery capacity. In the model set-up
for this research, the maximum distance is defined con-
servatively to ensure that the battery is always able to
safely complete each flight. The flight distances cov-
ered in this research are briefly elaborated on in the
next section.

3.2 Flight Distance
In this study, the distance that the eUAV flies is varied
to review the impact of DOD on battery degradation
for eUAV applications. From literature [30, 91] it is
found that smaller DOD ranges result in less severe

ageing for batteries cycled under constant discharge
protocols. For eUAV battery operations, there are var-
ious manners to regulate the DOD such as altering the
distance covered, speed flown or payload carried. How-
ever, because an amendment in speed or payload is
paired with other ageing side-effects due to a change in
battery load profiles. Thus, it is chosen to exclusively
adjust the cruise distance flown.

The eUAV completes four sets of different ranges to
explore the effect of varying the DOD: mixed, short,
medium and long range. The target distance frame-
work is further elaborated on in section 6.

3.3 Flight Data

In the DJI Matrice 100 quadcopter data [65] several
flights are monitored exploring the influence of wind,
cruise altitude, ground speed and payload weight on
the eUAV performance.

The DJI Matrice has a 22.2 V Lithium battery with
4.5 Ah capacity. The quadcopter has a maximum
cruise speed equal to 17 ms−1 and is able to fly 22
minutes provided it is not carrying a payload.

In order to simulate the battery flights in PyBaMM,
the rates of current the battery provides the quad-
copter during take-off, cruise and landing are required.
Secondly, the time duration of a take-off and landing
manoeuvre are quantified. A summary of the mean
inputs per flight part is given in Table 1. Both the cur-
rent and time values have a standard deviation equal
to 2.6% [65]. Note that the cruise time is not fixed, as
this depends on the target distance that is stochasti-
cally generated before each flight.

In order to obtain these data inputs, the DJI Matrice
100 data set is filtered on altitude, payload weight and
ground speed. The lowest altitude from the DJI Ma-
trice 100 tests, equal to 25 m, is chosen to allow for
a longer residual flight time to explore the influence
of flying different DOD ranges. Additionally, following
the same reasoning, the payload is set to 0 kg. Finally,
the average ground speed of 8 ms−1 is used.

Part Current Time duration
Symbol Value [A] Symbol Value [s]

Take-off It/o 23.5 tt/o 12.0
Cruise Ic 21.0 tc variable
Landing Il 19.5 tl 25.0

Table 1: Flight profile input values

4 Battery Simulation
Now that the mission profiles are defined, this section
presents the battery simulation set-up used to cycle the
battery throughout the flights. To evaluate the per-
formance of the mission-based battery health manage-
ment strategy, it is compared to a SOC 100% and SOC
80% strategy. First, section 4.1 describes the general
battery model used for simulations in Python. Then,
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Figure 1: Schematic overview of SOC 100%, SOC 80% and mission-based strategy battery models

the SOC 100%, SOC 80% and mission-based battery
health management strategies are elaborated on in sec-
tion 4.2.

4.1 Battery Modelling
The battery is modelled with the use of the Python
package PyBaMM (version 21.10) [77]. To increase
computational speed, the battery cells are represented
by a Single Particle Model (SPM). It is chosen to
replicate the Nickel, Manganese and Cobalt (NMC)
Lithium battery using the parameter set provided by
Mohtat et al. [55] as this battery cell has similar prop-
erties to the DJI Matrice battery used to fly the eUAV
described in section 3.3. An overview of the battery
parameter values defined by Mohtat et al. [55] is given
in Table 21 in Appendix A.

In this model, the Lithium pouch cell from Mohtat et
al. [55] has a 4.2 V maximum voltage (Vmax) and a 3.0
V minimum voltage (Vmin). The nominal cell capacity
is 5.0 Ah. This is slightly more than the 4.5 Ah DJI
Matrice battery, enabling the eUAV to fly longer. To
reach the 22.2 V delivered by the DJI Matrice batter-
ies, multiple Lithium NMC pouch cells can be placed
in series to form a battery pack. To rule out ageing
influences between battery cells, however, this model
only reviews the performance of a single cell.

Battery ageing is modelled with a Solid Electrolyte
Interphase (SEI) kinetic rate equal to 1 · 10−14 ms−1

derived by Yang et al. [92]. Here, the ethylene car-
bonate reaction is limited following the SEI formation
reaction. The battery’s EOL is defined when SOH is

80% to avoid a critical voltage drop. The internal re-
sistance is not defined to be the limiting factor as test
runs showed that this parameter increased with a max-
imum of +20% upon reaching 80% SOH.

As PyBaMM is deterministic, several small pertur-
bances are inputted into the model to mirror real-life
parameter variation observed in literature. Table 22 in
Appendix A lists these non-deterministic errors that
applied to the battery chemistry and BMS readings.
These stochastic inputs are also briefly addressed in
section 6 and further explored when validating the
model in section 8.

A schematic flowchart of the steps the battery model
undergoes is given in Figure 1. This overview includes
three separate steps that are executed depending on
the battery health management strategy that is in
place. These three strategies are: (1) SOC 100%,
(2) SOC 80% and (3) mission-based. The battery
model is almost identical for these strategies, except
for the experiment that the battery executes for each
flight. A detailed description of experiments 1, 2 and
3 is given in section 4.2. Below is a brief description of
each step in depicted in Figure 1:

1. New battery - a new battery is inputted into
the model to be tested until it reaches SOH 80%.
The number of batteries that are tested for each
strategy is determined by the MC simulation set-
up which is further discussed in section 6.

2. New target - while SOH ≥ 80%, new targets are
generated for the battery to fly to.
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3. Experiment - depending on the battery health
management strategy (SOC 100%, SOC 80% or
mission-based), the battery is either first charged
and then flown, or flown directly.

4. SOH ≥ 80% - SOH is checked after each flight:

i if SOH ≥ 80%, a new target is generated at
dtarget distance and the battery undergoes
another cycle.

ii if SOH ≤ 80%, this battery is discarded and
a new battery is inputted in the model to be
tested.

Translating the flowchart steps into a simulation
model, the skeleton of the battery model developed in
Python using PyBaMM is given in Algorithm 1. The
following notes apply:

• The normally distributed input values in lines 5,
7, 8 and 17 refer to the specifications listed in Ta-
ble 22 in Appendix A.

• Flights, f, are counted for each mission completed.

• During each flight, the experiment run for the sim-
ulation in line 27 depends on the battery health
management strategy that is in place. Note
that in this context, ‘experiment’ refers to the
charge/discharge cycle that the battery undergoes
in PyBaMM. The variation in types of simulation
experiments are elaborated on in section 4.2.

• After an experiment has been simulated, sim(),
the battery’s inner state has been modified from
batteryf , start to batteryf , end.

• Finally, when the battery has reached SOH = 80%
the output solution is a set of flights executed by
the inputted battery. The data includes detailed
battery state information such as voltage, current
and capacity levels for each flight.

4.2 Battery Health Management
Strategies

As stated in the previous section, the experiment a
battery performs during each cycle depends on the
strategy that is being evaluated. In this section, the
three battery health management strategies (1) SOC
100%, (2) SOC 80% and (3) mission-based are
described in detail. The frameworks of the experi-
ments associated with each strategy is first given in
section 4.2.1. Thereafter, the methodology of the esti-
mation of the required amount of SOC to safely com-
plete a mission is presented in section 4.2.2.

4.2.1 PyBaMM Experiments per Strategy

The definitions of the experiment for the SOC 100%,
SOC 80% and mission-based strategy are presented in
Algorithms 2, 3 and 4, respectively. These experiments
are inputted into the main battery model in Algorithm
1 when ‘flying = True’ which starts in line 21.

Algorithm 1 Skeleton of the battery model using Py-
BaMM
1: Input model ← SPM
2: Input model ← ec reaction limited

3: Input parameter ← Lithium-ion Mohtat2020
4: Input parameter ← SEI kinetic rate Yang2017
5: Input parameter ← capacityf=0, normal(µ,σ)

6: Input electrode ← Lithium-ion ElectrodeSOH
7: Input electrode ← Vmin, normal(µ,σ)
8: Input electrode ← Vmax, normal(µ,σ)

9: f = 0
10: batteryf=0 ← model, parameter, electrode

11: while SOH ≥ 80% do
12: new_mission = True
13: flying = False
14: mission_complete = False

15: if new_mission = True then
16: dtarget ← random target within range
17: parameter ← SEI kinetic rate normal(µ,σ)

18: new_mission = False
19: flying = True
20: end if

21: if flying = True then
22: if f = f 0 then
23: batteryf,start ← batteryf=0

24: else
25: batteryf,start ← batteryf−1,end

26: end if
27: experiment ← dtarget
28: batteryf,end ← sim(batteryf,start, experiment)

f ← f + 1

29: flying = False
30: mission_complete = True
31: end if

32: if mission_complete = True then
33: SOH ← capacityf,end/capacityf=0

34: mission_complete = False
35: new_mission = True
36: end if
37: end while

38: Output model ← solution

For the SOC 100%, SOC 80% and mission-based
strategy, the experiments includes charging (‘Charge’)
and in flight (‘Fly’) discharging commands that
PyBaMM uses to cycle the battery. These two
processes are further elaborated on below. Note
that both the SOC 80% and mission-based battery
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health management strategy allow the eUAV to fly
directly if it has sufficient SOC from the previous flight.

Charge
The battery cell is charged following a standard Con-
stant Current Constant Voltage (CC/CV) protocol.
The CC/CV charging steps inputted in the experiment
are presented in Algorithm 5. The SOCstart values de-
rived for the SOC 100%, SOC 80% and mission-based
strategy are first converted to VstartV, as PyBaMM
requires voltage inputs to charge the battery. Then,
the battery is charged at 1C until VstartV (CC step)
and held at VstartV until C/50 (CV step).

Algorithm 2 SOC 100% battery strategy
- Experiment 1
1: SOCstart ← 100%
2: if flying = True then
3: experiment ← Charge(SOCstart)
4: experiment ← Fly(dtarget)
5: end if

Algorithm 3 SOC 80% battery strategy
- Experiment 2
1: if flying = True then
2: Estimate SOCreq ← dtarget, SOH

3: if SOCreq > 80% then
4: SOCstart ← 100%
5: experiment ← Charge(SOCstart)
6: experiment ← Fly(dtarget)

7: else if SOCreq ≤ 80% and SOC(t) < 80% then
8: SOCstart ← 80%
9: experiment ← Charge(SOCstart)

10: experiment ← Fly(dtarget)

11: else
12: experiment ← Fly(dtarget)

13: end if
14: end if

Algorithm 4 Mission-based battery strategy
- Experiment 3
1: if flying = True then
2: Estimate SOCreq ← dtarget, SOH
3: if SOC(t) < SOCreq then
4: SOCstart ← SOCreq

5: experiment ← Charge(SOCstart)
6: experiment ← Fly(dtarget)
7: else
8: experiment ← Fly(dtarget)
9: end if

10: end if

Fly

As described in the mission profile part in section 3, a
flight consists of multiple steps in order to fly from the
hub, to the target and back to the hub. These steps are
presented in Algorithm 6. The target distance (dtarget)
is converted to cruise time (tc) with the use of the set
8 ms−1 ground speed. The current throughput rates
applied during take-off (It/o), cruise (Ic) and landing
(Il), as well as the times to perform take-off (tt/o) and
landing (tl) are in line with the DJI Matrice values
observed in literature [65] as listed in Table 1 which
is stochastically generated with a standard deviation
equal to 2.6% for each flight.

Algorithm 5 CC/CV charge in experiment
1: Vstart ← SOCstart

2: Charge(Vstart) ←




Charge at 1C until VstartV ,
Hold at VstartV until C/50





Algorithm 6 Fly in experiment
1: tc ← dtarget

2: Fly(dtarget) ←




Discharge at 0.1A for 3s,
Discharge at It/o A for tt/o s,
Discharge at Ic A for tc s,
Discharge at Il A for tl s,
Discharge at 0.1A for 3s,
Rest for 3 minutes





4.2.2 Estimation of Required State of Charge

Both the SOC 80% and mission-based strategy esti-
mate the required SOC for the eUAV to complete the
flight before flying. The establishment of this estima-
tion is done using Linear Regression (LR) and Multiple
Linear Regression (MLR). Because PyBaMM requires
voltage as an input for charging practices, it is required
to translate SOC to voltage levels, whilst keeping in
mind that the voltage relation changes as the battery
ages [72].

Equation 1 gives the formula used in the battery
health management models to derive the required volt-
age level (Vreq) for the SOC 80% and mission-based
battery health management strategy. This method is
based on an approach presented by Viswanathan et al.
[84]. The Vreq is the voltage level to which the battery
must be charged to safely complete the mission. In this
equation, VSOC 30% is the voltage at which the battery
has 30% SOC. The expected DOD voltage based on
the inputted target distance is represented by Vexp.

Vreq = VSOC 30% + Vexp (1)

Voltage for 30% SOC (VSOC 30%)
The level at which VSOC 30% is incorporated because
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30% SOC is the minimum SOC threshold that the bat-
tery must have to ensure safe flight [37]. The determi-
nation of the VSOC 30% level is given in Algorithm 7.

The number of batteries tested to determine the
VSOC 30% levels for different SOH states, along with
the corresponding number of data points, is listed in
Table 2. The simulations are run with the battery
and BMS specifications listed in Table 21 and 22 in
Appendix A. To capture the VSOC 30% values on the
voltage curves as the battery ages, the battery is cy-
cled from its minimum to its maximum voltage until
SOH = 80%. The battery’s SOH is reviewed at the
start and end of each cycle, c. The cycling experiment
in line 17 is given in Algorithm 8. To ensure that the
battery ageing process is similar to the battery model
used for flying, the same CC/CV charging approach is
used to charge the batteries.

After the model output values for VSOC 30% from 100
batteries at different SOH stages have been gathered,
a LR is performed through regression in Python. For
this LR, the battery’s SOH is inputted due to the fact
that the batteries’ voltage level curves decrease as the
battery degrades. Equation 2 is yielded to calculate
VSOC 30%. This LR equation has an R2 value of 0.432.

VSOC 30% = 0.397 · SOH + 3.30 (2)

Expected Voltage (Vexp)
Secondly, the Vexp is added to the determined
VSOC 30%. In order to derive the voltage DOD for a
variety of distances flown, the model described in Al-
gorithm 1 is used. Naturally, a higher Vexp relates to
a longer flight distance. Again, this voltage model is
simulated with the battery and BMS inputs listed in
Table 21 and 22 in Appendix A are simulated. The
total number of batteries tested is listed in Table 2.
In this model, the SOC 100% experiment described in
Algorithm 2 is inputted into the battery simulations.
The number of data points outputted from these runs
is significantly more compared to the VSOC 30% model
due to the longer lifetime as a result of a smaller DOD.

For Vexp, two variables are fed into the MLR, namely
SOH and target distance. The SOH is inputted in or-
der to account for the change in voltage curves as the
battery ages, while the target distance (dtarget) is used
to determine what the DOD of the battery voltage will
be. The regression results in Equation 3 which can be
used to determine Vexp. The R2 value of this MLR
equation is 0.857.

Vexp = −0.0861 · SOH + 0.0003 · dtarget + 0.195 (3)

Voltage level Number of
batteries

Data
points

VSOC 30% 1000 4442
Vexp 100 9067

Table 2: Voltage level tests

Algorithm 7 LR required SOC
- Model for Voltage at which SOC = 30% (VSOC 30%)
1: Input model ← SPM
2: Input model ← ec reaction limited

3: Input parameter ← Lithium-ion Mohtat2020
4: Input parameter ← SEI kinetic rate Yang2017
5: Input parameter ← capacityf=0, normal(µ,σ)

6: Input electrode ← Lithium-ion ElectrodeSOH
7: Input electrode ← Vmin, normal(µ,σ)
8: Input electrode ← Vmax, normal(µ,σ)

9: c = 0
10: batteryf=0 ← model, parameter, electrode

11: while SOH ≥ 80% do
12: if c = c0 then
13: batteryc,start ← batteryc=0

14: else
15: batteryc,start ← batteryc−1,end

16: end if
17: batteryc,end ← sim(batteryc,start, experiment)

c ← c + 1
18: SOH ← capacityc,end/capacityc=0
19: end while

20: Output model ← solution

Algorithm 8 LR required SOC
- Experiment for VSOC 30%

1: experiment ←





Charge at 1C until VmaxV ,
Hold at VmaxV until C/50,
Discharge at 1C until VminV ,
Rest for 3 minutes





5 Sustainability and Cost Assess-
ment

After a MC simulation of the batteries has been run,
an assessment is performed comparing the SOC 100%,
SOC 80% and mission-based eUAV battery health ma-
nagement strategies. In total, three pillars are as-
sessed: environmental impact, financial costs, and, ef-
ficiency. These factors are explained in more detail in
section 5.1, 5.2 5.3, respectively. The assessment of
the results evaluates these three pillar separately as a
trade-off requires additional stakeholder information to
determine the weight of each parameter.

5.1 Environmental Impact

The environmental impact related to longevity and en-
ergy consumption are reviewed. These are sustainabil-
ity factors derived from literature [28, 31, 40] and cho-
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sen due to the availability of data. The environmental
impact is quantified through carbon emissions, as these
make up for 80% of a battery’s Global Warming Poten-
tial (GWP) score [44]. The calculations of the carbon
emissions are presented hereafter.

The carbon emissions that arise from the BOL pro-
duction processes (CO2,BOL [kg]) account for the waste
and longevity sustainability component. These emis-
sions are determined using Equation 4. In this equa-
tion, battery’s energy at BOL (EBOL [kWh]). The av-
erage EBOL for the batteries inputted in this model in
PyBaMM is 0.0190 kWh. The BOL carbon emissions
(CO2, BOL kWh [kg/kWh]) equal 143.7 kg of carbon
per kWh battery capacity. This is derived from av-
eraged BOL emission data for lithium batteries with
NMC chemistry as the values of the BOL CO2 emis-
sions strongly vary per source [35, 52]. The EOL emis-
sions are disregarded due to a lack of consistency in
data and situational influences [38, 46].

CO2, BOL = EBOL · CO2, BOL kWh (4)

During operation, the energy consumption throughout
the activity of charging is closely monitored and trans-
lated to carbon emissions (CO2,charge [kg]) with Equa-
tion 5. Here, the total charging power (Ptotal [kWh]) is
reviewed for each battery health management strategy.
The efficiency of transferring electricity (η) from the
power plant to the drone motors is set to 0.78 [32, 76].
Moreover, charging carbon emissions (CO2, charge kWh

[kg/kWh]) associated with a mixed-use of green and
grey electricity in the Netherlands are implemented
into the model. This results in 0.49 kg CO2 per kWh
electricity used. [13, 15].

CO2, charge = Ptotal ·
1

η
· CO2, charge kWh (5)

5.2 Financial Costs

Secondly, similar to the environmental impact, the fi-
nancial costs of a battery at BOL, throughout opera-
tion and EOL can be considered for assessment [81].
EOL costs, however, are again disregarded as these are
complex to determine in view of inconsistency of data
and battery specification dependencies [38, 66]. For
the SOC 80% and mission-based strategy, an invest-
ment cost also applies to initially establish, verify and
validate the predictive approach [26]. In this study,
however, the investment cost is neglected due to a lack
of data. Consequently, the costs’ ROI or Payback Pe-
riod are also not assessed. By neglecting battery health
management investment costs, the financial assessment
of the mission-based and SOC 80% strategy is more
optimistic. The equations to evaluate the remaining
costs for the battery at BOL and during operation are
discussed below.

The battery BOL costs (CostBOL [e]) can be de-
termined by either through an analogy approach re-
viewing average costs per kWh or with a parametric
method by averaging Off-the-Shelf (OTS) products. As

costs per kWh vary [48], it is chosen to use the off-
the-shelf price of the Lithium batteries used to model
the eUAV flight mission profiles in section 3, which is
equivalent to e 199 [21].

To operate an eUAV battery, operation and main-
tenance costs mainly consist of energy consumption
costs during charging [48]. To determine the charg-
ing costs (Costcharge [e]) Equation 6 is used with the
average electricity cost (Costcharge kWh [e/kWh]) in
the Netherlands as of 1 May 2021 [59], equal to e 0.23
per kWh. In this equation Ptotal and η refer to the
same charging power in kWh and electricity transfer
process efficiency, respectively, as used in Equation 5.

Costcharge = Ptotal ·
1

η
· Costcharge kWh (6)

5.3 Efficiency
The last assessment parameter used to assess the bat-
tery health management strategies is efficiency which
is related to the availability of the battery [62, 81].
Here, the ‘downtime’ of the battery health manage-
ment strategies during the activity of charging are com-
pared to the flight times. Naturally, a low downtime is
desired, yielding a higher efficiency. To determine the
efficiency of a strategy, Equation 7 is applied. Here,
Total flight time refers to the sum of the time the
battery is used to fly, and Total time represents the
sum of the flying and charging time each battery un-
dergoes.

Efficiency =
Total flight time

Total time
(7)

Depending on the stakeholders involved, efficiency
could be reflected in operational costs. This is, how-
ever, case-specific and beyond the scope of this study.

6 Experimental Set-up
Sections section 3 to 5 provided background informa-
tion for the mission profiles, battery model and sustain-
ability and cost assessment framework. In this section,
the experimental set-up of this research is elaborated
on. Details concerning the stochastic generation of mis-
sion targets is first presented in section 6.1, followed by
an overview of the MC simulation set-up in section 6.2.

6.1 Mission Targets
During a flight, the eUAV is modelled to fly from the
hub to a mission target and back. The minimum dis-
tance (dmin) to a target to is positioned 20 m from
the hub such that the eUAV approximately covers the
same distance horizontally as vertically. The maximum
distance that the eUAV is able to fly is governed by the
battery characteristics and flight profiles. The battery
in PyBaMM has a capacity of 5.0 Ah. Following the
flight instructions in which the battery provides suf-
ficient energy for the eUAV to fly to a randomly as-
signed target location and back to the hub while also
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maintaining a SOC level above the 30% threshold, the
maximum target distance (dmax) is defined to be 1000
m.

To analyse the influence of the battery DOD cycled
through by each eUAV battery, four target distance
ranges are defined. An overview of the minimum and
maximum distance (dmin and dmax) associated with
each range is given in Table 3. The minimum distance
of the short range equals the minimum distance in-
putted into the mixed battery model, while the maxi-
mum distance of the long distance is the same as the
maximum range flown by the eUAV for the mixed set
of missions. For each range, targets are generated fol-
lowing a uniform distribution such that each mission
target has an equal chance of being visited.

Range dmin [m] dmax [m]
Mixed 20 1000
Short 20 346
Medium 347 673
Long 674 1000

Table 3: Target distance ranges

6.2 Monte Carlo
To run the MC simulations, the battery model is tested
using the SOC 100%, SOC 80% and mission-based stra-
tegy. Table 4 provides an overview of the number of
batteries tested per strategy and range.

