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Abstract 
Conceptual hydrological models attempt to describe the non-linear behavior between climate drivers 
(precipitation and evaporation) and system output (e.g. stream or river flow). These models are a 
simplified and abstract representation of a catchment and should represent system characteristics such 
as topography and geology. The models are a tool to simulate the movement of water in the 
hydrological cycle. Hydrologists use the models for research, water resource assessment, planning and 
management of water. 

System representation in models is a challenge due to underlying uncertainties. Two main 
categories can be distinguished: data uncertainty and model uncertainty. Data uncertainty originates 
from difficulties in the measurements and from the interpretation of the data. Model uncertainty 
consists of two kinds of uncertainties: the model structure (e.g. is the model simplification appropriate?) 
and uncertainty in the model parameters. Effective parameters are used in conceptual models. The 
model parameters represent characteristics or properties of a catchment, such as the maximum storage 
capacity of the soil. These parameters are not directly based on observable quantities. They are an 
integration of spatial heterogeneous parts of the system above the scale of available observations. To 
estimate these parameters, calibration of the models is needed.  

The focus of this thesis is the parameter uncertainty in models. Many studies have been 
conducted to increase the physical meaning of the parameters. The use of constraints (regarding 
relations between parameter, fluxes and states) for the parameter sets prevents the model from 
overfitting in the calibration period. Finding adequate parameter values based on field observations, 
which represents the heterogeneity of a catchment on the spatial resolution and scale of the model, is 
considered much more challenging since we cannot directly derive the parameters from observable 
quantities. 

The objective of this thesis is to analyze the extent to which it is possible to make an estimation 
of parameter values or parameter distributions based on field observations (the precipitation, 
evaporation and discharge) and a given hydrological model structure. The goal is to avoid the use of 
uninformed prior parameter distributions during calibration by using available field data to generate 
informed prior distributions. The hypothesis is that a hydrograph can be divided into sub-periods and 
that each period has different “dominant” processes with associated parameters. Dividing the 
hydrograph into sub-periods to find individual parameters of the model could further increase model 
realism. In theory, uncertainty in the selected parameter sets should be reduced if the parameter 
information is directly extracted from the observed data. 

In this thesis, six different expert-knowledge inverse modelling methods are developed to find 

four parameter distributions. Each method uses sub-periods in the data and is coupled to the parameter 

of the model component representing that specific type of sub-period. For the first parameter, the 

ground water drainage parameter (Cs) of the slow reservoir, the fit and S-D methods are developed. 

These methods focus on long dry periods where the discharge of the slow reservoir is dominant. In the 

second method, percolation rates are calculated in periods with low flow. The parameter distribution 

restraining the maximum percolation rate (Pmax) is determined using calculated percolation rates. For 

the third parameter, which regulates peak discharges (D), clear individual peak discharge moments need 

to be filtered out in a discharge series. The method to find the D distribution uses the most suitable 

sub-periods, which are during spring and fall season. For the last parameter, distribution of the 

maximum catchment storage (SU,max), a water balance method is developed over sub-periods of the data 

set. In the bound method, winter periods are used for the lower bound of the distribution while the 

upper bound originates from summer periods. The inter-peak method is also based on a water balance 

but focuses on two subsequent peak flow moments. 

To test the expert-knowledge inverse modelling methods, the study was conducted in a 

synthetic environment, which made it easier to validate the parameter distributions obtained with the 

expert-knowledge inverse modelling methods. In this synthetic experiment, discharge data was 

produced by a model driven by real rainfall data and potential evaporation data. All forms of uncertainty 

were excluded. 

The effect of data uncertainty in the methods was investigated separately by conducting a 

sensitivity analysis. The same synthetic data was used; however the synthetic data was corrupted to 
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simulate data uncertainty. The validation of the methods was achieved based on the original parameters 

used to produce the discharge data. 

Last, an application of the methods upon real measured data was completed. The performance 

of the methods to find parameter distributions can no longer be assessed since in the real world the 

“correct” parameter values are not known. However, a comparison of the resulting informed prior 

parameter distributions of the methods with uninformed prior parameter distributions could be made 

with a Monte-Carlo sampling strategy calibration. 

In the synthetic experiment, all parameter distributions of the investigated model were 

correctly determined using the expert-knowledge inverse modelling methods. The sensitivity analysis 

revealed that the method to determine the Pmax parameter distribution was sensitive to data uncertainty. 

The determined Pmax parameter distributions did not include the original parameter of the corrupted 

synthetic data. Since many of the expert-knowledge inverse modelling methods use Pmax as input, other 

parameter distributions will be affected by the errors in the Pmax distribution. However, this issue does 

not lead to parameter distributions that do not include the original parameters for the affected 

parameters. 

In real-world application, insight is gained into the performance of the developed methods to 

find parameter distributions. A comparison was made in a Monte-Carlo sampling strategy between the 

calibration results obtained using an uninformed prior parameter distributions and the informed 

parameter distributions of the expert-knowledge inverse modelling methods. An uncertainty interval 

was constructed with the Generalized Likelihood Uncertainty Estimation (GLUE) method. The total 

area of the constructed uncertainty interval using the calibration results of the informed prior parameter 

distributions was less than half than the uncertainty interval constructed using the uninformed prior 

parameter distributions. The posterior parameter distributions of the informed parameter distributions 

was two to five times smaller than for the uninformed parameter distribution. The model performance 

of both calibrations did not deviate significantly, indicating sufficient performance of the expert-

knowledge inverse modelling methods to find parameters. If the performance of the model using the 

informed parameter distribution decreased significantly compared to uninformed parameter 

calibration, could this decrease be an indication that the model structure is unsuitable for the catchment 

and essential hydrological processes are left out. 

Further research should provide insight into the performance of the expert-knowledge inverse 

modelling methods in a synthetic experiment with model uncertainty. The assumption could be 

confirmed in this test that the expert-knowledge inverse modelling methods would be an extra 

indication for how suitable a model structure is for a catchment. In addition, further research should 

be conducted to see how the expert-knowledge inverse modelling methods behave in a larger 

catchment with more heterogenic characteristics. 
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Chapter 1 Introduction 

1.1 Hydrological modelling 
Hydrological models attempt to describe the non-linear behavior between climate drivers (e.g. rainfall, 

potential evaporation) and system output (e.g. stream or river flow, groundwater table fluctuations). 

The observed climatic drivers are included in mathematical equations describing the fluxes and different 

system states (water storage) to reproduce the observed hydrological response. The models are a tool 

to simulate the movement of water in the hydrological cycle. The hydrological models are a simplified 

and abstract representation of our hypothesis on the processes occurring in nature (Savenije, 2009). 

Hydrological models are used for many reasons, for example, as powerful tool in research as explained 

by Savenije (2009). In models, we try to encapsulate our knowledge. The models are the translation of 

our perception of the complex processes acting in nature. After formulating the model and the 

accompanied mathematical or numerical expressions of the processes, we need to carefully test these 

models to avoid misrepresentation of real-world processes. If the model is able to reproduce the 

physical processes, these well-tested models can be used to test the impact of interventions in the 

hydrological system. For example, a model might test what happens when the climate changes or if the 

land use in a catchment changes. Different analyses can be carried out to assess the availability of water 

or extrapolate in time to use the models for future predictions. The well-tested models give insight into 

the overall behavior of the system at a level unobservable in reality (Savenije, 2009). 

Assuming the models are well-tested and capable of reproducing the physical processes, these models 

are used as a tool to develop policy for water resource management (Hrachowitz & Clark, 2017). 

Changes in land use or climate regime can be tested to quantify the effect of these factors on flood risk 

or water availability. Furthermore, effects of water withdraw or storage creations could be analyzed. 

Last, models are used for early warning of floods or droughts. This information is used in the daily 

operation of our water control systems (Brauer, 2014; Savenije, 2009). 

1.2 Model types 
Hydrological models can have different degrees of complexity. The least complex models are called 

black box models. These are based on empirical relations, for example, the unit hydrograph (Clark, 

1945). In contrast to these simple models, the most complex models are often referred to as distributed 

physically-based models, with high complexity and spatial resolution. These models are based on 

differential equations, such as the Darcy-Richards’ equation for groundwater flow and the St. Venant 

equations for open water. MIKE-SHE (Refsgaard & Storm, 1995) is an example of these models. 

In between these two types of models are conceptual parametric rainfall-runoff models. These models 

consist of reservoirs representing storages and processes interacting with the storages (fluxes) (Savenije, 

2009; Brauer, 2014; Hrachowitz & Clark, 2017). Fluxes always occur per unit of time, and examples are 

precipitation, evaporation, percolation, subsurface flow and discharge. They can be represented by 

observed data or mathematically described. Examples of conceptual models are HBV (Bergström & 

Forsman, 1973), FLEX (Fenicia, et al., 2006) and WALRUS (Brauer, et al., 2014). This study uses 

conceptual model structures. 

1.3 Challenges in conceptual modelling 
The most prominent challenge in conceptual modelling is to identify a quantitative and functional 

relationship between climate drivers and output, like river discharge at the catchment scale. The models 

are a mathematical replica of the real hydrological system, which should reflect catchment 

characteristics like geology and topography (Gharari, 2016). This challenge originates from different 

underlying sources of uncertainties. Two main categories can be distinguished, data uncertainty and 

model uncertainty, and result in unreliable predictions even though the models perform well during the 

calibration period (Renard, et al., 2010; Hrachowitz & Clark, 2017). This could indicate an insufficient 
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representation of underlying processes (Seibert, 1997; Hrachowitz, et al., 2014). The next sections will 

elaborate on the uncertainties in modelling. 

1.3.1 Data uncertainty 

The driver in the modelling and calibration process is measured data. Therefore data uncertainty has a 

large influence on the performance of the models (Kavetski, et al., 2006; Ajami, et al., 2007). Both input 

data (like rainfall and evaporation) and measured output, like discharge, contain uncertainties. The data 

uncertainty originates from errors and uncertainty in the measurement technique. Interpretation errors 

also have a large influence on the total data uncertainty (Renard, et al., 2010). 

Interpretation errors are, for example, the extrapolation of the measured data over the catchment. 

Rainfall input into the models is typically measured by rain gauges. This measurement represents a  

small area of several square centimeters, while the hydrological model acts on a scale exceeding various  

square kilometers (Gharari, 2016). Rainfall is known to be a heterogeneous process (highly variable in 

both space and time), but in modelling, it is assumed to be uniform over (part of) the catchment, 

forming an important source of uncertainty (Butts, et al., 2004; Kavetski, et al., 2006; Gharari, 2016). 

In addition to the rainfall data, is evaporation another climate driver. Evaporation is also known to be 

a heterogeneous process and is also assumed to be uniform over (part of) the catchment, forming an 

extra source of uncertainty. 

The potential evaporation is often used as model input and forms another source of data uncertainty. 

Potential evaporation cannot be measured but is estimated using empirical formulas like the Penman 

equation (1948). The convergence to potential evaporation is achieved based on measurements of air 

temperature, wind velocity, net solar radiation and relative humidity. Since the potential evaporation is 

indirectly estimated, a larger uncertainty is associate with this forcing data. 

The estimation of discharge data includes multiple sources of uncertainty. Different techniques, such 

as rating curves, have been developed to determine discharge. For rating curves, measurements of the 

water level and flow velocity are needed. In particular, during high and extremely low flows, these 

measurements include errors due to underflow or bypassing of the gauging stations (Savenije, 2009). 

In addition to the measuring errors, errors in the rating curve itself are a large uncertainty source. 

Hydraulic conditions change over time or flow rate, which influences the rating curve. These changes 

in rating curves are often not considered, which makes the discharge estimates uncertain. Furthermore, 

more modern techniques for measuring discharge, like an Acoustic Doppler Current Profiler boat, have 

uncertainties in the measurements (González-Castro & Muste, 2007). 

1.3.2 Model uncertainties 

All models are our perception of the world, and models are simplifications of the hydrological system, 

regardless of the degree of spatial or physical complexity in a particular model (Beven, 2011; Gupta, et 

al., 2012). The model’s uncertainty is a consequence of the simplification and assumptions made by 

developing the model with a mathematical hypothesis (Clark, et al., 2008; Renard, et al., 2010; Gupta, 

et al., 2012). Identifying and selecting the most appropriate model structure is a significant challenge 

for the hydrological community (Clark, et al., 2008). Savenije (2009) argued that hydrologist should 

always remember a degree of “art’” is included when developing a model structure. Many studies have 

focused into finding more appropriate model structures (Clark, et al., 2008; McMillan, et al., 2011; 

Willems, et al., 2014). 

Another challenge in modelling the hydrological system is the presence of numerous non-linear 

processes. Stream discharge often depends non-linearly on rainfall, which implies that unique 

precipitation-discharge relationships do not exist (Savenije, 2009). There are several reasons for this 

non-linearity, such as the hysteretic processes. An example of a hysteric process is the water flow in the 

unsaturated zone that acts differently under wet and dry conditions. Another cause of non-linearity is 

threshold behavior. An example is the interception process (immediate evaporation form water stored 

on the canopy and soil surface). This is the first process after the start of a rainfall event and will start 
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other processes only when it reaches maximum capacity. The maximum capacity is different for each 

catchment and season (for example, in summertime, interception storage is large due to the leaves on 

the trees). Last, non-linear equations, such as the St. Venant equations, contribute to the non-linearity 

of a system. Lack of knowledge about the non-linearity in a system forms a source of uncertainty in the 

model structure (Savenije, 2009). 

The issue of scale adds to the uncertainty in hydrological models. Hydrological processes act on many 

different scales. We can observe processes in scales from millimeters to maybe 100 meters. The 

question arises whether hydrological processes acting on the catchment scale are similar to our 

observable scale (Beven, 2006; Savenije, 2009). How processes act on a larger scale and how we model 

the processes are connected to the fact that models are our perception of the complete hydrological 

cycle. This makes it likely that our assumptions are incorrect. 

Parameter uncertainty also plays a role in model uncertainty. In conceptual models, effective parameters 

are used. These parameters are not directly based on observable quantities. The small-scale 

observations, for example measurements of the soil hydraulic conductivity, often fail to represent the 

larger features, like macropores, of a system. Parameters are frequently an integration of spatial 

heterogeneous parts of the system above the scale of available observations. To estimate these 

parameters, calibration of the models is needed (Gharari, et al., 2014; Willems, 2014; Hrachowitz & 

Clark, 2017). Due to the difficulties with identifying the effective parameter values in a heterogenic and 

complex system, the degree of realism in the conceptual models is limited (Gharari, et al., 2014). Many 

studies have been conducted to increase the physical realism of the parameters, for example, by 

incorporating different data sources (Freer, et al., 2004) or extracting more information from data, like 

hydrological signatures (Euser, et al., 2013) 

During the calibration process, another problem arises: the issue of equifinality, wherein multiple sets 

of parameters can give equally accurate reproduced hydrological responses (Beven, 1996). During 

calibration the goodness-of-fit is based on the comparison of measured stream discharge and modeled 

discharge. However, a strong interaction between parameters is present, and by evaluating the model, 

the efficiency of the complete set is tested. The evaluation of the individual parameters is difficult 

(Willems, 2014). Equifinality can indicate that the model has an insufficient representation of the 

underlying processes (Gharari, et al., 2014) or that models are simple too complex (Savenije, 2009; 

Willems, 2014). With increased complexity, over-fitting to the observed data is possible during model 

calibration. 

The use of constraints (regarding relations between parameter, fluxes and states) to the parameter sets 

prevents the model from overfitting in the calibration period. This results in a decrease of model 

uncertainty. Thus, the models have a higher predictive power and a higher skill to reproduce the overall 

system response (Gharari, et al., 2014; Hrachowitz, et al., 2014). However, these studies focused on 

relations between parameters and fluxes. Finding adequate parameter values from field observations, 

which represent the heterogeneity of a catchment on the spatial resolution scale of the model, is 

considered much harder (Gharari, et al., 2014; Hrachowitz & Clark, 2017). 

1.4 Scope 
As mentioned above, the model uncertainties are twofold: (1) structural and (2) parameter. For this 

thesis, the parameter uncertainty is investigated. This study will look into the possibilities to find 

adequate parameter values or distributions from field observations to further limit the equifinality. 

1.5 Research objective 
Based on the problem statement and the scope, the objective of this research is to identify, determine 

and quantify the extent to which it is possible to estimate the parameter values or parameter distribution 

based on field observations and a given hydrological model structure. In a traditional calibration an 

uninformed parameter distribution was determined for each individual parameter. The goal of the 

research is to avoid the use of uninformed prior parameter distributions during calibration by using 
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available information from the field observations to generate informed prior distributions. The model 

functions as the hypothesis on the processes occurring in the catchment (Figure 1). 

