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Stealthy Backdoor Attack Against Federated
Learning Through Frequency Domain by Backdoor

Neuron Constraint and Model Camouflage
Yanqi Qiao , Dazhuang Liu , Rui Wang , and Kaitai Liang , Member, IEEE

Abstract— Federated Learning (FL) is a beneficial decen-
tralized learning approach for preserving the privacy of local
datasets of distributed agents. However, the distributed property
of FL and untrustworthy data introducing the vulnerability
to backdoor attacks. In this attack scenario, an adversary
manipulates its local data with a specific trigger and trains a
malicious local model to implant the backdoor. During inference,
the global model would misbehave for any input with the trigger
to the attacker-chosen prediction. Most existing backdoor attacks
against FL focus on bypassing defense mechanisms, without
considering the inspection of model parameters on the server.
These attacks are susceptible to detection through dynamic
clustering based on model parameter similarity. Besides, current
methods provide limited imperceptibility of their trigger in
the spatial domain. To address these limitations, we propose
a stealthy backdoor attack called “Chironex” against FL with
an imperceptible trigger in frequency space to deliver attack
effectiveness, stealthiness and robustness against various coun-
termeasures on FL. We first design a frequency trigger function
to generate an imperceptible frequency trigger to evade human
inspection. Then we fully exploit the attacker’s advantage to
enhance attack robustness by estimating benign updates and
analyzing the impact of the backdoor on model parameters
through a task-sensitive neuron searcher. It disguises malicious
updates as benign ones by reducing the impact of backdoor
neurons that greatly contribute to the backdoor task based on
activation value, and encouraging them to update towards benign
model parameters trained by the attacker. We conduct extensive
experiments on various image classifiers with real-world datasets
to provide empirical evidence that Chironex can evade the most
recent robust FL aggregation algorithms, and further achieve a
distinctly higher attack success rate than existing attacks, without
undermining the utility of the global model.

Index Terms— Federated learning, backdoor attacks, stealth-
iness, frequency domain, backdoor neuron, model camouflage,
activation value.

Manuscript received 30 May 2024; revised 7 August 2024; accepted
22 August 2024. Date of publication 27 August 2024; date of current version
13 December 2024. This work was supported in part by the European Union’s
Horizon Europe Research and Innovation Program under Grant 101073920
(TENSOR), Grant 101070052 (TANGO), and Grant 101070627 (REWIRE).
This article was recommended by Guest Editor C. H. Chang. (Corresponding
author: Dazhuang Liu.)

The authors are with the Faculty of Electrical Engineering, Mathematics
and Computer Science, Delft University of Technology, 2600 AA Delft,
The Netherlands (e-mail: y.qiao@tudelft.nl; d.liu-8@tudelft.nl; r.wang-8@
tudelft.nl; kaitai.liang@tudelft.nl).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JETCAS.2024.3450527.

Digital Object Identifier 10.1109/JETCAS.2024.3450527

I. INTRODUCTION

FEDERATED Learning (FL) [1], [2], [3], [4], [5], [6], [7],
[8] is a type of distributed machine learning framework

that has been proposed to preserve data privacy among partic-
ipating agents. It supports collaborative training of an accurate
global model by allowing agents to upload local updates, such
as gradients and weights, to a server without compromising the
local datasets. FL has been applied to various real-world appli-
cations including COVID-19 prediction [9] and autonomous
driving [10].

Despite its attractive advantages, FL is susceptible to back-
door attacks [11], [12], [13], [14], [15], [16], [17]. [13]
introduced a distributed backdoor attack (DBA) by dividing
a global trigger into multiple pieces, which are distributed
among local agents. The DBA incurs significant changes to
certain dimensions of parameters in order to maintain the
accuracy of the backdoor task. Recently, [12] proposed a
stealthy model poisoning (SMP) attack by limiting Euclidean
distance between the average updates (from all the benign
agents) and the malicious updates. The malicious updates
derived by this attack can be distinguished from the benign
updates in the output layer at the parameter level because of
the noticeable distances between them. Both DBA and SMP
can be defended by using robust FL aggregation algorithms
based on dynamic clustering via HDBSCAN [18] due to the
significant directional discrepancy between the updates derived
from these attacks and benign updates. Additionally, some
works focus on developing durable backdoor attacks agaisnt
FL to maintain high attack effectiveness when the adversary
stop updating malicious models or gradients. For instance,
Neurotoxin [19] attacks parameters that are changed less in
magnitude during training which improves the durability of
backdoors.

To mitigate backdoor attacks, researchers have designed
robust FL aggregation algorithms [20], [21], [22], [23]. For
instance, FLAME [22] and DeepSight [23] apply HDBSCAN
at the training stage to conduct clustering and filter out
the malicious updates. Specifically, FLAME exploits the dis-
cernible difference of model weights based on cosine similarity
between benign and malicious updates, while DeepSight filters
malicious updates by the output difference between benign
and malicious models and the distinction of distribution of
labels in the underlying training data of those models. They
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use clipping strategies to reduce the influence of malicious
updates and beyond. Moreover, FLAME uses adaptive noise
to smooth the boundary of clustering. The current approach
of defense is to detect malicious updates by exploiting the
distinguishable dissimilarity between updates from malicious
and benign agents. Additionally, current attacks [13], [14],
[16], [19] do not provide enough trigger stealthiness during
the inference stage. The poisoned samples with perceptible
perturbation can be easily identified by an evaluator or a user
who can distinguish the difference between ‘just’ an incorrect
classification/prediction of the global model and the purposeful
wrong decision due to a backdoor in the test/use stage.

There exists an impossibility for backdoor attacks to evade
existing defenses because the backdoor tasks have a signifi-
cant and noticeable impact on the backdoor-sensitive neurons
deriving the distinguished distance from benign updates. This
raises the question: could we disguise malicious updates as
benign ones at the parameter level to bypass current detection
strategies while still maintaining the accuracy of the backdoor
attack?

