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Abstract

During oil drilling, the position of wells is indirectly determined by measurements near the
drilling bit. However, the measurements are disturbed by noise causing errors in the measure-
ments. It is important for large oil companies like Shell to determine the position of wells with
a certain degree of uncertainty. Therefore, the main objective of this thesis is to assess the
uncertainty in the final well position of MSA corrected survey data.

Two methods are investigated in this thesis to determine the positional uncertainty; Multi-
Station Analysis in combination with the Minimum Curvature Method and Multi-Station Anal-
ysis in combination with the Covariance analysis method. In addition to Multi-Station Analysis,
a second method has been investigated to determine sensor errors estimates and their uncer-
tainty, namely the probabilistic estimation from Weighted Least Squares method.

The methods with their assumptions are discussed, whereby the Covariance analysis method
is discussed in more detail.

Thereafter, the methods are tested with various test trajectories. The test results are com-
pared to subsequently draw conclusions.
It is clear that Multi-Station Analysis is the most reliable method to estimate sensor errors with
their uncertainty. However, it was striking when the azimuth angle is not fixed but varies, that
certain errors are very poor.
In addition, it could be concluded that the choice to systematically or randomly consider posi-
tional uncertainty has a major influence on the positional uncertainty that arises.

The thesis is completed with recommendations for further research.
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List of abbreviations

Abbreviation Meaning First mentioned

AHD Along-Hole Depth page 11

BHA Bottom-Hole Assembly page 9

MSA Multi-Station Analysis page 7

MCM Minimum Curvature Method page 7

MWD Measurement While Drilling page 9

TVD True Vertical Distance page 10

WLS Weighted Least Squares page 7

Table 1: List of frequent abbreviations.

List of symbols

Symbol Quantity Unit Shorthand

A azimuth angle radians rad
degrees ◦

B magnetic field strength tesla T=V s/m2

microtesla µT=10−6T
nanotesla nT=10−9T

g gravity force constant m/s2 g

I inclination angle radians rad
degrees ◦

ρ correlation coefficient - -

T toolface angle radians rad
degrees ◦

θ dip angle radians rad
degrees ◦

Table 2: List of frequently used symbols.
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Introduction

Shell Global Solutions is a division of Shell and one of their interests is the construction of oil and
gas wells. The position of wells is indirectly determined through accelerometer and magnetome-
ter sensor measurements near the drilling bit while constructing a well. These measurements
are then converted into a survey of direction vectors by applying a series of coordinate transfor-
mations. With a method called Minimum Curvature Method (MCM), these outputs are then
converted into the well position. As the sensor measurements contain errors, the calculated well
position also contains an error.
Multi-Station Analysis (MSA) is a method to estimate and remove the sensor measurement
errors and thus reducing the well position error. However, the MSA error estimate and removal
is not exact, resulting an uncertainty in the final well position of MSA corrected survey data.
The probabilistic estimation from weighted least squares (WLS) is another method to estimate
the sensor measurement errors.

Shell uses MSA in combination with the Minimum Curvature Method to determine the fi-
nal positional uncertainty of the drill bit. However, there is another method to determine the
positional uncertainty known as the Covariance method. The following steps are undertaken:

• A short introduction to Shell’s method and the Covariance method is given.

• A review is given of the underlying assumptions of Shell when MSA is applied in combi-
nation with the Minimum Curvature Method.

• A description is given of the probabilistic estimation from WLS.

• An analytical model has been delivered to estimate the positional uncertainty of a well
survey that has been MSA corrected based on the method of covariances.

• A comparison has been made between the parameter uncertainty estimates of MSA, the
method Shell uses, and the probabilistic estimation from WLS.

• A comparison has been made between the positional uncertainty when MSA is applied in
combination with the Minimum Curvature Method, the method Shell uses, and when MSA
is applied in combination with the analytical model based on the method of covariances.

Hence the objectives of this thesis are to assess the uncertainty in the final well position of MSA
corrected survey data. See figure 1 for a overview of what will be covered in the thesis.
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Figure 1: Overview of this thesis
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1 Introduction to well-bore engineering

This chapter is a shortened introduction of bachelor thesis of H. V. Tan [1] to oil drilling.
Coordinates of wells need to be determined to ensure that wells are correctly positioned below
the Earths surface. These coordinates are commonly determined with a specialized measure-
ment tool, Measurement While Drilling (MWD) tool, near the drilling bit.
During drilling, the MWD sensors measures the drill bit acceleration and the Earths magnetic
field in specified locations along the well, from which the well coordinates are derived. However,
the sensor measurements contain systematic and random errors, which result in uncertainty in
determining the well coordinates. This uncertainty can be expressed as an ellipsoid.
A mathematical technique called Multi-Station Analysis (MSA) is applied to reduce sensor mea-
surement errors. The sensor measurement errors and its associated uncertainty can possibly be
reduced when using MSA.

1.1 Components of a drilling rig

Oil wells are located far beneath the Earths surface. To extract the petroleum oil, a well-bore
must be drilled through the surface. This is done by a drilling rig, placed in vicinity of the oil
well. And important component of the rig is the Bottom-Hole Assembly (BHA). This is a part
between the drill bit (the part that does the actual drilling) and drill pipe (steel piping) which
contains drill collars as well as Measurement While Drilling tools:

• Non-Magnetic Drill Collar (NMDC) is protective casing which minimizes the effect of
magnetic interference in the MWD tools.

• Measurement While Drilling (MWD) tools like accelerometers and magnetometers which
are used to determine the direction of BHA.

The position of a drill bit is determined using indirect measurements collected from the MWD
tools in the BHA. It is assumed that the position of BHA and drill bit coincide.

1.2 Position coordinates and orientation

The drill bit can be modelled as a cylinder. Its front face is called Tool Face. The turning
angle around the middle axis with respect to the direction towards the Earths surface, High
Side (HS), is called Tool Face angle, and the direction in which the drill bit is moving at any
time is Downhole direction. High Side Right (HSR) is the remaining direction orthogonal to
High Side lying across the Tool Face.
All measurements by the MWD tools are done with respect to the orientation of BHA, which is
written in terms of x-axis (High Side + Tool Face angle), y-axis (High Side Right + Tool Face
angle) and the z-axis (Downhole direction) coordinates, see figure 2.
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Figure 2: Orientation of BHA. Source: [2]

1.2.1 Direction vectors measured in term of angles

With coordinate transformations are measurement data converted into the direction vectors.
The direction is measured in terms of two angles instead of the (x,y,z) plane:

• Azimuth angle: the clockwise angle in horizontal (x,y) plane with respect to Magnetic
North.

• Inclination angle: the vertical clockwise angle (by right-hand rule) with respect to True
Vertical Distance (TVD), the vertical component.

Figure 3: Direction of drill bit in Downhole direction. Source: [1]
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1.2.2 Position expressed in North, East and Vertical coordinates

Once the size of TVD is known, then the vector representation of direction can be converted into
its corresponding angular representation and vice versa. The drill bit position is expressed in
North, East and Vertical coordinates. Additionally, any vector in general can also be represented
with two vectors: a horizontal component along the Earths surface and a vertical component,
which is Earths reference frame.

1.3 Step-by-step plan to determine position of BHA

There are 4 steps to determine the position of BHA:

1. A drilling trajectory is modelled in advance with a number of measurement stations and a
starting and a final position. The actual travelled distance between starting position and
position of drill bit is Along-Hole Measured Depth (AHD), and is always known in every
station, see figure 4.

2. During drilling, measurements are made in each station using the MWD tools and it is
assumed that the drill bit takes the modelled path. Three magnetometers measure the
local Earths magnetic field strength which is used to calculate Azimuth. All magnetometers
work independently from each other.
Similarly, three accelerometers measure drill bit acceleration which is used to calculate
both Azimuth and Inclination angle. Additionally, the TVD can be determined by this
data.

3. MWD measurement data have to be converted into direction vectors using the coordinate
transformations, which involve matrix rotation operations. These involve a Toolface ma-
trix, an Inclination matrix and an Azimuth matrix. This model is fully described in the
paper Boots & Coots International, Inc. 2010. The result is a survey containing the AHD,
TVD, Inclination angle and Azimuth for each station.

4. The survey of direction data have to be converted into the overall (continuous) trajectory
of the drill bit. The standard mathematical method to approximate the trajectory is the
Minimum Curvature Method, which gives a close approximation of the overall trajectory.

The final position (at the last station) of the drill bit is the main interest for the well-bore
industry.

Summary of this chapter
This chapter gave an introduction to well-bore engineering. The coordinates transformations
and orientation of the drill bit are discussed. In addition is discussed how the position of the
drill bit is determined.
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Figure 4: Modelled trajectory (green), including several stations (yellow). AHD between origin
and second station is length of red curve. Source: [1]
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2 Methods for uncertainty analysis of a drill bit

In this chapter, it will be briefly explained how the parameter uncertainties are determined
by Multi-Station Analysis (MSA) and probabilistic estimation from Weighted Least Squares
(WLS). In addition will also be explained how positional uncertainty is determined with the
Minimum Curvature Method (MCM) and the Covariance analysis method. First a step-by-step
procedure will be described to test the methods. After that, each method will be discussed
briefly.

In reality there are error parameters, assumed systematic, and noise on the measurements during
oil drilling, which means that positional errors and position of the drill bit cannot be determined
perfectly. The error parameters and the noise in the measurements cause uncertainty that the
well-bore industry wants to keep as small as possible.
Therefore, the well-bore industry has a great interest in quantifying typical well-bore positional
errors and is especially interested in the uncertainty when estimating parameters and the posi-
tion of the drill bit. There are various methods for predicting well-bore positional uncertainty
caused by noise on the measurement data.
A commonly used method to determine the positional uncertainty uses Multi-Station Analysis.
This method has remained the industry standard for a long time, but various shortcomings of
the method have been identified. A number of factors have created the opportunity for the
industry to develop an alternative method also referred to as the Covariance analysis method.
The main motivation of this paper is to explain and compare the two different methods, whereby
the Covariance analysis method will be explained in more detail.