 
Figure 1. A visual representation of the objective of this research. The objective is to estimate the parameter values 
or parameter distribution based on field observations and a given hydrological model structure.  

1.6 Research questions 
Based on the research objective formulated above, the following main research question was developed 

to be answered in this study: 

To what degree is it possible to avoid the use of uninformed prior parameter distribution in 

the calibration of a conceptual hydrological model by using available information from the 

field observations to generate informed prior distributions? 

Sub-questions were formulated to provide additional information to answer the main research question. 

These sub-questions indicate the important issues to be addressed. 

1. Can we select sub-periods from a hydrograph typical of different hydrological process, which can be coupled to 

model components, and how can this help to determine model parameters? 

The hydrograph is an integrated representation of the system and is built from multiple interacting and 

spatially variable hydrological processes. The measured hydrograph was separated into periods that 

cover different response modes, like dry periods, draining periods and wet periods. The parameter 

identification was based on sub-periods or different event types. 

For this question the key moments, or timing, of the different processes were analyzed to split the 

hydrograph into periods that cover different response modes. The parameters connected to these sub-

periods were estimated. 

The hypothesis is that each period has different “dominant” processes with associated parameters. 

Using the sub-periods of the hydrograph to find individual parameters of the model could further 

increase realism. In theory, the uncertainty and equifinality in the parameter sets should be reduced if 

the parameter information is directly extracted from the observed data. Validation of the model 

parameters against observations remains problematic; therefore, a synthetic experiment was conducted 

to validate the methods to obtain parameter distributions. 

2. To what extent are the methods to obtain the parameter distributions sensitive to data errors? 

In the synthetic experiment, all data and model uncertainty was normally excluded. However, for this 

question, the effect of data uncertainties on the parameter determination methods was investigated by 

corrupting the synthetic data set. 
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3. To what extent can the methods be used for real rainfall-runoff data? 

For this last question, measured data was used to find a parameter set. In this case, real data and model 

uncertainty were present. The performance of the methods to determine parameter distributions could 

no longer be assessed by looking at parameters to produce the data. However, a comparison of the 

methods could be made with a Monte-Carlo sampling strategy with uninformed parameter 

distributions. 

1.7 Thesis outline 
A research outline was developed to answer the research questions and is presented in Figure 2. The 

research outline consists of a theory section, modelling section and conclusions. Methods developed 

in the theory section were applied in the modelling section, which is divided into three sub-parts 

according to the sub-questions. 

An introduction of study area is given in Chapter 2. In addition, the investigated models are presented 

to assess the methods used to define parameter distributions; the extensive model descriptions can be 

found in Appendix 1. Furthermore, an explanation of the data sets used in this study is provided. The 

distribution function for daily evaporation to hourly resolution is given in Appendix 2. 

The third chapter has two sections. First the theory portion of the thesis outline. This consists of a 

method explanation for each parameter to determine the parameter distribution under consideration. 

Second is the description of the method used to obtain the desired results for the application of the 

methods. This section consists of three different components, according to the research outline: the 

synthetic experiment, the sensitivity analysis and the real-world application. 

The most important summarized results of the methods to determine parameter distributions and the 

different research sections are presented in the fourth chapter. The complete results are given in 

Appendix 4, Appendix 5 and Appendix 6. The methods and results are discussed together with their 

limitations or weaknesses in Chapter 5. In the last chapter, the answers to the research questions are 

presented. 
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Figure 2. Representation of research outline: theory portion where methods are developed to find parameter 
distributions, modelling portion to test the developed methods, which is divided into three sub-parts: (1) synthetic 
experiment, (2) sensitivity analysis and (3) real-world application. Conclusions are drawn in the last section. 

  



 18 

Chapter 2 Data and Models 

2.1 Study area 

2.1.1 Kervidy-Naizin catchment, France 
In the main portion of the research uses data originated from the Kervidy-Naizin catchment in France 

(Figure 3). The catchment is located in the center of French Brittany, approximately 100 km west of 

Rennes. The surface area of the catchment is 4.9 km2. 

The catchment observatory is part of the French network of Drainage Basins (Réseau des Bassins 

Versants, RBV). The data originates from the years 2005 through 2011 and can be downloaded from 

the ORE-AgrHyS website (https://www6.inra.fr/ore_agrhys). 

The catchment area has a humid climate with an average annual precipitation of 900 mm. The monthly 

average temperature varies between 5.4°C in January to 17.4°C in August. The potential 

evapotranspiration has an annual average of 700 mm and is considered stable over the years. 

The measurements were conducted at a weather station at Kervidy. This station is located 

approximately 1 km from the catchment outlet and records hourly rainfall and all required 

meteorological data needed to calculate the potential Penman evaporation: air and soil temperatures, 

air humidity, incoming nett radiation, wind direction and speed. 

With the Penman equation, it is possible to calculate the daily potential evaporation. As the available 

precipitation data has an hourly resolution, the potential evaporation is distributed to hourly potential 

evaporation. A short description of the method to distribute daily potential evaporation data to hourly 

data, suggested by Fleming (1970), is presented in Appendix 2. 

 

Figure 3. Kervidy-Naizin catchment in France, which is part of the ORE-ArtgHys network (Aubert, et al., 2013). 
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2.1.2 Precipitation stations, the Netherlands 
Precipitation errors were added in the sensitivity analysis by using two different time series. The stations 

used are both located in the Netherlands and owned by the KNMI, the royal Dutch meteorological 

institute. The first station is the Hupsel station (52° 04' N.B. 06° 39' O.L), and the second station is the 

Twenthe station (52° 16' N.B. 06° 53'O.L.). The distance between the stations is approximately 40 km 

(Figure 4). 

 

 
Figure 4. Measuring stations Twenthe and Hupsel, part of the KNMI network (www.meteobase.nl) 

2.2 Model description 
In this study is worked with lumped conceptual model structures. The model configuration consists of 

structures with an increasing complexity to identify the extent to which it is possible to extract 

parameter values or distributions of individual processes using the hydrograph. By increasing the 

conceptualized processes, the heterogeneity of a catchment was better captured in each step. Each 

model consists of several components that represent one or more different hydrological processes. The 

models are based on the model structures described in Fenicia, et al. (2006), Kavetski and Fenicia, 

(2011) and Euser et al. (2013). 

The model schematizations of each individual model are depicted in Figure 5. There are two main lines 

in the model structures: preferential flow paths (left) and percolation (right). The last model (model 9) 

is a combination of models 4 and 7. All models take the observed precipitation (P) and potential 

evaporation (Ep) as input. The output of the models is the simulated total discharge (Qt) and the 

simulated actual evaporation and transpiration (E, T). The models consist of, at most, two reservoirs: 

the unsaturated zone reservoir and the slow runoff reservoir. The reservoir storage is referred as Sx in 

which the index x equals U (for unsaturated zone reservoir) or S (slow runoff reservoir). 
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The water balance equations for each reservoir in the models are presented in Table 1. The fluxes 

entering and leaving the reservoirs are given in these water balance equations. The constitutive formulas 

of the models are provided in Table 2 and represent the mathematical approximation of the fluxes. 

Due to time constraints during the research, the choice is made to exclude models 5 and 8. These 

models include also a fast reservoir. As a consequence of excluding models 5 and 8, this reservoir is 

not included in model 9. 

A complete description of each model is given in Appendix 1. 

Water balance equations  M 1 M 2 M 3 M 4 M 6 M 7 M 9 
𝑑𝑆𝑢

𝑑𝑡
= 𝑃(𝑡) − 𝐸(𝑡) − 𝑄𝑠(𝑡) x       

𝑑𝑆𝑢

𝑑𝑡
= 𝑃(𝑡) − 𝐸(𝑡) − 𝑄𝑠(𝑡) − 𝑄𝑓(𝑡)  x      

𝑑𝑆𝑢

𝑑𝑡
= 𝑃(𝑡) − 𝐸(𝑡) − 𝑄𝑢𝑓(𝑡)   x x    

𝑑𝑆𝑢

𝑑𝑡
= 𝑃(𝑡) − 𝐸(𝑡) − 𝑃𝑒𝑟𝑐(𝑡)     x   

𝑑𝑆𝑢

𝑑𝑡
= 𝑃(𝑡) − 𝐸(𝑡) − 𝑃𝑒𝑟𝑐(𝑡)  − 𝑄𝑓(𝑡)      x  

𝑑𝑆𝑢

𝑑𝑡
= 𝑃(𝑡) − 𝐸(𝑡) − 𝑃𝑒𝑟𝑐(𝑡)  − 𝑄𝑢𝑓(𝑡)       x 

𝑑𝑆𝑠

𝑑𝑡
= 𝑅𝑠(𝑡) − 𝑄𝑠(𝑡)    x    

𝑑𝑆𝑠

𝑑𝑡
= 𝑃𝑒𝑟𝑐(𝑡) − 𝑄𝑠(𝑡)     x x  

𝑑𝑆𝑠

𝑑𝑡
= 𝑅𝑠(𝑡) + 𝑃𝑒𝑟𝑐(𝑡) − 𝑄𝑠(𝑡)       x 

Table 1. Water balance equations of the models used in this study; the x indicates presence in the model structure  

 

 

 

 

 
 
 
 

 
Table 2. Constitutive formulas in the model structures; the x indicates presence in the model structure  

2.3 Synthetic data 
Synthetic data sets are used for both the synthetic experiment and sensitivity analysis. The discharge 

data of these sets originates from model output which uses real precipitation and potential evaporation 

data as input, resulting in discharged data with no errors. The French forcing data is used for these 

experiments. Only the precipitation error analysis of paragraph 3.3.1 makes use of the Dutch forcing 

data. 

To produce the discharge data parameter sets are chosen randomly. Each model produces three sets 

of data using three unique sets of parameters. The only exception are the parameter sets for model 9, 

which originate from a Monte-Carlo sampling strategy were set 1 and 2 have an equal performance 

regarding the observed discharge in France. 

The parameter sets for the different models and produced discharge data are given in Appendix 3. 

 

Constitutive formulas M 1 M 2 M 3 M 4 M 6 M 7 M 9 
E+T = min (Su,Ep) x    x   

E+T = 
𝑆𝑢

𝑆𝑈,𝑚𝑎𝑥
Ep  x x x  x x 

𝑃𝑒𝑟𝑐 = 𝑃𝑚𝑎𝑥     x   

𝑃𝑒𝑟𝑐 = 𝑃𝑚𝑎𝑥
𝑆𝑢

𝑆𝑈,𝑚𝑎𝑥
       x x 

𝑄𝑓 =  𝑚𝑎𝑥(0, 𝑆𝑢 – 𝑆𝑈,𝑚𝑎𝑥)  x    x  
𝑄𝑢𝑓 =  𝑚𝑎𝑥(0, 𝑆𝑢 – 𝑆𝑈,𝑚𝑎𝑥)   x x   x 
Rs = D * Quf    x   x 
𝑄𝑓 = (1 − 𝐷) ∗ 𝑄𝑢𝑓    x   x 

𝑄𝑠 =
𝑆𝑠

𝐶𝑠
  x x x x x x x 
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Fluxes Parameters 

Qt = total discharge  Cs = Groundwater drainage parameter 
Qs = slow discharge  Pmax = Maximum percolation rate 
Qf = fast discharge SU,max = Maximum unsaturated zone storage 
Quf = overflow unsaturated zone D = Partitioning coefficient fast and slow reservoir 
Rs = preferential recharge  
Perc = percolation  
T = transpiration   
E = evaporation   
Storages   

SU = unsaturated zone reservoir  
SS = slow runoff reservoir  

Figure 5. A schematic representation of the hydrological model structures used in this study. The fluxes and 
reservoir names are shown in black. The related parameters are shown in red. 
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Chapter 3 Methods 
The methods used in this research are explained in this chapter. The theory to determine parameter 

distributions for the different parameters in the models is explained in Section 3.1. A description of the 

approach to obtain insight into the behavior of the methods explained in the theory section is given in 

the second half of this chapter. The methods are applied in three tests, according to the research outline: 

the synthetic experiment (Section 3.2), sensitivity analysis (Section 3.3) and the real-world application 

(Section 3.4).  

3.1 Methods to determine parameter distribution 

3.1.1 Groundwater drainage parameter (CS) 

The groundwater drainage parameter (Cs) is a characteristic of the linear approximated reservoir that 

links the storage to the discharge. The physical meaning of this parameter could be explained as the 

mean response time of water in the saturated zone. 

3.1.1.1 Fit method 

To determine the Cs value of a reservoir, multiple methods have been developed, for example, the 

master recession curve analysis (Lamb & Beven, 1997). In this analysis, various individual recession 

curves of the hydrograph are used to construct the master recession curve (MRC). To select the 

recession curves, some conditions are set. For a minimum period (multiple hours or days), all other 

fluxes, like precipitation and evaporation, should be zero (for example, during the night). During this 

period, the storage change of the reservoir is driven by the discharge (1).  

 𝑑𝑆𝑠

𝑑𝑡
= −𝑄𝑠(𝑡)  (1) 

The master curve recession analysis has its drawbacks. With short data series, not enough recession 

periods can be selected to construct one synthetic curve, resulting in a large error in the estimation of 

the Cs value. This research suggests another approach in which individual recessions are used to 

determine the Cs value. This approach provides insight into the distribution of the individual Cs values. 

A recession must meet the following requirements: 
1. The recession has a minimum length (automatically set to 10 h). 1 

2. During a recession period, no rainfall is measured and, for model 1, also no potential 

evaporation is measured during the recession. 

3. The sum of the discharge is larger than 0.1e-10 to prevent errors. 2 

4. To exclude the effects of other fluxes with delays in the catchments, for multiple days 

(automatically set to a minimum of two days) prior to the selected recession, no 

precipitation is measured. 3 

5. The end of the recession is just before the start of a rainfall event. 

A part of a discharge series with a selected recession in illustrated in Figure 6. A complete discharge 

series with all selected recessions is depicted in Figure 7. 

 

                                                      

1 This is the maximum length possible during night time; shorter recession lengths have a large impact on the 
final Cs value.   
2 With lower values, the method provides unreliable results, even though the model can produce lower discharges. 
In addition, measurement techniques cannot be measured with this precision.  
3 Shorter dry periods appeared to have a significant impact on the final Cs value.   
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Figure 6. Observed time series of hourly precipitation (light blue), hourly potential evaporation (orange) and 
discharge (blue dotted line). Data originates from model 1 parameter set 3 in the years 2005-2011. Example of the 
selected recession (black) was used in the fit method. The recession has a length of 10 h, no precipitation was 
measured two days prior nor during the recession, no potential evaporation was measured during the recession and 
the end of the recession was just before the start of a precipitation event. 

 

 
Figure 7. Observed time series of hourly precipitation (light blue), hourly potential evaporation (orange) and 
discharge (blue dotted line). Overview of all selected recessions (black) were used in the fit method. Data originates 
from model 1 parameter set 3 in the years 2005-2011. 

The Cs is determined in two steps. First, a fit is made through each recession using an analytical equation 

(2). To assess the performance of the fit, the Nash-Sutcliffe (NS) objective is calculated4. All recessions 

with an NS < 0.8 are discarded. Recessions with a lower performance are considered influenced by 

other fluxes or measurement errors. 

 𝑄 = 𝑄𝑜𝑒
𝑡

𝐶𝑠 (2) 

An example of a recession and a fit is provided in Figure 8. The original Cs value is 200 h and the Cs of 

the fit is 199.5 h. The small error of 0.5 h can be explained. The recession is produced in the models 

with the empirical relation (4), while the fit is made using an analytical solution (equation (2)). 

                                                      

4 The Nash-Sutcliffe objective function is given in Table 5. 

Figure 8 
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Figure 8. A selected recession from the data of model 4 parameter set 1 (blue dotted line) with an original Cs value 
of 200 h and a fit (orange line) with an estimated Cs value in the fit method of 199.5 h. 

The next step in the method is to determine the exact Cs value. The relations below are used to 

determine the empirical relation of the recession. Here Ss(t=0) originated from equation 3 with Qi = 

Qobserved at t = 0. A solve package5 in the Python programming language is used to solve the problem. The 

start value for solver is the Cs value originating from step 1 (the analytical fit). 

The Cs distribution of the catchment is given by all calculated Cs values with multiple no rain periods. 

Multiple no rain periods are used to limit the errors in the distribution.  

