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SUMMARY

IDENTIFICATION OF FINITE DIMENSIONAL SPATIOTEMPORAL
SYSTEMS

Spatiotemporal systems are systems whose dynamics depend on time and space and are
commonly found in real life. These systems are mathematically modeled using partial
differential equations and are also known as distributed-parameter systems. Due to
their structure and the high number of variables involved, control and estimation for
this class of systems are very challenging. This thesis addresses two problems related to
spatiotemporal systems: state estimation and system identification.

Monitoring the states of a control system is important to ensure the behavior of
the system is achieving the control objectives. This can be achieved, among others, by
using state observers that estimate the states of the systems regularly. First, we present
a literature review of observer design methods for distributed parameter systems. In
general, the design requires a dimension-reduction approach to implement the observer.
From the dimension reduction, the design approaches can be classified into late and early
lumping. In the late lumping perspective, model reduction is performed at the end of the
observer design. In the early lumping perspective, dimension reduction is applied to the
model of the system. We incorporate both approaches in our literature review.

We also compare distributed Kalman filter methods for distributed-parameter systems
to the centralized Kalman filter. These methods are the parallel information filter, the
distributed information filter, the distributed Kalman filter with consensus filter, and
the distributed Kalman filter with weighted averaging. The comparison is performed
by simulating a set of sensors that can communicate with each other to form a sensor
network. We evaluate the characteristics of the methods, including whether the technique:

¢ Requires centralized estimate computation,
* Requires full connectivity of the sensors,
¢ Requires intensive communication among sensors,

e Computes global estimates.

We find that the resulting estimates depend on the connectivity level of the sensors. When
the sensors are fully connected, the estimates resulting from the distributed Kalman filter
are comparable to those of the centralized Kalman filter.

State observer design requires the model of the systems. This thesis also presents
a system identification method for distributed-parameter systems. The identification
of such systems typically requires spatially dense and regular measurements, followed
by selecting sensors that provide significant measurements to the model to reduce the
model complexity. However, these requirements may be challenging to fulfill. In case
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the sensor locations are irregular and sparse in space, we propose the use of lumped-
parameter system identification. In the proposed method, the identification is applied
for measurements of each sensor in the system using the following regressors: (1) the
measurements at the current sensor, (2) the measurements and system inputs from the
neighboring current sensors.

Applying the proposed method results in coupled linear models representing the
system at the sensor locations. By incorporating measurements from the neighboring
sensors, the obtained models may be unnecessarily complex due to the large number
of regressors. For practical application, the models need simplification. In this case, the
number of regressors is reduced using lasso.

For models with a large number of regressors, we propose a method for reducing the
number of regressors using a tree representation. The tree is a way to list models with
different numbers of regressors. From all possible regressors for the model, the proposed
method builds the tree from the simplest models, i.e., models with one regressor. The
number of regressors in the models is incrementally increased to one or more models
with the best performance. The addition is repeated until the tree contains models
with the desired maximum number of regressors. Using the proposed method, it is also
possible to implement greedy search or exhaustive search. Compared to exhaustive
search, the proposed method delivers a model with comparable performance, but it
requires significantly less computation time.

System identification is typically performed using a complete data set, i.e., for each
input sample, there is an associated output sample available. However, there are cases in
which some output samples are not recorded in the data set, making the identification
data incomplete. This thesis also considers the problem of incomplete data for Takagi-
Sugeno (TS) fuzzy system identification using the product space clustering method.
This method comprises two steps: fuzzy clustering and rules construction. The first
proposed method enables the use of incomplete system identification data to fuzzy c-
means clustering algorithm developed for incomplete classification, which yields different
estimates for a missing sample. This can be achieved by fusing those different values
into a single value. The second proposed method treats missing samples as optimization
variables during the identification process. The optimization is repeated until the change
of all optimization variables is small.

In the main part of this thesis, state estimation problems of linear systems are analyzed.
In the appendix, we examine the nonlinear state estimation problem in traffic applications.
More specifically, we design a TS fuzzy observer for the METANET traffic flow model. It is
already known that TS fuzzy models can accurately approximate many nonlinear systems.
The state observer development starts from developing an affine TS fuzzy representation
of the METANET model using the sector nonlinearity method. The observer gains are
computed using linear matrix inequalities based on the stability conditions for TS fuzzy
systems.
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IDENTIFICATIE VAN EINDIG-DIMENSIONALE SPATIO-TEMPORELE
SYSTEMEN

Spatio-temporele systemen zijn systemen waarvan de evolutie athankelijk is van tijd
en ruimte en die vaak in de praktijk voor komen. Deze systemen kunnen wiskundig
gemodelleerd worden met behulp van partiéle differentiaalvergelijkingen en ze staan
ook bekend als systemen met gedistribueerde parameters. Vanwege hun structuur en
het grote aantal betrokken variabelen zijn de besturing en schatting voor deze klasse van
systemen zeer uitdagend. Dit proefschrift behandelt twee problemen gerelateerd aan
spatio-temporele systemen: toestandsschatting en systeemidentificatie.

Het monitoren van de toestanden van een regelsysteem is belangrijk om ervoor te
zorgen dat het gedrag van het systeem voldoet aan de regeldoelen. Dit kan onder andere
worden bereikt door toestandswaarnemers te gebruiken die regelmatig de toestand van
het systeem schatten. Eerst presenteren we een literatuuronderzoek naar ontwerpmetho-
den voor waarnemers voor systemen met gedistribueerde parameters. Over het algemeen
vereist het ontwerp een dimensiereductie-aanpak om de waarnemer te implementeren.
Vanuit de dimensiereductie kunnen de ontwerpmethoden worden geclassificeerd in late
en vroege lumping. In het late lumping-perspectief wordt modelreductie aan het einde
van het waarnemerontwerp uitgevoerd. In het vroege lumping-perspectief wordt dimen-
siereductie toegepast op het model van het systeem. Beide benaderingen nemen we op
in ons literatuuronderzoek.

We vergelijken ook gedistribueerde Kalman-filtermethoden voor systemen met ge-
distribueerde parameters met het gecentraliseerde Kalman-filter. Deze methoden zijn
het parallelle informatiefilter, het gedistribueerde informatiefilter, het gedistribueerde
Kalman-filter met consensusfilter en het gedistribueerde Kalman-filter met gewogen
middelen. De vergelijking wordt uitgevoerd door een reeks sensoren te simuleren die
met elkaar kunnen communiceren en zo een sensornetwerk vormen. We evalueren de
kenmerken van de methoden, waaronder of de techniek:

» gecentraliseerde schattingberekening vereist,
* volledige connectiviteit van de sensoren vereist,
¢ intensieve communicatie tussen sensoren vereist,

* globale schattingen berekent.

We constateren dat de resulterende schattingen afhangen van het connectiviteitsni-
veau van de sensoren. Wanneer de sensoren volledig zijn verbonden, zijn de schattingen
die voortvloeien uit het gedistribueerde Kalman-filter vergelijkbaar met die van het ge-
centraliseerde Kalman-filter.
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Het ontwerp van toestandswaarnemers vereist een model van de systemen. Dit
proefschrift presenteert ook een methode voor systeemidentificatie voor systemen met
gedistribueerde parameters. De identificatie van dergelijke systemen vereist doorgaans
ruimtelijk dichte en regelmatige metingen, gevolgd door het selecteren van sensoren die
significante metingen leveren aan het model om zo de modelcomplexiteit te verminderen.
Deze vereisten kunnen echter moeilijk te vervullen zijn. In het geval dat de sensorlocaties
onregelmatig en schaars in de ruimte zijn, stellen we het gebruik van systeemidentificatie
met lumped parameters voor. In de voorgestelde methode wordt de identificatie toegepast
op de metingen van elke sensor in het systeem met behulp van de volgende regressoren:
(1) de metingen bij de huidige sensor, (2) de metingen en systeeminvoer van de naburige
huidige sensoren.

Het toepassen van de voorgestelde methode resulteert in gekoppelde lineaire model-
len die het systeem bij de sensorlocaties representeren. Door metingen van de naburige
sensoren op te nemen, kunnen de verkregen modellen onnodig complex zijn vanwege
het grote aantal regressoren. Voor praktische toepassing moeten de modellen worden
vereenvoudigd. In dit geval wordt het aantal regressoren verminderd met behulp van
lasso.

Voor modellen met een groot aantal regressoren stellen we een methode voor om het
aantal regressoren te verminderen met behulp van een boomrepresentatie. De boom is
een manier om modellen met verschillende aantallen regressoren op te sommen. Uit alle
mogelijke regressoren voor het model bouwt de voorgestelde methode de boom van de
eenvoudigste modellen, d.w.z. modellen met één regressor. Het aantal regressoren in
de modellen wordt stapsgewijs verhoogd tot één of meer modellen met de beste presta-
ties. De toevoeging wordt herhaald totdat de boom modellen bevat met het gewenste
maximale aantal regressoren. Met de voorgestelde methode is het ook mogelijk om een
greedy zoekmethode of een uitputtende zoekmethode te implementeren. Vergeleken met
uitputtende zoekmethoden levert de voorgestelde methode een model met vergelijkbare
prestaties, maar vereist het aanzienlijk minder rekentijd.

Systeemidentificatie wordt doorgaans uitgevoerd met behulp van een volledige data-
set, d.w.z. voor elke invoermonster is er een bijbehorend uitvoermonster beschikbaar. Er
zijn echter gevallen waarin sommige uitvoermonsters niet zijn opgenomen in de dataset,
waardoor de identificatiegegevens onvolledig zijn. Dit proefschrift behandelt ook het
probleem van onvolledige gegevens voor Takagi-Sugeno (TS) fuzzy systeemidentifica-
tie met behulp van de productruimte-clustermethode. Deze methode bestaat uit twee
stappen: fuzzy clustering en constructie van regels. De eerste voorgestelde methode
maakt het mogelijk om onvolledige systeemidentificatiegegevens te gebruiken voor een
fuzzy-means clusteringalgoritme dat ontwikkeld is voor onvolledige classificatie, wat
verschillende schattingen oplevert voor een ontbrekend monster. Dit kan worden bereikt
door die verschillende waarden te combineren tot één enkele waarde. De tweede voor-
gestelde methode behandelt ontbrekende monsters als optimalisatievariabelen tijdens
het identificatieproces. De optimalisatie wordt herhaald totdat de verandering van alle
optimalisatievariabelen klein genoeg is.

In het hoofdgedeelte van dit proefschrift worden toestandschattingsproblemen van
lineaire systemen geanalyseerd. In de appendix onderzoeken we het niet-lineaire toe-
standschattingsprobleem in verkeersapplicaties. Meer specifiek ontwerpen we een TS
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fuzzy waarnemer voor het verkeersstroommodel. Het is al bekend dat TS fuzzy modellen
veel niet-lineaire systemen nauwkeurig kunnen benaderen. De ontwikkeling van de toe-
standswaarnemer begint met het ontwikkelen van een affiene TS fuzzy representatie van
het model met behulp van de sector-niet-lineariteitsmethode. De versterkingsfactoren
van de waarnemers worden berekend met behulp van lineaire matrixongelijkheden op
basis van de stabiliteitsvoorwaarden voor TS fuzzy systemen.
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INTRODUCTION

This thesis addresses estimation problems related to distributed-parameter systems, a
class of systems whose states depend on both time and space. These kinds of systems are
called spatiotemporal systems or infinite-dimensional systems. Different from lumped-
parameter systems that are represented by ordinary differential equations, distributed-
parameter systems are modeled by partial differential equations.

Two problems are considered in this thesis: the system identification problem and the
state estimation problem. For the identification problem, the approximation of the model
in space and time is addressed. Model reduction and identification with incomplete data
are also discussed. For the state estimation problem, we survey methods for observer
design and compare distributed Kalman filtering methods.

1.1. BACKGROUND AND MOTIVATION

There are real physical processes that are described by partial differential equations, as
opposed to ordinary differential equations for lumped parameter systems. Common
examples include:

e Computational electromagnetic fields [213];
¢ Elastic deformations of bodies under forces [12];

e Process control [192], e.g., heating and cooling problems, chemical reactors, poly-
mer processing operations.

e Mechanical systems [192], e.g., mechanical structure problems, vehicle structure
design, control of flexible mechanical platforms;

e Resource recovery [192], e.g., identification of underground oil, reservoirs, and
fishery management;

e Environment [192], e.g., environment quality modeling, monitoring, and control;

» Physiological systems [192], e.g., modeling the distribution and effect of drugs and
other chemicals in humans and animals.



2 1. INTRODUCTION

There are two main approaches for simulation, estimation, and control of partial
differential equations [191, 225]. These approaches involve approximating the models by
finite-dimensional representations, i.e., reducing the number of states of the models. The
first approach is called early lumping. In this approach, the model is first approximated
in space and then methods for control and estimation for lumped-parameter systems are
applied. The second approach is called late lumping. In contrast to the early lumping, in
this approach, the design process directly uses partial differential equations.

In the early-lumping approach, the spatial discretization methods that are commonly
used are finite-difference and finite-element methods. The finite-difference method
approximates the derivatives with discrete values and then solves the resulting system
of algebraic equations, while the finite-element method uses a piecewise polynomial
over a mesh of the spatial domain to approximate the solution. A disadvantage of this
approach is that the approximation error is present from the beginning, and the error
is propagated to the end of the design step. In the case of small spatial grid sizes, the
dimension of the discretized models is commonly large, so that techniques for large-scale
systems are required. These techniques incur high computation costs due to the high
model complexity.

In the late-lumping approach, the discretization error only arises in the last step of
the design process. A disadvantage of late lumping is that there is no universal design
strategy that encompasses different types of partial differential equations. In addition, the
computation cost should be carefully considered because of the increasing complexity of
the solution after discretization in the case of real-time implementation.