To provide a concrete answer to the question, we propose a
stealthy frequency attack, Chironex, to backdoor robust FL
systems. Specifically, Chironex utilizes a frequency trigger
function to produce the poisoned dataset, ensuring natural
stealthiness of poisoned samples. Recent works [24], [25],
[26], [27] has provided evidence that frequency domain
triggers are still learnable by neural networks and provide
excellent natural stealthiness. Then, Chironex constrains the
impact of backdoor neurons identified by a new method called
the Task-sensitive Neuron Searcher (TNS). TNS can construct
a “backdoor” neuron list consisting of neurons that deliver
a significant contribution to the backdoor task so that we
can penalize the weights and biases of these neurons when
their updates are in malicious directions. Chironex can enforce
malicious updates to be naturally imperceptible from benign
ones by minimizing the distance between malicious and benign
parameters owned by the attacker.

Our main contributions are summarized as follows. We first
design a frequency trigger function to produce impercepti-
ble poisoned samples. We analyze the behavior of neurons
in backdoor tasks at the parameter level by using TNS to
identify those backdoor neurons that significantly contribute
to backdoor tasks and reduce the impact of backdoor-sensitive
neurons. We apply a step-forward training approach to gener-
ate benign and malicious models. Furthermore, we combine
the malicious model with TNS to find the list of back-
door neurons and minimize its impact in order to evade
anomaly parameter detection; meanwhile, we use the benign
model as an estimation of the attacker’s expected local
model. We restrain parameter dissimilarity to make mali-
cious updates indistinguishable from benign updates trained
by the attacker (i.e, obtaining model camouflage) without
sacrificing the utility of the global model. We fully take
advantage of the attacker’s ability to provide the criterion of
malicious model update direction. Finally, we evaluate the
attack performance and stealthiness on real-world datasets
with various datasets and models. The experimental results
demonstrate that Chironex achieves a high attack success

rate while maintaining global model accuracy. Our attack
also provides excellent stealthiness, allowing it to bypass
the most recent robust aggregation algorithms, e.g., FLAME,
DeepSight, whilst other existing attacks cannot. For example,
Chironex achieves around 97.60% attack success rate and
90.65% global model accuracy under FLAME on FMNIST.

The rest of the paper is organized as follows. In Section II,
the state-of-the-art federated learning frameworks, backdoor
attack and defensive methods against federated learning are
provided. Section III presents the threat model of our attack,
including attack goal, capability and knowledge. Section IV
details the technical approach including trigger function, back-
door neuron search and model camouflage. The experimental
results of attack performance and ablation studies are given
in Section V. Finally, the main conclusion and discussion are
provided in Section VI.

II. RELATED WORK

A. Federated Learning (FL)

Reference [1] proposed the concept of distributed learning
associating with n agents and a server S to train a global
model G collaboratively. At the training round t , each local
agent i uses the global model G t of the current round to
train a local model L t+1

i based on its own data Di and sends
the parameters/gradients update δi to S. Then the server S
aggregates the received updates δi |

n
i=1 from all the agents into

the global model G t to derive G t+1. In the above process, each
agent i computes the update as δt+1

i = L t+1
i − G t , so that S

uses an aggregation algorithm to compute a new global model
G t+1 as:

G t+1
= G t

+
lrs

n

n∑
i=1

(L t+1
i − G t ), (1)

where lrs is the learning rate of the server. The most
commonly used aggregation algorithm is FedAvg, averaging
the weighted updates of all the local agents as G t+1

=
n∑

i=1

di
d (L

t+1
i − G t ), where di = |Di |, d =

n∑
i=1

di . We set

G t+1
=

n∑
i=1

1
n (L

t+1
i − G t ) for the equal contribution of all

the clients to evade from receiving fabricated dataset size of
malicious agents as in [22]. When G converges or the training
reaches a specific iteration upper bound, the aggregation
process terminates and outputs a final global model.

Optimizations of FL have been proposed for various pur-
poses, e.g., privacy [28], security [29], heterogeneity [30],
communication efficiency [31] and personalization issues [32].

B. Backdoor Attacks on FL
An attacker can easily corrupt a set of agents in the training

stage. These agents are manipulated to use poisoned data with
a specific trigger and change an attacker-chosen base label to
a target label to train their local models and further, they send
the updates to the server performing aggregation. Accordingly,
the global model that combines the updates from the malicious
agents is embedded with a “backdoor”. In the test stage, the
model easily misclassifies the data inputs with the backdoor
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trigger to the target label. To design a successful attack, the
attacker must ensure that the clean dataset is classified into
the correct label and the utility of the global model cannot be
harmed by backdoor task training. Note that this notorious
target poisoning can seriously affect the model prediction
results and is difficult to detect after the training stage. Existing
backdoor attacks may target to data and model.

1) Data Poisoning Attacks: The attacker manipulates train-
ing datasets by adding backdoor patterns into data samples. For
example, it disintegrates the global pattern into several local
patterns and further injects them to the compromised agents’
datasets separately in DBA [13]. Although making global
trigger more insidious, DBA does not restrain the training
process so that the malicious and benign updates can look
different at the model parameter level. Moreover, the attacker
can modify the training dataset by flipping its label [33] and
later send the model update trained by mislabeled data to the
server. This type of attacks focuses on manipulating training
data without fully considering the server aggregation strategies
for anomaly updates detection.