Ss(Q)  𝑆𝑠,𝑖 = 𝑄𝑖𝐶𝑠 (3) 

Q (S) 𝑄𝑖 =
𝑆𝑠,𝑖

𝐶𝑠
 (4) 

S(S,Q) 𝑆𝑠,𝑖+1 = 𝑆𝑠,𝑖 − 𝑄𝑖𝑑𝑡 (5) 

Ss (S) 𝑆𝑠,𝑖+1 = 𝑆𝑠,𝑖 (1 −
𝑑𝑡

𝐶𝑆
) (6) 

3.1.1.2 S-D method 

Recharge of the slow reservoir has a significant influence on the recession curve, according to the paper 

by Fenicia et al. (2006). To minimize the influence of the recharge, the Storage-Discharge (S-D) method 

was developed based on this paper. Models 6, 7 and 9 indicate recharge over an extended period due 

to percolation. In an iterative process with an initial guess of the Cs value and model runs, the “correct” 

Cs can be reached for recessions with recharge. The following steps were developed based on Fenicia 

et al. (2006). 

Step 1 : Initial Storage-Discharge relation (S-D relation) 
The fit-method functions as an initial estimation of the Cs under the assumption that the slow reservoir 

does not receive recharge. It is possible to construct a S-D relation of that recession by integrating the 

recession over time (Figure 9). For the starting point of the S-D relation, the initial estimation of the 

Cs is needed. This starting point is determined using equation 3. The slope of the S-D relation is equal 

to the Cs. 

                                                      

5 The solve package used is scipy.optimize.curve_fit 
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Figure 9. A selected recession from the data of model 9 parameter set 1 (left); the corresponding storage-discharge 
relation with estimated Cs value of 636 h (slope S-D relation) (right)   

Step 2: Calculate recharge (Ptot) 

For the initial S-D relation is assumed that during recession periods, no recharge enters the slow 

reservoir. Recharge could, for example, be percolation (Perc) or preferential recharge (Rs). To assess the 

impact of the total recharge (Ptot), the recharge first needs to be calculated for the corresponding 

recession segments. This Ptot is calculated by running the model using the estimate of the Cs value and 

the other parameters determined with the methods using the estimate of the Cs. In the examples of this 

section, the other parameters are assumed to be known. 

Step 3: Recalculate the S-D relation 

With the calculated recharge, it is possible to determine a new S-D relation for each recession (Figure 

10). In contrast to the calculation of the S-D relation in step 1, where only the time integral is taken 

over the discharge, now the time integral is taken over the difference between the discharge (outflow 

of the slow reservoir) and the Ptot (inflow to the slow reservoir). 

 
Figure 10. Original storage-discharge relation, time integral over the recession (blue line) and the new recalculated 
(orange line) storage-discharge relation, time integral over the difference between the recession (outflow of the slow 
reservoir) and the Ptot (inflow to the slow reservoir). Data originates from model 9 parameter set 1. 

As Figure 10 illustrates, the new S-D relation is much steeper. The flattening of the old S-D relation is 

caused by the constant increase in storage due to the recharge of the slow reservoir. In contrast to what 

the individual recessions show, the slow reservoir needs to empty faster than initially thought to 

compensate for the recharge. 

Small errors are made in this method since the initial storage calculated with equation 3 assumed that 

the S-D relation is without recharge. The method does not take into account the Ptot at the end of a 

recession. To minimize this error, only recessions with a tail end lower than a pre-set maximum 

discharge value were used in the analysis. The pre-set maximum discharge was chosen by visual 

inspection of the data. The pre-set maximum discharge is equal to the maximum discharge during 

summer.   
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3.1.2 Partitioning coefficient fast and slow reservoir (D) 
Excess water from the unsaturated zone, the proportion of water that cannot be stored, is routed 

toward the saturated zone (Ss) and the fast lateral runoff processes (Qf). The partitioning coefficient (D) 

regulates the distribution between the preferential groundwater recharge (Rs) toward the Ss and Qf (e.g., 

preferential flow or saturated overland flow).  

To determine D, the total volume of the overflow (O) needs to be calculated, as well as one of the two 
flows (Rs or Qf). First, the overflow moments need to be found in the time series. An overflow moment 
is defined as the following: 

1. In the next time step, the discharge is increased by 1.5 Q[ti]. Where Q[ti] is the discharge 
of the current time step. 

2. After an overflow moment, the discharge is decreased significantly, by at least 0.5 Q[ti]. 6 
3. During wet periods overflow is happening often, sometimes even each time step. The 

calculation of D will be impacted if it is tried to calculate during this period with multiple 
peak flows. An extra criteria is introduced: the discharge of both point 1 and 2 needs to be 
below a predefined maximum discharge (maxQ). This value is the discharge which is 
exceeded for the most peak discharges and is defined by visual inspection. 

With the information from the observed discharge it is possible to determine the total overflow volume, 
the Qf and the Rs. The first step is to calculate the expected flow during the peak flow using the Cs 
(Qexpect (equation 7)) represented by the green dot in Figure 11. With the discharge measured after the 
peak flow event, it is possible to calculate the expected flow from the saturated zone the purple dot 
(QSs (equation 8)). From here, it is possible to calculate the volume of the overflow (equations 9, 11 
and 12). The last step is to calculate D using (13. 
 

 
Figure 11. Selected overflow moment observed discharge (orange, red and brown dots); expected flow during the 
peak flow calculated with the Cs (green dot) and expected flow from the saturated zone calculated with the Cs 
(purple dot). The difference between the red and purple dots represents the volume of fast lateral runoff processes, 
while the difference between the purple and green dots represents the extra discharge from the slow reservoir due 
to additional water from the preferential recharge. 

Q (expect)  𝑄𝑒𝑥𝑝𝑒𝑐𝑡 = 𝑆𝑠,𝑡+1𝐶𝑠 = (𝑆𝑠,𝑡+0 − 𝑄𝑡+0)𝐶𝑠  (uses (3) and (5)) (7) 

Q (Ss) 𝑄𝑆𝑠 =
𝑆𝑠,𝑡+1𝑑𝑡

𝐶𝑠
=

Qo[t+2]CS

(1−
dt

Cs
)𝐶𝑠

  (uses (3) and (6)) (8) 

Qf  𝑄𝑓 = 𝑄𝑜[𝑡 + 1] − 𝑄(𝑆𝑠) (9) 

QRs 𝑄𝑅𝑠 =  𝑄𝑜[𝑡 + 1] − 𝑄𝑓 − 𝑄𝑒𝑥𝑝𝑒𝑐𝑡 (10) 

Rs  𝑅𝑠 =  𝑄𝑅𝑠 ∗ 𝐶𝑠 (11) 

O (D) 𝑂 = 𝑄𝑓 + 𝑅𝑠 = (1 − 𝐷)𝑂 + 𝐷 ∗ 𝑂 (12) 

D(Qf,O) 
𝐷 = 1 −

𝑄𝑓

𝑂
 

(13) 

                                                      

6 The factors of 1.5 and 0.5 were set by expert judgment; variations in these values did not give significantly 
different results.  
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3.1.3 Maximum unsaturated zone storage (SU,max) 
The maximum unsaturated zone storage (SU,max) is a characteristic of the unsaturated zone reservoir. 

The SU,max reflects the maximum soil moisture capacity in the root zone of the catchment. When the 

maximum is exceeded, the fast lateral flow is activated. This parameter also indirectly controls the 

evaporation and percolation rates. 

The method to determine the SU,max consists of three steps. A data preparation step is followed by the 

determination of the bounds for the SU,max. The last step calculates the SU,max distribution with the inter-

peak method. 

Step 1: Data preparation 

The models assume that during rainfall events, no evaporation flux is present. However, the daily 

potential evaporation is continuously distributed over the sun hours. The data set is prepared to take 

this error into account. In the data series, for the time steps in which precipitation is measured, the 

potential evaporation is set to zero. 

Step 2: Defining the bounds for SU,max 

The water balance characteristics of the catchment are used to define the boundary values of the SU,max. 

The method used in this thesis is based on the paper of McMillan et al. (2011). This method examines 

the response to the catchment’s rainfall events by dividing the time series into individual events. The 

volume of rainfall causing a rapid increase in discharge (e.g. the threshold behavior of a catchment) 

could be coupled with the maximum storage of the unsaturated zone. 

A storm event is identified using the rainfall time series; the values of rainfall intensities were taken 
from the paper by McMillan et al. (2011) and are defined by expert judgment: 

1. The main portion of the event has a predefined length: standard set to 20 days. 7 This 

portion should begin with a rainfall intensity greater than 0.5 mm/day for a given hour. 

The mean rainfall over this part of the event should be larger than 5 mm/day, or events 

longer than 60 days should exceed a total volume of 300 mm. 

2. The rainfall tail is considered to discover the development of the discharge after the main 

volume of rain has fallen. The end of a storm event is defined when the rainfall intensity 

in the following 36 h after the main event length is less than 0.5 mm/day for a given hour. 

The water balance is calculated over a particular part of the rainfall event. Here, the discharge time 

series is leading. With an observed significant increase in discharge after the start of the rainfall event, 

the threshold of the catchment is reached. A significant increase in discharge is defined as an increase 

in discharge larger than 105% of the current discharge8. The red dots in Figures 13, 14, and 15 indicate 

a significant increase in discharge. 

The water balance is taken over the time series from the start of the event until the time step in which 
the discharge is increased: 

1. The minimum threshold is defined as the sum of the rainfall minus the losses. The losses 

are not constant: for models 1 through 4, only the evaporation is defined as a loss; for 

models 6 through 9, percolation is also considered a loss. 

2. The maximum threshold is defined as the sum of the rainfall minus 30% of the maximum 

percolation in the water balance period. The 30% percolation is subtracted to prevent an 

over estimation of the maximum. The maximum is only set if the rainfall exceeds the 

potential evaporation and the minimum threshold of that event is above zero. 

                                                      

7 Depending on the catchment properties, this period can be extended or shortened. In catchments with expected 
large storage capacities, longer periods are needed. Testing for multiple durations is recommended. 
8 The value of 105% is set to prevent interruptions in the water balance period due to small variations in discharge 
often caused by percolation. For different data sets, this value could vary.   
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Figure 12. Result of the bound method using different event lengths for data originating from model 4; the estimated 
minimum value of SU,max= 160 mm, and the estimated maximum = 287.5 mm 

For different event lengths, the largest threshold can be calculated for both the minimum and the 

maximum thresholds (Figure 12). The storm (time series used for the water balance) used to determine 

the minimum threshold (Figure 13) may be different from the storm used to calculate the maximum 

threshold (Figure 14). 

 
Figure 13. Selected individual event for the time series originating from model 4 set 2; SU,max = 235 mm; length of 
the event is 150 days 

 
Figure 14. Selected individual event for the time series originating from model 4 set 2; SU,max = 235 mm; length of 
the event is 150 days 

It is not necessary to check whether a long dry period was present before the start of an event. If there 

was rainfall prior to the event, the threshold is quickly reached, resulting in an early increase of discharge 

(Figure 15). 
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Figure 15. Previous precipitation of the selected event already partly filled the system, resulting in a low minimum 
and maximum SU,max 

Step 3: Determine SU,max (inter peak method) 

The distribution of the SU,max value can be made using a system of equations. Here, the discharge, 

potential evaporation and precipitation data is used. The ground water drainage parameter (Cs) and 

maximum percolation parameter (Pmax) are also needed. For the more complex models, the overflow 

data calculated for the D is required as well. 

The basic assumption is that at overflow moments, the unsaturated zone (Su) is filled to the maximum. 

Then, in each time step, water is evaporated and percolated from the Su leading to a drop of the water 

level in the unsaturated zone. At precipitation moments, the Su is filled again. At the next overflow 

moment, the storage is filled to the maximum storage. Figure 16 presents an example hydrograph with 

climate drivers where at t = 0 overflow of the unsaturated reservoir occurs. At t = 150, overflow occurs 

again. 

The parts of the hydrograph used to determine SU,max should have a minimum length of 4 time steps 

and a maximum length of 1000 time steps. Furthermore, in this period, a storage change should happen, 

so the sum of Ep should be larger than zero. 

 
Figure 16. Part of the hydrograph starting and ending with an overflow moment with a storage change of the 
unsaturated zone in between due to evaporation (orange line) and precipitation (light blue line). This part is used 
in the inter peak method. 
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In the following example, the relations are provided. At t = 0, overflow occurs, and at t = 4, overflow 

reoccurs. In models 1 through 4, no percolation flux is present resulting in a Pmax equal to zero.  

 𝑆𝑢 [ 𝑡 + 0] = 𝑆𝑢𝑚𝑎𝑥 − 𝑃𝑚𝑎𝑥  (14) 

 𝑆𝑢 [ 𝑡 + 1] = 𝑆𝑢[𝑡 + 0] − 𝐸𝑝[𝑡 + 1]
 𝑆𝑢[𝑡 + 0]

𝑆𝑢𝑚𝑎𝑥

− 𝑃𝑚𝑎𝑥

 𝑆𝑢[𝑡 + 0]

𝑆𝑢𝑚𝑎𝑥

+ 𝑃[𝑡 + 1] 
(15) 

 𝑆𝑢 [𝑡 + 2] = 𝑆𝑢[𝑡 + 1] − 𝐸𝑝[𝑡 + 2] 
 𝑆𝑢[𝑡 + 1]

𝑆𝑢𝑚𝑎𝑥

− 𝑃𝑚𝑎𝑥

 𝑆𝑢[𝑡 + 1]

𝑆𝑢𝑚𝑎𝑥

+ 𝑃[𝑡 + 2] 
(16) 

 𝑆𝑢 [𝑡 + 3] = 𝑆𝑢[𝑡 + 2] − 𝐸𝑝[𝑡 + 3] 
 𝑆𝑢[𝑡 + 2]

𝑆𝑢𝑚𝑎𝑥

− 𝑃𝑚𝑎𝑥  
 𝑆𝑢[𝑡 + 2]

𝑆𝑢𝑚𝑎𝑥

+ 𝑃[𝑡 + 3] 
(17) 

 𝑆𝑢 [ 𝑡 + 4] = 𝑆𝑢𝑚𝑎𝑥 (18) 

Since there are no measurements of the Su, an extra equation is needed to calculate the SU,max. This is 

the water balance equation during overflow: 

𝑂𝑣𝑒𝑟𝑓𝑙𝑜𝑤 [𝑡 + 4] = 𝑃[𝑡 + 4] − (𝑆𝑢𝑚𝑎𝑥 − 𝑆𝑢[𝑡 + 3])      (19) 

Depending on the model, overflow can be calculated using different relations. For models 4 and 9, the 

overflow is calculated for the D. For models 3 and 7, the calculation of the overflow is similar to 

overflow calculations of D only now the Qf is not present. The unknown value in the system of 

equations is SU,max. Using a curve fit solver in Python, the SU,max is determined. The start value of the 

solver is the minimum SU,max from step 2. 
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3.1.4 Maximum percolation rate (Pmax) 
The slow reservoir receives water from the unsaturated zone reservoir through percolation. The 

maximum percolation rate (Pmax) regulates this process. The percolation rate is linearly related to the 

relative soil moisture content (Su/SU,max) and the Pmax. The method to determine the Pmax consists of 

two steps:  a data preparation step and the determination of the Pmax. 

Data preparation 

For the calculation of the percolation rate, the data should not include peak discharges. During these 

periods, many processes are acting, which makes it hard to determine the percolation rate. A procedure 

was developed to filter out peak discharges. The filter method is quite similar to the method used to 

determine peak flows for the partitioning coefficient (D). 

If the discharge increases rapidly in the next time step, it is taken to be constant until it decreases again. 

A rapid increase is defined as an increase larger than 150% compared to the current discharge. 9 The 

period, which is set to a constant value, is not taken into account by determining the percolation rates. 

Although percolation is occurring during this period, the calculation does not provide accurate results 

because too many fluxes are occurring.  

The result of the filter is that only low flow periods are present in the data set. An example of the 
application of the filter is provided in Figure 17. The blue lines are the observed discharges, including 
the peak discharges, and the orange line is result of the filter, the discharge without peaks. 

 
Figure 17. Observed discharge and filtered discharge of model 9 data set 2. In the filtered discharge all peak flows 
are excluded for the Pmax method.  

 

Determine Pmax 

To determine the maximum percolation rate, some data is needed: the filtered observed discharge and 

the ground water drainage parameter (Cs). For each time step, it is possible to calculate the percolation 

rate. The result of all the calculations provides a range of percolation rates in the catchment. The 

parameter distribution is given by the 20% highest calculated percolation rates. The most optimal 

maximum percolation rate (Pmax) is set to the 75th percentile of the distribution. This will result in an 

underestimation of the Pmax,. The advantage, however, is that the outliers or data errors will not 

influence the result. 