Range SOC 100% SOC 80% Mission-
based

Mixed 1000 1000 1000
Short 300 300 300
Medium 300 300 300
Long 300 300 300

Table 4: Number of batteries tested per strategy and
range

The mixed target distance is initially tested for 1000
batteries. A statistical analysis presented in support-
ing work [86], is carried out to verify if the MC sim-
ulations of the independent battery runs converge to
stable means. The total sum of target distances flown
by each battery is reviewed as missions targets are
stochastically generated as an ‘input’ to the battery
model. The results show that the total sum of tar-
get distances flown by each battery for the SOC 100%,
SOC 80% and mission-based strategy for the mixed
range stabilises after approximately 300 runs. Hence,
it can be concluded that sufficient MC simulations have
been run. For the short, medium and long range tests,
the MC simulations are run 300 times to decrease the
total run time.

For the MC simulations for the mixed, short, medium
and long range tests using the SOC 100%, SOC 80%
and mission-based strategy, the following stochastic in-
puts are incorporated in the runs:

The MC incorporates stochastic inputs to represent
battery manufacturing impurities in new batteries
[6, 22, 61, 89] and in-flight variations in battery power
usage and flying times [65].

• Initial battery parameters
Each battery that is newly inputted into the
model, has the following stochastic initial prop-
erties as listed in Table 22 in Appendix A: initial
capacity, initial maximum voltage and initial min-
imum voltage.

• In-flight variations
Every battery cycles through random flights de-
pending on the target locations generated. Each
mission, the current and time required to complete
a take-off, cruise and landing manoeuvre varies
around the mean value presented in Table 1 with
a standard deviation equal to 2.6% [65]. Further-
more, the SEI kinetic rate constant depends on
the battery health and is normally distributed us-
ing the inputs provided in Table 22 in Appendix A.
Finally, the BMS reading errors for voltage, SOC
and SOH which are presented in Table 22 in Ap-
pendix A, vary each flight affecting for example
the determination of EOL at 80% SOH.

6.3 Sustainability and Cost Assessment
To assess the environmental impact and financial costs
of the battery models, the output is reviewed for ‘bat-
tery lifetime’ and ‘battery usage’. A brief description
of these two characteristics is given below:

• Battery lifetime
Here, the impact of battery lifetime concerning
BOL practices is assessed. From the sustainability
and cost assessment parameters presented in sec-
tion 5, the review of battery lifetime performance
includes CO2, BOL and CostBOL. The EOL prac-
tices are disregarded due to lack of data.
In order to ensure that the SOC 100%, SOC 80%
and mission-based output values are on the same
scale, the BOL emissions and costs are expressed
per total flying time flown per battery (C̃O2, BOL

[kg/s] and C̃ostBOL [e/s]). Both these two pa-
rameters relate to the number of batteries used
per flying time (B̃), which will be discussed in the
results in section 7.

• Battery usage
The evaluation of battery usage focuses on the per-
formance during operation. From section 5 the pa-
rameters CO2, charge and Costcharge are incorpo-
rated to review the impact of charging. Also, the
efficiency of flying versus downtime is included.
Again, to effectively compare the SOC 100%,
SOC 80% and mission-based results, the emissions
and costs parameters are reviewed per flying time
(C̃O2, charge [kg/s] and C̃ostcharge [e/s]). These
two metrics both relate to the total charge used
per flying time per battery (P̃total [kWh/s]), which
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is used to evaluate the battery usage performance
in the next section. The flying efficiency results
for battery usage can be compared directly.

7 Results

In this section, the results for battery health manage-
ment strategies are presented. The results of the 1000
batteries tested for the mixed range are first discussed
in section 7.1, after which the results of the 300 bat-
teries simulated for the short, medium and long range
are elaborated on in section 7.2. Finally, conclusions
regarding the effect of regulating the average SOC and
DOD on sustainability and cost performance is dis-
cussed in section 7.3.

Parameter Mission-based
vs. SOC 100%

Mission-based
vs. SOC 80%

B̃ -20.1% -5.7%
P̃total -6.4% -5.2%
Efficiency +2.8% -6.9%

Table 5: Relative mean Battery Usage and Battery
Lifetime performance of 1000 batteries tested through
Monte Carlo simulation for SOC 100%, SOC 80% and
mission-based strategy for mixed range

Figure 2: Sustainability and Cost Assessment - Battery
Lifetime results of 1000 batteries tested through Monte
Carlo simulation for the SOC 100%, SOC 80% and
mission-based strategy for mixed range

7.1 Mixed Range

First, section 7.1.1 elaborates on the evaluation with
respect to battery lifetime in which the BOL emissions
and costs are assessed. Secondly, section 7.1.2 presents
the outcome of the battery usage assessment concern-
ing emissions and costs of charging as well as the flying
efficiency results.

Figure 3: Sustainability and Cost Assessment - Battery
Usage results of 1000 batteries tested through Monte
Carlo simulation for the SOC 100%, SOC 80% and
mission-based strategy for mixed range

7.1.1 Battery Lifetime

It is expected that the mission-based health manage-
ment strategy yields a longer battery lifetime due to the
lower average SOC level. This implies that this model
requires fewer batteries per flying distance flown (B̃)
before reaching EOL at 80% SOH. A longer lifetime re-
sults in a relative decrease in BOL emissions and costs.

In order to compare if there is a significant differ-
ence in the average battery lifetime for the SOC 100%,
SOC 80% and mission-based strategy, the hypotheses
in Table 6 and Table 7 are tested for batteries used
per flying time (B̃). From a statistical analysis per-
formed in supporting work [86] it is concluded that the
B̃ output of the models follow a normal distribution.
Hence, the hypotheses are tested for α = 1% using an
unpaired one-sided T-test.

Mission-based vs. SOC 100% - mixed range

H0: B̃ mission−based ≥ B̃ SOC 100%

H1: B̃ mission−based < B̃ SOC 100%

Table 6: Hypothesis B̃ - Mission-based vs. SOC
100% strategy for mixed range

The relative mean B̃ performance from the MC simu-
lations for the SOC 100% and mission-based strategy
is displayed in Table 5. When comparing the indepen-
dent samples of B̃ paired with both strategies, it is
observed that the mission-based approach requires ap-
proximately 20.1% less B̃ with 100% confidence [86].
Hence, H0 for B̃ in Table 6 is rejected.

From these results, it can be concluded that the
mission-based battery health management strategy
yields a longer battery lifetime with respect to the SOC
100% method. The battery life elongation as a result
of applying the mission-based strategy is attributed to
the fact that the battery is cycled around a lower av-
erage SOC.
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Mission-based vs. SOC 80% - mixed range

H0: B̃ mission−based ≥ B̃ SOC 80%

H1: B̃ mission−based < B̃ SOC 80%

Table 7: Hypothesis B̃ - Mission-based vs. SOC 80%
strategy for mixed range

The relative average B̃ from the SOC 80% and mission-
based strategy MC simulations is displayed in Table 5.
When comparing the B̃ for these two strategies and
reviewing the statistical analysis presented in support-
ing work [86], it is concluded with 100% confidence
that the mission-based strategy has 5.7% reduced B̃.
Hence, H0 for B̃ in Table 7 is rejected. Again, the con-
clusion can be drawn that the mission-based battery
health management strategy results in battery lifetime
elongation compared to the SOC 80% method.

Translating B̃ into C̃O2, BOL and C̃ostBOL it can
be reviewed how the BOL results for the SOC 100%,
SOC 80% and mission-based strategy compare. The
C̃O2, BOL and C̃ostBOL results for the strategies are
depicted in Figure 2.

7.1.2 Battery Usage

During the operation, the batteries’ charging CO2

emissions and costs and flying efficiency are assessed.
The mission-based battery health management stra-
tegy is anticipated to perform better than the SOC
100% strategy for all three parameters. Below, the
amount of energy required to charge the batteries per
flying distance flown (P̃total) and efficiency of the flying
time to the total time are assessed.

To evaluate the model outputs for the mixed range,
the following sets of hypotheses listed in Table 8 to
11 are defined for P̃total and Efficiency per battery.
From supporting work [86] a statistical analysis shows
that both outputs follow a normal distribution for the
SOC 100%, SOC 80% and mission-based models. The
hypotheses listed below are tested for α = 1% with an
unpaired one-sided T-test.

Mission-based vs. SOC 100% - mixed range

H0: P̃total, mission−based ≥ P̃total, SOC 100%

H1: P̃total, mission−based < P̃total, SOC 100%

Table 8: Hypothesis P̃total - Mission-based vs. SOC
100% strategy for mixed range

Mission-based vs. SOC 100% - mixed range
H0: Efficiency mission−based ≤ Efficiency SOC 100%

H1: Efficiency mission−based > Efficiency SOC 100%

Table 9: Hypothesis Efficiency - Mission-based vs.
SOC 100% strategy for mixed range

From the relative outcome of the MC simulations pre-
sented in Table 5, it can be concluded that the mission-

based battery health management strategy results in a
lower P̃total and higher flying efficiency. The mission-
based P̃total is reduced with 6.4% of compared to the
SOC 100% approach, while the efficiency increases by
2.8%. The improved battery usage performance is the
result of the fact that the battery is merely charged
to the estimated amount of charge. Both the samples
for P̃total and Efficiency differ with 100% confidence as
presented in supporting work [86], implying that both
H0 hypotheses in Table 8 and Table 9 are rejected.

Mission-based vs. SOC 80% - mixed range

H0: P̃total, mission−based ≥ P̃total, SOC 80%

H1: P̃total, mission−based < P̃total, SOC 80%

Table 10: Hypothesis P̃total - Mission-based vs. SOC
80% strategy for mixed range

Mission-based vs. SOC 80% - mixed range
H0: Efficiency mission−based ≤ Efficiency SOC 80%

H1: Efficiency mission−based > Efficiency SOC 80%

Table 11: Hypothesis Efficiency - Mission-based vs.
SOC 80% strategy for mixed range

The average results of the MC simulations presented
in Table 5 show the mission-based battery health ma-
nagement strategy results in a lower total power used
for charge per mission time flown (P̃total). The P̃total

for the mission-based approach is reduced with 5.2%
compared to the SOC 80% strategy. However, despite
this improved charging performance, the mission-based
outputs a 6.9% lower efficiency with respect to the
SOC 80% strategy. This is explained by the fact that
the strategy skips charging when SOCreq ≤ 80% and
SOC(t) ≥ 80%, which is frequently yielded after having
charged to SOC 100% for the previous flight. There-
fore, the overall conclusion stands that the H0 for P̃total

in Table 10 is rejected with 100% confidence [86], while
the H0 for Efficiency in Table 11 is failed to be rejected.

For the sustainability and cost assessment of each
battery, the sum of charging power per time flown
(P̃total) is translated in to C̃O2, charge and C̃ostcharge.
Moreover, the flying efficiency is directly assessed. The
battery usage results per battery run through the MC
simulations for the SOC 100%, SOC 80% and mission-
based strategy are displayed in Figure 3.

7.2 Short, Medium and Long Range
Reviewing different distance ranges flown, the mission-
based battery strategy is expected to perform better
than the SOC 100% and SOC 80% model for both ‘bat-
tery lifetime’ and ‘battery usage’ related parameters.
Moreover, the short range distance is expected to yield
the best results due to minimum battery degradation
influenced by DOD.

In a statistical analysis presented in supporting work
[86], it is concluded that the results for the SOC 100%,
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Short Medium Long

Parameter Mission-based
vs. SOC 100%

Mission-based
vs. SOC 80%

Mission-based
vs. SOC 100%

Mission-based
vs. SOC 80%

Mission-based
vs. SOC 100%

Mission-based
vs. SOC 80%

B̃ -34.3% -15.1% -19.9% +5.5% -10.9% -10.8%
P̃total -9.7% -0.8% -7.4% -6.1% -4.5% -4.5%
Efficiency +6.8% +2.6% +1.5% -15.6% +0.6% +0.5%

Table 12: Relative mean Battery Usage and Battery Lifetime performance of 300 batteries tested through Monte
Carlo simulation comparing the SOC 100%, SOC 80% and mission-based strategy per short, medium and long
range

Figure 4: Sustainability and Cost Assessment - Battery Lifetime results of 300 batteries tested through Monte
Carlo simulation for the SOC 100%, SOC 80% and mission-based strategy for short, medium and long range

Figure 5: Sustainability and Cost Assessment - Battery Usage results of 300 batteries tested through Monte
Carlo simulation the for SOC 100%, SOC 80% and mission-based strategy for short, medium and long range
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SOC 80% and mission-based strategy are normally
distributed and can thus be evaluated with an un-
paired one-sided T-test. The hypotheses for the short,
medium and long range results are tested for α = 1%.
Here, Output refers to the performance of B̃, P̃total and
Efficiency. An improved performance corresponds to a
lower B̃ and P̃total, and higher Efficiency output.

The results of the mission-based strategy compared
to the SOC 100% approach are first discussed in sec-
tion 7.2.1. Subsequently, the results of the mission-
based compared to the SOC 100% strategy are evalu-
ated in section 7.2.2. Finally, the results of the different
ranges are compared in section 7.2.3.

7.2.1 Mission-based vs. SOC 100%

To review if the mission-based strategy is better than
the SOC 100% approach, hypotheses for the short,
medium and long range are presented in Table 13, 14
and 15, respectively.

Mission-based vs. SOC 100% - short range
H0: Output mission−based ≤ Output SOC 100%

H1: Output mission−based > Output SOC 100%

Table 13: Hypothesis Output - Mission-based vs.
SOC 100% strategy for short range

Mission-based vs. SOC 100% - medium range
H0: Output mission−based ≤ Output SOC 100%

H1: Output mission−based > Output SOC 100%

Table 14: Hypothesis Output - Mission-based vs.
SOC 100% strategy for medium range

Mission-based vs. SOC 100% - long range
H0: Output mission−based ≤ Output SOC 100%

H1: Output mission−based > Output SOC 100%

Table 15: Hypothesis Output - Mission-based vs.
SOC 100% strategy for long range

From the relative mean battery lifetime and usage
results presented in Table 12, Figure 4 and 5 the
following conclusions are drawn. The mission-based
approach yielded better results than the SOC 100%
for all three distance ranges.

Short range
Battery lifetime for the mission-based strategy is
improved significantly as it shows the lowest B̃. For
battery usage, the Ptotal is reduced with and efficiency
is increased. Compared to the medium and long
range, it becomes apparent that the battery lifetime
and usage is most affected in the short range. This
is the result of the shorter distances flown that result
in a longer lifetime and minimal charging activity
corresponding to a lower P̃total and higher efficiency.

Concluding these results and a T-test presented in
supporting work [86], the H0 for the short range in
Table 13 can be rejected with 100% confidence.

Medium range
With the mission-based strategy, the battery lifetime
and usage yield improved results compared to the
SOC 100% strategy. Here, similar values to the
performance in mixed distance are observed. Based
on the output of these results and a T-test [86], the
H0 for the medium range in Table 14 is rejected with
100% confidence.

Long range
The mission-based strategy yields less B̃ than the SOC
100% approach. Furthermore, the P̃total is improved
and an efficiency that is also a little higher. Contrarily
to the other distance ranges, though, the difference
in performance of the mission-based and SOC 100%
strategy for the long distance is less evident. This is
due to the fact that when flying to targets that are
positioned further away, the mission-based strategy
is required to charge to a SOC level that is closer to
100%. From these results and the T-test output [86],
H0 for long range in Table 15 can successfully be
rejected with 100% confidence.

7.2.2 Mission-based vs. SOC 80%

The hypotheses to evaluate the performance of the
mission-based strategy compared to the SOC 80% ap-
proach for the short, medium and long range are pre-
sented in Table 16, 17 and 18, respectively.

Mission-based vs. SOC 80% - short range
H0: Output mission−based ≤ Output SOC 80%

H1: Output mission−based > Output SOC 80%

Table 16: Hypothesis Output - Mission-based vs.
SOC 80% strategy for short range

Mission-based vs. SOC 80% - medium range
H0: Output mission−based ≤ Output SOC 80%

H1: Output mission−based > Output SOC 80%

Table 17: Hypothesis Output - Mission-based vs.
SOC 80% strategy for medium range

Mission-based vs. SOC 80% - long range
H0: Output mission−based ≤ Output SOC 80%

H1: Output mission−based > Output SOC 80%

Table 18: Hypothesis Output - Mission-based vs.
SOC 80% strategy for long range

Comparing the relative mean battery lifetime and
usage results presented in Table 12, Figure 4 and 5 the
following conclusions are drawn for the mission-based
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and SOC 80% strategy.

Short range
The mission-based strategy shows a better B̃ than
the SOC 80% strategy. For battery usage, the P̃total

is only slightly reduced, which suggest that both
strategies charge to similar SOC levels. The efficiency
of the mission-based strategy is however still higher
because the average required SOC for short ranges is
very low, resulting in the battery regularly skipping
charging before a flight. From these results and a
T-test elaborated on in supporting work [86], H0 for
the short range in Table 16 is rejected with 100%
confidence.

Medium range
For the medium range, the mission-based strategy is
not superior to the SOC 80% strategy, which goes
against the hypothesis formulated above. The results
show that the SOC 80% strategy yields a better B̃ and
efficiency. An explanation for this could be the fact
that the eUAV battery regularly skips charging due to
the toggle between SOC 100% and 80%. As a result,
battery degradation is less severe and efficiency is
significantly increased. When analysing the charging
power P̃total, however, the mission-based strategy
outperforms the SOC 80% approach. To conclude,
the H0 for the medium in Table 17 is only partially
rejected, as only the mission-based strategy only
outperformed SOC 80% for P̃total during operation.
The confidence levels for the T-tests are presented in
supporting work [86].

Long range
The mission-based strategy results in a lower B̃
compared to the SOC 100% approach. Also, the P̃total

is and efficiency are improved. Based on the T-test
results [86], H0 for the long range in Table 18 is
rejected with 100% confidence. The results show that
for long distance, the SOC 80% strategy performs very
similar to the SOC 100% approach. This is due to the
fact that 80% SOC is insufficient to safely complete
a mission to the target in the long range, forcing the
battery to almost always charge to 100%.

7.2.3 Distances

Per strategy, the performance of short compared to
medium and long distance is evaluated to review the in-
fluence of DOD. The hypotheses for testing the impact
of the distance are presented in Table 20. It is expected
that the short distance outperforms the medium and
long range model due to battery lifetime elongation as
a result of a smaller DOD.

Distance - short vs. medium and long range
H0: Output short ≤ Output medium, long

H1: Output short > Output medium, long

Table 20: Hypothesis Output - Distance short vs.
medium and long range

Reviewing the battery lifetime and usage sustainability
and cost assessment results in Table 19, Figure 4 and
5, several conclusions are drawn.

Battery lifetime
When comparing the battery lifetime output within
each strategy, it is observed that the short range yields
the best battery lifetime performance compared to
medium and long target distance range. This is in
line with the expectations and shows that a smaller
DOD results in a longer battery life. Furthermore, it
becomes apparent that decreasing the DOD elongates
the lifetime most significantly for mission-based
strategy compared to the SOC 100% and SOC 80%
strategy because the batteries with the mission-based
approach are cycled around a lower average SOC.

Battery usage
For battery usage, the results show that P̃total yields
the lowest results for the short distance, which sup-
ports the hypothesis stated above. The amount of
charge used during battery lifetime decreases with
approximately the same order of magnitude for each
strategy. The reason that the charge required for the
total mission time flown decreases, originates from the
fact that the battery suffers from less severe battery
ageing, implying that a eUAV battery is able to fly
longer. For the flying efficiency for the SOC 80%
strategy, however, the value is highest for the medium
range, instead of the short range. The high efficiency
for the SOC 80% range is attributed to the SOC 100%
and 80% toggle mentioned previously.

Concluding the findings above, the H0 in Table 20
for distance is partially rejected, because the flying
efficiency with the SOC 80% strategy for medium
distance outperforms the other ranges. The T-test
results are presented in supporting work [86].

7.3 Discussion

A concluding discussion of the results of this study is
given in the following sections. The benefit of applying
a mission-based battery health management strategy
by minimising the average SOC and DOD is first elab-
orated on in section 7.3.1 and 7.3.2, respectively. Then,
general sustainability and cost assessment findings are
discussed in section 7.3.3. Throughout the section, sev-
eral recommendations for future studies are provided.
A more elaborate overview of this study’s limitations
and suggestions for further analysis is given in support-
ing work [86].

7.3.1 Average State of Charge

From the mixed range simulations, it is concluded
that the mission-based study which cycles the battery
around a lower average SOC by charging to a before-
hand estimated required SOC, yields better results.
However, it must be noted that it cannot be ruled
out that this performance is solely the result of cycling
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SOC 100% SOC 80% Mission-based

Parameter Short vs.
Medium

Short vs.
Long

Short vs.
Medium

Short vs.
Long

Short vs.
Medium

Short vs.
Long

B̃ -7.0% -8.8% -5.2% -29.4% -23.7% -32.8%
P̃total -32.3% -45.0% -37.5% -50.0% -34.0% -48.0%
Efficiency +5.3% +9.1% -8.9% +13.5% +10.7% +15.8%

Table 19: Relative mean Battery Usage and Battery Lifetime performance of 300 batteries tested through Monte
Carlo simulation comparing short, medium and long range per strategy

around a lower SOC, as the influence of skipping charg-
ing must not be neglected. By applying the mission-
based strategy, benefits are yielded across eUAV bat-
tery lifetime parameters with respect to emissions and
costs.

Secondly, during eUAV operation for the mixed dis-
tance, the mission-based methodology yields the least
power required for charging. This is due to the fact
that the battery is merely charged to the estimated
SOC required to complete the next flight, or is im-
mediately used to fly if the battery already has suffi-
cient charge. Regarding flying efficiency, however, the
SOC 80% strategy performs best. This is the result of
the SOC 80% strategy’s toggle between SOC 80% for
shorter and SOC 100% for longer distances. This leads
to the eUAV regularly having sufficient SOC to com-
plete the next mission without being charged before-
hand. It could therefore be argued that the need for a
mission-based model is challenged, considering the fact
that the SOC 80% is relatively simple to apply.

Although the SOC 80% and mission-based stra-
tegy improve battery lifetime and usage performance,
it could be argued that implementing these battery
health management strategies is risk-prone due to the
reduced available capacity for flight. For future stud-
ies it is therefore recommended to include a safety as-
sessment parameter. Moreover, the reliability of the
strategies could be increased by establishing a more
advanced SOC estimation model that accounts for an
elaborate set of factors such as wind, altitude, payload
and flight speed.

7.3.2 Depth of Discharge

By varying the distance flown by the eUAV for a
short, medium and long range, the effect of varying
the DOD of that the battery cycles through is ex-
plored. From the model output, it is concluded that
the mission-based battery health management strategy
outperforms the SOC 100% strategy for all three dis-
tance ranges. The battery lifetime is most significantly
affected for the short range, as this distance pairs with
a smaller DOD, a lower average SOC and regular skip-
ping of charging practices. During battery usage, the
power for charging is reduced for the mission-based
strategy as the battery suffers from less severe bat-
tery ageing, implying that a eUAV battery is able to
fly longer. Lastly, the flying efficiency is increased due
to the fact that the battery is either charged to a lower
SOC, or can immediately be inputted to fly given it

already has sufficient charge from the previous flight.
Comparing the mission-based strategy to the SOC

80% approach, it is concluded that the SOC 80% yields
benefits for the medium range. For this distance, the
SOC 80% strategy resulted in a better battery lifetime
yielding lower emissions and costs. Moreover, the fly-
ing efficiency was significantly increased for battery us-
age. This improved performance is the result of the
SOC 80% regularly skipping the charging step when
the eUAV has sufficient charge from the previous flight.

