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A Comparison of Transfer Function Estimators 
Piet M. T. Broersen 

Abstract-The response of a linear time-invariant process on a 
stochastic input signal is characterized by the transfer function. 
Unknown past inputs and puture output are s0u1'ces of inaccuracy 
in relating a finite segment of an output signal via an estimated 
transfer function to the corresponding input segment. These end 
effects are usually characterized with error bounds on the Fourier 
transform of the output signal, but the error in an estimated 
transfer function can be quanti6ed more precisely in terms of bias 
and variance. The accuracy of three transfer function estimators 
is compared, showing an infinite variance for the Experimental 
" f e r  Function Estimate (ETFE) and a better etliciency for the 
estimators which are based on the cross spectrum. The variance 

or a deterministic signal. 
due to additive noise depends on whether the input is a stocha& 'C 

I. INTRODUCTION 

RANSFER functions can be estimated with parametric T models or nonparametrically with Fourier analysis. The 
precision of transfer functions is important for hard error 
bounds in robust control applications. In a class of parametric 
models, the mean-square error between the true and the 
estimated transfer functions can be modeled as a sum of two 
terms which both depend on the order of the estimated model 
[l]. The bias term decreases with the model order, and a 
variance term increases with this order. By considering the 
bias to be exclusively caused by estimating low-order models 
from data that are generated by higher order processes, this 
behavior can be used in a criterion for model order selection 
in parametric estimation of the transfer function [l]. Earlier 
results [2] showed the possibilities of manipulating the bias in 
transfer function estimation. 

The Empirical Transfer Function Estimate (ETFE) [3], [4] 
is a natural nonparametric estimate for transfer function es- 
timation, based on deterministic viewpoints. With stochastic 
inputs, this transfer function estimate is accompanied by extra 
terms. One term is the additive noise; the other describes 
transients due to the input signal that was present before the 
interval, together with the output transients afterwards. Such 
end effects are usually characterized by bounds on the Fourier 
transform, as an infinite summation of absolute values [3]-[5]. 
Tighter bounds can be derived if additional information about 
the estimated process is taken into account [6]. Expressions for 
the additive noise variance in transfer functions with periodical 
input have been derived [4], [7]. Also an explicit expression 
for the bias due to the end effects has been given [SI. 

Raw ETFE estimates are generally not accurate enough, 
so smoothing is required. Three possibilities are: averaging 
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of ETFE's, splitting of the data in subframes and using the 
average periodograms, and smoothing of long periodograms 
with a spectral window [3], [4]. This paper derives expressions 
for the variance of average quotients of real and complex 
stochastic variables, with application to transfer functions. A 
numerical simulation example shows that the proposed bias 
and variance expressions explain empirical results. Different 
ways of averaging the data in the Fourier domain give a differ- 
ent accuracy in the transfer functions estimated with stochastic 
inputs. When the input is a periodical or detenninistic signal, 
no bias is found, and the three ways of averaging give the 
same, smaller, variance. 

II. VAFUANCEOF STOCHASTIC QUOTIENTS 

The quotient of two real normally distributed zero-mean 
stochastic variables has a Cauchy distribution [9], which has no 
finite moments such as mean or variance. Introducing normally 
distributed, real, zero-mean z, with variance U:, independent 
from arbitrarily distributed q with variance U,", it follows from 
(Al) in the Appendix by scaling the variance of the zi to U: 

that 

The expectation of a quotient of two zem-mean complex 
variables exists and is finite. For complex independent zero- 
mean normally distributed variables, it is given by [lo, p. 
981 

where the * denotes complex conjugate. The theoretical vari- 
ance of a / b  is 00, which is a consequence of only two 
independent contributions of one complex number in the de- 
nominator; see also (Al) in the Appendix. Now, define bi with 
independent normally distributed real and imaginary parts, 
each i.i.d. N(0,  uz/2). By considering the .two independent 
real and imaginary contributions to the numerator whereas the 
denominator consists of 2K independent squares with variance 
ut/2 each, it follows elementarily from (Al) that, for K 2 2 