A problem presented in this thesis is the state estimation for distributed-parameter
systems. Here, we survey the literature on deterministic state estimation methods using
observers. In addition, different distributed Kalman filter algorithms are compared to
assess their performance for estimating distributed-parameter systems. The comparison
is performed by computer simulation experiments.

The advances in the field of computing devices and in the algorithms for large-scale
systems, see, e.g., [92] compensate better the disadvantages of the early-lumping ap-
proach than those of the late-lumping approach. Therefore, the early-lumping approach
is used in this thesis for system identification by using the finite-difference method for
spatial discretization because of the ease of implementation, even for complex spatial
geometry. As the aim of system identification is to have a mathematical representation of
a system, the early-lumping approach pertains to the parametrization of coupled ordinary
differential equations. Depending on the spatial grid size, the number of equations might
be very large, where each model equation is interconnected to other equations based
on the corresponding location in the grid. Writing those equations into a state-space
form model results in a large but sparse state matrix [20]. This leads to computation cost
reduction.

The cases considered in this thesis differ from the ones typically found in the literature.
Commonly, a discretization of a partial differential equation with the finite difference
method makes use of a relatively small and uniform grid, e.g., as in [44, 49, 182]. In
[44, 49, 182], the model is known so that the discretization can be easily computed. While
this assumption might hold in some cases, there are cases in which no partial differential
equation model is available to approximate the process. The only information known is
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that the system’s behavior is spatially dependent. What one can then do is install sensors
to measure the variables of interest and develop a model from those measurements.
This is the case we consider in the thesis. For each measurement location, a black-box
model is identified. To keep the spatial connections, the model takes measurements
from neighboring measurement locations as inputs. These neighbors are not necessarily
the nearest adjacent neighbors. Furthermore, the measurement locations might not be
arranged regularly in the grid.

The use of measurements from neighboring locations as inputs for a black-box model
with different time lags creates a regression model with a large number of parameters.
This might lead to an overfitted model, i.e., a complex model with low prediction perfor-
mance. To avoid overfitting, methods to reduce the regression model complexity have
been presented in the literature. In general, they can be classified into two classes. In
the first class of approaches, a regressor is added or removed based on statistical tests
or performance gains. This includes stepwise regression, backward elimination, and
exhaustive search [72]. The second class of approaches includes methods that are based
on least-squares optimization with regularization, which increasingly penalizes models
with a larger number of parameters. Methods that fall into this class of approaches are
ridge regression [113], least absolute selection and shrinkage [217], and the elastic net
method [252]. These methods have been commonly used, especially in the machine
learning community to simplify regression models [98]. In this Ph.D. thesis, we propose a
method that extends the stepwise regression by a tree representation to perform a search
for the best model with respect to a specified model structure.

Another problem considered in this thesis involves the identification of nonlinear
systems with a Takagi-Sugeno (TS) fuzzy system structure [214]. In this problem, we con-
sider the identification of TS fuzzy systems with incomplete data, namely, with samples
that are not available at random time instants in the data acquisition experiment. These
missing samples might be caused by, e.g., faults in the sensing devices. In general, the
identification of black-box models involves solving a least-squares problem in matrix
form. Missing samples create missing elements in the matrix, which cannot be addressed
by ordinary identification algorithms. As the TS fuzzy system identification considered
here consists of two steps: antecedent parameter estimation by fuzzy clustering and
consequent parameter estimation by least squares, the missing samples affect both steps.

Incomplete data problems are hard to deal with for fuzzy clustering because distance
computation between the cluster centers and an incomplete data vector is not possible,
while the distance is critical information required in the clustering process. In this thesis,
we proposed a method to tackle the problem by extending the algorithm of [5]. The fuzzy
c-means clustering for the regression problem in [5] is enhanced to allow clustering of
system identification data containing missing samples.

For the consequent parameter estimation, methods for parameter estimation of linear
system identification can be applied for incomplete data, e.g., the maximum likelihood
method [97]. Solving the problem typically involves estimating the missing values in
the algorithms. The other proposed method involves an iterative approach between the
identification and the estimation of missing values.
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1.2. OVERVIEW OF THE THESIS

1.2.1. STRUCTURE OF THE THESIS

Two topics are discussed in this thesis: state estimation and system identification. The
state estimation topic is in Chapter 2, Chapter 3, and Appendix A, and the system iden-
tification topic is treated in Chapter 4 to Chapter 6. However, each chapter can be read
independently. The structure of this thesis is shown in Figure 1.1.

1.2.2. OUTLINE AND CONTRIBUTIONS
The work presented in this thesis makes the following contributions to the state of the art:

Chapter 2: A survey on observer design for distributed-parameter systems is pre-
sented. The survey is focused on the design of several classes of linear systems from
the 1970s up to around 2010, including methods for distributed estimation. Some
open problems for observer design are also presented. This chapter is based on
[112].

Chapter 3: Different methods of noncentralized Kalman filtering for distributed-
parameter system applications are considered. The performance of the algorithms
is compared for their ability to estimate the states of the process. In addition, we
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assess their consistency in terms of the estimate variations as the process reaches a
steady state. This chapter is based on [111].

Chapter 4: A system identification method for distributed-parameter systems is
proposed. The assumptions are that the underlying partial-differential-equations
model is unknown and that the locations of actuators and sensors are given and fixed.
The resulting models are black-box models that involve inputs and measurements
from other locations. This chapter is based on [108].

Chapter 5: The models obtained in Chapter 4 are complex and may have a large
number of parameters. This is because the inputs and measurements from other
locations are included in the model. In this chapter, a model reduction method is
proposed that searches for the best black-box model based on a specified perfor-
mance measure by growing a tree representation of the regressors used in the model.
This chapter is based on [109].

Chapter 6: Two methods for TS fuzzy system identification in case of incomplete
identification data are presented in this chapter. The methods are based on product
space clustering, which is a two-step method. The first step performs fuzzy cluster-
ing to estimate antecedent parameters, and the second step solves a least-squares
problem to estimate consequent parameters. The first identification method is
based on completing missing samples by fuzzy clustering so that the data are com-
plete for the antecedent parameter estimation. The second identification method is
an iterative method that alternates the identification step and the missing sample
estimation step until the performance change is below a prespecified value. This
chapter is based on [110].

Appendix A: A TS fuzzy representation of the METANET traffic flow model is derived,
and the corresponding observer design is presented. This chapter is based on [107].






OBSERVERS FOR LINEAR
DISTRIBUTED-PARAMETER
SYSTEMS

2.1. INTRODUCTION

In many real-world problems, the states, inputs, and outputs of a mathematical model of
a system depend on a spatial variable, which is usually a position in a one-dimensional
or multi-dimensional space. These kinds of systems are called distributed-parameter
systems, in contrast to lumped-parameter systems, the variables of which do not depend
on spatial parameters. Examples of distributed-parameter systems can be found in
process control [191], e.g., robotics [151], bioreactors [59], glass feeders [103], biomedical
engineering [40], flexible structures [17], and vibrations [175]. An overview of distributed-
parameter system applications can be found in [192].

For the operation of a control system, the knowledge of the states of the system is
important. In most cases, it is not possible to have full information on the system’s states
due to the fact that not all variables can be measured. Installing all the necessary sensors
may not be physically possible, or the costs may become prohibitive. In such a case,
the states can be estimated using state estimators (observers). One of the basic state
estimators for linear lumped-parameter systems is the Luenberger observer [162]. For
this class of observers, the state estimates are computed by using the model of the system
in combination with the difference between the estimated states and the corresponding
measurements scaled by a gain. This type of observer has attracted much attention and
various design methods have been proposed for both the linear and the nonlinear cases.
For surveys on observer design methods for lumped-parameter systems, see, e.g., [171]
for nonlinear observers and [209] for sliding-mode observers.

Control and state estimator design for distributed-parameter systems is more complex
than in the lumped-parameter case [13, 172, 194, 225]. The presence of spatial variables
imposes limitations to the design, e.g., observation and/or actuation may occur at the
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boundaries only. Research on observer design for distributed-parameter systems has not
been so extensive as in the case of lumped-parameter systems. Furthermore, papers on
distributed-parameter observers are scattered in the literature and, to the author’s best
knowledge, there are no surveys on this topic. This chapter aims at filling this gap. We
survey the techniques that are currently available for the design of observers for first-
order and second-order linear distributed-parameter systems. In addition, we identify
challenges for future research in this field.

2.2. LUMPED-PARAMETER OBSERVER DESIGN

In this section, we briefly recall the observer design problem for lumped-parameter
systems. Consider the following linear time-invariant system:

x(t) = Ax(¥) + Bu(t)

2.1
y(1) = Cx(1)
where x(f) e R"”, u e R, and y(r) € RY are the input, state, and output vector, respectively,
and A, B, C are state, input, and output matrices that have appropriate dimensions. The
dot over a variable indicates the time derivative of the variable. The estimate of the state,
X(1), is obtained as the output of the following observer [83]:

x(1) = AR(0) + Bu(t) + £ (y(1) — Cx(1)) (2.2)

where & € R"*1 is the observer gain. The corresponding observer design problem is to
find & such that the estimation error e(¢) = X(t) — x(¢) asymptotically converges to zero:
lim;_.., e(#) = 0. This can be achieved if the real parts of all the eigenvalues of A—ZC are
negative.

2.3. DISTRIBUTED-PARAMETER SYSTEMS

Distributed-parameter systems are modeled by partial differential equations. The evolu-
tion of the states of a partial differential equation is described in an infinite-dimensional
space. Distributed-parameter systems are therefore called infinite-dimensional systems
[219]. Take the following normalized 1D heat equation' as an example:

0x(z,t) 3 0x(z,t)

ar - oz +u(z, t), z€ (0,1) (2.3a)

0x(0, 1) _ 0x(1,1) _o, 120 2.3b)
0z 0z

X(z,0) = x9(2), z€[0,1] (2.3¢)

where x and u are, respectively, the temperature and the input heat flow, and z is the
spatial variable. The first equation describes the dynamics, while the second and third
equations are the boundary condition and the initial condition, respectively.

1The normalized 1D heat equation describes the temperature distribution over a rod with unit length as a
function of time under the effect of a heat source.
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A partial differential equation like (2.3), when expanded with an output equation, can
also be expressed as an abstract state space equation:

x(t) = Ax(t) + Bu(t) (2.4a)

y(#) = Cx(1), x(0) = xo (2.4b)

It should be noted that A, B, C are operators defined on a normed linear space [56] and

that they have different meanings from those in (2.1). For (2.3) the operator A, B, and C

can be defined by taking the trajectory segment x(, ) = {x(z, ) | 0 < z < 1} as the state and
by identifying the state space & with the normed space L, (0, 1) of functions x(-, f) that

1
are square-integrable on the spatial interval [0, 1] with [|x(-, £)|| = (fOl |x(z, t)lzdz) : [56].
Define the operators A and B on % to be

2
dz?

dh
P A) = {h € L,(0,1) ‘h, iz are absolutely continuous,
z

A= with the domain

ﬂEL(O 1), and dh(O)__dh(l)_O}
dz2 20 dz  dz

B=1

where % (A) is the domain of A, I is the identity, and the function x,(:,0) € L (0, 1) is the
initial state. The output operator C is determined once the sensor locations have been
selected.

The input trajectory u(:, t) and output trajectory y(:, t) are defined similarly to the
state. The abstract model simplifies the representation of the partial differential equation
model by incorporating the boundary condition into the definition of the domain of A,
9 (A).

For observer and controller design, the dimension of the system must be reduced. This
process is called lumping, and there are two kinds of lumping [191, 225]: early lumping
and late lumping. In early lumping, the first step of the design process is to reduce the
system dimensionality using spatial approximation methods, e.g., finite-difference or
finite-element methods. The dimension reduction step results in a finite-dimensional
system of ordinary differential equations that serve as the basis for observer design.
Next, a temporal discretization can be applied to obtain discrete-time system models. In
late lumping, the infinite-dimensional model is used during analysis and design. The
resulting observer has an infinite number of dimensions, which are then lumped for
implementation.

Several order reduction methods can be used for both early and late lumping. They
are the Galerkin method [181], proper orthogonal decomposition [76], and eigenfunction
expansion [210].

The Galerkin method works on the weak form of partial differential equations. The
weak form involves the approximation of the equation by using a weighted function, which
is called a test function, and expressing the equation into the integral form. The purpose
is to reduce the smoothness requirement of the solution, which is not easily fulfilled in
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many real-world applications and is used in finite element software [250]. The solution,
which is in an infinite-dimensional space, is approximated as a linear combination of
weighted basis functions, not necessarily orthogonal, in finite-dimensional subspaces.
The approximation is called the trial function. The Galerkin method uses the same space
for the test and the trial functions. They are typically in different spaces [30].

Proper orthogonal decomposition is applied to obtain reduced-order models to lin-
ear or nonlinear partial differential equations. The method is also known as principal
component analysis or Karhunen-Loeve expansion [14]. The method starts by collecting
a considerable number of measurements at a finite number of spatial locations (states)
into a matrix called the snapshot matrix. It is assumed that each state evolution vector
can be represented by a linear combination of proper orthogonal basis vectors, i.e., a set
of orthonormal basis vectors. Using the singular value decomposition, the decreasing
singular values of the snapshot matrix specify the importance of the vectors concerning
the information present in the data. The importance of the singular values is connected
to the energy in the matrix. The basis vectors containing the most energy are selected in
the reduced-models [11].

Eigenfunction expansion is known as a method to solve a linear homogenous partial
differential equation by separation of variables [93]. The infinite-dimensional state can
be represented into an infinite series of eigenfunctions that corresponds to an infinite set
of ordinary differential equations defining the time evolution of the Fourier coefficients
of the system. For lumping purposes, the series is truncated at a finite number of them to
make it computationally realizable [199].