Given the difference in sustainability and cost as-
sessment results for the mixed, short, medium and long
range, a recommendation for future research is to re-
view the optimal flying distance to maximise battery
lifetime and usage performance.

Note that if the environmental and financial assess-
ment results would be specified over target distance
flown instead of total flying time, a different output
is yielded. For the short range, this implies that a
eUAV travels less cruise distance per flight, but still
has to perform the same take-off and landing manoeu-
vres requiring relatively more charge per target dis-
tance flown. As a result, the results for the short range
would not outperform the other ranges for battery life-
time and battery usage.

7.3.3 Sustainability and Cost Assessment

Comparing the battery lifetime to the battery usage re-
sults, it becomes apparent that the environmental and
financial costs at BOL have the largest impact. For
the mixed range, the C̃O2, BOL emissions for approxi-
mately 91.1%, 89.8% and 89.8% of the total emissions
for the SOC 100%, SOC 80% and mission-based bat-
tery health management strategy, respectively. For the
economic costs, the C̃ostBOL approximately sum up to
equal 99.9% of the total costs for all three strategies.
This is in line with the findings described in literature,
and suggest that battery lifetime could be considered
prime focus point by operators.

The second discussion point revolves around the
seemingly low battery usage efficiency rate across all
strategies and distances flown. This output is at-
tributed to the CC/CV charging protocol that is in-
putted into the model. Due to the applied charging C-
rate and method, the charging time is approximately
twice as long as the discharging practices, yielding a
low flying efficiency rate. Applying a different charg-
ing methodology would influence the magnitude of this
parameter, which must be taken into account when us-
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ing the same framework to other battery models.
Finally, when analysing the distributions of the bat-

tery lifetime and usage graphs depicting the charg-
ing emissions, costs and flying efficiency, the following
points stand out. For the emissions and costs boxplots,
similar distributions for the SOC 100%, SOC 80% and
mission-based strategy are observed. For flying effi-
ciency, however, the SOC 80% and mission-based stra-
tegy show a wider spread of flying efficiency results
compared to the SOC 100% approach. This is caused
to the SOC 80% and mission-based strategy set-up in
which the battery is not charged before flight if it has
sufficient SOC from the previous mission. This be-
comes strongly apparent for short range flights which
require less charge to safely complete a mission.

8 Validation

Validation of the battery model is done through a Sen-
sitivity Analysis (SA). Due to the absence of real data
to compare the model output, a SA is one of the few
methods to validate functional frameworks [10, 39, 67].
By running a SA, the robustness of a model is checked.
For future studies, it is recommended to validate the
model with real eUAV battery data.

The result of a change in inputs is reviewed both
with respect to logic and sensitivity. A One-at-a-Time
(OAT) analysis [10] is performed to review how the
output responds to a change of a single input while
keeping the other inputs constant. The inputs that
are varied are those that are stochastically generated
for each battery and flight, listed in Table 22 in Ap-
pendix A. Each input is tested OAT for their minimum
and maximum value. Depending on their distribution,
this is either equal to the minimum or maximum value
of the uniform distribution, or ±95% confidence inter-
val value for normally distributed variables.

In the interest of speeding up the computational
time, the SOC 100% methodology is used to validate
the battery model. Moreover, the MC is run for 300
runs for each sensitivity parameter as the mean target
distance covered by each eUAV battery stabilised for
this number of simulations. A verification of this is
given in statistical analysis in supporting work [86].

In Figure 6 and 7, the tornado plots of the SA re-
sults for battery lifetime and usage are depicted. The
mean results of the model outputs for the minimum or
maximum sensitivity parameters varied OAT are com-
pared to the average results for a model in which all
sensitivity parameter inputs are fixed at their mean.
These validation outputs for battery lifetime are first
discussed in section 8.1, followed by the battery usage
results in section 8.2.

8.1 Battery Lifetime

For battery lifetime, Figure 6 shows that the minimum
and maximum settings for SOH have the biggest influ-
ence on the batteries used per flying distance flown (B̃).
This tells us that with respect to lifetime, the model is

Figure 6: Sensitivity Analysis for Battery Lifetime
- relative change in output of B̃ (battery used per flying
time) for SOC 100% strategy

more sensitive to the BMS error than the other stochas-
tic inputs. The relation between the SOH sensitivity
parameter and lifetime is in line with expectations. If
the BMS consequently reads a lower SOH than the ac-
tual value, the battery is terminated at an earlier stage.
Contrarily, if a higher SOH is gone by, the battery is
terminated later than the real SOH 80% threshold, re-
sulting in an elongated lifetime. For B̃, the minimum
SOH input value results in a larger change in output
deviation than the maximum value. This is because the
flying time sums up to equal a relatively larger fraction
for a shorter compared to at a longer lifetime which is
governed by the CC/CV charging protocol.

For the remaining sensitivity parameters, the bat-
tery lifetime results display logical results. The battery
performs more flights per battery when for minimum
current throughput and flying time manoeuvre dura-
tion, yielding a lower B̃. This is due to a decrease in
ageing severeness as a result of lower current rates dur-
ing discharge and smaller DOD. Moreover, lower SEI
kinetic rate values result in longer battery life. On the
contrary, the eUAV battery is able to complete more
flights on average when the maximum initial capacity
is inputted into the model. Finally, the initial voltage
parameter shows a negligible difference when compar-
ing the minimum and maximum inputted values to the
mean.

8.2 Battery Usage

The P̃total and flying efficiency SA tornado plots are
shown in Figure 7a and 7b, respectively. The average
output of results varies marginally for battery usage.
The influence of each sensitivity parameter is discussed
below.

The flying current and time duration sensitivity val-
ues have a large influence on the resulting P̃total and
flying efficiency. This is logical, as battery ageing is
expected to be less severe for lower current rates and
DOD levels, resulting in a longer lifetime which pairs
with smaller P̃total values. For flying efficiency, mini-
mum current and time values yield a higher efficiency.
This is attributed to the fact that the batteries require
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(a) P̃total (charging power used per flying time)

(b) Efficiency

Figure 7: Sensitivity Analysis for Battery Usage
- relative change in output for SOC 100% strategy

less charging time on average, which results in a higher
flying efficiency because charging takes relatively long
due to a lower current rate during the CC phase.

The maximum SOH reading error implies that bat-
teries are operated longer which yields a higher total
flying time per battery. Hence, the P̃total for each bat-
tery decreases. However, the flying efficiency is also
decreased, as more flights are flown which pair with
relatively longer charging time. Furthermore, from the
tornado plots it is concluded that the P̃total and flying
efficiency is hardly related to the SEI kinetic rate.

The initial capacity of the eUAV battery has a rel-
atively large influence on the flying efficiency output.
The reason for this is not trivial and requires further
analysis. For P̃total, a higher initial capacity results in
more charging power required to reach a fully charged
state. This is linked to the longer lifetime presented in
the SA plot for B̃. Finally, the initial voltage level has
a negligible influence on the SA results.

9 Conclusions and Recommenda-
tions

This research reviews the environmental and cost-
benefit of applying a mission-based battery health ma-
nagement strategy to Lithium batteries used in an elec-
tric Unmanned Aerial Vehicle (eUAV). By applying the
mission-based strategy, the eUAV battery is charged to

the estimated State of Charge (SOC) level required to
successfully complete a flight. The performance of the
mission-based strategy is compared to two other ap-
proaches where the battery is either charged to 100%
SOC or SOC 80%. The strategies are tested for sev-
eral different flight ranges (mixed, short, medium and
long) to explore the influence of varying the Depth-
of-Discharge (DOD). The motivation to research this
topic originated from the hypothesis that cycling a bat-
tery at a lower average level of SOC and smaller DOD
ranges results in a longer battery lifetime, which is es-
pecially important from a sustainability perspective.

The research is carried out with a Nickel, Manganese
and Cobalt (NMC) Lithium battery model simulated
with the Python Battery Mathematical Modelling (Py-
BaMM) package. A Monte Carlo (MC) simulation is
used to review how the model responds to uncertain-
ties in initial battery characteristics and in-flight vari-
ations. The eUAV battery performs flights including a
take-off, cruise and landing manoeuvre, during which
it flies there and back to stochastically generated tar-
gets. Ultimately, the performance of the mission-based
strategy is compared to the SOC 100% and SOC 80%
approach by executing a sustainability and cost assess-
ment. Here, the environmental and financial costs re-
lated to the batteries’ lifetime and usage are assessed.
Furthermore the efficiency of flying is evaluated.

Comparing the mission-based strategy to the SOC
100% and SOC 80% model for the mixed distance, a
decrease in emissions and costs is observed. Regard-
ing flying efficiency that aims to minimise downtime,
however, the SOC 80% performs best. Additionally,
like the mission-based strategy, the SOC 80% approach
outperforms the SOC 100% strategy for all assessment
parameters. These results could challenge the signifi-
cance of implementing a mission-based battery health
management strategy, as the SOC 80% method is rela-
tively simple to establish. Reviewing the results of the
short, medium and long range flights, it is concluded
that battery lifetime and usage results are significantly
improved for a battery flying short range flights.

Although a more advanced model is advised before
applying this model to real-life eUAV applications, this
study provides insights with respect to how a mission-
based battery health management strategy could yield
environmental, financial and flying efficiency benefits.
Addressing the shortcomings described in section 7 and
8, the foremost focus point for future recommendations
of the model include the incorporation of a safety as-
sessment parameter. Moreover, it is advised to extend
the model by including inputs such as wind, speed, alti-
tude and payload settings. Finally, it is recommended
to validate the model with real-life experiments. Here,
it is especially advised to review the Battery Mana-
gement System’s (BMS) accuracy of determining the
battery’s SOH, as this sensitivity parameter resulted
in the most significant relative output changes.

To conclude, this study analysed the benefit of ap-
plying a mission-based battery health management
strategy with the use of a simulated Lithium battery
model in PyBaMM. The mission-based methodology,
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battery model and sustainability and cost assessment
framework can support operators in evaluating and
comparing the performance of different battery health
management strategies.
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Appendices
A Appendix A - Battery model specifications

Pouch cell
Nominal capacity [Ah] 5.0
Minimum voltage [V ] 3.0
Maximum voltage [V ] 4.2
Thickness [mm] 4.0
Length [mm] 132
Width [mm] 90

Positive electrode
Material NMC:CB:PVDF (94:3:3)
Number of double sided electrode sheets 14

Negative electrode
Material Graphite:PVDF (95:5)
Number of double sided electrode sheets 15

Separator
Material Polyethylene (PE)

Electrolyte
Material 1 M LiPF6

Organic solvent in electrolyte 2% EC:EMC (3:7)

Table 21: Lithium battery specifications [55]

Parameter Source Distr.1 Value

Initial battery parameters
Initial capacity [Ah] [61] Normal µ = 5, σ = 1.3%
Initial minimum voltage [V ] [22] Normal µ = 3.0, σ = 0.01%
Initial maximum voltage [V ] [22] Normal µ = 4.2, σ = 0.01%

Battery ageing parameters
SEI kinetic rate
constant [ms−1] [6] Normal 1.0 >SOH >0.9: µ = 1 · 10−14, σ = 1.5%

0.9 >SOH >0.8: µ = 1 · 10−14, σ = -0.055*SOH + 0.051

Battery Monitoring System
Voltage [V ] [36, 88] Uniform Error margin = ± 1.0%
SOC [43, 74] Uniform Error margin = ± 2.0%
SOH [73, 82] Uniform Error margin = ± 2.5%

1 Distr. = Distribution (probability)

Table 22: Battery and BMS non-deterministic error model inputs
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1
Introduction

Maintenance is an important process in aviation to ensure safety and reliability requirements are met [41, 68].
Studying maintenance procedures has become a popular subject for many other reasons such as the minimi-
sation of financial costs and improvement of efficiency [6, 73, 87, 102]. Commonly applied types of mainte-
nance are Corrective Maintenance (CM), scheduled maintenance and Predictive Maintenance (PdM) [6, 124].
The most basic approach is CM, which is a reactive maintenance approach [41]. Scheduled maintenance is a
proactive strategy that is structured by time- or usage-based intervals [53, 121], which is widely applied due
to its simplicity and efficiency for planning extensive checks [1, 68]. Currently, PdM is increasingly applied
within the maintenance domain. PdM, also known as Prognostics and Health Management (PHM) [119], is
a preventive approach that monitors a component’s performance to provide maintenance prognostics [74].
By incorporating predictive maintenance, the objective is to improve a system’s reliability and safety while
reducing monetary costs, increasing availability and elongating component lifetime [48, 111, 116]. To guide
the decision-making process for which maintenance strategy is optimal for a given system, a Cost-Benefit
Analysis (CBA) can be performed [54].

The aim of this study is to review the current literature on PHM practices in the aerospace industry, in order
to set up a research that will contribute to this topic. Moreover, appropriate CBA methodologies are explored.
This research is performed as part of an MSc thesis at the Faculty of Aerospace Engineering at Delft University
of Technology. The thesis objective is to execute a CBA analysing the performance of a PHM approach. The
fundamental building blocks of executing the thesis project are also covered in this report.

Part IIA evaluates the available literature on PHM. First, chapter 2 reviews the different types of mainte-
nance techniques. For predictive maintenance, although the diagnostic part of such an approach is well
established, the prognostic component requires further development [72, 110]. Moreover, given the current
shift to more sustainable practices, a shortcoming is observed with respect to PHM studies on electric Aerial
Vehicles (eAVs). Specifically, the rest of the report addresses PHM practices related to batteries, given their
critical power supply role [19]. As batteries for large aircraft are not yet widely available [19, 125], this study
focuses on electric Unmanned Aerial Vehicles (eUAVs). For eUAVs, Lithium batteries are most commonly
used [28, 107, 118]. Hence, an in-depth analysis of Lithium battery health management methodologies is
performed in chapter 3. Subsequently, chapter 4 discusses general performance metrics to evaluate predic-
tive algorithms. Finally, maintenance costs as well as cost-benefit parameters are elaborated on in chapter 5.
Here, the inclusion of sustainability parameters is also addressed.
Building on the findings in Part IIA a thesis project is defined. Part IIB first presents the problem statement
in chapter 6. Here, the main objects, scope and research sub-questions are summarised. To perform the
research, a brief overview of the project methodology and timeline is given in chapter 7.
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2
Aircraft Maintenance

In this chapter, all topics directly related to aerospace maintenance is discussed. First, a general overview
of the evolution of aircraft maintenance and important factors that need to be taken into account are elabo-
rated on in section 2.1. Secondly, section 2.2 provides a detailed breakdown of the different types of mainte-
nance strategies that exist. Here, the maintenance types corrective, preventive and predictive maintenance
are specifically focused on. Finally, a conclusion of research gaps is drawn in section 2.3, highlighting the
challenges and literature gaps encountered throughout aerospace maintenance practices.

2.1. General Background
The development and improvement of aircraft maintenance schedules is an ongoing process. Over the past
couple of decades, the number of publications on this topic has grown significantly. For aircraft maintenance,
Van den Bergh et al. [124] perceived a steady increase from approximately 10 to 30 papers issued yearly over
a duration of 20 years compared to 1995. Moreover, for machine prognostics in general, Lei et al. [74] showed
that the number of publications grew steadily from around 10 to over 200 pieces each year over 20 years com-
pared to 1996, resulting in a total of 1426 papers. On the one hand, this is driven by the airworthiness of
aviation. Aircraft safety is an important factor within the aviation industry, as a lack of integrity could lead
to fatal accidents [41]. On the other hand, maintenance costs make up for approximately 10 - 20 % of an air
carrier’s total budget [6, 73, 87, 102]. Hence, optimising maintenance costs is beneficial.

In this section, the aspects of safety in aviation are first discussed in subsection 2.1.1. Then, relevant or-
ganisations and principles related to safety and maintenance are presented in subsection 2.1.2.

2.1.1. Safety in Aviation
As mentioned above, safety is an important factor within aviation. For safety-related to aeronautics, a dis-
tinction is made between the following types: man, environment and machine safety [41]. The first category,
man, includes all people that are actively involved with flight operations such as the pilots, maintenance
labourers and air traffic controllers. For environment, all external aspects that are related to air traffic are con-
sidered. For example, this category refers to meteorological conditions, communications and traffic zones.
Finally, machine includes safety regarding aircraft construction. This last type is also known as airworthi-
ness, which is especially relevant for maintenance. According to the Italian RAI-ENAC Technical Regulations,
airworthiness is defined to be "the possession of the necessary requirements for flying in safe conditions,
within allowable limits".

The airworthiness of aircraft depends on several factors including the materials, design and manufacturing
process and operations and maintenance activities performed. Although aviation is often referred to as the
safest mode of transport [35, 84], Duarte et al. [35] stress the importance of the continuation of research con-
cerning flight safety. In their paper, several studies are addressed that support the thesis that failure analyses
are of high importance concerning aircraft system safety.
Not only on the technical front but also from a social point of view, further development is important. Lack of
communication between parties, such as the manufacturer and operator or an aircraft, can have a negative
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influence on maintenance processes [50] or even result in fatal accidents [35]. If component failures are not
communicated to the manufacturer, the design cannot be adjusted to correct these errors. Conversely, the
maintainability of aircraft highly depends on the technical support given by the manufacturer to the opera-
tors and maintenance engineers. The percentage of accidents assigned to be the result of human errors vary
vastly per study, ranging from 21% [128] to 96% [59]. However, it must be noted that human errors can be
classified into several different stages, starting at an organisational level that ultimately influences all main-
tenance actions performed at lower stages [120]. Nevertheless, it can be concluded that the assurance of
airworthiness is a joint effort between all parties that are related to aviation practices.

2.1.2. Organisations and Regulations
Aviation developed rapidly around World War I and World War II. In order to monitor technological develop-
ments, the International Civil Aviation Organisation (ICAO) was established in 1947 [41]. The ICAO’s aim was
to set up techniques and principles for international aviation to ensure safe and efficient service. Ultimately,
the ICAO delivered 18 annexes that each cover air navigation-related subjects. Here, recommended main-
tenance practices are predominantly discussed in Annex 6 ‘Operation of Aircraft’, Annex 8 ‘Airworthiness of
Aircraft’ and Annex 16 ‘Environmental Protection’.

Subsequently, authorities were established to ensure that airworthiness standards were actually met [41].
The authorities have the task to prescribe requirements and procedures, to inform all air navigation parties
and control that the prescriptions are followed up. These regulations apply for aircraft design, manufactur-
ing and material organisations, as well as air navigation operators. Finally, an airworthiness authority has
the task of certificating materials and organisations. To stimulate cooperation between authorities, Bilateral
Aviation Safety Agreements (BASA) were initialised. When concerning aircraft airworthiness, an additional
document Implementation Procedures for Airworthiness (IPA) is developed to ensure all standards are met.
Here, specific protocols are defined including activities related to aircraft design, production, repair and other
technical operations.

Different authorities exist, partially newly established and partially evolved from former organisations [41].
Most authorities operate on a national level, but steps are being made to harmonise these air navigation reg-
ulations. For example, in 2016, the Certification Management Team (CMT) was officially founded [84] [32]
consisting of four of the largest aviation authorities being the Federal Aviation Administration (FAA) in the
United States, Transport Canada Civil Aviation (TCCA), Agência Nacional de Aviação Civil (ANAC) in Brasil
and finally the European Aviation Safety Agency (EASA), that took control over the no longer existing Joint
Aviation Authority (JAA) in 2007 [101]. The aim of the is to further develop and implement aviation regula-
tions and policies globally in an efficient and effective manner.

2.2. Maintenance Types
Maintenance was introduced to improve the reliability of a system [65]. A common maintenance topic that
is often elaborated on by researchers, are aircraft engines. Van den Bergh et al. [124] state that engines are
safety-critical systems and therefore considered to be very important for maintenance. Engines are also very
complex and expensive [102], making them an important maintenance factor to consider. Engine mainte-
nance is performed at a specialised facility, usually depending on the type of engine. Hence, it is important
to take engine maintenance into account for scheduling.

Not just engines but entire aircraft are subject to maintenance to improve the performance and reliability
of a system. Different maintenance strategies exist which are further elaborated on in this section. In Fig-
ure 2.1, a breakdown tree of existing maintenance types is given. The main two categories that the types of
maintenance can be distinguished, are Corrective Maintenance (CM) and Preventive Maintenance (PM) [53].
The difference between these categories is that CM is reactive, whereas PM is proactive.

The maintenance abbreviations in Figure 2.1 are:

• DOM - Design-Out Maintenance
• FBM - Failure-Based Maintenance
• RTF - Run to Failure
• BM - Breakdown maintenance
• TBM - Time-Based Maintenance
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• UBM - Usage-Based Maintenance
• CBM - Condition Based Maintenance
• CBM+ - CBM, including a reliability analysis
• PdM - Predictive Maintenance
• DBM - Detection-Based Maintenance
• PHM - Prognostics & Health Management

The definitions of these maintenance policies are discussed throughout this section.

Figure 2.1: Breakdown Tree of Maintenance Types [53]

First, subsection 2.2.1 elaborates on the principles of CM. Then, several approaches within PM are discussed
in subsection 2.2.2, including scheduled and unscheduled maintenance types. Finally, subsection 2.2.3 ex-
plores several integrated maintenance approaches.

2.2.1. Corrective Maintenance
The most basic type of maintenance is Corrective Maintenance (CM), also known as Failure Based Mainte-
nance (FBM), Run-To-Failure (RTF) or Breakdown Maintenance (BM), as shown in Figure 2.1. This is a main-
tenance type that is carried out after a fault is detected and therefore considered to be reactive [6, 24, 53, 124].
Failures occur unexpectedly, implying that CM is an unscheduled maintenance type [6, 53].

There are several reasons why CM is considered undesirable:

• Reliability
Depending on the severity of the failure condition and how critical the component is, implementing
the CM strategy may lead to fatal accidents [41, 100].

• Availability
During maintenance, a component or entire vehicle is not available for use. Unscheduled maintenance
may affect an operation schedule and cause undesired downtime resulting in an increase in operator
costs [15, 99].

• Secondary damages
Letting a component run-to-failure, secondary damages or failures may be inflicted to other compo-
nents, resulting in higher total maintenance costs or even critical situations [24, 67].

Nevertheless, for some non-critical components, CM may be the most cost-effective maintenance strategy
[53]. Depending on the system, CM may therefore be determined to be the optimal maintenance type.

2.2.2. Preventive Maintenance
In contrast to the corrective type, Preventive Maintenance (PM) has the aim to restore the system level of per-
fection by performing maintenance before failure has occurred [68]. By applying this maintenance strategy
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for critical components, the system’s reliability is improved [99].

Design-Out Maintenance (DOM), as depicted in Figure 2.1, is not a synonym for PM, but a stand-alone cate-
gory [36]. In this strategy, the design of a component is altered to account for shortcomings discovered during
the component’s usage.

Scheduled maintenance is often used as a synonym for PM [124]. However, there are also several other types
of unscheduled PM that exist. These scheduled and unscheduled types of PM are presented in the following
subsections.

2.2.2.1. Scheduled Maintenance
Two types of scheduled maintenance can be distinguished. Time-Based Maintenance (TBM) is a PM type of
maintenance that is linked to fixed time intervals [65]. The second type is Usage-Based Maintenance (UBM),
which is based on relevant usage parameters such as flight hours.