  

                                                      

9 The factor of 1.5 is set by expert judgment; variations around these values did not provide significantly different 
results. 
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To calculate the percolation rate per time step, a few calculations need to be made. The steps are 

visualized in a graph presented in Figure 18. 

1. The starting point of the method is at the last time step (Qo[t+1]) in the time series. The 

Cs value is used to calculate the expected discharge (Qexpect) of the previous time step 

(Qo[t+0]) with equations 20 and 23. 

2. The expected discharge is then compared to the observed discharge in the previous time 

step (Qo[t+0]). If percolation is present, the expected discharge is larger than 100.2 % of 

the observed discharge. 

3. The expected discharge can be calculated as if there were no percolation (QSs). This is 

calculated with equations 20, 22 and 21. 

4. The difference in discharge of QSs and Qo [t+1] represents the added discharge (Qperc) due 

to percolation. Equation 24 is used to calculate the percolation rate. 

 

 

 
 
 
 
 
 
 

 

 
Figure 18. The blue line represents the observed discharge. The orange and red dotted lines represent expected 
discharges if no percolation would be present. The difference between the red and blue dots represents the extra 
discharge from the slow reservoir due to the additional percolated water in the slow reservoir. 

The time steps that contain the analyzed percolation are displayed in Figure 19. The time steps 
containing the 20% highest calculated percolation rates are presented in Figure 20. 

 
Figure 19. The green dots represent all the time steps used in the Pmax analysis 

 𝑆𝑠,𝑖 = 𝑄𝑜,𝑖𝐶𝑠𝑑𝑡 − 𝑄𝑜,𝑖 (20) 

 𝑄𝑖 =
𝑆𝑠,𝑖

𝐶𝑠
 (21) 

 𝑆𝑠,𝑖+1 = 𝑆𝑠,𝑖 − 𝑄𝑖𝑑𝑡 (22) 

 
𝑆𝑠,𝑖 =

𝑆𝑠,𝑖+1

1 −
𝑑𝑡
𝐶𝑆

 
(23) 

 𝑃𝑒𝑟𝑐 = Q𝑝𝑒𝑟𝑐𝐶𝑠 (24) 
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Figure 20. The green dots represent the top 20% highest calculated percolation rates 

3.2 Synthetic experiment 
In this synthetic experiment, discharge data was produced by a model. The model was driven by real 

rainfall data and potential evaporation data of the French catchment. Random parameter sets were used 

for the fluxes in the models. The methods to obtain parameter distributions, explained in Section 3.1, 

were applied to the synthetic discharge data and the forcing data.  

Having a synthetic experiment allows experimentation in a controlled environment. The methods to 

obtain the parameters can be tested and validated since the original parameters from the data are 

known. This provides a chance to see whether the parameters found from the hydrograph are close to 

the original parameters from the model. After all, the goal of the research is to discover a reliable 

method to obtain parameter distributions and not to determine the exact values of the data sets. In this 

approach, model structure and data uncertainty were excluded. The hydrograph, forcing data and model 

structures were considered “perfect” and did not contain unknown processes or errors. 

The effect of the method errors was investigated in this synthetic experiment. For three data sets per 

model, the methods were applied. The models used in this experiment were 4, 7 and 9. The value and 

accompanying error of the first parameter estimation formed the input for the next model parameter 

estimation. Thus, all the methods were tested without prior knowledge of the parameter values. This 

experiment indicates the extent to which the methods’ errors propagate to other parameter estimations. 

The interdependences of the different model parameter estimation methods are displayed in Figure 21. 

The arrow represents which method takes which parameter estimation as input to determine the current 

parameter. The figure clearly illustrates that many methods depend on each other. 

 
Figure 21. The interdependencies of the different expert-knowledge inverse modelling methods to find the 
parameter distributions 
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For models 7 and 9, it was assumed that the recharge to the slow reservoir plays a considerable role in 

the determination of the Cs value. The procedure to find the parameter distribution of the models for 

the different data sets consists of different stages. The whole procedure is schematically displayed in 

Figure 22, and the steps are outline below: 

1. In the first step, an estimation of the Cs value is made with the fit method. 

2. Subsequently, the estimated Cs value will be used to determine the Pmax and for model 9 

the D. 

3. The estimated Pmax is input for the bound method of SU,max. The result of the method for 

SU,max is input for the next step. 

4. The model simulations are completed using three combinations of parameter sets: one set 

with the minimum of the SU,max, one set with the median of the SU,max and the last set with 

the maximum of the SU,max. The Cs, Pmax and D are constant for all the sets. 

5. The Ptot of each recession is known from the model simulations, and the S-D method can 

be applied to update the Cs value. 

6. The updated Cs value forms the input of the second step and is iterated until convergence 

is obtained. 

 
Figure 22. Schematic representation of the procedure to find the parameter distributions of models 7 and 9. 

The number of iterations needed to obtain convergence was variable. No automated condition was set 

to define convergence. In this research, we choose to visually inspect the development of the 

parameters to determine convergence during the iterative process. 
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3.3 Sensitivity analysis methods for data uncertainty 
In the previous section, different methods were presented to find parameter distributions in a synthetic 

experiment. The data used in the synthetic experiment was the assumed to be “true forcing and 

discharge data” without any uncertainty. In this sensitivity analysis, the methods were tested with the 

introduction of data errors. As mentioned in the introduction, multiple data errors are possible. An 

example of data errors is the use of a point measurement of precipitation for catchment modelling 

while the precipitation over an area is highly variable in both time and space. Also, errors in 

measurement equipment contribute to the data uncertainty. 

The model used for this analysis is the most complex model, number 9. The synthetic generated data 

sets were corrupted in both the forcing and discharge data. This analysis was executed with an absence 

of model structure uncertainty. The test for the sensitivity of the methods regarding forcing errors is 

described in Section 3.3.1,. A description of the test for the sensitivity of the methods regarding both 

the precipitation and discharge data uncertainty is presented in Section 3.3.2. 

3.3.1 Precipitation error 

The first data uncertainty test was performed to examine the effect of spatial precipitation variability 

on the methods. Discharge was produced using forcing data from a point measurement location, and 

forcing data from another station was used to determine the parameter distributions. The stations used 

are both located in the Netherlands and owned by the KNMI, royal Dutch meteorological institute. 

The year volumes of the precipitation and the potential evaporation (calculated with Makking) are listed 

in Table 3. Small variances in the volumes were observed; however, neither Twenthe or Hupsel 

dominate. 

 

 

The only method that directly uses the measured precipitation is the bounds method for SU,max. Section 

3.1.3 mentions that the bounds become stable after precipitation events longer than 150 days. The 

long-term errors are more interesting, and Figure 23 illustrates a double mass. For 2007, the mean error 

is 6.6 mm, and the standard deviation in the error is 24.69 mm. A positive mean represents a larger 

amount of precipitation measured in Twenthe than in Hupsel. For all other years, the mean varies 

between -61.44 and 36.4 mm. The standard deviation varies between 9.2 and 33.1 mm. 

 
Figure 23. Cumulative sum of the measured precipitation (mm) in Hupsel compared to the cumulative sum of the 
measured precipitation (mm) in Twenthe (data of 2007) 

Precipitation [mm/year] 2000 2001 2002 2003 2004 2005 2006 2007 

Twenthe 852 836.2 780.9 618.8 854.7 796.8 723.8 916.8 

Hupsel 869.5 817.7 841.8 719.8 805.5 813.5 734.4 949.2 

         

Potential Evaporation [mm/year] 
        

Twenthe 528.4 553.3 547.8 638.9 562.6 584.3 592.6 562.5 

Hupsel 548.5 560.9 556.6 639.4 571.5 594.9 602.1 570 

Table 3. Annual volumes for precipitation and potential evaporation Twenthe and Hupsel stations   
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3.3.2 Data corruption 
The absolute error in the data is impossible to determine. However, to mimic data errors in synthetic 

experiments various studies use multiplying constants. The assumed “true” forcing and discharge data 

of the synthetic experiment are corrupted by the unique multiplying constants. These multipliers make 

it possible to change both the magnitude and pattern of the observed data (Butts, et al., 2004; Kavetski, 

et al., 2006; Ajami, et al., 2007; Renard, et al., 2010). 

The error term used in this study originates from Renard (2010). The numbers, however, were changed 

to match the errors found in the previous section (3.3.1). Errors were added to the forcing data using 

a lognormal distribution. Also, the hydrograph was corrupted using a normal distribution to mimic all 

sorts of uncertainties, such as measurement errors. 

The assumed “true” forcing data was used to generate synthetic discharge data. To test the methods, 

the “true” precipitation (r) was corrupted to generate an observed precipitation time series (ř) equations 

25 and 26. The error model used is as follows: 

 𝑟�̌� =
𝑟𝑖

𝑒𝑥𝑝(𝑚𝑖)
 (25) 

 𝑚𝑖  ~ 𝑁(0,0.52) (26) 

 

Where ri represents the ith “true” precipitation measurement, ři is the corrupted ith measurement and 

mi the random unique error. mi originates from a normal distribution with a mean of zero and a variance 

of 0.52. In the corrupted time series, all precipitation values below zero were set to zero. This error led 

to a mean error of approximately 20 mm and a standard deviation of approximately 15 mm. 

 

The generated discharge series (Q) with the “true” forcing data was also corrupted with an error term 

to produce an observed discharge series(�̌�) (equations 27 and 28).  

 𝑄�̌� = 𝑄𝑖 + 𝑒𝑖 (27) 

 𝑒 ~ 𝑁(0, (0.1𝑄𝑖) 2) (28) 

 

Qi represents the ith assumed “true” discharge and 𝑄�̌� the ith assumed observed discharge. The error 
term ei originates from a normal distribution with a standard deviation of (0.1Qi)2. This error leads to 
a mean error of approximately -1.8e-6 mm/h and a standard deviation of approximately 1.3e-4 
mm/h. 

3.4 Real-word application 
This last experiment was a real-world data study. This study provided insight into the performance of 

the methods under all sources of uncertainty. It was not possible to check whether the methods’ results 

had similar qualitative parameter distributions as in the synthetic experiments since the original 

parameter values were not known. 

The methods were applied to the data of the Kervidy-Naizin catchment in France. The application of 

the methods could not be achieved without some adjustments to the Pmax method. The described 

technique to filter out the peaks (Section 3.1.4) did not provide sufficient results. In the data set, 

measurements of zero discharge was present, which formed an implication for the multiplication factor. 

After a zero discharge measurement the filter only returns zero values and also low flow periods are 

filtered from the discharge data. As an alternative, all discharge measurements exceeding a threshold 

(set to 0.03 mm/h) were considered peak flows and were filtered from the discharge series. 
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For this catchment, it was assumed that during low flow, recharge enters the slow reservoir. The 

approach to find parameter distributions for the real-world data is the same approach as described in 

Section 3.2, Figure 22. 

3.4.1 Comparison traditional and new calibration approach 
A Monte-Carlo sampling strategy was performed to further investigate effectiveness of this study’s 

newly developed methods to find parameter distributions. A comparison was made between an 

uninformed parameter distribution and the informed prior parameter distribution originating from the 

methods described in Section 3.1. Both parameter distributions were compared with the performance 

of the model. The uninformed parameter distribution and the new parameter distributions found in 

the methods are presented in Table 4. 

After a warm-up period of one year, the calibrations were completed between January 1, 2006 and 

December 31, 2008. From the distributions 106 parameter sets were randomly selected and assessed 

using a multi-objective evaluation (Gupta, et al., 1998) with three objective functions. In Table 5, the 

objective functions are described. The Euclidean distance (29) was used as an overall performance 

indicator of the model.  

Euclidean distance = √(1 − 𝑁𝑆)2 + (1 − 𝑙𝑜𝑔𝑁𝑆)2 + (1 − 𝑅)2   (29) 

The GLUE method (Beven & Binley, 1992) was used to determine a 95% confidence interval. All 

parameter sets that perform below a Euclidean distance of 0.75 were accepted as behavioral models. 

For each time step, all behavioral parameter sets were used to calculate all possible modelled discharges. 

The 2.5 percentile and 97.5 percentile were calculated from the modeled discharges per time step. Then, 

the 2.5 percentile and 97.5 percentile were used to construct the 95% uncertainty interval. 

The parameter distribution for D originating from the D-method was changed in this real-world test. 

The lower bound was originally set to 0.9951. Whether this is a “correct” number is debatable. The 

method to calculate the D distribution was limited to three time steps. The time resolution in the data 

set was one hour. However, the peak volume could not reach the measuring point in only one hour 

since the catchment size is 4.9 km2. To account for this unsuitable assumption, the lower bound was 

changed to 95% of the original lower bound of the method.  

 Uniformed prior parameter 

distributions 

Informed prior parameter 

distributions from expert-

knowledge inverse modelling 

methods  

Cs [h] 0-3500 87-294 

Pmax [mm/h] 0.0009-0.16 0.0193 -0.041 

SU,max [mm] 50-500 108-270 

D [-] 0-1 0.94-1 

Table 4. Prior parameter bounds for MC simulation of model 9 
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Name Formula Range  Ideal 
value 

Notes 

Nash-Sutcliffe 
model efficiency of 
the flow (NS) 

𝑂𝑁𝑆 = 1 − 
∑ (𝑄𝑜,𝑖 − 𝑄𝑠,𝑖)2𝑛

𝑖=1

∑ (𝑄𝑜,𝑖 − 𝑄𝑜
̅̅̅̅ )2𝑛

𝑖=1

 

(-∞,1) 1 Focus on the high 
flows. A value of zero 
indicates performance 
no better than using the 
mean flow. Negative 
values indicate an even 
worse performance 

Nash-Sutcliffe 
model efficiency of 
the logarithm of 
the flow (logNS) 

𝑂𝑙𝑜𝑔𝑁𝑆

= 1 − 
∑ (log (𝑄𝑜,𝑖) − log (𝑄𝑠,𝑖))2𝑛

𝑖=1

∑ (log (𝑄𝑜,𝑖) − log (𝑄𝑜
̅̅ ̅̅ ̅̅ ̅̅ ̅)2𝑛

𝑖=1

 

(-∞,1) 1 Focus on the low flows. 
A value of zero 
indicates performance 
no better than using the 
mean flow. Negative 
values indicate an even 
worse performance 

Correlation 
coefficient (R) 

𝑂𝑅

=  
∑ (𝑄𝑠,𝑖 − 𝑄𝑠

̅̅ ̅)(𝑄𝑜,𝑖 − 𝑄𝑜
̅̅̅̅ )𝑛

𝑖=1

√∑ (𝑄𝑠,𝑖 − 𝑄𝑠
̅̅ ̅)2 ∑ (𝑄𝑜,𝑖 − 𝑄𝑜

̅̅̅̅ )2𝑛
𝑖=1

𝑛
𝑖=1

 

(-1,1) 1 Focus on dynamics of 
the flows 

Table 5. Objective functions used to assess the model performance 
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Chapter 4 Results 

4.1 Results of parameter distribution methods 
Some of the parameter estimation methods depend on other parameter values, as mentioned in Section 

3.1. To investigate the errors in the parameter estimation methods, the other parameters needed to 

determine the current method parameter were assumed to be known and set to the original value, which 

was used to produce the discharge data. Therefore, the methods’ input consisted of data without 

uncertainties and original parameters except for the value that needed to be obtained by the method. 

Only one obtained parameter value and distribution is displayed per model; all other results are 

presented in Appendix 4. In the example distributions in this section the red diamond represents the 

“correct” original parameter value of the data set.  

Results of Cs fit method 
The results of the Cs fit method are provided in Table 6. This method returns the original values in 

the synthetic experiment for data sets of models 1, 2, 3, 4 and 6. A small standard deviation (std) was 

observed for parameter distributions of these models. This originates from the solve method in 

Python. However, the method returned values that substantially deviated from the original values for 

models 7 and 9. The error in models 7 and 9 could be explained by the influence of the percolation 

flux, which does not reach zero during recession periods. The unsaturated zone will never be empty 

since the evaporation and percolation are proportional to the storage in this zone.  

