





## The challenge of parameter uncertainty:

Finding parameter distributions from hydrological field data for conceptual rainfall-runoff models.

Nicolette van der Tak

## The challenge of parameter uncertainty:

# Finding parameter distributions from hydrological field data for conceptual rainfall-runoff models.

By

Nicolette van der Tak

To obtain the degree of Master of Science at the Delft University of Technology to be defended publicly on Friday December 7<sup>th</sup>, 2018 at 14:00 p.m. (GMT+1)

 Student number::
 4496507

 Project duration:
 March 19, 2018 – December 7, 2018

Thesis committee:

Dr. MSc. habil. M. Hrachowitz Dr. T.A. Bogaard Prof. dr. ir. T.J. Heimovaara Ir. S.E. van den Driest-van der Kruijs Delft University of Technology Delft University of Technology Delft University of Technology Antea Group



#### Abstract

Conceptual hydrological models attempt to describe the non-linear behavior between climate drivers (precipitation and evaporation) and system output (e.g. stream or river flow). These models are a simplified and abstract representation of a catchment and should represent system characteristics such as topography and geology. The models are a tool to simulate the movement of water in the hydrological cycle. Hydrologists use the models for research, water resource assessment, planning and management of water.

System representation in models is a challenge due to underlying uncertainties. Two main categories can be distinguished: data uncertainty and model uncertainty. Data uncertainty originates from difficulties in the measurements and from the interpretation of the data. Model uncertainty consists of two kinds of uncertainties: the model structure (e.g. is the model simplification appropriate?) and uncertainty in the model parameters. Effective parameters are used in conceptual models. The model parameters represent characteristics or properties of a catchment, such as the maximum storage capacity of the soil. These parameters are not directly based on observable quantities. They are an integration of spatial heterogeneous parts of the system above the scale of available observations. To estimate these parameters, calibration of the models is needed.

The focus of this thesis is the parameter uncertainty in models. Many studies have been conducted to increase the physical meaning of the parameters. The use of constraints (regarding relations between parameter, fluxes and states) for the parameter sets prevents the model from overfitting in the calibration period. Finding adequate parameter values based on field observations, which represents the heterogeneity of a catchment on the spatial resolution and scale of the model, is considered much more challenging since we cannot directly derive the parameters from observable quantities.

The objective of this thesis is to analyze the extent to which it is possible to make an estimation of parameter values or parameter distributions based on field observations (the precipitation, evaporation and discharge) and a given hydrological model structure. The goal is to avoid the use of uninformed prior parameter distributions during calibration by using available field data to generate informed prior distributions. The hypothesis is that a hydrograph can be divided into sub-periods and that each period has different "dominant" processes with associated parameters. Dividing the hydrograph into sub-periods to find individual parameters of the model could further increase model realism. In theory, uncertainty in the selected parameter sets should be reduced if the parameter information is directly extracted from the observed data.

In this thesis, six different expert-knowledge inverse modelling methods are developed to find four parameter distributions. Each method uses sub-periods in the data and is coupled to the parameter of the model component representing that specific type of sub-period. For the first parameter, the ground water drainage parameter ( $C_s$ ) of the slow reservoir, the fit and S-D methods are developed. These methods focus on long dry periods where the discharge of the slow reservoir is dominant. In the second method, percolation rates are calculated in periods with low flow. The parameter distribution restraining the maximum percolation rate ( $P_{max}$ ) is determined using calculated percolation rates. For the third parameter, which regulates peak discharges (D), clear individual peak discharge moments need to be filtered out in a discharge series. The method to find the D distribution uses the most suitable sub-periods, which are during spring and fall season. For the last parameter, distribution of the maximum catchment storage ( $S_{U,max}$ ), a water balance method is developed over sub-periods of the data set. In the bound method, winter periods are used for the lower bound of the distribution while the upper bound originates from summer periods. The inter-peak method is also based on a water balance but focuses on two subsequent peak flow moments.

To test the expert-knowledge inverse modelling methods, the study was conducted in a synthetic environment, which made it easier to validate the parameter distributions obtained with the expert-knowledge inverse modelling methods. In this synthetic experiment, discharge data was produced by a model driven by real rainfall data and potential evaporation data. All forms of uncertainty were excluded.

The effect of data uncertainty in the methods was investigated separately by conducting a sensitivity analysis. The same synthetic data was used; however the synthetic data was corrupted to

simulate data uncertainty. The validation of the methods was achieved based on the original parameters used to produce the discharge data.

Last, an application of the methods upon real measured data was completed. The performance of the methods to find parameter distributions can no longer be assessed since in the real world the "correct" parameter values are not known. However, a comparison of the resulting informed prior parameter distributions of the methods with uninformed prior parameter distributions could be made with a Monte-Carlo sampling strategy calibration.

In the synthetic experiment, all parameter distributions of the investigated model were correctly determined using the expert-knowledge inverse modelling methods. The sensitivity analysis revealed that the method to determine the  $P_{max}$  parameter distribution was sensitive to data uncertainty. The determined  $P_{max}$  parameter distributions did not include the original parameter of the corrupted synthetic data. Since many of the expert-knowledge inverse modelling methods use  $P_{max}$  as input, other parameter distributions will be affected by the errors in the  $P_{max}$  distribution. However, this issue does not lead to parameter distributions that do not include the original parameters for the affected parameters.

In real-world application, insight is gained into the performance of the developed methods to find parameter distributions. A comparison was made in a Monte-Carlo sampling strategy between the calibration results obtained using an uninformed prior parameter distributions and the informed parameter distributions of the expert-knowledge inverse modelling methods. An uncertainty interval was constructed with the Generalized Likelihood Uncertainty Estimation (GLUE) method. The total area of the constructed uncertainty interval using the calibration results of the informed prior parameter distributions was less than half than the uncertainty interval constructed using the uninformed prior parameter distributions. The posterior parameter distributions of the informed parameter distributions was two to five times smaller than for the uninformed parameter distribution. The model performance of both calibrations did not deviate significantly, indicating sufficient performance of the expertknowledge inverse modelling methods to find parameters. If the performance of the model using the informed parameter distribution decreased significantly compared to uninformed parameter calibration, could this decrease be an indication that the model structure is unsuitable for the catchment and essential hydrological processes are left out.

Further research should provide insight into the performance of the expert-knowledge inverse modelling methods in a synthetic experiment with model uncertainty. The assumption could be confirmed in this test that the expert-knowledge inverse modelling methods would be an extra indication for how suitable a model structure is for a catchment. In addition, further research should be conducted to see how the expert-knowledge inverse modelling methods behave in a larger catchment with more heterogenic characteristics.

## Table of contents

| Abstract                                                   |    |
|------------------------------------------------------------|----|
| List of figures                                            | 7  |
| List of tables                                             | 9  |
| List of abbreviations                                      |    |
| Chapter 1 Introduction                                     |    |
| 1.1 Hydrological modelling                                 |    |
| 1.2 Model types                                            |    |
| 1.3 Challenges in conceptual modelling                     |    |
| 1.3.1 Data uncertainty                                     |    |
| 1.3.2 Model uncertainties                                  |    |
| 1.4 Scope                                                  | 14 |
| 1.5 Research objective                                     | 14 |
| 1.6 Research questions                                     |    |
| 1.7 Thesis outline                                         |    |
| Chapter 2 Data and Models                                  |    |
| 2.1 Study area                                             |    |
| 2.1.1 Kervidy-Naizin catchment, France                     |    |
| 2.1.2 Precipitation stations, the Netherlands              |    |
| 2.2 Model description                                      |    |
| 2.3 Synthetic data                                         |    |
| Chapter 3 Methods                                          |    |
| 3.1 Methods to determine parameter distribution            |    |
| 3.1.1 Groundwater drainage parameter (Cs)                  |    |
| 3.1.2 Partitioning coefficient fast and slow reservoir (D) |    |
| 3.1.3 Maximum unsaturated zone storage ( $S_{U,max}$ )     |    |
| 3.1.4 Maximum percolation rate $(P_{max})$                 |    |
| 3.2 Synthetic experiment                                   |    |
| 3.3 Sensitivity analysis methods for data uncertainty      |    |
| 3.3.1 Precipitation error                                  |    |
| 3.3.2 Data corruption                                      |    |
| 3.4 Real-word application                                  |    |
| 3.4.1 Comparison traditional and new calibration approach  |    |
| Chapter 4 Results                                          |    |
| 4.1 Results of parameter distribution methods              |    |
| 4.2 Results synthetic experiments                          |    |
| 4.2.1 Results for model 4                                  |    |
| 4.2.2 Results for models 7 and 9                           |    |

| 4.3 Results of sensitivity analysis                                 |    |
|---------------------------------------------------------------------|----|
| 4.3.1 Results for model 9 including the forcing error               |    |
| 4.3.2 Results of model 9 including the data error                   |    |
| 4.4 Results of real-world application                               |    |
| 4.4.1 Results comparison                                            |    |
| Chapter 5 Discussion                                                |    |
| 5.1 Methods and synthetic experiment                                |    |
| 5.1.1 Methods                                                       |    |
| 5.1.2 Comparison model run of models 4, 7 and 9                     |    |
| 5.2 Sensitivity analysis                                            | 53 |
| 5.2.1 Precipitation error                                           | 53 |
| 5.2.2 Data corruption                                               | 53 |
| 5.3 Real world                                                      | 54 |
| Chapter 6 Conclusions                                               | 55 |
| 6.1 Further research                                                |    |
| Literature list                                                     |    |
| Appendix 1 Model descriptions                                       |    |
| Appendix 2 Evaporation distribution function                        | 66 |
| Appendix 3 Parameter values and discharge data synthetic experiment | 68 |
| Appendix 4 Method results                                           | 76 |
| C <sub>s</sub> fit method results                                   | 76 |
| C <sub>s</sub> S-D method                                           |    |
| D method                                                            | 79 |
| S <sub>U,max</sub> bounds method                                    |    |
| S <sub>U,max</sub> inter-peak method                                |    |
| P <sub>max</sub> method                                             |    |
| Appendix 5 Results synthetic experiments                            |    |
| Model 4                                                             |    |
| Model 7                                                             |    |
| Model 9                                                             |    |
| Appendix 6 Results data uncertainty                                 |    |
| Precipitation error                                                 |    |
| Data corruption                                                     | 91 |
|                                                                     |    |

## List of figures

Figure 1. A visual representation of the objective of this research. The objective is to estimate the parameter values or parameter distribution based on field observations and a given hydrological model structure......15 Figure 2. Representation of research outline: theory portion where methods are developed to find parameter distributions, modelling portion to test the developed methods, which is divided into three sub-parts: (1) synthetic experiment, (2) sensitivity analysis and (3) real-world application. Conclusions are drawn in the last section......17 Figure 3. Kervidy-Naizin catchment in France, which is part of the ORE-ArtgHys network (Aubert, et Figure 4. Measuring stations Twenthe and Hupsel, part of the KNMI network (www.meteobase.nl)19 Figure 5. A schematic representation of the hydrological model structures used in this study. The fluxes and reservoir names are shown in black. The related parameters are shown in red......21 Figure 6. Observed time series of hourly precipitation (light blue), hourly potential evaporation (orange) and discharge (blue dotted line). Data originates from model 1 parameter set 3 in the years 2005-2011. Example of the selected recession (black) was used in the fit method. The recession has a length of 10 h, no precipitation was measured two days prior nor during the recession, no potential evaporation was measured during the recession and the end of the recession was just before the start of a precipitation Figure 7. Observed time series of hourly precipitation (light blue), hourly potential evaporation (orange) and discharge (blue dotted line). Overview of all selected recessions (black) were used in the fit method. Figure 8. A selected recession from the data of model 4 parameter set 1 (blue dotted line) with an original  $C_s$  value of 200 h and a fit (orange line) with an estimated  $C_s$  value in the fit method of 199.5 Figure 9. A selected recession from the data of model 9 parameter set 1 (left); the corresponding storage-discharge relation with estimated C<sub>s</sub> value of 636 h (slope S-D relation) (right)......25 Figure 10. Original storage-discharge relation, time integral over the recession (blue line) and the new recalculated (orange line) storage-discharge relation, time integral over the difference between the recession (outflow of the slow reservoir) and the  $P_{tat}$  (inflow to the slow reservoir). Data originates from Figure 11. Selected overflow moment observed discharge (orange, red and brown dots); expected flow during the peak flow calculated with the  $C_s$  (green dot) and expected flow from the saturated zone calculated with the  $C_s$  (purple dot). The difference between the red and purple dots represents the volume of fast lateral runoff processes, while the difference between the purple and green dots represents the extra discharge from the slow reservoir due to additional water from the preferential Figure 12. Result of the bound method using different event lengths for data originating from model 4; the estimated minimum value of  $S_{U,max}$  = 160 mm, and the estimated maximum = 287.5 mm.......28 Figure 13. Selected individual event for the time series originating from model 4 set 2;  $S_{U,max} = 235$  mm; Figure 14. Selected individual event for the time series originating from model 4 set 2;  $S_{U,max} = 235$  mm; Figure 15. Previous precipitation of the selected event already partly filled the system, resulting in a low Figure 16. Part of the hydrograph starting and ending with an overflow moment with a storage change of the unsaturated zone in between due to evaporation (orange line) and precipitation (light blue line). Figure 17. Observed discharge and filtered discharge of model 9 data set 2. In the filtered discharge all 

| Figure 18. The blue line represents the observed discharge. The orange and red dotted lines represent    |
|----------------------------------------------------------------------------------------------------------|
| expected discharges if no percolation would be present. The difference between the red and blue dots     |
| represents the extra discharge from the slow reservoir due to the additional percolated water in the     |
| slow reservoir                                                                                           |
| Figure 19. The green dots represent all the time steps used in the $P_{max}$ analysis                    |
| Figure 20. The green dots represent the top 20% highest calculated percolation rates                     |
| Figure 21. The interdependencies of the different expert-knowledge inverse modelling methods to find     |
| the parameter distributions                                                                              |
| Figure 22. Schematic representation of the procedure to find the parameter distributions of models 7     |
| and 9                                                                                                    |
| Figure 23. Cumulative sum of the measured precipitation (mm) in Hupsel compared to the cumulative        |
| sum of the measured precipitation (mm) in Twenthe (data of 2007)                                         |
| Figure 24. Observed (blue line) and most optimal simulated (orange line) discharges in the calibration   |
| and validation periods. The simulated discharge is shown with a 95 percent uncertainty interval (shaded  |
| grey area)                                                                                               |
| Figure 25. The prior parameter distributions and the posterior parameter distributions of all behavioral |
| models. For both the uninformed parameter distribution and the informed parameter distribution.          |
| (boxplots: the dots represents the outliers in de data set, the lower and upper whisker 2.5/97.5th       |
| percentiles and, the horizontal orange line the median)                                                  |

## List of tables

## List of abbreviations

|                    | Unit |                                                              |
|--------------------|------|--------------------------------------------------------------|
| Cs                 | mm/h | Groundwater drainage parameter                               |
| D                  | -    | Partitioning coefficient fast and slow reservoir             |
| Е                  | mm/h | Evaporation                                                  |
| ED                 | -    | Euclidean distance                                           |
| Ep                 | mm/h | Potential evaporation                                        |
| GLUE               |      | Generalized Likelihood Uncertainty Estimation                |
| logNS              | -    | Nash-Sutcliffe model efficiency of the logarithm of the flow |
| MRC                |      | Master recession curve                                       |
| NS                 | -    | Nash-Sutcliffe model Efficiency                              |
| Perc               | mm/h | Percolation                                                  |
| $P_{\text{max}}$   | mm/h | Maximum percolation rate                                     |
| $P_{\text{tot}}$   | mm/h | Inflow to the slow reservoir                                 |
| $Q_{\mathrm{f}}$   | mm/h | Fast lateral runoff discharge                                |
| Qs                 | mm/h | Slow discharge                                               |
| $Q_t$              | mm/h | Total discharge                                              |
| $Q_{\rm uf}$       | mm/h | Overflow unsaturated zone                                    |
| R <sub>s</sub>     | mm/h | Preferential recharge                                        |
| S-D relation       |      | Storage-Discharge relation                                   |
| Ss                 | mm   | Slow reservoir                                               |
| std                |      | Standard deviation                                           |
| S <sub>U,max</sub> | mm   | Maximum unsaturated zone storage                             |
| Su                 | mm   | Unsaturated zone reervoir                                    |
| Т                  | mm/h | Transpiration                                                |

## **Chapter 1 Introduction**

#### 1.1 Hydrological modelling

Hydrological models attempt to describe the non-linear behavior between climate drivers (e.g. rainfall, potential evaporation) and system output (e.g. stream or river flow, groundwater table fluctuations). The observed climatic drivers are included in mathematical equations describing the fluxes and different system states (water storage) to reproduce the observed hydrological response. The models are a tool to simulate the movement of water in the hydrological cycle. The hydrological models are a simplified and abstract representation of our hypothesis on the processes occurring in nature (Savenije, 2009).

Hydrological models are used for many reasons, for example, as powerful tool in research as explained by Savenije (2009). In models, we try to encapsulate our knowledge. The models are the translation of our perception of the complex processes acting in nature. After formulating the model and the accompanied mathematical or numerical expressions of the processes, we need to carefully test these models to avoid misrepresentation of real-world processes. If the model is able to reproduce the physical processes, these well-tested models can be used to test the impact of interventions in the hydrological system. For example, a model might test what happens when the climate changes or if the land use in a catchment changes. Different analyses can be carried out to assess the availability of water or extrapolate in time to use the models for future predictions. The well-tested models give insight into the overall behavior of the system at a level unobservable in reality (Savenije, 2009).

Assuming the models are well-tested and capable of reproducing the physical processes, these models are used as a tool to develop policy for water resource management (Hrachowitz & Clark, 2017). Changes in land use or climate regime can be tested to quantify the effect of these factors on flood risk or water availability. Furthermore, effects of water withdraw or storage creations could be analyzed. Last, models are used for early warning of floods or droughts. This information is used in the daily operation of our water control systems (Brauer, 2014; Savenije, 2009).

#### 1.2 Model types

Hydrological models can have different degrees of complexity. The least complex models are called black box models. These are based on empirical relations, for example, the unit hydrograph (Clark, 1945). In contrast to these simple models, the most complex models are often referred to as distributed physically-based models, with high complexity and spatial resolution. These models are based on differential equations, such as the Darcy-Richards' equation for groundwater flow and the St. Venant equations for open water. MIKE-SHE (Refsgaard & Storm, 1995) is an example of these models.

In between these two types of models are conceptual parametric rainfall-runoff models. These models consist of reservoirs representing storages and processes interacting with the storages (fluxes) (Savenije, 2009; Brauer, 2014; Hrachowitz & Clark, 2017). Fluxes always occur per unit of time, and examples are precipitation, evaporation, percolation, subsurface flow and discharge. They can be represented by observed data or mathematically described. Examples of conceptual models are HBV (Bergström & Forsman, 1973), FLEX (Fenicia, et al., 2006) and WALRUS (Brauer, et al., 2014). This study uses conceptual model structures.

#### 1.3 Challenges in conceptual modelling

The most prominent challenge in conceptual modelling is to identify a quantitative and functional relationship between climate drivers and output, like river discharge at the catchment scale. The models are a mathematical replica of the real hydrological system, which should reflect catchment characteristics like geology and topography (Gharari, 2016). This challenge originates from different underlying sources of uncertainties. Two main categories can be distinguished, data uncertainty and model uncertainty, and result in unreliable predictions even though the models perform well during the calibration period (Renard, et al., 2010; Hrachowitz & Clark, 2017). This could indicate an insufficient

representation of underlying processes (Seibert, 1997; Hrachowitz, et al., 2014). The next sections will elaborate on the uncertainties in modelling.

#### 1.3.1 Data uncertainty

The driver in the modelling and calibration process is measured data. Therefore data uncertainty has a large influence on the performance of the models (Kavetski, et al., 2006; Ajami, et al., 2007). Both input data (like rainfall and evaporation) and measured output, like discharge, contain uncertainties. The data uncertainty originates from errors and uncertainty in the measurement technique. Interpretation errors also have a large influence on the total data uncertainty (Renard, et al., 2010).

Interpretation errors are, for example, the extrapolation of the measured data over the catchment. Rainfall input into the models is typically measured by rain gauges. This measurement represents a small area of several square centimeters, while the hydrological model acts on a scale exceeding various square kilometers (Gharari, 2016). Rainfall is known to be a heterogeneous process (highly variable in both space and time), but in modelling, it is assumed to be uniform over (part of) the catchment, forming an important source of uncertainty (Butts, et al., 2004; Kavetski, et al., 2006; Gharari, 2016). In addition to the rainfall data, is evaporation another climate driver. Evaporation is also known to be a heterogeneous process and is also assumed to be uniform over (part of) the catchment, forming an extra source of uncertainty.

The potential evaporation is often used as model input and forms another source of data uncertainty. Potential evaporation cannot be measured but is estimated using empirical formulas like the Penman equation (1948). The convergence to potential evaporation is achieved based on measurements of air temperature, wind velocity, net solar radiation and relative humidity. Since the potential evaporation is indirectly estimated, a larger uncertainty is associate with this forcing data.

The estimation of discharge data includes multiple sources of uncertainty. Different techniques, such as rating curves, have been developed to determine discharge. For rating curves, measurements of the water level and flow velocity are needed. In particular, during high and extremely low flows, these measurements include errors due to underflow or bypassing of the gauging stations (Savenije, 2009). In addition to the measuring errors, errors in the rating curve itself are a large uncertainty source. Hydraulic conditions change over time or flow rate, which influences the rating curve. These changes in rating curves are often not considered, which makes the discharge estimates uncertain. Furthermore, more modern techniques for measuring discharge, like an Acoustic Doppler Current Profiler boat, have uncertainties in the measurements (González-Castro & Muste, 2007).