Obligatory scheduled checks have been defined by Federal Aviation Administration (FAA) to monitor the air-
worthiness of an aircraft, referred to as A-, B-, C- and D-checks [124]. These are checks that the operator is
obliged to carry out after a specific number of flight hours or calendar days, varying in time interval duration
and maintenance extensiveness.
TBM schemes are based on past failure time data to ensure safety requirements are met [72]. However, Acktert
[1] concludes that using fixed TBM schemes are not beneficial for cases where the component failure is not
dominant. Moreover, Lee et al. [72] argue that TBM is not effective if the current health state of the component
is not taken into account. This motion is backed by Andreacchio et al. [6] who point out that TBM is not
effective if for example CM has been performed within a scheduled time interval.

2.2.2.2. Condition Based Maintenance
Remedying the shortcomings for TBM mentioned above, Condition Based Maintenance (CBM) recommends
maintenance based on the observed health status of a system or component [48, 65, 116, 121]. As CBM is a
PM type, components are repaired or replaced before the event of total failure. The item’s health is continu-
ously monitored with the use of sensors. This activity of collecting data through sensors is called condition
monitoring [65]. Repairing the system or component is done on an unscheduled basis.

In Figure 2.1, CBM+ and Detection-Based Maintenance (DBM) are also depicted as maintenance types. These
strategies are very similar to CBM. CBM+ is more elaborate than CBM with a stronger focus on prognostics
and reliability [14]. In DBM, condition monitoring is done through operator observations [126], instead of
system monitors.

In the ISO-13374 documentation, Condition Monitory and Diagnostics of Machines [94], the process of CBM
is stated to consist of the following six parts:

1. data acquisition,
2. data handling,
3. state determination,
4. health assessment,
5. prognostics, and
6. recommendation.

Common condition monitoring techniques include acoustic emission analysis, vibration monitoring and
thermography mapping [50, 65, 121]. Three different monitoring data types are typically recognised: value
(e.g. single measurement of temperature), waveform (e.g. sound wave) and multidimensional (e.g. 2D im-
age) [65]. The sensor choice takes the criteria such as the installed weight and damage detection capabilities
into account.
Data acquisition can either be done continuously or periodically, the latter commonly chosen as this set-up
is less expensive and less susceptible to noise. A disadvantage of periodic condition monitoring is however
the risk of missing a failure. Thus, research regarding the monitoring interval is very important [33, 121].

Condition monitoring accuracy is increased by combining information obtained through multiple sensors
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monitoring the same system [65]. To avoid errors, data is always first cleaned before data analysis is done.
To combine data input from multiple sensors, data-level, feature-level or decision-level fusion methods are
used. Depending on the acquired data, reduction techniques and or regression or time series analyses are
applied.
A health monitoring technique that is closely related to condition monitoring, is called Structural Health
Monitoring (SHM) [121]. This method originates from inspecting structures and uses non-destructive testing
techniques to determine the structure’s health. SHM mainly focuses on increasing the probability of detecting
a failure and can use active or passive sensors [33]. Here, active sensors represent those that detect damages
by sending a signal and reviewing the results, while passive sensors detect signals that are generated by fail-
ures without external excitation.

Summarising steps 1 to 6 mentioned above, CBM consists of a diagnostic and an advisory phase [94, 116].
Diagnostic methods revolve around the mapping of the condition monitoring information to the machine
fault, which can be done manually or automatically (e.g. statistics or artificial intelligence driven) [65]. Man-
ual methods require high expertise. However, while an automatic approach is more simple, the lack of data
slows down the development of data-driven models.
The diagnostic part is well established. However, the second part of CBM concerning the health analysis and
advisory step are less well-developed and thus have limited applied examples [121]. During the prognos-
tics phase, the Remaining Useful Life (RUL) is determined by combining the health assessment insights with
knowledge obtained from past degradation trends. Furthermore, the probability of failure before the next
TBM check is computed. Maintenance is planned when the prognostics indicate that a predefined critical
threshold is passed [72, 74, 116]. Prognostic methods are based on a physical model, data-driven analysis or
a hybrid combination of both approaches [37].

In Figure 2.2, a graphical depiction is given of the RUL prediction process [74]. At tF PT (first prediction time,
predefined through statistical analysis) a prediction is made of the RUL, represented by the green line. The
probability density function (PDF) determines the confidence interval, expressing the range of time in which
the End-of-Life (EOL) is predicted to occur. In this figure, the real-life component health is depicted by the
red continuous line. The actual tEOL (time of EOL) is finally reached when the health passes the set Failure
Threshold (FT).

Figure 2.2: Determination of the Remaining Useful Life in Predictive Maintenance [74]

RUL predictions are done multiple times throughout the component’s lifetime. Based on the evaluation of the
data, with the aim to repair the component before failure occurs, a maintenance recommendation is given
[65]. A drawback of CBM is that the maintenance moments cannot be plannend [48, 116].

2.2.2.3. Predictive Maintenance
Following up on CBM, Predictive Maintenance (PdM), which is also a type of unscheduled maintenance, takes
the prognostics phase one step further [48, 116]. PdM is also referred to as Prognostics and Health Manage-
ment (PHM) [119]. The aim of prognostics is to improve maintenance through for example the enhancement
of safety and reliability, the reduction of costs and the increase of availability and elongation of a component’s
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lifetime [65, 111, 121]. Moreover, authors such as Franciosi et al. [43] and Hoang et al. [58] point out that using
prognostics also has potential to reduce the environmental impact of maintenance.

Similar to CBM, PdM monitors the health of a component or system through condition monitoring [74].
Moreover, event data is collected to include information regarding the components usage and maintenance
activities. Like in CBM, prognostics are made by evaluating the monitored data and predicting the RUL of the
component. Again, RUL predictions can be data-driven or based on a modelled approach, or a combination
of these methodologies [37, 72, 74].

What distinguishes PdM from CBM, however, is the planning component that PdM can incorporated [48,
116]. Busse et al. [22] refer to two types of PdM prognostics. The maintenance can either be executed imme-
diately (known as ‘trigger strategies’) or it can be planned ahead (referred to as ‘planning strategies’). Here,
a cost analysis is done to evaluate whether the trigger or planning strategy is more beneficial. Hence, it be-
comes apparent that in PdM tries to synchronize operation and maintenance activities such that the system’s
downtime is near-zero [72]. Furthermore, with PdM, a TBM scheduled maintenance plan of a given com-
ponent may be altered as the time since the last maintenance activity has changed, which is not considered
in CBM [50]. By taking the overall scheme of the system into account, PdM aims to achieve cost-effective
maintenance schedules, whereas CBM cannot be planned [48, 116].

2.2.3. Integrated Approach
Instead of implementing merely one of the above-described types (CM or PM) as an aviation maintenance
strategy, aircraft undergo a combination of these maintenance types [124]. A corrective approach is necessary
when a defected fault has occurred, while preventive and predictive strategies are implemented to increase
availability and reduce costs.

Reviewing the effectiveness of maintenance schemes is an important research topic [48, 121]. Tinga et al.
[121] researched the similarities and differences of three maintenance disciplines: CBM, SHM and PHM. In
their paper, they stress the benefit of combining the three approaches in order to enhance the overall main-
tenance effectiveness. Instead of using only data-driven approaches to provide maintenance prognostics, an
integration with a physical model-based approach yields a better understanding of the system’s health.

Another example that focuses on combining multiple types of maintenance strategies, is given by Andreac-
chio et al. [6]. In their research they state that PM schedules do not take unscheduled CM activities into
account, resulting in premature aircraft asset replacement. As a solution for this problem, they propose the
implementation of a Cyber-Physical Systems (CPS) approach to enhance aircraft asset utilisation and reduce
replacement costs.

2.3. Research gaps
Based on the reviewed literature, two main gaps are identified. The first shortcoming is regarding prognostics,
which is discussed in subsection 2.3.1. The second gap is concerning the type of aerial vehicles that are
commonly researched, which is elaborated on in subsection 2.3.2.

2.3.1. Prognostics
As stated in subsection 2.2.2, the diagnostics part within PdM is already well established, while prognostics
still require further research. Saxena et al. [110] and Lee et al. [72] point out that prognostic concepts are
often inconsistent and ambiguous and lack standard definitions and that more research is required regarding
the prediction of a system’s performance and degradation. Furthermore, for data-driven prognostics, they
stress that the shortage of data impedes the verification and validation phase required to evaluate prognostic
theories.

2.3.2. Electric Aerial Vehicles
Recently there has been an increase in the usage of electric propulsion systems as these are more sustainable
compared to conventionally fuel propelled aircraft [28, 118]. In addition to the sustainable advantages, elec-
tric power has control and operational advantages such as responsive thrust and noise reduction [27, 125].
Thus it is not surprising to see that there is a growth in research regarding battery development for aviation,
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focusing on rechargeable batteries.

For maintenance, the most apparent difference between conventionally fuelled and electrically propelled
aviation practices revolves around batteries [19]. Despite the increase in the use of electric propulsion sys-
tems, limited literature is found on battery PHM practices applied within the aviation industry.

In the interest of sustainability, battery PHM is chosen for more in-depth analysis in the following chapter.
Batteries are used in More Electric Aircraft (MEA), electrical Aerial Vehicles (eAVs) and electrical Unmanned
Aerial Vehicles (eUAVs) [19, 28, 118]. MEA are aircraft in which all non-propulsive systems are run on electric
power, while eAVs and eUAVs are fully electric. Although all three types are electrically powered, it is chosen
to focus on eUAVs in this study due to the availability of battery data. Small batteries are already widely used
to power eUAVs, while battery compositions for MEA and eAVs are not yet widely available [19, 125]. Hence,
throughout the rest of this literature study, battery practices for eUAVs are reviewed.
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3
Battery Health Management

Based on the research gap findings within the scope of aircraft maintenance, presented in subsection 2.3.1
and 2.3.2, deeper analysis of health management for batteries used in eUAVs is recommended. Literature on
this subject is explored in this chapter.

First, in section 3.1, the relevance of reviewing battery health management for eUAVs is highlighted. Sec-
ondly, several types of batteries are briefly addressed in section 3.2. Thirdly, section 3.3 explains the most
important battery characteristics related to health monitoring. Then, several battery health monitoring ex-
ample approaches are reviewed in section 3.4. In section 3.5, several battery data and simulation tool sources
are briefly listed. Finally, the main research gaps from this chapter are summarised in section 3.6.

3.1. Relevance
As previously addressed in subsection 2.3.2, electric power sources are increasingly used in aerial vehicles.
While electrically powered non-propulsive systems are common in practice, the low energy density of batter-
ies is still the biggest obstacle for large electrically propelled aircraft [125]. Currently, for fully electrical flight,
batteries are merely able to achieve an energy density that is 60 times smaller than the energy density related
to kerosene [19].

For smaller eUAVs, batteries are more frequently used as a power source for both non-propulsive and propul-
sive systems. eUAVs are favourable for several reasons [8, 52, 60, 61, 85, 113] including the fact that they have
lower operating costs, lower environmental impact and are able to execute missions in extreme or dangerous
environments compared to manned aircraft. Furthermore, eUAVs play important roles in a diverse range of
activities including military missions, search and rescue operations, security patrols, agriculture tasks and
mapping exercises.

Jing and Haifeng [29] and Rezvanizaniani et al. [104] reviewed the feasibility of implementing prognostic
technologies of PHM to improve the battery health management capabilities and reliability for eUAVs and
electric vehicles, respectively. For batteries, prognostic practices for example include predicting the moment
when the battery reaches End-of-Discharge (EOD) and End-of-Life (EOL). However, future challenges they
recognised are listed below, implying that this topic requires further research.

• shortage of understanding in technologies,

• difficulty in realising real-time data processing,

• challenge in filtering data,

• complexity in representing and managing uncertainty related to the safety throughout battery life, and

• lack of data for validation and verification.

43



44 3. Battery Health Management

3.2. Battery Type
Several different types of batteries exist. Batteries are categorised into the following classes [90]:

1. Primary - Discarded after used, these batteries can only be discharged once.
2. Secondary - Rechargeable batteries.
3. Reserve - Batteries that are activated when necessary and that can be stored over long periods

of time.

The most common battery type in aviation is Lithium as these batteries are lightweight, have a high energy
density, have a low discharge rate (implying their charge holds longer) and are characterised by a relatively
long total lifetime [28, 90, 95, 107, 117, 118]. Lithium batteries are secondary type cells, and thus rechargeable.

Multiple different types of Lithium batteries exist. The first sort is Lithium-ion (Li-ion), which has several
compositions related to the active materials present for the cathode and anode within the battery [66]. The
active materials within the Li-ion battery result in small battery characteristics discrepancies [47]. The sec-
ond type is Lithium-Polymer (Li-Po), which is a solid-state battery, implying that it uses solid polymer as an
electrolyte [23].
An overview of the most common Li-ion battery types (name, abbreviation and scientific formula) is given
in Table 3.1, along with a hexagonal spider graph of their characteristics in Figure 3.1 [23]. In this figure, the
following characteristics are depicted:

1. Specific energy - Capacity related to run time.
2. Specific power - Ability to output a high current load.
3. Safety - Stability of chemical processes within the battery.
4. Performance - Usage performance at cold and hot temperatures.
5. Life span - Lifetime and cycle life.
6. Cost - Material, manufacturing and quality control expenses.

From the hexagonal diagrams, it becomes apparent that LMO batteries have a moderate overall performance.
The types LCO, NMC and NCA show outstanding specific energy performance while LFP and LTO batteries
have the best life span characteristics. Battery performance is similar for most types, though LTO batteries ex-
cel in this area. For specific power, the highest throughput is provided by LFP types. The safest performance
is provided by LFP and LTO types. The battery costs are approximately equal for LCO, LMO, NMC and LFP
batteries. From the charts, it can clearly be concluded that LTO types are the most expensive [23].
Depending on the battery application, different performance characteristics are desired. It is therefore im-
portant to evaluate the power source requirements before choosing a battery type.

Li-Po batteries are very similar to Li-ion batteries, though there are several small discrepancies. Compared
to Li-ion types, Li-Po batteries have a slightly higher energy density and can be manufactured more thinly.
Li-Po casing is able to be flexible, which further reduces the overall weight of the battery composition. The
disadvantage of Li-Po batteries is that they are more costly [23].

In a study on eUAV batteries, Eleftheroglou et al. [37] state that they chose to research Lithium-Polymer
batteries as they are easily monitored. Subsequently, the authors point out that Lithium batteries, in general,
are relevant study cases as they commonly do not function well once voltage levels drop past a critical thresh-
old, which is further elaborated on in section 3.3. Hence, it is useful to study indicators that predict the future
performance of battery power systems.

3.3. Battery Characteristics
In order to understand the types of battery health management that can be applied, it is important to review
the general background information regarding battery characteristics. First, battery performance and relia-
bility is reviewed in subsection 3.3.1. Here, battery charge curves throughout a charge and discharge cycles
are evaluated. Then, in subsection 3.3.2, battery degradation over multiple cycles is discussed.

3.3.1. Performance and Reliability
Battery performance and reliability are characterised by its capacity and internal resistance [78]. Capacity
relates to how long the battery can provide energy, while the internal impedance limits the maximum power
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Name Abbreviation Formula

Lithium Cobalt Oxide LCO LiCoO2

Lithium Manganese Oxide LMO LiMn2O4

Lithium Nickel Manganese Cobalt Oxide NMC LiNiMnCoO2

Lithium Iron Phosphate LFP LiFePO4

Lithium Nickel Cobalt Aluminum Oxide NCA LiNiCoAlO2

Lithium Titanate LTO Li2TiO3

Table 3.1: Overview of common Lithium-ion battery types listing the name, abbreviation and formula [23]

Figure 3.1: Hexagonal spider graphics of performance characteristics for Lithium-ion battery types LCO, LMO, NMC, LFP, NCA and NMC,
showing specific energy, specific power, safety, performance, life span and cost [23]

level the battery is able to provide. According to Williard et al. [129], from these two parameters, the battery’s
capacity is the main characteristic used for performance and reliability evaluation.

Capacity is the electrical charge (Q) measured in the battery, expressed in Coulombs [C ] or Ampere-Hours
[Ah] [129]. To indicate a battery’s performance and reliability, the maximum discharge capacity (Qmax ) is
typically referred to, as this shows the total amount of charge that a fully charged battery is able to deliver to
its entirely discharged state. Hence, capacity is important as it determines how long the eUAV can fly. Not all
batteries are identical, hence batteries’ true Qmax values are distributed around the manufacturer’s average
capacity estimation [129]. When working with large data sets, such distributions are often represented by
means of a normal distribution which is characterised by a specific mean and variance [31]. Baumhöfer et al.
[13] also showed that this is the case for the initial capacity of a set of identical Lithium batteries.

Internal resistance (R), also referred to as internal impedance, is expressed in Ohm [Ω]. This parameter
influences the maximum achievable throughput Current (I ), measured in [A], within the system. A higher
resistance results in restricted current, a drop in voltage and temperature rises within the battery [23]. For hy-
brid electric vehicles, resistance is an important performance indicator as an increase in battery impedance
leads to lower acceleration capabilities or higher fuel usage [86]. For eUAVs, the maximum achievable power
level is especially important for the take-off phase, as this requires the most power [125].

In the context the of current rate, the term C-rate is regularly used [23]. If a battery is discharged at 1C, it
implies that when fully charged, it can provide a specific level of constant current for 1 hour. The level of
current it can constantly discharge is governed by the initial Beginning-of-Life (BOL) battery capacity.
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A battery’s Qmax changes over time within a discharge cycle, affecting the power system’s performance and
reliability. This is more elaborately discussed in subsequent sections. Contrarily, the R within a discharge
cycle is almost constant, leading to no major effects [23].

3.3.1.1. State of Charge
The State of Charge (SOC) refers to the remaining available charge of a system. For eUAVs, the mission dura-
tion is critical information to determine if the SOC is sufficient to complete the mission [129]. The SOC of a
battery is 100% when it is fully charged, and defined to be 0% when it is fully discharged [20].

A battery’s SOC is related to the voltage and current during a charge or discharge process as well as the bat-
tery’s electrochemical properties. The SOC is defined by Equation 3.1, where Q(t ) is the capacity at any given
moment of time and Qmax is the nominal capacity at the beginning of the current cycle [26].

SOC (t ) = Q(t )

Qmax
% (3.1)

Within a cycle, the decay of SOC over time is related to the voltage. For an open circuit, this relationship is
called Open Circuit Voltage (OCV) hysteresis [10]. The variation of OCV with respect to SOC is highly non-
linear [98]. Lithium batteries exhibit hysteretic behaviour both during charge and discharge cycles. However,
the curves of these two processes differ slightly, as can be seen in Figure 3.2 [11]. For LFP batteries, the
shape of this curve in Figure 3.2 is very typical. Note that the arrows in the graph represent the hysteresis
orientation depending on whether the battery is undergoing a charge (SOC from 0 to 100%) or discharge
(SOC from 100 to 0%) cycle. Baronti et al. [11] point out that LFP batteries are widely used due to their steady
OCV throughput for SOC levels between 20 and 80%, which is very different from lead-acid battery behaviour.
This OCV hysteresis curve differs slightly depending on the active materials, but all Lithium batteries exhibit
similar flat OCV trajectories. For NMC battery types, for example, the OCV curve is slightly more slanted
between 20% and 100% [134].

Figure 3.2: Typical Open Circuit Voltage hysteretic behaviour of a Lithium Iron Phosphate battery subject to a charge and discharge
process at 20Ah [11]

The rate of SOC decrease within a cycle depends on the eUAV’s power consumption throughout a mission.
The flight load profile is therefore very important to accurately determine the required SOC needed to exe-
cute the mission. Saha et al. [108] characterised the typical flight load profile for eUAVs during flight which is
depicted in Figure 3.3. Here, as previously stated, it can clearly be seen that take-off and landing required the
most power.
Other parameters that influence power consumption are temperature, weight, density altitude, wind direc-
tion and flying velocity [12, 113].
The SOC can be determined through either an offline or online approach [20]. In the offline method, histor-
ical data is analysed to provide an accurate SOC prediction. With an online approach, real-time metrics are
directly translated to a SOC estimation. Commonly these approaches are combined, such that the model is
first trained using past data after which the online method can be applied [37].
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Figure 3.3: Typical eUAV flight load during flight [108]

3.3.1.2. End-of-Discharge
The battery’s End-of-Discharge (EOD) is at the end of the discharge cycle when SOC = 0% [17]. The SOC can be
used to determine the EOD, which is similar to the estimation process of RUL presented in subsection 2.2.2.
During operation, eUAV battery monitoring of SOC is done to ensure safe flight by observing and predicting
if the battery has sufficient charge to complete the mission. Instead of letting the battery run to 0% charge, a
capacity threshold is set before battery failure at 0% charge [85]. For Lithium batteries, this critical threshold
is set to be when the battery has 30% SOC [60, 61, 112]. As authors Hogge et al. [60] point out, operating
am eUAV with less than 30% SOC is defined to be high risk. This is due to the sudden voltage drop that
occurs soon after passing the 30% SOC level, as can be seen in Figure 3.2, called the ‘knee point’ [112]. Upon
reaching the critical threshold of 30% SOC, the batteries still have sufficient power to perform a minimum of
two landing attempts safely [60].

3.3.2. State of Health
A battery’s capacity and internal resistance change over time, affecting the battery’s health. The battery’s State
of Health (SOH) is used as a metric to show the power source’s number of remaining cycles before EOL [129].
The SOH is calculated using Equation 3.2, with Qmax being the nominal capacity at the start of a cycle and Q0

the initial capacity at the battery’s BOL [12].

SOH (t ) = Qmax (t )

Q0
% (3.2)

Batteries degrade over time, this process is called ageing. As a consequence, two main characteristics change
[12, 20]. Firstly, batteries suffer from capacity loss. This is due to the reduction in the available amount
Lithium within the battery, resulting in a shorter discharge time for the same output current. Secondly, bat-
teries experience an increase in internal impedance which causes the battery output voltage to decrease.
For Lithium batteries, these health indicators degrade independently from each other [66].
Although some authors such as Viswanathan and Knapp [125] state that it is unknown whether capacity fade
or resistance increase will be the limiting factor for eUAV applications, some researchers in the eUAV field
only use SOH = 80% as the EOL threshold [96, 97, 129].
Two types of ageing categories exist:

• Calendar ageing
This type of ageing includes all degradation that is not dependent on charge/discharge battery cycles
[66]. Calendar ageing results in battery capacity loss that behaves according to a power law over time
[78]. Moreover, this degradation process is weighted by the storage level of SOC and environment tem-
perature [12, 78].

• Cycle ageing
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This ageing kind is related to the charge/discharge cycles of a battery and many other different pa-
rameters, making it difficult to estimate or predict. Variables include cycle number, cycle duration,
temperature, current rate, voltage range, Depth-of-Discharge (DOD) and average cycling SOC. Here,
DOD is the range of SOC (∆SOC) throughout the charge/discharge cycle of the battery [12, 78].