2) Model Poisoning Attacks: This type of attacks manip-
ulates the training process of malicious agents and further
evades aggregators’ anomaly update detection. Reference [14]
introduced model replacement and scaling up attack to FL
systems. The attacker can scale up the malicious update by
a specific factor and the global model is replaced by the
malicious model trained by poisoned data consequently. This
attack brings a new perspective that an attacker can manipulate
the training process or local model to perform the back-
door attack. Reference [11] proposed a so-called LIE attack
by crafting model updates with minor changes. The attack
explores the maximized range of parameters perturbation to
induce the model to predict the desired label. Reference [15]
exploited a projected gradient descent (PGD) attack with
model replacement during the training of a malicious model
on a dataset that is similar but not identical to the (original)
clean dataset. Reference [12] designed an attack aiming to
achieve stealthiness by estimating the average update from all
benign updates and reducing the L2-norm distance between
the malicious and the average updates from others. The attack,
however, cannot provide a solid stealthiness because there
still exists a noticeable (peak) difference in the distribution
of parameters between malicious and benign updates. Some
works also aim to improve the persistence of attack effective-
ness on FL. For example, Neurotoxin [19] attacks parameters
that are changed less in magnitude during training which
improves the durability of backdoors. Chameleon [34] finds
that benign images with the original and the target labels of
the poisoned images have key effects on backdoor durability.
It then utilizes contrastive learning to amplify such effects
towards a more durable backdoor.

C. Robust FL Aggregation
Several works have been proposed to handle malicious

agents in the context of FL [35], [36], [37], [38], [39], [40],
[41]. Krum [42] selects a local model that is similar to others
as the global model, but it is vulnerable to some dimensions
of malicious model parameters. Bulyan [43] improves Krum

by applying a variant of Trimmed Mean method. Trimmed
Mean [20] aggregates each dimension of model parameters
independently and it computes the mean for a range of
parameters. Median [20] takes median for aggregation. Refer-
ence [44] indicated that one can use FedAvg aggregation rules,
by clipping weights and adding noise, to mitigate backdoor
attacks. [21] proposed a robust aggregation algorithm based
on sign aggregation [45] so-called RLR which changes the
central server’s learning rate based on the signs of agents’
updates. Recently, [22] proposed a defending framework based
on the clustering algorithm (HDBSCAN) so-called FLAME
which can cluster dynamically all local updates based on
their cosine distance into two groups separately. FLAME
uses weight clipping for scaling-up malicious weights and
noise addition for smoothing the boundary of clustering after
filtering malicious updates. Reference [23] designed a robust
FL aggregation rule called DeepSight using HDBSCAN. Their
design leverages parameter distribution, output, and cosine
distance to cluster all updates and further applies the clipping
method. DeepSight fully exploits information leakage from
malicious updates and provides a more precise detection than
FLAME. SparseFed [46] performs norm clipping to all local
updates and averages the updates as the aggregate. Top-k
values of the aggregation update are extracted to filter out
potential malicious parameters and returned to each agent who
locally updates the models using this sparse update. CRFL [39]
provides certified robustness in FL frameworks. It exploits
parameter clipping and perturbing during federated averaging
aggregation. In the test stage, it constructs a “smoothed”
classifier using parameter smoothing. The robust accuracy of
each test sample can be certified by this classifier when the
number of compromised clients or perturbation to the test input
is below a certified threshold.

III. THREAT MODEL AND MOTIVATION

We consider the same threat model as in [12], [13], and [14].

A. Attacker’s Goal

Following [13], [14], [15], and [19], we enable the attacker
to manipulate the global model to predict a target label on
any samples with an attacker-chosen trigger (i.e. the backdoor
task). From the viewpoint of the attacker, there are two
main objectives: preserving functionality for benign tasks
(i.e., maintaining global model accuracy) and ensuring attack
effectiveness for backdoor tasks (i.e., achieving high backdoor
accuracy on the poisoned model). Two additional goals are
considered in our attack including attack stealthiness and
robustness. Attack stealthiness implies that poisoned samples
exhibit visual similarity to clean ones while robustness is
demonstrated by its effectiveness against backdoor defenses
on FL. Unlike untargeted poisoning attacks [47] preventing
the convergence of the global model, the goal of our attack
is to manipulate malicious agents’ local training processes to
achieve high accuracy in the backdoor task without under-
mining the main task. Thus, the global model’s behavior is
naturally normal on clean data samples while it will predict
poisoned data into a target label with a high attack success
rate.
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B. Attacker’s Capability and Knowledge

We assume the attacker only has full access to malicious
agents’ clients, local training processes and training datasets.
The attacker cannot change the aggregation algorithm of the
server and manipulate the training processes and training
datasets of the honest agents so that the model updates of
those agents will not be affected by the attack. Unlike some
backdoor attacks strictly requiring malicious agents to collude
together, our assumption here does not need this collusion.
Note we naturally allow malicious agents to collude but our
attack can work well without this collusion, which means that
we require fewer restrictions than others. At last, we do not
require the attacker to know the FL aggregation rules applied
in the server.

C. Technical Motivation

Existing attacks cannot reduce the distance between benign
and malicious update in the parameter space and thus they
can be easily detected by the state-of-the-art robust FL systems
using parameter inspection. We study a new attack perspective
in the sense that the attacker can restrain the disparity among
parameters by training loss function of l2-norm distance or
cosine similarity. Some attacks, such as SMP, have used the
similar objective terms to constrain the distance. In Figure 3,
we show that it is not sufficient yet to only limit the distance
among the parameters as we can still see the difference
between benign and malicious updates. To tackle the issue,
we introduce a new objective to further eliminate the influence
of those backdoor neurons found by TNS. Unlike SMP, the
philosophy of Chironex is to convert the malicious parameters
to become benign, i.e. fooling the server to regard malicious
updates as benign ones. In the figure, we see that the mali-
cious model parameters of Chironex are very close to the
benign parameters so that the malicious updates are much less
abnormal. We further state that the attacker does not need to
know a concrete FL aggregation algorithm before applying our
attack, which makes the attack more general and practical.
The experimental results (see Section V-D) show that two
penalties Ltns and Ll2dist work well with the combination of
classification loss Lmain and Lbd so that we can eliminate
the impact of those backdoor neurons and meanwhile achieve
practical performance w.r.t. attack success rate (ASR) and
global model accuracy (MA).