#### 1.3.2 Model uncertainties

All models are our perception of the world, and models are simplifications of the hydrological system, regardless of the degree of spatial or physical complexity in a particular model (Beven, 2011; Gupta, et al., 2012). The model's uncertainty is a consequence of the simplification and assumptions made by developing the model with a mathematical hypothesis (Clark, et al., 2008; Renard, et al., 2010; Gupta, et al., 2012). Identifying and selecting the most appropriate model structure is a significant challenge for the hydrological community (Clark, et al., 2008). Savenije (2009) argued that hydrologist should always remember a degree of "art" is included when developing a model structure. Many studies have focused into finding more appropriate model structures (Clark, et al., 2008; McMillan, et al., 2011; Willems, et al., 2014).

Another challenge in modelling the hydrological system is the presence of numerous non-linear processes. Stream discharge often depends non-linearly on rainfall, which implies that unique precipitation-discharge relationships do not exist (Savenije, 2009). There are several reasons for this non-linearity, such as the hysteretic processes. An example of a hysteric process is the water flow in the unsaturated zone that acts differently under wet and dry conditions. Another cause of non-linearity is threshold behavior. An example is the interception process (immediate evaporation form water stored on the canopy and soil surface). This is the first process after the start of a rainfall event and will start

other processes only when it reaches maximum capacity. The maximum capacity is different for each catchment and season (for example, in summertime, interception storage is large due to the leaves on the trees). Last, non-linear equations, such as the St. Venant equations, contribute to the non-linearity of a system. Lack of knowledge about the non-linearity in a system forms a source of uncertainty in the model structure (Savenije, 2009).

The issue of scale adds to the uncertainty in hydrological models. Hydrological processes act on many different scales. We can observe processes in scales from millimeters to maybe 100 meters. The question arises whether hydrological processes acting on the catchment scale are similar to our observable scale (Beven, 2006; Savenije, 2009). How processes act on a larger scale and how we model the processes are connected to the fact that models are our perception of the complete hydrological cycle. This makes it likely that our assumptions are incorrect.

Parameter uncertainty also plays a role in model uncertainty. In conceptual models, effective parameters are used. These parameters are not directly based on observable quantities. The small-scale observations, for example measurements of the soil hydraulic conductivity, often fail to represent the larger features, like macropores, of a system. Parameters are frequently an integration of spatial heterogeneous parts of the system above the scale of available observations. To estimate these parameters, calibration of the models is needed (Gharari, et al., 2014; Willems, 2014; Hrachowitz & Clark, 2017). Due to the difficulties with identifying the effective parameter values in a heterogenic and complex system, the degree of realism in the conceptual models is limited (Gharari, et al., 2014). Many studies have been conducted to increase the physical realism of the parameters, for example, by incorporating different data sources (Freer, et al., 2004) or extracting more information from data, like hydrological signatures (Euser, et al., 2013)

During the calibration process, another problem arises: the issue of equifinality, wherein multiple sets of parameters can give equally accurate reproduced hydrological responses (Beven, 1996). During calibration the goodness-of-fit is based on the comparison of measured stream discharge and modeled discharge. However, a strong interaction between parameters is present, and by evaluating the model, the efficiency of the complete set is tested. The evaluation of the individual parameters is difficult (Willems, 2014). Equifinality can indicate that the model has an insufficient representation of the underlying processes (Gharari, et al., 2014) or that models are simple too complex (Savenije, 2009; Willems, 2014). With increased complexity, over-fitting to the observed data is possible during model calibration.

The use of constraints (regarding relations between parameter, fluxes and states) to the parameter sets prevents the model from overfitting in the calibration period. This results in a decrease of model uncertainty. Thus, the models have a higher predictive power and a higher skill to reproduce the overall system response (Gharari, et al., 2014; Hrachowitz, et al., 2014). However, these studies focused on relations between parameters and fluxes. Finding adequate parameter values from field observations, which represent the heterogeneity of a catchment on the spatial resolution scale of the model, is considered much harder (Gharari, et al., 2014; Hrachowitz & Clark, 2017).

#### 1.4 Scope

As mentioned above, the model uncertainties are twofold: (1) structural and (2) parameter. For this thesis, the parameter uncertainty is investigated. This study will look into the possibilities to find adequate parameter values or distributions from field observations to further limit the equifinality.

#### 1.5 Research objective

Based on the problem statement and the scope, the objective of this research is to identify, determine and quantify the extent to which it is possible to estimate the parameter values or parameter distribution based on field observations and a given hydrological model structure. In a traditional calibration an uninformed parameter distribution was determined for each individual parameter. The goal of the research is to avoid the use of uninformed prior parameter distributions during calibration by using available information from the field observations to generate informed prior distributions. The model functions as the hypothesis on the processes occurring in the catchment (Figure 1).



Figure 1. A visual representation of the objective of this research. The objective is to estimate the parameter values or parameter distribution based on field observations and a given hydrological model structure.

#### **1.6 Research questions**

Based on the research objective formulated above, the following main research question was developed to be answered in this study:

To what degree is it possible to avoid the use of uninformed prior parameter distribution in the calibration of a conceptual hydrological model by using available information from the field observations to generate informed prior distributions?

Sub-questions were formulated to provide additional information to answer the main research question. These sub-questions indicate the important issues to be addressed.

1. Can we select sub-periods from a hydrograph typical of different hydrological process, which can be coupled to model components, and how can this help to determine model parameters?

The hydrograph is an integrated representation of the system and is built from multiple interacting and spatially variable hydrological processes. The measured hydrograph was separated into periods that cover different response modes, like dry periods, draining periods and wet periods. The parameter identification was based on sub-periods or different event types.

For this question the key moments, or timing, of the different processes were analyzed to split the hydrograph into periods that cover different response modes. The parameters connected to these sub-periods were estimated.

The hypothesis is that each period has different "dominant" processes with associated parameters. Using the sub-periods of the hydrograph to find individual parameters of the model could further increase realism. In theory, the uncertainty and equifinality in the parameter sets should be reduced if the parameter information is directly extracted from the observed data. Validation of the model parameters against observations remains problematic; therefore, a synthetic experiment was conducted to validate the methods to obtain parameter distributions.

#### 2. To what extent are the methods to obtain the parameter distributions sensitive to data errors?

In the synthetic experiment, all data and model uncertainty was normally excluded. However, for this question, the effect of data uncertainties on the parameter determination methods was investigated by corrupting the synthetic data set.

#### 3. To what extent can the methods be used for real rainfall-runoff data?

For this last question, measured data was used to find a parameter set. In this case, real data and model uncertainty were present. The performance of the methods to determine parameter distributions could no longer be assessed by looking at parameters to produce the data. However, a comparison of the methods could be made with a Monte-Carlo sampling strategy with uninformed parameter distributions.

#### 1.7 Thesis outline

A research outline was developed to answer the research questions and is presented in Figure 2. The research outline consists of a theory section, modelling section and conclusions. Methods developed in the theory section were applied in the modelling section, which is divided into three sub-parts according to the sub-questions.

An introduction of study area is given in Chapter 2. In addition, the investigated models are presented to assess the methods used to define parameter distributions; the extensive model descriptions can be found in Appendix 1. Furthermore, an explanation of the data sets used in this study is provided. The distribution function for daily evaporation to hourly resolution is given in Appendix 2.

The third chapter has two sections. First the theory portion of the thesis outline. This consists of a method explanation for each parameter to determine the parameter distribution under consideration. Second is the description of the method used to obtain the desired results for the application of the methods. This section consists of three different components, according to the research outline: the synthetic experiment, the sensitivity analysis and the real-world application.

The most important summarized results of the methods to determine parameter distributions and the different research sections are presented in the fourth chapter. The complete results are given in Appendix 4, Appendix 5 and Appendix 6. The methods and results are discussed together with their limitations or weaknesses in Chapter 5. In the last chapter, the answers to the research questions are presented.



Figure 2. Representation of research outline: theory portion where methods are developed to find parameter distributions, modelling portion to test the developed methods, which is divided into three sub-parts: (1) synthetic experiment, (2) sensitivity analysis and (3) real-world application. Conclusions are drawn in the last section.

## Chapter 2 Data and Models

#### 2.1 Study area

#### 2.1.1 Kervidy-Naizin catchment, France

In the main portion of the research uses data originated from the Kervidy-Naizin catchment in France (Figure 3). The catchment is located in the center of French Brittany, approximately 100 km west of Rennes. The surface area of the catchment is 4.9 km<sup>2</sup>.

The catchment observatory is part of the French network of Drainage Basins (Réseau des Bassins Versants, RBV). The data originates from the years 2005 through 2011 and can be downloaded from the ORE-AgrHyS website (https://www6.inra.fr/ore\_agrhys).

The catchment area has a humid climate with an average annual precipitation of 900 mm. The monthly average temperature varies between 5.4°C in January to 17.4°C in August. The potential evapotranspiration has an annual average of 700 mm and is considered stable over the years.

The measurements were conducted at a weather station at Kervidy. This station is located approximately 1 km from the catchment outlet and records hourly rainfall and all required meteorological data needed to calculate the potential Penman evaporation: air and soil temperatures, air humidity, incoming nett radiation, wind direction and speed.

With the Penman equation, it is possible to calculate the daily potential evaporation. As the available precipitation data has an hourly resolution, the potential evaporation is distributed to hourly potential evaporation. A short description of the method to distribute daily potential evaporation data to hourly data, suggested by Fleming (1970), is presented in Appendix 2.



Figure 3. Kervidy-Naizin catchment in France, which is part of the ORE-ArtgHys network (Aubert, et al., 2013).

#### 2.1.2 Precipitation stations, the Netherlands

Precipitation errors were added in the sensitivity analysis by using two different time series. The stations used are both located in the Netherlands and owned by the KNMI, the royal Dutch meteorological institute. The first station is the Hupsel station (52° 04' N.B. 06° 39' O.L), and the second station is the Twenthe station (52° 16' N.B. 06° 53'O.L.). The distance between the stations is approximately 40 km (Figure 4).



Figure 4. Measuring stations Twenthe and Hupsel, part of the KNMI network (www.meteobase.nl)

#### 2.2 Model description

In this study is worked with lumped conceptual model structures. The model configuration consists of structures with an increasing complexity to identify the extent to which it is possible to extract parameter values or distributions of individual processes using the hydrograph. By increasing the conceptualized processes, the heterogeneity of a catchment was better captured in each step. Each model consists of several components that represent one or more different hydrological processes. The models are based on the model structures described in Fenicia, et al. (2006), Kavetski and Fenicia, (2011) and Euser et al. (2013).

The model schematizations of each individual model are depicted in Figure 5. There are two main lines in the model structures: preferential flow paths (left) and percolation (right). The last model (model 9) is a combination of models 4 and 7. All models take the observed precipitation (P) and potential evaporation ( $E_p$ ) as input. The output of the models is the simulated total discharge ( $Q_t$ ) and the simulated actual evaporation and transpiration (E, T). The models consist of, at most, two reservoirs: the unsaturated zone reservoir and the slow runoff reservoir. The reservoir storage is referred as  $S_x$  in which the index x equals U (for unsaturated zone reservoir) or S (slow runoff reservoir). The water balance equations for each reservoir in the models are presented in Table 1. The fluxes entering and leaving the reservoirs are given in these water balance equations. The constitutive formulas of the models are provided in Table 2 and represent the mathematical approximation of the fluxes.

Due to time constraints during the research, the choice is made to exclude models 5 and 8. These models include also a fast reservoir. As a consequence of excluding models 5 and 8, this reservoir is not included in model 9.

| Water balance equations                               | M 1 | M 2 | М3 | M4 | M 6 | M7 | M 9 |
|-------------------------------------------------------|-----|-----|----|----|-----|----|-----|
| $\frac{dS_u}{dt} = P(t) - E(t) - Q_s(t)$              | Х   |     |    |    |     |    |     |
| $\frac{dS_u}{dt} = P(t) - E(t) - Q_s(t) - Q_f(t)$     |     | Х   |    |    |     |    |     |
| $\frac{dS_u}{dt} = P(t) - E(t) - Q_{uf}(t)$           |     |     | Х  | Х  |     |    |     |
| $\frac{dS_u}{dt} = P(t) - E(t) - Perc(t)$             |     |     |    |    | Х   |    |     |
| $\frac{dS_u}{dt} = P(t) - E(t) - Perc(t) - Q_f(t)$    |     |     |    |    |     | Х  |     |
| $\frac{dS_u}{dt} = P(t) - E(t) - Perc(t) - Q_{uf}(t)$ |     |     |    |    |     |    | Х   |
| $\frac{dS_s}{dt} = R_s(t) - Q_s(t)$                   |     |     |    | Х  |     |    |     |
| $\frac{dS_s}{dt} = Perc(t) - Q_s(t)$                  |     |     |    |    | Х   | Х  |     |
| $\frac{dS_s}{dt} = R_s(t) + Perc(t) - Q_s(t)$         |     |     |    |    |     |    | х   |

A complete description of each model is given in Appendix 1.

Table 1. Water balance equations of the models used in this study; the x indicates presence in the model structure

| Constitutive formulas                  | M 1 | M2 | М3 | M4 | M 6 | M7 | M 9 |
|----------------------------------------|-----|----|----|----|-----|----|-----|
| E+T = min (Su, Ep)                     | Х   |    |    |    | х   |    |     |
| $E+T = \frac{S_u}{S_{U,max}}E_P$       |     | х  | Х  | Х  |     | х  | Х   |
| $Perc = P_{max}$                       |     |    |    |    | х   |    |     |
| $Perc = P_{max} \frac{S_u}{S_{U,max}}$ |     |    |    |    |     | х  | х   |
| $Q_f = max(0, S_u - S_{U,max})$        |     | х  |    |    |     | х  |     |
| $Q_{uf} = max(0, S_u - S_{U,max})$     |     |    | х  | х  |     |    | х   |
| $R_s = D * Q_{uf}$                     |     |    |    | х  |     |    | х   |
| $Q_f = (1 - D) * Q_{uf}$               |     |    |    | х  |     |    | х   |
| $Q_s = \frac{S_s}{C}$                  | Х   | Х  | х  | х  | Х   | Х  | х   |

Table 2. Constitutive formulas in the model structures; the x indicates presence in the model structure

#### 2.3 Synthetic data

Synthetic data sets are used for both the synthetic experiment and sensitivity analysis. The discharge data of these sets originates from model output which uses real precipitation and potential evaporation data as input, resulting in discharged data with no errors. The French forcing data is used for these experiments. Only the precipitation error analysis of paragraph 3.3.1 makes use of the Dutch forcing data.

To produce the discharge data parameter sets are chosen randomly. Each model produces three sets of data using three unique sets of parameters. The only exception are the parameter sets for model 9, which originate from a Monte-Carlo sampling strategy were set 1 and 2 have an equal performance regarding the observed discharge in France.

The parameter sets for the different models and produced discharge data are given in Appendix 3.





### **Chapter 3 Methods**

The methods used in this research are explained in this chapter. The theory to determine parameter distributions for the different parameters in the models is explained in Section 3.1. A description of the approach to obtain insight into the behavior of the methods explained in the theory section is given in the second half of this chapter. The methods are applied in three tests, according to the research outline: the synthetic experiment (Section 3.2), sensitivity analysis (Section 3.3) and the real-world application (Section 3.4).

#### 3.1 Methods to determine parameter distribution

#### 3.1.1 Groundwater drainage parameter $(C_s)$

The groundwater drainage parameter  $(C_s)$  is a characteristic of the linear approximated reservoir that links the storage to the discharge. The physical meaning of this parameter could be explained as the mean response time of water in the saturated zone.

#### 3.1.1.1 Fit method

To determine the  $C_s$  value of a reservoir, multiple methods have been developed, for example, the master recession curve analysis (Lamb & Beven, 1997). In this analysis, various individual recession curves of the hydrograph are used to construct the master recession curve (MRC). To select the recession curves, some conditions are set. For a minimum period (multiple hours or days), all other fluxes, like precipitation and evaporation, should be zero (for example, during the night). During this period, the storage change of the reservoir is driven by the discharge (1).

$$\frac{dS_s}{dt} = -Q_s(t) \tag{1}$$

The master curve recession analysis has its drawbacks. With short data series, not enough recession periods can be selected to construct one synthetic curve, resulting in a large error in the estimation of the  $C_s$  value. This research suggests another approach in which individual recessions are used to determine the  $C_s$  value. This approach provides insight into the distribution of the individual  $C_s$  values.

A recession must meet the following requirements:

- 1. The recession has a minimum length (automatically set to 10 h).<sup>1</sup>
- 2. During a recession period, no rainfall is measured and, for model 1, also no potential evaporation is measured during the recession.
- 3. The sum of the discharge is larger than 0.1e-10 to prevent errors.<sup>2</sup>
- 4. To exclude the effects of other fluxes with delays in the catchments, for multiple days (automatically set to a minimum of two days) prior to the selected recession, no precipitation is measured.<sup>3</sup>
- 5. The end of the recession is just before the start of a rainfall event.

A part of a discharge series with a selected recession in illustrated in Figure 6. A complete discharge series with all selected recessions is depicted in Figure 7.

<sup>&</sup>lt;sup>1</sup> This is the maximum length possible during night time; shorter recession lengths have a large impact on the final  $C_s$  value.

<sup>&</sup>lt;sup>2</sup> With lower values, the method provides unreliable results, even though the model can produce lower discharges. In addition, measurement techniques cannot be measured with this precision.

<sup>&</sup>lt;sup>3</sup> Shorter dry periods appeared to have a significant impact on the final  $C_s$  value.



Figure 6. Observed time series of hourly precipitation (light blue), hourly potential evaporation (orange) and discharge (blue dotted line). Data originates from model 1 parameter set 3 in the years 2005-2011. Example of the selected recession (black) was used in the fit method. The recession has a length of 10 h, no precipitation was measured two days prior nor during the recession, no potential evaporation was measured during the recession and the end of the recession was just before the start of a precipitation event.



Figure 7. Observed time series of hourly precipitation (light blue), hourly potential evaporation (orange) and discharge (blue dotted line). Overview of all selected recessions (black) were used in the fit method. Data originates from model 1 parameter set 3 in the years 2005-2011.

The  $C_s$  is determined in two steps. First, a fit is made through each recession using an analytical equation (2). To assess the performance of the fit, the Nash-Sutcliffe (NS) objective is calculated<sup>4</sup>. All recessions with an NS < 0.8 are discarded. Recessions with a lower performance are considered influenced by other fluxes or measurement errors.

$$Q = Q_o e^{\frac{t}{C_s}} \tag{2}$$

An example of a recession and a fit is provided in Figure 8. The original  $C_s$  value is 200 h and the  $C_s$  of the fit is 199.5 h. The small error of 0.5 h can be explained. The recession is produced in the models with the empirical relation (4), while the fit is made using an analytical solution (equation (2)).

<sup>&</sup>lt;sup>4</sup> The Nash-Sutcliffe objective function is given in Table 5.



Figure 8. A selected recession from the data of model 4 parameter set 1 (blue dotted line) with an original  $C_s$  value of 200 h and a fit (orange line) with an estimated  $C_s$  value in the fit method of 199.5 h.

The next step in the method is to determine the exact  $C_s$  value. The relations below are used to determine the empirical relation of the recession. Here  $S_s(t=0)$  originated from equation 3 with  $Q_i = Q_{observed at \ t = 0}$ . A solve package<sup>5</sup> in the Python programming language is used to solve the problem. The start value for solver is the  $C_s$  value originating from step 1 (the analytical fit).

The  $C_s$  distribution of the catchment is given by all calculated  $C_s$  values with multiple no rain periods. Multiple no rain periods are used to limit the errors in the distribution.

$$S_{s}(Q) \qquad \qquad S_{s,i} = Q_i C_s \tag{3}$$

Q (S) 
$$Q_i = \frac{S_{s,i}}{Cs}$$
(4)

$$S(S,Q) \qquad \qquad S_{s,i+1} = S_{s,i} - Q_i dt \qquad (5)$$

$$S_{s}(S)$$
  $S_{s,i+1} = S_{s,i} \left(1 - \frac{dt}{C_s}\right)$  (6)

#### 3.1.1.2 S-D method

Recharge of the slow reservoir has a significant influence on the recession curve, according to the paper by Fenicia et al. (2006). To minimize the influence of the recharge, the Storage-Discharge (S-D) method was developed based on this paper. Models 6, 7 and 9 indicate recharge over an extended period due to percolation. In an iterative process with an initial guess of the  $C_s$  value and model runs, the "correct"  $C_s$  can be reached for recessions with recharge. The following steps were developed based on Fenicia et al. (2006).

#### Step 1: Initial Storage-Discharge relation (S-D relation)

The fit-method functions as an initial estimation of the  $C_s$  under the assumption that the slow reservoir does not receive recharge. It is possible to construct a S-D relation of that recession by integrating the recession over time (Figure 9). For the starting point of the S-D relation, the initial estimation of the  $C_s$  is needed. This starting point is determined using equation 3. The slope of the S-D relation is equal to the  $C_s$ .

<sup>&</sup>lt;sup>5</sup> The solve package used is scipy.optimize.curve\_fit



Figure 9. A selected recession from the data of model 9 parameter set 1 (left); the corresponding storage-discharge relation with estimated  $C_s$  value of 636 h (slope S-D relation) (right)

#### Step 2: Calculate recharge (P<sub>tot</sub>)

For the initial S-D relation is assumed that during recession periods, no recharge enters the slow reservoir. Recharge could, for example, be percolation (*Perc*) or preferential recharge ( $R_s$ ). To assess the impact of the total recharge ( $P_{tot}$ ), the recharge first needs to be calculated for the corresponding recession segments. This  $P_{tot}$  is calculated by running the model using the estimate of the  $C_s$  value and the other parameters determined with the methods using the estimate of the  $C_s$ . In the examples of this section, the other parameters are assumed to be known.

#### Step 3: Recalculate the S-D relation

With the calculated recharge, it is possible to determine a new S-D relation for each recession (Figure 10). In contrast to the calculation of the S-D relation in step 1, where only the time integral is taken over the discharge, now the time integral is taken over the difference between the discharge (outflow of the slow reservoir) and the  $P_{tot}$  (inflow to the slow reservoir).