 Model 1 Model 2 Model 3 Model 4 Model 6 Model 7 Model 9 

Original Cs (h) 200 20 200 100 50 500 470 
Fit method Cs (h) 200 20 200 100 50 1964 719 
Std  1.56E-06 9.99E-02 8.78E-02 1.51E-03 2.56E-02 1.97E+03 1.41E+03 
Relative error (%) -6.37E-08 3.98E-06 -9.47E-08 7.05E-10 1.07E-06 2.92E+02 5.28E+01 

Table 6. Examples of the results of the synthetic experiment using the Cs fit method 

 
Results of Cs S-D method 
The Cs S-D method returns parameter distributions that contain the original values for the synthetic 

experiment data for models 7 and 9, as  presented in Table 7. The std decreased by a factor 1000 

compared to the fit method. The boxplots are a standardized method to display value distributions. 

The orange line represents the median in the data set. The interquartile range (IQR), between the first 

and the third quartile, is the likely range of variation in the data set. The maximum is considered 1.5 x 

IQR above the third quartile and the minimum is considered below 1.5 x IQR of the first quartile. All 

other values above the maximum and below the minimum are displayed as outliers. In distribution of 

the Cs values, the spread in the distribution and extreme outliers are clearly visible for the fit method. 
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 Model 7 Model 9 

Original Cs (h) 500 470 

Fit method Cs (h) 1977 620 

Std  2004 1274 

Distribution Cs fit method 

  

S-D method (h) 500.6 470 

std 0.13 1.12 

Distribution Cs S-D method 

  

Table 7. Examples of the results of the synthetic experiment using the S-D method 

 

Results D 
The D method provided accurate results in the synthetic experiment. Some outliers and a wider spread 

were observed in the distribution of model 9 (see Table 8). This is explained by an incorrect calculation 

of the overflow. The percolation flux was not considered in the calculation of the overflow. However, 

this assumption did not have a significant impact (relative error between the median of the estimated 

distribution and the original value of 0.18%) on the estimation of D distribution for the model 9 data.   

 Model 4 Model 9 

Original value 0.96 0.94 

Number of overflows used to 

calculate D 

60 35 

Median 0.96 0.941 

Relative error [%] 0 0.18 

Distribution 

  

Table 8. Examples of the results of the synthetic experiment using the D method 
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Results of SU,max bound and inter-peak method 
The bound and inter-peak method returns distributions that include original parameter values for 

synthetic data of model 4. However, for models 7 and 9, the distributions of the inter-peak method 

deviated from the original values; model 9 deviated substantially. The inter-peak method is quite 

sensitive to small errors. For models 7 and 9, the method was considered too sensitive and could not 

be used to determine the SU,max. The bounds method, however, provided a sufficient result.  

 Model 4 Model 7 Model 9 

Original value [mm] 235 65 280 

Minimum [mm] 153 44 178 

Maximum [mm] 288 86 309 

Inter peak method    

Median [mm] 235 67 179 

std 3.0e-7 26 12 

Distribution  

   

Table 9. Examples of the SU,max results of synthetic experiment using the inter peak method  

 
Results of Pmax method 
This method had expected results in the artificial world for models 6, 7 and 9. The original values of 

the Pmaz are included into the distribution. The 75th percentile of the distributions were a lower than 

the original values of the Pmax. This underestimation in the “most optimal” value in the distribution 

could be prevented, but it was determined to be safe and the maximum was not attempted in the 

calculated percolation rates. The maximum in the distribution is quite sensitive for outliers.  

 Model 6 Model 7 Model 9 

Original value [mm/h] 0.35 0.15 0.0031 

75th percentile [mm/h] 0.35 0.129 0.0028 

Relative error [%] 0 -13.85 -9.68 

Min. distribution 0.35 0.098 0.0026 

Max. distribution 0.35 0.15 0.0031 

Distribution 

   

Table 10. Examples of the results of synthetic experiment using the Pmax method 
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4.2 Results synthetic experiments 
Some of the parameter estimation methods depend on other parameter values as explained in Section 

3.1. However, the methods return parameter distributions. In this synthetic experiment, the missing 

input parameters to the methods are the “most optimal” number of the previously determined 

distributions. These “most optimal” parameters are the median for the Cs and D, and the 75th percentile 

for the Pmax. These numbers contain errors in the parameter estimation. This section explains the extent 

to which these errors in the determination of one parameter propagate to other parameter estimations. 

4.2.1 Results for model 4 
For model 4, three different data sets were tested. A summary of the outcome from the parameter 

estimations methods is given in Table 11 and Table 12. 

Groundwater drainage parameter Cs 

The fit-method was used to calculate the Cs value of the data set since there was no flux entering the 

slow reservoir during recession periods. In this data set a small std was observed due to some outliers. 

These outliers originated from the solve method used in Python. 

Partitioning coefficient D 

The partitioning coefficient was calculated using the median Cs value calculated in the previous step. 

For the synthetic data of model 4, the D can be calculated accurately. All original values of the data sets 

are included in the estimated parameter distributions.  

 Cs D 

Relative error  0 % 0 % 

Std [-] 0.001 to 0.3 1e-9 to 4e-3 

Example distribution 

  

Table 11. Summary of the results of synthetic experiment model 4 for Cs and D 

Maximum unsaturated zone storage SU,max 

The method to determine the bounds of the SU,max is, in this case, independent of other parameter 

values since no percolation flux is present in the model. The overflow data from the calculations 

made for D were used to determine the SU,max distribution with the inter-peak method. The number 

of calculations, however, were considerably fewer than the number for D (see Appendix 4). 

Sometimes, the length of the data series between two overflow moments were less or more than the 

predefined lengths. In the winter, more overflow moments occur; however, a storage change in the 

unsaturated zone (evaporation between overflow moments) is not always present. These discharge 

series were not used to calculate SU,max.  

 SU.max 

Relative error underestimation 
of SU,max 

-20% to -35% 

Absolute error underestimation 
of SU,max 

10-85 mm 

Relative error overestimation of 
SU,max 

23% to 83% 

Absolute error overestimation of 
SU,max 

20-85 mm 

Table 12. Summary of the results of synthetic experiment for model 4 for SU,max 
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4.2.2 Results for models 7 and 9 
The parameter values of three different data sets for models 7 and 9 were used to determine parameter 

distributions in this section. The approach as described in Section 3.2 (Figure 22) was used to determine 

the parameter values. First, a summary of the results of model 7 is given (Table 13 and Table 14). Then, 

the results for model 9 are provided (Table 15 and Table 16). For each parameter, a short description 

of the results is given. 

Model 7 
Groundwater drainage parameter Cs 

To calculate the Cs value of the data set, the fit method was used for the first estimate, while the S-D 

method was used for the later iterations. Relative errors between the median of the estimated 

distribution and the original value were found between -15% and 30%. However, all original values of 

the data sets were included in the estimated parameter distributions. After three iterations, all three sets 

converged, and the parameters were stable during the later iterations. The error in the Cs was directly 

linked to the large overestimation of the maximum SU,max. 

Maximum percolation rate (Pmax) 
The first calculated maximum percolation rate was overestimated; this is related to the first 

overestimation of the Cs. After three iterations, the value converged. For all three data sets, the Pmax 

(75th percentile of the distribution) was underestimated. The relative difference between the original 

value and the estimated value ranged between -3% and -17%. The same underestimation was observed 

in the method results (Section 4.1). The estimated parameter distributions include the original values 

of the data sets. 

 Cs Pmax 

Relative error  -15% to 30% -17% to -3% 

Std [-] 50-180  

Example iterations  

  

Distribution 

  

Table 13. Summary of the results of synthetic experiment for model 7 for Cs and Pmax  
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Maximum unsaturated zone storage SU,max 

The method to determine the bounds of the SU,max is not independent of other parameter values for 

model 7. The Pmax is now also included into the calculations. The larger overestimation of the maximum 

storage capacity was notable.  

 SU,max 

Relative error underestimation of SU,max -35 % to -30% 

Absolute error underestimation of SU,max 19-50 mm 

Relative error overestimation of SU,max 40 to 86% 

Absolute error overestimation of SU,max 21-63 mm  

Table 14. Summary of the SU,max results of synthetic experiment for model 7  

 

Model 9 

Groundwater drainage parameter Cs 

The fit method was used to calculate the first estimate for the Cs value of the data set. The S-D method 

was used for the later iterations. After three iterations, all three sets converged. Relative errors between 

the median of the estimated distribution and the original value under 5% were observed for model 9. 

All original values of the data sets were included into the estimated parameter distributions. 

Partitioning coefficient D 

The partitioning coefficient was calculated using the median of the estimated Cs distribution. The 

calculated results for D did not deviate substantially from the original parameter of the data sets; relative 

errors with a maximum of 0.3% were observed. However, the estimated parameter distributions did 

not include the original values. 

Maximum percolation rate (Pmax) 
The first calculated maximum percolation rate was overestimated; this is related to the first 

overestimation of the Cs. For all three data sets, the Pmax (75th percentile of the distribution) was 

underestimated. The relative difference between the original value and the estimated value ranges 

between -4% and -10%. The same underestimation was observed in the method results (Section 4.1). 

The estimated parameter distributions include the original values of the data sets. 

 Cs Pmax D 

Relative error 0% to 4% -4 % to -10% 0% to 0.3% 

Std [-] 40-200  0.001-0.009 

Example iterations  

   

Distribution 

   

Table 15. Summary of the results of synthetic experiment for model 9 for Cs, Pmax and D 
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Maximum unsaturated zone storage SU,max 

The Pmax parameter was included in the calculations for the bounds of SU,max. The method was not 

independent of other parameter values. The underestimation of Pmax from the previous analysis did not 

significantly influence the results. Both the minimum and maximum were correctly estimated. 

 SU.max 

Relative error underestimation of SU,max -40% to -30% 

Absolute error underestimation of SU,max 70-120 mm 

Relative error overestimation of SU,max 10% to  40% 

Absolute error overestimation of SU,max 20-140 mm  

Table 16. Summary of the SU,max results of synthetic experiment for model 9   
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4.3 Results of sensitivity analysis 

4.3.1 Results for model 9 including the forcing error 
Three data sets were used to test the effect of the forcing data uncertainties on the methods to 

determine parameter distribution. The same approach described in Section 3.2, Figure 22, was used to 

find the parameter distributions. 

In the bounds method for SU,max, the parameter determination method took the precipitation and 

evaporation data as input. This method was assumed to have the largest effect on the corrupted forcing 

data. The summery of the over- and underestimation of SU,max is given in Table 17. For all tests, the 

minimum was always an underestimation of the original SU,max used to produce the data. The maximums 

for all three tests were larger than the original used SU,max to produce the data. The error for both the 

minimum and the maximum, however, did not deviate substantially from the error observed in the 

synthetic experiment without data errors. The absolute difference in minimum and maximum found in 

the synthetic experiment of Section 3.2 and found in this analysis is equal to the standard deviation of 

the precipitation measurement error.  

 SU.max 

Relative error underestimation of SU,max 
-50% to -60% 

Absolute error underestimation of SU,max 
113-187 mm 

Relative error overestimation of SU,max 
10% to 60% 

Absolute error overestimation of SU,max 
58-132 mm  

Table 17. Summary of the results for SU,max with precipitation error 

Considering the results presented in Table 18, the effect on the other parameter distributions of the 

error in SU,max is negligible. The Cs, Pmax and D can still be found with high accuracy.  

 Cs Pmax D 

Relative error 0% to 3% -2% to -3% 0% to 0.5 % 

Std [-] 60-130  0.01-0.05 

Example iterations  

   

Distribution 

   

Table 18. Summary of the results for Cs, Pmax and D parameter distributions with precipitation error 
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4.3.2 Results of model 9 including the data error 
Three data sets were used to test the effect of the data error on the methods to find the parameter 

distributions. The same approach described in Section 3.7, Figure 22, to determine the parameter 

distributions was used. 

The bounds for the maximum unsaturated zone storage were still quite accurate (Table 19). The 

minimum was underestimated by 30% to 40%. The maximum was overestimated by 10% to 30 % of 

the original used value to produce the data.  

 SU.max 

Relative error underestimation of SU,max 
-30% to -40% 

Absolute error underestimation of 
SU,max 

75-128 mm 

Relative error overestimation of SU,max 
10% to 30% 

Absolute error overestimation of SU,max 
56-78 mm  

Table 19. Summary of the results for SU,max with data corruption 

The effect of data uncertainty in the discharge became considerable in the Pmax calculation. In the Pmax 

distributions, an overestimation of the original value was observed. Also, in one data set, the minimum 

distribution was higher than the original Pmax value used to generate the “true” data set. For the other 

two sets, the original value was included in the estimated parameter distribution. The overestimation 

of Pmax directly translated to the calculation of the Cs distribution, where the median in the distribution 

became an underestimation.  

 Cs Pmax D 

Relative error -20% to 0% 0% to 50%  -2% to 1% 

Std [-] 40-200  0.01-0.02 

Example iterations  

   

Distribution 

   

Table 20. Summary of the results for Cs, Pmax and D parameter distributions with data corruption 
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4.4 Results of real-world application 
The results of the methods to determine parameter distributions for the real-world data set are 

presented in Table 21. All the methods converged, as the results of the iterations indicate. The small 

distribution of the D was remarkable. In this case, it was no longer possible to know the “true” value 

of the data set’s parameters, and a comparison of the error is not shown.  

 Cs Pmax D 

Estimated value 236 h 0.0299 mm/h 0.9987 

Results of iterations 

   
Std [-] 61.3 0.02026 0.016958 

Distribution 

   
Max boxplot  426 0.041 0.99998 
75 percentile 288 0.0299 0.9996 
Median 236 0.02518 0.9987 
25 percentile  189 0.02201 0.9978 
Min boxplot 85 0.01932 0.9951 

Table 21. Results of real-world application for Cs. Pmax and D 

 SU.max 

Minimum [mm] 108 
Maximum [mm] 302 

 Threshold for different 
event lengths 

 
Table 22. Results of real-world application for SU,max 
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4.4.1 Results comparison 
Both the performance of the model using the calibration results of the uninformed prior parameter 

distributions and the new informed prior parameter distributions found in the methods are presented 

in Figure 24 and Table 23. In the model performance, no significant difference was observed in the 

calibration (2006-2008) or validation period (2009-2011). The overall performance (ED) of the models 

with the uninformed parameter distributions was slightly higher for all periods. A notable difference 

was observed in performance of the logNS for the parameter distributions of the informed prior 

parameter distributions: the performance was less than the uninformed parameter distributions. The 

model uncertainty area spanned from the 2.5 percentile to the 97.5 percentile was more than double 

for the results of the uninformed prior parameter distributions than for the informed prior parameter 

results. 

Figure 25 illustrates both the prior parameter distributions and the posterior parameter distributions of 

both the uninformed and informed parameter distributions. The posterior distributions are the 

distributions of the set parameters originating from behavioral models. Overall, a decreasing trend was 

observed from the prior uninformed parameter distributions to the informed posterior distribution. 

The posterior distributions of the informed parameter sets were twice to five times smaller than the 

posterior distributions of the uninformed parameter sets. This indicates a decrease in equifinality. The 

posterior distribution of the Pmax  shifted in the informed parameter sets compared to the uninformed 

sets. For the other parameters, no significant shift was observed.  

 Uninformed 
prior 
2006-2011 

Informed 
prior 
2006-2011 

Uninformed 
prior 
2006-2008 

Informed 
prior 
2006-2008 

Uninformed 
prior 
2009-2011 

Informed 
prior 
2009-2011 

Mean ED 0.66 0.730 0.679 0.730 0.648 0.733 

Mean NS 0.539 0.555 0.509 0.539 0.565 0.567 

Mean LogNS 0.587 0.460 0.614 0.490 0.563 0.434 

Mean R 0.782 0.794 0.742 0.753 0.825 0.837 

Most optimal ED 0.520 0.680 0.555 0.688 0.438 0.678 

Most optimal NS 0.620 0.604 0.563 0.578 0.676 0.631 

Most optimal 

LogNS 
0.709 0.481 0.763 0.510 0.751 0.452 

Most optimal R 0.797 0.804 0.752 0.764 0.844 0.842 

95% uncertainty 

area [mm] 
1887 741 884 341 1003 401 

Table 23. Performance results of the uninformed prior parameter distribution and the informed prior parameter 
distributions over multiple periods. The mean performance represents the mean of all simulated discharges in the 
uncertainty bound, the most balanced (optimal) performance in the uncertainty bound is also given in this table.  
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Figure 24. Observed (blue line) and most optimal simulated (orange line) discharges in the calibration and 
validation periods. The simulated discharge is shown with a 95 percent uncertainty interval (shaded grey area). 
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Figure 25. The prior parameter distributions and the posterior parameter distributions of all behavioral models. 
For both the uninformed parameter distribution and the informed parameter distribution. (boxplots: the dots 
represents the outliers in de data set, the lower and upper whisker 2.5/97.5th percentiles and, the horizontal 
orange line the median)   
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Chapter 5 Discussion 

5.1 Methods and synthetic experiment 
The chapter reviews the developed methods to obtain parameter distributions and the results of the 

different research sections. Both the strengthens and weaknesses are discussed. In addition, links 

between the synthetic, sensitivity analysis and real-world application are made. 