IV. PROPOSED METHODOLOGY

We provide problem formulation and technical details in this
section. Specifically, we first introduce our trigger injection
function to insert a specific pattern into the frequency domain.
Then, we formulate the optimization problem by three attack
objectives, i.e., (1) high accuracy on clean and backdoor tasks,
(2) backdoor neuron constraint and (3) model camouflage.
We utilize step-forward training to obtain benign and malicious
reference models on clean and poisoned datasets. We introduce
a novel method to search backdoor neurons on the malicious
reference model and constrain the impact of those neurons.
Additionally, we minimize the l2-norm distance between mali-
cious parameters and benign ones from the benign reference

TABLE I
NOTATION SUMMARY

model to achieve model camouflage. The frequently used
notations in this paper are shown in Table I.

A. Problem Formulation

1) Trigger Injection Function φ: Taking the image clas-
sification task as an example, we first introduce a frequency
trigger function φ(·) to produce the poisoned dataset Dbd with
the imperceptible trigger t through frequency space. Given
a clean sample x ∈ [0, 1]H×W×C (height H , width W and
channel C) and a specific trigger image x t , we first transform
them into frequency domain via discrete cosine transform
(DCT) D(·) as:

D(u, v, c) = Nu Nv
H−1∑
i=0

W−1∑
j=0

x(i, j, c)cos (2i+1)uπ
2H cos (2 j+1)vπ

2W , (2)

where u, i ∈ {0, 1, · · · , H − 1}, v, j ∈ {0, 1, · · · ,W − 1}
and c ∈ {0, 1, · · · ,C − 1}. Nu and Nv are normalization
terms, Nu ≜

√
1/H if u = 0 and otherwise Nu ≜

√
2/H .

Similarly, Nv ≜
√

1/W if v = 0 and otherwise Nv ≜
√

2/W .
Triples (i, j, c) and (u, v, c) refer to a specific pixel and
frequency band of x and its frequency form respectively. Then,
we blend the trigger pattern t (spectrum of D(x t )) and D(x)
to generate the poisoned sample xbd with a binary mask
M = 1(u,v,c)∈[0:λH :,0:λW :], where λ determines the location
and size of trigger to be blended and ω is the blend ratio to
decide the proportion of information contributed by x t . Finally,
we utilize inverse DCT (IDCT) D−1(·) to obtain the spatial
form of poisoned sample xbd . The entire frequency trigger
injection method is held:

φ(x) = D−1(D(x)(1−M)+ [(1− ω)D(x)+ ωt] ∗M).

(3)

The goal of this function is to mislead the prediction of φ(x)
to the target label yt .

2) Attack Objectives: We propose a stealthy backdoor
attack against FL on computer vision tasks. In the following,
we denote the clean training dataset as Dc = {(xi , yi )}

|Dc|
i=1

containing |Dc| images. In practice, we randomly select sam-
ples from Dc to produce poisoned training dataset Dbd by the
proposed φ(·) with a specific poison ratio. For a clean sample
and its label (x, y) from Dc, we poison the clean sample to
(φ(x), yt ) by backdoor injection function φ(·), where yt is the
target label.
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Our main objective is to learn backdoor parameters θbd
(trained by Dbd ) by constraining the influence of backdoor
neurons and making the parameters close to the benign param-
eters θcln trained a step-forward by Dc. Given a malicious
local model L t

bd at round t with θbd and a backdoor injection
function φ(·), we minimize the following loss function to hold
the performance of the main task on Dc:

Lmain =
∑

(x,y)∈Dc

Lce(L t
bd(x), y), (4)

where Lce denotes the cross entropy loss. To provide a
practical attack success rate, we minimize the following loss
function on the backdoor task:

Lbd =
∑

(x,y)∈Dbd

Lce(L t
bd(φ(x)), yt ). (5)

We notice that the backdoor training is a kind of “shortcut”
learning which means several backdoor-sensitive neurons are
easily affected via the backdoor task with certain preferences
while they have less contribution on the main task training.
To achieve stealthiness, we minimize the following constrained
loss function on poisoned data to reduce the impact of those
backdoor-sensitive neurons:

Ltns =
∑

(i,l)∈ψ(Pbd ,Pc)

(|wl
[i]| + |b

l
[i]|), (6)

where Ltns is backdoor neurons constraint loss, ψ(·) is our
measurement between the backdoor neuron list Pbd and the
clean neuron list Pc found by benign and backdoor TNS,
wl
[i] and bl

[i] are the weight and bias corresponding to the
i-th neuron nl

[i] of the l-th layer. The detailed information
about how to obtain two lists Pc and Pbd are provided in
Section IV-B.

To capture parameter similarity to support model camou-
flage, we restrain the loss corresponding to l2-norm distance
between θbd and θcln :

Ll2dist = ||θbd − θcln||2, (7)

where θbd is the parameters of malicious model and θcln is the
estimated benign parameters. The details of model camouflage
are provided in Section IV-C.

Given the three objectives from Equations (4), (5) and
Equation (6) and Equation (7), we formalize the final attacker’s
objectives as a constrained optimization problem:

arg min
θbd

Lmain + Lbd + αLtns + βLl2dist , (8)

where we use α and β to control the strength of the con-
straint loss. We can achieve the optimization by constraining
the contribution introduced by backdoor neurons (which are
identified by TNS) and implementing the model camouflage.
The overview of Chironex is in Figure 1.

B. Backdoor Neuron Constraint by TNS

To compute backdoor neuron constraint in Equatio (6),
we here use the proposed TNS to find task-sensitive neurons
in each layer of Deep Neural Networks (DNNs). We first give
the task-sensitive (influential) neurons (TSN) in Definition 1

Fig. 1. The workflow of Chironex. The Chironex attack includes three
objectives: (1) achieving high accuracy on clean and backdoor tasks;
(2) minimizing the impacts of backdoor neurons; and (3) minimizing l2-norm
distance between malicious parameters and estimated benign ones. At round
t , we train malicious update δt+1

m as (a) Find the list Pc of clean neurons
that contributed to main task by the proposed TNS; (b) Pretrain a malicious
local model for searching backdoor neurons; (c) Find the list Pbd of backdoor
neurons that contributed to backdoor task by TNS; (d) Compute the constraint
loss of backdoor neurons Ltns based on Pc and Pbd and train θcln for Ll2dist ;
(e) Optimize final malicious model θbd by L, including classification loss
Lmain + Lbd , backdoor constraint loss and model camouflage loss on Dbd
to obtain malicious update δt+1

m .

by following the same philosophy as in [15]. The neurons
satisfying the (task) sensitivity contribute significantly to a
certain task1 (i.e. either a main or a backdoor task); and if
they are sensitive to a backdoor task, we call them backdoor
neurons. We use the activation value of a neuron to measure
its contribution or influence of a classification.