To test the quality of the methods, modelled data is used to test and verify the models used in
the methods. To simulate reality, noise is deliberately added to the modelled data. Note that
exact noise is not known in reality. The methods will be explained in more detail in chapters 3,
4 and 5. Below is the procedure described to test the methods with test data.

Step 1: define model assumptions and survey traject
The first step is to define the geomagnetic reference model, in which the total magnetic field
strength, Btot, and the dip angle, θ, are defined. Then the model survey traject is defined,
defining the Along Hole Depth, Inclination, Azimuth and Toolface. The drilling trajectory is
modelled in advance with a number of measurement stations and a starting and final position.
The Along Hole Depth, Toolface angle, the Inclination angle and the Azimuth are known in
every measurement station.

Step 2: Generate survey data
The second step is to generate survey data Bxc, Byc, Bzc using transformation matrices on the
raw or modelled data. The MWD measurement data have to be converted into direction vectors
using the coordinate transformations, which involve matrix rotation operations. These involve
a Toolface matrix, an Inclination matrix and an Azimuth matrix. This model is fully described
in chapter two of Boots & Coots International [2].

According to the paper Boots & Coots International [2], using the Toolface, Inclination and
Azimuth matrix, the magnetometer readings are:

B = [T ] · [I] · [A] ·B′ (1)
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BxcByc
Bzc

 =

 cos(T ) sin(T ) 0
−sin(T ) cos(T ) 0

0 0 1

cos(I) 0 −sin(I)
0 1 0

sin(I) 0 cos(I)

 cos(A) sin(A) 0
−sin(A) cos(A) 0

0 0 1

Bh0
Bv


=

 Bh(cos(T )cos(I)cos(A) − sin(T )sin(A)) −Bvcos(T )sin(I)
Bh(−sin(T )cos(I)cos(A) − cos(T )sin(A)) +Bvsin(T )sin(I)

Bhsin(I)cos(A) +Bvcos(I)

 (2)

Where:
[T ] is the Toolface matrix.
[I] is the Inclination matrix.
[A] is the Azimuth matrix.
T is the toolface angle.
I is the inclination angle.
A is the azimuth angle.

Bh = B · cos(θ)
Bv = B · sin(θ)

(3)

Where:
Bh is the the horizontal component of the magnetometer data with B the magnetic field strength
and θ the dip angle.
Bv is the the vertical component of the magnetometer data with B the magnetic field strength
and θ the dip angle.

Therefore, synthetic survey data for the magnetic field strength, B, is generated by transforming
the measured magnetic field strength, B′, via the Toolface, Inclination and Azimuth matrix.

Step 3: applying bias and scale factor error to the survey data
Given synthetic survey data Bxc, Byc, and Bzc, the bias and scale factor errors can be applied
to the synthetic data to generate measured data. This process is described with the following
equations:

Bxm = Bxc(1 + exS) + exB

Bym = Byc(1 + eyS) + eyB

Bzm = Bzc(1 + ezS) + ezB

(4)

Where:
Bim is the measured survey data in direction i.
eiS is the scale factor error in direction i.
eiB is the bias error in direction i.

Step 4: applying noise and estimating parameters and uncertainty
The next step is to consider the noise on the measurement data. This can be done by applying
random noise to the generated measured data or by considering a fixed uncertainty interval
caused by noise. The final step is to estimate the parameters, which are in this case the sensor
errors (three bias and three scale factors) and their uncertainty, also described as magnitudes,

14



which is caused by noise. The positional uncertainty of the drill bit can be determined with
the estimates and uncertainty of the parameters with the Minimum Curvature Method or the
Covariance analysis method. This fourth step is different between MSA and the probabilistic
estimation from Weighted Least Squares.
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2.1 Shell’s method: MSA in combination with MCM

MWD measurement tools give values that are calculated from measurements of the local ac-
celeration vector and the local magnetic vector. When the tool is stationary the acceleration
vector is due to the Earths gravity. The direction and magnitude of this vector is well known.
The local magnetic vector is due to the Earths magnetic field and is not well known because of
magnetic interference of other objects or unbalanced electrical currents in the MWD instrument.
This results in measurements that are not perfect.
The well-bore trajectory is calculated using the Minimum Curvature Method. This is only an
approximation of the actual well path. A more detailed explanation of this method is given at
the end of chapter 3.
One of the causes of well-bore positional uncertainty with MWD tools are sensor errors. There
are two types of sensor errors namely bias errors and scale factor errors.
An advantage of Multi-Station Analysis is that it can reduce the effects of common sensor errors
and magnetic interference. But MSA unfortunately also has limitations. MSA assumes that
the measurement errors are systematic and not random. Moreover, there are limitations based
on the orientation of the tool. For example: when drilling East or West and Horizontal the Bz
magnetic interference (Drill String Interference) makes very little change in Btot or dip angle,
but it has maximum effect on the measured azimuth [3].

2.1.1 Parameter uncertainty with Multi-Station Analysis (MSA)

After performing step 3, where bias and scale factor errors are applied to generate measured
data, random noise is added to the generated measured data. The noise has a value between 0
and 70 nanoTesla (nT). This process is described with the following equations:

Bxm∗ = Bxm + random noise

Bym∗ = Bym + random noise

Bzm∗ = Bzm + random noise

(5)

In addition, random noise, as per ISCWSA standard, is added to the total magnetic field
strength, Btot and the dip angle θ:

Btot∗ = Btot + random noise

θ∗ = θ + random noise
(6)

Then Multi-Station Analysis is performed to correct the magnetometer data and to estimate the
sensor errors exB, eyB, ezB, exS , eyS and ezS (the three bias and three scale factor errors). The
magnetometer data, Bxm, Bym, and Bzm, is corrected every time the Multi-Station Analysis is
performed. The horizontal and vertical components of the magnetometer data, bh, bv as men-
tioned in equation 3 are corrected likewise. More details how to determine the MSA solution is
described in section 3.2.

The process of adding random noise and estimating the sensor errors is repeated multi times and
is referred to as a Monte Carlo simulation. A Monte Carlo simulation is a simulation technique
in which a physical process is simulated not once, but many times, each time with different
starting conditions, in this case random noise. The result of this collection of simulations is
a distribution function that displays the entire area of possible outcomes. The mean values
are taken per error to estimate the sensor errors exB, eyB, ezB, exS , eyS and ezS . The standard
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deviations are taken per error to give an uncertainty for every sensor error also referred to as
the magnitudes.

2.1.2 Position uncertainty with the Minimum Curvature Method (MCM)

The corrected magnetometer data can be used to determine the corrected Toolface, Inclination
and Azimuth using the following formulas [1]:

T = tan−1

(
Gy

−Gx

)
I = tan−1

(√
Gx2 +Gy2

Gz

)
A = tan−1

(
−Bhsr

Bhscos(I) +Bzmsin(I)

) (7)

With Bhsr, Bhs defined as:
Bhs = Bxm · cos(T ) −Bym · sin(T ).
Bhsr = Bxm · sin(T ) +Bym · cos(T ).
Gx = −g · cos(T ) · sin(I)
Gy = g · sin(T ) · sin(I)
Gz = g · cos(I)
Where:
A is Azimuth angle.
I is Inclinaton angle.
T is Toolface angle.
g is the gravity constant.

The Minimum Curvature Method can then be used to determine the position of the drill bit in
the Earth-referenced frame (North, East and Vertical). This process of correcting the magne-
tometer data and performing the Minimum Curvature Method to determine the position of the
drill bit gives again a distribution of possible outcomes. The mean values of these distributions
(for North, East and Vertical) are estimates for the position of the drill bit. The standard de-
viations of the distributions give the uncertainty for the position of the drill bit.

17



The Industry Steering Committee on well-bore Survey Accuracy, ISCWSA, has as main goal to
produce and maintain standards for the industry relating to well-bore survey accuracy. They
created a new method, the Covariance analysis method, that is mainly based on linear algebra.

2.2 Parameter uncertainty with probabilistic estimation from Weighted Least
Squares (WLS)

Given the generated measured data (modelled data) as described in equation 4, the estimates
for sensor errors can be calculated in the following way [4]:

∆x̂ = PHT (HPHT +R)−1∆y (8)

Where:
L is the length of the survey trajectory.
∆x̂ is a vector of size 6 by 1 with the bias and scale error estimates exB, eyB, ezB, exS , eyS , and
ezS .
P is the a priori covariance matrix of size 6 by 6 with the variances of the sensor error estimates
on the diagonal.
H is the measurement matrix of size 3*L by 6 where the partial derivative of the generated
measured data is taken with respect to each sensor error.
R is the measurement noise matrix of size 3*L by 3*L, with measurement noise on the diagonal.
∆y is a vector of size 3*L by 1 with the difference between the expected parameter estimates
and the true parameter value.

The magnetometer readings Bxc, Byc and Bzc are depending on the magnetic field strength, B,
the dip angle, Θ, and the Toolface, Inclination and Azimuth angle which differ in each measure-
ment station. The measured data, Bxm, Bym and Bzm are constructed using the magnetometers
readings. The values depend on the Toolface, Inclination and Azimuth angle which differ in each
measurement station. This has as result that the values in matrix H are changing in every mea-
surement station in the survey trajectory. Therefore, the matrix H has to be extended for every
measurement station. The result of the matrix and vector multiplications is the vector ∆x̂ with
the estimates for the bias and scale factor errors:

∆x̂ =
[
exB eyB ezB exS eyS ezS

]T
(9)

The matrix R can be generated with random noise between 0 and 70nT on the diagonal every
time. This process of matrix and vector multiplication with every instance a different measure-
ment noise matrix is repeated multi times. The mean values are taken per error to estimate the
sensor errors exB, eyB, ezB, exS , eyS and ezS .