Figure 10. Original storage-discharge relation, time integral over the recession (blue line) and the new recalculated (orange line) storage-discharge relation, time integral over the difference between the recession (outflow of the slow reservoir) and the  $P_{tot}$  (inflow to the slow reservoir). Data originates from model 9 parameter set 1.

As Figure 10 illustrates, the new S-D relation is much steeper. The flattening of the old S-D relation is caused by the constant increase in storage due to the recharge of the slow reservoir. In contrast to what the individual recessions show, the slow reservoir needs to empty faster than initially thought to compensate for the recharge.

Small errors are made in this method since the initial storage calculated with equation 3 assumed that the S-D relation is without recharge. The method does not take into account the  $P_{tot}$  at the end of a recession. To minimize this error, only recessions with a tail end lower than a pre-set maximum discharge value were used in the analysis. The pre-set maximum discharge was chosen by visual inspection of the data. The pre-set maximum discharge is equal to the maximum discharge during summer.

#### 3.1.2 Partitioning coefficient fast and slow reservoir (D)

Excess water from the unsaturated zone, the proportion of water that cannot be stored, is routed toward the saturated zone (S<sub>s</sub>) and the fast lateral runoff processes ( $Q_j$ ). The partitioning coefficient (D) regulates the distribution between the preferential groundwater recharge ( $R_s$ ) toward the  $S_s$  and  $Q_f$  (e.g., preferential flow or saturated overland flow).

To determine *D*, the total volume of the overflow (*O*) needs to be calculated, as well as one of the two flows ( $R_s$  or *Q*). First, the overflow moments need to be found in the time series. An overflow moment is defined as the following:

- 1. In the next time step, the discharge is increased by 1.5 Q[t<sub>i</sub>]. Where Q[t<sub>i</sub>] is the discharge of the current time step.
- 2. After an overflow moment, the discharge is decreased significantly, by at least  $0.5 Q[t_i]$ .<sup>6</sup>
- 3. During wet periods overflow is happening often, sometimes even each time step. The calculation of *D* will be impacted if it is tried to calculate during this period with multiple peak flows. An extra criteria is introduced: the discharge of both point 1 and 2 needs to be below a predefined maximum discharge (*maxQ*). This value is the discharge which is exceeded for the most peak discharges and is defined by visual inspection.

With the information from the observed discharge it is possible to determine the total overflow volume, the  $Q_f$  and the  $R_s$ . The first step is to calculate the expected flow during the peak flow using the  $C_s$  ( $Q_{expect}$  (equation 7)) represented by the green dot in Figure 11. With the discharge measured after the peak flow event, it is possible to calculate the expected flow from the saturated zone the purple dot ( $Q_{ss}$  (equation 8)). From here, it is possible to calculate the volume of the overflow (equations 9, 11 and 12). The last step is to calculate D using (13.



Figure 11. Selected overflow moment observed discharge (orange, red and brown dots); expected flow during the peak flow calculated with the  $C_s$  (green dot) and expected flow from the saturated zone calculated with the  $C_s$  (purple dot). The difference between the red and purple dots represents the volume of fast lateral runoff processes, while the difference between the purple and green dots represents the extra discharge from the slow reservoir due to additional water from the preferential recharge.

Q (expect) 
$$Q_{expect} = S_{s,t+1}C_s = (S_{s,t+0} - Q_{t+0})C_s$$
 (uses (3) and (5)) (7)

Q (Ss) 
$$Q_{Ss} = \frac{S_{s,t+1}dt}{C_s} = \frac{Q_0[t+2]C_s}{(1-\frac{dt}{C_s})C_s}$$
 (uses (3) and (6)) (8)

$$Q_{Rs} \qquad \qquad Q_{Rs} = Q_o[t+1] - Q_f - Q_{expect} \tag{10}$$

$$R_{s} \qquad R_{s} = Q_{Rs} * C_{s} \qquad (11)$$
O (D) 
$$Q = Q_{f} + R_{s} = (1 - D)Q + D * Q \qquad (12)$$

$$D = 1 - \frac{Q_f}{Q}$$

<sup>&</sup>lt;sup>6</sup> The factors of 1.5 and 0.5 were set by expert judgment; variations in these values did not give significantly different results.

#### 3.1.3 Maximum unsaturated zone storage ( $S_{U,max}$ )

The maximum unsaturated zone storage ( $S_{U,max}$ ) is a characteristic of the unsaturated zone reservoir. The  $S_{U,max}$  reflects the maximum soil moisture capacity in the root zone of the catchment. When the maximum is exceeded, the fast lateral flow is activated. This parameter also indirectly controls the evaporation and percolation rates.

The method to determine the  $S_{U,max}$  consists of three steps. A data preparation step is followed by the determination of the bounds for the  $S_{U,max}$ . The last step calculates the  $S_{U,max}$  distribution with the interpeak method.

#### Step 1: Data preparation

The models assume that during rainfall events, no evaporation flux is present. However, the daily potential evaporation is continuously distributed over the sun hours. The data set is prepared to take this error into account. In the data series, for the time steps in which precipitation is measured, the potential evaporation is set to zero.

#### Step 2: Defining the bounds for $S_{U,max}$

The water balance characteristics of the catchment are used to define the boundary values of the  $S_{U,max}$ . The method used in this thesis is based on the paper of McMillan et al. (2011). This method examines the response to the catchment's rainfall events by dividing the time series into individual events. The volume of rainfall causing a rapid increase in discharge (e.g. the threshold behavior of a catchment) could be coupled with the maximum storage of the unsaturated zone.

A storm event is identified using the rainfall time series; the values of rainfall intensities were taken from the paper by McMillan et al. (2011) and are defined by expert judgment:

- 1. The main portion of the event has a predefined length: standard set to 20 days.<sup>7</sup> This portion should begin with a rainfall intensity greater than 0.5 mm/day for a given hour. The mean rainfall over this part of the event should be larger than 5 mm/day, or events longer than 60 days should exceed a total volume of 300 mm.
- 2. The rainfall tail is considered to discover the development of the discharge after the main volume of rain has fallen. The end of a storm event is defined when the rainfall intensity in the following 36 h after the main event length is less than 0.5 mm/day for a given hour.

The water balance is calculated over a particular part of the rainfall event. Here, the discharge time series is leading. With an observed significant increase in discharge after the start of the rainfall event, the threshold of the catchment is reached. A significant increase in discharge is defined as an increase in discharge larger than 105% of the current discharge<sup>8</sup>. The red dots in Figures 13, 14, and 15 indicate a significant increase in discharge.

The water balance is taken over the time series from the start of the event until the time step in which the discharge is increased:

- 1. The minimum threshold is defined as the sum of the rainfall minus the losses. The losses are not constant: for models 1 through 4, only the evaporation is defined as a loss; for models 6 through 9, percolation is also considered a loss.
- 2. The maximum threshold is defined as the sum of the rainfall minus 30% of the maximum percolation in the water balance period. The 30% percolation is subtracted to prevent an over estimation of the maximum. The maximum is only set if the rainfall exceeds the potential evaporation and the minimum threshold of that event is above zero.

<sup>&</sup>lt;sup>7</sup> Depending on the catchment properties, this period can be extended or shortened. In catchments with expected large storage capacities, longer periods are needed. Testing for multiple durations is recommended.

<sup>&</sup>lt;sup>8</sup> The value of 105% is set to prevent interruptions in the water balance period due to small variations in discharge often caused by percolation. For different data sets, this value could vary.



Figure 12. Result of the bound method using different event lengths for data originating from model 4; the estimated minimum value of  $S_{U,max}$ = 160 mm, and the estimated maximum = 287.5 mm

For different event lengths, the largest threshold can be calculated for both the minimum and the maximum thresholds (Figure 12). The storm (time series used for the water balance) used to determine the minimum threshold (Figure 13) may be different from the storm used to calculate the maximum threshold (Figure 14).



Figure 13. Selected individual event for the time series originating from model 4 set 2;  $S_{U,max} = 235$  mm; length of the event is 150 days



Figure 14. Selected individual event for the time series originating from model 4 set 2;  $S_{U,max} = 235$  mm; length of the event is 150 days

It is not necessary to check whether a long dry period was present before the start of an event. If there was rainfall prior to the event, the threshold is quickly reached, resulting in an early increase of discharge (Figure 15).



Figure 15. Previous precipitation of the selected event already partly filled the system, resulting in a low minimum and maximum  $S_{U,max}$ 

#### Step 3: Determine $S_{U,max}$ (inter peak method)

The distribution of the  $S_{U,max}$  value can be made using a system of equations. Here, the discharge, potential evaporation and precipitation data is used. The ground water drainage parameter ( $C_s$ ) and maximum percolation parameter ( $P_{max}$ ) are also needed. For the more complex models, the overflow data calculated for the *D* is required as well.

The basic assumption is that at overflow moments, the unsaturated zone (Su) is filled to the maximum. Then, in each time step, water is evaporated and percolated from the Su leading to a drop of the water level in the unsaturated zone. At precipitation moments, the Su is filled again. At the next overflow moment, the storage is filled to the maximum storage. Figure 16 presents an example hydrograph with climate drivers where at t = 0 overflow of the unsaturated reservoir occurs. At t = 150, overflow occurs again.

The parts of the hydrograph used to determine  $S_{U,max}$  should have a minimum length of 4 time steps and a maximum length of 1000 time steps. Furthermore, in this period, a storage change should happen, so the sum of  $E_p$  should be larger than zero.



Figure 16. Part of the hydrograph starting and ending with an overflow moment with a storage change of the unsaturated zone in between due to evaporation (orange line) and precipitation (light blue line). This part is used in the inter peak method.

In the following example, the relations are provided. At t = 0, overflow occurs, and at t = 4, overflow reoccurs. In models 1 through 4, no percolation flux is present resulting in a  $P_{max}$  equal to zero.

$$Su\left[t+0\right] = S_{umax} - P_{max} \tag{14}$$

$$Su[t+1] = Su[t+0] - E_p[t+1] \frac{Su[t+0]}{S_{umax}} - P_{max} \frac{Su[t+0]}{S_{umax}} + P[t+1]$$
(15)

$$Su[t+2] = Su[t+1] - E_p[t+2] \frac{Su[t+1]}{S_{umax}} - P_{max} \frac{Su[t+1]}{S_{umax}} + P[t+2]$$
(16)

$$Su[t+3] = Su[t+2] - E_p[t+3] \frac{Su[t+2]}{S_{umax}} - P_{max} \frac{Su[t+2]}{S_{umax}} + P[t+3]$$
(17)

$$Su\left[t+4\right] = S_{umax} \tag{18}$$

Since there are no measurements of the Su, an extra equation is needed to calculate the  $S_{U,max}$ . This is the water balance equation during overflow:

$$Overflow [t+4] = P[t+4] - (S_{umax} - Su[t+3])$$
<sup>(19)</sup>

Depending on the model, overflow can be calculated using different relations. For models 4 and 9, the overflow is calculated for the *D*. For models 3 and 7, the calculation of the overflow is similar to overflow calculations of *D* only now the  $Q_f$  is not present. The unknown value in the system of equations is  $S_{U,max}$ . Using a curve fit solver in Python, the  $S_{U,max}$  is determined. The start value of the solver is the minimum  $S_{U,max}$  from step 2.

#### 3.1.4 Maximum percolation rate $(P_{max})$

The slow reservoir receives water from the unsaturated zone reservoir through percolation. The maximum percolation rate  $(P_{max})$  regulates this process. The percolation rate is linearly related to the relative soil moisture content  $(S_n/S_{U,max})$  and the  $P_{max}$ . The method to determine the  $P_{max}$  consists of two steps: a data preparation step and the determination of the  $P_{max}$ .

#### Data preparation

For the calculation of the percolation rate, the data should not include peak discharges. During these periods, many processes are acting, which makes it hard to determine the percolation rate. A procedure was developed to filter out peak discharges. The filter method is quite similar to the method used to determine peak flows for the partitioning coefficient (D).

If the discharge increases rapidly in the next time step, it is taken to be constant until it decreases again. A rapid increase is defined as an increase larger than 150% compared to the current discharge.<sup>9</sup> The period, which is set to a constant value, is not taken into account by determining the percolation rates. Although percolation is occurring during this period, the calculation does not provide accurate results because too many fluxes are occurring.

The result of the filter is that only low flow periods are present in the data set. An example of the application of the filter is provided in Figure 17. The blue lines are the observed discharges, including the peak discharges, and the orange line is result of the filter, the discharge without peaks.



Figure 17. Observed discharge and filtered discharge of model 9 data set 2. In the filtered discharge all peak flows are excluded for the  $P_{max}$  method.

#### Determine *P*<sub>max</sub>

To determine the maximum percolation rate, some data is needed: the filtered observed discharge and the ground water drainage parameter ( $C_s$ ). For each time step, it is possible to calculate the percolation rate. The result of all the calculations provides a range of percolation rates in the catchment. The parameter distribution is given by the 20% highest calculated percolation rates. The most optimal maximum percolation rate ( $P_{max}$ ) is set to the 75th percentile of the distribution. This will result in an underestimation of the  $P_{max_s}$ . The advantage, however, is that the outliers or data errors will not influence the result.

<sup>&</sup>lt;sup>9</sup> The factor of 1.5 is set by expert judgment; variations around these values did not provide significantly different results.

To calculate the percolation rate per time step, a few calculations need to be made. The steps are visualized in a graph presented in Figure 18.

- The starting point of the method is at the last time step (Q<sub>o</sub>[t+1]) in the time series. The C<sub>s</sub> value is used to calculate the expected discharge (Q<sub>expect</sub>) of the previous time step (Q<sub>o</sub>[t+0]) with equations 20 and 23.
- The expected discharge is then compared to the observed discharge in the previous time step (Q<sub>o</sub>[t+0]). If percolation is present, the expected discharge is larger than 100.2 % of the observed discharge.
- 3. The expected discharge can be calculated as if there were no percolation ( $Q_{Ss}$ ). This is calculated with equations 20, 22 and 21.
- 4. The difference in discharge of  $Q_{ss}$  and  $Q_o$  [t+1] represents the added discharge ( $Q_{perc}$ ) due to percolation. Equation 24 is used to calculate the percolation rate.

$$S_{s,i} = Q_{o,i}C_{s}dt - Q_{o,i}$$
(20)  

$$Q_{i} = \frac{S_{s,i}}{Cs}$$
(21)  

$$S_{s,i+1} = S_{s,i} - Q_{i}dt$$
(22)  

$$S_{s,i} = \frac{S_{s,i+1}}{t}$$
(23)

$$1 - \frac{1}{C_s}$$

$$Perc = Q_{perc}C_s$$
(24)



Figure 18. The blue line represents the observed discharge. The orange and red dotted lines represent expected discharges if no percolation would be present. The difference between the red and blue dots represents the extra discharge from the slow reservoir due to the additional percolated water in the slow reservoir.

The time steps that contain the analyzed percolation are displayed in Figure 19. The time steps containing the 20% highest calculated percolation rates are presented in Figure 20.



Figure 19. The green dots represent all the time steps used in the  $P_{max}$  analysis



Figure 20. The green dots represent the top 20% highest calculated percolation rates

#### 3.2 Synthetic experiment

In this synthetic experiment, discharge data was produced by a model. The model was driven by real rainfall data and potential evaporation data of the French catchment. Random parameter sets were used for the fluxes in the models. The methods to obtain parameter distributions, explained in Section 3.1, were applied to the synthetic discharge data and the forcing data.

Having a synthetic experiment allows experimentation in a controlled environment. The methods to obtain the parameters can be tested and validated since the original parameters from the data are known. This provides a chance to see whether the parameters found from the hydrograph are close to the original parameters from the model. After all, the goal of the research is to discover a reliable method to obtain parameter distributions and not to determine the exact values of the data sets. In this approach, model structure and data uncertainty were excluded. The hydrograph, forcing data and model structures were considered "perfect" and did not contain unknown processes or errors.

The effect of the method errors was investigated in this synthetic experiment. For three data sets per model, the methods were applied. The models used in this experiment were 4, 7 and 9. The value and accompanying error of the first parameter estimation formed the input for the next model parameter estimation. Thus, all the methods were tested without prior knowledge of the parameter values. This experiment indicates the extent to which the methods' errors propagate to other parameter estimations.

The interdependences of the different model parameter estimation methods are displayed in Figure 21. The arrow represents which method takes which parameter estimation as input to determine the current parameter. The figure clearly illustrates that many methods depend on each other.



Figure 21. The interdependencies of the different expert-knowledge inverse modelling methods to find the parameter distributions

For models 7 and 9, it was assumed that the recharge to the slow reservoir plays a considerable role in the determination of the  $C_s$  value. The procedure to find the parameter distribution of the models for the different data sets consists of different stages. The whole procedure is schematically displayed in Figure 22, and the steps are outline below:

- 1. In the first step, an estimation of the  $C_s$  value is made with the fit method.
- 2. Subsequently, the estimated  $C_s$  value will be used to determine the  $P_{max}$  and for model 9 the D.
- 3. The estimated  $P_{max}$  is input for the bound method of  $S_{U,max}$ . The result of the method for  $S_{U,max}$  is input for the next step.
- 4. The model simulations are completed using three combinations of parameter sets: one set with the minimum of the  $S_{U,max}$ , one set with the median of the  $S_{U,max}$  and the last set with the maximum of the  $S_{U,max}$ . The  $C_s$ ,  $P_{max}$  and D are constant for all the sets.
- 5. The  $P_{tot}$  of each recession is known from the model simulations, and the S-D method can be applied to update the  $C_s$  value.
- 6. The updated  $C_s$  value forms the input of the second step and is iterated until convergence is obtained.



Figure 22. Schematic representation of the procedure to find the parameter distributions of models 7 and 9.

The number of iterations needed to obtain convergence was variable. No automated condition was set to define convergence. In this research, we choose to visually inspect the development of the parameters to determine convergence during the iterative process.

#### 3.3 Sensitivity analysis methods for data uncertainty

In the previous section, different methods were presented to find parameter distributions in a synthetic experiment. The data used in the synthetic experiment was the assumed to be "true forcing and discharge data" without any uncertainty. In this sensitivity analysis, the methods were tested with the introduction of data errors. As mentioned in the introduction, multiple data errors are possible. An example of data errors is the use of a point measurement of precipitation for catchment modelling while the precipitation over an area is highly variable in both time and space. Also, errors in measurement equipment contribute to the data uncertainty.

The model used for this analysis is the most complex model, number 9. The synthetic generated data sets were corrupted in both the forcing and discharge data. This analysis was executed with an absence of model structure uncertainty. The test for the sensitivity of the methods regarding forcing errors is described in Section 3.3.1,. A description of the test for the sensitivity of the methods regarding both the precipitation and discharge data uncertainty is presented in Section 3.3.2.

#### 3.3.1 Precipitation error

The first data uncertainty test was performed to examine the effect of spatial precipitation variability on the methods. Discharge was produced using forcing data from a point measurement location, and forcing data from another station was used to determine the parameter distributions. The stations used are both located in the Netherlands and owned by the KNMI, royal Dutch meteorological institute. The year volumes of the precipitation and the potential evaporation (calculated with Makking) are listed in Table 3. Small variances in the volumes were observed; however, neither Twenthe or Hupsel dominate.

| Precipitation [mm/year]         | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  |
|---------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Twenthe                         | 852   | 836.2 | 780.9 | 618.8 | 854.7 | 796.8 | 723.8 | 916.8 |
| Hupsel                          | 869.5 | 817.7 | 841.8 | 719.8 | 805.5 | 813.5 | 734.4 | 949.2 |
|                                 |       |       |       |       |       |       |       |       |
| Potential Evaporation [mm/year] |       |       |       |       |       |       |       |       |
| Twenthe                         | 528.4 | 553.3 | 547.8 | 638.9 | 562.6 | 584.3 | 592.6 | 562.5 |
| Hupsel                          | 548.5 | 560.9 | 556.6 | 639.4 | 571.5 | 594.9 | 602.1 | 570   |

Table 3. Annual volumes for precipitation and potential evaporation Twenthe and Hupsel stations

The only method that directly uses the measured precipitation is the bounds method for  $S_{U,max}$ . Section 3.1.3 mentions that the bounds become stable after precipitation events longer than 150 days. The long-term errors are more interesting, and Figure 23 illustrates a double mass. For 2007, the mean error is 6.6 mm, and the standard deviation in the error is 24.69 mm. A positive mean represents a larger amount of precipitation measured in Twenthe than in Hupsel. For all other years, the mean varies between -61.44 and 36.4 mm. The standard deviation varies between 9.2 and 33.1 mm.



Figure 23. Cumulative sum of the measured precipitation (mm) in Hupsel compared to the cumulative sum of the measured precipitation (mm) in Twenthe (data of 2007)
#### 3.3.2 Data corruption

The absolute error in the data is impossible to determine. However, to mimic data errors in synthetic experiments various studies use multiplying constants. The assumed "true" forcing and discharge data of the synthetic experiment are corrupted by the unique multiplying constants. These multipliers make it possible to change both the magnitude and pattern of the observed data (Butts, et al., 2004; Kavetski, et al., 2006; Ajami, et al., 2007; Renard, et al., 2010).

The error term used in this study originates from Renard (2010). The numbers, however, were changed to match the errors found in the previous section (3.3.1). Errors were added to the forcing data using a lognormal distribution. Also, the hydrograph was corrupted using a normal distribution to mimic all sorts of uncertainties, such as measurement errors.

The assumed "true" forcing data was used to generate synthetic discharge data. To test the methods, the "true" precipitation (r) was corrupted to generate an observed precipitation time series ( $\check{r}$ ) equations 25 and 26. The error model used is as follows:

$$\widetilde{r}_i = \frac{r_i}{exp(m_i)}$$

$$m_i \sim N(0, 0.5^2)$$
(25)
(26)

Where *r*<sub>i</sub> represents the *i*th "true" precipitation measurement,  $n_i$  is the corrupted *i*th measurement and  $m_i$  the random unique error.  $m_i$  originates from a normal distribution with a mean of zero and a variance of 0.5<sup>2</sup>. In the corrupted time series, all precipitation values below zero were set to zero. This error led to a mean error of approximately 20 mm and a standard deviation of approximately 15 mm.