Saxena et al. [112] reviewed data-driven PHM approaches for batteries. After cycling the batteries (charge/discharge),
the ageing phenomena described above can clearly be deduced. Using NASA’s prognostic battery dataset [2],
the researchers’ findings are depicted in Figure 3.4. For one single battery, the same discharge process is re-
peated during which the battery starts at a discharge voltage of 4.2 V and is cut off at 2.7 V .
Within one cycle, a similar discharge curve to the Lithium discharge trajectory in Figure 3.2 is observed. Then,
as the cycles progress, the discharge curves in Figure 3.4 slowly shift. In the graph, it can be seen that cycles
number 2 and 588 begin at the same discharge voltage at time = 0 s. Then, as time progresses, cycle 588 shows
a steeper decrease and ultimately reaches the discharge cut-off voltage sooner than the battery did in cycle 2.
Also, the battery’s knee point has shifted to a slightly lower voltage level.

Figure 3.4: Discharge cycles at different battery life stages for constant load profiles from one single Lithium battery [112]

Battery ageing is unavoidable. Nonetheless, there are several parameters that accelerate this degradation
process. Below, the effect of temperature, current rate, SOC and DOD on battery degradation are presented
[47, 66, 83, 123, 132]. Then, it is briefly described how these parameters relate to eUAV applications.

1. Temperature
In practice, Lithium batteries can be operated between -20 and +60◦C, while the temperature region
from +15 to +35◦C is considered to be optimal. For temperatures below 0◦C, lower temperatures cause
expedited battery degradation. On the contrary, for temperatures above 0◦C, higher temperature levels
lead to accelerated capacity loss and impedance gain. Temperatures affect battery ageing both during
operation and rest. During active use of the battery, however, Xu et al. [131] point out the importance
and complexity of decoupling temperature rise with other parameters such as rate of discharge.
For storage, temperature ageing effects can more easily be decoupled. In a study by Keil et al. [66] the
impact of higher temperatures during a battery’s resting period is highlighted. For different Lithium
chemical compositions (NCA, NMC and LFP), the study showed that higher storage temperatures lead
to accelerated capacity degradation and an increase in internal resistance.

2. Current rate during charge and discharge process
High values of load current lead to accelerated battery ageing. For Lithium batteries, Ning et al. [93]
found that the battery degradation is significantly influenced by the C-rate of the discharge cycles.
When the battery was cycled at 1C discharge rate, the capacity loss was 9.5% after 300 cycles. In con-
trast, for 2C and 3C discharge rates the capacity degradation was 13.2 and 16.9%, respectively.
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3. Depth-of-Discharge (DOD)
Larger DODs during charge and discharge cycles lead to accelerated battery capacity loss.
Xu et al. [132] researched the effect of various different SOC % ranges during Lithium battery cycling.
In Figure 3.5 it can clearly be seen that the smallest DOD interval (65-75%) results in the least battery
capacity fade, while the battery cycled at the largest DOD (25-100%) shows the most severe degradation.

4. Average State of Charge (SOC) during operation and resting level
Batteries operated around high SOCs and/or stored at high SOC levels during rest period, show ac-
celerated battery degradation [47, 66]. For Lithium batteries the capacity reduction is accelerated and
depending on the active material types, the internal resistance growth is further stimulated.
For the same DOD of 20% SOC, Gao et al. [47] concluded that battery capacity decrease is signifi-
cantly more around higher SOCs (80-100%) compared to lower SOCs (0-20%), as depicted in Figure 3.6.
Note the ‘clusters’ of degradation behaviour trends, as the battery capacity fades similarly for the DODs
ranges 20-40%, 40-60% and 60-80%, while intervals 0-20% and 80-100% deviate significantly. In this fig-
ure, ‘equivalent full cycles’ are cycles that where the capacity throughput is normalised with the nomi-
nal battery capacity, such that different DOD can be compared.

For eUAV applications, regulating these above-mentioned parameters is not always trivial. For temperatures,
studies show that operating eUAVs in extreme temperatures strongly affects the battery performance. For
example, Li et al. [76] concluded that both high and low temperatures have a significant impact on eUAV
battery degradation. Unfortunately, the location at which the mission must be executed cannot always be
chosen. For charging strategies, however, regulating the temperature is more realisable. Though conclusions
by Liao et al. [79] suggest that the charging temperature has a less significant effect on capacity degradation
compared to the discharging temperature.

For current rates during the charging cycle of a battery, dedicated charging schedules could improve battery
life. Klein et al. [69] explain that the most common charging method for Lithium batteries is using a Con-
stant Current and Constant Voltage (CC/CV) approach. Manufacturers state the limits for CC/CV charging
methods, as exceeding the prescribed values during a charging cycle leads to accelerated battery degrada-
tion. Exploring other charging schedules for electric vehicles such as Multistage Constant Current (MCC),
researchers Liu et al. [80] explored the application of MCC for energy and cost optimisation purposes by find-
ing current values where battery degradation is least severe.
Reviewing the current rates during the discharge process for eUAVs is less trivial due to the fact that the load
current usage range of freedom is limited as this is determined by the mission profile [108]. For example, for
take-off and landing a certain amount of power and thus current rate is required. During cruise, the velocity
of the eUAV could be chosen such that the current rate is most optimal.

The DOD and average SOC relate to the amount of capacity available for flight. In order to reduce the DOD a
battery undergoes, the distance the eUAV flies in between charging moments must be decreased. To achieve
a lower average SOC, the battery should be charged to a SOC level below 100%. The challenge in this charging
strategy is to be able to accurately predict the amount of charge required to complete a mission. This predic-
tion is similar to EOD predictions, further described in subsection 3.4.3.
Though decreasing the DOD and avg SOC may elongate battery lifetime, it simultaneously limits the distance
that the eUAV can cover. Nonetheless, several studies could provide solutions to this problem. Firstly, Bo-
cewicz et al. [18] research the option of setting up a network of mobile battery swapping stations to optimise
a routing problem with eUAVs travel paths. Another potential solution is proposed by Lu et al. [81], who
review the use of powerlines to charge eUAVs during a mission through a wireless power transfer method.
Similarly, Galkin et al. [45] research a combination of these innovative methods to ensure continuous eUAV
operations. Their solution incorporates the option of swapping the eUAVs or their batteries, transferring
power wirelessly or improving the battery energy density. Thirdly, optimal eUAV hub location problems are
commonly addressed, such as in a research by Aurambout et al. [7]. In this study the authors review the eco-
nomic viability of placing hubs in different locations, but such optimisation models could also incorporate
other criteria such as sustainability. Finally, there are several studies such as a research by Goodchild and Toy
[51] and Moshref-Javadi et al. [91] that evaluate the option of using UAVs in a last-mile delivery model with
trucks, which would also allow for shorter flying distances.
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Figure 3.5: Lithium-ion battery capacity retention behaviour related to different Depth-of-Discharge ranges during battery Dynamic
Stress Testing (DST) [132]

Figure 3.6: Lithium-ion battery capacity loss due to different Depth-of-Discharge ranges, showing (a) maximum available capacity degra-
dation, (b) nominal capacity degradation [47]

3.3.2.1. End-of-Life
The battery EOL is defined to be when SOH = 0% [12]. Operating the battery until 0% is however considered
to be highly unsafe. Therefore, the useful life of a battery is defined to be until SOH = 70% or 80%, or when the
internal resistance has doubled its initial value compared to at the beginning of life [39, 78, 129]. Operating
the eUAV beyond this SOH point is dangerous, as the battery capacity may suddenly drop. The battery is
therefore often considered as ‘failed’ when it reaches the critical SOH level between 80% [34, 78, 129].

3.4. Battery Health Management
Several studies have been done reviewing battery health management. Monitoring a battery’s health is impor-
tant to improve reliability and performance. eUAV battery health management aspects include determining
the SOC and SOH, charging the rechargeable battery to ensure the system has sufficient charge to execute the
next mission and ultimately replacing the battery when SOH < 80%.

First, the Battery Management System (BMS) that monitors the battery’s health onboard most eUAVs is dis-
cussed in subsection 3.4.1. Then, different battery health management strategies are discussed in the follow-
ing subsections 3.4.2 and 3.4.3. Finally, a general overview of battery health monitoring challenges is given in
subsection 3.4.4.
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3.4.1. Battery Management System
Most Lithium applications have a Battery Management System (BMS) to ensure that the battery remains
within safe limits [23]. For example, the BMS will not let a battery charge beyond SOC = 100%. Depending
on the battery usage application, the range of safe SOC levels may vary. Given the increased rate of battery
degradation for higher SOC levels, it can be beneficial to set a lower maximum SOC level. For example, in a
study with photovoltaic systems, the limits 20 and 80% are set as the minimum and maximum SOC levels,
respectively [92].

The BMS monitors various parameters such as temperature, battery voltage and current and more [23, 75,
135]. The level of sophistication of a BMS varies. The basic features are providing the battery protection by
ensuring operating limits are not exceeded, as well as determining the SOC. More sophisticated types of BMS
are also able to show the SOH and make EOD or EOL predictions.

For eUAVs, size, weight and cost constraints are important drivers. Hence, researchers such as Sierra et al.
[113] stress the need for efficient BMS computational resources while maintaining high accuracy. Moreover,
despite recent BMS advancements, determining the battery SOH remains a challenge [23, 75]. This is due
to the fact that the SOH is not a readily measurable output. Furthermore, extensive electrochemical models
used to accurately determine SOH are often too computationally intensive to incorporate into a BMS. Finally,
the most accurate SOC and SOH readings can be done when a battery is cycled from a fully charged to a fully
discharged state. In reality, however, this is not always possible due to mission profile constraints and the
SOC = 30% safety boundary for eUAV operations.

3.4.2. Scheduled Battery Health Management
The simplest form of battery health management is by using a ‘scheduled’ approach [23, 27, 113]. Here, within
one discharge cycle, the eUAV’s safe range of flying time is predefined before flight. Furthermore, the battery
is regarded as unsafe to be used after a predetermined number of charge/discharge cycles. These estimations
for flying time and useful lifetime cycles is based on past data.

When applying this battery health management approach, several undesirable traits arise [23, 27, 113]. Firstly,
by using a fixed flying time, missions times are typically highly conservative, forcing the eUAV to stick to
shorter missions. On the other hand, the other extreme would be that fatal accidents occur by disregarding
the battery health that has potentially significantly degraded over time, implying that the available flying time
has decreased with respect to the initial predetermined maximum available flight duration. Finally, for the
SOH, similar problems come forward. The set number of battery cycles is either too safe or extremely dan-
gerous. Currently, to avoid hazardous situations, engineers recognise that batteries are commonly replaced
too soon [23].

3.4.3. Predictive Battery Health Management
Recognising the shortcomings of applying simple battery health management approaches to batteries, re-
searchers are exploring predictive strategies. Researchers focus on various aspects within the topic of battery
PHM, looking into topics such as EOD prediction and ageing mechanisms.

Estimation and prediction of SOC, EOD, SOH and EOL for eUAVs is important because these vehicles usu-
ally have cost constraints as well as weight and size restrictions [20, 113]. Prognostics play an important role
in monitoring the battery’s health and capacity [129]. Ultimately, accurate EOD estimation is the only pro-
tection against unexpected battery failure during flight [37]. When comparing battery monitoring to CM, the
‘value’ data type is typically considered, as parameters such as voltage and charge are commonly used to de-
termine the battery charge and/or health status.

Methods to estimate the SOC include voltage models, coulomb counting and data-driven approaches [26,
129]. For SOH, similar techniques can be used including, for example, electrochemical, analytical, statistical
models or data-driven mechanisms [12, 78]. For both SOC and SOH, determination approaches can also have
a hybrid form combining for example model-based and data-driven techniques. These hybrid models often
incorporate the benefits from both the physics and data-drive models, giving them optimal performance [26].

Mansouri et al. [85] state that RUL prediction for eUAVs is often done through data-driven methods as
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physics-based approaches require a very high level of expertise. Batteries are non-linear electrochemical
systems and behave dynamically over time, making them complex systems to comprehend.
Machine learning, regression, filtering and stochastic processes are often used as data-driven methods [85].
Two types of data-driven methods are recognised by Eleftheroglou et al. [37]. Most commonly, one overar-
ching predictive model is built. The second method consists of building several simpler models and then
combining these outputs.

Although battery PHM have come a long way, many researchers still recognise this as a subject for improve-
ment. Accurately determining and predicting the SOC and SOH of a battery is extremely complex due to the
influence of many different parameters such as operating environment, cycling profile and the non-linearity
of electrochemical processes [26, 98]. For eUAVs, data-driven techniques are commonly chosen as electro-
chemical battery models are complex and require expert knowledge [29, 78]. Also, aviation electronics with
eUAVs form a compounded integrated system, making it difficult to insert CM technologies. Finally, data-
driven approaches are beneficial as they have the ability to include many different parameters such as volt-
age, temperature and current levels. They have a high computational efficiency and are flexible, implying
that they are able to adjust to dynamic settings.

Currently, researchers recognise a problem concerning SOC and SOH estimations. If the SOC and SOH lev-
els are not known with absolute certainty, accurate predictions for EOD and EOL for eUAVs cannot be made
[27, 113, 135]. As a result, flight plans are decidedly conservative, implying that only those missions are exe-
cuted that fall well within the estimated EOD range. Improving SOC predictions would be beneficial because
this enables longer flight plans to be flown. With more accurate SOH predictions, the battery could be used
for more cycles instead of being replaced too soon before reaching SOH = 80% which is regularly the case in
reality [23].

For battery health management, several prognostic elements exist. Throughout charge and discharge cycles,
the predictive system is required to [27, 78]:

1. accurately determine the actual charge (SOC) in the battery,
2. determine the required battery charge needed to safely complete a mission,
3. predict the battery’s EOD,
4. forecast the battery ageing over time, and
5. estimate the battery’s EOL.

Case Studies
As a remaining flying time example, Hogge et al. [61] verify their method that predicts the amount of charge
a battery has left to perform a mission. Flying with SOC <30% was considered highly unsafe. Thus, the
researchers conducted ground-based simulated testing to train the model. The flight time prognostics are
firstly dependent on accurate online SOC estimations. Then, based on a predefined flight plan with set power
loads, a future power demand prediction for the motor is done. To represent a real-life mission, parasitic bat-
tery loads are also accounted for in online estimations. Finally, the future flight plan battery discharge profile
is predicted.

On the same topic, Saha et al. [107] present a PHM framework for Lithium eUAV batteries based on Bayesian
learning techniques with the aim to predict the EOD within a cycle. They address several different flight op-
eration regimes including take-off, cruise, turns and landing to accurately represent a mission. Throughout
the mission, the PDF of the EOD is continuously updated. Based on these calculations it can successfully be
determined if the eUAV is able to complete the flight safely.

Another example is given by Sierra et al. [113] who present a battery management system for rotatory-wing
eUAVs that provides an accurate estimation of the SOC and EOD time of Lithium batteries. In this study, a
prognostic framework based on models assisted by Bayesian methods is used. By evaluating the SOC and
EOD parameters, decisions regarding the flight plan can effectively be made.

For capacity degradation and EOL estimation, Birkl et al. [17] look into the electrochemical properties of bat-
tery degradation and validate that Lithium battery capacity loss is linked to properties such as loss of lithium
inventory and loss of active materials. The authors propose a model that is able to predict the trajectory of
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changes of these properties within an acceptable margin. Incorporating such forecasting techniques enables
users to keep track of the battery’s SOH and, by doing so, ensure safe operation. In theory, their diagnostic
tool is applicable for all types of Lithium batteries. Future work includes applying this real-time to commer-
cial Lithium batteries.

When exploring research done on predictive battery health strategies that aim to maximise battery lifetime,
little literature is found concerning eUAVs. For electric vehicles in the automotive industry, Valentina et al.
[123] recognise the influence that charging has on Lithium battery degradation and stresses the importance
of defining a methodology for users to promote battery lifetime elongation. On the same topic of electric
vehicles, Abdullah et al. [3] acknowledge the impact that charging methods have on battery degradation and
discover that introducing rest periods during battery charging reduces the degradation process.

3.4.4. Challenges
Throughout battery health management and prognostic studies, researchers define various challenges that
decelerate the development and progress of these subjects. These oppositions are listed below.

• Noisy data
For all predictive battery health management methods, the accuracy and reliability of the prognostics
are dependent on the input data. Raw data is generally noisy and requires manipulations before it can
be used to identify trends and generate predictions [85, 129]. Filtering techniques are used to clean the
data in order to use it for forecasting. It is important to continuously evaluate and further develop the
applied filtering methods to improve the performance of the predictive model.

• Nominal capacity
To set up a useful predictive battery health management system, it is important to accurately determine
the battery’s SOC based on readily available performance metrics. Deriving the SOC from real-time
input remains one of the toughest challenges in battery health management due to the intertwinement
of many parameters and complexity of electrochemical compositions [26, 98, 129]. Prognostics for EOD
and EOL cannot be done if the output of this fundamental step of determining SOC is not reliable.

• Flying plans
The rate of SOC decrease is highly dependent on the eUAV’s flight plan. The power consumption differs
depending on the flying manoeuvre, making EOD predictions a complex task [108, 113]. For example
for eUAVs, the absolute level of power consumption is higher during landing than during cruise, as
shown in Figure 3.3. Predefining the eUAV’s flight plan is therefore very important, such that specific
flight actions can be taken into consideration when estimating the EOD.

• Flying conditions
Anticipating the diverse range of varying flying conditions that an eUAV may encounter, remains a chal-
lenge for predicting the battery’s EOD [12, 85, 108, 113]. As stated in section 3.3, the SOC decrease rate
varies depending on the power demand which is influenced by a diverse set of parameters including
the external temperature, wind and density altitude.

• Ageing
Battery ageing remains a problem, as this brings along uncertainty in battery PHM [12, 61, 132]. The
rate of battery degradation is dependent on a large set of parameters, making it very complex to predict.
Currently, studies mainly focus on battery capacity loss and internal resistance increase as ageing phe-
nomena. In practice, ageing is related to many more events. Also, in order to benefit from degradation
predictive models, future work is required to develop a real-time ageing estimator.

• Cost-Benefit Analysis
Limited literature is found regarding Cost-Benefit Analyses (CBAs) of battery health management meth-
ods. Several overviews are given of advantages and disadvantages of different types of batteries [95], as
well as comparative studies on various prognostic approaches [78]. However, no material is found that
focuses on comparing two battery health management techniques for the same kind of battery. Quan-
tifying battery health management costs is complex but essential in order to make justified charging
strategy decisions.
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3.5. Battery Data and Simulation Tools
To conduct a research in the field of batteries, it is important to verify that there is sufficient data and/or sim-
ulation tools available. A brief overview of potential sources is given in this section.

In a recent paper, don Reis et al. [34] listed all Lithium data sources. The most commonly used battery
cycling data sets are:

1. NASA Prognostics Center of Excellence department
This NASA battery data set [2] is the first publicly available battery data set, showing cycling data for 34
Lithium 18650 cells and 28 LCO 18650 cells with a nominal capacity of 2.0 and 2.2 Ah, respectively. The
battery cells undergo cycling for a range of different temperatures, charge and discharge regimes. The
experiments are stopped until a SOH level is reached between 50-80%.

2. Center for Advanced Life Cycle Engineering (CALCE)
The CALCE data sets [42] feature LCO, LFP, and NMC chemistries of Lithium batteries with varying
dimensions and different capacities (2.0, 2.23, 1.1, 1.35, 1.5). The data sets investigate different DODs,
C-rates and ranges for partial charge/discharge until SOH = 80% is reached.

3. Sandia National Laboratories (SNL) Sandia National Laboratories (SNL) offer multiple 18650 cells with
LFP, NCA and NMC compositions. The battery cells are cycled under different temperatures and DODs
(0-100%, 20-80%, 40-60%). All batteries are charged according to the manufacturer guidelines at 0.5C,
and discharged at different currents (0.5C, 1C, 2C, 3C) until EOL is reached at SOH = 80%.

Although there are a few other data sources available, these are not relevant for eUAV battery health man-
agement applications. For example, some data sets focus on calendar ageing, fast charging protocols or have
very specific usage applications. The authors [34] recognise the lack of Lithium battery data and call for more
open-source data sets to stimulate further battery research.

Instead of using data sets, it is also possible to use battery simulation tools. A benefit of using a simulation
programme instead of a data set, is that it can be tailored to represent an eUAV application more accurately.
Many simulation programmes, however, require expensive licenses and/or are difficult to integrate with pro-
gramming languages such as Python and Matlab. To mitigate these shortcomings, a group of researchers
launched the Python package ‘PyBaMM’ in 2019 [115]. PyBaMM is a tool to simulate battery models fast and
flexibly. It can be used to solve models using readily available Lithium battery cell specifications or has the
option to input new battery parameter sets. Batteries can be cycled through simple calling functions (for ex-
ample, "Discharge at 1C until 3.0V"), or by means of a detailed excel input cycle data set. The package has an
open-source collaboration platform on GitHub [103].

3.6. Research Gaps
In this chapter, fundamental understandings of Lithium batteries used in electrical aviation are listed. Deriv-
ing accurate battery characteristics such as SOC and SOH are crucial in order to enable safe flight. Concur-
rently, if the real-time SOC and SOH are accurately determined, batteries could be used for longer flights and
more charge/discharge cycles, respectively.

Summarising the main points of interest for further analysis, it is clear there is a need for more accurate pre-
dictions of SOC, required charge, EOD, battery ageing and EOL. Addressing all these topics, however, would
be out of scope for one thesis research. Hence, in the interest of sustainability, it is chosen to focus on a
battery health management strategy that aims to elongate the battery lifetime by minimising the DOD and
average SOC at which the battery is cycled, discussed in subsection 3.3.2. Applying this to eUAV applications
has not been previously done in literature. Thus, this research could provide interesting insights for the avi-
ation industry. Moreover, evaluating the other prognostic elements such are predicting SOC and SOH does
not contribute to combatting battery degradation.

A more detailed description of the proposed thesis research topic regarding battery DOD and average SOC
minimisation is presented in Part IIB of this report. Before providing a detailed overview of the thesis ex-
perimental setup, two additional topics related to prognostic models are discussed in the following chapters.
In order to execute the research, battery health monitoring prognostics are required related to estimating
the amount of charge required to complete a mission. Methods to evaluate the required charge prediction
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method are discussed in chapter 4. Then, in 5, a method to compare the benefits of different battery health
management strategies is presented.
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4
Performance Evaluation

Evaluation of the predictive technique’s performance is essential to determine which methodology is most
beneficial for a given component or system. In the thesis research proposed in Part IIB of this report, one/multiple
of these metrics can be used to evaluate the performance of the model that predicts the amount of battery
charge required to complete an eUAV mission, as briefly described in section 3.6.

Despite the fact that performance metrics vary depending on the type of system or applicable requirements,
a survey done by Saxena et al. [109] showed that most metrics are related to the accuracy and precision of a
method. In industries such as finance where reference prediction models are readily available, metrics such
as Mean Square Error (MSE), Mean Absolute Deviation (MAD), Median Absolute Deviation (MdAD) and Mean
Absolute Percentage Error (MAPE) are often used. These metrics can also be used to measure the accuracy of
a model in the aerospace industry.
Within PdM and PHM, Saxena et al. [109] point out that there is a lack of standard definitions. In the authors’
opinion, the methodologies are often ambiguous and inconsistent. Moreover, the shortcomings of model ver-
ification and validation are stressed. Establishing a set of performance metrics to evaluate the PdM and PHM
approaches would enable straightforward assessment and comparison between models. These statements
are also backed by Chang [26] who claims that setting up an accurate evaluation method and/or measure-
ment of performance is required to determine which models best predict SOC trajectories and other battery
characteristics.