The uncertainty for every sensor error is given by the following matrix [5]:

U = (HTR−1H + P−1)−1 (10)

Where:
U is a matrix of size 6 by 6 that represents the error covariance bound.

Taking the square root of the diagonal elements of U gives the uncertainty for the sensor errors.
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2.3 Position uncertainty with Covariance analysis method

The standard deviations (uncertainty) for each sensor error are necessary to determine the po-
sitional uncertainty. The positional uncertainty is described with the following matrix [6]:

COV =

var(N,N) cov(N,E) cov(N,V )
cov(N,E) var(E,E) cov(E, V )
cov(N,V ) cov(E, V ) var(V, V )

 (11)

Where:
var(N,N), var(E,E) and var(V, V ) are the variances of the North, East and Vertical positional
uncertainties.
cov(N,E), cov(E, V ) and cov(V,N) are the covariances between them.

The covariance matrix described in equation 11, that describes the positional uncertainty, can
be constructed in the following way [7]:

[Ck] =
∑

errorsi

∑
k1≤k

∑
k2≤k

ρ(εi,l1,k1 , εi,l2,k2)ei,l2,k2 · eTi,l2,k2 (12)

where:
ρ(εi,l1,k1 , εi,l2,k2) is the correlation coefficient between the value of the ith error source at the
k1th station (in l1th leg) and the the k2th station (in l2th leg).
ei,l2,k2 is the vector error of the ith error source at the k1th station (in l1th leg) and the the k2th
station (in l2th leg).

The survey leg is the distance between two survey stations. The error due to the presence
of the ith error source at the kth survey station (in the lth survey leg) can be expressed as the
sum of the effects on the preceding and following calculated displacements:

ei,l,k = σi,l

(
d∆rk
dpk

+
d∆rk+1

dpk

)
∂p

∂εi
(13)

Where:
σi,l is the magnitude (standard deviation) of the ith error source over the lth survey leg and pk
the instrument measurement vector at the kth survey station.
d∆rk
dpk

+
d∆rk+1

dpk
are the differentials of the displacement between survey station k − 1 and k of

the instrument measurement vector at the kth survey station.
∂p
∂εi

are the weighting functions for an error source i.

Therefore, the covariance matrix can be computed given the necessities to calculate the er-
ror vector and the correlation coefficient of each error source at each measurement station.

Summary of this chapter
In this chapter is discussed that there are two methods to determine positional uncertainty of
the drill bit. This are the Multi-Station Analysis in combination with the Minimum Curva-
ture Method what has been the industry standard for a long time and the Covariance analysis
method.
There is discussed how parameter (bias and scale factor errors) and positional uncertainty can
be determined in 4 steps whereby the fourth step is discussed for the methods separately.
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3 Multi-Station Analysis method (Shell method)

In this chapter, the method used by Shell to determine the positional uncertainty of the drill
bit will be discussed. First their model assumptions will be discussed. Then, Multi-Station
Analysis will be explained which Shell uses to determine the parameter uncertainty. Finally,
the Minimum Curvature Method will be explained that gives Shell a positional uncertainty as
a result.

3.1 Model assumptions of Shell’s method

Multi-Station Analysis is used to estimate the sensor errors and the associated uncertainties of
the estimated sensor error while drilling. To use this method, the following modelling assump-
tions are made which are also described in equation 4:

Bxkm = Bxkc(1 + exS) + exB

Bykm = Bykc(1 + eyS) + eyB

Bzkm = Bzkc(1 + ezS) + ezB

(14)

Where:
Bxkc, Bykc, Bzkc are the x, y and z component of the magnetometer data in station k.
Bxkm, Bykm, Bzkm are the uncorrected x, y and z component of the magnetometer data in
station k.
exS , eyS , ezS are the scale factor errors in the x, y and z component.
exB, eyB, ezB are the bias errors in the x, y and z component.

MSA will give a perfect estimate for the bias and scale factor errors if there is no noise, but
in reality, there is always noise on the measurement data. Therefore random noise is added to
the magnetometer data in every station and also to the magnetic field strength Btot and the
dip angle Θ. This is the model assumption of Shell and it is important to understand that this
assumption is different from the model assumption of the probabilistic estimation from Weighted
Least Squares. Shell’s model assumption is described by the following equations:

Bxkm∗ = Bxkc(1 + exS) + exB + random noise

Bykm∗ = Bykc(1 + eyS) + eyB + random noise

Bzkm∗ = Bzkc(1 + ezS) + ezB + random noise

Btot∗ = Btot + random noise

θ∗ = θ + random noise

(15)

3.2 Multi-Station Analysis

MSA assumes the presence of systematic errors in the three magnetometers. These systematic
errors are the MSA solution, the errors that MSA estimates, and are mathematically modelled
by bias and scale factors. The magnetometer data is corrected in the following way [1]:
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Bxkm =
Bxkm∗ − εxB

εxS

Bykm =
Bykm∗ − εyB

εyS

Bzkm =
Bzkm∗ − εzB

εzS

(16)

Where the bias and scale factor errors exB, eyB, ezB, exS , eyS and ezS are estimated with MSA.
But not only the magnetometer data has to be corrected but also the horizontal and vertical
components of the magnetometer data Bh, Bv have to be corrected.

The MSA solution associated with erroneous magnetometer measurements is found by mini-
mizing the following non-linear least squares error function, where corrected measurement data
is compared against provided reference measurements [1]:

L(εxB, εyB, εzBεxS , εyS , εzS) =
N∑
i

(Bhk −Bvr)
2 + (Bvk −Bvr)

2 (17)

Where:
Bhr and Bvr are the horizontal and vertical component of the erroneous magnetometer data in
all stations.
Bhk and Bvk are the corrected horizontal and vertical component of the magnetometer data in
station k.

Equation 17 is minimized by setting its partial derivatives to zero, yielding a system of 6
non-linear equations with 6 unknowns (the bias and scale errors), which is then solved with
Newton-Raphson. In each iteration, Newton-Raphson involves the calculation of multiple real
symmetric Jacobian matrices.

3.3 Uncertainty analysis of the parameters

The process whereby the sensor errors are estimated with Multi-Station Analysis is repeated
multi times resulting in a distribution of all possible outcomes. The mean values are taken per
error to estimate the sensor errors exB, eyB, ezB, exS , eyS and ezS . The standard deviations are
taken per error to give an uncertainty for every sensor error also referred to as the magnitudes.

3.4 Uncertainty analysis of the position of the drill bit

Every time Multi-Station Analysis is performed to estimate the sensor errors is the corrected
magnetometer data also used as input in the Minimum Curvature Method to determine the
position of the drill bit in the Earth-referenced frame.

3.4.1 Minimum Curvature Method

As mentioned earlier in section 2.1.2 is the Minimum Curvature Method used to approximate
the actual well path. The idea behind the MCM is that it smooths two straight-line segments
by using the Ratio Factor, denoted as RF , which is defined by the curvature of the well-bore.
The Minimum Curvature method is the best method recommended for the calculating well-bore
paths because it is applicable to any trajectory path, but differences are very small hence any
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method can be used for calculating the well trajectory.

Figure 5: Schematic sketch of Minimum Curvature Method with two straight-line segments
(blue) smoothed in the actual well path (red). Source: [8]

The Minimum Curvature Method has become the most common and accepted method for the
industry. The formulas for the MCM are given as [9]:

∆North =
∆MD

2

[
sin(I1)cos(Az1) + sin(I2)cos(A2)

]
∗RF

∆East =
∆MD

2

[
sin(I1)sin(Az1) + sin(I2)sin(A2)

]
∗RF

∆TV D =
∆MD

2

[
cos(I1) + cos(I2)

]
∗RF

β = cos−1
[
cos(I1 − I2) − (sin(I1)sin(I2)(1 − cos(A2 −A1))

]
RF =

2

β
tan(

β

2
)

(18)

Where:
∆MD = Measured Depth between 2 station points in ft.
I1 = Inclination (angle) of upper station point in degrees.
I2 = Inclination (angle) of lower station point in degrees.
Az1 = Azimuth direction of upper station point in degrees.
Az2 = Azimuth direction of lower station point in degrees.
β = the dog leg angle, DL, in radians (dogleg severity), equivalent to the overall angle change
of the drill pipe between any two stations.
RF = ratio factor.

The Minimum Curvature Method is essentially the Balanced Tangential Method, with each
equation multiplied by a ratio factor. The Balanced Tangential Method is another method to

22



approximate the actual well path.
The Minimum Curvature Method gives likewise a distribution of possible position outcomes for
the drill bit. The mean values of these distributions (for North, East and Vertical) are esti-
mations for the position of the drill bit. The standard deviations of the distributions give the
uncertainty for the position of the drill bit.
An example position calculation can be found in the appendix.

3.5 Conclusion

The bachelor thesis of H. V. Tan [1] states the following conclusion. Erroneous measurements
in the magnetometer data results in an uncertainty of the final position of the drill bit. The
uncertainty of the final position is bounded and can be represented as an ellipsoid centered
around the actual final position. The Multi-Station Analysis process gives a smaller final posi-
tion uncertainty ellipsoid.