Definition 1 (Task-sensitive Neuron): Given a real positive
number γ , a neuron n, its activation value a, weight w, the
activation value A of the neuron of the next layer connecting

1These TSN deliver more contributions than others in the task. Changing
their weights also outputs a crucial impact on the specific task (while this
doesn’t apply to the non-TSN).
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Algorithm 1 Task-Sensitive Neuron Searcher (TNS)
Input: Samples X , Model M
Parameter: Number of Linear Layers L , Weights w of Model
M, Activation Value a, Neurons n, Index of Neurons i, j ,
Sensitivity Rate γ , Target Label yt , Neuron List 5
Output: List P

1: Initialize 5 = []
2: Initialize P = {0}
3: for X i ∈ X do
4: Get ActivationV alue(M, X i )

5: Append(5L , nL
[yt ]
)

6: P[nL
[yt ]
] += 1

7: for l ∈ L (descend order) do
8: for nl

[i] ∈ 5
l do

9: for nl−1
[ j] ∈ nl−1 do

10: if |wl−1
[ j] ∗ al−1

[ j] | > |γ ∗ al
[i]| then

11: Append(5l−1, nl−1
[ j] )

12: P[nl−1
[ j] ] += 1

13: return P

to n, the neuron n for classification is task-sensitive with γ -
sensitivity if |w × a|>|γ × A|.

To effectively search the sensitive neurons, we apply a
mixed strategy including forward and backward analysis. For
the deeper linear layers, where neurons contribute more sig-
nificantly compared to the shallow layers (e.g., convolutional
layers), we apply backward analysis to meticulously identify
task-sensitive neurons. First, we feed input samples to DNN.
For a certain neuron nL

[i] of layer L , we compare all activation
values aL−1

[ j] |
M
j=1 of M neurons nL−1

[ j] |
M
j=1 in the previous layer

L−1, connecting to nL
[i], to activation value aL

[i] of this neuron.
Second, we set a sensitivity rate γ for the current layer L .
We compute each neuron’s contribution as |wL−1

[ j] ∗ aL−1
[ j] |,

where wL−1
[ j] is the weight of nL−1

[ j] . If |wL−1
[ j] ∗ aL−1

[ j] | >

|γ ∗ aL
[i]|, nL−1

[ j] can be identified as a backdoor neuron which
contributes more to the backdoor task in this layer. Algorithm 1
shows how we identify all task-sensitive neurons and generate
the neuron list. For shallow layers, we use forward analysis
to select the top 5% of neurons with the highest activations
in each layer. This approach enables our attack to establish
connections between the layers.

We further minimize Ltns by TNS based on benign and
malicious models with clean and poisoned samples to rectify
those backdoor neurons. The minimization of this objective
provides a crucial functionality: eliminating the distinguishable
impacts on backdoor parameters. At round t , we assume
the attacker chooses clean samples Xc from Dc as input of
the current global model G t . We use TNS to generate a
clean neuron list of global model G t by Xc. Then, we train
a step-forward malicious model L t ′

bd with Dbd to identify
backdoor neurons to be rectified. Given G t , L t ′

bd , Xc and
Dbd , we apply TNS to find the neuron lists Pc and Pbd
for main and backdoor tasks respectively. We use threshold
ξ to figure out distinguishable backdoor neurons from clean

Algorithm 2 Chironex Backdoor Attack
Input: Clean Dataset Dc, Poisoned Dataset Dbd , Global
Model G t with Parameters θ , Clean Samples Xc
Parameter: Threshold ξ , Hyperparameters α, β, Client Learn-
ing Rate lrc
Output: Malicious Update δt+1

m
1: Copy Global model: L t

bd with θbd ← G t

2: Get Clean Neuron List: Pc = TNS(G t , Xc).
3: A Step-forward Training for Malicious Model: L t ′

bd ←

Train G t on Dbd .
4: Poison Clean Samples: Xbd = φ(Xc).
5: Get Backdoor Neuron List: Pbd = TNS(L t ′

bd ′ , Xbd).
6: L t ′

cln with Parameters θcln ← A Step-forward Training for
Benign Model with G t on Dc.

7: for batch ∈ Dbd do
8: Compute the Loss: L = Lmain + Lbd + α ∗ Ltns + β ∗

Ll2dist as in Equation (8).
9: Train parameters θbd of L t

bd with Stochastic Gradient
Descent (SGD) under Learning Rate lrc/2.

10: δt+1
m = θbd − θ

11: return δt+1
m

ones. We set ψ(Pbd , Pc) = {(i, l)|(Pbd [nl
[i]]− Pc[nl

[i]])>ξ, l ∈
{1, 2, · · · , L}}. If (i, l) ∈ ψ(Pbd − Pc), we add the absolute
value of the difference between ϵ and wl

[i], bl
[i] of nl

[i] to Ltns .
To eliminate the influence of backdoor neurons, we enforce
wl
[i], bl

[i] to approach zero. Finally, we compute TNS loss
function as Ltns =

∑
(i,l)∈ψ(Pbd−Pc)

(|wl
[i]| + |b

l
[i]|) and train θbd

with it. The details is shown in Figure 1 (a) (b) (c) and (d)-left,
and in lines 2− 5 and 8 of Algorithm 2.