From all three order reduction methods above, the Galerkin method and the proper or-
thogonal decomposition have wider applications as both are also applicable to nonlinear
systems; see, e.g., [36, 144]. However, the proper orthogonal decomposition relies on the
snapshot matrix that is built from measurements from a large number of spatial points.
This may not be practical for physically large systems because a large number of mea-
surements should be obtained before applying model reduction. For the eigenfunction
expansion method, the application is limited to linear homogenous systems.

2.4. DISTRIBUTED-PARAMETER OBSERVERS

In the literature, there are several approaches to observer design for distributed-parameter
systems. The first approach uses the partial differential equation model (2.3) and makes
use of the available analysis methods for partial differential equations. The second
approach uses the abstract model (2.4) and applies existing analysis tools of functional
analysis.

For the partial differential equation model (2.3) the observers have the following form
[225]:

0x(z,1)  0°%(z,1)

Y 52 Tue 0(2)(%(z, 1) - x(z,0), z€ (0,1) (2.5a)
dx(;zz, 0 lp(2)(R(z, ) — x(2,1), t=0, z€{0,1} (2.5b)

X(z,0) = %9(2), z€]0,1] (2.5¢)
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Figure 2.1: Overview of observer design approaches for linear distributed-parameter systems.

where ¢(z) and ¢y, (z) are the observer gains. Inserting (2.3) and (2.5) into the error equa-
tion:

e(z, 1) = &(z,1) — x(z, 1) (2.6)
results in
Ge;zt, 8 022(;2' 4 ez 0, ze(0,1) (2.72)
aé(gzz’ D to@elzn, t20 z€(0,1) 2.7b)
e(z,0) = eg(2) = %o (2) — x0(2), z€[0,1] (2.7¢)

The observer design problem is to determine the observer gains such that the estimation
error goes to zero:

lim e(z,t) =0, z€[0,1]

t—o0

For model (2.4), the observer has the following form:

x(t) = A%(0) + Bu(t) + 2 (y(1) — Cx(1)) (2.8a)
£(0) = %o (2.8b)

The observer design problem involves finding an observer gain operator & that makes
the estimation error e, the evolution of which is described by

e =(A-ZOe(t)

N 2.9
e(0) = X0 — Xo,
asymptotically tend to zero.
We can now proceed to an overview of observer design methods for distributed-
parameter systems. A taxonomy of observers for linear distributed-parameter systems is
shown in Figure 2.1.
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2.4.1. FINITE-DIMENSIONAL OBSERVERS

Finite-dimensional observers are designed using the early-lumping approach. The lump-
ing results in a system of ODEs, making the observer design methods similar to those of
lumped-parameter systems. However, they often include additional elements, such as
the influence of sensor locations.

LUENBERGER

Orner and Foster [181] have designed an optimal controller for a system modeled by
a partial differential equation. The order of the model is reduced using the Galerkin
approximation. The observer is designed to include the influence of the sensor location
by optimizing the term (A— < C) in (2.2).

Stavroulakis and Sarachik [210] have developed an observer for an optimal control
system in which the eigenfunction expansion is used to reduce the order of the model.
The observer design follows the method proposed in [242], in which it has been shown
that the eigenvalues of observers used for optimal control systems cannot be assigned
arbitrarily, and a systematic design approach has also been given.

An observer that estimates the states of the system and unknown input functions using
output measurements has been introduced by Kobayashi and Hitotsuya [134]. In [134], it
is assumed that the system in Hilbert space #€ is decomposable into an N-dimensional
part:

J'Cf(t) = Af)Cf(t) +PU(L), )Cf(O) = X3,0

and an infinite-dimensional part:
xi(0) = Ay (1) +QU(r), x3(0) = x30

where x; and x; are the state variables of the finite-dimensional part and the infinite-
dimensional part, % and @ are orthogonal projections such that ¢ =P H+QH and Q =
I-%, Ay and A; are A that restricted to the projection, i.e., to € and Q. respectively,
and U () is the unknown input function. An observer for the N-dimensional part has the
following form:

(D) =RHO+Sy(1),  2(0) = x50

for continuous linear operators % and § where y(¢) = Hx;(t) + Hx;(f) is the measure-
ment equation and where R fulfills the observer condition [161]: R = A; - SH. Using
the solution of the dynamic error equation and assuming that the projected system is
observable, the eigenvalues of R can be assigned arbitrarily. The estimated states are
then used to approximate the input function U (#). In [133], Kobayashi has investigated
the same problem but for a discrete-time system and unknown initial states.

ADAPTIVE
For systems with unknown parameters, adaptive observers are used to simultaneously
reconstruct the states and asymptotically identify the parameters of the system. Results
in this topic for lumped-parameter systems can be traced back to the beginning of the
1970s [37].

For the application of adaptive observer for distributed-parameter systems, in [152],
Lilly has extended the result of [139] and shown that a reduced-order model can be used
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to identify parameters and states of an infinite-dimensional system. It is shown that if the
residual energy from the unmodeled dynamics is bounded over a finite interval and the
input is persistently exciting, then the estimation will be bounded. This assumes no input
boundedness or plant stability.

Demetriou and Ito [60] have studied adaptive observers of the following form to
overcome additive perturbations from output feedback:

x() = (A+A)x(¥) + Bu(t)

2.10
(@) = Cx(¥) 210

where the matrices B and C have a finite rank, and A is the additive perturbation from out-
put feedback. Several cases of A, assuming the same input-output locations (collocation),
are presented and for each case, and an adaptation law obtained using the Lyapunov
redesign method [127] is given.

SLIDING-MODE

Sliding-mode observers are a class of observers that apply the sliding-mode principle to
compute the observer gain to get the estimates of the states [71]. Efe [76] has designed a
sliding-mode observer for a reduced-order model obtained by proper orthogonal decom-
position. The stability and convergence of the design are proved using Lyapunov stability
conditions.

SECOND-ORDER
Flexible structures and vibration are examples of distributed-parameter systems that are
modeled as second-order time derivative systems [164] that can be written as [63]:

£(0) + Dx(0) + Fx(1) = Bu(t) (2.11a)
yo=c[x"m i'n] (2.11b)
X0 =xy x(0)=uvp (2.11¢)

where x and x are the position and velocity states respectively, & is the damping operator,
F is the stiffness operator, and C is the output operator.

While (2.11) can be transformed into a standard state equation x(t) = Ax(t) + Bu(t)
and uses a Luenberger observer, to keep the second-order structure, Demetriou [62] has
designed the observer directly in the second-order form instead of designing it from the
first-order representation. The method also modified the output equation by

T . T
yo=[yp® ywwol =[x"®mc i'nc]
where C;, and C, are matrices with suitable dimensions. Then, the observer is designed
using the following form:

JO+DE) +Fx(1) = Bu(t) + Ly (yp(0) — Co k(1)) + Ly (g (1) — Cyx(1)) (2.12)

where £, and &y are the observer gains. This type of observer is called natural observer
[62]. In [62], the abstract representation, along with the stability and convergence analysis,
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are presented. It can be seen that the observer is basically a Luenberger-type observer
with a separate state gain for the velocity and position states. Another second-order
observer method that allows observing systems with a positive semi-definite damping
was proposed in [175].

The solution to (2.11a) can be calculated using eigenfunction expansion:

M
x(1)= ) xi(pi
i=1
where ¢; is the eigenvector corresponding to the ith eigenvalue which corresponds to the
ith mode of the system. Theoretically, M = oo, but M is usually set to a finite number, say
J, since, in practice, actuators and sensors are not able to deal with very high frequencies.
The high-frequency modes ¥.52 741 %i ()¢ are called the residual or spillover [17].

When the frequencies of the modeled system and its residual are sufficiently separated,
the measurement signals can be filtered using low-pass filters to remove high-frequency
components. However, the separation principle does not apply anymore in this case.
Instead of filtering the sensor output, Chait and Radcliffe [39] filtered the estimation error,
and the filter is included in the observer design, which results in an augmented observer.
In [41], an observer has been designed as a part of a vibration control method that is
robust to the spillover.

2.4.2. INFINITE-DIMENSIONAL OBSERVERS
When the observer design uses the late-lumping approach, the resulting observer has an
infinite number of dimensions and it has the form of (2.5) or (2.8).

GENERALIZATION OF THE THEORY FOR OBSERVERS OF FINITE-DIMENSIONAL SYSTEMS
One of the fundamental problems associated with the abstract model (2.4) is the general-
ization of observer theory for finite-dimensional systems to the infinite-dimensional case.
We can see that the observer equations (2.8) are the same as those of finite-dimensional
systems. However, we cannot directly apply the finite-dimensional observer equations to
infinite-dimensional systems because of the different underlying spaces on which the
operators are defined in the infinite-dimensional case [13].

To generalize observer theory to infinite-dimensional systems, Kitamura et al. [130]
introduced conditions for the existence and realizability of the observer (2.8) with no
input. The full-order and reduced-order cases are also considered with two types of
measurements: spatially continuous and spatially discrete.

Gressang and Lamont [89] have investigated another generalization of (2.4), including
a class of linear functional differential equations. In that paper, observability has been
proven as a sufficient condition to design full-order and reduced-order observers. It
was also shown that the eigenvalues of an observer-based state feedback system are the
union of the eigenvalues of the closed-loop system and of the observer. However, the
generalization does not allow the observer to have arbitrary eigenvalues.

Sakawa and Matsushita [196] have investigated feedback stabilization of parabolic par-
tial differential equations and proved that controllability and observability are necessary
and sufficient conditions to stabilize the system. This result is applied to the observation
problem and it can be shown that observability guarantees the observers to converge.
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An extension to the Luenberger observer in relation to sensor locations in distribut-
ed-parameter systems has been studied by El Jai and Amouroux [78]. This study has
shown that sensor configurations have a relation with the detectability of the system and
the existence of the observer. This means that there are certain sensor configurations
that allow the observers to exist and, at the same time, there are also certain sensor
configurations for which the observer does not exist.

Kohne [135] designed an observer for a heated-slab set-up by late lumping. The
parameters of the observer are calculated via eigenfunction expansion of the dynamic
estimation error equation.

LYAPUNOV FUNCTIONAL

Liu and Lapidus [157] have introduced a Lyapunov-based observer design for system (2.4)
under the assumption that there are no inputs. The gain operator & can be obtained by
first defining a Lyapunov functional based on a norm of the estimation error and next
applying the Lyapunov stability condition to this Lyapunov functional.

FUNCTIONAL

A prime application of observers in control systems involves feedback stabilization. A
functional observer design has been proposed by Fujii [84] for feedback stabilization for
boundary control. The resulting observer involves convolution of the input, which results
in an infinite-dimensional observer.

BACK-STEPPING

Another observer design method has been introduced by Smyshlyaev and Krstic [206]
for boundary observation and control® of a class of parabolic partial differential equa-
tions (2.3). The observer is called a backstepping observer because a backstepping-like
transformation? is applied to the estimation error e(z, t). It has been shown that the
observer gain computation in the new coordinates ensures the stability of the observer
in the original coordinates. Miranda et al. [170] have added a sliding-mode term to the
observer to obtain a sliding-mode observer.

The backstepping observer in [206] is also applied to feedback stabilization using
boundary control, where the situations of collocated and anti-collocated? actuator and
sensor are considered. A similar approach is taken in [45] for the sliding-mode control
problem in a non-collocated actuator and sensor case.

RECEDING WINDOWS

Yaz et al. [238] have proposed a type of observer called receding-window observers for
discrete-time infinite-dimensional systems. The observer is in the form (2.8) with the
following observer gain calculation

Z(P(N-1))=AP(N-1)C'(CP(N-1DC" +R)™* (2.13)

2Boundary control and/or observation systems are a class of distributed-parameter systems in which the
actuation and/or observation is performed at the spatial boundary of the system.

3The backstepping-like transformation converts a system into another stable system using an invertible kernel-
based transformation.

4For a 1D heated bar, “anti-collocated” that means the heater is at one end and the sensor is at the other end.
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where N is the receding window length of the observer and where Py is computed by
iterating the following Riccati and gain equations:

£(P(k)) = AP(k)CT (CP()CT +R)™

P(k+1)= (A -2 (P(k))C)P(k)(A ~2(P)O)T +2(P())RZ(P(K) +Q &1
for discrete-time instant k =0,..., N — 1, with Py, R, and Q positive-definite operators. In
[238], the convergence of the observer and its bounded noise rejection and robustness
to parameter perturbation properties are proved. We can see from (2.13) and (2.14) that
the observer is similar to the Kalman filter (with R and Q the covariance matrices of
respectively the measurement noise and the process noise).

ADAPTIVE

Curtain et al. [57] have extended the results of [60] for the non-collocated case. Refer-
ence [58] addresses the case of time-varying input parameters. The adaptation laws are
obtained by using the Lyapunov redesign method [127].

Demetriou et al. [61] have proposed an adaptive fault detection observer to monitor
and accommodate actuator faults. When the actuator fault occurs, the observer generates
a non-zero residual signal. After the fault is detected, the residual signal is also used to
automatically reconfigure the system.

CONSENSUS
Arecent development in state estimation for distributed-parameter systems is distributed
estimation using sensor networks as the measurement system. Sensor networks consist
of several sensor nodes, where each node has embedded computation, communication,
and power modules. A node acts as a local observer that computes estimates using its
own model and measurements. The communication module allows the sensor nodes to
share information with other nodes in the network within a specified communication
topology.