Summary of this chapter
In this chapter, the Multi-Station Analysis method is discussed. The model assumptions are
given followed by a detailed description how Multi-Station Analysis is used to correct erroneous
magnetometer data, whereby the parameters (sensor errors) are estimated. After that is dis-
cussed how the corrected magnetometer data is used in the Minimum Curvature Method to
determine the positional uncertainty of the drill bit, which can be described by an ellipsoid
according to the bachelor thesis of H. V. Tan [1].
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4 Probabilistic estimation from Weighted Least Squares (WLS)

In addition to MSA, there is another way to determine the parameters with their uncertainty.
This method is the probabilistic estimation from Weighted Least Squares as already mentioned
in chapter 2. In this chapter, the second method will be discussed with the model assumptions
and how the parameters and their uncertainties are determined.

The paper of F. Hanak [4] provides a detailed description of the mathematical model, referred to
as the consider covariance analysis technique, to determine the positional uncertainty. However,
the parameters in that paper are split into two groups, the estimated and the considered param-
eters. A separation of the parameters would make it impossible to compare the Multi-Station
Analysis method and the probabilistic estimation from Weighted Least Squares. Therefore, in
this report, no separation of the parameters has been made with the probabilistic estimation
from WLS. The paper also gives a validation for their approach but our main interest is to
reproduce their work to compare this method with the Multi-Station Analysis method.

4.1 Model assumptions of the probabilistic estimation from Weighted Least
Squares

As already mentioned in chapter 3 is the model assumption of Shell to add random noise to the
magnetometer data and also to the magnetic field strength and the dip angle.
The paper of F. Hanak makes a different assumption. The paper assumes a standard uncertainty
interval caused by noise on the parameter estimates giving the parameter uncertainty. The
uncertainty interval with the standard deviations of the parameters are described in table 3.
The paper takes a fixed uncertainty into account instead of a random uncertainty that Shell
assumes.

Parameter description Bias Scale Factor Error

Standard deviation 70 nT 0.0016

Table 3: Magnetometer standard deviations from paper of F. Hanek.

4.2 Uncertainty analysis of parameters

Appendix A of the paper of F. Hanak has as goal to justify the use of probabilistic estimation
from Weighted Least Squares to find a solution to the minimum variance estimation problem
via orthogonal transformations. The equations and steps in this appendix are considered correct
and will not be examined in detail. The only equation of interest is equation A-28 that describes
the parameter estimates which is already mentioned in equation 8:

∆x̂ = PHT (HPHT +R)−1∆y (19)

Where:
∆x̂ is a vector with the bias and scale error estimates exB, eyB, ezB, exS , eyS and ezS .
P is the a priori covariance matrix with the variances of the sensor error estimates on the diag-
onal.
H is the measurement matrix where the partial derivative of the generated measured data is
taken with respect to each sensor error.
R is the measurement noise matrix, with measurement noise on the diagonal.
∆y is the difference between the expected parameter estimates and the true parameter value.
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The matrices and vectors can be described in the following way:

∆x̂ =
[
exB eyB ezB exS eyS ezS

]T

P =



σ2
exB

0 0 0 0 0
0 σ2

eyB
0 0 0 0

0 0 σ2
ezB

0 0 0
0 0 0 σ2

exS
0 0

0 0 0 0 σ2
eyS

0

0 0 0 0 0 σ2
ezS


R =

σ2
Bxm

0 0

0 σ2
Bym

0

0 0 σ2
Bzm


H =

Bxc(k) 0 0 1 0 0
0 Byc(k) 0 0 1 0
0 0 Bzc(k) 0 0 1


∆y =

[
Bxm(k) −Bxc(k) Bxm(k) −Bxc(k) Bxm(k) −Bxc(k)

]T

(20)

Where:
k is the station of the survey trajectory.

Matrices H and R and vector ∆y can be extended for the whole survey trajectory by extending
the old matrix with the new matrix and repeating this process for all stations.
The sensor error estimates can be determined by taking the noise in the matrix R random,
giving slightly different estimates for the sensor errors each time. By repeating this matrix
multiplication several times and taking the average of the estimates, the sensor error estimates
are determined.
Although the interpretation of each vector and matrix has been described, it is still not very
clear what the input should be for each matrix or vector. The results are therefore not reliable.
The comparison between these results and the results with MSA will be discussed in more detail
in chapter 6.

The uncertainty of the parameter estimates was already given by the equation 10:

U = (HTR−1H + P−1)−1 (21)

Where:
U is a matrix that represents the error covariance bound.

Taking the square root of the diagonal elements of U gives the uncertainty for the sensor errors.
The uncertainties are however much smaller than expected. This is probably due to the fact
that some matrices for the parameter estimates are incorrectly interpreted having improper un-
certainties as result. The results will be discussed in more detail in chapter 6.

Summary of this chapter
In this chapter, the probabilistic estimation from Weighted Least Squares is discussed with the
focus on the parameter estimates and their uncertainty. The matrices used to estimate the
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parameters (sensor errors) and their interpretation are given. However, it appears that the in-
terpretation of the matrices and vector input could be incorrect, resulting in unreliable results
and prediction of the parameter uncertainties.
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5 Covariance analysis method

In this chapter, the Covariance analysis method will be discussed to determine the positional
uncertainty. Model assumptions will be described, followed by a detailed explanation how to
construct the covariance matrix.

The Covariance analysis method describes the final position uncertainty of the drill bit with
a covariance matrix with on the diagonal elements the uncertainty expressed as variances in the
North, East and Vertical directions. The paper of H.S. Williamson [7] gives a detailed mathe-
matical description how the covariance matrix should be constructed.

5.1 Model assumptions of Covariance analysis method

The mathematical model to determine the positional uncertainty of a drill bit presented in the
paper of H.S. Williamson [7] has some assumptions that are implicit in the mathematics. These
assumptions are as follows:

Assumptions for mathematical Covariance analysis method

• Errors in calculated well position are caused exclusively by the presence of measurement
errors at the wellbore survey stations.

• Wellbore survey stations can be moddeled as three-element measurement vectors, the
elements being Along-Hole Depth, Inclination and Azimuth.

• Errors from different error sources are statistically independent.

• There is a linear relationship between the size of each measurement error and the corre-
sponding change in calculated well position.

• The combined effect on calculated well position of any number of measurement errors at
any number of survey stations is equal to the vector sum of their individual effects.

5.2 How to construct the covariance matrix?

An error occurring at a survey station will result in an error, in the form of a vector, in the
calculated well position which can be described with the following equation [7]:

ei = σi
dr

dp

∂p

∂εi
(22)

Where:
ei is a vector error of the ith error source.
σi is the magnitude of the ith error source.
∂p
∂εi

is the weighting function of the ith error source.
dr
dp describes how changes in the measurement vector affect the calculated well position.

For the purposes of computation, the error summation terminates at the survey station of
interest and is given by [7]:

e∗i,L,K = σi,L
d∆rK
dpK

∂pK

∂εi
(23)
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∆rk is the displacement between survey stations k − 1 and k. The error due to the presence of
the ith error source at the kth survey station (in the lth survey leg) can be expressed as the
sum of the effects on the proceeding and following calculated displacements [7]:

ei,l,k = σi,l

(
d∆rk
dpk

+
d∆rk+1

dpk

)
∂p

∂εi
(24)

Where:
σi,l is the magnitude of the ith error source over the lth survey leg.
pk is the instrument measurement vector at the kth survey station.

The total position error at a particular survey station k in survey leg l will be the sum of
the vector errors ei,l,k taken over all error sources i and all survey stations up to and including
k. The uncertainty in this position error is expressed in the form of a covariance matrix [7]:

[Ck] =
∑

errorsi

∑
k1≤k

∑
k2≤k

ρ(εi,l1,k1 , εi,l2,k2)ei,l2,k2 · eTi,l2,k2 (25)

Where:
ρ(εi,l1,k1 , εi,l2,k2) is the correlation coefficient between the value of the ith error source at the
k1th station (in l1th leg) and the the k2th station (in l2th leg).

Substituting equation 24 in equation 25 gives:

[Ck] =
∑

errorsi

∑
k1≤k

∑
k2≤k

ρ(εi,l1,k1 , εi,l2,k2)

(
σi,l

(
d∆rk
dpk

+
d∆rk+1

dpk

)
∂p

∂εi

)
·
(
σi,l

(
d∆rk
dpk

+
d∆rk+1

dpk

)
∂p

∂εi

)T
(26)

Therefore, the following components are required to determine the covariance matrix:

• The correlation coefficients, ρ(εi,l1,k1 , εi,l2,k2), between the value of the ith error source at
the k1th and k2th station (in l1th and l2th leg).

• The vector error, ei,l,k, of the ith error source at the kth survey station over the lth survey
leg determined by:

– The magnitude, σi,l, of the ith error source over the lth survey leg.

– The differentials of the displacement, d∆rk
dpk

+
d∆rk+1

dpk
, between survey station k − 1

and k to the instrument measurement vector at the kth survey station.

– The weighting functions, ∂p
∂εi

, for an error source i.

Multiplying vector ei with eTi gives a matrix of size 3 by 3. Multiplying this matrix with the
correlation coefficients gives a matrix of the following form [6]:

COV =

var(N,N) cov(N,E) cov(N,V )
cov(N,E) var(E,E) cov(E, V )
cov(N,V ) cov(E, V ) var(V, V )

 (27)

Where:
var(N,N), var(E,E) and var(V, V ) are the variances of the north, east and vertical position
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uncertainties.
cov(N,E), cov(E, V ) and cov(V,N) are the covariances between them and give the skew or ro-
tation of the ellipse with respect to the principle axes.

var(N,N) can be written as σ2
N . The uncertainty in north axis (at 1-standard deviation) is

±
√
σ2
N . In the same way, the other terms on the diagonal are uncertainties along the other

principle axes.