Why does TNS work? We found that backdoor neurons
are distinguishable from the clean neurons (which mostly con-
tribute to the main task) and meanwhile, they could only and
significantly contribute to the backdoor task. By minimizing
Ltns and Lbd , the contribution of the backdoor neurons is
redistributed to other neurons that have less contribution to
the backdoor task. In this way, we encourage those neurons
with “less” contribution to play a part in the backdoor task.
In Figure 6, we show the results of the disparity between the
backdoor and clean neuron lists to confirm that minimizing
Ltns can reduce the contribution of those backdoor neurons
at the parameter level, without affecting the sensitivity of the
clean neurons in the main task. Thus, we can maintain a high
attack accuracy but also have a low level of influence incurred
by those backdoor neurons.

C. Model Camouflage

Given the computation of Ltns , our next task is to dis-
guise θbd as θcln by minimizing the distance loss Ll2dist in
Equation (7). To this end, we design a new backdoor train-
ing approach motivated by [12] to manipulate the malicious
parameters more naturally-like benign ones trained by Dc
(which are owned by the attacker). Instead of estimating the
current global model parameters through averaged updates
from the previous iteration [12], we get the malicious and
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benign parameters sufficiently close to each other which
makes the attack stealthy. We allow the attacker to train
both two models based on the same set of its own data,
which doesn’t violate our assumptions. Similar to the backdoor
neuron constraint process, we also use step-forward training
with Dc to obtain a benign reference model L t ′

cln to estimate
the expected benign model parameters θcln . During backdoor
training, we use Equation (7) to enforce the malicious param-
eters to be indistinguishable from θcln in the training stage.
We set l2-norm distance as the measurement for parameter
similarity and β as a hyperparameter that controls the strength
of model camouflage between θcln and θbd . The computation
of Ll2dist is shown in Figure 1 (d)-right and (e), and in lines 6
and 8 of Algorithm 2. As last, we train the malicious model
with Dbd via Equation (8). The details of Chironex are given
in Algorithm 2.

V. EXPERIMENTS

A. Experimental Setup

1) Datasets and Network Structures: We tested the effec-
tiveness of Chironex on five standard image datasets:
MNIST [48], Fashion-MNIST (FMNIST) [49], CIFAR-10
[50], FEMNIST [51] and Tiny-ImageNet [52] in the inde-
pendent and identically distribution (i.i.d). and non-i.i.d. data
distribution settings. Specifically, MNIST contains 70k (28×
28) handwritten digits images divided into ten mutually
exclusive classes, in which 60k are for training and 10k
for testing. FMNIST provides the same amount and size of
grayscale images with ten classes. CIFAR-10 includes 60k
(32 × 32) color images with the same number of classes,
in which 50k are for training and 10k for testing. FEMNIST
contains about 800k (28×28) handwritten digits and characters
images divided into 62 classes provided by 3,550 users, which
is commonly used in federated learning frameworks. Tiny-
ImageNet has 200 classes and 100k (64×64) colored images.
Each class includes 500 training samples, 50 validation and
50 test samples. The data are distributed in both i.i.d. and non-
i.i.d. fashion among agents. In the non-i.i.d. context, we set
a q of the dataset to evaluate the degree of non-i.i.d. level
by following [38]. Since there are 10 classes, we divide the
agents into 10 groups. A training sample with label y ∈
{0, 1, · · · , 9} is allocated to a group (and hereafter we can
call it as group y) with probability q > 0 and to any other
groups with probability 1−q

9 . In the group y, each agent’s
training data is in i.i.d manner. q = 0.1 represents the dataset
of local agent is i.i.d; while the degree of no-i.i.d increases
with a growing q . All images in the datasets are normalized
to [0,1]. We performed the experiments on commonly used
DNN models including the classic CNN model for MNIST,
FMNIST and FEMNIST, ResNet18 [53] for CIFAR-10 and
Tiny-ImageNet.

2) Implementation: We set n = 1000 agents with m =
10 malicious agents to train the global model for R =
200 rounds with FedAvg in the i.i.d. manner as the default
setting. The ratio of the compromised agents to all agents
η = m

n = 1%. In each round, the server randomly selects
10 clients for local model aggregation. We used learning rate

lrc = 0.1 for local training and lrs = 1 for central server
aggregation while malicious agents used malicious learning
rate lrm = 0.05 to perform backdoor attacks. Local models
were trained by SGD optimizer. We set |Dbd |

|Dc|
as poison data

rate (PDR), which is the fraction of injected poisoned data
Dbd with target label in the overall clean training dataset Dc
with the attacker-chosen label. We set PDR = 20% as default.
We found that if α, β ≫ 1, the malicious model parameters are
close to those of the benign model but the attack performance
does not work well. If α, β ≪ 1, the results are the other
way around. To balance the trade-off, we set α = 0.5 and
β = 0.5. We choose the “Hello Kitty” pattern in [54] as
our trigger image x t as default. Some poisoned examples are
shown in Figure 7. For Chironex attack, we set proper ξ and
γ for different network structures. ξ is strongly related to the
number of samples fed into models in TNS and NN layers. For
TNS, we leverage the entire poisoned dataset to find backdoor
neurons and the same size of clean dataset to find benign ones.
We set ξ as half of the number of the poisoned samples for
each dataset, indicating a neuron has a significant impact on
more than half of classification tasks. We set γ to 0.05 to
distinguish backdoor neurons from clean ones under a given
ξ , indicating the settings for ξ, γ are practical.

3) Evaluation Metrics: • Global Model Accuracy (MA). We
set the test accuracy on clean validation samples fed into the
global model as MA.
• Attack Success Rate (ASR). We set the ratio of backdoored

examples fed into the global model misclassified as the target
label as ASR.
• False Negatives Rate (FNR). FNR evaluates the attack

robustness, i.e. how well the attack evades the detection of
robust FL aggregation. We set it as F N

F N+T P indicating the ratio
of malicious updates for which the defense produces wrong
predictions to the total number of malicious models, i.e., the
fraction of the number of malicious updates misclassified into
benign updates cluster (False Negative - FN), where TP is True
Positive showing the number of malicious updates correctly
classified as malicious.
• False Positives Rate (FPR). This investigates the robust-

ness. FPR = F P
F P+T N denotes the ratio of benign updates

that are misclassified as malicious (False Positive - FP) to the
total number of benign models, where TN is True Negative
indicating the number of benign updates correctly classified
as benign.