(3) 
1 1 1  -= 2 - bl 

bib: 
2K(2K - 2 )  U 3 2  K ( K  - 1) 2. var- - K (3) 

1 1 1  -= 2 - bl 

bib: 
2K(2K - 2 )  U 3 2  K ( K  - 1) 2. var- - K 

i=l 

Multiplication of (3) by a;, independent of b;, with Re (ai) and 
Im(ai) i.i.d. N(O,u:/2) and taking the average of K terms 
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in the numerator gives 
K 

i=1 

which is 0;) for K = 1, like the variance of a / b  before. 
Each complex variable can be seen as a realization of a 

Fourier transform for a single frequency. The distribution of 
a transform of N observations will tend to normality by the 
central limit theorem, and real and imaginary parts will be 
independent [5]. At least three real variables in (1) or two 
complex variables in (4) are required in the denominator of 
the variance expressions to obtain a finite result. Simulations 
with normal variables corroborate the theoretical variance ex- 
pressions; uniform distributions yielded only slightly different 
outcomes. 

111. STATISTICAL ANALYSISOF TFWVSF'ER F"CTT0NS 

The processes in this comparison of transfer function esti- 
mators can be described as 

m 

Y ( t )  = g ( W t  - + v ( t )  (5) 
k=O 

with y(t) the observed output signal, u(t) a zero-mean nor- 
mally distributed white noise with variance U:, and g(k) the 
impulse response with the stable transfer function 

m 

G(ej") = x g ( k ) e - j w k .  

k=O 

The additive output noise v(t) is a stationary series of random 
variables independent of ~ ( t ) ,  with zero-mean value, finite 
variance, and power spectral density h,(w). 

The Fourier transform of M observations of the output 
signal is defined as 

. M-1 

(7) 

The values obtained for w = 27rk/M, k = 0,1 , .  - , M - 1 
form the familiar discrete Fourier transform (DFT). Likewise 
U M ( W )  with u(t) and &(U) with v( t )  are DFT transform 
pairs. The relation between the transforms is given by [3], [5] 

(8) 

The term &(U) represents the end effects, which are the 
response on the input signal prior to t = 0 and the continuation 
of the response on ~ ( t )  for t 2 M 

YM(w) = G(ej")UM(w) + VM( w )  + R d w ) .  

seen that &(U) equals zero for periodical inputs with period 
M. 

Suppose that K N  observations of input and output signals 
are available. Transfer functions are usually estimated by 
smoothing raw estimates. This can be realized in three ways. 
The average of the ETFE is the fist estimator. It is defined 
as PI, V I  

where Y$)(w) is the Fourier transform of subframe i of 
length N. The second estimator is the quotient of the average 
cross spectrum between input and output divided by the input 
spec- 

The third altemative starts with a long Fourier transform of 
all K N  observations. Afterwards, a spectral window is used 
to estimate the cross spectrum in the numerator and the input 
spectrum in the denominator. Many different windows have 
been described [3], [5]. For ease of notation but without loss of 
generality, the Daniell window is used in this paper. With that 
window the third estimate becomes, for odd window length K 

(K--1)/2 I YKN(W + iA)u~~(w + iA)* 
i=-(K-1)/2 

G3(ei") = 
(K--1)/2 1 UKN(W + ~A)UKN(W + A)* 

i=-(K-l)/Z 
(12) 

where A equals 2 a I K N .  One effect of a window is a bias 
in G3(ejW),  which is proportional to the second derivative of 
the transfer function with respect to its argument, if the input 
spectrum is flat [3], [5]. This type of bias is eliminated in 
all results of this paper. The three estimates for the transfer 
function coincide for periodical inputs that fit on the interval 
N .  Differewes exist for stationary stochastic input signals. 