Demetriou [64] has proposed a distributed Luenberger observer using a sensor net-
work with the consensus method [179]. Each node I in the network has a model similar
to (2.4) but with a modified measurement equation to reflect the sensor node index:

yi(t) = Cix; (1) (2.15)

for I € {1,..., N} where N is the number of nodes in the network. For each node I, the
following local observer is applied:

J?i(t)=Al~fc(t)+Bu(t)+G,-yi(t) (2.16)

where G; denotes the observer gain and it is such that A; = A— G;C; generates a stable
semigroup. The distributed observer with consensus for node i can be written as

N
xi(0) = A X(0) + Bu(t) + G; y; (1) + a; ®; Z (%; () = %: (1)) (2.17)
j=Li#j
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where ®; is the consensus operator gain and «a; is an additional weighting term. In [64],
an adaptive consensus observer has also been introduced in which the consensus term
a;®; is made adaptive.

Consensus filters are also proposed in [63] for second-order distributed-parameter sys-
tems based on Luenberger-type observers, resulting in a filter called natural Luenberger
consensus filter.

2.5. SUMMARY
We have presented a review of state observer design methods for first-order and second-
order linear distributed-parameter systems. We have addressed linear observers for
infinite-dimensional and finite-dimensional systems. In addition, adaptive methods and
distributed state estimation methods for sensor networks have been presented.

The observer design problem in distributed-parameter systems is more complex than
for lumped-parameter systems due to its infinite dimensionality. At the same time, this
field is less explored compared to that of lumped-parameter systems.







NON-CENTRALIZED KALMAN
FILTER COMPARISON FOR
DISTRIBUTED-PARAMETER
SYSTEMS

3.1. INTRODUCTION

Current advances in sensor technology enable the design of small-scale, low-cost sens-
ing devices (sensor nodes) endowed with embedded computing and communication
capabilities. A number of these sensor nodes can be connected to each other following a
particular topology called a sensor network. There are numerous applications of sensor
networks, for instance, in the military, health care, or agriculture (3, 156]. An example
of the use of sensor networks in the control field is networked control [105]. The use of
wireless sensors for feedback control has also been reported [18].

An attractive feature of sensor networks is their ability to perform sensing and state es-
timation in environments with spatially distributed parameters. In this case, sensor nodes
are placed at specified locations surrounding an environment to collect measurements
that serve as inputs to the filter. To this end, the noncentralized variants of the Kalman
filter can be used. Kalman filters are a class of estimators that minimize the variance of
the estimation error.

One approach of centralized estimation for using the measurements is by collecting
them into a specialized subsystem called a central processor, in which the measurements
are used to produce global estimates. In this case, the sensor nodes do not have an active
role in computing the estimates and act purely as a measurement device. Consequently,
the system model is known only by the central processor. This approach is called the
centralized Kalman filter.

As opposed to the centralized approach, the estimate computations can be performed

19
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by the nodes, where local estimates are computed. The local estimates can subsequently
be transmitted to a central processor that computes global estimates. Alternatively, local
estimates can be communicated between two or more nodes using an algorithm to get
the estimates of the global state. In this case, the sensor nodes have an active role in
estimating the states by decentralization of estimate computations. This results in a
decentralized approach to the Kalman filter. In this chapter, the decentralized approach
encompasses methods that do not use a central processor to fuse the estimates and
the corresponding estimate error covariance matrix from the connected sensors. The
decentralization may employ a distributed algorithm' so that the method is called the
distributed Kalman filter. For instance, the consensus Kalman filter [177] applies the
consensus algorithm in computer science [53].

In the literature, several decentralized and distributed Kalman filter methods have
been proposed. The most representative methods are the parallel information filter [208],
the distributed information filter [190], the distributed Kalman filter with consensus
filter [177], and the distributed Kalman filter with weighted averaging [7]. This chapter
compares the mentioned methods to estimate the states of a linear distributed parameter
system that has been discretized spatially and temporally, resulting in a linear discrete-
time large-scale system. Note that the above list of methods is incomplete and does not
include some recent methods like distributed Kalman filter with diffusion strategies [38].
However, that method closely resembles the distributed Kalman filter with consensus
filter [177] and may thus have a similar performance.

A comparison of the non-centralized Kalman filters for wireless sensor networks has
been made in [201], which focused on communication-related performance. In that
paper, the comparison involved the performance of decentralized Kalman filters with
and without data loss. The paper [201] also discussed the required communication for
each method and concluded that the performance of the distributed Kalman filter with
weighted averaging is the highest with the lowest communication requirements, but that
on the other hand, that method also suffers the most from data loss. In the current chapter,
our interest is the performance of the filters related to large-scale linear systems derived
from the discretization of distributed parameter systems. We evaluate the performance of
a system with a high number of states, not only in terms of the evolution of the states over
time and space but also in terms of errors in the steady-state estimation.

3.2. KALMAN FILTER AND ITS DECENTRALIZED VARIANTS

The Kalman filter is an optimal stochastic discrete-time state estimator developed by
Kalman [124]. Since then, the theory and applications of Kalman filters have been treated
in different journal papers and books. There are several ways to derive the Kalman filter
that can be found in standard textbooks on optimal estimation, see, e.g., [8, 32, 202].
This section briefly describes the Kalman filter and its decentralized variants based on
(7,177,190, 202, 208].

Consider the following process modeled as a discrete-time linear system with a mea-

IThe distributed algorithm communicates estimates among nodes with specified rules, e.g., based on the
topology of the network. Estimates from the neighbors are then fused with the local estimates.
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surement equation:

x(k)=Fx(k-1)+Guk-1)+w(k-1) (3.1a)
z(k) = Hx(k) + v(k) (3.1b)

where x(k) € R" is the state vector, F € R”*" the state matrix, G € R"*™ the input matrix,
u(k) € R™ the input vector, z(k) € RP the measurement vector, H € R”*" the measurement
matrix, w(k) the process noise vector, and v(k) the measurement noise vector. The
process and measurement noise are assumed to be zero-mean Gaussian white noise
signals that have the following properties:

Ewki=0 Ewhw }=Q
Ew()}=0 E{v(bv'(}=R

where E{} is the expectation operator, the superscript T denotes matrix transpose opera-
tion, and Q and R are, respectively, the covariance matrix of the process and measurement
noise.

3.2.1. CENTRALIZED KALMAN FILTER

The Kalman filter equations consist of two parts of equations: time update and measure-
ment update. The following time update equations compute the estimates at time step k
based on the process model and the previous estimates to get a priori estimates:

F(k)=Fx (k-1 +Gu(k-1)

P (k)=FP"(k—-1)F' +Q 52
where P(k) is the estimation error covariance matrix, and the superscripts “—” and “+”
respectively indicate the a priori and a posteriori estimates and the error covariance
matrix. This step is also referred to as the prediction step. Once the measurements z(k)
at time step k are available, the measurement update corrects a priori estimates to get a
posteriori estimates:

K(k)=P (k)H'[HP (k)H' +R]™*
(k) = 27 (k) + K [2(k) — HE™ (K)] 3.3)

P*() =[P~ (k) +H R'H]"

where K (k) is the Kalman gain matrix. The initial conditions are ¥ (0) = xp and P* (0) = Py,
where xo and Py are, respectively, the initial guesses of the estimate and estimation error
covariance matrix.

The Kalman filter in (3.2) and (3.3) is called centralized Kalman filter because the
measurement vectors are treated in one measurement matrix. The estimates from the
centralized Kalman filter are called global estimates.

Besides the form in (3.2)—(3.3), another form of the Kalman filter uses the inverse of
the estimation error covariance matrix, called information matrix, denoted by ¥ and
defined as . = P~1. The filter that uses this information matrix is called the information
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filter. The a priori estimate equations of the information filter are:

(k) =F% (k-1 +Gu(k-1)
_ .\ RN (3.4)
I W =(F(s*k-1)"F +Q)

The measurement update computations are the following:

As(k)= H Rz (k)
k) =1 (k) + As(k) (3.5)
Ik =9 (k)+A9

where As is the information vector and the information matrix update A.¥ is defined as:
AY=H'R'H (3.6)

The information filter avoids the need for matrix inverse computation, which is preferably
avoided from a numerical point of view.

In applying the decentralized Kalman filter for distributed parameter systems with
sensor networks, each sensor node i can compute its own estimate X; (k) and the cor-
responding estimation error covariance matrix P;(k). The estimate and/or the error
covariance matrix are communicated to other nodes based on the network topology.
In our case, consider a sensor network consisting of N sensor nodes. The nodes are
connected to each other, following a specified network topology. In the network, nodes i
and j are neighbors if there is a direct link between them. Let ./; be the set of neighbors
of node i, including node i itself. We assume that each node has an identical process
model (3.1a) and the corresponding process noise Q, but a different measurement matrix.
Because each node measures one or more state components of the system, and no state
component is measured by two or more nodes, we can assume that each local measure-
ment matrix H; is one block row of the global measurement matrix H. In other words, the
global measurement matrix H is the stacked version of all local measurement matrices
Hi: -

H=[H] - H])
Thus, the local measurement in node i is expressed as
zi(k) = H;x; (k) + v; (k)

It is assumed that the measurement noise between nodes i and j is uncorrelated, or
Rij =[E{ui(k)u]T(k)} =0fori#j.

In this chapter, the measurement updates and the resulting estimates in each node
are called local updates and local estimates, respectively.

3.2.2. PARALLEL INFORMATION FILTER (PIF)
The parallel information filter computes local an a posteriori estimate X} (k) € R" and the
corresponding estimation error covariance matrix Plfr in parallel in each node.

Then fc;r(k) and P;r(k) are sent to a central processor in which the estimates are
combined to get the global estimate X(k) [208]. The time and measurement update
equations for node i are
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e Local prediction:
%7 (k)=F&f (k—1)+Gu(k-1)

3.7
P; (k)=FP; (k-1F"+Q N

¢ Local measurement update:

Ki(k)=P; (WH] R;"
& ) = &7 (k) + K; (k) [z (k) — H; 27 (k)] 3.8)
(Pf ()" = (P; (k) "+ H R ' H;

In the central processor, the estimates from all nodes are combined into one estimate.
It is desired that the estimate is as certain as possible, or in other words, an estimate
with a low uncertainty is preferable. In the case of estimates and uncertainties from
N measurements, where the measurement of node i is independent of that of node j
for i # j, estimates with lower uncertainty should be given larger weights. With such
consideration, the weight for each measurement can be calculated as [208]

(r{Pro))™

w;(k) = —
TN (efpr o))

Once the weights have been determined, the global a posteriori estimate and its estimate
error covariance matrix can be expressed as follows

N
Pl =Y wik) (PF (k)™ (3.9)
i=1

N
2(k) = Y wi (P (P} (k)™ %7 (k) (3.9b)
i=1

This method relies on the central processor to get the global estimates. Hence, it is
necessary that all sensor nodes are neighbors of the central processor to ensure that all
local measurements can be combined into global ones.

3.2.3. DISTRIBUTED INFORMATION FILTER (DIF)
The distributed information filter was proposed by Rao and Durrant-Whyte [190] to
eliminate the need for a central processor in the decentralized Kalman filter. Using a
central processor creates a hierarchy in the network. Furthermore, the network is highly
dependent on the central processor. Eliminating the central processor ensures that
all nodes are at the same level, and moreover, it removes the dependency on a single
component.

The key idea of this method is expressed in the relation between information vectors
and matrix updates, respectively, for the global estimates of the centralized method and
local estimates in each node i. This is formulated as the sum of individual updates from
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neighboring nodes:
N

As(k)=H'"R'z(k)=)_ HR; 'z (k)
i=1
T p-1 T el
AY=H'R H:ZIH,. R 'H;
i=
Local updates are computed in each node and sent to the neighboring nodes. Node i adds
all information updates from its neighbors to its own updates and then computes the
updated estimates and the estimation error covariance matrix. The estimates obtained
after the communication of the nodes are called communication update estimates.
The prediction and measurement update equations for node i are

(3.10)

¢ Local prediction:
%7 (k) =F% (k—1)+Gu(k-1)

P; (k)=FP/(k-1DF' +Q
¢ Information vector update:
Asi(k) = H R; ' z; (k)

e Communication update:

&7 (k)= Py (k)| (P7 (k) 7' 57 (k) + Y. Asj(h)

JEN;
(PN =@ (k)T + Y A
JeNi
for
A% =H R 'H; 3.11)

the information matrix update for node i.

This method decentralizes the computation of global estimates to every node without
the need for a central processor. If all nodes are fully connected, then the neighbors of
the node i are all nodes across the network. This shows that the performance of the DIF
method is equal to that of the centralized Kalman filter for the fully connected node, as
shown in (3.10). Note that we include inputs in (3.2.3), which is not considered in [190].

3.2.4. DISTRIBUTED KALMAN FILTER WITH CONSENSUS FILTER (DKFCF)
The distributed Kalman filter with consensus filter has been proposed by Olfati-Saber
[177]. The main feature of this method is the use of a consensus algorithm to obtain
the communication update estimates. The consensus algorithm at node i is performed
iteratively as follows: node i receives estimates from its neighbors for each consensus
step. Node i subtracts its estimate from the estimate of each of its neighbors, weights the
result with a factor y, and adds the obtained value to its estimate.

Another feature of this method is the availability of stability analysis. Olfati-Saber et al.
in [179] presented a stability analysis of the consensus algorithm using algebraic graph
theory.

The prediction and measurement update equations for node i are:
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e Local prediction:
X7 (k)=F%(k-1)+Gu(k-1)

P; (k)=FP;(k-1)F" +Q
¢ Information vector update:
Asi(k) = H] R; ' z;(k)
* Measurement update:

(PFUN™" = (P; (k)™ + ) AY;
JEN;

%5, (k) = Pf (k) [(P;(k))‘lfc;(k) + ) Asj(k)]
JeNi

where %/ (k) is the a posteriori estimate for node i. This estimate will be later sent
to its neighbors at the consensus step.

¢ Consensus step:
) =x2,00+y ¥ (200 -%2,0) (3.12)
jeNi
Up to the consensus step, this method is identical to the distributed information filter.

In other words, DKFCF extends DIF by iterating local estimate exchange to reach the
consensus of estimate; meaning that all nodes have the same value of estimates.