Nine performance metrics are defined by Saxena et al. [110] to evaluate data-driven prognostic algorithms
for maintenance in domains such as aerospace, automotive, electronics, nuclear and medicine. Performance
metrics are required in order to evaluate the model to ultimately avoid the occurrence of False Positives (FP)
and/or False Negatives (FN).

First, the difference between accuracy and precision is addressed in section 4.1. Then, a brief description
is given about FP and FN in section 4.2. Subsequently, the evaluation metrics are presented in the following
section 4.3. Finally, several challenges are addressed in section 4.4, as well as a brief conclusion of how per-
formance evaluation metrics can be used in battery health management research.

The description of the terms and notations that are used throughout the sections in this chapter are listed
in Table 4.1.

4.1. Accuracy and Precision
While the terms ‘accuracy’ and ‘precision’ are often used interchangeably, there is a fundamental difference
between the two definitions. Accuracy refers to the average error distance between the predicted and actual
RUL. High accuracy is defined when these errors are small. Precision, on the other hand, refers to the spread
between the predicted RULs. Most desired are cases that have both a high accuracy and precision level [22,
56].
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Name Abbreviation

X Number of units under testing
iP First time index i within set ` that a prediction is made
iEOP Last time index i within set ` that a prediction is made (EOP is End-of-Prediction)
iEOL Actual time index i that the component reaches its End-of-Life
` Total time set of moments i at which predictions are made, `= |(i |P ≤ i ≤ EOP )|
∆X (i ) Error between the estimated and the true RUL at time point i for a given component for time set l
r X (i ) Estimated RUL for the X th unit under testing at time point i using the prognostic algorithm
r X∗ (i ) True RUL for the X th unit under testing at time point i provided that the data is available

Table 4.1: Overview terms and notations for prognostic data-driven algorithm evaluation metrics [110]

4.2. False Positives and False Negatives
A prediction that incorrectly gives an alert that failure is near, is called a False Positive (FP). This is considered
an unacceptable early estimation if a predefined range rF P is violated, as shown in Equation 4.1 [109]. On the
other hand, False Negatives (FNs) are the result of late predictions, as defined in Equation 4.2 [109]. Here, the
FN occurs when the critical range rF N is exceeded.

F P =
{

1 if ∆X (i ) > rF P

0 otherwise
(4.1)

F N =
{

1 if −∆X (i ) > rF N

0 otherwise
(4.2)

When evaluating an algorithm, FNs are typically penalised more severely as late predictions may result in
fatal accidents.

4.3. Performance Metrics
Specifically, the evaluation standards focus on models estimating the RUL of a component. Ideally, evalua-
tion metrics are unitless as this enables easy comparison of performance from different models.

The metrics are built upon findings in a previous survey done by Saxena et al. [109] regarding all existing eval-
uation metrics for prognostic use cases. After reviewing the metrics, nine methods are selected and proposed
for common predictive algorithm evaluation. These evaluation standards are also used for the assessment of
prognostic models made by other authors such as Hogge et al. [60], Busse et al. [22] and Saha et al. [108].
These metrics are discussed in subsection 4.3.1 to 4.3.9.

4.3.1. Average Bias
The average bias metric is one of the most important methods to determine the accuracy of a prediction. The
average bias is calculated using Equation 4.3 [110], averaging the errors made per prediction at all times after
the prediction is made for a total set of l time indices that an estimation of the RUL is made.

B` =
1

`

∑̀
i=1
∆X (i ) (4.3)

Using this metric, positive and negative errors cancel each other out. Also, the influence of outliers is not
mitigated.

4.3.2. Sample Standard Deviation
To evaluate the precision of a prediction, the Sample Standard Deviation (SSD) is often used. This metric
quantifies variability with respect to the sample mean. The SSD is determined with Equation 4.4 [110]. Note
that SSD only applies to normal distributions. In this formula, m is the mean of the sample set of errors.

SSD =
√∑`

i=1(∆(i )−m)2

`−1
(4.4)
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4.3.3. Mean Squared Error
The Mean Squared Error (MSE) addresses both the accuracy and precision of a model. Unlike most evalu-
ation metrics, MSE is not unitless. Thus, comparing two systems’ MSEs must be done carefully. The MSE
determines the average of the squared prediction errors and therefore takes both positive and negative errors
into account. The metric is calculated using Equation 4.5 [110].

MSE = 1

`

∑̀
i=1
∆(i )2 (4.5)

As a metric, MSE is sensitive to non-normal data and the presence of outliers. Moreover, MSE is unreliable
for small samples of data.

The Root Mean Squared Error (RMSE) is a derivative of the MSE, which measures the accuracy of a function.
The RMSE is calculated by taking the root function of MSE and is commonly used by researchers.

4.3.4. Mean Absolute Percentage Error
For prognostics, it is important to take the time at which the prediction is made, into account. Prediction
errors made closer to a component’s EOL are therefore often weighted heavier than those made at the begin-
ning of a component’s lifetime. The Mean Absolute Percentage Error (MAPE) weighs the prognostic errors
with the RULs and then averages these absolute percentage errors. The formula for MAPE is given in Equa-
tion 4.6 [110].

M APE = 1

`

∑̀
i=1

∣∣∣∣100∆(i )

r∗(i )

∣∣∣∣ (4.6)

Using MAPE is only relevant for ratio-scaled data that have a meaningful zero. Furthermore, severe penalties
are given when forecasts exceed the actual EOL compared to those that are less than the real EOL.

4.3.5. Prognostic Horizon
The Prognostic Horizon (PH) reflects on the difference between ip and iEOP , specifying a tolerable error
bound (α). By using PH, predictions are reliable as it focuses on estimates that fall within specified limits
close to the actual EOL. When comparing multiple data-driven models, the algorithm with a larger PH is
desired. The PH is defined by Equation 4.7 [110].

PH = iEOP − iP , with i = min
{

j | ( j ∈ `)∧
(
r∗(1−α) ≤ r l ( j ) ≤ r∗(1+α)

)}
(4.7)

For example, if α = 5%, then the PH will indicate when then the algorithm starts predicting the EOL within
5% confidence bound of the actual EOL.

4.3.6. α−λ Performance
Similar to PH, the α−λ performance metric can be used to determine if a prediction adheres to specified
performance levels. For this metric, the horizon λ is defined as a percentage of the total RUL, measured from
time point iP . Moreover, the accuracy of the estimation is evaluated with the use of α which forms a cone
around the actual RUL trajectory r X∗ , as can be seen in Figure 4.1. In this graph, α = 0.2 implying that the
metric reviews whether the prediction adheres to the 20% accuracy range. Equation 4.8 shows how predicted
RUL, r X , is evaluated. In this formula, tλ = iP +λ(iEOP − iP ).

[1−α] · r∗(t ) ≤ r X (tλ) ≤ [1+α] · r∗(t ) (4.8)

4.3.7. Relative Accuracy
The Relative Accuracy (RA) metric is similar to α−λ performance. However, with RA the accuracy level is
measured instead of determining if data points fall within an accuracy range. Algorithms with a high RA
are desirable, as this implies that predictions are accurate. Using Equation 4.9 [110], the RA of a model is
determined. Again, in this formula, tλ = iP +λ(iEOP − iP ).

R Aλ = 1−
∣∣r∗ (tλ)− r X (tλ)

∣∣
r∗ (tλ)

(4.9)
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Figure 4.1: Schematic figure of the α−λ prognostic algorithm evaluation metric with α = 0.2 [110]

4.3.8. Cumulative Relative Accuracy
If the RA of a model is evaluated multiple times, the results can be aggregated by using the Cumulative Rela-
tive Accuracy (CRA) metric. This parameter represents the normalised weighted sum of the RA measured at
specific points of time. The CRA is calculated by using Equation 4.10 [110], in which w is the assigned weight.
Usually, higher weights are assigned to predictions done closer to the EOL.

C R Aλ =
1

`

∑̀
i=1

w
(
r X )

R Aλ (4.10)

4.3.9. Convergence
This metric is used to quantify if and how well the accuracy and/or precision of a model improves over time.
In Figure 4.2, three example cases are depicted that have different convergence rates. The metric M(i ) repre-
sents the performance of a system. For each case, the centroid is defined as (xc , yc ). Convergence is quantified
using Equation 4.11 [110]. When the Euclidean distance between the graph’s origin and the prognostic case
curve’s centroid is low, a high convergence is defined.

CM =
√

(xc − tP )2 + y2
c

xc =
1
2

∑iEOP
i=iP

(
ti+1

2−t 2
i

)
M(i )∑iEOP

i=iP
(ti+1−ti )M(i )

, and

yc =
1
2

∑iEOP
i=iP

(ti+1−ti )M(i )2∑iEOP
i=iP

(ti+1−ti )M(i )
.

(4.11)

4.4. Conclusion
One of the main challenges for evaluating predictive models is the vast number of metrics that are used
throughout literature. Aside from the nine metrics presented in section 4.3, there is an even more elabo-
rate summary of existing evaluation methods presented in another study by Saxena et al. [109]. Deciding
which metrics are most suitable, is a complex task. Each prognostic model is unique, making it difficult to
choose one metric to evaluate and compare different systems.

When evaluating the nine metrics for prognostic algorithms discussed above, Saxena et al. [110] state that
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Figure 4.2: Schematic figure of the convergence prognostic algorithm evaluation metric showing three cases that converge at different
rates [110]

future work is required to investigate the possibility to define a single performance metric that covers all the
predictive model’s aspects. Currently, using a combined set of multiple evaluation metrics is recommended
to properly evaluate and compare algorithms.
Unfortunately, similar to shortcomings mentioned in chapter 2 and 3, Saxena et al. [111] stress that lack of
data delays the ability to further develop evaluation metrics suitable for all types of maintenance prognostics
on a large scale.

To evaluate prognostic battery health management strategies, one or multiple of these performance met-
rics can be applied. Providing that the errors are normally distributed, the metrics SSD and MSE can be used
to determine the precision and accuracy of the error, respectively. If this is not the case, other metrics must
be applied.
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5
Cost-Benefit Analysis

A Cost-Benefit Analysis (CBA) is an effective method to evaluate and compare systems on metrics other than
accuracy and precision. For maintenance, a CBA provides support for deciding which maintenance strategy
is most beneficial for a specific system [54].
In order to determine the benefits of the battery charging strategy in which battery DOD and average SOC are
minimised, described in section 3.6, a CBA can be executed. Through a CBA, the performance can be com-
pared to the output of for example a simple battery charging strategy in which the battery is always charged
to full charge.

Often, a CBA is immediately associated with financial costs. Although this is often the case, other metrics
are also used such as the effectiveness of maintenance [54], the scientific performance of a model [109] or
the social and/or environmental impact that a strategy has [49]. For the aerospace industry, the metrics for
CBAs are still immature [110]. These CBA parameters are first discussed in section 5.1. Then, the second part
of this chapter, section 5.2, discusses essential steps that need to be taken in order to successfully conduct a
CBA. Note that both these sections can be used to conduct a general CBA for a wide variety of aviation related
maintenance practices. To draw the relevant CBA aspects that can be used to analyse eUAV battery health
management strategies, a concluding summary of this chapter is given in section 5.3.

5.1. Parameters
In this section, several CBA parameters are presented. First, monetary costs functions are elaborated on
in subsection 5.1.1. Secondly, maintenance effectiveness is reviewed in subsection 5.1.2. Then, in subsec-
tion 5.1.3 the scientific performance of a maintenance strategy is discussed. Finally, subsection 5.1.4 and
5.1.5 focus on social and environmental CBA parameters.

5.1.1. Financial Costs
For prognostic maintenance strategies, several different types of economic factors can be used to conduct a
CBA. The most evident main object is to minimise maintenance costs. However, other related objectives such
as minimal delays, minimum repair time duration and optimal utilisation of resources can also be included
[124]. It must be noted that economic factors are often difficult to demarcate as many maintenance opera-
tions are intertwined with other activities. Van den Bergh et al. [124] refer to a long list of parameters such
as availability, flight scheduling, crew assignment and legal matters that have their own associated costs that
may be affected by a specific maintenance activity.

First, high-level descriptions of maintenance costs for different strategies are given. Then, the most com-
mon methods to evaluate financial costs are discussed in the following subsections.

5.1.1.1. Maintenance Costs
Maintenance costs are complex to determine due to the many related factors. Kent and Murphy [67] de-
fine three methods to build simplified models that can be used to represent the financial costs: an analogy,
parametric, and engineering estimation method.
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• Analogy
Estimation of cost based on actual and historical data. The data may concern information from a sim-
ilar existing or alternative recommended technique.

• Parametric
Approximation using ‘cost estimating relationships’ that are either statistical or mathematical formulas
relating to one or multiple of the system characteristics.

• Engineering
Technique in which a detailed cost breakdown is made. The costs for the individual components are
then combined to form an engineering estimate.

Compared to aircraft, MEA and eAVs have a reduced cost [125, 127]. This cost reduction is related to a de-
crease in operation, maintenance and fuel costs. Accurate saving estimates have not yet been made due to
the uncertainty of battery technologies.

Unmanned Aerial Vehicles (UAVs), either battery or fuel-powered, also have a significantly lower overall cost
[8]. Although operating costs are generally substantially lower (approximately 40% of an aircraft’s operational
cost), not all UAVs costs are less. For example, UAVs require surveillance and radio communication systems
that may be even more extensive than a manned aircraft. Additionally, a control station may be required that
can be either ground, air or sea-based. Secondly, although UAVs are smaller and weigh significantly less, their
structure can consist of a similar number of components that come with comparable manufacturing costs.
UAV maintenance costs are estimated to equal 20% of a manned aircraft cost.

Corrective Maintenance
The costs of a failure consists of the component repair costs and the downtime costs [15]. The actual repair
costs are relatively easy to compute as this usually consists of quantifiable expenses such as material, equip-
ment, workplace and labour costs. Downtime, however, is more complicated as this is related to the system’s
business value and any potential effects it has on other parameters such as delay and customer satisfaction.
Most models assume there is no fixed cost for corrective maintenance this method is already being applied
in practice and does not require any additional investments.

Scheduled Maintenance
Costs for PM consist of two parts [15]. Firstly, maintenance costs apply for maintenance carried out on a pe-
riodic basis. Secondly, failure costs (equal to costs for corrective maintenance) are induced in the occurrence
of an unexpected failure. The probability of an unexpected failure arising in between scheduled maintenance
checks and the costs that are paired with such an event, can be simulated using for example a Monte Carlo
approach. Similar to corrective maintenance, authors assumed that no fixed costs are associated with PM.

Predictive Maintenance
For PdM, investment and operating costs are required [15, 40, 130]. As an investment, costs are made during
the development, verification, and validation phase of the maintenance model. These costs include labour
fees, but also all expenses related to software and administrative costs. Moreover, all additional hardware
costs must be considered, including new sensor technologies, electronics, and testing facilities implied ex-
penses. During operation, the costs consist of performing the prognostic analyses, maintaining the system,
and physically repairing the system.

Costs for FP and FN must also be considered [15, 40]. For an FP, when a near failure is wrongly alerted,
expenses consist of system downtime and any additional inspection cost factors. If a failure alert is missed
due to an FN, failure costs equal to corrective maintenance are included.

5.1.1.2. Evaluation Methods
To review the financial costs related to a maintenance strategy, various metrics exist. Below, the parameters
return on investment, payback period and net present value are detailed.

Return on Investment
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For PdM and other prognostic maintenance strategies, an investment is required before being able to phys-
ically apply and use the maintenance method. The Return on Investment (ROI) is most commonly used to
evaluate the financial benefit of an investment and is calculated using Equation 5.1 [40]. Here, the central
fraction is the classical finance ROI definition, while the right ratio is the ROI applied for PHM assessment
equation.

ROI = Retur n − Investment

Investment
= Avoi ded Cost

Investment
−1 (5.1)

If ROI is larger than 0, there is a cost-benefit [40, 130]. Though in some cases, a ROI that is less than 0 may still
be beneficial, if for example availability of the system is a lot higher and if this factor has not been included
in the cost calculations.

In a study for NASA, Kent and Murphy [67] claimed that implementing prognostics for aircraft maintenance
of structures results in a ROI of 0.58 within 3 years time, assuming that there is a 35% decrease in maintenance
requirements.

Typically, businesses calculate different cost scenarios for conducting maintenance and then apply the set-
ting for which the highest ROI is achieved [40]. For example, in a study done by Banks and Merenich [9],
sensitivity analyses showed that the highest ROI was achieved for prognostics incorporating the longest time
horizon.

Payback Period
Another method used to evaluate finances, is the Payback Period. This metric assesses the risk associated
with the maintenance strategy as it indicates the time period it takes until the return is equal to the invest-
ment costs (ROI = 0) [130].

To determine the Payback Period expressed in months for a PHM strategy, Equation 5.2 [130] can be used.
Here, T is the application time of the PHM approach.

Payback Per i od = Investment

Monthl y Bene f i t
= 12T

ROI +1
(5.2)

Net Present Value
The Net Present Value (NPV) is another parameter regularly used to evaluate economic factors as it indicates
the value that the investment of implementing prognostics adds to the investor. The NPV is calculated using
Equation 5.3 [102]. In this formula, t refers to the time during the total time period T that has passed. Over
time, a positive ∆NPV (NPV > 0) indicates that there is a financial benefit [102].

N PV = Ini t i al Cost s +
T∑

t=1

C ash F l ow at t

(1+Di scount Rate)t (5.3)

5.1.2. Effectiveness
Instead of calculating economic costs, some studies focus on the difference in the effectiveness of mainte-
nance strategies. As stated previously, a negative ROI can still imply that the maintenance strategy is more
desirable if, for example, the system effectiveness is higher.

According to Pecht and Rafanelli [99], effectiveness is determined by reviewing the availability, dependabil-
ity and capability of a system. Availability refers to the probability that the system is able to operate at the
beginning of the usage period. Dependability is related to the probability that the system does not fail dur-
ing operation. Finally, capability measures the product performance. The effectiveness is calculated through
Equation 5.4 [99].

E f f ect i veness = Avai l abi l i t y ·Depend abi l i t y ·C apabi l i t y (5.4)

Another commonly used term for ‘dependability’, is ‘reliability’. For maintenance, to measure the reliability of
a system, metrics like Mean Time Between Failure and its ratio to metric Mean Time Between Unit Replace-
ments (MTBF/MTBUR) are applied [110].
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Figure 5.1: Analysis of value for different maintenance strategy levels [53]

For Lithium batteries, Gandoman et al. [46] research the characterisation of failure models for Lithium batter-
ies for electric vehicles and identify that understanding these modes is important for reliability assessment.
According to their study, the loss of active anode materials contributes most to the reliability of the battery.
Williard et al. [129] go about a similar approach and highlight that the chemical composition of Lithium bat-
teries is crucial when designing the power source for reliability. In addition to assessing reliability during the
design stage, the operation stage is reviewed. Here, the battery capacity is most commonly used to evaluate
reliability and performance.

Other parameters may also be used to indicate the system effectiveness. Haddad et al. [54] refer to system
effectiveness as maintenance value that is determined by parameters such as downtime, unpredictability and
occurrence of catastrophic failures.

Inspired by their work, Guillén et al. [53] created a graph showing the maintenance value as a function of
time, which is depicted in Figure 5.1. The chart also reflects the system health along the same timeline. In the
graph, the maintenance types scheduled maintenance (TBM), CBM, CBM/PHM combined and corrective
maintenance are marked. Here, unscheduled maintenance is defined to be the same as corrective mainte-
nance.
The graph clearly shows that the highest maintenance value is achieved by using the CBM/PHM strategy. Fur-
thermore the difference between scheduled and unscheduled maintenance is negligibly small as although
fatal accidents are more likely for the unscheduled approach, scheduled maintenance faces the problem of
high downtimes and early replacements (large unused RUL).

5.1.3. Scientific Performance
Another method to evaluate and compare maintenance strategies is by reviewing their accuracy and preci-
sion [109]. Methodologies to do this have been discussed in chapter 4. Note that these metrics are designed
to evaluate prognostic algorithms are and therefore not useful to compare two different types of maintenance
strategies. For example, these metrics could be used to determine which PdM algorithm performs best, but
not to determine whether a corrective maintenance or PdM strategy should be applied.
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Busse et al. [22] state that cost savings depend on the accuracy and precision of a prognostic model. For
models with higher accuracy and precision, a larger cost reduction is observed. This can be assigned to the
fact that low prognostic accuracy and precision result in maintenance that is either carried to early or too late.

5.1.4. Social Impact
Another metric that can be used to select the most beneficial maintenance strategy, is social impact [49].
This is not a common parameter to include, though it is still very relevant to take into consideration. Social
measures that could be evaluated are for example personnel safety, health, and wage, as well as general em-
ployment issues, government regulations and stakeholder participation.

Setting up a method to compare these social impact factors is not straightforward. Ghazi et al. [49] pro-
pose an approach with fuzzy rules by translating modes from ver y low to ver y hi g h to a numerical scale
that ranges from 0 to 1. The authors then determine which leading factors must be taken into consideration
for the CBA, after which a weighted trade-off is conducted.

5.1.5. Environmental Impact
An upcoming factor to do take into account when conducting a CBA, addresses the sustainability aspect of
the problem. Authors such as Franciosi et al. [44] and Ghazi et al. [49] state that current maintenance deci-
sion methods are solely focused on conventional parameters related to economical or technical features. The
authors focus on general industrial and manufacturing industries, not just specifically the aerospace domain.
With the current shift towards technologies that have a smaller environmental impact, more research on this
topic related to maintenance is required.

The term ‘green maintenance’ is used in literature [4, 43, 44] to represent maintenance strategies that aim
to minimise the negative impact on the environment. According to Iung [64], the integration of sustainability
in maintenance is advocated by the upcoming trend in implementing PHM methodologies. By looking at
the system as a whole instead of only focusing on one small component, prognostics are shifting from only
reviewing the RUL to other matters such as energy consumption and/or efficiency. Here, it is essential that
maintenance is not seen as an aftermarket service but rather an imminent and continuous process to en-
hance the overall system performance.

Environmental factors that can be considered when choosing a maintenance strategy are [43, 49, 64]:

• Energy consumption
• Pollutive emissions (air, water and soil)
• Noise emissions

• Material resources
• Material longevity and waste upon disposal
• Environment management

Similar to subsection 5.1.4, comparing different types of sustainability parameters within a CBA is complex,
as different factors can be weighted differently depending on the stakeholders’ preference. It is important to
determine a CBA method beforehand to avoid confusion.

5.2. Experimental Setup
In order to determine which maintenance strategy is most beneficial, an analysis is performed. Before con-
ducting the CBA, several steps need to be taken.
The experimental setup parts related to a CBA are discussed in the subsections below. Firstly, lifecycle cost
data types are elaborated on in subsection 5.2.1. Subsequently, different system modelling analysis ap-
proaches are presented in subsection 5.2.2. Then, CBA parameter choice and trade-off methodologies are
discussed in subsection 5.2.3. Finally, subsection 5.2.4 touches upon common assumptions applied for main-
tenance strategy CBAs.

5.2.1. Data
In order to determine the lifecycle cost of a system, Kent and Murphy [67] recognise three types of data cate-
gories: technical, programmatic and cost data. These types are briefly explained below.

• Technical
This data type includes the specifications for engineering, operational attributes and performance
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characteristics. Here, the reliability and maintainability of the system are mainly focused on.