5.1.1 Methods 

In all six methods, to constrain the feasible parameter space, assumptions were made based on expert 

judgment, which makes the methods less objective. In particular, certain thresholds were defined by 

visual inspection of the data or by testing different thresholds to assess the method performance. 

Examples of thresholds based on expert judgment are the minimum duration of no precipitation before 

a recession period, the maximum discharge at the end of a recession and the multiplication factor in 

the calculation of D. Whether values determined by expert judgment deviated for other catchments 

was not tested. Therefore, it is unclear how the methods will perform, and critically assessing the 

defined parameter distributions is advised.  

In the calculation of the Cs value, one major assumption was made in the S-D method. Model runs 

were performed to calculate the total recharge (Ptot). The parameters in the model and the assumed 

model structure had an impact on the calculated recharge. This recharge affected the calculation of the 

Cs value, and the S-D method therefore qualified as quite subjective. The method became sensitive to 

errors in the assumed parameters and the model structure. Although errors were made in the S-D 

method, the results indicate that the method performs quite well. 

In the calculation of the D distribution, it was assumed that the total volume of the fast lateral runoff 

processes would reach the outflow point of the catchment in one time step. Depending on the size and 

the time resolution of the measurements, the total volume of fast lateral runoff can reach the outflow 

point in one time step. However, large catchments are more likely to have some sort of channel routing, 

resulting in a longer time frame for the total peak volume to reach the outflow point. The value for D 

will be overestimated if calculations are made with a high time resolution, such as hourly resolution. 

Catchment size and characteristics should be examined to determine whether the assumptions in the 

method are applicable before applying this method. This method depends more on expert judgment 

than the other methods. 

For the calculations of the SU,max bounds, an assumption was made in the calculation of the upper 

bound. The total sum of precipitation was subtracted with a percentage of the maximum percolation 

volume to decrease the overestimation of the maximum storage capacity. This assumption makes the 

method sensitive to errors in the calculation of Pmax, especially if Pmax is overestimated. 

For the calculation of Pmax, the parameter distribution was determined based on the upper 20% of all 

calculated percolation rates. The optimal Pmax was decided, using expert judgment, to be in the 75th 

percentile of this distribution to filter out outliers. In the synthetic experiments, this result was always 

an underestimation, which was assumed to be in an acceptable range. 

5.1.2 Comparison model run of models 4, 7 and 9 
In this synthetic experiment, different data sets were used to find parameter sets for models 4, 7 and 9. 

The data sets were produced by the models and were not corrupted by any uncertainty, so model 4’s 

output was used to find parameters for model 4. However, in this experiment, no prior knowledge of 

parameter values was present. This made it possible to discover how the methods cope with errors 

made in parameter distributions from one method and translate to other parameter distributions. For 

example, the calculation of the D distribution depend on the calculated Cs value. 
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In the synthetic experiment data of model 4, the parameter values could be found with high precision. 

Small errors in the methods did not influence the results. All parameter distributions had a small std, 

implying limited uncertainties in the estimated parameter values. 

However, as mentioned in Section 4.1, the Cs calculations with the fit method were accurate. For model 

7 and 9. however, large deviations from the original value were present and the std was quite significant. 

As explained in Section 3.2, an iterative process was used to determine the parameter distributions. 

For all data sets from both model 7 and 9, a fast convergence of the parameter values was observed. 

In addition, no large deviations of the original value were present in the parameter value estimations; 

thus, the procedure is considered a suitable approach. In this research, no condition was set to break 

off the iteration since it was of interest to discover whether the parameter distributions stayed stable. 

In further development of the methods, the condition can be set to limit the calculation time. 

The most remarkable difference between the results of model 7 and 9 is the performance of the Cs 

method. For model 7, the results differed more than model 9’s from the original values. Also, the 

standard deviation was larger for model 7’s data than for model 9’s data. No seasonal changes were 

observed in model 7’s data, which could be an indication of a unsuitable model structure. However, 

this possibility was not investigated in this research. The inability of a system representation could 

influence the calculations of the parameter distributions. 

Another difference in performance between models 4, 7 and 9 is as follows: for model 7 and 9 only an 

estimation of the lower and upper bound of SU,max could be made. This affected the other parameter 

distribution calculations, resulting in a larger std of all the distributions. 

5.2 Sensitivity analysis 

5.2.1 Precipitation error 
During this synthetic experiment, the forcing data was corrupted by producing data with forcing data 

of one point measurement station and using forcing data of another station to determine how the 

methods to determine parameter distributions behaved. Between the two stations, a difference in 

precipitation patterns was observed, which indicates a spatial variability in these patterns. Although the 

error in forcing data was applied, the methods performed quite well and were able to define parameter 

distributions. 

In the last section, a comparison is made between the results of the “clean” data from model 9 and the 

corrupted data of model 9. However, this comparison in not completely valid since the “clean” data 

was created using with French forcing data and the precipitation error was created using Dutch forcing 

data. Nevertheless, the parameter distributions are similar for both the corrupted and “clean” data 

without large deviations in the original values of the synthetic data. 

5.2.2 Data corruption 
The second test in the sensitivity analysis was the corruption of both forcing and discharge data. The 

data was corrupted with unique multiplying constants, which changed both the magnitude and patterns 

of the data. The most striking effect on the methods was seen in the calculation of the Pmax distribution. 

It was found that the original parameter of the data sets was sometimes no longer part of the defined 

distribution. This indicates that the method does not handle data uncertainty well. The part of the 

calculated percolation rates could be an inappropriate choice for the parameter distribution, or the 

method set up might need to be changed to decrease the sensitivity to data uncertainty by examining a 

longer period to calculate the percolation rates instead of using two subsequent time steps. 

Although the Pmax calculations had some errors, this did not have a significant effect on the calculations 

of the other parameters. The only affected parameter was the Cs distribution. The original values are in 

the upper part of the boxplot (Table 20).  
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5.3 Real world 
All methods were applied in a real-world test case with data measured in a catchment in France. It is 

no longer possible to conclude whether the derived parameter distributions are in the “correct” range 

since this is not known in the real world. Nevertheless, it is possible to make comparisons with a Monte-

Carlo (MC) sampling strategy with uninformed prior parameter distributions. 

A change was made in the lower bound of the D to calibrate the model using the informed prior 

distributions from the methods. The assumption was made that the peak volume calculated in the 

method was underestimated. The time resolution in the data set was one hour, but arguably, the peak 

volume of this catchment could not reach the measuring point in one time step. 

To confirm that the peak flow is underestimated, an extra test should be performed. In this research, 

only data uncertainty was added to the synthetic data set; it is also possible to add model structure 

uncertainty by producing discharge with another model and testing the methods with the model of this 

research. To investigate the method to determine D, adding a routing function at the fast lateral runoff 

processes is recommended. This could be accomplished, for example, by adding a fast reservoir. 

The most notable difference between the MC strategy with uninformed prior parameter distributions 

and the informed prior parameter distribution from the methods was found in the results of Pmax. A 

large deviation was observed for the behavioral models. The parameter distribution for the uninformed 

prior parameter distribution was in lower ranges than found in the methods. The same trend of 

overestimation of Pmax was also observed in the sensitivity analysis of the methods. 

An effect of a too high Pmax value was observed in the Cs distribution. The majority of the behavioral 

models (the posterior parameter distribution) were also in a higher range compared to what the 

methods suggest in the informed prior parameter distributions. In the data uncertainty analysis, this 

higher Cs value behavior was also observed. This suggest that during calibration the model tried to 

correct for the unsuitable Pmax distribution. 

A significant decrease in the total uncertainty interval was observed in the comparison of the Monte-

Carlo simulation with uninformed prior and informed prior parameter distributions of the methods. 

This implies that the model was acting with an improved physical realism. 

The most important advantage of the methods to find parameter distributions is that the feasible 

parameter space was decreased by the methods. The model was, therefore, no longer able to 

compensate for unsuitable model structure assumptions. If the model’s performance decreases 

significantly compared to uninformed prior calibration results, it should be considered that the 

assumptions made in the model structure could be inappropriate and essential hydrological processes 

are left out. This knowledge helps hydrologists and model builders find an appropriate model structure 

to represent a catchment. 

In this analysis, the methods to determine parameters were only tested on one small catchment. For 

such a simple lumped model with only four parameters, the performance was quite accurate. However, 

extra care should be taken if the methods are applied to large scale catchments since these catchments 

are often more heterogenic. 
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Chapter 6 Conclusions 
Answers to the research question and sub-questions are provided in this chapter. The objective of this 

research was to determine the extent to which it is possible to make an estimation of the parameter 

values or parameter distribution for given hydrological model structure based on field observations. By 

extracting parameter information from the data, in theory, the model uncertainty and equifinality in the 

parameter sets should be reduced. The concept of this research was to use a general conceptual 

understanding of how hydrological processes in a catchment act. The parameter identification was 

performed based on sub-periods of different event types. The hypothesis used in this thesis was that 

each period has different “dominant” processes with associated parameters. Using the sub-periods of 

the hydrograph to find individual parameters of the model could further increase realism in the models. 

The following research question was formulated for this research: 

To what degree is it possible to avoid the use of uninformed prior parameter distribution in 

the calibration of a conceptual hydrological model by using available information from the 

field observations to generate informed prior distributions? 

The sub-questions indicating the is crucial sues to be addressed when answering this main question 

were the following: 

1. Can we select sub-periods from a hydrograph typical of different hydrological process which can be coupled to 

model components, and how can this help to determine model parameters? 

2. To what extent are the methods to obtain the parameter distributions sensitive to data errors? 

3. To what extent can the methods be used for real rainfall runoff data? 

The synthetic experiment proved that by using the expert-knowledge inverse modelling methods 

described in this research, we can determine all parameter distributions of the investigated model. 

Multiple sub-periods, which represent typical hydrological processes, were selected in a hydrograph 

Specific model components of the hydrological model are able to describe these processes, and the 

connected parameter distributions can be found. 

In the sensitivity analysis, the Pmax method to determine the maximum percolation rate parameter 

distribution was sensitive to data uncertainty, resulting in errors in the determined parameter 

distributions. Since many of the methods take other parameter values such as the Pmax as input, other 

parameter distributions will be affected by the errors due to the sensitivity to data uncertainties. The 

Pmax method results in an overestimated parameter distribution. However, although the parameter is 

overestimated, the other parameters distributions include the original value of the synthetic data, which 

is considered a positive result. 

Regarding the last sub-question, the expert-knowledge inverse modelling methods were applied to real 

rainfall runoff data. However, it was no longer possible to conclude whether the obtained parameter 

distributions are in the “correct” range since the parameters of the real world are not known. The 

comparison between an uninformed prior parameter distribution and the informed prior parameter 

distributions of the methods in a Monte-Carlo sampling strategy gave insight into the performance of 

the methods. With the GLUE method, a uncertainty interval was constructed. By using the parameter 

distributions of the methods, this interval decreased substantially. The total area of the uncertainty 

interval was less than half the uncertainty interval from the uninformed prior distributions; also, the 

posterior parameter distributions were two to five times smaller for the informed parameter case. 

In this real-world test, a similarity in the performance for both calibrations was observed. These results 

endorse the importance and the advantages of the methods to obtain parameter information from the 

data. The uncertainty in the model decreased substantially, and it was possible to be more confident 

about how appropriate the model structure is for the catchment. With the informed parameter 
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distributions, the model was no longer able to compensate for inappropriate model structure 

assumptions, and a meaningful and more realistic representation of the catchment was achieved. The 

performance test also works the other way around. A significantly decrease in performance could be 

an indication of an unsuitable model structure where important hydrological processes are left out. 

Using the information from the sub-questions, the main question can be answered. This study has 

demonstrated that by using a data-based techniques, all parameter distributions can be derived for the 

investigated model. The hypothesis of this study is confirmed. 

6.1 Further research   
For more general conclusions of the expert-knowledge inverse modelling methods to determine 

parameter distributions, more tests are needed, both in the synthetic environment and for real-world 

data. Further research should be directed toward testing whether the methods or approach can be 

generalized for multiple catchment typologies or whether the experience and expert judgment of the 

modeler keeps playing an important role.    

Additional analyses should be made into the methods sensitive to data uncertainty. This study found 

that some methods return parameter distributions that did not include the original parameters of the 

data if data errors were present. Furthermore, synthetic tests including model structure uncertainty 

should be performed to test the general validity of the expert-knowledge inverse modelling methods.  

  



 57 

Literature list 
Ajami, N. K., Duan, Q. & Sorooshian, S., 2007. An integrated hydrologic Bayesian multimodel 

combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic 

prediction. Water Resources Research, 43(1), W01403. 

Aubert, A. H., Gascuel-Odoux, C. & Merot, P., 2013. Annual hysteresis of water quality: A method to 

analyse the effect of intraand inter-annual climatic conditions. Journal of Hydrology, 478, 29-39. 

Bergström, S. & Forsman, A., 1973. Development of a conceptual deterministic rainfall-runoff model. 

Nordic Hydrology, 4(3), 147-170. 

Beven, K., 1996. Equifinality and Uncertainty in Geomorphological Modelling. The Scientific Nature of 

Geomorphology, 289-313. 

Beven, K., 2006. Searching for the Holy Grail of Scientific Hydrology: Qt=H(SR)A as closure. Hydrology 

and Earth System Sciences, 10, 609-618. 

Beven, K. & Binley, A., 1992. The future of distributed models: Model calibration and uncertainty 

prediction. Hydrological Processes, 6(3), 279-298. 

Beven, K. J., 2011. Rainfall-runoff modelling: the primer (2nd ed.). Chichester, West Sussex UK: John 

Wiley & Sons. 

Brauer, C. C., 2014. Modelling rainfall-runoff processes in lowland catchments (doctoral dissertation ). 

Wageningen University. Retrieved from https://library.wur.nl/WebQuery/wurpubs/452940 

Brauer, C., Torfs, P., Teuling, A. & Uijlenhoet, R., 2014. The Wageningen Lowland Runoff Simulator 

(WALRUS): application to the hupsel brook catchment and the cabauw polder. Hydrology and Earth 

System Sciences, 18(10), 4007-4028. 

Butts, M. B., Payne, J. T., Kristensen, M. & Madsen, H., 2004. An evaluation of the impact of model 

structure on hydrological modelling uncertainty for streamflow simulation. Journal of Hydrology, 298(1-

4), 242-266. 

Clark, C., 1945. Storage and the unit hydrograph.. Transactions of the American Society of Civil Engineers, 

110, 1416-1446. 

Clark, M. P. et al., 2008. Framework for Understanding Structural Errors (FUSE): A modular 

framework to diagnose differences between hydrological models. Water Resources Research, 44,  W00B02. 

Euser, T. et al., 2013. A framework to assess the realism of model structures using hydrological 

signatures. Hydrology and Earth System Sciences, 17, 1893-1912. 

Fenicia, F., Savenije, H. H. G., Matgen, P. & Pfister, L., 2006. Is the groundwater reservoir linear? 

Learning from data in hydrological modelling. Hydrology and Earth System Sciences, 10(1), 139-150. 

Fleming, P., 1970. A diurnal distribution function for daily evaporation. Water Resources Research, 6(3),  

937-942. 

Freer, J., McMillan, H., McDonnell, J. & Beven, K., 2004. Constraining dynamic TOPMODEL 

responses for imprecise water table information using fuzzy rule based performance measures. Journal 

of Hydrology, 291(3), 254-277. 

Gharari, S., 2016. On the role of model structure in hydrological modeling: Understanding models  

(doctoral dissertation ). TU Delft. Retrieved from 

https://repository.tudelft.nl/islandora/object/uuid:055795fb-611e-4e04-b431-fd0c377581f1 



 58 

Gharari, S. et al., 2014. Using expert-knowledge to increase realism in environmental system models 

can dramatically reduce the need for calibration. Hydrology and Earth System Sciences, 18, 4839-4859. 

González-Castro, J. A. & Muste, M., 2007. Framework for Estimating Uncertainty of ADCP 

Measurements from a Moving Boat by Standardized Uncertainty Analysis. Journal of Hydraulic 

Engineering, 133(12), 1390-1410. 