B. Evaluation of Attack Without Defense

We used a backdoor attack with both main and backdoor
objectives as our baseline and included other attacks - DBA,
Edge-Case [15], SMP [12] and Neurotoxin [19] - into the
comparison. We tested our attack effectiveness through MA
and ASR under FedAvg without defense. We conducted a
single-target attack for each backdoor method, in which we
chose a base label (class 5) misclassified into one target label
yt (class 7) for all the compared methods per dataset. The
results in the i.i.d. setting are presented in Table II. As for
FedAvg with “no defense” on MNIST and FMNIST, Chironex
achieves >98% ASR and meanwhile, it maintains MA close
to benign model accuracy (< 1% gap). Although MA on
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TABLE II
ATTACK PERFORMANCE VIA MA (%) AND ASR (%) FOR SEVERAL ATTACKS AGAINST NO/DIFFERENT DEFENSES ON MNIST, FMNIST AND CIFAR-

10 IN THE I.I.D. CONTEXT. WE SHOW THE AVERAGED RESULTS (MEAN±SD) OF 10 INDEPENDENT RUNS

CIFAR-10 is slightly lower than on other datasets, Chironex
still outperforms other attacks and yields the highest ASR,
roughly 95.4%. Chironex also outputs MA that is significantly
close to the baseline attack, with a 0.27% gap. For a more
complex dataset Tiny-ImageNet, Chironex provides excellent
performance on stealthiness against SOTA defenses. Although
its MA values are lower than others’, Chironex is still more
stealthy and delivers nearly the best ASR,>95%. As compared
to its ASR results on other datasets, there is a slight drop on
Tiny-ImageNet, which is roughly 1%∼2%.

C. Evaluation of Attack With Defenses

Besides the norm clipping defense [55], we evaluated
attack effectiveness against four robust FL aggregation rules,
namely Median, RLR, FLAME, and DeepSight. For robust
FL, we used RLR threshold ρ = 40 for each setting and set
FLAME and DeepSight minimum cluster size s = 10

2 + 1 =
6. The results in the i.i.d. setting are shown in Table II.
Since Edge-Case is not applicable on FMNIST and Tiny-
ImageNet, its results are not given in Table II. Chironex can
provide excellent robustness against secure FL aggregation
algorithms. Under FLAME and DeepSight on MNIST and
FMNIST, Chironex is more robust than (most of) others and
maintains high ASR values, >93%. Whilst the MA values
on CIFAR-10 are slightly lower than those of other attacks,
Chironex still delivers a solid ASR >93% under Median
and RLR. Under DeepSight on CIFAR-10, Chironex achieves
nearly 2-3× improvement on ASR as compared to others.
We see that Chironex distinctively outperforms others against
FLAME and DeepSight.

The FNR/FPR results against FLAME are shown in
Figure 2. Chironex achieves an overwhelming advantage on
attack effectiveness under FLAME. Its FNR can reach approx.
80% on MNIST and FMNIST while still standing at nearly
60% on CIFAR-10, which is nearly 4-8× higher than others.
This indicates that FLAME could be more likely to cluster
most of malicious updates into benign ones under Chironex

Fig. 2. Attack Stealthiness via FNR and FPR against FLAME for different
attacks. (a)-(b): MNIST, (c)-(d): FMNIST and (e)-(f): CIFAR-10.

than other attacks. As for FPR, Chironex maintains around
40% but others are seriously restricted under 10%.

To further verify the stealthiness of Chironex, we tested
principal component analysis (PCA) of model parameter
updates between benign and malicious agents under FLAME,
see Figure 3. We reduced model parameters to three dimen-
sions and compared the differences. The model update
of baseline attack is distinguishable from those benign
updates while malicious updates given by Chironex can be
mis-identified as “benign” (where the low dimensional mali-
cious parameters stay extremely close to benign ones). This
is so because: 1) we constrain the impact of those backdoor
neurons to make them be “seen” as clean neurons; and
2) we manipulate the malicious parameters to get close to
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Fig. 3. Principal component analysis (PCA) of model parameter updates for
benign and malicious agents under FLAME.

the benign ones trained by the attacker. These reduce the
differences between benign and malicious updates and thus
make Chironex stealthy.

Why does Chironex achieve distinctive effectiveness
under robust FL? Due to our design at the parameter level,
malicious and benign updates are indistinguishable.
• Against Median. Since the malicious and benign param-

eters are close to each other, the probability of being selected
from all the updates is increased as compared to other attacks.
Thus, Chironex can evade Median.
• Against RLR. The malicious updates generated by Chi-

ronex have almost the same sign of the parameters at each
dimension because of the parameter similarity. Since the sum
of parameter sign of our method is smaller than its threshold
ρ, RLR can easily treat malicious updates as benign.
• Against FLAME and DeepSight. SMP obtains a lower

ASR on CIFAR-10 than Chironex as its core design is to limit
the distance between updates based on the global model of the
previous round. By restraining the distance directly between
malicious and benign parameters from the attacker, one may
yield a precise estimation of the update at the current round.
But this approach can be still identified by investigating the
difference at the output layer between benign and malicious
models. To bypass the detection, we focus on limiting the
impact of backdoor-sensitive neurons. By introducing two loss
function terms Ltns and Ll2dist , we guarantee that malicious
parameters have no distinct contributions, allowing our attack
to provide excellent stealthiness.