The generated discharge series (Q) with the "true" forcing data was also corrupted with an error term to produce an observed discharge series( $\check{Q}$ ) (equations 27 and 28).

$$\check{Q}_i = Q_i + e_i \tag{27}$$

$$e \sim N(0, (0.1Q_i)^2)$$
 (28)

 $Q_i$  represents the *i*th assumed "true" discharge and  $\check{Q}_i$  the *i*th assumed observed discharge. The error term  $e_i$  originates from a normal distribution with a standard deviation of  $(0.1Q_i)^2$ . This error leads to a mean error of approximately -1.8e-6 mm/h and a standard deviation of approximately 1.3e-4 mm/h.

### 3.4 Real-word application

This last experiment was a real-world data study. This study provided insight into the performance of the methods under all sources of uncertainty. It was not possible to check whether the methods' results had similar qualitative parameter distributions as in the synthetic experiments since the original parameter values were not known.

The methods were applied to the data of the Kervidy-Naizin catchment in France. The application of the methods could not be achieved without some adjustments to the  $P_{max}$  method. The described technique to filter out the peaks (Section 3.1.4) did not provide sufficient results. In the data set, measurements of zero discharge was present, which formed an implication for the multiplication factor. After a zero discharge measurement the filter only returns zero values and also low flow periods are filtered from the discharge data. As an alternative, all discharge measurements exceeding a threshold (set to 0.03 mm/h) were considered peak flows and were filtered from the discharge series.

For this catchment, it was assumed that during low flow, recharge enters the slow reservoir. The approach to find parameter distributions for the real-world data is the same approach as described in Section 3.2, Figure 22.

### 3.4.1 Comparison traditional and new calibration approach

A Monte-Carlo sampling strategy was performed to further investigate effectiveness of this study's newly developed methods to find parameter distributions. A comparison was made between an uninformed parameter distribution and the informed prior parameter distribution originating from the methods described in Section 3.1. Both parameter distributions were compared with the performance of the model. The uninformed parameter distribution and the new parameter distributions found in the methods are presented in Table 4.

After a warm-up period of one year, the calibrations were completed between January 1, 2006 and December 31, 2008. From the distributions 10<sup>6</sup> parameter sets were randomly selected and assessed using a multi-objective evaluation (Gupta, et al., 1998) with three objective functions. In Table 5, the objective functions are described. The Euclidean distance (29) was used as an overall performance indicator of the model.

Euclidean distance = 
$$\sqrt{(1 - NS)^2 + (1 - \log NS)^2 + (1 - R)^2}$$
 (29)

The GLUE method (Beven & Binley, 1992) was used to determine a 95% confidence interval. All parameter sets that perform below a Euclidean distance of 0.75 were accepted as behavioral models. For each time step, all behavioral parameter sets were used to calculate all possible modelled discharges. The 2.5 percentile and 97.5 percentile were calculated from the modeled discharges per time step. Then, the 2.5 percentile and 97.5 percentile were used to construct the 95% uncertainty interval.

The parameter distribution for D originating from the D-method was changed in this real-world test. The lower bound was originally set to 0.9951. Whether this is a "correct" number is debatable. The method to calculate the D distribution was limited to three time steps. The time resolution in the data set was one hour. However, the peak volume could not reach the measuring point in only one hour since the catchment size is 4.9 km<sup>2</sup>. To account for this unsuitable assumption, the lower bound was changed to 95% of the original lower bound of the method.

|                         | Uniformed prior parameter<br>distributions | Informed prior parameter<br>distributions from expert-<br>knowledge inverse modelling<br>methods |
|-------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------|
| $C_s[b]$                | 0-3500                                     | 87-294                                                                                           |
| $P_{max}[mm/h]$         | 0.0009-0.16                                | 0.0193 -0.041                                                                                    |
| S <sub>U,max</sub> [mm] | 50-500                                     | 108-270                                                                                          |
| D [-]                   | 0-1                                        | 0.94-1                                                                                           |

Table 4. Prior parameter bounds for MC simulation of model 9

| Name                                                                          | Formula                                                                                                                            | Range  | Ideal<br>value | Notes                                                                                                                                                                   |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nash-Sutcliffe<br>model efficiency of<br>the flow (NS)                        | $O_{NS} = 1 - \frac{\sum_{i=1}^{n} (Q_{o,i} - Q_{s,i})^2}{\sum_{i=1}^{n} (Q_{o,i} - \overline{Q_o})^2}$                            | (-∞,1) | 1              | Focus on the high<br>flows. A value of zero<br>indicates performance<br>no better than using the<br>mean flow. Negative<br>values indicate an even<br>worse performance |
| Nash-Sutcliffe<br>model efficiency of<br>the logarithm of<br>the flow (logNS) | $O_{logNS} = 1 - \frac{\sum_{i=1}^{n} (\log(Q_{o,i}) - \log(Q_{s,i}))^2}{\sum_{i=1}^{n} (\log(Q_{o,i}) - \overline{\log(Q_o)})^2}$ | (-∞,1) | 1              | Focus on the low flows.<br>A value of zero<br>indicates performance<br>no better than using the<br>mean flow. Negative<br>values indicate an even<br>worse performance  |
| Correlation<br>coefficient (R)                                                | $ \begin{array}{l}                                     $                                                                           | (-1,1) | 1              | Focus on dynamics of<br>the flows                                                                                                                                       |

Table 5. Objective functions used to assess the model performance

### **Chapter 4 Results**

### 4.1 Results of parameter distribution methods

Some of the parameter estimation methods depend on other parameter values, as mentioned in Section 3.1. To investigate the errors in the parameter estimation methods, the other parameters needed to determine the current method parameter were assumed to be known and set to the original value, which was used to produce the discharge data. Therefore, the methods' input consisted of data without uncertainties and original parameters except for the value that needed to be obtained by the method. Only one obtained parameter value and distribution is displayed per model; all other results are presented in Appendix 4. In the example distributions in this section the red diamond represents the "correct" original parameter value of the data set.

### Results of $C_s$ fit method

The results of the  $C_s$  fit method are provided in Table 6. This method returns the original values in the synthetic experiment for data sets of models 1, 2, 3, 4 and 6. A small standard deviation (std) was observed for parameter distributions of these models. This originates from the solve method in Python. However, the method returned values that substantially deviated from the original values for models 7 and 9. The error in models 7 and 9 could be explained by the influence of the percolation flux, which does not reach zero during recession periods. The unsaturated zone will never be empty since the evaporation and percolation are proportional to the storage in this zone.

|                      | Model 1          | Model 2           | Model 3           | Model 4              | Model 6   | Model 7  | Model 9  |
|----------------------|------------------|-------------------|-------------------|----------------------|-----------|----------|----------|
| Original $C_s(h)$    | 200              | 20                | 200               | 100                  | 50        | 500      | 470      |
| Fit method $C_s$ (h) | 200              | 20                | 200               | 100                  | 50        | 1964     | 719      |
| Std                  | 1.56E-06         | 9.99E-02          | 8.78E-02          | 1.51E-03             | 2.56E-02  | 1.97E+03 | 1.41E+03 |
| Relative error (%)   | -6.37E-08        | 3.98E-06          | -9.47E-08         | 7.05E-10             | 1.07E-06  | 2.92E+02 | 5.28E+01 |
| Table 6. Ex          | amples of the re | sults of the synt | thetic experiment | nt using the $C_s$ f | it method |          |          |

### Results of C<sub>s</sub> S-D method

The  $C_s$  S-D method returns parameter distributions that contain the original values for the synthetic experiment data for models 7 and 9, as presented in Table 7. The std decreased by a factor 1000 compared to the fit method. The boxplots are a standardized method to display value distributions. The orange line represents the median in the data set. The interquartile range (IQR), between the first and the third quartile, is the likely range of variation in the data set. The maximum is considered 1.5 x IQR above the third quartile and the minimum is considered below 1.5 x IQR of the first quartile. All other values above the maximum and below the minimum are displayed as outliers. In distribution of the  $C_s$  values, the spread in the distribution and extreme outliers are clearly visible for the fit method.



Table 7. Examples of the results of the synthetic experiment using the S-D method

### Results D

The *D* method provided accurate results in the synthetic experiment. Some outliers and a wider spread were observed in the distribution of model 9 (see Table 8). This is explained by an incorrect calculation of the overflow. The percolation flux was not considered in the calculation of the overflow. However, this assumption did not have a significant impact (relative error between the median of the estimated distribution and the original value of 0.18%) on the estimation of *D* distribution for the model 9 data.



Table 8. Examples of the results of the synthetic experiment using the D method

### Results of $S_{U,max}$ bound and inter-peak method

The bound and inter-peak method returns distributions that include original parameter values for synthetic data of model 4. However, for models 7 and 9, the distributions of the inter-peak method deviated from the original values; model 9 deviated substantially. The inter-peak method is quite sensitive to small errors. For models 7 and 9, the method was considered too sensitive and could not be used to determine the  $S_{U,max}$ . The bounds method, however, provided a sufficient result.

|                     | Model 4                                            | Model 7                                                                | Model 9                                                              |
|---------------------|----------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------|
| Original value [mm] | 235                                                | 65                                                                     | 280                                                                  |
| Minimum [mm]        | 153                                                | 44                                                                     | 178                                                                  |
| Maximum [mm]        | 288                                                | 86                                                                     | 309                                                                  |
| Inter peak method   |                                                    |                                                                        |                                                                      |
| Median [mm]         | 235                                                | 67                                                                     | 179                                                                  |
| std                 | 3.0e-7                                             | 26                                                                     | 12                                                                   |
| Distribution        | Sumax<br>235.4<br>235.2<br>235.0<br>234.8<br>234.6 | Sumax<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Sumax<br>280<br>280<br>240<br>240<br>220<br>200<br>200<br>200<br>200 |
|                     | i                                                  | 0<br>1                                                                 | 180 1 <u> </u>                                                       |

Table 9. Examples of the  $S_{U,max}$  results of synthetic experiment using the inter peak method

### Results of $P_{max}$ method

This method had expected results in the artificial world for models 6, 7 and 9. The original values of the  $P_{max}$  are included into the distribution. The 75th percentile of the distributions were a lower than the original values of the  $P_{max}$ . This underestimation in the "most optimal" value in the distribution could be prevented, but it was determined to be safe and the maximum was not attempted in the calculated percolation rates. The maximum in the distribution is quite sensitive for outliers.

|                        | Model 6                                                                                                                                                                                           | Model 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Model 9                                                           |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Original value [mm/h]  | 0.35                                                                                                                                                                                              | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0031                                                            |
| 75th percentile [mm/h] | 0.35                                                                                                                                                                                              | 0.129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0028                                                            |
| Relative error [%]     | 0                                                                                                                                                                                                 | -13.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -9.68                                                             |
| Min. distribution      | 0.35                                                                                                                                                                                              | 0.098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0026                                                            |
| Max. distribution      | 0.35                                                                                                                                                                                              | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0031                                                            |
| Distribution           | Pmax           0.35100         Pmax           0.35075         0.35075           0.35025         0.35000           x         0.34975           0.34925         0.34925           0.34900         3 | 0.15<br>E 0.14<br>E 0.13<br>E 0.12<br>E 0.11<br>0.10<br>E 0.11<br>D 12<br>E 0.14<br>E 0.13<br>E 0.14<br>E 0. | Pmax<br>0.0030<br>E 0.0029<br>x 0.0028<br>E 0.0027<br>0.0026<br>i |

Table 10. Examples of the results of synthetic experiment using the  $P_{max}$  method

### 4.2 Results synthetic experiments

Some of the parameter estimation methods depend on other parameter values as explained in Section 3.1. However, the methods return parameter distributions. In this synthetic experiment, the missing input parameters to the methods are the "most optimal" number of the previously determined distributions. These "most optimal" parameters are the median for the  $C_s$  and D, and the 75th percentile for the  $P_{max}$ . These numbers contain errors in the parameter estimation. This section explains the extent to which these errors in the determination of one parameter propagate to other parameter estimations.

### 4.2.1 Results for model 4

For model 4, three different data sets were tested. A summary of the outcome from the parameter estimations methods is given in Table 11 and Table 12.

### Groundwater drainage parameter C<sub>s</sub>

The fit-method was used to calculate the  $C_s$  value of the data set since there was no flux entering the slow reservoir during recession periods. In this data set a small std was observed due to some outliers. These outliers originated from the solve method used in Python.

### Partitioning coefficient D

The partitioning coefficient was calculated using the median  $C_s$  value calculated in the previous step. For the synthetic data of model 4, the D can be calculated accurately. All original values of the data sets are included in the estimated parameter distributions.



Table 11. Summary of the results of synthetic experiment model 4 for  $C_s$  and D

### Maximum unsaturated zone storage S<sub>U,max</sub>

The method to determine the bounds of the  $S_{U,max}$  is, in this case, independent of other parameter values since no percolation flux is present in the model. The overflow data from the calculations made for D were used to determine the  $S_{U,max}$  distribution with the inter-peak method. The number of calculations, however, were considerably fewer than the number for D (see Appendix 4). Sometimes, the length of the data series between two overflow moments were less or more than the predefined lengths. In the winter, more overflow moments occur; however, a storage change in the unsaturated zone (evaporation between overflow moments) is not always present. These discharge series were not used to calculate  $S_{U,max}$ .

| c | ,     |  |
|---|-------|--|
| J | U.max |  |

| Relative error underestimation   | -20% to -35% |
|----------------------------------|--------------|
| of S <sub>U,max</sub>            |              |
| Absolute error underestimation   | 10-85 mm     |
| of $S_{U,max}$                   |              |
| Relative error overestimation of | 23% to 83%   |
| S <sub>U,max</sub>               |              |
| Absolute error overestimation of | 20-85 mm     |
| $S_{U,max}$                      |              |
|                                  |              |

Table 12. Summary of the results of synthetic experiment for model 4 for  $S_{U,max}$ 

### 4.2.2 Results for models 7 and 9

The parameter values of three different data sets for models 7 and 9 were used to determine parameter distributions in this section. The approach as described in Section 3.2 (Figure 22) was used to determine the parameter values. First, a summary of the results of model 7 is given (Table 13 and Table 14). Then, the results for model 9 are provided (Table 15 and Table 16). For each parameter, a short description of the results is given.

### Model 7

### Groundwater drainage parameter Cs

To calculate the  $C_s$  value of the data set, the fit method was used for the first estimate, while the S-D method was used for the later iterations. Relative errors between the median of the estimated distribution and the original value were found between -15% and 30%. However, all original values of the data sets were included in the estimated parameter distributions. After three iterations, all three sets converged, and the parameters were stable during the later iterations. The error in the  $C_s$  was directly linked to the large overestimation of the maximum  $S_{U,max}$ .

### Maximum percolation rate (Pmax)

The first calculated maximum percolation rate was overestimated; this is related to the first overestimation of the  $C_s$ . After three iterations, the value converged. For all three data sets, the  $P_{max}$  (75th percentile of the distribution) was underestimated. The relative difference between the original value and the estimated value ranged between -3% and -17%. The same underestimation was observed in the method results (Section 4.1). The estimated parameter distributions include the original values of the data sets.



Table 13. Summary of the results of synthetic experiment for model 7 for  $C_s$  and  $P_{max}$ 

### Maximum unsaturated zone storage S<sub>U,max</sub>

The method to determine the bounds of the  $S_{U,max}$  is not independent of other parameter values for model 7. The  $P_{max}$  is now also included into the calculations. The larger overestimation of the maximum storage capacity was notable.

|                                               | $S_{U,max}$   |
|-----------------------------------------------|---------------|
| Relative error underestimation of $S_{U,max}$ | -35 % to -30% |
| Absolute error underestimation of $S_{U,max}$ | 19-50 mm      |
| Relative error overestimation of $S_{U,max}$  | 40 to 86%     |
| Absolute error overestimation of $S_{U,max}$  | 21-63 mm      |

Table 14. Summary of the  $S_{U,max}$  results of synthetic experiment for model 7

### Model 9

### Groundwater drainage parameter C<sub>s</sub>

The fit method was used to calculate the first estimate for the  $C_s$  value of the data set. The S-D method was used for the later iterations. After three iterations, all three sets converged. Relative errors between the median of the estimated distribution and the original value under 5% were observed for model 9. All original values of the data sets were included into the estimated parameter distributions.

### Partitioning coefficient D

The partitioning coefficient was calculated using the median of the estimated  $C_s$  distribution. The calculated results for *D* did not deviate substantially from the original parameter of the data sets; relative errors with a maximum of 0.3% were observed. However, the estimated parameter distributions did not include the original values.

### Maximum percolation rate (Pmax)

The first calculated maximum percolation rate was overestimated; this is related to the first overestimation of the  $C_s$ . For all three data sets, the  $P_{max}$  (75th percentile of the distribution) was underestimated. The relative difference between the original value and the estimated value ranges between -4% and -10%. The same underestimation was observed in the method results (Section 4.1). The estimated parameter distributions include the original values of the data sets.



Table 15. Summary of the results of synthetic experiment for model 9 for  $C_s$ ,  $P_{max}$  and D

Maximum unsaturated zone storage  $S_{U,max}$ 

The  $P_{max}$  parameter was included in the calculations for the bounds of  $S_{U,max}$ . The method was not independent of other parameter values. The underestimation of  $P_{max}$  from the previous analysis did not significantly influence the results. Both the minimum and maximum were correctly estimated.

|                                               | $S_{U.max}$  |
|-----------------------------------------------|--------------|
| Relative error underestimation of $S_{U,max}$ | -40% to -30% |
| Absolute error underestimation of $S_{U,max}$ | 70-120 mm    |
| Relative error overestimation of $S_{U,max}$  | 10% to 40%   |
| Absolute error overestimation of $S_{U,max}$  | 20-140 mm    |

Table 16. Summary of the  $S_{U,max}$  results of synthetic experiment for model 9

### 4.3 Results of sensitivity analysis

### 4.3.1 Results for model 9 including the forcing error

Three data sets were used to test the effect of the forcing data uncertainties on the methods to determine parameter distribution. The same approach described in Section 3.2, Figure 22, was used to find the parameter distributions.

In the bounds method for  $S_{U,max}$ , the parameter determination method took the precipitation and evaporation data as input. This method was assumed to have the largest effect on the corrupted forcing data. The summery of the over- and underestimation of  $S_{U,max}$  is given in Table 17. For all tests, the minimum was always an underestimation of the original  $S_{U,max}$  used to produce the data. The maximums for all three tests were larger than the original used  $S_{U,max}$  to produce the data. The error for both the minimum and the maximum, however, did not deviate substantially from the error observed in the synthetic experiment without data errors. The absolute difference in minimum and maximum found in the synthetic experiment of Section 3.2 and found in this analysis is equal to the standard deviation of the precipitation measurement error.

|                                                      | S <sub>U.max</sub> |
|------------------------------------------------------|--------------------|
| Relative error underestimation of S <sub>U,max</sub> | -50% to -60%       |
| Absolute error underestimation of $S_{U,max}$        | 113-187 mm         |
| Relative error overestimation of $S_{U,max}$         | 10% to 60%         |
| Absolute error overestimation of $S_{U,max}$         | 58-132 mm          |

Table 17. Summary of the results for  $S_{U,max}$  with precipitation error

Considering the results presented in Table 18, the effect on the other parameter distributions of the error in  $S_{U,max}$  is negligible. The  $C_s$ ,  $P_{max}$  and D can still be found with high accuracy.



Table 18. Summary of the results for C<sub>st</sub> P<sub>max</sub> and D parameter distributions with precipitation error

#### 4.3.2 Results of model 9 including the data error

Three data sets were used to test the effect of the data error on the methods to find the parameter distributions. The same approach described in Section 3.7, Figure 22, to determine the parameter distributions was used.

The bounds for the maximum unsaturated zone storage were still quite accurate (Table 19). The minimum was underestimated by 30% to 40%. The maximum was overestimated by 10% to 30% of the original used value to produce the data.

|                                                      | J <sub>U.max</sub> |
|------------------------------------------------------|--------------------|
| Relative error underestimation of $S_{U,max}$        | -30% to -40%       |
| Absolute error underestimation of S <sub>U,max</sub> | 75-128 mm          |
| Relative error overestimation of $S_{U,max}$         | 10% to 30%         |
| Absolute error overestimation of $S_{U,max}$         | 56-78 mm           |
|                                                      | 1                  |

Table 19. Summary of the results for  $S_{U,max}$  with data corruption

 $C_s$ 

The effect of data uncertainty in the discharge became considerable in the  $P_{max}$  calculation. In the  $P_{max}$  distributions, an overestimation of the original value was observed. Also, in one data set, the minimum distribution was higher than the original  $P_{max}$  value used to generate the "true" data set. For the other two sets, the original value was included in the estimated parameter distribution. The overestimation of  $P_{max}$  directly translated to the calculation of the  $C_s$  distribution, where the median in the distribution became an underestimation.

D





Table 20. Summary of the results for  $C_s$ ,  $P_{max}$  and D parameter distributions with data corruption

### 4.4 Results of real-world application

The results of the methods to determine parameter distributions for the real-world data set are presented in Table 21. All the methods converged, as the results of the iterations indicate. The small distribution of the D was remarkable. In this case, it was no longer possible to know the "true" value of the data set's parameters, and a comparison of the error is not shown.





### 4.4.1 Results comparison

Both the performance of the model using the calibration results of the uninformed prior parameter distributions and the new informed prior parameter distributions found in the methods are presented in Figure 24 and Table 23. In the model performance, no significant difference was observed in the calibration (2006-2008) or validation period (2009-2011). The overall performance (ED) of the models with the uninformed parameter distributions was slightly higher for all periods. A notable difference was observed in performance of the logNS for the parameter distributions of the informed prior parameter distributions: the performance was less than the uninformed parameter distributions. The model uncertainty area spanned from the 2.5 percentile to the 97.5 percentile was more than double for the results of the uninformed prior parameter distributions than for the informed prior parameter results.