Gupta, H. V. et al., 2012. Towards a comprehensive assessment of modelstructural adequacy. Water 

Resources Research, 48(8), W08301. 

Gupta, H. V., Sorooshian, S. & Yapo, P. O., 1998. oward improved calibration of hydrologic models: 

Multiple and noncommensurable measures of information. Water Resources Research, 34(4), 751-763. 

Hrachowitz, M. & Clark, M. P., 2017. HESS Opinions: The complementary merits of competing 

modelling philosophies in hydrology. Hydrology and Earth System Sciences, 21(8), 3953 - 3973. 

Hrachowitz, M. et al., 2014. Process consistency in models: The importance of system signatures, expert 

knowledge, and process complexity. Water resources research, 50(9) 7445-7469. 

Kavetski, D. & Fenicia, F., 2011. Elements of a flexible approach for conceptual hydrological modeling: 

2. Application and experimental insights. Water Resources Research, 47(11), W11511. 

Kavetski, D., Kuczera, G. & Franks, S. W., 2006. Bayesian analysis of input uncertainty in hydrological 

modeling: 1. Theory. Water Resources Research, 42(3), W03407. 

Lamb, R. & Beven, K., 1997. Using interactive recession curve analysis to specify a general catchment 

storage model. Hydrology and Earth System Sciences, 1(1), 101-113. 

McMillan, H. K. et al., 2011. Hydrological field data from a modeller's perspective: Part 1. Diagnostic 

tests for model structure. Hydrological Processes, 25(4), 511-522. 

Penman, H. L., 1948. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal 

Society of London, 193(1032), 120-145. 

Refsgaard, J. C. & Storm, B., 1995. Mike she. Computer Models of Watershed Hydrology, 1, 809-846. 

Renard, B. et al., 2010. Understanding predictive uncertainty in hydrologic modeling: The challenge of 

identifying input and structural errors. Water Resources Research, 46(5), W05521. 

Savenije, H. H. G., 2009. CT4431 - hydrological modelling. Delft, The Netherlands: TU Delft 

Savenije, H. H. G., 2009. HESS Opinions "The art of hydrology". Hydrology and Earth System, Sciences, 

13(2), 157-161. 

Seibert, J., 1997. Estimation of Parameter Uncertainty. Nordic Hydrology, 28, 247-262. 

Willems, P., 2009. A time series tool to support the multi-criteria performance evaluation of rainfall-

runoff models. Environmental Modelling & Software, 24, 311-321. 

Willems, P., 2014. Parsimonious rainfall–runoff model construction supported by time series 

processing and validation of hydrological extremes – Part 1: Step-wise model-structure identification 

and calibration approach. Journal of Hydrology, 510, 578-590. 

Willems, P. et al., 2014. Parsimonious rainfall-runoff model construction supported by time series 

processing and validation of hydrological extremes--Part 2: Intercomparison of models and calibration 

approaches. Journal of Hydrology, 510, 591-609. 

Young, P., 2003. Top-down and data-based mechanistic modelling of rainfall-flow dynamics at the 

catchment scale. Hydrological processes, 17(11), 2195-2217. 



 59 

 

  



 60 

Appendix 1 Model descriptions 
Model 1 
This model exists of one linear reservoir (unsaturated reservoir Su) with only one parameter. The storage 

change of Su is formulated in eq. (30). Precipitation P will fill up the reservoir. The predicted evaporation 

(E+T) is at potential rate when there is no rain and sufficient storage eq. (31). The outflow of this 

reservoir is conceptualized as linear eq. (32) depending on the storage level Su and on the time-scale of 

groundwater drainage parameter Cs. This model is considered to be the most simple model.  

 𝑑𝑆𝑢

𝑑𝑡
= 𝑃(𝑡) − 𝐸(𝑡) − 𝑇(𝑡) − 𝑄𝑢(𝑡) (30) 

 𝐼𝑓 𝑃 = 0: 𝐸(𝑡) + 𝑇(𝑡) = min (𝐸𝑝, 𝑆𝑢(𝑡)) (31) 

 𝑄𝑢 =
1

𝐶𝑠

∗ 𝑆𝑢(𝑡) (32) 

 

 

Model 2 
Model 2 exists of one linear reservoir (unsaturated reservoir Su) with two parameters. The storage 

change of Su is formulated in eq.  (33). Precipitation P will fill up the reservoir until the maximum 

storage capacity SU,max is reached. The precipitation that exceeds the storage capacity will form the quick 

flow Qf eq.  (35). The predicted evaporation (E+T) is assumed to be proportional to the potential rate 

when there is no rain and sufficient storage eq.  (34). The slow flow Qs of this reservoir is conceptualized 

as linear eq. (36) depending on the storage level Su and on the time-scale of groundwater drainage 

parameter Cs.  

 𝑑𝑆𝑢

𝑑𝑡
= 𝑃(𝑡) − 𝐸(𝑡) − 𝑄𝑠(𝑡) − 𝑄𝑓(𝑡)  (33) 

 If P=0: 𝐸(𝑡) + 𝑇(𝑡) = min (𝐸𝑝
𝑆𝑢

𝑆𝑢𝑚𝑎𝑥
, 𝑆𝑢)  (34) 

 𝑄𝑓 = max (0, 𝑆𝑢 − 𝑆𝑢𝑚𝑎𝑥)  (35)  

 𝑄𝑠 =
1

𝐶𝑠

∗ 𝑆𝑢(𝑡) (36) 

 
𝑄𝑡 = 𝑄𝑠 + 𝑄𝑓 

 ( 37) 
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Model 3 
The third model exists of two reservoirs (unsaturated reservoir Su and fast runoff reservoir Sf) with two 

parameters. The storage change of Su is formulated in eq.  (38). Precipitation P will fill up the reservoir 

until the maximum storage capacity SU,max is reached. The precipitation that exceeds the storage capacity 

will form Quf eq. (41). The predicted evaporation (E+T) is assumed to be proportional to the potential 

rate when there is no rain and sufficient storage eq. (40). The storage change of Sf is formulated in eq.  

(39). The reservoir receives Quf. The fast flow Qf eq.  (42) is conceptualized as linear to the storage level 

of Sf and depends on the time-scale of groundwater drainage parameter Cf.  

 𝑑𝑆𝑢

𝑑𝑡
= 𝑃(𝑡) − 𝐸(𝑡) − 𝑄𝑢𝑓(𝑡)  (38)  

 𝑑𝑆𝑓

𝑑𝑡
= 𝑄𝑢𝑓(𝑡) − 𝑄𝑓(𝑡)  (39) 

 𝐼𝑓 𝑃 = 0: 𝐸(𝑡) + 𝑇(𝑡) = min (𝐸𝑝

𝑆𝑢

𝑆𝑢𝑚𝑎𝑥

, 𝑆𝑢) (40)  

 𝑄𝑢𝑓 = max (0, 𝑆𝑢 − 𝑆𝑢𝑚𝑎𝑥) (41)   

 𝑄𝑓 =
1

𝐶𝑓

∗ 𝑆𝑓(𝑡)  (42) 
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Model 4 
The fourth model exists of two reservoirs (unsaturated reservoir Su and slow runoff reservoir Ss) with 

three parameters. The storage change of Su is formulated in eq. (43). Precipitation P will fill up the 

reservoir until the maximum storage capacity SU,max is reached. The precipitation that exceeds the 

storage capacity will form Quf eq.(46). The predicted evaporation (E+T) is assumed to be proportional 

to the potential rate when there is no rain and sufficient storage eq. (45). The storage change of Ss is 

formulated in eq.  (44). The reservoir receives Rs (47). The slow flow Qs eq.  (49) is conceptualized as 

linear to the storage level of Ss and depends on the time-scale of groundwater drainage parameter Cs. 

The fast flow is conceptualized in eq. (48).The total flow (50) is the sum of Qf and Qs.  

 𝑑𝑆𝑢

𝑑𝑡
= 𝑃(𝑡) − 𝐸(𝑡) − 𝑄𝑢𝑓(𝑡)  (43)  

 𝑑𝑆𝑠

𝑑𝑡
= 𝑅𝑠(𝑡) − 𝑄𝑓(𝑡)  (44) 

 
𝐼𝑓 𝑃 = 0: 𝐸(𝑡) + 𝑇(𝑡) = min (𝐸𝑝

𝑆𝑢

𝑆𝑢𝑚𝑎𝑥

, 𝑆𝑢) (45)  

 𝑄𝑢𝑓 = max (0, 𝑆𝑢 − 𝑆𝑢𝑚𝑎𝑥) (46)   

 𝑅𝑠 = 𝑄𝑢𝑓 ∗ 𝐷 (47) 

 𝑄𝑓 = 𝑄𝑢𝑓 ∗ (1 − 𝐷) (48) 

 
𝑄𝑠 =

1

𝐶𝑠

∗ 𝑆𝑠(𝑡)  (49) 

 𝑄𝑡 = 𝑄𝑠 + 𝑄𝑓 (50) 
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Model 6 
The sixth model exists of two reservoirs (unsaturated reservoir Su and slow runoff reservoir Ss) with 

two parameters. The storage change of Su is formulated in eq.  (51). Precipitation P will fill up the 

reservoir. The predicted evaporation (E+T) is assumed to be at potential rate when there is no rain and 

sufficient storage eq.  (53). The percolation rate Perc is assumed to be constant Pmax when sufficient 

storage is present eq. (54). The storage change of Ss is formulated in eq. (52). The reservoir receives 

Perc and the slow outflow Qs eq.  (57) is conceptualized as linear to the storage level of Ss eq. (55),  (56) 

and depends on the time-scale of groundwater drainage parameter Cs.  

 𝑑𝑆𝑢

𝑑𝑡
= 𝑃(𝑡) − 𝐸(𝑡) − 𝑃𝑒𝑟𝑐(𝑡)  (51)  

 𝑑𝑆𝑠

𝑑𝑡
= 𝑃𝑒𝑟𝑐(𝑡) − 𝑄𝑠(𝑡)  (52) 

 𝐼𝑓 𝑃 = 0: 𝐸(𝑡) + 𝑇(𝑡) = min (𝐸𝑝

𝑆𝑢

𝑆𝑢𝑚𝑎𝑥

, 𝑆𝑢)  (53) 

 𝑃𝑒𝑟𝑐 = min(𝑃𝑚𝑎𝑥, 𝑆𝑢) (54) 

 𝑄𝑝𝑒𝑟𝑐 =  
1

𝐶𝑠

∗ 𝑃𝑒𝑟𝑐(𝑡) (55) 

 𝑄𝑠𝑡𝑜𝑟𝑔𝑒 =  
1

𝐶𝑠

∗ 𝑆𝑠(𝑡)  (56)  

 𝑄𝑠 =  𝑄𝑠𝑡𝑜𝑟𝑎𝑔𝑒 + 𝑄𝑝𝑒𝑟𝑐  (57) 
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Model 7 
The seventh model exists of two reservoirs (unsaturated reservoir Su and slow runoff reservoir Ss) with 

three parameters. The storage change of Su is formulated in eq.  (58). Precipitation P will fill up the 

reservoir until the maximum storage capacity SU,max is reached. The precipitation that exceeds the 

storage capacity will form the quick flow Qf eq  (61). The predicted evaporation (E+T) is assumed to 

be proportional to the potential rate when there is no rain and sufficient storage eq.  (60). The 

percolation rate Perc is assumed to be proportional to Pmax when sufficient storage is present eq.(62). 

The storage change of Ss is formulated in eq. (59). The reservoir receives Perc and the slow outflow Qs 

eq.  (65) and is conceptualized as linear to the storage level of Ss eq.(63),  (64) and depends on the time-

scale of groundwater drainage parameter Cs. The total flow  (65) is the sum of Qf and Qs. 

 𝑑𝑆𝑢

𝑑𝑡
= 𝑃(𝑡) − 𝐸(𝑡) − 𝑃𝑒𝑟𝑐(𝑡)  (58)  

 𝑑𝑆𝑠

𝑑𝑡
= 𝑃𝑒𝑟𝑐(𝑡) − 𝑄𝑠(𝑡)  (59) 

 𝐼𝑓 𝑃 = 0: 𝐸(𝑡) + 𝑇(𝑡) = min (𝐸𝑝

𝑆𝑢

𝑆𝑢𝑚𝑎𝑥

, 𝑆𝑢)  (60) 

 𝑄𝑓 = max (0, 𝑆𝑢 − 𝑆𝑢𝑚𝑎𝑥)  (61) 

 𝑃𝑒𝑟𝑐 = min (𝑃𝑚𝑎𝑥
𝑆𝑢

𝑆𝑢𝑚𝑎𝑥

, , 𝑆𝑢) (62) 

 𝑄𝑝𝑒𝑟𝑐 =  
1

𝐶𝑠

∗ 𝑃𝑒𝑟𝑐(𝑡) (63) 

 𝑄𝑠𝑡𝑜𝑟𝑔𝑒 =  
1

𝐶𝑠

∗ 𝑆𝑠(𝑡)  (64)  

 𝑄𝑠 =  𝑄𝑠𝑡𝑜𝑟𝑎𝑔𝑒 + 𝑄𝑝𝑒𝑟𝑐  (65) 
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Model 9 
The ninth model exists of two reservoirs (unsaturated reservoir Su and slow runoff reservoir Ss) with 

four parameters. The storage change of Su is formulated in eq.  (66). Precipitation P will fill up the 

reservoir until the maximum storage capacity SU,max is reached. The precipitation that exceeds the 

storage capacity will form the quick flow Quf eq  (69). The predicted evaporation (E+T) is assumed to 

be proportional to the potential rate when there is no rain and sufficient storage eq. (68). The 

percolation rate Perc is assumed to be proportional to Pmax when sufficient storage is present eq. (70. 

The storage change of Ss is formulated in eq. (67). The reservoir receives Perc and Rs (71). The slow 

outflow Qs eq.  (75) and is conceptualized as linear to the storage level of Ss eq. (72) (74) and depends 

on the time-scale of groundwater drainage parameter Cs. The fast flow is conceptualized in eq. (73). 

The total flow (76) is the sum of Qf and Qs. 

 𝑑𝑆𝑢

𝑑𝑡
= 𝑃(𝑡) − 𝐸(𝑡) − 𝑃𝑒𝑟𝑐(𝑡)  − 𝑄𝑢𝑓(𝑡)  (66)  

 𝑑𝑆𝑠

𝑑𝑡
= 𝑃𝑒𝑟𝑐(𝑡) − 𝑄𝑠(𝑡)  (67) 

 𝐼𝑓 𝑃 = 0: 𝐸(𝑡) + 𝑇(𝑡) = min (𝐸𝑝

𝑆𝑢

𝑆𝑢𝑚𝑎𝑥

, 𝑆𝑢)  (68) 

 𝑄𝑢𝑓 = max (0, 𝑆𝑢 − 𝑆𝑢𝑚𝑎𝑥)  (69) 

 𝑃𝑒𝑟𝑐 = min (𝑃𝑚𝑎𝑥
𝑆𝑢

𝑆𝑢𝑚𝑎𝑥

, , 𝑆𝑢) (70) 

 𝑅𝑠 = 𝑄𝑢𝑓 ∗ 𝐷 (71) 

 𝑄𝑃𝑡𝑜𝑡 =  
1

𝐶𝑠

∗ 𝑃𝑒𝑟𝑐(𝑡) + 
1

𝐶𝑠

∗ 𝑅𝑠  (72) 

 𝑄𝑓 = 𝑄𝑢𝑓 ∗ (1 − 𝐷) (73) 

 𝑄𝑠𝑡𝑜𝑟𝑔𝑒 =  
1

𝐶𝑠

∗ 𝑆𝑠(𝑡)  (74)  

 
𝑄𝑠 =  𝑄𝑠𝑡𝑜𝑟𝑎𝑔𝑒 + 𝑄𝑃𝑡𝑜𝑡 

 (75) 

 

 𝑄𝑡 = 𝑄𝑠 + 𝑄𝑓 (76) 
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Appendix 2 Evaporation distribution function 
In Table 24 the used sunrise and sunset hours are given for the Kervidy-Naizin catchment in France.  

MONTH SUNRISE SUNSET 

JANUARY 9:00 18:00 

FEBRUARY 8:00 18:00 

MARCH 8:00 19:00 

APRIL 8:00 21:00 

MAY 7:00 22:00 

JUNE 6:00 22:00 

JULY 6:00 22:00 

AUGUST 7:00 22:00 

SEPTEMBER 8:00 21:00 

OCTOBER 8:00 20:00 

NOVEMBER 8:00 18:00 

DECEMBER 9:00 17:00 

Table 24. Sunrise and sunset time of Naizin (loosely based on 
https://www.aroundtheworld360.com/sunrise_sunset/france/naizin/) 

For the catchment only daily potential evaporation is available. However the precipitation data is in 

hourly resolution, the daily potential evaporation data is therefore transformed to hourly data using 

(Fleming, 1970). 