D. Hyperparameter Analysis
1) Influence of PDR and the Proportion of Compromised

Agents η: We examined our attack effectiveness and robust-
ness under different PDR and η settings. We set PDR = 20%
and η = 1% as default. In Table III, we give the performance
with FedAvg on three datasets. Chironex works very well
with PDR = 50%, reaching above 98.80% (MA) and 99.55%
(ASR) on MNIST and 91.30% (MA) and 98.68% (ASR)
on FMNIST. Although the performance on Tiny-ImageNet
is worse than those of MNIST and FMNIST, Chironex still
can provide around 59.12% (MA) and 85.31% (ASR) even
when PDR = 1%. We note decreasing PDR could improve

TABLE III
ATTACK PERFORMANCE VIA MA (%) AND ASR (%) WITH FEDAVG FOR

DIFFERENT PDR SETTINGS

Fig. 4. MA (%) and ASR (%) of Backdoor (Baseline) and Chironex (Ours)
with FLAME for different α, β settings.

MA but weaken ASR. We also investigated the performance
with different η. In Table IV, we see that using a small η
can increase MA but slightly harm ASR against defenses.
Chironex presents a relatively weak performance on ASR
(< 50%) when the adversary controls only one malicious
client.

2) Influence of α, β: We used different hyperparameter
settings to visualize the influence of stealthiness budget α, β
on various datasets. The α, β limit the impacts of backdoor
neurons and the similarity between benign and malicious
updates respectively. We restrained that α, β ≤ 1 considering
the impact of the main task and backdoor task training. The
results against FLAME are in Figure 4. For FMNIST, reducing
α (from 0.5 to 0.1) with a fixed β can make our malicious
updates less indistinguishable because the contributions of
backdoor neurons do increase. Reversely, fixing an α with
decreasing β could perform a moderate decline on stealthiness.
If we keep reducing either of them, Chironex suffers from a
significant drop on ASR. For example, ASR is only around
20% with α = 0.0 and fully declines to 0% with β = 0.0.
Whilst α, β = 0.5, Chironex can achieve the best stealthiness
against FLAME, with almost 100% ASR. The similar exper-
imental results can be observed on Tiny-ImageNet.

3) Influence of the Degree of Non-i.i.d. Level q: We set
several degrees of FEMNIST and FMNIST data distribution
q to test Chironex in the non-i.i.d context. In Figure 5,
we present its performance with robust FL aggregation rules
as compared to baseline backdoor attacks on FEMNIST. From
q = 0.1 to q = 0.9, Chironex achieves high ASR (>90%)
and maintains MA with a small descent (<5%). But under
RLR, it has a continuous drop on ASR, obtaining around 75%
with q = 0.9. While q = 1, both MA and ASR experience
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TABLE IV
ATTACK PERFORMANCE VIA MA (%) AND ASR (%) FOR DIFFERENT PROPORTION OF COMPROMISED AGENTS η (%)

Fig. 5. Attack Performance via MA (%) and ASR (%) for different degrees
of non-i.i.d. setting on FEMNIST. We compare Chironex (Ours) to Baseline
on different defenses.

Fig. 6. The differences between Pbd and Pc of each layer in ascend order
by TNS for classic CNN architecture (including 2 hidden dense layers) on
FMNIST.

a sharp decline (around 30% on ASR and > 50% on MA),
against Median and RLR. This is so because the malicious
agents cannot maintain the similarity between malicious and
benign updates, which makes the attack easily detectable by
the defenses. However, we see that Chironex performs more
stable with q = 1 under FLAME and DeepSight (both <20%
decrease on MA and ASR).

4) The Disparity of Neuron Lists Pbd and Pc: In Figure 6,
we demonstrate the distinction in ascending order between the
backdoor and clean neuron lists by subtracting approach. The
results show that certain backdoor neurons of each layer do

Fig. 7. Visualization of poisoned images on Tiny-ImageNet. Our attack
provides practical natural stealthiness of poisoned samples.

contribute to the backdoor task noticeably and significantly
but they deliver no influence on the main task.

E. Trigger Visualization

Although the attacker can arbitrarily choose the trigger
because the local dataset is not visible to the server in the
context of FL, using a more stealthy trigger naturally decreases
the cosine dissimilarity between benign and malicious param-
eters [13], which could make our malicious updates more
robust against defenses. To verify the natural stealthiness of
the designed trigger under human inspection, we showcase
poisoned samples on CIFAR-10 via our frequency trigger func-
tion in Figure 7. The results confirm that Chironex achieves
sufficient natural stealthiness that can evade human inspection.

VI. CONCLUSION AND DISCUSSION

We designed an effective and stealthy backdoor attack
throught frequency domain against FL by constraining the
influence of backdoor neurons and enforcing backdoor param-
eters to update towards benign parameters. The empirical
experiments show that our design can achieve a practical
attack performance and evade most of the current defending
strategies and human inspection. We hope this work could
inspire further studies in developing secure and robust FL
aggregation algorithms.
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A. Discussion

In this work, we concentrate on various computer vision
tasks, which have been the focus of numerous existing
works [13], [17]. In the future, we intend to expand the scope
of this work to other machine learning tasks, e.g., natural lan-
guage processing. Chironex requires additional computational
costs as we apply the step-forward approach. To reduce the
costs, we may allow malicious agents to collude together to
obtain a shared malicious update by split learning. The focus
of Chironex relies on stealthiness rather than persistence (e.g.,
Neurotoxin [19]) on attack effectiveness. Neurotoxin manip-
ulates malicious parameters based on gradients in magnitude,
which is different from Chironex focusing on constraining
the contributions of backdoor neurons (by smoothing their
contributions to other “less-influence” neurons). It produces
a clear increase in the dissimilarity of parameters and thus
it can’t provide the same level of stealthiness as ours. The
dissimilarity difference can be addressed in Chironex by
constraining the contribution of backdoor neuron parameters
(i.e, reducing the cosine dissimilarity between benign and
malicious parameters). We state that persistence is orthogonal
with the main focus of this work, and we leave it as an open
problem.
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