5.3 The correlation coefficients

The covariance matrix describes the position uncertainty in each axis on the main diagonal and
the correlations between these values in the off-diagonal terms. The correlations could have in
principle any value between -1 and 1, including zero for uncorrelated terms and also non-integer
values. In practice however, the majority of the errors in borehole survey are either uncorrelated
(ρ = 0) or fully correlated (ρ = 1) between different survey stations. This means there are two
cases [10]:

1. Correlated errors: The errors between survey stations are said to be correlated if they
are directly linked and would have the same underlying error value from station to station.
The uncertainty contributions are added in the following way:

etotal = e1 + e2 (28)

An example is the z-axis accelerometer bias error. Since the same tool is used throughout
a survey leg, this bias is expected to have the same value from survey station to survey
station. Hence the effects of the error will build all the way down the well bore.

2. Uncorrelated errors: Errors are uncorrelated or statistically independent if the errors
are not linked from station to station. Two independent error sources could both cause a
positive inclination error and add together but it is also possible that one might create a
positive inclination error and the other a negative error.
In this case, a random value from survey station 1 and a random value from survey station
2 are taken and the error contributions must be root sum square (RSS) together:

etotal =
√
e2

1 + e2
2 (29)

It is a basic assumption of the model framework that the statistics of the various error
sources are independent so they will be first squared, then summed to then take the root
from it together. The correlation ρ(εi1 , εi2) is by assumption always 0 between different
sources i1 and i2.

Although the different error sources are independent from each other, an individual error source
can be statistically correlated from survey station to survey station along the well. The possible
correlation between measurements depends as much on the tool configuration and measurement
mode, as on the error source itself. For example, an error source may behave correlated between
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survey legs in the same well, but independent between survey legs in different wells. The lowest
degree of correlation occurs when any two measurements are independent, in which case the
error source is termed random.

Therefore the ISCWSA Error Model defines four propagation modes for the errors [10]:

Propagation mode Identifier ρ1 ρ2 ρ3

Random R 0 0 0 always independent
Systematic S 1 0 0 correlated from survey station to survey station

Well by Well W 1 1 0 correlated from leg to leg
Global G 1 1 1 correlated over all wells

Table 4: Correlation coefficients per error source.

Where the separate correlation coefficients ρ1, ρ2, ρ3 are defined as:
ρ1 is the correlation between survey stations within the same survey leg.
ρ2 is the correlation between survey stations in different legs in the same well.
ρ3 is the correlation between survey stations within different wells in the same field.

The propagation mode is a property of the error source and is defined in the tool model. In
practice, most error sources are systematic within a leg or are random and only a limited number
of well by well or global sources have been identified.

5.4 The derivation of the vector errors

As mentioned before, the vector error due to the presence of error source i at station k is the
sum of the effect of the error on the preceding and following survey displacements:

ei,l,k = σi,l

(
d∆rk
dpk

+
d∆rk+1

dpk

)
∂p

∂εi
(30)

The magnitudes, differentials of the displacement and weighting functions have to be determined
first to be able to derive the vector errors.

5.4.1 The calculation of the magnitudes

The magnitudes, or in other words the uncertainty of the sensor errors, can be calculated via
a Monte Carlo simulation. The probabilistic estimation from WLS to determine the sensor
error uncertainties, described in chapter 4, unfortunately gave poor results. But the sensor error
uncertainties can also be determined via the Multi-Station Analysis as described in section 2.1.1.
Therefore MSA will be used to determine the magnitudes.

5.4.2 The determination of the differentials of the displacement

The two differentials can be expressed as [7]:

d∆rj
dpk

=

[
d∆rj
dDk

d∆rj
dIk

d∆rj
dAk

]
(31)

Therefore
d∆rk
dpk

+
d∆rk+1

dpk
=

[
d∆rk + rk+1

dDk

d∆rk + rk+1

dIk

d∆rk + rk+1

dAk

]
(32)
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Both the Minimum Curvature Method as the Balanced Tangential Method can be used, but
taking partial derivatives of the azimuth or inclination is very complicated with the Minimum
Curvature Method. Therefore the Balanced Tangential Method is used, because there is no
significant loss of accuracy in using the balanced tangential model [7]:

∆rj =
Dj −Dj−1

2

sin(Ij−1)cos(Aj−1) + sin(Ij)cos(Aj)
sin(Ij−1)sin(Aj−1) + sin(Ij)sin(Aj)

cos(Ij−1) + cos(Ij)

 (33)

Then

d∆rk
dDk

=
1

2

sin(Ik−1)cos(Ak−1) + sin(Ik)cos(Ak)
sin(Ik−1)sin(Ak−1) + sin(Ik)sin(Ak)

cos(Ik−1) + cos(Ik)

 (34)

d∆rk+1

dDk
=

1

2

−sin(Ik)cos(Ak) − sin(Ik+1)cos(Ak+1)
−sin(Ik)sin(Ak) − sin(Ik+1)sin(Ak+1)

−cos(Ik) − cos(Ik+1)

 (35)

d∆rj
dIk

=
1

2

(Dj −Dj−1)cos(Ik)cos(Ak)
(Dj −Dj−1)cos(Ik)sin(Ak)

−(Dj −Dj−1)sin(Ik)

 (36)

d∆rj
dAk

=
1

2

−(Dj −Dj−1)sin(Ik)sin(Ak)
(Dj −Dj−1)sin(Ik)cos(Ak)

0

 (37)

for j = (k, k + 1).
Substituting equations 34, 35, 36 and 37 in equation 32 gives a survey displacement matrix D3x3:

D =
d∆rk
dpk

+
d∆rk+1

dpk

=
1

2

sin(Ik−1)cos(Ak−1) − sin(Ik+1)cos(Ak+1) Pcos(Ik)cos(Ak) −Psin(Ik)sin(Ak)
sin(Ik−1)sin(Ak−1) − sin(Ik+1)sin(Ak+1) Pcos(Ik)sin(Ak) Psin(Ik)cos(Ak)

cos(Ik−1) − cos(Ik+1) −Psin(Ik) 0


(38)

with P = (Dk+1 −Dk−1)

5.4.3 The derivation of the weighting functions

The weighting function for a particular error source is a 3 by 1 vector with one term for each
measurement. These are the partial derivatives of the survey measurements with respect to
that error source. The elements describe the effect of a unit error on the measured Along-Hole
Depth, Inclination and Azimuth.
There are 12 basic sensor error sources (a bias and scale factor for each of the three accelerome-
ters and three magnetometers) and requires its own weighting function. Therefore the weighting
function can be defined as:

∂p

∂εi
=


∂AHD
∂εi
∂I
∂εi
∂Am
∂εi

 (39)
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Taking the partial derivatives of the survey measurements with respect to that error source gives
the following six weighting functions for the bias (mbx,mby and mbz) and scale factor errors
(msx,msy and msz) in the x, y and z direction:

mbx =
∂p

∂εxB
=

 0
0

−cos(I)sin(A)
Bcos(θ)


mby =

∂p

∂εyB
=

 0
0

cos(A)
Bcos(θ)


mbz =

∂p

∂εzB
=

 0
0

−sin(I)sin(A)
Bcos(θ)


msx =

∂p

∂εxS
=

 0
0

sin(I)sin(A)(tan(θ)cos(I)+sin(I)cos(A))√
2


msy =

∂p

∂εyS
=

 0
0

sin(A)(tan(θ)sin(I)cos(I)−cos(I)2cos(A)−cos(A))
2


msz =

∂p

∂εzS
=

 0
0

(cos(I)cos(A)2−cos(I)(sin(A)2−tan(θ)sin(I)cos(A))
2



(40)

5.5 Total position covariance

There are three types of errors to consider: well by well and global errors, random errors and
systematic errors with each their own covariance matrix. The definition and the contribution of
these covarinace matrices is given in the paper of Williamson [7] including the following equa-
tions in the remainder of this chapter.

For random errors:

[C]randi,l =
K1∑
k=1

(ei,l,k)(ei,l,k)
T (41)

And the total contribution over all survey legs is:

[C]randi,K =

L−1∑
l=1

[C]randi,l +

K−1∑
k=1

(ei,l,k)(ei,l,k)
T + (e∗i,L,K)(e∗i,L,K)T (42)

For systematic errors:

[C]systi,l =

( K1∑
k=1

ei,l,k

)( K1∑
k=1

ei,l,k

)T
(43)
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And the total contribution over all survey legs is:

[C]systi,K =

L−1∑
l=1

[C]systi,l +

(K−1∑
k=1

ei,L,ke
∗
i,L,K

)(K−1∑
k=1

ei,L,ke
∗
i,L,K

)T
(44)

For well by well and global errors:

Ei,K =
L−1∑
l=1

( K1∑
k=1

ei,l,k

)
+
K−1∑
k=1

ei,L,k + e∗i,L,K (45)

And the total contribution over all survey legs is:

[C]welli,K = Ei,KE
T
i,K (46)

Vector errors are summed into the positional uncertainty matrix. The total position covariance
at survey station K is the sum of the contributions from all the types of error source:

[C]surveyK =
∑
i∈R

[C]randi,K +
∑
i∈S

[C]systi,K +
∑
i∈W,G

[C]welli,K (47)

5.6 Transformation into borehole reference frame

The results are in an earth-referenced frame (north, east and vertical) denoted as ”nev”. The
transformation of the covariance matrices and bias vectors into the borehole referenced frame
(highside, lateral, along hole) denoted as ”hla” is:

[C]hla = [T ]T [C]nev[T ] (48)

Where

[T ] =

cos(IK)cos(AK) −sin(Ak) sin(Ik)cos(Ak)
cos(IK)cos(AK) cos(Ak) sin(Ik)sin(Ak)

−sin(Ak) 0 cos(Ik)

 (49)

is a rotation matrix.