For sunny days is the evaporation index (EVI) according: 

𝐸𝑉𝐼 = 2.78 − (7.73 + 𝐴)0.5 

𝐴 = 31.4 𝐷𝐻𝑂𝑈𝑅2 − 33.6 𝐷𝐻𝑂𝑈𝑅 + 2.23 

For cloudy days (days with measured precipitation) is the evaporation index (EVI) according: 

𝐸𝑉𝐼 = 0 𝑓𝑜𝑟 𝐷ℎ𝑜𝑢𝑟 0 − 0.06 

𝐸𝑉𝐼 = 6.75(𝐷𝐻𝑂𝑈𝑅 − 0.06) 𝑓𝑜𝑟 𝐷ℎ𝑜𝑢𝑟 0.061 − 0.26 

𝐸𝑉𝐼 = 1.35 𝑓𝑜𝑟 𝐷ℎ𝑜𝑢𝑟 0.261 − 0.8 

𝐸𝑉𝐼 = 1.35 −  6.75(𝐷𝐻𝑂𝑈𝑅 − 0.80) 𝑓𝑜𝑟 𝐷ℎ𝑜𝑢𝑟 0.81 − 1 

Time index DHOUR = 

𝐷𝐻𝑂𝑈𝑅 =
𝑡𝑖𝑚𝑒 𝑓𝑟𝑜𝑚 𝑠𝑢𝑛𝑟𝑖𝑠𝑒

𝑑𝑎𝑦𝑙𝑒𝑛𝑡ℎ
 

Average daylight evaporation rate = 

𝑡𝑜𝑡𝑎𝑙 20 ℎ𝑜𝑢𝑟 𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 

𝑑𝑎𝑦𝑙𝑒𝑛𝑔𝑡ℎ 
 

Evaporation rate (DHOUR) = 

𝐸𝑉𝐼 ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑎𝑦𝑙𝑖𝑔ℎ𝑡 𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 

https://www.aroundtheworld360.com/sunrise_sunset/france/naizin/
https://www.aroundtheworld360.com/sunrise_sunset/france/naizin/
https://www.aroundtheworld360.com/sunrise_sunset/france/naizin/
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Appendix 3 Parameter values and discharge data synthetic 

experiment 
Model 1 
Parameter sets: 
 Set 1 Set 2 Set 3 

Cs [h] 20 100 200 

Discharge series: 
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Model 2 
Parameter sets: 
 Set 1 Set 2 Set 3 

Cs [h] 20 100 200 

SU,max [mm] 20 80 100 

Discharge series: 
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Model 3 
Parameter sets: 
 Set 1 Set 2 Set 3 

Cs [h] 20 100 200 

SU,max [mm] 20 80 100 

Discharge series: 
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Model 4 
Parameter sets: 
 Set 1 Set 2 Set 3 

Cs [h] 200 800 500 

SU,max [mm] 100 234 40 

D [-] 0.8 0.96 0.2 

Discharge series: 
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Model 6 
Parameter sets: 
 Set 1 Set 2 Set 3 

Cs [h] 20 50 200 

Pmax [mm] 0.35 0.05 0.15 

Discharge series: 
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Model 7 
Parameter sets: 
 Set 1 Set 2 Set 3 

Cs [h] 500 100 200 

SU,max [mm] 150 110 65 

Pmac [mm/h] 0.1 0.07 0.15 

Discharge series: 
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Model 9 
Parameter sets: 
 Set 1 Set 2 Set 3 

Cs [h] 470 590 100 

SU,max [mm] 280 327 220 

Pmac [mm/h] 0.0031 0.0065 0.0058 

D [-] 0.96 0.94 0.977 

Calibration NS 0.55 0.56  

Calibration logNS 0.73 0.69  

Calibration R 0.75 0.75  

Discharge series: 
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Appendix 4 Method results 
Some of the methods are depending on other parameter values as can be red in 3.1. In this part of the 

results are the other parameters needed to determine the current parameter of the method assumed to 

be known and set to the original value. So the input of the methods exists of correct data and correct 

parameters except for the one which is obtained by the method. 

Cs fit method results  
Model 1 Data set 1 Data set 2 Data set 3 
Original value [h] 20 100 200 
Number of recessions 
used  

23 31 31 

Median [h] 20 100 200 
Std [-] 9.85e-4 4.13e-7 1.56e-6 
Relative error [%] 0 0 0 

Distribution  

   
Model 2    

Original value [h] 20 100 200 
Number of recessions 
used  

31 31 31 

Median [h] 20 100 200 
Std [-] 0.099 3.55e-7 4.43e-8 
Relative error [%] 0   

Distribution  

   
Model 3    

Original value [h] 20 100 200 
Number of recessions 
used  

206 201 260 

Median [h] 20 100 200 
Std [-] 0.188 0.001 0.23 
Relative error [%] 0 0 0 

Distribution  
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Model 4    
Original value [h] 200 500 800 
Number of recessions 
used  

42 66 64 

Median [h] 200 800 500 
Std [-] 0.0038 0.0166 0.24 
Relative error [%] 0 0 0 

Distribution  

   
Model 6 Data set 1 Data set 2 Data set 3 

Original value [h] 20 50 200 
Number of recessions 
used  

43 30 33 

Median [h] 20 50 200 
Std [-] 0.1 72 2.47e-8 
Relative error [%] 0 0 0 

Distribution  

   
Model 7    

Original value [h] 500 100 200 
Number of recessions 
used  

40 31 41 

Median [h] 1977 613 499 
Std [-] 2004 474 415 
Relative error [%] 295 513 149 

Distribution  

   
Model 9    

Original value [h] 470 590 100 
Number of recessions 
used  

34 31 44 

Median [h] 620.5 894 324 
Std [-] 1274 1488 1016 
Relative error [%] 32.02 51.6 224.9 

Distribution  
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Cs S-D method  
Model 7 Data set 1 Data set 2 Data set 3 
Original value [h] 500 100 200 
First estimate Cs [h] 1977 613 499 
Median [h] 500.64 101.42 200.66 
Std [-] 13 3.19 1.24 
Relative error [%] 0.13 1.42 0.33 

Distribution  

   
Model 9    

Original value [h] 470 590 100 
First estimate Cs [h] 620 894 324 
Number of recessions 
used  

81 46 51 

Median [h] 470 590.1 101.3 
Std [-] 1.12 8.77 1.74 
Relative error [%] 0 0.02 1.3 

Distribution  
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D method  
Model 4 Data set 1 Data set 2 Data set 3 
Original value 0.8 0.96 0.2 
Number of peak flow 
used  

103 60 452 

Median [-] 0.8 0.96 0.2 
Std [-] 0.00459 0.00458 2.65e-14 
Relative error [%] 0 0 0 

Distribution 

   
Model 9    

Original value 0.96 0.94 0.977 
Number of peak flow 
used  

68 35 33 

Median [-] 0.961 0.941 0.9977 
Std [-] 0.009 0.006 0.035 
Relative error [%] 0.06 0.18 0.07 

Distribution 
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SU,max bounds method 
Model 3    
Original value [mm] 20 80 100 
Minimum [mm] 18 60 63 
Relative error % -10 -25 -37 
Maximum [mm] 31 136 183 
Relative error % 55 70 83 
Model 4    

Original value [mm] 100 235 40 
Minimum [mm] 64 153 32 
Relative error % -36 -35 -20 
Maximum [mm] 183 288 60 
Relative error % 83 23 50 
Model 7    

Original value [mm] 150 110 65 
Minimum [mm] 98 71 44 
Relative error % -35 -35 -32 
Maximum [mm] 207 171 86 
Relative error % 38 55 32 
Model 9    

Original value [mm] 280 327 220 
Minimum [mm] 178 206 146 
Relative error % -36 -37 -34 
Maximum [mm] 309 466 276 
Relative error % 10 43 25 
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SU,max inter-peak method 
Model 3    

Original value [mm] 20 80 100 
Number calculations 460 364 344 
Median [mm] 20 80 99.99 
Std [-] 42 22.8 9.5 

Distribution  

   
Model 4    

Original value [mm] 100 235 40 
Number calculations 43 21 185 
Median [mm] 100 235 40 
Std [-] 6.5e-8 3.0e-7 2.77 

Distribution  

   
Model 7    

Original value [mm] 150 110 65 
Number calculations 15 42 14 
Median [mm] 150 110 67 
Std [-] 64 40.5 26 

Distribution  

   
Model 9    

Original value [mm] 280 327 220 
Number calculations 28 10 27 
Median [mm] 179 206 146 
Std [-] 12 34 44 

Distribution  
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Pmax method  
Model 6 Data set 1 Data set 2 Data set 3 

Original value [mm/h] 0.35 0.05 0.15 
75 percentile [mm/h] 0.35 0.05 0.15 
Relative error [%] 0 0 0 
Min. distribution  0.35 0.05 0.15 
Max. distribution  0.35 0.05 0.15 

Distribution 

   
Model 7    

Original value [mm/h] 0.1 0.07 0.15 
75 percentile [mm/h] 0.096 0.067 0.129 
Relative error [%] -3.69 -0.70 -13.85 
Min. distribution  0.089 0.061 0.098 
Max. distribution  0.1 0.07 0.15 

Distribution 

   
Model 9    

Original value [mm/h] 0.0031 0.0065 0.0058 
75 percentile [mm/h] 0.0028 0.0062 0.0056 
Relative error [%] -9.68 -4.62 -3.45 
Min. distribution  0.0026 0.0057 0.0051 
Max. distribution  0.00307 0.0065 0.0058 

Distribution 
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Appendix 5 Results synthetic experiments 
Some methods are depending on other parameter values to determine the current parameter. However, 

the methods contain errors in the parameter estimation. In this paragraph it is possible to see to what 

extent these errors in the determination of one parameter propagate to other parameters estimations. 

Model 4 
SU,max bounds method 

 Data set 1 Data set 2 Data set 3 
Original value [mm] 100 235 40 
Minimum [mm] 64 153 32 

Relative error  -36 -35 -20 
Maximum [mm] 183 288 60 

Relative error  83 23 50 
 

SU,max inter-peak method 

 Data set 1 Data set 2 Data set 3 

Original value [mm] 100 235 40 
Number calculations 43 21 182 
Median [mm] 100 235 40 
Std [-] 0.0024 0.13 0.0033 

Distribution  

   
 

Cs fit method  

 Data set 1 Data set 2 Data set 3 
Original value [h] 200 500 800 

Number of 
recessions used  

42 66 64 

Median [h] 200 800 500 

Std [-] 0.0038 0.0166 0.24 

Relative error [%] 0 0 0 

Distribution  
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D method  
 Data set 1 Data set 2 Data set 3 
Original value 0.8 0.96 0.2 
Number of peak flow 
used  

103 61 452 

Median [-] 0.8 0.96 0.2 
Std [-] 0.00459 0.00458 4.44e-9 
Relative error [%] 0 0 0 

Distribution 
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Model 7 
SU,max bounds method 

 Data set 1 Data set 2 Data set 3 
Original value [mm] 150 110 65 
Minimum [mm] 99 73 46 

Relative error  -34 -34 -29 
Maximum [mm] 210 173 121 

Relative error  40 57 86 
 

Cs S-D method  

 Data set 1 Data set 2 Data set 3 
Original value [h] 500 100 200 
First estimate Cs [h] 1770 578 488 

Results of iterations 

 
  

Number of recessions 
used  

24 11 28 

Median [h] 
After 7 iterations  

497 131 172 

Std [-] 180 86 103 
Relative error [%] -0.42 31.36 -13.65 

Distribution  
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Pmax method  

 Data set 1 Data set 2 Data set 3 

Original value [mm/h] 0.1 0.07 0.15 

Results of iterations 

   
75 percentile [mm/h] 0.096 0.067 0.12 
Relative error [%] -3.79 -2.98 -16.02 
Min. distribution  0.089 0.061 0.096 
Max. distribution  0.998 0.073 0.15 

Distribution 
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Model 9 
SU,max bounds method 

 Data set 1 Data set 2 Data set 3 
Original value [mm] 280 327 220 
Minimum [mm] 178 206 146 

Relative error  -36 -37 -34 

Maximum [mm] 309 466 276 

Relative error  10 43 25 

 

Cs S-D method  

 Data set 1 Data set 2 Data set 3 
Original value [h] 470 590 100 
First estimate Cs [h] 615 877 618 

Results of iterations 

   
Number of recessions 
used  

42 42 54 

Median [h] 
After 7 iterations  

482 593 105 

Std [-] 385 350 104 
Relative error [%] 2.74 0.6 4.68 

Distribution  
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D method  
 Data set 1 Data set 2 Data set 3 
Original value 0.96 0.94 0.977 

Results of iterations 

   
Number of peak flow 
used  

68 28 33 

Median [-] 
After 7 iterations 

0.962 0.942 0.979 

Std [-] 0.009 0.001 0.04 
Relative error [%] 0.15 0.22 0.16 

Distribution 

   
 

Pmax method  

 Data set 1 Data set 2 Data set 3 

Original value [mm/h] 0.0031 0.0065 0.0058 

Results of iterations 

   
75 percentile [mm/h] 0.0028 0.0062 0.0056 
Relative error [%] -8.15 -4.04 -3.85 
Min. distribution  0.0026 0.00573 0.0051 
Max. distribution  0.0031 0.00650 0.0058 

Distribution 
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Appendix 6 Results data uncertainty 

Precipitation error 
SU,max bounds method 

 Data set 1 Data set 2 Data set 3 
Original value [mm] 280 327 220 
Minimum [mm] 114 140 107 
Relative error  -59 -57 -51 
Maximum [mm] 359 385 352 
Relative error  28 18 60 

 

Cs S-D method  

 Data set 1 Data set 2 Data set 3 
Original value [h] 470 590 100 
First estimate Cs [h] 550 778 221 

Results of iterations 

 
  

Number of recessions 
used  

51 
 

42 45 

Median [h] 
After 7 iterations  

472 596 103 

Std [-] 525 452 303 
Relative error [%] 0.44 1.16 2.74 

Distribution  
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D method  
 Data set 1 Data set 2 Data set 3 
Original value 0.96 0.94 0.977 

Results of iterations 

   
Number of peak flow 
used  

100 70 79 

Median [-] 
After 7 iterations 

0.961 0.944 0.979 

Std [-] 0.015 0.024 0.04 
Relative error [%] 0.15 0.48 0.18 

Distribution 

   
 

Pmax method  

 Data set 1 Data set 2 Data set 3 

Original value [mm/h] 0.0031 0.0065 0.0058 

Results of iterations 

   
75 percentile [mm/h] 0.0030 0.0063 0.0056 
Relative error [%] -2.22 -2.29 -2.04 
Min. distribution  0.0029 0.0061 0.0054 
Max. distribution  0.0031 0.0065 0.0058 

Distribution 
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Data corruption 
SU,max bounds method 

 Data set 1 Data set 2 Data set 3 
Original value [mm] 280 327 220 
Minimum [mm] 183 203 155 
Relative error  -35 -38 -30 
Maximum [mm] 323 508 277 
Relative error  15 55 26 

 

Cs S-D method  

 Data set 1 Data set 2 Data set 3 
Original value [h] 470 590 100 
First estimate Cs [h] 629 875 661 

Results of iterations 

 
  

Number of recessions 
used  

38 38 43 

Median [h] 
After 7 iterations  

460 541 102 

Std [-] 99 138 80 
Relative error [%] -2.08 -8.27 2.19 

Distribution  
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D method  
 Data set 1 Data set 2 Data set 3 
Original value 0.96 0.94 0.977 

Results of iterations 

   
Number of peak flow 
used  

69 28 33 

Median [-] 
After 7 iterations 

0.9599 0.937 0.978 

Std [-] 0.01 0.07 0.03 
Relative error [%] -0.01 -0.3 0.1 

Distribution 

   
 

Pmax method  

 Data set 1 Data set 2 Data set 3 

Original value 
[mm/h] 

0.0031 0.0065 0.0058 

Results of iterations 

   
75 percentile 
[mm/h] 

0.0036 0.0098 0.0057 

Relative error [%] 16.16 50.18 -1.31 

Min. distribution  0.0027 0.0069 0.0048 

Max. distribution  0.0046 0.130 0.0067 

Distribution 
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