3.2.5. DISTRIBUTED KALMAN FILTER WITH WEIGHTED AVERAGING (DK-

FWA)
The distributed Kalman filter with weighted averaging has been proposed in [6, 7]. A fea-
ture of this method is the reduction of computation and communication load compared
to DKFCE The reduction is because the nodes only compute and send the estimates
without the error estimation covariance matrix.

Unlike the previous methods, this method consists of two parts: an online and an
offline part. The online part computes and communicates estimates. In the offline part,
Kalman gains and weights are computed for each node. In this method, the Kalman gain
and the weight W are computed once and used during the entire operation.

This method works as follows: node i receives estimates from its neighbors and
weights them with a weight matrix W. Then, the weighted estimates are added to the
estimate of node i.

The online steps of the distributed Kalman filter with weighted averaging at node i
are the following:

* Prediction:
() = F (k-1 +Gu(k-1)

where fcll (k) denotes the local estimates at node i

e Measurement update:

(k) = 27 (k) + Ky [2(k) — Hi 2 (k)] (3.13)
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* Information exchange:
2o =Y, Wik (3.14)
JeNi
where W;; is the weight of the estimate of node j that is used to compute the global
estimates in node i. The value of W;; is zero if node i is not connected to node j.

The off-line computations are performed to minimize the trace of the estimation error
covariance matrix P* (k), which is defined as:

P (k) = E{(x(k) — &+ (k) (x(k) — £+ (k) T}

for
x =[xt - xL)]"
.
o= [(Erw)T o (@)
Using (3.14) and
Y Wi=1I (3.15)
JEN;

To get unbiased estimates, we obtain the following relation

P (k) = W(x(k) — 2 (k) (x(k) — 2 (k) TW T
=wP*(w’ (3.16)

The covariance P!* (k) in the last equation can be written as

Pri=(1 Ko K)' (3.17)

T
I _ I 0 0
NN EAP RN

K =blockdiag(Ky, ..., Ky)
H = blockdiag(Hj, ..., Hy)

with
and

It should be noted that for this method, it is possible to have a non-diagonal measurement
covariance matrix R in contrast to DIF and DKFCF that require R to be a diagonal matrix.

To get an optimal filter, finding the values of W and K that minimize (3.17) is required.
Instead of direct minimization of (3.17), the Kalman gain K and weight W are computed
off-line by solving the following optimization problem:

. > CANI o
tr<W(I K)®(I K) W 3.18
rlglvrvlr{ (r Ko K 'wT (3.18)

s.t. W;; =0if node i and j are not connected and (3.15)

The obtained gain K and weight W are employed in the on-line computation of the states.
Details on how to solve the optimization problem (3.18) are given in [7].
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Table 3.1: Comparison of the characteristics of the different Kalman filters

CKF PIF DIF DKFCF DKFWA

Central processing  yes yes no no no
Connectivity full full full partial partial
Communication single single single multi single
Global estimates yes yes no no no

In short, this method is a consensus filter but with only one information exchange. The
motivation for the communication limitation is that communication in sensor networks
draws more power than computation.

A comparison of the characteristics of the Kalman filter methods presented in this
section is shown in Table 3.1. Concerning communication requirements, the DKFCF is
the only one that needs iterations of estimate exchange to achieve estimate consensus
among the nodes. This is denoted by the term ‘multi’ in the table. The other methods
perform a single communication of estimates for each estimation step.

3.3. BENCHMARK: 1D CONDUCTION PROCESS MODEL

The Kalman filters presented in the preceding section are now simulated to estimate
the states of a heat conduction process of a rod without input, i,e., the cooling process
from an initial temperature. This process is an example of a distributed parameter
system that is modeled as a first-order time-derivative and second-order spatial derivative
PDE with specified boundary conditions. Therefore, the conduction process has the
elements needed to compare different decentralized Kalman filter methods for distributed
parameter systems.

Consider a rod with length L and cross-section radius r. The material’s density, heat
capacity, and thermal conductivity are denoted by p, Cp, and «, respectively. Using energy
balance equations [121], we can get the following partial differential equation

2
0Tzn _ x |FT@D] \ copyop, vy (3.192)
ot pCp | 022
T(z0) = Ty (), Vze%, Vit (3.19b)
T(z,00=Ty, Vze% (3.19¢)

where T is the temperature of the rod, 7, is the temperature of the environment, h
is the heat transfer coefficient of the surface of the rod, x is the spatial coordinate of
length, P, = 271 is the perimeter of the rod, and At = 772 the area of the longitudinal
section. Equations (3.19b) and (3.19c¢) are the boundary condition and initial condition,
respectively. The rod’s parameters are listed in Table 3.2.

The simulation of the Kalman filter requires discretization of (3.19a) in space and time.
For the spatial discretization, the central approximation of the second-order derivative is
employed:

0%u _ Uin —2Uj+ Ui

2 (A2 (3.20)
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where A, is the spatial discretization interval. The spatial discretization results in a grid
as shown in Figure 3.1. In the figure, the grid index increases from left to right. The
distance between consecutive grid points is A. Applying (3.20) to (3.19a) and simplifying
the results with respect to the grid point index, (3.19a) becomes an ordinary partial
differential equation as follows:

daT;(1)
dt

= CyxTi-1(8) = 2Cx + Cpen) T; (1) + Cx Ti41(£) + Cpen Te (3.21)

with 7 the node index that corresponds to the grid point index and

C. = K
= —
pCpAi
hP
Cpen = -
pCpAr

For a grid with n grid points on the rod, we have n ODEs from (3.21), each of which
corresponds to a grid point. These ODEs can be expressed as a state space equation

x=Ax+Bu
with
x=[1 o 1"
u=[T. )"

The environment temperature T, is 25°C = 298.15K. The state equation is discretized
temporally by using the forward Euler approximation to get a discrete-time linear equa-
tion.

A number of N sensor nodes are located on the specified grid points and numbered
sequentially from left to right. Each node j measures the specific temperature 7; so that
the dimension of the measurement matrix H is N x n. Each row of H corresponds to a
measurement of node i, i.e., the i-th entry is 1 and the other entries are zero.

We will perform two simulations to compare the decentralized Kalman filter meth-
ods. The first simulation observes the estimation error performance of the decentralized
methods. The goal of the second simulation is to observe the consistency of the decen-
tralized methods. These two simulations are sufficient to assess the performance of the
decentralized Kalman filters.

.

1

|
J]ooo []
T

i i
3 n—2 n—1 n

N

Figure 3.1: Numbering of the grid points on the rod
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Table 3.2: Rod parameters

Parameters Values Units

0 8700 kgm™3

K 400 Wm1K!
Cp 385  Jkg'K!
h 10 WmK!
T, 298.15 K

Table 3.3: Simulation parameters

Parameters Values Units

L 4 m
n 201 -
To 50 K
X0 80 -
Ty 298.15 K
o2 0.04 -
N 3 -

3.3.1. SIMULATION 1: ESTIMATION ERROR PERFORMANCE

In this simulation, the estimation error performance of the decentralized Kalman filters
is compared with that of the centralized one. The simulation parameters are shown in
Table 3.3. The simulation final time is 5000 s, and the sensor node locations are at grid
points 2, 104, and 200. In addition, the consensus parameter for the DKFCEF is selected
small y = 0.05 [178]. All sensor nodes are fully connected.

The simulation results are shown in Figure 3.2, where “pt.” in the legend stands for
“point”. The first plot shows the estimates from the CKF in which the true states are plotted
in thick grey lines. The other plots, (b)-(e), display the difference between the CKF and the
decentralized methods for Aggt = Xckf— Xq. The subscript d in %4 stands for “decentralized”.
The plotted estimates of the CKF show that the estimates’ convergence rate depends on
the sensor’s spatial distance. For instance, the estimates of grid point 2 converge faster
than those of grid points 30 and 75. However, the estimates of grid point 2 are noisy due
to the measurement noise.

When comparing the decentralized methods to the CKE Figure 3.2 shows that the
performance of the DIF and DKFCF are identical. Furthermore, both methods have
the slightest difference to the CKE If the sensor nodes are fully connected, as in this
simulation, the DKFCF is identical to the DIF but with an additional consensus step. The
consensus step in the DKFCF costs more communication but does not deliver better
estimates due to the full connectivity of the nodes.

The central processor in the PIF essentially performs weighted summations on the
local estimates based on the estimates’ uncertainties to obtain the global estimates. The
larger the uncertainty of an estimate, the lower the weight assigned to compute the
global estimate. This summing process is not, however, equivalent to the centralized
treatment of the measurements in the CKE where the central processor computes the
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global estimates based on the measurements obtained from the nodes.

The lower performance of the DKFWA compared to the DIF or DKFCF is expected.
The adaptive Kalman gain adapts better to the measurement noise than the fixed gain
in the DKFWA. Merging with weighted estimates from the neighbors is not enough to
improve the estimate accuracy.

3.3.2. SIMULATION 2: STEADY-STATE ESTIMATION PERFORMANCE

In this simulation, we investigate the steady-state estimates of the filters to assess the
consistency of the filters. The simulations are performed by simulating from the initial
temperature at 0 0 s until final time 15000 s. The means and variances of the steady-state
estimates are computed and plotted in Figure 3.3. The sensor node locations are at grid
points 62, 104, and 146. The other simulation parameters are shown also in Table 3.3.

Figure 3.3 shows the mean of the estimates in blue circles, the variance of the estimates
in blue bars, and the variance of the averaged measurement in grey. The figure shows
that the estimates of states between two sensors are better than those on the outer side of
the sensors, i.e., before the left-most and after the right-most sensors. The variance of
the estimates for states located on the outer side increases as the distance to the sensor
increases. The results show that the spatial distance between the grid point for which
the temperature is estimated and the sensor location influences the accuracy of the
steady-state estimates.

For the decentralized methods, the DIF and DKFCF give the closest estimates to
those of the CKE, while the DKFWA gives the farthest estimates. As already mentioned in
Simulation 1, the full connectivity of the nodes results in the equivalence of the CKF and
DIE The result of the PIF is better than that of the DKFWA. The increase of the estimates’
variance of the PIF and the DKFWA is also higher compared to that of the CKF and the
other two distributed methods. For the PIF, this can be explained as follows: the PIF sums
up the estimates and, consequently, their uncertainty. As the uncertainty of the estimates
increases, the total uncertainty also increases.

3.4. SUMMARY

This chapter has compared the centralized Kalman filter and some of its variants on a
spatially and temporally discretized linear distributed parameter system. In general, the
performance of the decentralized Kalman filters cannot be better than the centralized
method. The performance of the decentralized methods can be equal to the centralized
method provided there is full connectivity of the sensor nodes. This applies to the DIF
and DKFCE This situation has been considered in the simulation for the distributed
information filter and distributed Kalman filter with consensus filter.

The PIF and the DKFWA suffer from the limitations of their approach. The parallel
information filter requires a guarantee on the connection to the central processor. Other-
wise, no global estimate is yielded, and every node has its own estimates that might be
different from one to the other. Another problem can occur in case one of the nodes feeds
low-quality estimates. These estimates will reduce the quality of the global estimates
instead of improving them. The DKFWA was developed to reduce the large communica-
tion requirement of the DKFCF by communicating the estimates only once. In addition,
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(d) DKF with consensus filter (DKFCF)

(e) DKF with weighted averaging (DKFWA)

Figure 3.2: Estimation of the decentralized Kalman filters compared to the centralized one

the Kalman gain is computed offline and used during the estimation. This reduces the
computation load in the nodes. However, the reduction in computation load comes at
the cost of a lower estimate accuracy compared to the other methods. This is mainly due

to the static gain of the Kalman filter.
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Figure 3.3: Steady-state estimation of the centralized and decentralized Kalman filters



IDENTIFICATION OF
DISTRIBUTED-PARAMETER
SYSTEMS FROM SPARSE
MEASUREMENTS

4.1. INTRODUCTION

Many real-life processes are distributed-parameter systems. The states of this class of
systems depend on one or more dimensional spatial variables. Examples include chip
manufacturing plants [70]; process control systems such as packed-bed reactors [47],
reverse flow reactors [75], and wastewater treatment plants [226]; flexible structures in
atomic force microscopes [141]; ultraviolet disinfection installations in the food industry
[228]; electrochemical processes [131]; or drying installations [74].
Distributed-parameter systems are typically modeled using partial differential equa-
tions. However, developing such models from first principles is a tedious and time-
consuming process [150]. If input-output measurements are available, a model can be
constructed by using system identification methods. However, due to the large number of
spatially interdependent state variables, the identification of distributed-parameter sys-
tems is considerably more complex than the identification of lumped-parameter systems,
and it is known to be an ill-posed inverse problem [138] because the solution is not unique
[154]. There are three main approaches to the identification of distributed-parameter sys-
tems [142]: (i) direct identification, (ii) reduction to a lumped-parameter system, and (iii)
reduction to an algebraic equation. The direct identification approach uses the infinite-
dimensional system model to find the parameters of the systems. This case includes
the identification of a certain parameter of interest related to an application, e.g., heat
conduction [42, 43, 230]. The reduction-based approaches involve spatial discretization
to create a set of ordinary differential equations in time to which identification methods

33
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for lumped-parameter systems can be applied. This approach, also called time-space
separation [150], is the subject of this chapter.

There are two recent books related to this chapter. The first book by Cressie and Wikle
[54] extensively treats statistical modeling and analysis of spatial, temporal, and spa-
tiotemporal data. The second book by Billings [25] addresses spatiotemporal discretized
partial differential equations by using polynomial basis functions and model reduction
by using orthogonal forward regression.