Figure 25 illustrates both the prior parameter distributions and the posterior parameter distributions of both the uninformed and informed parameter distributions. The posterior distributions are the distributions of the set parameters originating from behavioral models. Overall, a decreasing trend was observed from the prior uninformed parameter distributions to the informed posterior distribution. The posterior distributions of the informed parameter sets were twice to five times smaller than the posterior distributions of the uninformed parameter sets. This indicates a decrease in equifinality. The posterior distribution of the  $P_{max}$  shifted in the informed parameter sets compared to the uninformed sets. For the other parameters, no significant shift was observed.

|                              | Uninformed<br>prior<br>2006-2011 | <b>Informed</b><br><b>prior</b><br>2006-2011 | Uninformed<br>prior<br>2006-2008 | <i>Informed</i><br><i>prior</i><br>2006-2008 | Uninformed<br>prior<br>2009-2011 | <i>Informed</i><br><i>prior</i><br>2009-2011 |
|------------------------------|----------------------------------|----------------------------------------------|----------------------------------|----------------------------------------------|----------------------------------|----------------------------------------------|
| Mean ED                      | 0.66                             | 0.730                                        | 0.679                            | 0.730                                        | 0.648                            | 0.733                                        |
| Mean NS                      | 0.539                            | 0.555                                        | 0.509                            | 0.539                                        | 0.565                            | 0.567                                        |
| Mean LogNS                   | 0.587                            | 0.460                                        | 0.614                            | 0.490                                        | 0.563                            | 0.434                                        |
| Mean R                       | 0.782                            | 0.794                                        | 0.742                            | 0.753                                        | 0.825                            | 0.837                                        |
| Most optimal ED              | 0.520                            | 0.680                                        | 0.555                            | 0.688                                        | 0.438                            | 0.678                                        |
| Most optimal NS              | 0.620                            | 0.604                                        | 0.563                            | 0.578                                        | 0.676                            | 0.631                                        |
| Most optimal<br>LogNS        | 0.709                            | 0.481                                        | 0.763                            | 0.510                                        | 0.751                            | 0.452                                        |
| Most optimal R               | 0.797                            | 0.804                                        | 0.752                            | 0.764                                        | 0.844                            | 0.842                                        |
| 95% uncertainty<br>area [mm] | 1887                             | 741                                          | 884                              | 341                                          | 1003                             | 401                                          |

Table 23. Performance results of the uninformed prior parameter distribution and the informed prior parameter distributions over multiple periods. The mean performance represents the mean of all simulated discharges in the uncertainty bound, the most balanced (optimal) performance in the uncertainty bound is also given in this table.



#### Results of uninformed parameter sets

Figure 24. Observed (blue line) and most optimal simulated (orange line) discharges in the calibration and validation periods. The simulated discharge is shown with a 95 percent uncertainty interval (shaded grey area).



Figure 25. The prior parameter distributions and the posterior parameter distributions of all behavioral models. For both the uninformed parameter distribution and the informed parameter distribution. (boxplots: the dots represents the outliers in de data set, the lower and upper whisker 2.5/97.5<sup>th</sup> percentiles and, the horizontal orange line the median)

### **Chapter 5 Discussion**

### 5.1 Methods and synthetic experiment

The chapter reviews the developed methods to obtain parameter distributions and the results of the different research sections. Both the strengthens and weaknesses are discussed. In addition, links between the synthetic, sensitivity analysis and real-world application are made.

### 5.1.1 Methods

In all six methods, to constrain the feasible parameter space, assumptions were made based on expert judgment, which makes the methods less objective. In particular, certain thresholds were defined by visual inspection of the data or by testing different thresholds to assess the method performance. Examples of thresholds based on expert judgment are the minimum duration of no precipitation before a recession period, the maximum discharge at the end of a recession and the multiplication factor in the calculation of *D*. Whether values determined by expert judgment deviated for other catchments was not tested. Therefore, it is unclear how the methods will perform, and critically assessing the defined parameter distributions is advised.

In the calculation of the  $C_s$  value, one major assumption was made in the S-D method. Model runs were performed to calculate the total recharge (*Ptot*). The parameters in the model and the assumed model structure had an impact on the calculated recharge. This recharge affected the calculation of the  $C_s$  value, and the S-D method therefore qualified as quite subjective. The method became sensitive to errors in the assumed parameters and the model structure. Although errors were made in the S-D method, the results indicate that the method performs quite well.

In the calculation of the D distribution, it was assumed that the total volume of the fast lateral runoff processes would reach the outflow point of the catchment in one time step. Depending on the size and the time resolution of the measurements, the total volume of fast lateral runoff can reach the outflow point in one time step. However, large catchments are more likely to have some sort of channel routing, resulting in a longer time frame for the total peak volume to reach the outflow point. The value for Dwill be overestimated if calculations are made with a high time resolution, such as hourly resolution. Catchment size and characteristics should be examined to determine whether the assumptions in the method are applicable before applying this method. This method depends more on expert judgment than the other methods.

For the calculations of the  $S_{U,max}$  bounds, an assumption was made in the calculation of the upper bound. The total sum of precipitation was subtracted with a percentage of the maximum percolation volume to decrease the overestimation of the maximum storage capacity. This assumption makes the method sensitive to errors in the calculation of  $P_{max}$ , especially if  $P_{max}$  is overestimated.

For the calculation of  $P_{max}$ , the parameter distribution was determined based on the upper 20% of all calculated percolation rates. The optimal  $P_{max}$  was decided, using expert judgment, to be in the 75th percentile of this distribution to filter out outliers. In the synthetic experiments, this result was always an underestimation, which was assumed to be in an acceptable range.

### 5.1.2 Comparison model run of models 4, 7 and 9

In this synthetic experiment, different data sets were used to find parameter sets for models 4, 7 and 9. The data sets were produced by the models and were not corrupted by any uncertainty, so model 4's output was used to find parameters for model 4. However, in this experiment, no prior knowledge of parameter values was present. This made it possible to discover how the methods cope with errors made in parameter distributions from one method and translate to other parameter distributions. For example, the calculation of the D distribution depend on the calculated  $C_s$  value.

In the synthetic experiment data of model 4, the parameter values could be found with high precision. Small errors in the methods did not influence the results. All parameter distributions had a small std, implying limited uncertainties in the estimated parameter values.

However, as mentioned in Section 4.1, the  $C_s$  calculations with the fit method were accurate. For model 7 and 9. however, large deviations from the original value were present and the std was quite significant. As explained in Section 3.2, an iterative process was used to determine the parameter distributions.

For all data sets from both model 7 and 9, a fast convergence of the parameter values was observed. In addition, no large deviations of the original value were present in the parameter value estimations; thus, the procedure is considered a suitable approach. In this research, no condition was set to break off the iteration since it was of interest to discover whether the parameter distributions stayed stable. In further development of the methods, the condition can be set to limit the calculation time.

The most remarkable difference between the results of model 7 and 9 is the performance of the  $C_s$  method. For model 7, the results differed more than model 9's from the original values. Also, the standard deviation was larger for model 7's data than for model 9's data. No seasonal changes were observed in model 7's data, which could be an indication of a unsuitable model structure. However, this possibility was not investigated in this research. The inability of a system representation could influence the calculations of the parameter distributions.

Another difference in performance between models 4, 7 and 9 is as follows: for model 7 and 9 only an estimation of the lower and upper bound of  $S_{U,max}$  could be made. This affected the other parameter distribution calculations, resulting in a larger std of all the distributions.

### 5.2 Sensitivity analysis

### 5.2.1 Precipitation error

During this synthetic experiment, the forcing data was corrupted by producing data with forcing data of one point measurement station and using forcing data of another station to determine how the methods to determine parameter distributions behaved. Between the two stations, a difference in precipitation patterns was observed, which indicates a spatial variability in these patterns. Although the error in forcing data was applied, the methods performed quite well and were able to define parameter distributions.

In the last section, a comparison is made between the results of the "clean" data from model 9 and the corrupted data of model 9. However, this comparison in not completely valid since the "clean" data was created using with French forcing data and the precipitation error was created using Dutch forcing data. Nevertheless, the parameter distributions are similar for both the corrupted and "clean" data without large deviations in the original values of the synthetic data.

### 5.2.2 Data corruption

The second test in the sensitivity analysis was the corruption of both forcing and discharge data. The data was corrupted with unique multiplying constants, which changed both the magnitude and patterns of the data. The most striking effect on the methods was seen in the calculation of the  $P_{max}$  distribution. It was found that the original parameter of the data sets was sometimes no longer part of the defined distribution. This indicates that the method does not handle data uncertainty well. The part of the calculated percolation rates could be an inappropriate choice for the parameter distribution, or the method set up might need to be changed to decrease the sensitivity to data uncertainty by examining a longer period to calculate the percolation rates instead of using two subsequent time steps.

Although the  $P_{max}$  calculations had some errors, this did not have a significant effect on the calculations of the other parameters. The only affected parameter was the  $C_s$  distribution. The original values are in the upper part of the boxplot (Table 20).

### 5.3 Real world

All methods were applied in a real-world test case with data measured in a catchment in France. It is no longer possible to conclude whether the derived parameter distributions are in the "correct" range since this is not known in the real world. Nevertheless, it is possible to make comparisons with a Monte-Carlo (MC) sampling strategy with uninformed prior parameter distributions.

A change was made in the lower bound of the D to calibrate the model using the informed prior distributions from the methods. The assumption was made that the peak volume calculated in the method was underestimated. The time resolution in the data set was one hour, but arguably, the peak volume of this catchment could not reach the measuring point in one time step.

To confirm that the peak flow is underestimated, an extra test should be performed. In this research, only data uncertainty was added to the synthetic data set; it is also possible to add model structure uncertainty by producing discharge with another model and testing the methods with the model of this research. To investigate the method to determine D, adding a routing function at the fast lateral runoff processes is recommended. This could be accomplished, for example, by adding a fast reservoir.

The most notable difference between the MC strategy with uninformed prior parameter distributions and the informed prior parameter distribution from the methods was found in the results of  $P_{max}$ . A large deviation was observed for the behavioral models. The parameter distribution for the uninformed prior parameter distribution was in lower ranges than found in the methods. The same trend of overestimation of  $P_{max}$  was also observed in the sensitivity analysis of the methods.

An effect of a too high  $P_{max}$  value was observed in the C<sub>s</sub> distribution. The majority of the behavioral models (the posterior parameter distribution) were also in a higher range compared to what the methods suggest in the informed prior parameter distributions. In the data uncertainty analysis, this higher  $C_s$  value behavior was also observed. This suggest that during calibration the model tried to correct for the unsuitable  $P_{max}$  distribution.

A significant decrease in the total uncertainty interval was observed in the comparison of the Monte-Carlo simulation with uninformed prior and informed prior parameter distributions of the methods. This implies that the model was acting with an improved physical realism.

The most important advantage of the methods to find parameter distributions is that the feasible parameter space was decreased by the methods. The model was, therefore, no longer able to compensate for unsuitable model structure assumptions. If the model's performance decreases significantly compared to uninformed prior calibration results, it should be considered that the assumptions made in the model structure could be inappropriate and essential hydrological processes are left out. This knowledge helps hydrologists and model builders find an appropriate model structure to represent a catchment.

In this analysis, the methods to determine parameters were only tested on one small catchment. For such a simple lumped model with only four parameters, the performance was quite accurate. However, extra care should be taken if the methods are applied to large scale catchments since these catchments are often more heterogenic.

### **Chapter 6 Conclusions**

Answers to the research question and sub-questions are provided in this chapter. The objective of this research was to determine the extent to which it is possible to make an estimation of the parameter values or parameter distribution for given hydrological model structure based on field observations. By extracting parameter information from the data, in theory, the model uncertainty and equifinality in the parameter sets should be reduced. The concept of this research was to use a general conceptual understanding of how hydrological processes in a catchment act. The parameter identification was performed based on sub-periods of different event types. The hypothesis used in this thesis was that each period has different "dominant" processes with associated parameters. Using the sub-periods of the hydrograph to find individual parameters of the model could further increase realism in the models.

The following research question was formulated for this research:

To what degree is it possible to avoid the use of uninformed prior parameter distribution in the calibration of a conceptual hydrological model by using available information from the field observations to generate informed prior distributions?

The sub-questions indicating the is crucial sues to be addressed when answering this main question were the following:

1. Can we select sub-periods from a hydrograph typical of different hydrological process which can be coupled to model components, and how can this help to determine model parameters?

2. To what extent are the methods to obtain the parameter distributions sensitive to data errors?

3. To what extent can the methods be used for real rainfall runoff data?

The synthetic experiment proved that by using the expert-knowledge inverse modelling methods described in this research, we can determine all parameter distributions of the investigated model. Multiple sub-periods, which represent typical hydrological processes, were selected in a hydrograph Specific model components of the hydrological model are able to describe these processes, and the connected parameter distributions can be found.

In the sensitivity analysis, the  $P_{max}$  method to determine the maximum percolation rate parameter distribution was sensitive to data uncertainty, resulting in errors in the determined parameter distributions. Since many of the methods take other parameter values such as the  $P_{max}$  as input, other parameter distributions will be affected by the errors due to the sensitivity to data uncertainties. The  $P_{max}$  method results in an overestimated parameter distribution. However, although the parameter is overestimated, the other parameters distributions include the original value of the synthetic data, which is considered a positive result.

Regarding the last sub-question, the expert-knowledge inverse modelling methods were applied to real rainfall runoff data. However, it was no longer possible to conclude whether the obtained parameter distributions are in the "correct" range since the parameters of the real world are not known. The comparison between an uninformed prior parameter distribution and the informed prior parameter distributions of the methods in a Monte-Carlo sampling strategy gave insight into the performance of the methods. With the GLUE method, a uncertainty interval was constructed. By using the parameter distributions of the methods, this interval decreased substantially. The total area of the uncertainty interval was less than half the uncertainty interval from the uninformed prior distributions; also, the posterior parameter distributions were two to five times smaller for the informed parameter case.

In this real-world test, a similarity in the performance for both calibrations was observed. These results endorse the importance and the advantages of the methods to obtain parameter information from the data. The uncertainty in the model decreased substantially, and it was possible to be more confident about how appropriate the model structure is for the catchment. With the informed parameter distributions, the model was no longer able to compensate for inappropriate model structure assumptions, and a meaningful and more realistic representation of the catchment was achieved. The performance test also works the other way around. A significantly decrease in performance could be an indication of an unsuitable model structure where important hydrological processes are left out.

Using the information from the sub-questions, the main question can be answered. This study has demonstrated that by using a data-based techniques, all parameter distributions can be derived for the investigated model. The hypothesis of this study is confirmed.

### 6.1 Further research

For more general conclusions of the expert-knowledge inverse modelling methods to determine parameter distributions, more tests are needed, both in the synthetic environment and for real-world data. Further research should be directed toward testing whether the methods or approach can be generalized for multiple catchment typologies or whether the experience and expert judgment of the modeler keeps playing an important role.

Additional analyses should be made into the methods sensitive to data uncertainty. This study found that some methods return parameter distributions that did not include the original parameters of the data if data errors were present. Furthermore, synthetic tests including model structure uncertainty should be performed to test the general validity of the expert-knowledge inverse modelling methods.

### Literature list

Ajami, N. K., Duan, Q. & Sorooshian, S., 2007. An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction. *Water Resources Research*, 43(1), W01403.

Aubert, A. H., Gascuel-Odoux, C. & Merot, P., 2013. Annual hysteresis of water quality: A method to analyse the effect of intraand inter-annual climatic conditions. *Journal of Hydrology*, 478, 29-39.

Bergström, S. & Forsman, A., 1973. Development of a conceptual deterministic rainfall-runoff model. *Nordic Hydrology*, 4(3), 147-170.

Beven, K., 1996. Equifinality and Uncertainty in Geomorphological Modelling. *The Scientific Nature of Geomorphology*, 289-313.

Beven, K., 2006. Searching for the Holy Grail of Scientific Hydrology: Qt=H(SR)A as closure. *Hydrology* and Earth System Sciences, 10, 609-618.

Beven, K. & Binley, A., 1992. The future of distributed models: Model calibration and uncertainty prediction. *Hydrological Processes*, 6(3), 279-298.

Beven, K. J., 2011. Rainfall-runoff modelling: the primer (2nd ed.). Chichester, West Sussex UK: John Wiley & Sons.

Brauer, C. C., 2014. Modelling rainfall-runoff processes in lowland catchments (doctoral dissertation). Wageningen University. Retrieved from https://library.wur.nl/WebQuery/wurpubs/452940

Brauer, C., Torfs, P., Teuling, A. & Uijlenhoet, R., 2014. The Wageningen Lowland Runoff Simulator (WALRUS): application to the hupsel brook catchment and the cabauw polder. *Hydrology and Earth System Sciences*, 18(10), 4007-4028.

Butts, M. B., Payne, J. T., Kristensen, M. & Madsen, H., 2004. An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation. *Journal of Hydrology*, 298(1-4), 242-266.

Clark, C., 1945. Storage and the unit hydrograph.. Transactions of the American Society of Civil Engineers, 110, 1416-1446.

Clark, M. P. et al., 2008. Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models. *Water Resources Research*, 44, W00B02.

Euser, T. et al., 2013. A framework to assess the realism of model structures using hydrological signatures. *Hydrology and Earth System Sciences*, 17, 1893-1912.

Fenicia, F., Savenije, H. H. G., Matgen, P. & Pfister, L., 2006. Is the groundwater reservoir linear? Learning from data in hydrological modelling. *Hydrology and Earth System Sciences*, 10(1), 139-150.

Fleming, P., 1970. A diurnal distribution function for daily evaporation. *Water Resources Research*, 6(3), 937-942.

Freer, J., McMillan, H., McDonnell, J. & Beven, K., 2004. Constraining dynamic TOPMODEL responses for imprecise water table information using fuzzy rule based performance measures. *Journal of Hydrology*, 291(3), 254-277.

Gharari, S., 2016. On the role of model structure in hydrological modeling: Understanding models (doctoral dissertation). TU Delft. Retrieved from https://repository.tudelft.nl/islandora/object/uuid:055795fb-611e-4e04-b431-fd0c377581f1

Gharari, S. et al., 2014. Using expert-knowledge to increase realism in environmental system models can dramatically reduce the need for calibration. *Hydrology and Earth System Sciences*, 18, 4839-4859.

González-Castro, J. A. & Muste, M., 2007. Framework for Estimating Uncertainty of ADCP Measurements from a Moving Boat by Standardized Uncertainty Analysis. *Journal of Hydraulic Engineering*, 133(12), 1390-1410.

Gupta, H. V. et al., 2012. Towards a comprehensive assessment of modelstructural adequacy. *Water Resources Research*, 48(8), W08301.

Gupta, H. V., Sorooshian, S. & Yapo, P. O., 1998. oward improved calibration of hydrologic models: Multiple and noncommensurable measures of information. *Water Resources Research*, 34(4), 751-763.

Hrachowitz, M. & Clark, M. P., 2017. HESS Opinions: The complementary merits of competing modelling philosophies in hydrology. *Hydrology and Earth System Sciences*, 21(8), 3953 - 3973.

Hrachowitz, M. et al., 2014. Process consistency in models: The importance of system signatures, expert knowledge, and process complexity. *Water resources research*, 50(9) 7445-7469.

Kavetski, D. & Fenicia, F., 2011. Elements of a flexible approach for conceptual hydrological modeling: 2. Application and experimental insights. *Water Resources Research*, 47(11), W11511.

Kavetski, D., Kuczera, G. & Franks, S. W., 2006. Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory. *Water Resources Research*, 42(3), W03407.

Lamb, R. & Beven, K., 1997. Using interactive recession curve analysis to specify a general catchment storage model. *Hydrology and Earth System Sciences*, 1(1), 101-113.

McMillan, H. K. et al., 2011. Hydrological field data from a modeller's perspective: Part 1. Diagnostic tests for model structure. *Hydrological Processes*, 25(4), 511-522.

Penman, H. L., 1948. Natural evaporation from open water, bare soil and grass. *Proceedings of the Royal Society of London*, 193(1032), 120-145.

Refsgaard, J. C. & Storm, B., 1995. Mike she. Computer Models of Watershed Hydrology, 1, 809-846.

Renard, B. et al., 2010. Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors. *Water Resources Research*, 46(5), W05521.

Savenije, H. H. G., 2009. CT4431 - hydrological modelling. Delft, The Netherlands: TU Delft

Savenije, H. H. G., 2009. HESS Opinions "The art of hydrology". *Hydrology and Earth* System, Sciences, 13(2), 157-161.

Seibert, J., 1997. Estimation of Parameter Uncertainty. Nordic Hydrology, 28, 247-262.

Willems, P., 2009. A time series tool to support the multi-criteria performance evaluation of rainfallrunoff models. *Environmental Modelling & Software*, 24, 311-321.

Willems, P., 2014. Parsimonious rainfall-runoff model construction supported by time series processing and validation of hydrological extremes – Part 1: Step-wise model-structure identification and calibration approach. *Journal of Hydrology*, 510, 578-590.

Willems, P. et al., 2014. Parsimonious rainfall-runoff model construction supported by time series processing and validation of hydrological extremes--Part 2: Intercomparison of models and calibration approaches. *Journal of Hydrology*, 510, 591-609.

Young, P., 2003. Top-down and data-based mechanistic modelling of rainfall-flow dynamics at the catchment scale. *Hydrological processes*, 17(11), 2195-2217.