Summary of this chapter
In this chapter, the model assumptions of the Covariance analysis method are discussed to de-
termine the positional uncertainty.
Then it was discussed how the covariance matrix is constructed. Four components are required
to construct the covariance matrix; the correlation coefficients, the magnitudes, the differentials
of the displacement and the weighting functions. More details about the four components are
given in the sections that followed.
Thereafter, the total position covariance matrix is discussed based on different types of error
that can occur and how these errors contribute via summation to the covariance matrix.
Finally, it is discussed how the results can be transformed back to the borehole reference frame.
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6 Results of the methods

Four test trajectories have been used to determine the parameter estimates and their uncer-
tainty. These test trajectories consist of the Along-Hole Depth and the Inclination, Azimuth
and Toolface angles per survey station. The test trajectories can be found in the appendix.

Information about the test trajectories

• The following geomagnetic reference data was used in the test trajectories:
Btot = 51 µT
θ = 72◦

• Test trajectories 1, 2 and 3 are used to test the methods and to show that the methods
work. Test 4 involves real values where the bias and scale factor errors are unknown.

• Test trajectories 1 and 2 have been chosen to determine whether the direction of the survey
trajectory influences the parameter estimate and the parameter estimate uncertainty. The
expectation is that the more variance there is in toolface, inclination and azimuth, that
the results will improve.

• In test trajectories 1, 2 and 3, the inclination angle and the toolface angle are increased
whereby the toolface angle always changes between a few fixed values.

• In test trajectories 1 and 2 is the azimuth angle fixed, in comparison to test trajectory 3
wherein the azimuth angle varies.

The results are divided into two parts: results for parameter estimates and their uncertainty,
and results for position estimates and their uncertainty. The results for parameter uncertainty
of Multi-Station Analysis, the probabilistic estimation from Weighted Least Squares and the
results of an external party that also uses probabilistic estimation from Weighted Least Squares
are given on the following pages. These results are followed by the positional uncertainty results
of MSA combined with the Minimum Curvature Method, MSA combined with Covariance anal-
ysis method and the results of an external party that also uses MSA combined with Covariance
analysis method. First some comments will be given about the results followed by a comparison
and conclusions.

6.1 Parameter estimates and uncertainty results

Some comments on the parameter estimates and uncertainty results.

• It is immediately clear from tables 5 and 6 that the standard deviation of the bias error
in the z direction, εxB, is much greater than for the other five sensor errors in all tests.
The reason for this is that the toolface has a spread of 360 degrees, making it possible to
calculate εxB and εyB very precisely. For example Bxm = Bxc(1 + εxS) + εxB + noise at
a toolface x. Now take a toolface x + 180 degrees, then Bxm = −Bxc(1 + εxS) + εxB +
noise. If these two are added together and divided by two and the scale factor and noise
are ignored, the result is a very good estimate for εxB. Because Bzm is independent on the
toolface becomes the estimate of εzB more unreliable, and that is reflected in the results.
In table 7, it is also visible that the standard deviation of the bias error in the z direction,
εxB, is much greater than for the other five sensor errors in all tests the but the difference
is less extreme.
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• The estimates for the scale factor errors in test 3 in tables 5 and 6 are very poor.

• The estimates for the bias and scale factor error in the z direction are always worse than
the other sensor error estimates in table 7.

• The estimates for the bias and scale factor errors in test 4 in table 7 are much bigger than
expected and also bigger than the estimates in tables 5 and 6.

• The parameter uncertainty in all tests with the Covariance analysis method in table 7 is
much smaller than expected and also smaller than the uncertainties in tables 5 and 6, see
figure 6.

• The confidence interval of MSA almost always covers the true input value, in contrast
to the probabilistic estimation from Weighted Least Squares method because it has an
extremely small confidence interval, see figure 6.

Figure 6: The parameter uncertainty of test 1 of MSA (left) and the probabilistic estimation from
Weighted Least Squares (right) with the inputs (red), the estimates (green) and the confidence
intervals (blue).

35



6.1.1 Multi-Station Analysis (Shell)

Test 1 Input Estimate 3*Stdev Confidence interval Score

1 + εxS 1.100 1.100 0.013 (1.087; 1.113) good

1 + εyS 0.950 0.950 0.011 (0.939; 0.961) good

1 + εzS 1.250 1.236 0.175 (1.061; 1.411) good

εxB 0.250 0.249 0.038 (0.211; 0.287) good

εyB 0.295 0.296 0.041 (0.255; 0.336) good

εzB -0.335 -0.137 4.644 (-4.780; 4.507) good

Test 2 Input Estimate 3*Stdev Confidence interval Score

1 + εxS 1.008 1.008 0.033 (0.976; 1.041) good

1 + εyS 0.992 0.992 0.032 (0.961; 1.024) good

1 + εzS 1.008 1.010 0.089 (0.921; 1.098) good

εxB 0.250 0.250 0.049 (0.201; 0.299) good

εyB -0.350 -0.349 0.048 (-0.397; -0.301) good

εzB 0.850 0.773 4.374 (-3.601; 5.147) good

Test 3 Input Estimate 3*Stdev Confidence interval Score

1 + εxS 1.100 1.000 0.012 (0.989; 1.012) bad

1 + εyS 0.950 1.000 0.012 (0.988; 1.012) bad

1 + εzS 1.250 1.001 0.037 (0.963; 1.038) bad

εxB 0.250 0.250 0.058 (0.192; 0.308) good

εyB 0.295 0.295 0.077 (0.222; 0.369) good

εzB -0.335 -0.366 1.828 (-2.194; 1.465) good

Test 4 Input Estimate 3*Stdev Confidence interval Score

1 + εxS N/A 1.000 0.018 (0.983; 1.018)

1 + εyS N/A 1.000 0.015 (0.984; 1.015)

1 + εzS N/A 1.018 0.038 (0.979; 1.056)

εxB N/A -0.070 0.057 (-0.127; -0.013)

εyB N/A -0.054 0.039 (-0.094; -0.015)

εzB N/A -0.811 1.851 (-2.663; 1.040)

Table 5: Test results for the parameter uncertainty with Multi-Station Analysis after MSA
correction.

Where:
Estimate: is the mean values of all estimates.
Stdev: is the standard deviation of all estimates.
Conf. interval: is the 99,7% confidence interval which is the estimate plus and minus 3 standard
deviations.
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6.1.2 Probabilistic estimation from Weighted Least Squares

Test 1 Input Estimate 3*Stdev Confidence interval Score

1 + εxS 1.100 1.091 0.010 (1.081; 1.101) good

1 + εyS 0.950 0.947 0.012 (0.936; 0.959) good

1 + εzS 1.250 1.200 0.085 (1.115; 1.285) good

εxB 0.250 0.227 0.056 (0.172; 0.283) good

εyB 0.295 0.311 0.057 (0.254; 0.367) good

εzB -0.335 -0.268 3.071 (-3.339; 2.803) medium

Test 2 Input Estimate 3*Stdev Confidence interval Score

1 + εxS 1.008 1.008 0.031 (0.977; 1.039) good

1 + εyS 0.992 0.992 0.031 (0.960; 1.023) good

1 + εzS 1.008 1.008 0.087 (0.921; 1.095) good

εxB 0.250 0.248 0.076 (0.172; 0.325) good

εyB -0.350 -0.353 0.078 (-0.431; -0.274) good

εzB 0.850 0.843 4.425 (-3.582; 5.268) good

Test 3 Input Estimate 3*Stdev Confidence interval Score

1 + εxS 1.100 1.000 0.005 (0.995; 1.005) bad

1 + εyS 0.950 1.000 0.005 (0.995; 1.005) bad

1 + εzS 1.250 1.000 0.014 (0.986; 1.014) bad

εxB 0.250 0.250 0.093 (0.157; 0.343) good

εyB 0.295 0.295 0.099 (0.196; 0.394) good

εzB -0.335 -0.335 1.973 (-2.308; 1.638) good

Test 4 Input Estimate 3*Stdev Confidence interval Score

1 + εxS N/A 1.000 0.018 (0.982; 1.017)

1 + εyS N/A 0.999 0.016 (0.983; 1.015)

1 + εzS N/A 1.017 0.038 (0.979; 1.055)

εxB N/A -0.055 0.085 (-0.139; 0.030)

εyB N/A -0.066 0.063 (-0.129; -0.002)

εzB N/A -0.773 1.829 (-2.602; 1.056)

Table 6: Test results for the parameter uncertainty with probabilistic estimation from Weighted
Least Squares of an external party.
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Test 1 Input Estimate 3*Stdev Confidence interval Score

1 + εxS 1.100 1.0998 0.0001 (1.0997; 1.0999) good

1 + εyS 0.950 0.9501 0.0002 (0.9499; 0.9503) good

1 + εzS 1.250 1.2066 0.0013 (1.2053; 1.2079) bad

εxB 0.250 0.2489 0.0047 (0.2442; 0.2536) good

εyB 0.295 0.2943 0.0019 (0.2924; 0.2962) good

εzB -0.335 0.1787 0.0185 (0.1602; 0.1972) bad

Test 2 Input Estimate 3*Stdev Confidence interval Score

1 + εxS 1.008 1.007 0.0017 (1.0053; 1.0087) good

1 + εyS 0.992 0.9929 0.0016 (0.9913; 0.9945) good

1 + εzS 1.008 1.0115 0.0029 (1.0086; 1.0144) good

εxB 0.250 0.2428 0.0360 (0.2068; 0.2788) good

εyB -0.350 -0.3385 0.0361 (-0.3746; -0.3024) good

εzB 0.850 0.6846 0.1207 (0.5639; 0.8053) bad

Test 3 Input Estimate 3*Stdev Confidence interval Score

1 + εxS 1.100 1.0735 0.0025 (1.0710; 1.0760) good

1 + εyS 0.950 0.9619 0.0023 (0.9596; 0.9642) good

1 + εzS 1.250 1.1457 0.0031 (1.1426; 1.1488) bad

εxB 0.250 0.2212 0.0438 (0.1774; 0.2650) good

εyB 0.295 0.276 0.0438 (0.2322; 0.3198) good

εzB -0.335 4.1879 0.1391 (4.0488; 4.3270) bad

Test 4 Input Estimate 3*Stdev Confidence interval Score

1 + εxS N/A 1.7925 0.0017 (1.7908; 1.7942)

1 + εyS N/A 1.8188 0.0014 (1.8174; 1.8202)

1 + εzS N/A 1.1535 0.0030 (1.1505; 1.1565)

εxB N/A 15.5692 0.0290 (15.5402; 15.5982)

εyB N/A -10.8773 0.0287 (-10.9060; -10.8486)

εzB N/A -10.3187 0.1318 (-10.4505; -10.1869)

Table 7: Test results for the parameter uncertainty with probabilistic estimation from Weighted
Least Squares.
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6.2 Position estimate and uncertainty results

Some comments on the position estimate and positional uncertainty results.