In this chapter, a method for the identification of finite-dimensional models for distri-
buted-parameter systems with a small number of fixed sensors is proposed. Compared
to other finite-difference identification methods in the literature [19, 25, 49, 81, 163, 182,
184, 246, 249], this method does not assume a dense set of measurement locations in
space, and, in addition, the method also uses an input selection method to reduce the
complexity of the model. The method also allows the use of external inputs in the model,
a problem not addressed by Cressie and Wikle [54]. In addition, an application that, to
our knowledge, has not yet been described in the literature is presented, namely the
identification of a model for the temperature dynamics in a greenhouse.

4.2. PROBLEM FORMULATION

Consider a distributed-parameter system described by a partial differential equation with
the associated boundary and initial conditions. For ease of notation and without loss of
generality, a system that is first-order in time and second-order in a two-dimensional
space is considered:

gz, 0g(z,1) 08(z,1) 08(z,1)
at —f(Z,t)g(zrt); 6Z1 ) 0Z2 ’ 62122 ’
2 2
d g 99 850 w0, wi, 0),¥ze %\ %, vt (4.1a)
6Z1 6Z2
0= h(zr tyg(z, £, Og(Z, 1) , ag(Z; 1) ulz, b, w(z, l’)),VZ c %b,vt (41b)
021 0z

8(z,10) = go(2),Vz€X 19

Here g(-,-) is the variable of interest, f(-) is the system function, k() is the boundary value
function, z = (z1, z2) € % < R? is the spatial coordinate, ¢ € R* U {0} is the continuous-time
variable, R* is the set of positive real numbers, u(-,-) is the input function, w(.,-) is the
process noise, and %, is the set of spatial boundaries of the system. Higher-order and
multi-variable systems can be defined analogously.

Assume that a set of input-output measurements are available from the distributed-
parameter system (4.1) with unknown functions f(-) and k(-). The sensors are located
at specified points to measure g(,-), and there are also actuators that generate inputs
u(-,) to the system. Since the actuators and the sensors are placed at known and fixed
locations, the space is discretized with a set of grid points .#¢ such that the actuator
locations .#, and the sensor locations (s are in Mg, i.e., My Mg and Ms<Mg. Assume
that the measurements, concatenated in a vector y(-), are affected by additive Gaussian
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noise v(z;, t) ~ N (0, 0‘2,1,). The input and measurement vectors are defined as follows:

u(®) = [Wzu1, 0 ... uzan,, 0] (4.2a)
y(0) = [glzg1, )+ v(zg1, 1) ... g(Zg,NS,t)+U(Zg,NS;t)]T (4.2b)

where Ny is the number of actuators, Ng the number of sensors, the coordinates of the
inputs are denoted by z,,; € #y, the measurement coordinates by zg; € /g, and the
superscript T denotes the transpose of a matrix or vector. Note that not every grid point
is associated with a sensor or actuator.

The measurements are collected at discrete time steps #; = k- Ts with k € Nu {0},
where T is the sampling period. To simplify the notation, the discrete-time instant #; is
subsequently written as k. The notation is further simplified by using an integer subscript
assigned to the given sensor or actuator location:

uj(k) = ulzu, ] ;opgy =100 Nu (4.3)

for the inputs and

yith) = (g(zgi, )+ vizg, ”)‘z:w; i=1,.,N (4.4)
for the outputs. The input and output data (4.3) and (4.4) are the only available informa-
tion to construct a distributed finite-order model of (4.1).

4.3. IDENTIFICATION METHOD FOR DISTRIBUTED-PARAMETER
SYSTEMS

The main idea of the method proposed in this chapter is to identify at each sensor
location a lumped-parameter system described by a dynamic model. To take into account
the spatial dynamics of the system, measurements from the neighboring locations are
included as inputs. This is justified by the derivation of coupled discrete-time dynamic
models obtained from spatial discretization of a partial-differential equation presented
at the beginning of this section. Parameter estimation of the coupled models by solving
a least-squares problem is then shown, subsequently followed by model reduction to
simplify the models. As measurements and actuation are performed only at some spatial
locations, sensors and actuators locations that related problems are briefly discussed.
The summary of the method is given at the end of the section to give a big picture of the
identification method.

4.3.1. CONSTRUCTION OF COUPLED DISCRETE-TIME DYNAMIC MODELS

The discretization of a partial differential equation in space by using the finite-difference
method results in a set of coupled ordinary differential equations. At time instant ¢,
the coupling spatially relates the value of the variable of interest at node I, g; (), to
values of the same variable at the neighboring nodes. The influence of more distant
neighbors may be delayed due to the finite speed of spatial propagation of the quantity of
interest. As an example, consider the following simplification of (4.1a) to an autonomous
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one-dimensional case:

2
0g(z.1) _ m(0 g(z, f)) (4.5)

ot 0z

where g(z, t) € Ris the variable of interest, z € R is the spatial coordinate, and m(:) isa
nonlinear function. The system is spatially discretized using the finite-difference method
by creating grid points, which, for the sake of simplicity, are uniformly spaced at distance
A;. Denote g;(t) for g(z, t) at grid point z = i - A,, called node I for short. The central
approximation [147] of the second-order derivative in space is:

C)) gi+1() —2gi (1) + gi-1(1)
—— ~ 5 (4.6)
072 z=i (AZ)
which results in:
dg; (1) :m(gi+1(t)—2gi(t)+gi71(t) @7
dr (Az)z
Then, using the forward-difference approximation of the time derivative:
dgi(| _ gilk+1) —gi(k)
dr =k Ts
to discretize the left-hand side of (4.7), yields:
i+1(k)—2g;(k i—1(k
gi(k+1):gi(k)+Ts.m(gl+l( ) g,(2)+gl 1 )) 8
(Az)
or in a slightly more general form:
gilk+1) = q(gi(K), gi-1(0), g1 (K), Ty, A (4.9)

Note that in this example, g; (k) is influenced only by its immediate neighbors. For systems
with a higher spatial order and with exogenous inputs (4.9) can be written as:

gi(k+1) = q(gn,, (k) uy,, (K), Ty, A) 4.10)

where g v, , (k) = {gj(k)|j € Ns,i} is the set of neighboring variables of interest, including
gi(k) itself and u v, , (k) = {u; (K)|l € Ny,i} is the set of neighboring inputs including u; (k)
itself.

In the system identification setting, A, and T are known and fixed, and instead of
gi(k), the measurement y; (k) is used (which includes the effect of measurement noise
v;(k)). Thus the following model is obtained:

yilk+1) = Fyn,, (), uy, , (k), v, , () (4.11)

where y v, , (k) is the set of neighboring measurements at node i, including y; (k). The
neighbors of node i can be simply the nodes that are within a specified distance p, i.e.,
Yx, (k) = {y(z, | z-z;ll < o,z € MyUAMs} for measurements and Uy, (k) = {uz, k)| llz—
zill < o,z € My UM} for inputs, see Figure 4.1. A priori knowledge can be used to obtain
a suitable value of p.
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Figure 4.1: Anillustration of the neighboring measurements and the inputs set with two possible neighborhoods
of sensor 7 using a Euclidean distance criterion. The first set of neighbors is defined using distance p; from
sensor 7, namely y v . =1{4,7,8} and u y_, = {2}. The second set using distance g2, y y, , ={3,4,7,8,10,11} and
Uy, = (2,4

An inappropriate choice of p may, however, yield a large number of neighbors that are
included in the model. In order to reduce the model complexity, an input or regressor
selection method is applied. This topic is discussed later on in Section 4.3.3.

When F(-) in (4.11) is not known, an approximation can be designed using the avail-
able input-output data and linear or nonlinear system identification. Assuming that the
system can be approximated by a linear model, linear system identification methods can
be applied to (4.11), as described in the following section.

4.3.2. SYSTEM IDENTIFICATION AND PARAMETER ESTIMATION
Identification methods for linear systems (including linear-in-parameters nonlinear sys-
tems) use the following model representation:

Jilk+1)=¢; (k)0; 4.12)

where y; (k) is the predicted value of y; (k), ¢; (k) is the regressor vector at time step k, and
0; is the vector of parameters. Note that the subscript index I corresponds to sensor I asin
the previous section. The regressor vector contains lagged input-output measurements,
including those of neighboring sensors and inputs. The parameter vector §; can be
estimated by using least-squares methods [27], so that the following prediction error is
minimized:

N
b; = argn;jnlcz: |yitk+1) =T 065 |5 (4.13)
i je=1
N
= argmin lle; (k) |I§ (4.14)
01 =1

with €; (k) = y; (k) — y; (k) the prediction error.

The use of neighboring measurements as inputs to the model may lead to a situation
where the regressors are corrupted by noise. This requires an error-in-variables identifica-
tion approach, solved, e.g., by using total least squares [207]. For a thorough discussion of
the total least-squares method, the interested reader is referred to [224]. When noiseless
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input variables to the actuators are among the regressors, a mixed ordinary-total least-
squares method must be used [224]. In this chapter, however, the ordinary least squares
is used to allow model simplification with methods that extend ordinary least squares,
e.g., Lasso. In other words, it is assumed that the prediction error is Gaussian.

In nonlinear system identification, the problem is more difficult as there is no unique
way to represent the nonlinear relation between the regressors and the output, and
different methods are available to represent the nonlinearity. For instance, Wiener systems
[248] and Hammerstein systems [68] use nonlinear functions cascaded with a linear
system, Takagi-Sugeno fuzzy models combine local linear models by weighting them via
membership functions [214], while neural networks use global nonlinear basis functions
(174].

4.3.3. MODEL REDUCTION BY USING REGRESSOR SELECTION

Including neighboring measurements as inputs will result in a highly complex model and
increase the size of the regressor vector ¢; (k). This size is determined by the number
of neighboring inputs and the number of components of each neighboring regressor
vector. A highly complex model may have low generalization performance, i.e., it may
not correctly predict previously unseen data. So, the reduction-based approach is used to
limit the size of the regressor vector and, therefore, only the most relevant components
are kept in the model.

The large number of regressors might also cause another problem in the case of a
limited number of input-output samples, i.e., the regressor matrix has more columns
than rows, causing a non-unique least-squares solution. This shows that the least-squares
model obtained is ill-posed. Furthermore, simple models are preferred for control appli-
cations that use sensors embedded with limited-performance computing devices, i.e.,
smart sensors. Using simple models reduces the prediction computation load inside the
sensors and increases the ease of implementation of the method in real applications. For
these reasons, among other reasons, it is desired to have a simpler model by removing
inputs that do not contribute to the output to reduce the computational load, especially
when the models are used in online control design.

Three methods are commonly used to reduce the number of regressors in standard
linear regression [72]: stepwise regression, backward elimination, and exhaustive search.
With these methods, the inclusion or exclusion of a regressor is decided based on statistical
tests, such as the F-test.

One of the more recent methods is Lasso [217], which stands for the least absolute
shrinkage and selection operator. Lasso is a least squares optimization approach with
L, regularization through a penalty function with an ¢;-norm. In Lasso, the following
regression model is assumed:

J=00+¢'0 (4.15)

. T
with@=[0; ... 0,] and6,the parameters of the model and ¢ the vector of regressors.
Lasso computes the parameters so that the parameters of the regressors that have the

least importance are made zero by using a regularization parameter. More specifically,
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Lasso solves the following optimization problem [217]:

N
[0 67] =argmin (y;-60—-¢]0)°, st Z S (4.16)

000 i=1 j=1
where 7 is a tuning parameter, and for the sake of simplicity, the scalar case of y is
considered (extension to the vector case is straightforward). This problem can also be

written as:
N

[90 GT] —argmln Z —0p—¢ TH +AZ|9| (4.17)

where A is a nonnegative regularization parameter. Note that formulation (4.16) and
(4.17) are equivalent in the sense that for any 7 = 0 in (4.16), there exists a A € [0,00) in
(4.17) such that both formulations have the same solution, and vice versa.

As for nonlinear systems there is no unique representation, regressor selection be-
comes more complex. The simplest method, albeit computationally inefficient, is to
directly search the most optimal set of regressors using exhaustive search. Regarding
model-specific methods, forward regression has been used for polynomial models by
using orthogonalization and selecting regressors that significantly reduce the estima-
tion error [44, 165]; neural network models can be simplified by pruning, link weights
that are sufficiently small [100]; for adaptive network fuzzy inference systems [80] by
analyzing the correlation between input and output variables. For an example of the
model-independent regressor selection method, one may refer to, e.g., [229], which uses
fuzzy clustering to asses the significance of regressors to the measured output.

4.3.4. SENSOR AND ACTUATOR LOCATIONS AND INTERPOLATION
Measurements and actuations in distributed-parameter systems are commonly perform-
ed at spatially sampled locations. This practice raises two related problems in the control
and estimation of partial differential equations:

1. The number and the locations of sensors and/or actuators. A short introduction to
this topic is presented in a survey by Kubrusly and Malebranche [143]. Given the
underlying partial differential equations model, the locations of the sensors will
influence the identifiability of the distributed-parameter system [220].

In this chapter, the partial differential equations model is assumed unknown and
the sensor and actuator locations are assumed to be fixed and given. This resembles
the case study of the greenhouse temperature model discussed in Section 4.4.2. The
sensor and actuator location problem is considered a topic of further research.
Similarly to the identification of lumped-parameter systems, it is necessary to gener-
ate sufficiently persistent excitation in data acquisition experiments for distributed-
parameter systems. The notion of persistence of excitation for distributed-parameter
systems is more complicated than that for the lumped-parameter systems; see, e.g.,
[180]. However, this topic is still an open problem, and as such, it is out of the scope
of the chapter.

2. How to interpolate outputs at locations that are not measured? This problem
naturally arises because the sensors provide information only at their locations
[54].
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For the interpolation problem, kriging and splines are commonly used methods [54].
However, ordinary kriging is used and briefly presented in this chapter following
[54]. Kriging was initially developed to solve estimation-related problems in geology
and it is able to interpolate in time and space. Because temporal interpolation is
not required in our setting, only spatial kriging is considered in this section.