### Appendix 1 Model descriptions

### Model 1

This model exists of one linear reservoir (unsaturated reservoir  $S_n$ ) with only one parameter. The storage change of  $S_n$  is formulated in eq. (30). Precipitation *P* will fill up the reservoir. The predicted evaporation (E+T) is at potential rate when there is no rain and sufficient storage eq. (31). The outflow of this reservoir is conceptualized as linear eq. (32) depending on the storage level  $S_n$  and on the time-scale of groundwater drainage parameter  $C_s$ . This model is considered to be the most simple model.

$$\frac{dS_u}{dt} = P(t) - E(t) - T(t) - Q_u(t)$$
(30)

$$If P = 0: E(t) + T(t) = \min(E_p, S_u(t))$$
(31)

$$Q_u = \frac{1}{C_s} * S_u(t) \tag{32}$$



#### Model 2

Model 2 exists of one linear reservoir (unsaturated reservoir  $S_u$ ) with two parameters. The storage change of  $S_u$  is formulated in eq. (33). Precipitation P will fill up the reservoir until the maximum storage capacity  $S_{U,max}$  is reached. The precipitation that exceeds the storage capacity will form the quick flow  $Q_f$  eq. (35). The predicted evaporation (E+T) is assumed to be proportional to the potential rate when there is no rain and sufficient storage eq. (34). The slow flow  $Q_s$  of this reservoir is conceptualized as linear eq. (36) depending on the storage level  $S_u$  and on the time-scale of groundwater drainage parameter  $C_s$ .

$$\frac{dS_u}{dt} = P(t) - E(t) - Q_s(t) - Q_f(t)$$
(33)

If P=0: 
$$E(t) + T(t) = \min(E_p \frac{S_u}{S_{umax}}, S_u)$$
 (34)

$$Q_f = \max(0, S_u - S_{umax}) \tag{35}$$

$$Q_s = \frac{1}{C_s} * S_u(t) \tag{36}$$

$$Q_t = Q_s + Q_f \tag{37}$$



The third model exists of two reservoirs (unsaturated reservoir  $S_u$  and fast runoff reservoir  $S_d$ ) with two parameters. The storage change of  $S_u$  is formulated in eq. (38). Precipitation P will fill up the reservoir until the maximum storage capacity  $S_{U,max}$  is reached. The precipitation that exceeds the storage capacity will form  $Q_{uf}$  eq. (41). The predicted evaporation (E+T) is assumed to be proportional to the potential rate when there is no rain and sufficient storage eq. (40). The storage change of  $S_f$  is formulated in eq. (39). The reservoir receives  $Q_{uf}$ . The fast flow  $Q_f$  eq. (42) is conceptualized as linear to the storage level of  $S_f$  and depends on the time-scale of groundwater drainage parameter Cf.

$$\frac{dS_u}{dt} = P(t) - E(t) - Q_{uf}(t)$$
(38)

$$\frac{dS_f}{dt} = Q_{uf}(t) - Q_f(t) \tag{39}$$

$$If P = 0: E(t) + T(t) = \min(E_p \frac{S_u}{S_{umax}}, S_u)$$
(40)

$$Q_{uf} = \max(0, S_u - S_{umax}) \tag{41}$$

$$Q_f = \frac{1}{C_f} * S_f(t) \tag{42}$$



The fourth model exists of two reservoirs (unsaturated reservoir  $S_u$  and slow runoff reservoir  $S_s$ ) with three parameters. The storage change of  $S_u$  is formulated in eq. (43). Precipitation P will fill up the reservoir until the maximum storage capacity  $S_{U,max}$  is reached. The precipitation that exceeds the storage capacity will form  $Q_{uf}$  eq.(46). The predicted evaporation (E+T) is assumed to be proportional to the potential rate when there is no rain and sufficient storage eq. (45). The storage change of  $S_s$  is formulated in eq. (44). The reservoir receives  $R_s$  (47). The slow flow Qs eq. (49) is conceptualized as linear to the storage level of  $S_s$  and depends on the time-scale of groundwater drainage parameter  $C_s$ . The fast flow is conceptualized in eq. (48).The total flow (50) is the sum of  $Q_f$  and  $Q_s$ .

$$\frac{dS_u}{dt} = P(t) - E(t) - Q_{uf}(t)$$
(43)

$$\frac{dS_s}{dt} = R_s(t) - Q_f(t) \tag{44}$$

$$If P = 0: E(t) + T(t) = \min(E_p \frac{S_u}{S_{umax}}, S_u)$$
(45)

$$Q_{uf} = \max(0, S_u - S_{umax}) \tag{46}$$

$$R_s = Q_{uf} * D \tag{47}$$

$$Q_f = Q_{uf} * (1 - D)$$
(48)

$$Q_s = \frac{1}{C_s} * S_s(t) \tag{49}$$

$$Q_t = Q_s + Q_f \tag{50}$$



The sixth model exists of two reservoirs (unsaturated reservoir  $S_u$  and slow runoff reservoir  $S_s$ ) with two parameters. The storage change of  $S_u$  is formulated in eq. (51). Precipitation P will fill up the reservoir. The predicted evaporation (E+T) is assumed to be at potential rate when there is no rain and sufficient storage eq. (53). The percolation rate *Perr* is assumed to be constant  $P_{max}$  when sufficient storage is present eq. (54). The storage change of  $S_s$  is formulated in eq. (52). The reservoir receives *Perr* and the slow outflow  $Q_s$  eq. (57) is conceptualized as linear to the storage level of  $S_s$  eq. (55), (56) and depends on the time-scale of groundwater drainage parameter  $C_s$ .

$$\frac{dS_u}{dt} = P(t) - E(t) - Perc(t)$$
(51)

$$\frac{dS_s}{dt} = Perc(t) - Q_s(t) \tag{52}$$

$$If P = 0: E(t) + T(t) = \min(E_p \frac{S_u}{S_{umax}}, S_u)$$
(53)

 $Perc = \min(Pmax, S_u) \tag{54}$ 

$$Q_{perc} = \frac{1}{C_s} * Perc(t)$$
<sup>(55)</sup>

$$Q_{storge} = \frac{1}{C_c} * S_s(t) \tag{56}$$

$$Q_s = Q_{storage} + Q_{perc} \tag{57}$$



The seventh model exists of two reservoirs (unsaturated reservoir  $S_u$  and slow runoff reservoir  $S_s$ ) with three parameters. The storage change of  $S_u$  is formulated in eq. (58). Precipitation P will fill up the reservoir until the maximum storage capacity  $S_{U,max}$  is reached. The precipitation that exceeds the storage capacity will form the quick flow  $Q_f$  eq. (61). The predicted evaporation (E+T) is assumed to be proportional to the potential rate when there is no rain and sufficient storage eq. (60). The percolation rate *Perc* is assumed to be proportional to  $P_{max}$  when sufficient storage is present eq.(62). The storage change of  $S_s$  is formulated in eq. (59). The reservoir receives *Perc* and the slow outflow  $Q_s$ eq. (65) and is conceptualized as linear to the storage level of  $S_s$  eq.(63), (64) and depends on the timescale of groundwater drainage parameter  $C_s$ . The total flow (65) is the sum of  $Q_f$  and  $Q_s$ .

$$\frac{dS_u}{dt} = P(t) - E(t) - Perc(t)$$
(58)

$$\frac{dS_s}{dt} = Perc(t) - Q_s(t) \tag{59}$$

If 
$$P = 0: E(t) + T(t) = \min(E_p \frac{S_u}{S_{umax}}, S_u)$$
 (60)

$$Q_f = \max(0, S_u - S_{umax}) \tag{61}$$

$$Perc = \min\left(Pmax\frac{S_u}{S_{umax}}, S_u\right) \tag{62}$$

$$Q_{perc} = \frac{1}{C_s} * Perc(t) \tag{63}$$

$$Q_{storge} = \frac{1}{C_s} * S_s(t) \tag{64}$$

$$Q_s = Q_{storage} + Q_{perc} \tag{65}$$



The ninth model exists of two reservoirs (unsaturated reservoir  $S_u$  and slow runoff reservoir  $S_s$ ) with four parameters. The storage change of  $S_u$  is formulated in eq. (66). Precipitation P will fill up the reservoir until the maximum storage capacity  $S_{U,max}$  is reached. The precipitation that exceeds the storage capacity will form the quick flow  $Q_{uf}$  eq (69). The predicted evaporation (E+T) is assumed to be proportional to the potential rate when there is no rain and sufficient storage eq. (68). The percolation rate *Perr* is assumed to be proportional to  $P_{max}$  when sufficient storage is present eq. (70. The storage change of  $S_s$  is formulated in eq. (67). The reservoir receives *Perr* and  $R_s$  (71). The slow outflow  $Q_s$  eq. (75) and is conceptualized as linear to the storage level of  $S_s$  eq. (72) (74) and depends on the time-scale of groundwater drainage parameter  $C_s$ . The fast flow is conceptualized in eq. (73). The total flow (76) is the sum of  $Q_f$  and  $Q_s$ .

$$\frac{dS_u}{dt} = P(t) - E(t) - Perc(t) - Q_{uf}(t)$$
(66)

$$\frac{dS_s}{dt} = Perc(t) - Q_s(t) \tag{67}$$

$$If P = 0: E(t) + T(t) = \min(E_p \frac{S_u}{S_{umax}}, S_u)$$
(68)

$$Q_{uf} = \max(0, S_u - S_{umax}) \tag{69}$$

$$Perc = \min\left(Pmax\frac{S_u}{S_{umax}}, S_u\right) \tag{70}$$

$$R_s = Q_{uf} * D \tag{71}$$

$$Q_{Ptot} = \frac{1}{C_s} * Perc(t) + \frac{1}{C_s} * R_s$$
(72)

$$Q_f = Q_{uf} * (1 - D) \tag{73}$$

$$Q_{storge} = \frac{1}{C_s} * S_s(t) \tag{74}$$

$$Q_s = Q_{storage} + Q_{Ptot} \tag{75}$$

$$Q_t = Q_s + Q_f \tag{76}$$



### Appendix 2 Evaporation distribution function

In Table 24 the used sunrise and sunset hours are given for the Kervidy-Naizin catchment in France.

| MONTH     | SUNRISE | SUNSET |
|-----------|---------|--------|
| JANUARY   | 9:00    | 18:00  |
| FEBRUARY  | 8:00    | 18:00  |
| MARCH     | 8:00    | 19:00  |
| APRIL     | 8:00    | 21:00  |
| MAY       | 7:00    | 22:00  |
| JUNE      | 6:00    | 22:00  |
| JULY      | 6:00    | 22:00  |
| AUGUST    | 7:00    | 22:00  |
| SEPTEMBER | 8:00    | 21:00  |
| OCTOBER   | 8:00    | 20:00  |
| NOVEMBER  | 8:00    | 18:00  |
| DECEMBER  | 9:00    | 17:00  |

Table 24. Sunrise and sunset time of Naizin (loosely based on <u>https://www.aroundtheworld360.com/sunrise\_sunset/france/naizin/</u>)

For the catchment only daily potential evaporation is available. However the precipitation data is in hourly resolution, the daily potential evaporation data is therefore transformed to hourly data using (Fleming, 1970).

For sunny days is the evaporation index (EVI) according:

 $EVI = 2.78 - (7.73 + A)^{0.5}$ 

$$A = 31.4 \ DHOUR^2 - 33.6 \ DHOUR + 2.23$$

For cloudy days (days with measured precipitation) is the evaporation index (EVI) according:

EVI = 0 for Dhour 0 - 0.06

EVI = 6.75(DHOUR - 0.06) for Dhour 0.061 - 0.26

EVI = 1.35 for Dhour 0.261 - 0.8

$$EVI = 1.35 - 6.75(DHOUR - 0.80)$$
 for Dhour  $0.81 - 1$ 

Time index DHOUR =

 $DHOUR = \frac{time \; from \; sunrise}{daylenth}$ 

Average daylight evaporation rate =

total 20 hour evaporation daylength

Evaporation rate (DHOUR) =

 $EVI* average\ daylight\ evaporation\ rate$ 



# Appendix 3 Parameter values and discharge data synthetic experiment

### Model 1

| Parameter sets:         | Set 1 | Set 2 | Set 3 |
|-------------------------|-------|-------|-------|
| $C_s[b]$                | 20    | 100   | 200   |
| S <sub>U,max</sub> [mm] | 20    | 80    | 100   |

Discharge series:





| Parameter sets:         |       |       |              |  |  |
|-------------------------|-------|-------|--------------|--|--|
|                         | Set 1 | Set 2 | <i>Set 3</i> |  |  |
| $C_{s}[b]$              | 200   | 800   | 500          |  |  |
| S <sub>U,max</sub> [mm] | 100   | 234   | 40           |  |  |
| D [-]                   | 0.8   | 0.96  | 0.2          |  |  |
|                         |       |       |              |  |  |

Discharge series:




# Model 6

| Parameter sets: | Set 1 | Set 2 | Set 3 |
|-----------------|-------|-------|-------|
| $C_s[b]$        | 20    | 50    | 200   |
| $P_{max}$ [mm]  | 0.35  | 0.05  | 0.15  |

Discharge series:



#### Model 7 Parameter

| Parameter sets:  | Set 1 | Set 2 | Set 3 |  |
|------------------|-------|-------|-------|--|
| $C_s[b]$         | 500   | 100   | 200   |  |
| $S_{U,max} [mm]$ | 150   | 110   | 65    |  |
| $P_{mac} [mm/h]$ | 0.1   | 0.07  | 0.15  |  |

Discharge series:



#### Model 9 Parameter

| Parameter sets:   |        |        |        |
|-------------------|--------|--------|--------|
|                   | Set 1  | Set 2  | Set 3  |
| $C_s[b]$          | 470    | 590    | 100    |
| $S_{U,max}$ [mm]  | 280    | 327    | 220    |
| $P_{mac} [mm/h]$  | 0.0031 | 0.0065 | 0.0058 |
| D [-]             | 0.96   | 0.94   | 0.977  |
| Calibration NS    | 0.55   | 0.56   |        |
| Calibration logNS | 0.73   | 0.69   |        |
| Calibration R     | 0.75   | 0.75   |        |

Discharge series:



# **Appendix 4 Method results**

Some of the methods are depending on other parameter values as can be red in 3.1. In this part of the results are the other parameters needed to determine the current parameter of the method assumed to be known and set to the original value. So the input of the methods exists of correct data and correct parameters except for the one which is obtained by the method.

| Model 1                      | Data set 1                                                                                                                                                                         | Data set 2                                              | Data set 3                                                           |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------|
| Original value [h]           | 20                                                                                                                                                                                 | 100                                                     | 200                                                                  |
| Number of recessions         | 23                                                                                                                                                                                 | 31                                                      | 31                                                                   |
| used                         | 25                                                                                                                                                                                 | 51                                                      | 51                                                                   |
| Median [h]                   | 20                                                                                                                                                                                 | 100                                                     | 200                                                                  |
| Std [-]                      | 9.85e-4                                                                                                                                                                            | 4.13e-7                                                 | 1.56e-6                                                              |
| Relative error [%]           | 0                                                                                                                                                                                  | 0                                                       | 0                                                                    |
| Distribution                 | Cs<br>20.4<br>5<br>20.2<br>5<br>20.0<br>19.8<br>19.6                                                                                                                               | Cs<br>100.4<br>5<br>100.2<br>5<br>100.0<br>99.8<br>99.6 | Cs<br>200.4<br>200.2<br>200.0<br>199.8<br>199.6                      |
| Model 2                      | 1                                                                                                                                                                                  | 1                                                       | 1                                                                    |
| Original value [h]           | 20                                                                                                                                                                                 | 100                                                     | 200                                                                  |
| Number of recessions         |                                                                                                                                                                                    |                                                         |                                                                      |
| used                         | 31                                                                                                                                                                                 | 31                                                      | 31                                                                   |
| Median [b]                   | 20                                                                                                                                                                                 | 100                                                     | 200                                                                  |
| Std [-]                      | 0.099                                                                                                                                                                              | 3.55e-7                                                 | 4.43e-8                                                              |
| Relative error [%]           | 0                                                                                                                                                                                  |                                                         |                                                                      |
| Distribution                 | Cs<br>20.4<br>E 20.2<br>20.0<br>19.8<br>19.6                                                                                                                                       | Cs<br>100.4<br>E<br>100.2<br>y<br>99.8<br>99.6<br>      | Cs<br>200.4<br>E<br>200.2<br>200.0<br>199.8<br>199.6                 |
| Model 3                      | 1                                                                                                                                                                                  |                                                         |                                                                      |
| Original value [h]           | 20                                                                                                                                                                                 | 100                                                     | 200                                                                  |
| Number of recessions<br>used | 206                                                                                                                                                                                | 201                                                     | 260                                                                  |
| Median [h]                   | 20                                                                                                                                                                                 | 100                                                     | 200                                                                  |
| Std [-]                      | 0.188                                                                                                                                                                              | 0.001                                                   | 0.23                                                                 |
| Relative error [%]           | 0                                                                                                                                                                                  | 0                                                       | 0                                                                    |
| Distribution                 | Cs           19.95         19.95           19.95         19.85           19.85         19.85           19.70         19.75           19.65         19.65           19.60         1 | Cs<br>100.4<br>5 100.2<br>9 9.8<br>9 9.6<br>i           | 200.5<br>200.4<br>200.3<br>200.2<br>200.1<br>200.0<br>200.1<br>200.0 |

#### $C_s$ fit method results

| 1110UCI 4                               |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Original value [h]                      | 200                                                                                                                                                                   | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Number of recessions                    | 42                                                                                                                                                                    | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| used                                    |                                                                                                                                                                       | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Median [h]                              | 200                                                                                                                                                                   | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Std [-]                                 | 0.0038                                                                                                                                                                | 0.0166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Relative error [%]                      | 0                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Distribution                            | Cs<br>200.012<br>200.010<br>E 200.006<br>200.004<br>200.002<br>200.002<br>200.000<br>i                                                                                | Cs<br>501.75<br>501.50<br>5501.25<br>501.00<br>550.75<br>500.50<br>500.25<br>500.00<br>-8-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Store         Cs           800.14         °           800.12         °           800.10         °           800.06         °           800.04         800.04           800.02         °           800.00         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Model 6                                 | Data set 1                                                                                                                                                            | Data set 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Data set 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Original value [h]                      | 20                                                                                                                                                                    | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Number of recessions                    |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| used                                    | 43                                                                                                                                                                    | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Median [h]                              | 20                                                                                                                                                                    | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Std [-]                                 | 0.1                                                                                                                                                                   | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.47e-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Relative error 1%7                      | 0                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.0000000000000000000000000000000000000 | Cs                                                                                                                                                                    | Cs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Distribution                            | 20.00<br>19.95<br>19.90<br>$\Xi$ 19.85<br>19.80<br>$\Im$ 19.75<br>19.75<br>19.75<br>19.70<br>19.65<br>19.60<br>0<br>19.65<br>19.60<br>19.65<br>19.75                  | 450 °<br>400 350 ·<br>2 300 ·<br>2 250 ·<br>3 220 ·<br>1 50 ·<br>100 ·<br>50 ·<br>i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 200.4<br>$\overline{z}$<br>200.2<br>200.0<br>199.8<br>199.6<br>i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Model 7                                 |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Original value [h]                      | 500                                                                                                                                                                   | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Number of recessions                    | 40                                                                                                                                                                    | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>4</u> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| used                                    | 10                                                                                                                                                                    | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Median [h]                              | 1977                                                                                                                                                                  | 613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Std [-]                                 | 2004                                                                                                                                                                  | 474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Relative error [%]                      | 295                                                                                                                                                                   | 513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Distribution                            | Cs<br>8000<br>E 6000<br>0 4000<br>2000<br>i                                                                                                                           | Cs<br>2000<br>1750<br>21500<br>21250<br>2250<br>2000<br>1750<br>21500<br>21250<br>2000<br>1750<br>2000<br>1750<br>2000<br>1750<br>2000<br>1750<br>2000<br>1750<br>2000<br>1750<br>2000<br>1750<br>2000<br>1750<br>2000<br>1750<br>2000<br>1750<br>1250<br>1000<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1250<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>1500<br>150 | 2500<br>2000<br>500<br>500<br>Cs<br>°<br>°<br>°<br>°<br>°<br>°<br>°<br>°<br>°<br>°<br>°<br>°<br>°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Model 9                                 |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Original value [h]                      | 470                                                                                                                                                                   | 590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Number of recessions                    | 34                                                                                                                                                                    | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| used                                    | Л                                                                                                                                                                     | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Median [h]                              | 620.5                                                                                                                                                                 | 894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Std [-]                                 | 1274                                                                                                                                                                  | 1488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Relative error /%]                      | 32.02                                                                                                                                                                 | 51.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 224.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Distribution                            | 8000         Cs           7000         °           6000         °           4000         °           3000         °           2000         °           1000         ° | Cs<br>6000<br>5000<br>E 4000<br>0 3000<br>2000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>500<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5 |

| Model 7                           | Data set 1                                               | Data set 2                                                                             | Data set 3                                                                                                                                                               |
|-----------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Original value [h]                | 500                                                      | 100                                                                                    | 200                                                                                                                                                                      |
| First estimate C <sub>s</sub> [h] | 1977                                                     | 613                                                                                    | 499                                                                                                                                                                      |
| Median [h]                        | 500.64                                                   | 101.42                                                                                 | 200.66                                                                                                                                                                   |
| Std [-]                           | 13                                                       | 3.19                                                                                   | 1.24                                                                                                                                                                     |
| Relative error [%]                | 0.13                                                     | 1.42                                                                                   | 0.33                                                                                                                                                                     |
| Distribution                      | $ \begin{array}{c}                                     $ | $ \begin{array}{c} Cs \\ 110 \\ \Xi 100 \\ 0 \\ 95 \\ 90 \\ 85 \\ 0 \\ 1 \end{array} $ | Cs           206         °           205         8           203         °           202         °           201         °           201         °           1         i |
| Model 9                           |                                                          |                                                                                        |                                                                                                                                                                          |
| Original value [h]                | 470                                                      | 590                                                                                    | 100                                                                                                                                                                      |
| First estimate C <sub>s</sub> [h] | 620                                                      | 894                                                                                    | 324                                                                                                                                                                      |
| Number of recessions<br>used      | 81                                                       | 46                                                                                     | 51                                                                                                                                                                       |
| Median [h]                        | 470                                                      | 590.1                                                                                  | 101.3                                                                                                                                                                    |
| Std [-]                           | 1.12                                                     | 8.77                                                                                   | 1.74                                                                                                                                                                     |
| Relative error [%]                | 0                                                        | 0.02                                                                                   | 1.3                                                                                                                                                                      |
| Distribution                      | 475<br>474<br>= 473<br>\$ 472<br>471<br>470              | Cs<br>650<br>640<br>500<br>610<br>600<br>590<br>i                                      | Cs<br>°<br>°<br>°<br>°<br>°<br>°<br>°<br>°<br>°<br>°<br>°<br>°<br>°                                                                                                      |

| Model 4                     | Data set 1                                                                                   | Data set 2                                                                     | Data set 3                                                                                       |
|-----------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Original value              | 0.8                                                                                          | 0.96                                                                           | 0.2                                                                                              |
| Number of peak flow<br>used | 103                                                                                          | 60                                                                             | 452                                                                                              |
| Median [-]                  | 0.8                                                                                          | 0.96                                                                           | 0.2                                                                                              |
| Std [-]                     | 0.00459                                                                                      | 0.00458                                                                        | 2.65e-14                                                                                         |
| Relative error [%]          | 0                                                                                            | 0                                                                              | 0                                                                                                |
| Distribution                | D<br>0.80<br>0.79<br>                                                                        | D<br>0.995<br>0.980<br>0.985<br>0.975<br>0.970<br>0.965<br>0.960<br>0.965      | D<br>0.2100<br>0.2075<br>0.2055<br>0.2025<br>0.1975<br>0.1975<br>0.1925<br>0.1925<br>0.1900<br>i |
| Model 9                     |                                                                                              |                                                                                |                                                                                                  |
| Original value              | 0.96                                                                                         | 0.94                                                                           | 0.977                                                                                            |
| Number of peak flow<br>used | 68                                                                                           | 35                                                                             | 33                                                                                               |
| Median [-]                  | 0.961                                                                                        | 0.941                                                                          | 0.9977                                                                                           |
| Std [-]                     | 0.009                                                                                        | 0.006                                                                          | 0.035                                                                                            |
| Relative error [%]          | 0.06                                                                                         | 0.18                                                                           | 0.07                                                                                             |
| Distribution                | D<br>1.000<br>0.995<br>0.990<br>0.985<br>0.975<br>0.975<br>0.970<br>0.965<br>0.960<br>1<br>1 | D<br>0.980<br>0.975<br>0.970<br>0.960<br>0.955<br>0.955<br>0.955<br>0.940<br>i | D<br>0.95<br>0.90<br>0.85<br>0.80<br>0.80                                                        |