• The standard deviation in tables 8, 9 and 10 for test 1 is quite large compared to the other
test 2, 3 and 4.

• The position estimates and position standard deviations have comparable results for all
tests via the Multi-Station Analysis method and the Covariance analysis method of an
external party in tables 8 and 9.

• The position standard deviations calculated via the Covariance analysis method, if the
sensor errors are considered random, in table 10 are smaller than in the tables 8 and 9,
see figure 7.

• The position standard deviations calculated via the Covariance analysis method, if the
sensor errors are considered systematic, in table 10 are bigger than in the tables 8 and 9,
see figure 7.

• The convariance analysis method to determine the position uncertainty described in this
paper in chapter 5 gives no estimate for the position, only and position uncertainty.

• The are no results for the position in the z direction because there is no uncertainty in
that direction, only in the x and y direction.
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Figure 7: The position uncertainty ellipsoid of test 1 of MSA combined with the MCM (black),
MSA combined with the Covariance method with sensor errors considered systematic (red) and
MSA combined with the Covariance method with sensor errors considered random (blue).
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6.2.1 MSA combined with Minimum Curvature Method (Shell)

Test 1 Estimate 3*Stdev Confidence interval

final pos x 128.15 472 (-343.85; 600.15)

final pos y -381.06 102 (-483.06; -279.06)

final pos z

Test 2 Estimate 3*Stdev Confidence interval

final pos x 3.45 65.43 (-61.98; 68.88)

final pos y -29.80 5.81 (-35.61; -24.00)

final pos z

Test 3 Estimate 3*Stdev Confidence interval

final pos x 6.565 15.560 (-9.00; 22.13)

final pos y -5.460 11.575 (-17.04; 6.11)

final pos z -0.026 0.015 (-0.041; -0.011)

Test 4 Estimate 3*Stdev Confidence interval

final pos x 0.300 10.142 (-9.842; 10.442)

final pos y -0.620 19.330 (-19.950; 18.710)

final pos z 0.002 0.0045 (-0.003; 0.007)

Table 8: Test results for the positional uncertainty of MSA combined with the Minimum Cur-
vature Method after MSA correction.

Where:
Estimate: is the mean values of all estimates in meters.
Stdev: is the standard deviation of all estimates in meters.
Conf. interval: is the 99,7% confidence interval which is the estimate plus and minus 3 standard
deviations.
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6.2.2 MSA combined with the Covariance analysis method

Test 1 Estimate 3*Stdev Confidence interval

final pos x 121.9 367.9 (-246.07; 489.79)

final pos y -348.2 98.5 (-446.68; -249.76)

final pos z

Test 2 Estimate 3*Stdev Confidence interval

final pos x 3.55 68.62 (-65.07; 72.17)

final pos y -30.93 5.34 (-36.27; -25.59)

final pos z

Test 3 Estimate 3*Stdev Confidence interval

final pos x 7.42 24.37 (-16.95; 31.79)

final pos y -5.95 22.15 (-28.10; 16.20)

final pos z 0.020

Test 4 Estimate 3*Stdev Confidence interval

final pos x 0.27

final pos y -0.55 16.94 (-17.49; 16.39)

final pos z 32.36

Table 9: Test results for the positional uncertainty of MSA combined with the Covariance
analysis method of an external party after MSA correction.

Test 1 Estimate 3*Stdev Confidence interval

final pos x 164.8163

final pos y 44.1624

final pos z

Test 2 Estimate 3*Stdev Confidence interval

final pos x 38.6220

final pos y 3.3790

final pos z

Test 3 Estimate 3*Stdev Confidence interval

final pos x 17.4167

final pos y 12.0197

final pos z

Test 4 Estimate 3*Stdev Confidence interval

final pos x 6.1023

final pos y 11.5852

final pos z

Table 10: Test results for the positional uncertainty of MSA combined with the Covariance
analysis method if the sensor errors are considered random after MSA correction.
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Test 1 Estimate 3*Stdev Confidence interval

final pos x 913.8391

final pos y 244.8624

final pos z

Test 2 Estimate 3*Stdev Confidence interval

final pos x 165.6688

final pos y 14.4941

final pos z

Test 3 Estimate 3*Stdev Confidence interval

final pos x 54.1808

final pos y 42.9227

final pos z

Test 4 Estimate 3*Stdev Confidence interval

final pos x 39.0387

final pos y 74.0197

final pos z

Table 11: Test results for the positional uncertainty of MSA combined with the Covariance
analysis method if the sensor errors are considered systematic after MSA correction.
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6.3 Comparison of results and methods

There a number of clear differences and similarities when the parameter and position results are
compared. The following conclusions can be drawn about the parameter estimates and their
uncertainty:

Conclusions about parameter estimates and uncertainty

• Multi-Station Analysis: The parameter estimates are good and as expected. Only the
results for the scale factor errors in test trajectory 3 are poor.

• Probabilistic estimation from Weighted Least Squares: The parameter estimates
are quite well. Only the estimates for the bias and scale factor errors in the z direction are
bad in all tests. The standard deviation however is very small and smaller than expected.
It can therefore be concluded that parameter uncertainty cannot be accurately determined
and is unreliable with this method.

• Probabilistic estimation from Weighted Least Squares (external): An external
party got good results and comparable with the results of Multi-Station Analysis. Those
results are therefore included in the comparison.

• Overall are the parameter estimates fairly accurate with both the probabilistic estimation
from Weighted Least Squares and Multi-Station Analysis. There are a few exceptions. The
scale factor error estimates can be poor if the azimuth angle varies instead of being fixed.
Also are the estimates in the z direction sometimes worse than in the x and y direction.
Therefore it must be borne in mind that a fixed or variable azimuth angle gives different
results for the scale factor errors and that the accuracy of the estimates can depend on
the direction.

• Overall is the parameter uncertainty of Multi-Station Analysis good but from the proba-
bilistic estimation from Weighted Least Squares too small and unreliable.

The following conclusion can be drawn about the position estimates and their uncertainty.

Conclusions about position estimates and uncertainty

• MSA combined with the Minimum Curvature Method: The position estimates
and position standard deviations are good.

• MSA combined with the Covariance analysis method: The position standard devi-
ations calculated via the Covariance analysis method are much smaller if the sensor errors
are considered random and much bigger if the sensor errors are considered systematic com-
pared with the position standard deviations in the tables 8 and 9. Considering the sensor
errors random gives an underestimate (an too optimistic uncertainty) and considering the
sensor errors systematic gives an overestimate (an a too pessimistic uncertainty).

• MSA combined with the Covariance analysis method (external): An external
party got good results in line with the results of MSA combined with the Minimum Cur-
vature Method.
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• Overall is the positional uncertainty correct but it must be taken into consideration that
the choice to consider the sensor errors random or systematic has a major influence on
overestimating or underestimating the positional uncertainty.

• Secondly, it is clear that the uncertainty for the parameter estimate with the covariance
method as described in this paper is considerably smaller than with the Multi-Station
Analysis method and the covariance method of the external party.

• The position estimates and position standard deviations have comparable results for all
tests via the Multi-Station Analysis method and the covariance method of an external
party. The position standard deviations calculated via the Covariance analysis method
described in this paper are smaller or bigger.

The methods are very similar in the first instance. The three basic steps as explained in chapter
2 are the same for both methods. The difference lies in step 4 where noise is added to the
measurements and estimates are made for the parameters and the position and their uncertainty.
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7 Conclusions

The main interest of this thesis was to assess the uncertainty in the final position of the drill bit
of MSA corrected survey data. In addition, the aim was to reproduce two methods to determine
parameter and positional uncertainty in order to compare results and to create more clarity and
consensus on determining positional uncertainty in the well-bore industry.

Firstly, a model is delivered to estimate the positional uncertainty of a well survey that has
been MSA corrected based on the method of covariances. This model corresponds to the results
of commercial software from Shell, but a comment has to be made.
A choice must be made to which category the parameters belong. The choice to consider the
positional uncertainty randomly or systematically gives a large underestimate or overestimate
of the positional uncertainty and this must therefore be consciously considered.
In this thesis it is decided to systematically consider the parameter and position estimates and
to randomly consider the parameter and position uncertainty.
The choice to systematically consider parameter and position estimates is because it is assumed
that sensor error and position estimates between survey stations are directly linked, and there-
fore correlated, and would have the same underlying value from station to station.
On the other hand, it was decided to randomly consider parameter and position uncertainty,
because there is no reason why it should be linked between survey stations and therefore are
considered independent.