Given a spatial random process, also called a random field:
Y(R)=L(2)+V(z), ze% (4.18)

where Y (), L(-), and V(:) are, respectively the measured random field, the true but un-
known random field, and the random measurement noise, z is the spatial coordinate,
and % is the spatial domain. As the spatial domain % has been discretized using the
finite-difference method, the measurements of the random field realizations can be writ-
ten as y; = g; + v;, where the subscript i is defined similarly to that of (4.7), from which
the measurement vector y, is defined as the stacked measurements from N,, sensor
locations.

Remarks:

1. Depending on the purpose, a spatiotemporal random process
Y(z,t)=L(z, )+ V(z, 1), VYze%, Vt (4.19)

for a certain fixed time ¢ can be viewed as a random field Y (z) or as a dynamic
random process Y (¥) [73, 236]:

Y()=L(z)+V(z), Vze% (4.20a)
Y@)=L(t)+V(), Vt (4.20b)

Stochastic analysis related to spatial variables can be performed to (4.20a), for
instance, spatial-dependent correlation analysis. This is commonly used in geo-
science, e.g., [200].

2. Inthe case of the proposed method, (4.2b) is the discrete-time realization of (4.20b)
at sensor location z; € /. This kind of random process is found in signals and
systems analysis.

Kriging [54] is a linear estimation method to obtain the optimal spatial estimate of
the second-order stationary process G(z) at a coordinate location that is not measured
Zo & s, such that the mean square estimation error (MSE):

MSE = E{(gz, - L)’} 4.21)

is minimized, where g, is the true but unknown value of the process L(z), I( ¥z) is the
estimator, and E{} is the expectation operator.

In ordinary kriging, the mean of G(z) is assumed constant, i.e., E{L(z)} = g,z € %,
and the covariance function Cov(g;, g;) and the zero mean measurement error variance

0%, are assumed to be known. The estimator has the following form:

Lo =y"y. (4.22)
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with the column vector y € RV the estimator parameter.

The problem of kriging is to find y to minimize (4.21). To impose unbiasedness,
¥ "1 =1 has to be fulfilled, where 1 is a column vector with 1 as the elements. By using
the Lagrange multiplier ¢, the parameter vector y is computed by solving the following
optimization problem:

argmin ([E{(gzo YTy -2 - 1)) (4.23)

The solution of the above optimization problem is:

y = C;ZI(COV (g20y2) +0* 1) (4.24)
1-17Cc;!Cov

. = Y. (82,2) (4.25)
17c, M1

where y* and {* are respectively the optimal parameter vector and Lagrange multiplier,
and Cy, is the covariance matrix of measurement vector y, defined as:

Var(y;) +02, i=j
L, = oy i=] (4.26)
Cov(yi,yj) i#]
where Var(-) is the variance. Substituting {* in (4.24) and y* into (4.22) gives:
R 1- lTC;Z1 Cov(gz,¥2) ’ )
Go(yz) = | Cov(gz, ¥2) +1 ITC;ZI 1 C, (4.27)
with the corresponding mean square error:
- 1-17C, Cov(gz, y2)
MSE = Var(gz,) — Cov(gz, ) ' C), Cov(gz,yz) + = (4.28)
g 17C; 11
Equation (4.27) can be rewritten as:
Go(y,) = fig +Var(gz,) ' C;! - (v, — g1 (4.29)
with [i; the generalized least-squares estimator of p [86]:
1'C,ly.
N Yz JZ
=— 4.30
He=Tmen (450

Another variant of kriging is universal kriging, which assumes p(z) to be a linear
model instead of a constant as in ordinary kriging. An interesting application of this
kriging variant is the Kalman filter method for distributed motion coordination strategy
of mobile robot positioning at critical locations [50].
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4.3.5. MODEL VALIDATION

Once a model has been built, it needs to be validated [159]. In validation, the model
performance is assessed by evaluating its performance to predict data that are not used
in the identification, i.e., to predict validation data. To be used for control and estima-
tion purposes, it is desired that the obtained model has a sufficiently good prediction
performance based on a specified measure.

A model is typically presented as a one-step prediction model as shown in (4.12). In
this case, the model performance is analyzed by evaluating the errors between the data
and its one-step ahead predictions. Larger prediction steps might be required in some
applications, e.g., in model predictive control. In that case, the n-th step prediction is
obtained from

Jilk+n) =¢i(k+n-10] (4.31)
where J; (k+ n) is the predicted value of y; (k) at discrete time step k+n, ¢; (k+n—1) is the
regressor vector containing lagged measurements y; (k + n—1) and/or their predictions
7i(k+n—-1), and 6; is the vector of parameters.

In general, a model with accurate predictions for a long horizon indicates that the
behavior of the model is closer to the behavior of the real system. Setting the prediction
horizon to infinity represents a very strict test of the model. This is also called the free-
run simulation. In free-run simulation, the prediction is computed by using inputs and
previous predictions and involving no output measurement.

4.3.6. IDENTIFICATION PROCEDURE

The identification procedure is presented in this section. Given the set of input-output
measurements from an unknown distributed-parameter system, the proposed identifica-
tion procedure proceeds as follows:

1. Create a spatial grid for the system so that each sensor and each actuator is asso-
ciated with a grid point. The grid may have a uniform or a nonuniform spacing,
depending on the actuator and sensor locations. Recall that not all grid points
are occupied by sensors or actuators. The sensors and actuators are numbered
consecutively: i = 1,..., N; for the sensors and j = 1,..., N, for the actuators. An
illustration of a 2D system, with spatial grid points and labels for the sensors and
actuators, is shown in Figure 4.2.

z2
6= A Actuator
50 @ .®@ . .® MW Sensor
(3!
4 [=7A ]
3 I@ .®.
@
2 A | A Dy
1 .® \4,'.@ vy
(J’)E@ 21
0 1 2 3 4 5 6 7

Figure 4.2: An illustration of a 2D system with a nonuniform spatial grid. Sensors and actuators are indicated by
solid and dashed circles, respectively.
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2. For each sensor i in the grid:

(a) Determine the dynamic model structure using one of the available structures
for lumped-parameter systems, such as auto-regressive with exogenous input
(ARX), output error (OE), Box-Jenkins (B]), etc.

(b) Define the set of neighboring sensors and actuators, i.e., those that are lo-
cated in a defined neighborhood. The neighboring measurements and inputs
from neighboring actuators become inputs to the dynamic model of sensor i.
Determine the (temporal) system order and construct the regressors.

(c) When the number of regressors is large, optimize the model structure in order
to simplify the model.

(d) Estimate the parameters of the dynamic model for sensor i.

(e) Validate the dynamic model. If the model is rejected, return to step 2a to use a
different system structure or to 2b to change the set of neighbors.

To close this section, we summarize the proposed identification method in Figure 4.3.
The steps are:

e Construct coupled discrete-time dynamic models, as elaborated in Section 4.3.1.
e Identify and estimate the parameters of the models, as presented in Section 4.3.2.
* Simplify the identified models to obtain simpler models, shown in Section 4.3.3.

* Sensor placement and interpolation for locations where measurements are not
available, as described in Section 4.3.4.

 Validate models to assess their performance for control or estimation purpose, as
described in Section 4.3.5.

Remarks:

¢ The proposed framework performs off-line identification for distributed-parameter
systems; however, the method can be extended directly to recursive identification
for the ARX structure.

e For structures that require the predicted output to compute the parameters, exten-
sion to recursive parameter estimation is possible, provided that the measurements
are updated synchronously.

¢ The convergence for the recursive implementation of the framework can be ana-
lyzed by using the methods presented in [159].

4.4. SIMULATIONS AND APPLICATIONS

Two examples based on synthetic and real data, respectively, are considered to illustrate
the effectiveness of the proposed identification approach. The synthetic data are gen-
erated from a linear two-dimensional heat conduction equation. The real-life data are
temperature measurements from a small-scale real greenhouse.
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Figure 4.3: Flow chart of the proposed method.



4.4. SIMULATIONS AND APPLICATIONS 45

The model structure selection step is not explicitly presented in the examples. This
is because the ARX, the first structure tested, is already sufficient to obtain acceptable
models, and no further model structure selection step is required.

4.4.1. HEAT CONDUCTION PROCESS
Consider the following two-dimensional heated plate conduction process:

0T(z,1)  « |0°T(z,0) 0*T(z,1)

= — ,Vze%E\%,, YVt 4.32a

ot pCy| 07 022 b 3z
T(z,t) =Ty, (), Vze%y;%,=0%,;,Vt (4.32b)
T(z,00=Ty, Vze% (4.32¢)

where T(z, t) is the temperature of the plate atlocation z and at time ¢, p the density of the
plate material, Tp the initial temperature, C,, the heat capacity, x the thermal conductivity,
and z = (21, z2) the spatial coordinate on the plate. Equations (4.32b) and (4.32c) are
the boundary and initial conditions, respectively. The plate’s parameters are listed in
Section 4.4.1. The values of the material properties are adopted from [114] and modified
to speed up the simulation.

Parameter Symbol Value Unit
Material density o 4700 kgm™3
Thermal conductivity K 700 wmK!
Heat capacity Cp 383 Jkg 1K1
Plate length L 0.7 m

Plate width w 0.5 m

Initial temperature To 35 °C
Sampling period Ts 1 s

Grid size Az;,Az, 005 m

For this example, a set of identification data is obtained by simulating the discretized
version of (4.32). The central approximation of the finite-difference method is used to
discretize the space and to create a grid of 14 by 10 cells; the zero-order hold method is
used to discretize the time coordinate. The resulting discretized equation is simulated by
letting the boundary values T, (-) follow pseudo-random binary signals with levels of 25 °C
and 80 °C where each boundary B-1 through B-4 (as defined in Figure 4.4) is excited by a
different signal u; through uy. It is assumed that the excitation is uniformly distributed
along the boundary for each discrete-time step k. In case a sensor node has a boundary
in the neighborhood, it is taken as one input to the model. The duration of the steps is
randomly selected from the set {80,120,...,200} seconds. The maximum value of the step
duration was determined based on the largest time constant of the node responses, i.e.,
180s.

Ten sensor nodes are placed to measure the temperature of the plate as illustrated
in Figure 4.4, with the exact sensor locations given in Table 4.1. The measurements are
sampled with period T = 1s and Gaussian noise with zero mean and variance 0.1°C?
is added to the measurements. The data set is divided into an identification set and a
validation set, consisting of 1500 and 740 samples, respectively.
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Figure 4.4: Illustration of sensor node locations for the 2D heat conduction example.

Table 4.1: Coordinates of the sensor node locations for the 2D heat conduction equation example.

Sensor # (z1,22) Sensor # (z1,22)

Sensor1 (0.10, 0.10) Sensor 6 (0.40, 0.30)
Sensor2  (0.10, 0.25) Sensor 7 (0.55,0.10)
Sensor3  (0.20, 0.40) Sensor 8 (0.55, 0.40)
Sensor4  (0.35, 0.40) Sensor 9 (0.65, 0.10)
Sensor5 (0.40, 0.25) Sensor 10  (0.65, 0.30)

The neighboring nodes are defined to be the nodes that lie within the distance p =
0.35m from a given node. The value of this neighborhood radius is set sufficiently large
compared to the physical dimensions so that a sufficient number of neighboring sensors
are included in the model. Typically, prior knowledge about the process can be used to
determine a suitable value for the radius p.

Results from two representative sensors are presented: 1 and 5. Sensor 1 is relatively
close to the boundaries; it has three neighboring sensors. Since boundaries B-1 and B-4
are inside the radius g, the values at boundaries B-1 and B-4 are included as inputs to
the model of sensor 1. Sensor 5 is near the middle of the plate. In the radius p, it has 9
neighboring sensors and three inputs from the boundary B-2, B-3, and B-4.

Subsequently, it is necessary to determine the order of the system. Considering that
the system is slow, 10t-order models with an ARX structure are used for the models.
Thus, sensor 1 initially has 61 regressors for the model, and sensor 5 has 131 regressors,
including the bias. Lasso is applied to reduce the number of parameters in the model,
using the lasso function in the Statistics Toolbox of Matlab. The function requires the maximum
number of parameters in the model as additional input and returns a set of models with the number
of parameters varying from one to the maximum number specified. The function returns a set
of reduced models for different values of the regularization parameter A and the corresponding
Mean Squared-Error (MSE) values. Then, one of those models is selected based on the smallest
MSE obtained from the validation data set.

After input selection, a model with 11 parameters is obtained for sensor 1 and a model with 26
parameters for sensor 5. The reduced models are the following:

y1(k+1) = 0.0155 y; (k— 1) + 0.0540 y3(k — 1) + 0.0467 y5(k — 1)+
+0.4118u; (k—1) +0.0173 ug (k — 2) + 0.0026 u; (k — 3)
+0.4134 ug (k—1) +0.0244 1g (k — 2) +0.0034 ug (k — 3)



4.4. SIMULATIONS AND APPLICATIONS 47

—-0.5318

y5(k +1) = 0.0089 y5 (k — 1) +0.0093 yg(k — 1) +0.0037 y10 (k — 2)
+0.0145 yo (k — 1) +0.0050 y» (k — 2) + 0.0035 y» (k — 3)
+0.1352 1 (k—1) +0.0241 y; (k — 2) +0.0073 y; (k — 3)
+0.1640 up (k — 1) +0.1074 up (k — 2) + 0.0350 uz (k — 3)
+0.0131 up (k — 4) +0.0016 u (k — 5) + 0.0002 uz (k — 6)
+0.0831 uz(k — 1) +0.0627 uz (k — 2) +0.0221 u3 (k — 3)
+0.0063 13 (k —4) +0.0006 13 (k — 5) +0.1646 114 (k — 1)
+0.0588 114 (k — 2) +0.0245 114 (k — 3) +0.0094 114 (k — 4)
+0.003914 (k —5) — 0.8707

where y; (k) is the measurement from sensor Z, and u (k) is the input from boundary j. From the
above models, it can be seen that the model for sensor 5 uses more parameters with larger lags of
inputs and neighboring measurements; this indicates that more time is needed to propagate those
inputs and neighboring measurements to influence sensor 5. This is different in the case of sensor
1, which is closer to the boundaries and for which the resulting model is mainly influenced by the
inputs, which yields a simpler model. The models also have constant/bias terms, which can be
interpreted as heat transferred between the adjacent nodes.
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Figure 4.5: Measurements (blue, invisible due to the overlap) and one-step ahead prediction for the models with
full inputs (black curves) and the ones with reduced inputs (red curves) using the validation data set for the

two-dimensional heat conduction example. Note that the prediction errors of the full and the reduced input
models are overlapping.