A. Bias and Variance of Transfer Function Estimators 
For a single frequency, each Fourier transform is just a 

complex random variable. An approximation to the bias due 
to the end effects can be derived easily with (2) as [8] 

bias [G1,2,3(ejw)] M Lej"G'(ej") M (13) 

where the prime denotes differentiation with respect to the 
argument ej". This will be a good approximation of the bias 
if the transform length M is such that the impulse response 
decays effectively to zero in this interval. That is anyhow a 

function. 
The variance of an estimated transfer function has a com- 

ponent due to the additive noise 131, [5], [71 and a second one 

- 1  

. C - + ~ ) ) e - j " ~  * (9) prerequisite for accurate nonpamnetric estimation of a transfer 
t=-k 

Several approximations for limits of this term have been 
derived as infinite sums of absolute values [3], [6]. It is easily 
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that depends on the end effects of the finite sample. With (8) 
it follows that 

G(ejw),  without subscript, is the theoretical transfer function 
of (6). This is a complex constant for every frequency, that 
may be disregarded in variance computations where RM ( w ) + 
VM(W) corresponds to ai and UM(W) to b; in (4). 

In Gl(ej"),  the division takes place before the averaging. 
Hence, the variance of Gl(e jw)  is equal to 1/K times the 
variance of a/b, which has an infinite value because at least 
three degrees of freedom are required for a finite result. This 
means that the estimator G I  (ej") has no finite variance if the 
input is a stochastic process. Both E[Y~(w)]and € [ U ~ ( w ) j  
are zero for the signals considered. This causes the estimate 
obtained with only one subframe to be highly irregular. 
The sample variance does not converge to any fixed value 
even after a great number of simulation runs, because it 
is very strongly influenced by that single realization where 
UM(W) is closest to its expectation zero. This effect has the 
strongest influence for the frequencies w = 0 and T ,  because 
U M ( W )  and YM(w) are real there; the absolute value for other 
frequencies has two independent contributions of the real and 
the imaginary parts and will less frequently become very close 
to zero. So the quotient of Fourier transforms ETFE is no 
sound basis for transfer function estimation with stochastic 
excitation. 

The denominator term of the variance of G2(ejw) and 
G3(ejw) requires E[UM(W)UM(W)*], the power spectral 
densityh,(w) that equals ~ 3 2 ~ .  Further, the additive noise 
is independent of the process, so and VM(W) are also 
independent and 

E({RM(4 + VM(W)){RM(w) + V M ( W ) ) * )  

= W h f ( w ) R l l . i ( w ) * ) )  + hw(w). (15) 

With (9), the end-effect term can be written as (see (16) at the 
bottom of this page). Here u(t) is assumed to be uncorrelated 
white noise, so the contributions of u(t) and u(t+M) in (9) to 
the product in (15) are equal, and cross-product contributions 
may be neglected. The total variance is approximated as twice 
the contribution of u(t) and follows with (4) as 

w # 0,T (17) 

for the frequencies with complex transfer function. The divisor 
in front should be 1/(K - 2) for the frequencies 0 and T ,  

because the transfer function is real there. The end-effect 
variance includes the divisor M, the length of the Fourier 
transforms. For G3(ejw) this variance is K times smaller than 
the variance contribution to GZ(ej"), because the end effect 
occurs only once in G3(ejw) and K times in G2(ejw), once 
for every subframe. 

w. SIMULATION RESULTS 

The sample variance of Gl(ej") and the accuracy of the 
variance formula (17) for G2(ejw) and G3(ejw) have been 
studied in simulations with many different processes, values 
of K ranging from 2 to 1000 and various signal-to-noise 
ratios. For stochastic input signals with normal distribution, 
the results are described accurately by using as divisor in (17) 
K - 1 instead of the value K that is usually given in the 
theory for the reduction of the additive noise in subframes [3]. 
Especially for low values of K, it can be seen clearly from 
the simulations that the variance has K - 1 as divisor. 