• Programmatic
Programmatic data consist of the facts and/or assumptions concerning the system. These data points
are related to several activities including the utilisation of the system as well as the logistics and support
concepts.

• Cost
Items such as labour, equipment and material costs are categorised under cost data. This data type
includes the facts and/or assumptions regarding the monetary value of the resources and/or consump-
tion requirements.

5.2.2. Analysis
In order to conduct a CBA, separate systems following a specific maintenance strategy are modelled. The
following subsections describe typical analysis methods to model systems.

5.2.2.1. Scenario Analysis
The simplest way to model a system is by using a scenario analysis [124]. Scenario analyses can be used
for exploratory or decision orientated research based on qualitative and/or quantitative information [122].
Scenario cases can also be used to perform sensitivity analyses, to investigate how a model responds to dif-
ferent scenario inputs [21]. Often, these models are simple and not computational heavy. The downside is
that scenario analyses are often less suitable to evaluate stochastic elements and perform detailed analysis
on relationships between events.

5.2.2.2. Discrete Event Simulation
As the title of this simulation suggests, Discrete Event Simulation (DES) models operations as a discrete set of
time points. DES can be used for several types of models including determination of the maintenance cost,
availability, reliability and scheduling [5]. Usually, DES represent deterministic models. A DES model requires
several inputs including an initial state, a time variable to order the events in chronological order, the types
of events that may occur and the changes required to yield the different statuses [16].
For example, Hölzel et al. [62] used DES to conduct a CBA on lifecycle costs for aircraft using CBM and PHM
maintenance strategies versus conventional TBM approaches.

5.2.2.3. Monte Carlo Simulation
Monte Carlo (MC) simulations are similar to DES, but instead of representing deterministic systems, MC sim-
ulations are mostly used to model uncertainty. In an MC simulation, several different events can be statisti-
cally modelled, each with their own Gaussian distribution [54]. Random samples are generated to analyse all
possible scenarios [50]. Hence, MC is often applied to analyse the range of all possible outcomes for a given
maintenance strategy.
In a study done by Wu et al. [130], MC simulation is used to model a system in order to perform a CBA while
covering all uncertainties that may occur.

For maintenance modelling, MC simulation techniques could be used to model the uncertainties such as
unexpected delays, varying maintenance repair rates and the availability of equipment or workforce person-
nel [124] .

5.2.3. Cost-Benefit Model
In order to conduct a CBA, the relevant cost parameters along with a trade-off method need to be selected.

From the CBA parameters presented in section 5.1, a selection can be made based on the interest of the
stakeholders. In most cases, a financial factor is included to minimise monetary costs and (if applicable) de-
termine if the investment is worthy.
With the current shift towards more sustainable practices, including a review of the environmental impact
linked to specific maintenance practice is recommended [44, 49]. For example, for maintenance of eUAV bat-
teries, multiple sustainability parameters such as energy consumption and waste could be included.
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As briefly touched upon in subsection 5.1.4 and 5.1.5, comparing different types of CBA parameters is not
straightforward. Within for example parameter types ‘social and environmental impact’, it is challenging to
compare different cost factors as different weights can be applied to reflect the importance of the parameter.
The CBA process is further complicated when additional cost parameters such as financial cost and mainte-
nance effectiveness are included.

Typically, a trade-off method is used to reach an ultimate number to determine an optimal strategy. Trade-
offs are essential in order to justify the choice of a preferred strategy in an objective manner.
Although the outcome of the trade-off is important, Daniels et al. [30] state that the documentation of the
trade-off is the most critical part, including the relevant CBA parameters, scoring functions and input values.
In their study, the authors provide several standard trade-ff methods. Figures of merit are used to represent
specific quantifiable items that are of interest to determine if and how well a strategy satisfies the stakeholder’s
requirements. Weights are often included to classify the importance of the parameters that are being evalu-
ated.

Finally, a sensitivity analysis can be performed to analyse the contribution of each CBA parameter [30, 57].
Pareto’s distribution shows that in most cases, 80% of the strategy’s performance can be traced down to 20%
of the parameters. A Pareto analysis can also be used to review trade-offs for multi-objective optimisation
problems. Optimal Pareto solutions provide the best solution for all cost functions related to a CBA.

5.2.4. Assumptions
Several researchers state relevant assumptions when evaluating the cost-benefit results of different mainte-
nance techniques. A selection of these assumptions is briefly discussed below.

In a CBA study comparing sensor based with scheduled maintenance for aircraft done by Dong and Kim
[33], an assumption is made that sensors do not need to be replaced throughout the aircraft’s lifetime. Fur-
thermore, the authors assume that the sensors are error-free. Lastly, the use of real-time CM data is critically
reviewed. Although using such a data set is thorough, it brings along many complications in reality. Using
real-time data is impractical from a wiring perspective. Prognostic calculations would be done from a ground-
based station, thus wireless sensors would be required. However, and the use of wireless sensors comes at a
cost as the sensors’ weight is higher. Secondly, the use of real-time data is undesirable as processing all the
sensor data is time-consuming.

Another crucial assumption that is often implemented in a CBA, is the assumption that a maintenance prog-
nosis is always correct. Haddad et al. [54] incorporate such an assumption in choosing the best PHM ap-
proach by elongating the operation time past the RUL prediction. Here, the benefit of an extended RUL is
compared to increased downtimes if the component is repaired at a sooner moment in time. Recognising
that PHM prognostics are not perfect, the authors assume an error rate equal to 0.05 implying that there is a
5% probability that the PHM provides a wrong prediction of RUL.

For maintenance, the assumption that a component is ‘as good as new’ after having been repaired is also
sometimes applied. Gilabert et al. [50] include such an assumption when a replacement or refurbishment
maintenance activity is performed as soon as a component is nearing its EOL. But researchers can also choose
to assume this after regular maintenance has been carried out.
For Lithium batteries, assuming that the battery charge is ‘as good as new’ after charging, would imply that
the SOH of the battery is assumed to remain constant. As the SOH degrades significantly over time, assuming
the battery that has run a large number of charge/discharge cycles returns to a restored level of perfection
equal to the level at BOL could lead to fatal accidents and is therefore not recommended.

Finally, conducting a CBA for maintenance strategies addressing a single aircraft or UAV will result in dif-
ferent insights compared to models accounting for an entire fleet. For a conventional aircraft fleet model,
extra costs for, for example, flight scheduling, maintenance routing and crew assignment are included when
the total network of multiple systems is reviewed as opposed to an individual aircraft. Assumptions regarding
the fleet size must therefore be stated beforehand. Furthermore, sensitivity analyses can be performed to
evaluate different scenarios [124].
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5.3. Conclusion
In this section, the CBA parameters related to battery health management strategies are first discussed, after
a high-level overview of a relevant experimental setup is given.

Parameters
For a CBA on maintenance strategies for eUAV batteries during which different charging approaches are com-
pared, the parameters ‘financial costs’, ‘effectiveness’ and ‘environmental impact’ are most relevant [45, 77,
80, 114]. When assessing battery health management strategies, it is important to account for the efficiency
of transferring power from the power plant to the grid, to the battery and finally, to the eUAV propulsion sys-
tem. Goodchild and Toy [51] find that this total effiency factor is 0.79. Similarly, Stolaroff et al. [114] state that
this efficiency is 0.77.

For financial costs, the total costs consist of the BOL battery costs, the operation and maintenance costs
and the EOL costs. These three costs are briefly discussed below.

1. Beginning-of-Life costs
For batteries, the BOL costs are usually determined either by analysing off-the-shelf prices or by calcu-
lating the costs based on average price per kW h data [77].

2. Operation and maintenance costs
For simple charging strategies, operation and maintenance costs of battery systems mainly consist of
electricity costs used to charge the battery [77]. These can also be determined by using open-source
price per kWh data, which changes over time and is country-specific in Europe [38]. A detailed break-
down between peak and off-peak electricity prices can be used to distinguish charging activities that
occur during the day or at night [80]. When including prognostics, costs described in subsection 5.1.1
apply.

3. End-of-Life
Recently, there has been an increase in papers addressing battery recycling and second-life practices
[63, 71, 88]. Though the total amount of batteries that are being recycled or reused is increasing, this
is not yet standard practice. Furthermore, though waste is reduced, recycling techniques often bring
along the use or emissions of other unsustainable materials [63, 106]. Lithium EOL battery costs are
complex to determine due to the inconsistency in data and dependency on many factors such as bat-
tery specifications, usage application and location, and can hence be disregarded.

Depending on the interest of the stakeholders it can be chosen to simply compare the total sum of the fi-
nancial costs, or to apply evaluation methods such as the ROI. For batteries specifically, however, it may be
difficult to accurately determine the investment costs for prognostics as this is not yet a standard practice.

The effectiveness of a battery health management strategy can be measured through the formula presented
in Equation 5.4. For simplicity, the dependability and capability of the battery can be neglected, as for eUAV
applications the battery SOC will always be kept above 30%, and the SOH above 80%, as described in chap-
ter 3. The ‘availability’ of the battery, however, may vary depending on the applied charging strategy. Galkin
et al. [45] use the downtime per UAV to determine how efficient each model is.

For environmental impact, the parameters ‘energy consumption’, ‘material longevity and waste’ are most rel-
evant. In a study assessing the environmental impact of a UAV package delivery model, Koiwanit [70] found
that of the total Global Warming Potential (GWP), 80% consisted of carbon emissions. Thus, for the battery
life cycle factors ‘energy consumption’ and ‘material longevity and waste’, carbon emissions will closely be
evaluated.
Firstly, the energy consumed during the charging cycles of the battery can continuously be monitored and
differs between charging methods. Emissions per kW h in the Netherlands, for example, are a mixture of
emissions derived from sustainable ’green’ and ’grey’ electricity [25], on average resulting in 0.49 kg carbon
emissions per kW h consumed electricity.
Secondly, material longevity refers to the battery lifetime that is affected by the applied charging strategy.
Emissions arising from this parameter are related to BOL and EOL activities. For BOL, emissions are usually
expressed in kg or carbon per kW h battery. On average, BOL production GWP emissions account for 99%
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of the total battery life cycle emissions [70]. Data for Lithium battery production emissions vary between 35
and 250 kg per kW h [55, 82, 106]. For EOL, as mentioned above, recycling and reuse practices are not yet
standard. Hence, recycling and reuse applications can be disregarded from this study.

Experimental Setup
For the experimental setup of the CBA, the data can be retrieved from example studies or open-source data
centres. Some exemplary sample data has been presented above per parameter ‘financial costs’, ‘effective-
ness’ and ‘environmental impact’. For the analysis, an MC simulation can be run to test how the battery health
management strategies respond to uncertainty. Throughout the CBA, it is essential to state all assumptions
and acknowledge their impact on the CBA results. Due to the fact that no standard CBA framework for battery
health management approaches exists, it can be chosen to retrieve a single final CBA score through the use
of a trade-off method, a sensitivity analysis and/or review of the model’s Pareto efficiency.
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6
Problem Statement

Based on the literature gaps discussed in Part IIA of this Literature Study, a Cost-Benefit Analysis (CBA) com-
paring several battery health management strategies for electric Unmanned Aerial Vehicles (eUAVs) Lithium
batteries is proposed. First, a summary of the research gaps found in Part IIA of this report is presented in sec-
tion 6.1. Secondly, the project outline of the proposed thesis research is elaborated on in section 6.2. Finally,
section 6.3 lists the research questions of the cost-benefit analysis.

6.1. Research Gaps
Throughout this Literature Study, several shortcomings in available maintenance and battery health man-
agement research studies have been addressed. These research gaps are shortly summarised below.

1. Battery Health Management
Reviewing maintenance studies, it can be concluded that there is a significant difference in the num-
ber of research papers regarding conventionally fuelled aircraft compared to electrical Aerial Vehicles
(eAVs) health monitoring strategies. With the current shift towards more sustainable alternatives, there
is an increase in eAV applications. Thus, it is beneficial to further investigate and improve eAV health
monitoring approaches.
Given the main distinction from fuelled aircraft and the critical role of a eAV’s power source, it is cho-
sen to focus on health management methodologies for batteries. As batteries for large eAVs are not yet
widely available, smaller electric Unmanned Aerial Vehicles (eUAV) battery applications will be consid-
ered.

2. Prognostics
Within the aerospace industry, Prognostic & Health Management (PHM) methodologies are increas-
ingly being applied. Also in the field of batteries, prognostic practices are progressively being devel-
oped. For both general maintenance and battery health management strategies, however, the prog-
nostic part requires further development. Authors call for an improvement in consistency within prog-
nostics, more data acquisition, and an enhancement in performance for estimations and prediction
methods and stress the importance of verifying and validating theories.

3. Sustainability
Although studies have proven that the average State of Charge (SOC) and Depth of Discharge (DOD)
levels influence battery ageing processes, little research has been done applying this knowledge to
eUAV battery models. Especially in the light of developing more sustainable battery health manage-
ment methods, developing and evaluating charging schedules that aim to elongate battery lifetime, is
of interest.

4. Cost-Benefit Analysis
In order to determine which battery health management strategy is optimal for a given system, a Cost-
Benefit Analysis (CBA) can be conducted. Currently, there is no set framework to review and compare
different types of battery health management strategies to determine which method is optimal when
considering CBA parameters such as financial costs, effectiveness and sustainability.
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6.2. Research Outline
The main research aim is to review battery health management methods for eUAV batteries, particularly
focusing on a PHM approach. In the thesis research, a simple battery charging approach will be compared
to a more advanced prognostic strategy. The performance of the methods will ultimately be evaluated by
means of an CBA.

To evaluate both charging approaches in a fair manner, identical lists of missions target locations will be
generated and executed in the same order by both the simple and the prognostic battery health management
model. A more detailed description of these two strategies is given below.

In the first simple SOC 100% strategy, the eUAV battery always starts from 100% SOC level. For this model,
battery degradation is expected to be most severe due to the high average SOC level. In contrast, the second
prognostic varying SOC battery health management approach aims to decrease the rate of degradation. This
is achieved using a predictive approach to determine the minimum SOC level that the battery needs to com-
plete the next mission. By charging the battery to a lower SOC, the battery is protected from severe battery
degradation. The required charge predictions are based on previous flying data using for example a regres-
sion or machine learning technique.

For both approaches, the predefined maximum flight time is chosen such that the battery always operates
within SOC safety limits by maintaining a SOC level between 30 and 100%. Furthermore, capacity degrada-
tion is chosen as the indication parameter for the battery’s State of Health (SOH). A battery is always replaced
when its SOH drops below 80%. This is monitored by the Battery Management System (BMS).

The two proposed battery health management methods are briefly summarised below. These steps are re-
peated until the set list of missions has been complete.

1. Simple SOC 100% charging model
- Predefined maximum flight time which is never exceeded.
- The battery is charged to 100% SOC before the next mission.
- The battery is replaced when SOH < 80%.

2. Prognostic varying SOC charging model
- Predefined maximum flight time which is never exceeded.
- The required battery charge is predicted for the next mission based on the known target location.
- Before the next mission, the current battery SOC is evaluated.
- Then...

i. if the battery has sufficient charge to complete the next mission, the battery is directly used for
the next flight, or,

ii. if the battery has insufficient charge to complete the next mission, the battery is charged until
the predicted required SOC level before the next mission.

- The battery is replaced when SOH < 80%.

The scope of the research will focus on one eUAV system that must execute all the missions. By doing so,
the impact of charging strategies can directly be linked to the degradation of the battery. It can be assumed
that the number of available batteries for replacement is unlimited. To review the effect of different DOD on
battery ageing, the two battery charging strategies will be tested for several mission ranges (short, medium,
long). This is further elaborated on in chapter 7.

Additionally, case studies where the battery health management approach for example charges the battery
before each flight to a lower maximum SOC level equal to 80% can be performed to review the sensitivity of
the simple and prognostic charging strategies. Ultimately, the battery health management methods will be
evaluated on several performance characteristics, including financial costs, effectiveness and sustainability.
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6.3. Research Questions
The main research question is:

What is the sustainability and cost-benefit of simple versus prognostic battery health management
strategies for Lithium batteries for electric unmanned aerial vehicles?

The following sub-questions are defined to conduct the research:

1. What is the sustainability and cost-benefit of using the simple SOC 100% battery health management
charging strategy?
i. After how many cycles is the Lithium battery replaced?

2. What is the sustainability and cost-benefit of using the prognostic varying SOC battery health manage-
ment charging strategy?
i. What is the performance predictive required SOC level model?
ii. After how many cycles is the Lithium battery replaced?

3. What are the optimal settings to minimise battery ageing for Lithium batteries?
i. What is the optimal average State of Charge level during operation?
ii. What is the optimal Depth of Discharge level during operation?
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7
Methodology and Project Timeline

In this chapter, a high-level outline of the project methodology is presented in section 7.1. Then, in section 7.2
these methodology phases are broken down into smaller tasks which are shown in a Gantt Chart.

7.1. Methodology
To build the battery health management models, the first part of the research consists of the approach prepa-
rations to develop the model, discussed in subsection 7.1.1. Then, the actual establishment of the model is
addressed in subsection 7.1.2. Lastly, the final phase of the project is defined in subsection 7.1.3 during which
the results are analysed, validated and conclusions are drawn.

7.1.1. Model Preparation
In order to develop the battery health management models for the Lithium eUAV batteries, available litera-
ture, data sets, simulation tools and open-source codes are reviewed. For the prognostic model, a data-driven
approach is chosen due to the complexity of using an electrochemical physics of failure based model. Fur-
thermore, data-driven techniques are desirable due to their computational efficiency and flexibility.

To simulate a battery’s SOC and SOH, literature and data are analysed. A Lithium battery data set or sim-
ulation tool is chosen to simulate the battery decrease in charge during flight and degradation over time.

To build the simple and prognostic method, typical battery health management strategies for Lithium bat-
teries are analysed. Literature and data supporting maximum flying time and useful lifetime values are sum-
marised to determine predefined battery standards. For the PHM approach, open-source predictive algo-
rithms are reviewed to gain a deep understanding of applicable methods.

7.1.2. Model Development
In this part, the two battery health management strategies, presented in section 6.2, are simulated. The model
is developed in Python programming language.

The simple strategy is developed with the use of the literature findings regarding maximum flying time and
lifetime cycles are translated into a simulation model.
For the PHM methodology, the predictive algorithms to predict the amount of charge required to fly a specific
distance. In this way, the average SOC is reduced. The prognostic model can finally be evaluated using preci-
sion and accuracy performance metric such as Mean Squared Error (MSE) and Standard Deviation (SSD).

A set of three different mission areas are defined, in order to compare different battery DOD ranges. The
maximum range within the largest mission area is set to be equal to the distance that can be travelled with
∆SOC = 70%, such that a battery is always able to deliver sufficient charge to go from the hub to the target
and back to the hub for charging. This 70% SOC target value is defined by the minimum SOC threshold of
30% required to perform two additional landing attempts if required. Flight profiles are stochastically gener-
ated randomly anywhere within either the short, medium or long-range to represent a diverse set of missions.
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Moreover, a set of ‘mixed’ missions of targets located in all three ranges can be generated. By differentiating
these mission distances, the battery’s DOD is intrinsically varied. Hence, the DOD’s effect on battery ageing
can be evaluated.
In order to compare the strategies, the sustainability and cost-benefit analysis model is prepared. Then, the
two battery health management approaches are finally applied to the large set of mission profiles to evaluate
their performance in the final phase of the project.

7.1.3. Results Analysis, Validation and Conclusion
In this last phase, the results of applying either the simple or PHM battery charge strategy to a statistically
simulated set of mission profiles are analysed. To determine if the outcome of the models can be consid-
ered correct, the data is validated. Finally, conclusions for the sustainability and cost-benefit analysis can be
drawn.

7.2. Project Timeline
Translating the research methodology into a project timeline, a total of six phases are defined. These parts
are briefly elaborated on below in subsection 7.2.1 to 7.2.3. A Gantt chart depicting the timeline schedule of
these six phases is shown in Figure 7.1.

7.2.1. Phase 1
This part of the project consists of the model preparation, discussed in subsection 7.1.1. In this first phase,
the following project parts are completed within the first three weeks:

• Exploring battery data and simulation tool sources.

• Deciding on a battery data source or simulation programme.

• Simulating the battery.

7.2.2. Phase 2 and 3
Phases 2 and 3 of the project represents the model development, presented in subsection 7.1.2. This section
runs for approximately 10 weeks, during which the following parts are carried out:

• Simulating the battery SOC and SOH.

• Defining of prognostic algorithms for the required amount of battery charge.

• Setting up the simple and prognostic battery health management strategy simulation models.

• Generating stochastic mission profiles.

• Constructing sustainability and cost-benefit analysis trade-off parameters and methodology.

7.2.3. Phase 4, 5 and 6
The final project phases combined have the longest duration of roughly 16 weeks. This part includes the
results analysis, validation and conclusion, addressed in subsection 7.1.3, as well as the documentation of
the midterm and final thesis report. Furthermore, the midterm presentation, green light and final thesis
presentation take place in this last section. To summarise, the following topics are covered:

• Simulating the battery health management strategies and analysing and validating the results

• Drawing conclusions from the sustainability and cost-benefit analysis.

• Performing sensitivity analyses.

• Drafting the midterm and ultimately the final thesis report.

• Presenting methodology and findings during a midterm and final thesis presentation.
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1
Statistical Analysis

A statistical analysis of the results and validation output presented in the scientific paper in Part I of this thesis
report is presented below. The following elements are reviewed:

• Monte Carlo (MC) - the stabilisation of the mean target distance covered by each eUAV battery is
checked.

• Distribution of Sustainability and Cost Assessment results - the distributions of the B̃ , P̃tot al and
E f f i ci enc y variables are reviewed for normality to determine if a t-test can be applied. This is done
by visually inspecting the histrograms of the results, as well as by running Shapiro-Wilk tests and re-
viewing Quantile-Quantile (Q-Q) plots for variables that show uncertain Shapiro-Wilk outputs. The
Shapiro-Wilk test is a powerful method to check the normality of the distributions [89].

From the histogram graphs, C̃O2, BOL and �Cost BOL are both related to B̃ tested with Shapiro-Wilk tests.
Furthermore, C̃O2, char g e and �Cost char g e link to P̃tot al . The E f f i ci enc y distributions are assessed
separately with Shapiro-Wilk tests.

• Statistical T-test - an overview of the p-values for each unpaired one-sided T-test applied to test the
hypotheses presented in the scientific paper in Part I.

The MC, distributions and T-tests for the mixed, short, medium and long range distance results are first anal-
ysed in section 1.1, 1.2, 1.3 and 1.4, respectively. Thereafter, the MC plots of the validation results are pre-
sented in section 1.6.

1.1. Mixed range
The MC graphs for the mixed range are first discussed. Then, the normality of the results is checked. Finally,
the T-test outputs of the tested hypotheses are elaborated on.