Secondly, the MSA estimates are taken into account. MSA gives perfect estimates, exactly the
same as the input, for the six MWD magnetometer sensor error parameters exB, eyB, ezB, exS , eyS
and ezS when there is no noise on the measurement data. The estimates are still good if there
is noise but not perfect. However, the following points should be taken in consideration:

a) The MSA estimates are perfect and are irrespective of the variation and direction in the
survey toolface and inclination angle but it seems that a variation in the azimuth angle
causes worse estimates for the scale factor errors, of which one must be aware.

b) The MSA estimates are perfect if there is no combined noise present in the sensors, the
telemetry and surface data acquisition system.

c) The MSA estimates are perfect if the exact geomagnetic field parameters (magnetic field
strength and dip angle) are known and used.

Thereafter, the MSA uncertainties are considered. It is important to remember that accelerom-
eter errors are not included in this thesis. The MSA estimate for the six MWD magnetometer
sensor error parameter uncertainties is dependent on some factors:

a) The MSA uncertainties are dependent of the variation and direction in the survey toolface,
inclination and azimuth.

b) The MSA uncertainties are dependent on the combined noise in the sensors, the telemetry,
the surface data acquisition system. The MSA uncertainties increase if there is more noise.

c) The MSA uncertainties are dependent on the value and the uncertainty of the geomagnetic
field parameters (magnetic field strength and dip angle). The MSA uncertainties grow if
this uncertainty is bigger.
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d) The MSA uncertainties are dependent on the assumption that the accelerometers mea-
surement are perfect. If the measurement is not perfect, in other words there is noise, the
MSA uncertainties will increase.

Then, the two methods used to estimate the sensor errors with their uncertainty can be com-
pared, MSA and probabilistic estimation from Weighted Least Squares.
Shell assumes that the MSA estimate for the six MWD magnetometer sensor error uncertain-
ties is not dependent on the six MWD magnetometer sensor error values themselves. This is
contrary to the method of probabilistic estimation from Weighted Least Squares, whereby the
uncertainty in the sensor error estimates is not determined by noise in the sensors but by the
calibration uncertainty in the sensors (70nT for bias and 0.0016 for scale factor errors).

As second to last comment, replication of the published ISCWSA error model to estimate the
survey positional uncertainty through the method of covariances after survey data is MSA cor-
rected learns the following:

a) The survey positional uncertainty is significantly overestimated when the positional un-
certainty is considered systematic. The decision to consider the positional uncertainty
systematic can be based on a certain dependence between different survey stations, which
may not be the case, which, however, results in an overestimate of uncertainty.

b) The survey position uncertainty is significantly underestimated when the six MWD mag-
netometer sensor error parameter uncertainties are treated as random. If the position
uncertainty is considered randomly, independence between survey stations is assumed,
causing the uncertainty to rise slower and therefore gives a small uncertainty.

It seems that there is a certain balance between systematic and random consideration of posi-
tional uncertainties, but a good choice for the balance has not yet been found.

As final comment, the method of probabilistic estimation from Weighted Least Squares is able
to estimate the six sensor error parameters, exB, eyB, ezB, exS , eyS and ezS , quite well. However,
the method generates at least 10 times or more smaller magnetometer sensor error uncertainties
than the Monte Carlo method. Due to the extremely small uncertainties, do the uncertainty
intervals of 99.7% not always overlap the actual value of the sensor error. This is unacceptable,
which means that the method cannot be considered reliable.
Why the uncertainties are extremely small is not entirely clear. It is true that the parameter
uncertainty only depend on the matrices H,P and R. Increasing the values in those matrices
increases the parameter uncertainty, but this is often at the expense of the sensor error esti-
mates that deteriorate more than the sensor error uncertainty improves in the sense that the
uncertainty intervals are reasonable.

Everything considered, MSA is a reliable method to estimate parameters with their uncertainty,
contrary to the probabilistic estimation from Weighted Least Squares method which gives un-
reliable uncertainties.
Considering the positional uncertainty, MSA in combination with the Minimum Curvature
method and MSA in combination with the Covariance analysis method are both reliable meth-
ods. However, the position uncertainty from the Covariance analysis method significantly de-
pends on the choice to consider positional uncertainty systematically or randomly.
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8 Recommendations

There are a number of recommendations that can be made regarding follow-up research.

a) Mature the analytical ISCWSA model to estimate the survey positional uncertainty through
the method of covariances, described in chapter 5, after survey data is MSA corrected.

b) Investigate a valid foundation to consider the positional uncertainty systematically or
randomly or a balanced combination of both for the Covariance analysis method.

c) Investigate why the method of probabilistic estimation from Weighted Least Squares, de-
scribed in chapter 4, generates significant smaller magnetometer sensor error uncertainties
when compared with the Monte Carlo method using MSA.
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Appendix

8.1 Example calculation of minimum curvature method

Take for example station 1:
Depth = 3500 ft
Inclination = 15 degrees (I1)
Azimuth = 20 degrees (Az1)

And Station 2:
Depth = 3600 ft
Inclination = 25 degree (I2)
Azimuth = 45 degree (I2)

Then MD = 3600 3500 = 100 ft.
Enter the data in formula 18 gives:
∆North = 27.22 ft
∆East = 19.45 ft
∆TV D = 93.01 ft
β = 0.22605 radian (12.95 degrees)
RF = 1.00408

8.2 Test trajectories

Where:
AHD is the Along Hole Depth in meters.
Tlf is the Toolface angle in degrees.
Inc is the Inclination angle in degrees.
Azi is the Azimuth angle in degrees.
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AHD Tlf Inc Azi

0 25 75,5 75

20 115 76 75

40 205 76,5 75

100 295 77 75

200 25 77,5 75

300 115 78 75

400 205 78,5 75

500 295 79 75

600 25 79,5 75

700 25 77,5 75

800 115 78 75

900 25 77,5 75

1000 115 78 75

1100 205 78,5 75

1200 295 79 75

1300 25 79,5 75

1400 115 80 75

1500 205 80,5 75

1600 295 81 75

1700 25 81,5 75

1800 115 82 75

1900 205 82,5 75

2000 295 83 75

2100 25 83,5 75

2200 115 84 75

2300 205 84,5 75

2400 295 85 75

2500 25 85,5 75

2600 115 86 75

2700 205 86,5 75

2800 295 87 75

2900 25 87,5 75

3000 115 88 75

Table 12: Test trajectory 1.
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AHD Tlf Inc Azi

0 25 0 85

1000 25 0 85

1500 115 0 85

1550 205 2 85

1600 295 4 85

1650 25 6 85

1700 115 8 85

1750 205 10 85

1800 295 12 85

1850 25 14 85

1900 115 16 85

1950 205 18 85

2000 295 20 85

2050 25 22 85

2100 115 24 85

2150 205 26 85

2200 295 28 85

2250 25 30 85

2300 115 32 85

2350 205 34 85

2400 295 36 85

2450 25 38 85

2500 115 40 85

2550 205 42 85

2600 295 44 85

2650 25 46 85

2700 115 48 85

2750 205 50 85

2800 295 52 85

2850 25 54 85

2900 115 56 85

2950 205 58 85

3000 295 60 85

Table 13: Test trajectory 2.
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AHD Tlf Inc Azi

0 25 0 2

1000 115 0 5

1100 205 3 8

1200 295 6 11

1300 25 9 14

1400 115 12 17

1500 205 15 20

1600 295 18 23

1700 25 21 26

1800 115 24 29

1900 205 27 32

2000 295 30 35

2100 25 33 38

2200 115 36 41

2300 205 39 44

2400 295 42 47

2500 25 45 50

2600 115 48 53

2700 205 51 56

2800 295 54 59

2900 25 57 62

3000 115 60 65

Table 14: Test trajectory 3.
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AHD Tlf Inc Azi

1602,25 57,47 37,09 26,65

1641,19 157,34 38,52 26,89

1683,90 334,17 40,23 28,09

1725,06 278,49 42,49 28,32

1766,64 53,12 44,77 27,58

1807,38 87,39 47,28 27,40

1848,90 201,18 49,3 27,58

1891,08 289,05 51,52 28,13

1932,16 55,01 53,88 27,41

1972,99 288,32 55,3 27,56

2014,02 122,17 55,52 26,99

2055,03 242,83 55,47 27,10

2095,73 135,84 55,11 26,54

2137,24 84,44 55,38 26,26

2177,30 245,98 55,58 26,22

2219,06 141,63 55,55 24,97

2259,79 177,01 55,33 25,66

2301,06 67,73 55,37 26,31

2342,25 310,48 55,93 27,58

2383,66 58,27 56,1 27,10

2423,75 317,02 56,17 27,91

2468,07 268,62 55,87 28,34

2508,95 280,56 55,88 29,03

2550,01 187,08 56,02 29,82

2591,14 293,47 55,78 29,42

2631,93 196,99 55,22 30,14

2673,35 134,46 55,2 29,53

2714,18 31,71 55,17 27,12

2755,74 141,39 54,2 27,96

2797,20 83,97 52,87 27,74

2837,85 282,26 50,41 27,64

2879,04 209,04 48,11 28,17

2920,34 40,39 46,37 26,20

2961,35 154,3 43,94 27,35

3000,38 161,35 42,85 27,88

3033,51 87,36 40,5 28,51

3075,63 211,01 37,22 28,80

3113,23 175,54 34,82 29,16

AHD Tlf Inc Azi

3156,61 133,09 32,44 29,49

3197,55 134,01 30,63 30,45

3237,99 21,85 28,85 31,20

3280,17 29,48 27,38 31,60

3321,07 200,05 25,97 28,84

3362,05 74,79 23,51 26,80

3403,11 243,22 20,75 28,92

3444,14 170,14 19,05 29,12

3485,36 259,13 17,4 27,04

3526,42 49,5 15,63 24,82

3567,26 317,62 13,87 22,57

3608,15 274,28 11,19 25,91

3648,77 274,96 9,97 24,67

3690,49 352,47 8,77 18,74

3703,58 15,08 7,72 17,65

Table 15: Test trajectory 4 with real survey data.
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