### S<sub>U,max</sub> bounds method

| Model 3                                                                                                                                           |                                              |                                              |                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------------------|
| Original value [mm]                                                                                                                               | 20                                           | 80                                           | 100                                         |
| Minimum [mm]                                                                                                                                      | 18                                           | 60                                           | 63                                          |
| Relative error %                                                                                                                                  | -10                                          | -25                                          | -37                                         |
| Maximum [mm]                                                                                                                                      | 31                                           | 136                                          | 183                                         |
| Relative error %                                                                                                                                  | 55                                           | 70                                           | 83                                          |
| Model 4                                                                                                                                           |                                              |                                              |                                             |
| Original value [mm]                                                                                                                               | 100                                          | 235                                          | 40                                          |
| Minimum [mm]                                                                                                                                      | 64                                           | 153                                          | 32                                          |
| Relative error %                                                                                                                                  | -36                                          | -35                                          | -20                                         |
| Maximum [mm]                                                                                                                                      | 183                                          | 288                                          | 60                                          |
| Relative error %                                                                                                                                  | 83                                           | 23                                           | 50                                          |
| Model 7                                                                                                                                           |                                              |                                              |                                             |
| Original value [mm]                                                                                                                               | 150                                          | 110                                          | 65                                          |
| Minimum [mm]                                                                                                                                      | 98                                           | 71                                           | 44                                          |
|                                                                                                                                                   |                                              |                                              |                                             |
| Relative error %                                                                                                                                  | -35                                          | -35                                          | -32                                         |
| Relative error %<br>Maximum [mm]                                                                                                                  | -35<br>207                                   | -35<br>171                                   | -32<br>86                                   |
| Relative error %<br>Maximum [mm]<br>Relative error %                                                                                              | -35<br>207<br>38                             | -35<br>171<br>55                             | -32<br>86<br>32                             |
| Relative error %<br>Maximum [mm]<br>Relative error %<br><b>Model 9</b>                                                                            | -35<br>207<br>38                             | -35<br>171<br>55                             | -32<br>86<br>32                             |
| Relative error %<br>Maximum [mm]<br>Relative error %<br><b>Model 9</b><br>Original value [mm]                                                     | -35<br>207<br>38<br>280                      | -35<br>171<br>55<br>327                      | -32<br>86<br>32<br>220                      |
| Relative error %<br>Maximum [mm]<br>Relative error %<br><b>Model 9</b><br>Original value [mm]<br>Minimum [mm]                                     | -35<br>207<br>38<br>280<br>178               | -35<br>171<br>55<br>327<br>206               | -32<br>86<br>32<br>220<br>146               |
| Relative error %<br>Maximum [mm]<br>Relative error %<br><b>Model 9</b><br>Original value [mm]<br>Minimum [mm]<br>Relative error %                 | -35<br>207<br>38<br>280<br>178<br>-36        | -35<br>171<br>55<br>327<br>206<br>-37        | -32<br>86<br>32<br>220<br>146<br>-34        |
| Relative error %<br>Maximum [mm]<br>Relative error %<br><b>Model 9</b><br>Original value [mm]<br>Minimum [mm]<br>Relative error %<br>Maximum [mm] | -35<br>207<br>38<br>280<br>178<br>-36<br>309 | -35<br>171<br>55<br>327<br>206<br>-37<br>466 | -32<br>86<br>32<br>220<br>146<br>-34<br>276 |

#### S<sub>U,max</sub> inter-peak method *Model 3*

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number calculations       460       364       344         Median $[mm]$ 20       80       99.99         Sid $[:]$ 42       22.8       9.5         Distribution $\frac{1}{100}^{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Original value [mm]                                                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100                                                                                                                                                                                                                                                                                                                                                                                     |
| Median $[mm]$ 20       80       99.99         Std $[:]$ 42       22.8       9.5         Distribution $\begin{bmatrix} 2400\\ \frac{1}{900}\\ $ | Number calculations                                                                                                       | 460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 344                                                                                                                                                                                                                                                                                                                                                                                     |
| Sid [-]       42       22.8       9.5         Distribution $\begin{bmatrix} 42 & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Median [mm]                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99.99                                                                                                                                                                                                                                                                                                                                                                                   |
| Sumax       Sumax <t< td=""><td>Std [-]</td><td>42</td><td>22.8</td><td>9.5</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Std [-]                                                                                                                   | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.5                                                                                                                                                                                                                                                                                                                                                                                     |
| Model 4         Image: state of the s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Distribution                                                                                                              | Sumax<br>°<br>°<br>°<br>°<br>°<br>°<br>°<br>°<br>°<br>°<br>°<br>°<br>°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sumax<br>250<br>200<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sumax<br>275<br>250<br>225<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>200<br>20 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Model 4                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                         |
| Number calculations       43       21       185         Median [mm] $3td [:]$ $100$ $235$ $40$ Std [:] $5ce$ $3.0e-7$ $2.77$ Distribution $\frac{100.05}{100.050}$ $\frac{5umax}{100.050}$ $\frac{235.4}{100.025}$ $\frac{100.05}{100.050}$ $\frac{5umax}{100.050}$ $\frac{100.05}{100.050}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Original value [mm]                                                                                                       | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40                                                                                                                                                                                                                                                                                                                                                                                      |
| Median $[mm]$ 100       235       40         Sid $[-]$ 6.5c-8       3.0c-7       2.77         Distribution       Sumax $\frac{1000}{10000}$ $\frac{1000}{1000}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Number calculations                                                                                                       | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 185                                                                                                                                                                                                                                                                                                                                                                                     |
| Std [-]       6.5e-8       3.0e-7       2.77         Distribution $\begin{bmatrix} 10.09 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75 \\ 100.75$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Median [mm]                                                                                                               | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40                                                                                                                                                                                                                                                                                                                                                                                      |
| Distribution $Sumax$<br>$I = 100.75$<br>$I =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Std [-]                                                                                                                   | 6.5e-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.0e-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.77                                                                                                                                                                                                                                                                                                                                                                                    |
| Model 7Original value $[mm]$ 15011065Number calculations154214Median $[mm]$ 15011067Std [-]6440.526Distribution $\frac{325}{12}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{5}{2}$ Distribution $\frac{325}{12}$ $\frac{3}{2}$ $\frac{5}{2}$ $\frac{5}{2}$ Model 9 $\frac{100}{120}$ $\frac{100}{120}$ $\frac{100}{120}$ Original value $[mm]$ 280327220Number calculations281027Median $[mm]$ 179206146Std [-]123444Distribution $\frac{250}{122}$ $\frac{5}{2}$ $\frac{5}{2}$ $\frac{250}{122}$ $\frac{5}{2}$ $\frac{5}{2}$ $\frac{5}{2}$ $\frac{79}{120}$ 206146Std [-]123444Distribution $\frac{250}{122}$ $\frac{5}{2}$ $\frac{5}{2}$ $\frac{12}{12}$ $\frac{32}{2}$ $\frac{5}{2}$ $\frac{100}{120}$ $\frac{5}{2}$ $\frac{5}{2}$ $\frac{110}{12}$ $\frac{5}{2}$ $\frac{5}{2}$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Distribution                                                                                                              | Sumax<br>100.75<br>E 100.50<br>E 100.25<br>X 100.00<br>99.75<br>99.50<br>99.00<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sumax<br>235.4<br>235.2<br>235.0<br>234.8<br>234.6<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sumax<br>45<br>6<br>6<br>7<br>8<br>9<br>15<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                  |
| Original value $[mm]$ 150       110       65         Number calculations       15       42       14         Median $[mm]$ 150       110       67         Std $[-]$ 64       40.5       26         Distribution $\begin{bmatrix} 325 & 0 & 0 & 0 & 0 \\ 140 & 0 & 0 & 0 & 0 \\ 0 & 275 & 0 & 0 & 0 & 0 \\ 0 & 275 & 0 & 0 & 0 & 0 \\ 0 & 175 & 0 & 0 & 0 & 0 \\ 0 & 175 & 0 & 0 & 0 & 0 \\ 0 & 175 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Model 7                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                         |
| Number calculations<br>Median [mm]154214Median [mm]15011067Std [-]6440.526Distribution $\frac{325}{150}$<br>* 225<br>* 3150 $\frac{250}{100}$<br>* 125<br>* 150 $\frac{5 \text{ sumax}}{125}$<br>* 3100<br>* 3100<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Original value [mm]                                                                                                       | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 65                                                                                                                                                                                                                                                                                                                                                                                      |
| Median [mm]15011067Std [-]6440.526Distribution $\begin{bmatrix} 325 & Sumax \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 175 \\ 150 & 0 \\ 0 & 175 \\ 150 & 0 \\ 0 & 175 \\ 150 & 0 \\ 0 & 175 \\ 150 & 0 \\ 0 & 175 \\ 150 & 0 \\ 0 & 175 \\ 150 & 0 \\ 0 & 175 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Number calculations                                                                                                       | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14                                                                                                                                                                                                                                                                                                                                                                                      |
| Std [-] $10^{\circ}$ $10^{\circ}$ $10^{\circ}$ $10^{\circ}$ $10^{\circ}$ Std [-] $64$ $40.5$ $26$ $Distribution$ $\frac{325}{0}$ $\frac{5}{0}$ $\frac{250}{0}$ $\frac{5}{0}$ $\frac{325}{0}$ $\frac{5}{0}$ $\frac{250}{0}$ $\frac{5}{0}$ $\frac{160}{120}$ $Distribution$ $\frac{325}{0}$ $\frac{5}{0}$ $\frac{250}{0}$ $\frac{5}{0}$ $Model 9$ $$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                           | 1 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                         |
| $Distribution$ $OI$ $OIO$ $Sumax$ $Sumax$ $Distribution$ $\frac{325}{125}$<br>$\frac{3225}{225}$<br>$\frac{3225}{225}$<br>$\frac{3225}{225}$<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Median [mm]                                                                                                               | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 67                                                                                                                                                                                                                                                                                                                                                                                      |
| Model 9         Original value [mm]       280       327       220         Number calculations       28       10       27         Median [mm]       179       206       146         Std [-]       12       34       44         Distribution $\begin{bmatrix} 250 & & & & & & & \\ 0 & & & & & & \\ 120 & & & & & & & \\ 0 & & & & & & & & \\ 0 & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Median [mm]<br>Std [-]                                                                                                    | 150<br>64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110<br>40.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 67<br>26                                                                                                                                                                                                                                                                                                                                                                                |
| Original value $[mm]$ 280       327       220         Number calculations       28       10       27         Median $[mm]$ 179       206       146         Std [-]       12       34       44         Distribution $\begin{bmatrix} 280 & & & & & & & & & & \\ 12 & & & & & & & & & & & & & \\ \hline & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Median [mm]<br>Std [-]<br>Distribution                                                                                    | 150<br>150<br>64<br><u>325</u><br><u>300</u><br><u>6</u><br><u>275</u><br><u>5</u><br><u>250</u><br><u>8</u><br><u>225</u><br><u>8</u><br><u>200</u><br><u>5</u><br><u>150</u><br><u>1</u><br><u>1</u><br><u>1</u><br><u>1</u><br><u>1</u><br><u>1</u><br><u>1</u><br><u>1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 110<br>40.5<br>225<br>225<br>225<br>225<br>225<br>225<br>225<br>225<br>225<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 67<br>26<br>Sumax<br>140<br>120<br>80<br>60<br>                                                                                                                                                                                                                                                                                                                                         |
| Number calculations       28       10       27         Median [mm]       179       206       146         Std [-]       12       34       44         Distribution $\begin{bmatrix} 250 & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Median [mm]<br>Std [-]<br>Distribution<br><b>Model 9</b>                                                                  | 150<br>64<br><u>325</u><br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>2250<br>3175<br>150<br>175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110<br>40.5<br>250<br>225<br>225<br>225<br>225<br>225<br>250<br>225<br>250<br>225<br>250<br>250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 67<br>26<br>Sumax<br>1100<br>80<br>60<br>0<br>1                                                                                                                                                                                                                                                                                                                                         |
| Median [mm]       179       206       146         Std [-]       12       34       44         Distribution $\begin{bmatrix} 250 & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Median [mm]<br>Std [-]<br>Distribution<br><b>Model 9</b><br>Original value [mm]                                           | 150<br>64<br><u>325</u><br><u>300</u><br><u>255</u><br><u>250</u><br><u>300</u><br><u>255</u><br><u>5</u><br><u>150</u><br><u>255</u><br><u>5</u><br><u>150</u><br><u>150</u><br><u>255</u><br><u>5</u><br><u>6</u><br><u>255</u><br><u>5</u><br><u>6</u><br><u>6</u><br><u>6</u><br><u>75</u><br><u>5</u><br><u>6</u><br><u>6</u><br><u>75</u><br><u>5</u><br><u>6</u><br><u>6</u><br><u>75</u><br><u>5</u><br><u>6</u><br><u>6</u><br><u>75</u><br><u>5</u><br><u>75</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u><br><u>155</u> | 110<br>40.5<br><u>250</u><br><u>225</u><br><u>* 150</u><br><u>* 150</u><br><u>* 150</u><br><u>* 5</u><br><u>* 6</u><br><u>* 75</u><br><u>* 8</u><br><u>1 10</u><br><u>* 100</u><br><u>* 100<br/>* 100<br/></u> | 67<br>26<br><u>Sumax</u><br><u>°</u><br>160<br><u>°</u><br>120<br><u>°</u><br>100<br><u>°</u><br>1<br>100<br><u>°</u><br>1<br>220                                                                                                                                                                                                                                                       |
| Std [-]     12     34     44       Distribution $\begin{bmatrix} 250 & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Median [mm]<br>Std [-]<br>Distribution<br><b>Model 9</b><br>Original value [mm]<br>Number calculations                    | 150<br>64<br><u>325</u><br><u>300</u><br><u>8</u> 275<br><u>9</u> 275<br><u>9</u> 200<br><u>9</u> 175<br><u>150</u><br><u>150</u><br><u>150</u><br><u>150</u><br><u>150</u><br><u>150</u><br><u>150</u><br><u>150</u><br><u>280</u><br><u>280</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110<br>40.5<br><u>Sumax</u><br><u>250</u><br><u>6</u><br><u>2250</u><br><u>8</u><br><u>175</u><br><u>8</u><br><u>100</u><br>75<br><u>8</u><br><u>100</u><br>75<br><u>8</u><br><u>100</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 67<br>26<br><u>Sumax</u><br><u>160</u><br><u>*</u><br>120<br>80<br>60<br><u>*</u><br>1<br>220<br>27                                                                                                                                                                                                                                                                                     |
| $Distribution \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Median [mm]<br>Std [-]<br>Distribution<br><b>Model 9</b><br>Original value [mm]<br>Number calculations<br>Median [mm]     | 150<br>150<br>64<br><u>325</u> Sumax<br><u>300</u> °<br><u>c</u> 275<br><u>c</u> 250<br><u>c</u> 275<br><u>c</u> 250<br><u>c</u> 275<br><u>c</u> 250<br><u>c</u> 275<br><u>c</u> 250<br><u>c</u> 275<br><u>c</u> 200<br><u>c</u> 275<br><u>c</u> 200<br><u>c</u> 275<br><u>c</u> 200<br><u>c</u> 280<br>280<br>28<br>179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 110<br>40.5<br><u>250</u><br><u>250</u><br><u>250</u><br><u>250</u><br><u>0</u><br><u>175</u><br><u>0</u><br><u>105</u><br><u>206</u><br><u>327</u><br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67<br>26<br><u>Sumax</u><br><sup>160</sup><br><u>*</u><br>120<br>*<br><u>*</u><br>100<br>*<br><u>*</u><br>100<br>*<br>*<br><u>*</u><br>100<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Median [mm]<br>Std [-]<br>Distribution<br>Model 9<br>Original value [mm]<br>Number calculations<br>Median [mm]<br>Std [-] | 150<br>64<br><u>325</u><br><u>300</u><br><u>0</u><br><u>275</u><br><u>225</u><br><u>225</u><br><u>150</u><br><u>280</u><br>28<br>179<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110<br>40.5<br>250<br>225<br>225<br>0<br>10<br>206<br>34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 67<br>26<br>Sumax<br><sup>160</sup><br><sup>°</sup><br><sup>°</sup><br><sup>°</sup><br><sup>°</sup><br><sup>°</sup><br><sup>°</sup><br><sup>°</sup><br><sup>°</sup><br><sup>°</sup><br><sup>°</sup>                                                                                                                                                                                     |

#### **P**<sub>max</sub> method

| Model 6               | Data set 1                                                                                                                  | Data set 2                                                                                               | Data set 3                                                                           |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Original value [mm/h] | 0.35                                                                                                                        | 0.05                                                                                                     | 0.15                                                                                 |
| 75 percentile [mm/h]  | 0.35                                                                                                                        | 0.05                                                                                                     | 0.15                                                                                 |
| Relative error [%]    | 0                                                                                                                           | 0                                                                                                        | 0                                                                                    |
| Min. distribution     | 0.35                                                                                                                        | 0.05                                                                                                     | 0.15                                                                                 |
| Max. distribution     | 0.35                                                                                                                        | 0.05                                                                                                     | 0.15                                                                                 |
| Distribution          | 3     Pmax       3     -       4     -       5     -       6     -       7     -       8     -       4     -       -3     - | Pmax<br>0.4<br>0.2<br>0.0<br>0.0<br>-0.2<br>-0.4<br>0.2<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 1.5 Pmax<br>1.5 Pmax<br>1.5 0.5 0.5 0.5 0.0 0 0.0 0.0 0.0 0.0 0.0                    |
| Model 7               | 1                                                                                                                           |                                                                                                          |                                                                                      |
| Original value [mm/h] | 0.1                                                                                                                         | 0.07                                                                                                     | 0.15                                                                                 |
| 75 percentile [mm/h]  | 0.096                                                                                                                       | 0.067                                                                                                    | 0.129                                                                                |
| Relative error [%]    | -3.69                                                                                                                       | -0.70                                                                                                    | -13.85                                                                               |
| Min. distribution     | 0.089                                                                                                                       | 0.061                                                                                                    | 0.098                                                                                |
| Max. distribution     | 0.1                                                                                                                         | 0.07                                                                                                     | 0.15                                                                                 |
| Distribution          | Pmax<br>0.100<br>0.098<br>0.096<br>0.094<br>0.094<br>0.092<br>0.090<br>1<br>1                                               | Pmax<br>0.070<br>0.068<br>0.066<br>0.066<br>0.064<br>0.062<br>1<br>i                                     | Pmax<br>0.15<br>0.14<br>0.13<br>x 0.12<br>0.11<br>0.10<br>i                          |
| Model 9               |                                                                                                                             |                                                                                                          |                                                                                      |
| Original value [mm/h] | 0.0031                                                                                                                      | 0.0065                                                                                                   | 0.0058                                                                               |
| 75 percentile [mm/h]  | 0.0028                                                                                                                      | 0.0062                                                                                                   | 0.0056                                                                               |
| Relative error [%]    | -9.68                                                                                                                       | -4.62                                                                                                    | -3.45                                                                                |
| Min. distribution     | 0.0026                                                                                                                      | 0.0057                                                                                                   | 0.0051                                                                               |
| Max. distribution     | 0.00307                                                                                                                     | 0.0065                                                                                                   | 0.0058                                                                               |
| Distribution          | 0.0031<br>E 0.0030<br>E 0.0029<br>A 0.0028<br>E 0.0027<br>0.0026                                                            | Pmax<br>0.0065<br>0.0064<br>0.0062<br>0.0061<br>0.0059<br>0.0059<br>0.0058                               | Pmax<br>0.0058<br>0.0057<br>0.0056<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054 |

# Appendix 5 Results synthetic experiments

Some methods are depending on other parameter values to determine the current parameter. However, the methods contain errors in the parameter estimation. In this paragraph it is possible to see to what extent these errors in the determination of one parameter propagate to other parameters estimations.