This section presents an example showing to what extent 
the proposed bias and variance expressions explain simulation 
results. An Infinite Impulse Response process with one left- 
hand and one right-hand side term has been used, given by 

z( t )  + az(t  - 1) = u(t) + h ( t  - 1) 

y(t) = z(t)  + v(t). (18) 

The formulas for the bias and variance of this process can 
be derived analytically, and they will be compared with 
the average of 200000 simulation runs for N = 64, K = 
9 ,a  = 0.5, b = -0.8,hU(w) = 1/27r, h,(w) = 0.2/2~. The 
theoretical results obtained with (13) and (17) are 

The bias in the imaginary part is multiplied by M in Fig. 1. 
The result of (19), multiplied by M, is presented by the drawn 
line for a comparison, showing that the bias is accurately 
described for all three estimators. The Fourier interval M 
in (19) is K times longer for G3(ejw) : M = KN, so 
the bias in G3(ejw) is K times smaller than the bias in the 
other two estimators. As Gl(ej") and G2(ejw) use the same 
length in the Fourier transform, the same bias formula applies 
to both. It is according to theory [lo] that the sample mean 
of Gl(eiw) converged, being the quotient of two zero-mean 

r m  oo -1  -1 1 
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Fig. 1. Imaginary part of the bias of the three transfer function estimators 
from 64 observations of the example process with stochastic input. The drawn 
line represents the theoretical result of (19) with M = N ;  00 and x x  
correspond to N times the bias in simulations in GI and G2, respectively, 
and ** is K N  times the bias of G3 in simulations. 

mriance of G2 and G3 

fi=q*my 
Fig. 2. Variance of GZ and G3 with the theoretical results of (19) as drawn 
lines and x x and ** for the simulations of GZ and G3, respectively. 

complex numbers. Averaging has no effect on the bias, and 
additive noise will not influence the bias. 

The variance of Gl(e j")  did not converge to any fixed 
value, not even without additive noise. The sampling inac- 
curacy of Gl(e j")  turned out to be much greater than that of 
the other two estimators, which are given in more detail in 
Fig. 2. Equation (19) is accurate for the variance of G2(ejw),  
and also other simulations showed the same sort of accuracy. 
As K equals 9 in this example, the difference between 1/K 
and 1/K- 1 will be 1196, so the agreement between the drawn 
theoretical lines and the marks of the simulations shows the 
accuracy of K - 1 as divisor. The variance of G3(ej") is 
roughly K times smaller than that of GZ(ej") in the case 
without additive noise. The accuracy of the formula is best for 
small K and for large N .  

Summarizing it can be stated that the formulas for bias 
and variance describe the actual behavior in simulations with 
stochastic input. Averaging with G l ( e j w )  is not advisable, 
because the theoretical variance of the estimated transfer 

function is infinite, with the practical consequence that an 
estimate will often exhibit some very inaccurate points in 
the frequency domain. Averaging with G2(ejw) yields better 
results, but the most accurate results are definitely obtained 
with G3(ejw) .  For a periodical input signal, all three estimators 
give identical results: no bias is present, and the smaller 
variance becomes h, / K h, . 

V. CONCLUSIONS 
Expressions have been derived for the bias and variance due 

to end effects in transfer function estimates with stationary 
stochastic excitations. It tums out that the equivalent of one 
degree of freedom is lost in the estimation of an average 
transfer function with stochastic excitation. Hence, the result 
of averaging the quotient of single Fourier transforms of output 
and input gives a poor estimate. The quotient of the average 
cross-spectrum estimate over subframes and the estimated 
input spectrum yields a better result, but the most accurate 
result is found by doing the averaging with a window, after the 
Fourier transform. It is remarkable that averaging in transfer 
function estimation loses the equivalent of one degree of 
freedom for stochastic inputs in contrast with periodical or 
deterministic inputs. 

APPENDIX 

Given are K independent, real, zero-mean, normally dis- 
tributed random variables x i ,  i = 1, . . . , K, each with unit 
variance. The variance of q / ( x ?  + zf + - - .  + x&)  can be 
written as 

m m  

with dV = dxldx2 . - . d x ~ .  By transforming the integral to 
spherical coordinates and using the mathematical results: 

m m  m 2 x n n  

K-2 
. Q j ) K - l +  

j = 1  

0 

it follows for K 2 3 that 

For K = 2, var{zl/(z: + zf)} becomes 00 because the inte- 
grand for dR contains R - l  which gives an infinite contribution 
when integrated from zero. 
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