1.1.1. Mixed range - Monte Carlo
The MC graphs of the 1000 eUAV batteries tested with the SOC 100%, SOC 80% and mission-based strategy
for the mixed range are displayed in Figure 1.1. From the graphs, it is concluded that sufficient batteries
are tested as the means converge after approximately 300 runs. It can be seen that the mission-based strategy
mean takes the longest to converge due to the bigger variance in battery lifetime, resulting in a larger spread in
total distance flown. Due to the convergence of means after 300 runs for all three battery health management
strategies, it is chosen to run the MC simulations a total of 300 times for the remaining short, medium and
long range to speed up computational running time.
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(a) SOC 100% strategy (b) SOC 80% strategy

(c) Mission-based strategy

Figure 1.1: Stabilisation of mean distance results of 1000 batteries tested through Monte Carlo simulation for SOC 100%, SOC 80% and
mission-based strategy for mixed range

1.1.2. Mixed range - Distribution of Sustainability and Cost Assessment results
From the histogram graphs for battery lifetime and battery usage presented Figure 1.9 and 1.10, respectively,
it can be seen that the sustainability and cost assessment results seem to follow normal distributions.

Reviewing the Shapiro-Wilk normality check tests in Table 1.1, it is concluded that all outputs except B̃ for
the SOC 100% and mission-based strategy are normally distributed. Zooming in on these parameters, Q-Q
plots are generated to review how severe the outputs deviate from a normal distribution. The Q-Q plots in
1.2a and 1.2b show that the set of B̃ for the SOC 100% and mission-based strategy are ‘sufficiently normal’ to
apply T-tests.

1.1.3. Mixed range - Statistical T-tests
To test the hypotheses presented in the scientific paper in Part I, Table 1.2 provides a summary of the p-values
retrieved from the unpaired one-sided T-tests tested for the mixed range. From the results, it is concluded that
the mission-based strategy outperforms the SOC 100% strategy for B̃ , P̃tot al and E f f i ci enc y . Secondly, the
mission-based strategy performs better than the SOC 80% strategy for B̃ and P̃tot al . However, the SOC 80%
results for E f f i ci enc y are higher than the mission-based strategy.
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B̃ - mixed range

Strategy W p-value Normal

SOC 100% 0.990 1.66· 10−6 False
SOC 80% 0.999 0.664 True
Mission-based 0.992 4.41· 10−5 False

P̃tot al - mixed range

Strategy W p-value Normal

SOC 100% 0.998 0.291 True
SOC 80% 0.999 0.835 True
Mission-based 0.999 0.940 True

E f f i ci enc y - mixed range

Strategy W p-value Normal

SOC 100% 0.999 0.748 True
SOC 80% 0.999 0.844 True
Mission-based 0.999 0.705 True

Table 1.1: Shapiro-Wilk normal test results for B̃ , P̃tot al and E f f i ci enc y outputs of 1000 batteries tested through Monte Carlo simula-
tion for SOC 100%, SOC 80% and mission-based strategy for mixed range

(a) B̃ for SOC 100% strategy (b) B̃ for mission-based strategy

Figure 1.2: Quantile-Quantile (Q-Q) plots for outputs of 1000 batteries tested through Monte Carlo simulation for mixed range

B̃ - mixed range

Strategy A Strategy B p-value

SOC 100% Mission-based 0.000
SOC 80% Mission-based 0.000

P̃tot al - mixed range

Strategy A Strategy B p-value

SOC 100% Mission-based 0.000
SOC 80% Mission-based 0.000

E f f i ci enc y - mixed range

Strategy A Strategy B p-value

SOC 100% Mission-based 0.000
SOC 80% Mission-based 1.000

Table 1.2: Unpaired one-sided T-test results for B̃ , P̃tot al and E f f i ci enc y outputs of 1000 batteries tested through Monte Carlo simu-
lation for SOC 100%, SOC 80% and mission-based strategy for mixed range
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1.2. Short range
In this section, the statistical analysis of the MC simulations, normality and T-test results are given for the
short range.

1.2.1. Short range - Monte Carlo
The MC plots for the short range distance for the SOC 100%, SOC 80% and mission-based strategy are de-
picted in 1.3a, 1.3b and 1.3c, respectively. The graphs show that the mean target distance flown stabilises,
implying that sufficient MC runs are simulated.

(a) SOC 100% strategy (b) SOC 80% strategy

(c) Mission-based strategy

Figure 1.3: Stabilisation of mean distance results of 300 batteries tested through Monte Carlo simulation for SOC 100%, SOC 80% and
mission-based strategy for short range

1.2.2. Short range - Distribution of Sustainability and Cost Assessment results
The distributions of the battery lifetime and usage results for the short range are presented in histograms in
Figure 1.11 and 1.12. From Shapiro-Wilk test results listed Table 1.3 it is concluded that B̃ outputs for the
SOC 100% and SOC 80% strategies are not normally distributed. Moreover, the E f f i ci enc y results for the
SOC 80% strategy does not follow a normal distribution. Reviewing the Q-Q plots for these parameters in
Figure 1.4, however, it is concluded that the distributions are ‘sufficiently normal’ to apply T-tests.

1.2.3. Short range - Statistical T-tests
The results of the unpaired one-sided T-tests reviewed for the short range are presented in Table 1.4. From
these p-values results, it is concluded that the mission-based strategy performs better than the SOC 100%
and SOC 80% approach for B̃ , P̃tot al and E f f i ci enc y .
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B̃ - short range

Strategy W p-value Normal

SOC 100% 0.988 0.012 False
SOC 80% 0.984 0.002 False
Mission-based 0.992 0.103 True

P̃tot al - short range

Strategy W p-value Normal

SOC 100% 0.997 0.796 True
SOC 80% 0.994 0.317 True
Mission-based 0.995 0.379 True

E f f i ci enc y - short range

Strategy W p-value Normal

SOC 100% 0.997 0.800 True
SOC 80% 0.986 0.005 False
Mission-based 0.993 0.189 True

Table 1.3: Shapiro-Wilk normal test results for B̃ , P̃tot al and E f f i ci enc y outputs of 300 batteries tested through Monte Carlo simulation
for SOC 100%, SOC 80% and mission-based strategy for short range

(a) B̃ for SOC 100% strategy (b) B̃ for SOC 80% strategy

(c) E f f i ci enc y for SOC 80% strategy

Figure 1.4: Quantile-Quantile (Q-Q) plots for outputs of 300 batteries tested through Monte Carlo simulation for short range
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B̃ - short range

Strategy A Strategy B p-value

SOC 100% Mission-based 0.000
SOC 80% Mission-based 0.000

P̃tot al - short range

Strategy A Strategy B p-value

SOC 100% Mission-based 0.000
SOC 80% Mission-based 0.000

E f f i ci enc y - short range

Strategy A Strategy B p-value

SOC 100% Mission-based 0.000
SOC 80% Mission-based 0.000

Table 1.4: Unpaired one-sided T-test results for B̃ , P̃tot al and E f f i ci enc y outputs of 300 batteries tested through Monte Carlo simula-
tion for SOC 100%, SOC 80% and mission-based strategy for short range

1.3. Medium range
For the medium range, the MC simulation plots are first discussed. Then, the results are checked for normal-
ity. Lastly, the T-test outputs are presented.

(a) SOC 100% strategy (b) SOC 80% strategy

(c) Mission-based strategy

Figure 1.5: Stabilisation of mean distance results of 300 batteries tested through Monte Carlo simulation for SOC 100%, SOC 80% and
mission-based strategy for medium range

1.3.1. Medium range - Monte Carlo
The MC plots for the medium range for the SOC 100%, SOC 80% and mission-based strategy are displayed in
1.5a, 1.5b and 1.5c, respectively. From these figures, it can be concluded that sufficient MC simulations are
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run, because the means for each plot converge to a stable value.

1.3.2. Medium range - Distribution of Sustainability and Cost Assessment results
The results for the sustainability and cost assessment results for the medium range are given in Figure 1.13
and 1.14. The Shapiro-Wilk results presented in Table 1.5 show that the distributions for B̃ for all three strate-
gies are not normally distributed. Additionally, the P̃tot al results for the SOC 80% strategy do not follow a
normal distribution. From the Q-Q plots presented in Figure 1.6, however, it is concluded that the results are
distributed ‘sufficiently normal’ for T-tests to be applied.

B̃ - medium range

Strategy W p-value Normal

SOC 100% 0.981 0.001 False
SOC 80% 0.982 0.001 False
Mission-based 0.981 4.74· 10−4 False

P̃tot al - medium range

Strategy W p-value Normal

SOC 100% 0.993 0.136 True
SOC 80% 0.988 0.013 False
Mission-based 0.996 0.751 True

E f f i ci enc y - medium range

Strategy W p-value Normal

SOC 100% 0.996 0.602 True
SOC 80% 0.998 0.979 True
Mission-based 0.997 0.804 True

Table 1.5: Shapiro-Wilk normal test results for B̃ , P̃tot al and E f f i ci enc y outputs of 300 batteries tested through Monte Carlo simulation
for SOC 100%, SOC 80% and mission-based strategy for medium range

(a) B̃ for SOC 100% strategy (b) B̃ for SOC 80% strategy

(c) B̃ for mission-based strategy (d) P̃tot al for SOC 80% strategy

Figure 1.6: Quantile-Quantile (Q-Q) plots for outputs of 300 batteries tested through Monte Carlo simulation for medium range
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1.3.3. Medium range - Statistical T-tests
Table 1.6 provides an overview of the p-values derived from the unpaired one-sided T-tests performed for
the medium range. Here, it is concluded that the mission-based strategy performs better than the SOC 100%
strategy for B̃ , P̃tot al and E f f i ci enc y . When comparing the mission-based strategy to the SOC 80% strategy,
however, the results show that the mission-based strategy merely outputs an improved P̃tot al .

B̃ - medium range

Strategy A Strategy B p-value

SOC 100% Mission-based 0.000
SOC 80% Mission-based 1.000

P̃tot al - medium range

Strategy A Strategy B p-value

SOC 100% Mission-based 0.000
SOC 80% Mission-based 0.000

E f f i ci enc y - medium range

Strategy A Strategy B p-value

SOC 100% Mission-based 0.000
SOC 80% Mission-based 1.000

Table 1.6: Unpaired one-sided T-test results for B̃ , P̃tot al and E f f i ci enc y outputs of 300 batteries tested through Monte Carlo simula-
tion for SOC 100%, SOC 80% and mission-based strategy for medium range

1.4. Long range
Below, the MC results for the long range are discussed. Then, the outputs are checked for normality, after
which an overview of the T-test results is given.

1.4.1. Long range - Monte Carlo
From the MC plots for SOC 100%, SOC 80% and mission-based strategy for long range shown in 1.7a, 1.7b
and 1.7c, respectively, it is concluded that sufficient MC simulations are run.

1.4.2. Long range - Distribution of Sustainability and Cost Assessment results
The histograms of the battery lifetime and usage performance for the long range are presented in Figure 1.15
and 1.16. In Table 1.7 the Shapiro-Wilk test results for the long range are given. Here, it becomes apparent that
the B̃ output for the SOC 100% strategy is not normally distributed. Also, the SOC 100% and mission-based
P̃tot al results do not follow a normal distribution. Lastly, this is also the case for the SOC 80% E f f i ci enc y
results. For these parameters, Q-Q plots are generated. From the Q-Q graphs depicted in Figure 1.8 it is
concluded that the results are ‘sufficiently normal’ in their distributions for T-tests to be applied.

B̃ - long range

Strategy W p-value Normal

SOC 100% 0.981 0.001 False
SOC 80% 0.991 0.074 True
Mission-based 0.992 0.111 True

P̃tot al - long range

Strategy W p-value Normal

SOC 100% 0.990 0.046 False
SOC 80% 0.996 0.664 True
Mission-based 0.990 0.033 False

E f f i ci enc y - long range

Strategy W p-value Normal

SOC 100% 0.994 0.228 True
SOC 80% 0.979 1.85· 10−4 False
Mission-based 0.996 0.690 True

Table 1.7: Shapiro-Wilk normal test results for B̃ , P̃tot al and E f f i ci enc y outputs of 300 batteries tested through Monte Carlo simulation
for SOC 100%, SOC 80% and mission-based strategy for long range
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(a) SOC 100% strategy (b) SOC 80% strategy

(c) Mission-based strategy

Figure 1.7: Stabilisation of mean distance results of 300 batteries tested through Monte Carlo simulation for SOC 100%, SOC 80% and
mission-based strategy for long range

1.4.3. Long range - Statistical T-tests
The unpaired one-sided T-test results for the hypotheses tested for the long range are presented in Table 1.8.
For the long range, the mission-based strategy performs better than the SOC 100% and SOC 80% strategy
across all assessment parameters B̃ , P̃tot al and E f f i ci enc y .

B̃ - long range

Strategy A Strategy B p-value

SOC 100% Mission-based 0.000
SOC 80% Mission-based 0.000

P̃tot al - long range

Strategy A Strategy B p-value

SOC 100% Mission-based 0.000
SOC 80% Mission-based 0.000

E f f i ci enc y - long range

Strategy A Strategy B p-value

SOC 100% Mission-based 0.000
SOC 80% Mission-based 0.000

Table 1.8: Unpaired one-sided T-test results for B̃ , P̃tot al and E f f i ci enc y outputs of 300 batteries tested through Monte Carlo simula-
tion for SOC 100%, SOC 80% and mission-based strategy for long range
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(a) B̃ for SOC 100% strategy (b) P̃tot al for SOC 100% strategy

(c) P̃tot al for mission-based strategy (d) E f f i ci enc y for SOC 80% strategy

Figure 1.8: Quantile-Quantile (Q-Q) plots for outputs of 300 batteries tested through Monte Carlo simulation for long range
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1.5. Distances - Statistical T-tests
In the scientific paper, the hypothesis that the short range distance outperforms the medium and long range
distance within each strategy is tested. Table 1.9 presents the p-values for each test. Here, it is concluded that
the short range yields better results than the medium and long range for the SOC 100% and mission-based
strategy for B̃ , P̃tot al and E f f i ci enc y . However, the SOC 80% range results show that the medium range
E f f i ci enc y has a better performance than the short range distance. For B̃ and E f f i ci enc y , the SOC 80%
short range does perform better than the other distances.

B̃ - short, medium and long range

Strategy Distances p-value

SOC 100% Short vs. Medium 0.000
SOC 100% Short vs. Long 0.000
SOC 80% Short vs. Medium 0.000
SOC 80% Short vs. Long 0.000
Mission-based Short vs. Medium 0.000
Mission-based Short vs. Long 0.000

P̃tot al - short, medium and long range

Strategy Distances p-value

SOC 100% Short vs. Medium 0.000
SOC 100% Short vs. Long 0.000
SOC 80% Short vs. Medium 0.000
SOC 80% Short vs. Long 0.000
Mission-based Short vs. Medium 0.000
Mission-based Short vs. Long 0.000

E f f i ci enc y - short, medium and long range

Strategy Distances p-value

SOC 100% Short vs. Medium 0.000
SOC 100% Short vs. Long 0.000
SOC 80% Short vs. Medium 1.000
SOC 80% Short vs. Long 0.000
Mission-based Short vs. Medium 0.000
Mission-based Short vs. Long 0.000

Table 1.9: Unpaired one-sided T-test results for B̃ , P̃tot al and E f f i ci enc y outputs of 300 batteries tested through Monte Carlo simula-
tion for SOC 100%, SOC 80% and mission-based strategy for short, medium and long range
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Figure 1.9: Distribution of Sustainability and Cost Assessment (Battery Lifetime) results of 1000 batteries tested through Monte Carlo
simulation for SOC 100%, SOC 80% and mission-based strategy for mixed range

Figure 1.10: Distribution of Sustainability and Cost Assessment (Battery Usage) results of 1000 batteries tested through Monte Carlo
simulation for SOC 100%, SOC 80% and mission-based strategy for mixed range
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Figure 1.11: Distribution of Sustainability and Cost Assessment (Battery Lifetime) results of 300 batteries tested through Monte Carlo
simulation for SOC 100%, SOC 80% and mission-based strategy for short range

Figure 1.12: Distribution of Sustainability and Cost Assessment (Battery Usage) results of 300 batteries tested through Monte Carlo
simulation for SOC 100%, SOC 80% and mission-based strategy for short range
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Figure 1.13: Distribution of Sustainability and Cost Assessment (Battery Lifetime) results of 300 batteries tested through Monte Carlo
simulation for SOC 100%, SOC 80% and mission-based strategy for medium range

Figure 1.14: Distribution of Sustainability and Cost Assessment (Battery Usage) results of 300 batteries tested through Monte Carlo
simulation for SOC 100%, SOC 80% and mission-based strategy for medium range
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Figure 1.15: Distribution of Sustainability and Cost Assessment (Battery Lifetime) results of 300 batteries tested through Monte Carlo
simulation for SOC 100%, SOC 80% and mission-based strategy for long range

Figure 1.16: Distribution of Sustainability and Cost Assessment (Battery Usage) results of 300 batteries tested through Monte Carlo
simulation for SOC 100%, SOC 80% and mission-based strategy for long range
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1.6. Validation results
Now that the results for the mixed, short, medium and long range distances have been analysed, this section
reviews the outputs of the validation simulations. To validate the model, several sensitivity analyses are run.
In Figure 1.17 and 1.18, the MC plots show that the mean target distance flown by each battery converge to
a stable value for each sensitivity parameter tested. Therefore, it is concluded that sufficient runs have been
simulated.

(a) Current [A] with minimum value (b) Current [A] with maximum value

(c) Time [s] with minimum value (d) Time [s] with maximum value

(e) SOH with minimum value (f) SOH with maximum value

Figure 1.17: Sensitivity Analysis (Part 1) - Stabilisation of mean distance flown per battery through Monte Carlo runs per sensitivity
parameter varied for minimum and maximum values
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(a) SEI kinetic rate [ms−1] with minimum value (b) SEI kinetic rate [ms−1] with maximum value

(c) Initial capacity [Ah] with minimum value (d) Initial capacity [Ah] with maximum value

(e) Initial voltage [V] with minimum value (f) Initial voltage [V] with maximum value

Figure 1.18: Sensitivity Analysis (Part 2) - Stabilisation of mean distance flown per battery through Monte Carlo runs per sensitivity
parameter varied for minimum and maximum values
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2
Research Limitations and

Recommendations

A review of the limitations of this study originating from assumptions and other external factors is given
below. The mission profiles are first discussed in section 2.1. Secondly, the battery model and health man-
agement strategies are reviewed in section 2.2 and 2.3. Lastly, limitations of the sustainability and cost as-
sessment are briefly addressed in section 2.4

2.1. Mission Profiles
In order to establish the mission profiles, DJI Matrice 100 quadcopter flying data from the research by Ro-
drigues et al. [105] is used. Translating this into the battery model used for this study, several shorting com-
ings are listed below.

The derived current throughput and time duration values from their study are implemented into the ex-
periments in PyBaMM as constant values throughout a manoeuvre. However, the accuracy of the research’s
model would be increased if this is inputted as a so-called ‘drive cycle’ which specifies the current rate for
smaller time periods (for example per second). In addition, the eUAV modelled flight only consists of simple
manoeuvres. To more closely replicate real-life eUAV flights, additional movements including turns should
be included, as well as more variation in flying plan settings such as speed, altitude and payload. Although
these two limitations decrease the accuracy of the model compared to a real-life eUAV application, it is not
expected that the results would be significantly influenced.

Finally, apart from the 2.6% standard deviation inputted in the current and time period values, this model
does not account for environmental influences such as wind which would considerably influence the eUAV
battery operating conditions. Although the SOC 80% and mission-based battery health management strategy
showed an improved battery lifetime and usage performance compared to the SOC 100% approach, opera-
tors could argue that mission safety is reduced due a reduction of available battery capacity for flight. The
model would be improved when more data is inputted into the mission-based strategy such that external
factors such as wind are accounted for. An assessment parameter reflecting on flight safety could also be
implemented to evaluate the performance of the mission-based model.

2.2. Battery Model
For the battery model, several uncertainties are identified. Foremostly, the non-deterministic errors that are
inputted in the MC simulations originate from several different researches and may therefore be case spe-
cific. Depending on the battery and BMS used, the battery and non-deterministic model inputs in should be
adjusted accordingly.

Additionally, this model incorporates battery ageing by using the SEI kinetic rate equal derived by Yang et
al. [133]. For Lithium batteries, this is the dominating degradation phenomenon while SOH > 80%. For more
accurate results, Lithium plating could also be included in the model.
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To model an eUAV battery, multiple battery cells that form a battery pack could be analysed, instead of us-
ing single battery cells. It is important to review the performance of a battery pack as battery degradation is
more severe compared to single cells. To model this is, however, very complex to model as interrelated ageing
modes arise related parameters such as temperature and resistance. Nonetheless, due to the large demand
for such models, PyBaMM is currently developing a separate module called ‘Liionpack’ which could poten-
tially be used.

The last battery model limitation that became apparent during the MC simulations, is the high computa-
tional power required to run through the model. On average, one battery MC iteration took 45 minutes to
complete. This is a highly constraining factor when testing the model in the SA and case studies, resulting in
the MC simulations only being run 300 times. Especially for SA which is performed to validate the model, the
computational intensity restrained the variation of tests executed. Executing other SA experiments such as
an extensive variance decomposition to review how the output is affected by multiple stochastic inputs, for
example, would enhance the certainty of the conclusions about the robustness of the model.

Despite the fact that the accuracy of the battery model is reduced by these battery model assumptions, the
overall performance of the battery health management strategies is not expected to change.

2.3. Battery Health Management Strategies
The biggest limitation of PyBaMM is the absence of a SOC function which creates an obstacle of twofold. First
of all, when simulating charging operations, PyBaMM takes voltage values as input instead of SOC levels. For
the SOC 100% charging strategy, this is not an issue as the battery can always be charged to the initially de-
fined maximum voltage. However, for the SOC 80% and mission-based battery health management strategy,
the SOC to which the battery model needs to be charged varies, implying that these SOC values are required
to be converted to voltage levels.

Secondly, the lack of a standard SOC function results in another limitation, namely in the setup of the SOC
80% and mission-based model. To estimate the required SOC to complete a flight, data from SOC 100%
charging model is used. Here, the SOC required to complete a certain flight is again translated to voltage val-
ues. Because Lithium batteries are characterised by an S-shaped discharge voltage curve, this leads to small
discrepancies. Effectively, this means that for example 40% SOC DOD does not yield the same voltage DOD
when starting from 100% SOC compared to lower mission-based values such as 70%. Due to the S-shaped
voltage curves, the mission-based model overestimates the expected voltage DOD.

In this model, SOC conversion to voltage levels is done through regression using SOH and target distance
as an input. But as battery electrochemical relations are complex, an regression is supposedly not able to
capture the intricacy of SOC couplings. Moreover, PyBaMM brings along the constraint that the SOH cannot
be determined during operation and only at the start and end of each flight. Alternatively, other approaches
such as Machine Learning could yield higher accuracy.

2.4. Cost-Benefit Analysis
The last set of limitations revolves around the assessment of the model outputs. These limitations are at-
tributed to the lack of battery specific data. For the environmental impact, the values of the BOL CO2 emis-
sions strongly vary per source. Moreover, a more extensive analysis of other sustainability parameters such as
material resources, waste and EOL impact would enhance the thoroughness of the analysis. In the financial
cost bucket, the costs of EOL practices as well as investment of setting up the mission-based and SOC 80%
battery health management strategy are neglected. By disregarding the SOC estimation investment costs, the
financial results of the mission-based and SOC 80% strategy are slightly optimistic. Lastly, the sustainability
and cost assessment lacks a single final ‘score’ which combines the outcome of the environmental, financial
and efficiency assessments.
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