#### Model 4

#### $S_{U,max}$ bounds method

|                     | Data set 1 | Data set 2 | Data set 3 |
|---------------------|------------|------------|------------|
| Original value [mm] | 100        | 235        | 40         |
| Minimum [mm]        | 64         | 153        | 32         |
| Relative error      | -36        | -35        | -20        |
| Maximum [mm]        | 183        | 288        | 60         |
| Relative error      | 83         | 23         | 50         |

#### S<sub>U,max</sub> inter-peak method

|                     | Data set 1                                                                                                                                                                                   | Data set 2            | Data set 3                                                                                                                                                      |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Original value [mm] | 100                                                                                                                                                                                          | 235                   | 40                                                                                                                                                              |
| Number calculations | 43                                                                                                                                                                                           | 21                    | 182                                                                                                                                                             |
| Median [mm]         | 100                                                                                                                                                                                          | 235                   | 40                                                                                                                                                              |
| Std [-]             | 0.0024                                                                                                                                                                                       | 0.13                  | 0.0033                                                                                                                                                          |
| Distribution        | 101.00         Sumax           100.75         100.50           월 100.25         -           × 100.00         -           99.75         -           99.25         -           99.00         - | Sumax           235.0 | Sumax<br>40.000<br>E 39.995<br>39.990<br>x 39.985<br>39.985<br>39.985<br>0<br>39.985<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |

#### C<sub>s</sub> fit method

|                              | Data set 1                                                                             | Data set 2                                                                                                 | Data set 3                                                                                                                                                                                          |
|------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Original value [h]           | 200                                                                                    | 500                                                                                                        | 800                                                                                                                                                                                                 |
| Number of<br>recessions used | 42                                                                                     | 66                                                                                                         | 64                                                                                                                                                                                                  |
| Median [h]                   | 200                                                                                    | 800                                                                                                        | 500                                                                                                                                                                                                 |
| Std [-]                      | 0.0038                                                                                 | 0.0166                                                                                                     | 0.24                                                                                                                                                                                                |
| Relative error [%]           | 0                                                                                      | 0                                                                                                          | 0                                                                                                                                                                                                   |
| Distribution                 | Cs<br>200.012 8<br>200.000<br>200.006<br>200.006<br>200.004<br>200.002<br>200.000<br>1 | Cs<br>502.00<br>501.75<br>501.50<br>501.25<br>500.75<br>500.75<br>500.50<br>500.50<br>500.25<br>500.00<br> | Cs           800.14         °           800.12         °           800.10         °           5800.00         °           800.00-         °           800.00-         °           800.00-         ° |

|                             | Data set 1                                         | Data set 2                                                                | Data set 3                                                                       |
|-----------------------------|----------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Original value              | 0.8                                                | 0.96                                                                      | 0.2                                                                              |
| Number of peak flow<br>used | 103                                                | 61                                                                        | 452                                                                              |
| Median [-]                  | 0.8                                                | 0.96                                                                      | 0.2                                                                              |
| Std [-]                     | 0.00459                                            | 0.00458                                                                   | 4.44e-9                                                                          |
| Relative error [%]          | 0                                                  | 0                                                                         | 0                                                                                |
| Distribution                | D<br>0.80<br>0.79<br>C 0.78<br>O 0.77<br>0.76<br>i | D<br>0.995<br>0.985<br>0.985<br>0.986<br>0.975<br>0.970<br>0.965<br>0.960 | D 0.2100 0.2075 0.2050 0.2025 0.2020 0.2020 0.1975 0.1950 0.1950 0.1925 0.1900 i |

#### Model 7 S<sub>U,max</sub> bounds method

|                     | Data set 1 | Data set 2 | Data set 3 |
|---------------------|------------|------------|------------|
| Original value [mm] | 150        | 110        | 65         |
| Minimum [mm]        | 99         | 73         | 46         |
| Relative error      | -34        | -34        | -29        |
| Maximum [mm]        | 210        | 173        | 121        |
| Relative error      | 40         | 57         | 86         |

|                                   | Data set 1                                                                                                                                                                                       | Data set 2                                                 | Data set 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Original value [h]                | 500                                                                                                                                                                                              | 100                                                        | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| First estimate C <sub>s</sub> [h] | 1770                                                                                                                                                                                             | 578                                                        | 488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Results of iterations             | $\begin{array}{c} Cs \\ \hline 1600 \\ \hline 1600 \\ \hline \\ \hline \\ \hline \\ \hline \\ 1200 \\ \hline \\$ | Cs<br>original value<br>estimated value<br>0 1 2 3 4 5 6 7 | $\begin{array}{c c} Cs \\ \hline 500 \\ \hline 450 \\ \hline 9 \\ 350 \\ \hline 9 \\ 300 \\ \hline 0 \\ 250 \\ \hline 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 7 \\ \hline 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ \hline 7 \\ 7 \\$ |
| Number of recessions<br>used      | 24                                                                                                                                                                                               | 11                                                         | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Median [h]<br>After 7 iterations  | 497                                                                                                                                                                                              | 131                                                        | 172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Std [-]                           | 180                                                                                                                                                                                              | 86                                                         | 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Relative error [%]                | -0.42                                                                                                                                                                                            | 31.36                                                      | -13.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Distribution                      | Cs<br>900<br>500<br>500<br>400<br>200<br>300<br>200<br>300<br>300<br>300<br>300<br>3                                                                                                             | Cs<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>50  | Cs<br>700<br>600<br>5500<br>0<br>300<br>200<br>100<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

|                       | Data set 1                                                                                               | Data set 2                                                                        | Data set 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Original value [mm/h] | 0.1                                                                                                      | 0.07                                                                              | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Results of iterations | Pmax<br>estimated value<br>0.22<br>estimated value<br>0.18<br>0.10<br>0 1 2 3 4 5 6 7<br>iteration round | Pmax<br>estimated value<br>0.00<br>0 0.00<br>0 0 1 2 3 4 5 6 7<br>iteration round | Pmax<br>estimated value<br>0.18<br>0.18<br>0.18<br>0.17<br>0.16<br>0.15<br>0.14<br>0.12<br>0.14<br>0.12<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0 |
| 75 percentile [mm/h]  | 0.096                                                                                                    | 0.067                                                                             | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Relative error [%]    | -3.79                                                                                                    | -2.98                                                                             | -16.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Min. distribution     | 0.089                                                                                                    | 0.061                                                                             | 0.096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Max. distribution     | 0.998                                                                                                    | 0.073                                                                             | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Distribution          | Pmax<br>0.100<br>E 0.098<br>0.096<br>0.094<br>0.092<br>0.090<br>1<br>1                                   | Pmax<br>C.072<br>0.072<br>0.068<br>x 0.066<br>0.064<br>0.062<br>1                 | Pmax<br>5 0.14<br>6 0.13<br>0 0.12<br>0 0.11<br>0 0.10<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

#### Model 9 S<sub>U,max</sub> bounds method

|                     | Data set 1 | Data set 2 | Data set 3 |
|---------------------|------------|------------|------------|
| Original value [mm] | 280        | 327        | 220        |
| Minimum [mm]        | 178        | 206        | 146        |
| Relative error      | -36        | -37        | -34        |
| Maximum [mm]        | 309        | 466        | 276        |
| Relative error      | 10         | 43         | 25         |

|                                   | Data set 1                                                                    | Data set 2                                                                                                                   | Data set 3                                                                                                                                                                                       |
|-----------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Original value [h]                | 470                                                                           | 590                                                                                                                          | 100                                                                                                                                                                                              |
| First estimate C <sub>s</sub> [h] | 615                                                                           | 877                                                                                                                          | 618                                                                                                                                                                                              |
| Results of iterations             | Cs<br>620<br>620<br>630<br>630<br>630<br>630<br>630<br>630<br>630<br>63       | Cs<br>estimated value<br>estimated value<br>of t 2 3 4 5 6 7<br>iteration round                                              | $\begin{array}{c} Cs \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ |
| Number of recessions<br>used      | 42                                                                            | 42                                                                                                                           | 54                                                                                                                                                                                               |
| Median [h]<br>After 7 iterations  | 482                                                                           | 593                                                                                                                          | 105                                                                                                                                                                                              |
| Std [-]                           | 385                                                                           | 350                                                                                                                          | 104                                                                                                                                                                                              |
| Relative error [%]                | 2.74                                                                          | 0.6                                                                                                                          | 4.68                                                                                                                                                                                             |
| Distribution                      | Cs<br>3000<br>2500<br>2500<br>2500<br>0<br>1500<br>1000<br>500<br>1<br>1<br>1 | Cs<br>3000<br>2500<br>2500<br>0<br>1500<br>1000<br>500<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | Cs<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>50                                                                                                                                        |

|                                  | Data set 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Data set 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Data set 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Original value                   | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Results of iterations            | D<br>estimated value<br>original value<br>0.964<br>0.962<br>0.962<br>0.960<br>0 1 2 3 4 5 6 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D<br>0.9575<br>0.9525<br>9 0.9525<br>9 0.9525<br>9 0.9500<br>0.9475<br>0.9450<br>0.9450<br>0.9450<br>0.9450<br>0.9450<br>0.9450<br>0.9450<br>0.9450<br>0.9450<br>0.9450<br>0.9525<br>0.9525<br>0.9525<br>0.9525<br>0.9525<br>0.9525<br>0.9525<br>0.9525<br>0.9525<br>0.9525<br>0.9525<br>0.9525<br>0.9525<br>0.9525<br>0.9525<br>0.9525<br>0.9525<br>0.9525<br>0.9525<br>0.9525<br>0.9525<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.945<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9400<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455<br>0.9455 | D<br>estimated value<br>0.9925<br>0.9800<br>0.9875<br>0.9800<br>0.9825<br>0.9800<br>0.9825<br>0.9800<br>0.9825<br>0.9800<br>0.9825<br>0.9800<br>0.9825<br>0.9800<br>0.9825<br>0.9800<br>0.9825<br>0.9800<br>0.9825<br>0.9800<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0.9805<br>0. |
| Number of peak flow<br>used      | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Median [-]<br>After 7 iterations | 0.962                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Std [-]                          | 0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Relative error [%]               | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Distribution                     | D<br>0.995 8<br>0.995 8<br>0.995 0<br>0.995 0<br>0.995 0<br>0.995 0<br>0.995 0<br>0.975 0<br>0.970 0<br>0.955 8<br>0.965 8<br>0.965 8<br>0.960 1<br>0.955 8<br>0.955 0<br>0.955 0 | D<br>0.945-<br>0.944-<br>0.943-<br>0.942-<br>0.941-<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D<br>1.00<br>0.95<br>0.90<br>0.85<br>0.80<br>0.80<br>0.80<br>0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

|                        | Data set 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Data set 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Data set 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Original value [mm/ h] | 0.0031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Results of iterations  | Pmax<br>0.00310<br>0.00305<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.00295<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0.0025<br>0. | Pmax<br>estimated value<br>0.0066<br>0.0064<br>0.0064<br>0.0064<br>0.0064<br>0.0064<br>0.0064<br>0.0064<br>0.0064<br>0.0064<br>0.0064<br>0.0064<br>0.0064<br>0.0064<br>0.0064<br>0.0064<br>0.0064<br>0.0064<br>0.0064<br>0.0064<br>0.0064<br>0.0064<br>0.0064<br>0.0064<br>0.0064<br>0.0064<br>0.0064<br>0.0065<br>0.0064<br>0.0065<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066<br>0.0066 | Pmax<br>estimated value<br>0.00705<br>0.00705<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.00675<br>0.0075<br>0.00675<br>0.0075<br>0.00675<br>0.00675<br>0.00675<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0. |
| 75 percentile [mm/h]   | 0.0028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Relative error [%]     | -8.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -4.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -3.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Min. distribution      | 0.0026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00573                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Max. distribution      | 0.0031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Distribution           | Pmax<br>0.0031<br>0.0030<br>0.0029<br>x 0.0029<br>x 0.0028<br>0.0027<br>0.0026<br>i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pmax<br>0.0065<br>0.0064<br>0.0063<br>0.0061<br>0.0060<br>0.0058<br>0.0058<br>0.0057<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pmax<br>0.0057<br>0.0057<br>0.0055<br>x 0.0053<br>0.0052<br>0.0051<br>0.0053<br>0.0052<br>0.0051<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# Appendix 6 Results data uncertainty

# Precipitation error

 $S_{U,max}$  bounds method

|                     | Data set 1 | Data set 2 | Data set 3 |
|---------------------|------------|------------|------------|
| Original value [mm] | 280        | 327        | 220        |
| Minimum [mm]        | 114        | 140        | 107        |
| Relative error      | -59        | -57        | -51        |
| Maximum [mm]        | 359        | 385        | 352        |
| Relative error      | 28         | 18         | 60         |

|                                   | Data set 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Data set 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Data set 3                                                                                                  |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Original value [h]                | 470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                                         |
| First estimate C <sub>s</sub> [h] | 550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 221                                                                                                         |
| Results of iterations             | $\begin{array}{c c} Cs \\ \hline S50 \\ \hline C \\ \hline S50 \\ \hline S \\ S00 \\ \hline S \\ S \\$ | $\begin{array}{c} Cs \\ \hline 750 \\ \hline 775 \\ \hline 750 \\ \hline 775 \\ \hline 755 \\ \hline $ | Cs<br>200<br>E 100<br>g 140<br>100<br>0 1 2 3 4 5 6 7<br>iteration round                                    |
| Number of recessions<br>used      | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 45                                                                                                          |
| Median [h]<br>After 7 iterations  | 472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 103                                                                                                         |
| Std [-]                           | 525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 303                                                                                                         |
| Relative error [%]                | 0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.74                                                                                                        |
| Distribution                      | CS<br>CS<br>CS<br>CS<br>CS<br>CS<br>CS<br>CS<br>CS<br>CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cs<br>3500<br>3000<br>2000<br>500<br>500<br>500<br>Cs<br>1500<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3000<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2500<br>2000<br>21500<br>31000<br>500<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |

|                                  | Data set 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Data set 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Data set 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Original value                   | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Results of iterations            | D<br>0.966<br>0.965<br>0.964<br>0.965<br>0.964<br>0.964<br>0.964<br>0.964<br>0.964<br>0.964<br>0.965<br>0.964<br>0.965<br>0.964<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.965<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955<br>0.955 | D<br>0.954<br>0.952<br>0.950<br>0.954<br>0.954<br>0.954<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.945<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944<br>0.944 | D<br>0.990<br>0.988<br>0.986<br>0.986<br>0.987<br>0.986<br>0.987<br>0.980<br>0.987<br>0.980<br>0.978<br>0.980<br>0.978<br>0.980<br>0.978<br>0.980<br>0.978<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.980<br>0.000<br>0.980<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000000 |
| Number of peak flow<br>used      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Median [-]<br>After 7 iterations | 0.961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.944                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Std [-]                          | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Relative error [%]               | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Distribution                     | D<br>1.000<br>0.995<br>0.990<br>D 0.985<br>0.980<br>0.975<br>0.970<br>0.975<br>0.970<br>0.965<br>0.960<br>i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D<br>0.99<br>0.98<br>0.97<br>0.96<br>0.95<br>0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D<br>0.95<br>0.90<br>0.85<br>0.85<br>0.80<br>0.75<br>0.70<br>i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

|                       | Data set 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Data set 2                                                                                                        | Data set 3                                                                                  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Original value [mm/h] | 0.0031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0065                                                                                                            | 0.0058                                                                                      |
| Results of iterations | Pmax<br>0.00310<br>0.00309<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.00307<br>0.0030 | Pmax<br>estimated value<br>estimated value<br>correct value<br>0.00636<br>0 1 2 3 4 5 6 7<br>iteration round      | Pmax<br>estimated value<br>correct value<br>g 0.00570<br>k 0.00570<br>c 1 2 3 4 5 6 7       |
| 75 percentile [mm/h]  | 0.0030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0063                                                                                                            | 0.0056                                                                                      |
| Relative error [%]    | -2.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2.29                                                                                                             | -2.04                                                                                       |
| Min. distribution     | 0.0029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0061                                                                                                            | 0.0054                                                                                      |
| Max. distribution     | 0.0031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0065                                                                                                            | 0.0058                                                                                      |
| Distribution          | Pmax<br>0.00308<br>0.00306<br>0.00304<br>x 0.00300<br>0.00298<br>0.00296<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00650<br>Pmax<br>0.00645<br>0.00640<br>0.00630<br>0.00630<br>0.00625<br>0.00625<br>0.00625<br>0.00615<br>1<br>1 | Pmax<br>0.00580<br>0.00575<br>0.00570<br>0.00550<br>0.00555<br>0.00555<br>0.00550<br>1<br>1 |

# Data corruption $S_{U,max}$ bounds method

|                     | Data set 1 | Data set 2 | Data set 3 |
|---------------------|------------|------------|------------|
| Original value [mm] | 280        | 327        | 220        |
| Minimum [mm]        | 183        | 203        | 155        |
| Relative error      | -35        | -38        | -30        |
| Maximum [mm]        | 323        | 508        | 277        |
| Relative error      | 15         | 55         | 26         |

|                                   | Data set 1                                                                                                                                                           | Data set 2                                                                    | Data set 3                                                                                                                             |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Original value [h]                | 470                                                                                                                                                                  | 590                                                                           | 100                                                                                                                                    |
| First estimate C <sub>s</sub> [h] | 629                                                                                                                                                                  | 875                                                                           | 661                                                                                                                                    |
| Results of iterations             | Cs<br>625<br>575<br>555<br>525<br>0 50<br>525<br>0 50<br>525<br>0 1 2 3 4 5 6 7<br>i teration round                                                                  | Cs<br>850<br>750<br>9700<br>9700<br>550<br>0 1 2 3 4 5 6 7<br>iteration round | Cs<br>original value<br>estimated value<br>g<br>g<br>g<br>g<br>g<br>g<br>g<br>g<br>g<br>g<br>g<br>g<br>g<br>g<br>g<br>g<br>g<br>g<br>g |
| Number of recessions<br>used      | 38                                                                                                                                                                   | 38                                                                            | 43                                                                                                                                     |
| Median [h]<br>After 7 iterations  | 460                                                                                                                                                                  | 541                                                                           | 102                                                                                                                                    |
| Std [-]                           | 99                                                                                                                                                                   | 138                                                                           | 80                                                                                                                                     |
| Relative error [%]                | -2.08                                                                                                                                                                | -8.27                                                                         | 2.19                                                                                                                                   |
| Distribution                      | Cs<br>700<br>600<br>500<br>0<br>300<br>200<br>100<br>5<br>5<br>5<br>6<br>6<br>6<br>6<br>6<br>7<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | Cs<br>600<br>500<br>500<br>500<br>500<br>500<br>500<br>500                    | 450<br>400<br>350<br>50<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                               |

|                                  | Data set 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Data set 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Data set 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Original value                   | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Results of iterations            | D<br>0.968<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966 | D<br>0.960<br>0.955<br>0.950<br>0.940<br>0.935<br>0.940<br>0.935<br>0.940<br>0.935<br>0.940<br>0.935<br>0.940<br>0.935<br>0.940<br>0.935<br>0.940<br>0.935<br>0.940<br>0.935<br>0.940<br>0.935<br>0.940<br>0.935<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940<br>0.940 | D<br>0.9950<br>0.9925<br>0.9925<br>0.9925<br>0.9925<br>0.9925<br>0.9925<br>0.9925<br>0.9925<br>0.9925<br>0.9925<br>0.9925<br>0.9925<br>0.9925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.09925<br>0.0975<br>0.0975<br>0.12234556777<br>0.0925<br>0.0975<br>0.0975<br>0.123455677777777777777777777777777777777777 |
| Number of peak flow<br>used      | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Median [-]<br>After 7 iterations | 0.9599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Std [-]                          | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Relative error [%]               | -0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Distribution                     | $\begin{array}{c c} & D \\ \hline 1.00 \\ 0.99 \\ \hline 0.99 \\ \hline 0.098 \\ \hline 0.097 \\ 0.96 \\ \hline 0.95 \\ \hline 8 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D<br>0.95<br>0.90<br>0.85<br>0.80<br>0.75<br>0.70<br>0.65<br>0<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D<br>0.975<br>0.950<br>0.925<br>0.925<br>0.900<br>0.875<br>0.850<br>0.825<br>0.800<br>i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

|                           | Data set 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Data set 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Data set 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Original value<br>[mm/ h] | 0.0031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Results of iterations     | Pmax<br>0.0038<br>0.0037<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034<br>0.0034 | Pmax<br>estimated value<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.013<br>0.012<br>0.013<br>0.012<br>0.013<br>0.013<br>0.012<br>0.013<br>0.012<br>0.013<br>0.013<br>0.012<br>0.013<br>0.012<br>0.013<br>0.012<br>0.013<br>0.012<br>0.013<br>0.012<br>0.013<br>0.012<br>0.012<br>0.012<br>0.013<br>0.012<br>0.012<br>0.013<br>0.012<br>0.013<br>0.012<br>0.013<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.010<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012 | Pmax<br>estimated value<br>original value<br>0.0005<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075<br>0.0075 |
| 75 percentile<br>[mm h]   | 0.0036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Relative error [%]        | 16.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Min. distribution         | 0.0027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Max. distribution         | 0.0046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Distribution              | Ртах<br>0.08<br>0.06<br>0.04<br>0.04<br>0.00<br>0.00<br>1<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pmax<br>0.05<br>0.04<br>0.03<br>xe 0.02<br>0.01<br>i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pmax<br>0.08<br>0.07<br>0.07<br>0.06<br>0.05<br>0.04<br>0.03<br>0.04<br>0.03<br>0.02<br>0.01<br>i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