Figure 4.5 and 4.6 show the one-step ahead predictions, the free-run simulation, and their
corresponding errors in comparison with the validation part of the data. As one can expect, for the
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Figure 4.6: Measurements (blue) and free-run simulation for the models with full inputs (black) and the ones
with reduced inputs (red) using the validation data set for the two-dimensional heat conduction example.

validation data, the one-step-ahead prediction error is much lower than the error for the free-run
simulation. In addition, it can also be seen that the free-run prediction errors are smaller for the
reduced input models than those of the full input models. This is more obvious for the model of
sensor 5. As one would expect that the full models would deliver smaller errors, this means the full
models suffer from overfitting. In general, the proposed identification approach works well in this
case and delivers sufficiently good models.

The figures also show that the output error of the model using measurements from sensor
1 is generally smaller than that of sensor 5. This can be explained as follows: Figure 4.4 shows
that sensor 5 has more neighboring sensors than sensor 1. This means the identification for
measurements of sensor 5 involves more noise from measurements of neighboring sensors than in
the case of sensor 1.

Figure 4.7 shows contour plots of the temperature distribution of the validation data at discrete-
time step k = 90; this time step value has been selected arbitrarily. The one-step-ahead predictions
for full and reduced-order models are shown in Figure 4.8, and the free-run predictions are shown
in Figure 4.9. The sensor locations are marked with black square boxes where sensor numbers are
placed on the left-hand side of the markers.

It can be seen the contour of the one-step ahead prediction is similar to that from the validation
data. This is confirmed by the error contour, which is almost uniformly colored around the zero
value. Note that the contours look relatively coarse because they are plotted based on sparse
measurement locations using ordinary kriging, implemented in the 00DACE toolbox [51, 52], to
interpolate temperature at locations that are not measured.

The R? fit for the full models and reduced models of sensor 1 and sensor 5 is shown in Table 4.2.
The table shows that the R? fit of the identified models is accurate. It can also be seen that for the
free-run simulation prediction, the reduced input models have a better R? fit than the full models.
This shows that, in this case, the full models are over-parameterized and that an input reduction



4.4, SIMULATIONS AND APPLICATIONS 49

. 60
- 50
: 10
’ 30

0.1 02 03 04 05 06 0.7

Figure 4.7: Contours of the heated plate model at discrete-time step k = 90 of the validation data. The black
square markers are the sensor locations with their corresponding sensor numbers left of the markers.
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Figure 4.8: Contours of the one-step ahead prediction of the heated plate model at discrete-time step k = 90 for
full and reduced-order models. The black square markers are the sensor locations with their corresponding
sensor numbers left of the markers.
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Figure 4.9: Contours of the free-run simulation of the heated plate model at discrete-time step k =90 for full
and reduced-order models. The black square markers are the sensor locations with their corresponding sensor
numbers left of the markers.

results in better models.

Table 4.2: The R? fit of the full and reduced models for one-step ahead and free-run simulation predictions of
the heat equation example.

One-step ahead Free-run simulation
Sensor # Fullmodel Reduced model Fullmodel Reduced model
1 99.9807% 99.9784% 94.9872% 99.0116%
5 99.9168% 99.8016% -15.5446% 93.2703%

Figure 4.10 shows the change of the mean square one-step-ahead prediction error. It can be
seen that a decrease in the signal-to-noise (SNR) ratio increases the prediction error. The figures
also show that the full models have a better prediction performance than the reduced ones, but the
difference decreases as the SNR decreases, i.e., an increase in the noise level. For the full models,
the error increases exponentially, while for the reduced models, it is relatively constant for larger
SNR values and increases almost linearly for smaller ones. It can also be seen in Figure 4.10 that for
a relatively narrow range of low noise levels, the reduced models exhibit better robustness than the
full ones.

In the numerical examples presented in this chapter, the location of the sensors is fixed. How-
ever, using the same methodology, it is possible to decide on the best sensor locations by determin-
ing the most appropriate number and locations of the sensors. Assume that the number of sensors
is not fixed but that they can be located only within a finite number of possible places. For the 2D
heat conduction example, the grid configuration as shown in Figure 4.11 represents the potential
locations for sensor placement.

The same experiment with the same setup as in the beginning of this section is performed,
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Figure 4.10: One-step ahead prediction error of sensors 1 and 5 for the increasing noise variance. The solid lines
correspond to the full models, and the dashed lines correspond to the reduced models.
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Figure 4.11: A grid of sensors for the 2D heat conduction example set up in order to determine appropriate
sensor locations.
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except that there are now more sensors involved, and also, the model for measurements from sensor
i uses measurements from all other sensors as neighbors. After model reduction, we check the
regressors from sensor { whose non-zero parameters indicate that sensor i is used in the model.
For the experiment, models with 11 and 25 parameters are selected to be analyzed. The importance
of the sensors is represented in the diagrams in Figure 4.12. In the figures, the horizontal axis
represents the sensor models and the vertical axis represents the sensors involved in the models.
The sensors used in a model are indicated by black squares in the vertical direction. If the sensor is
not used in the model, a white square is drawn.
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Figure 4.12: Sensors whose measurements that are used in the model.

A consideration for placing a sensor at a certain location is that the measurements from the
sensor are used to build models of measurements from the other sensors. The more models use
measurements from the sensor, the more important the sensor is. This is indicated by a large
number of black squares in the horizontal direction in Figure 4.12. In Figure 4.12a, it can be seen
that sensors 1, 5, and 9 are important because they are used by the majority of the models. This
means that the locations of these sensors are high-potential candidates for the measurement
locations. Figure 4.12a shows several white columns. These columns mean that a model with the
specified number of parameters, in this case 11, cannot be found. The white column locations are
different for different numbers of model parameters as shown in Figure 4.12b for models with 25
parameters. The figure also shows that sensors 3, 6, and 14 become more important by increasing
the number of parameters to 25.

4.4.2. GREENHOUSE TEMPERATURE MODEL IDENTIFICATION

The proposed approach is also used to identify a model based on data from a small-scale greenhouse
setup shown in Figure 4.13. The setup was built at TNO in the Netherlands. Its length is 4.6 m,
its width 2.4 m, while the height of the wall and the roof are 2.4 m and 2.9m, respectively. Six
400 W convection heaters, each of 0.6 x 0.6m, are placed on the floor of the setup. This gives an
average of 200 Wm™2 irradiance. The heaters are meant to mimic the convective effect caused by
the absorption of solar energy by the floor during the day [29]. The coordinates of the centers of the
heaters are shown in Table 4.3.

The temperature measurements are collected using wireless sensors, which is a promising
technology, with some applications in production greenhouses already reported [231]. For the
experiments, a total of 68 sensor nodes have been installed to measure the temperature inside the
greenhouse. Out of these, 45 sensor nodes are arranged on a grid with the spacing along the z1, 22,
and z3 axes equal to 0.3000 m, 0.7667 m, and 0.5500 m, respectively. Additionally, 5 sensor nodes
are placed below the roof, 6 sensor nodes are right at the center of the heaters, and 12 sensors are
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Figure 4.13: A schematic representation of the greenhouse with its physical dimensions.

Figure 4.14: A schematic representation of the sensor locations in the greenhouse.
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Figure 4.15: A photograph of the greenhouse setup used in the case study.
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attached to the four walls of the greenhouse. Figure 4.14 shows the sensor locations and Figure 4.15
gives a photo of the setup.

Table 4.3: The center coordinates of the convection heaters in the greenhouse.

Heater # (z1,2Z2,23) Heater # (z1,2Z2,23)

Heater 1  (0.90, 3.45, 0.00) Heater4 (1.50, 3.45, 0.00)
Heater 2 (0.90, 2.30, 0.00) Heater 5 (1.50, 2.30, 0.00)
Heater 3 (0.90, 1.15, 0.00) Heater 6 (1.50, 1.15, 0.00)

Throughout the identification experiments, the heaters were turned on and off in pairs: heater
1 paired with heater 4, heater 2 with heater 5, and heater 3 with heater 6 so that there are three
different input signals. In total 3179 data samples have been acquired, of which 2149 samples are
used for identification and 1030 samples for validation. The data sets are centered by subtracting
their means before the identification and model reduction with Lasso is applied.

Among all sensors, identification results from two sensor nodes are presented: sensor node
215, located at position (1.80, 3.83, 1.10), and sensor node 257, located at (0.00, 0.00, 2.20). The
neighborhood radius selected is p = 1.25m, which gives 19 neighbors for sensor node 215 and 7
neighbors for sensor node 257.
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Figure 4.16: Greenhouse setup measurements (blue) and one-step-ahead predictions for the model with the full
set of inputs (black) and for the model with the reduced set of inputs (red) using the centered validation data set
and their corresponding prediction error, i.e., error for the full model (black) and the reduced model (red). Note
that the outputs and the corresponding errors of the full and the reduced input models are overlapping.

A 10 -order linear ARX structure is selected for the model so that initially, there are 570
parameters and 280 parameters for respectively sensor nodes 215 and 257. The measurements, full
input model output, and reduced input model simulation output, as well as the corresponding
one-step estimation errors for the validation data, are shown in Figure 4.16. Similar plots for 20-step
ahead prediction are shown in Figure 4.17. Setting the maximum number of parameters to 10, the
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Figure 4.17: Greenhouse setup measurements (blue) and 20-step-ahead predictions for the model with the full
set of inputs (black) and for the model with the reduced set of inputs (red) using the centered validation data set
and their corresponding prediction error, i.e., error for the full model (black) and for the reduced model (red).

Table 4.4: Mean square error (MSE) and R2 fit of the full and reduced models for the greenhouse validation data
example in the case of one-step and 20-step ahead predictions.

Sensor 215 Sensor 257
Performance Full Reduced Full Reduced
1-step prediction MSE 0.0310 0.0261 0.0229 0.0243
20-step prediction MSE 0.2826 0.3970 0.2600 0.1412

1-step prediction R? fit (in %) 99.8772 989155 99.6821  99.6515
20-step prediction R2fit (in%) 90.0368 80.0343 64.7745  89.8994
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following models are obtained:

yo15(k +1) = 0.8241 y215(k — 1) +0.1332 y215 (k — 2) + 0.0065 y215(k — 3)
+0.0037 y215(k — 5) + 0.0041 yo15(k — 7) + 0.0043 yo15(k — 8)

(4.33)
+0.0113 y906(k — 1) +0.0048 y218(k — 1) +0.0027 y218(k —2)
+0.0043 y218(k—3)
Y257 (k+1) =0.6206 y257(k — 1) + 0.2410 y257(k — 2) +0.0093 y257(k — 3)
+0.0368 y257 (k —4) +0.0092 yg (k — 1) + 0.0480 y220(k— 1) 4.34)

+0.0064 y234 (k—1) +0.0198 y264 (k — 1) + 0.0003 y20 (k — 1)
+0.0036 y20 (k- 2)

where y; (k) is the measurement at sensor node i. It can be seen that the neighboring measurements
contribute to the identified model. The MSE and the R? fit for the validation data are shown in
Table 4.4. For sensor 215, it can be seen that the MSE is smaller and the R? fit is larger for the
reduced input model compared to the full model; while for sensor 257, the MSE increases slightly
and the R? fit decreases slightly. For the case of sensor 215, the reduction of the R? fit suggests
the full model is over-parameterized. Increasing the prediction horizon to 20 steps reduces the
prediction performance significantly; however, the R? shows that the models are still stable for
prediction up to 20-step ahead. Generally, it can be said that reducing the number of inputs in the
models does not significantly decrease the performance of the models. This also indicates that the
proposed identification framework works well in this example.

A set of simulations were performed to assess the performance — in terms of the one-step ahead
prediction MSE — of the models for different numbers of neighbors for sensor 238. This sensor is
located about the middle of the setup and has 8 neighbors with the same height z3. For neighbor
visualization ease, the labeled sensors are shown in Figure 4.18. The identification is performed for
2,4, 6, and 8 neighbors, excluding sensor 238 itself. The performance of the full and the reduced
models is compared for the validation data. The neighbors and the performance comparison are
shown in Table 4.5. From the table, it can be seen that the one-step ahead prediction errors hardly
differ for different numbers of neighbors. This shows the proposed framework is not sensitive to
the number of neighboring sensors.
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Figure 4.18: Sensors at z3 = 1.1 with sensor id labels.

An experiment to estimate values at locations that are not measured is also performed for
sensors shown in Figure 4.19. In this experiment, data from sensors 217, 238, and 241 are not
identified, and their estimates for the validation data are obtained by using ordinary kriging. The
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Table 4.5: The coordinates of sensor 238, its neighbors, and its performance for different numbers of neighboring
sensors. The X symbol indicates that the sensor is used as a neighbor.

Number of neighbors
Sensor # 2 4 6 8

213 X X X X

214 X X X X
215 X X X
216 X

217 X X X
218 X X
237 X

239 X

240 X X X X
241 X X X X X X
242 X X X

243 X X X
244 X X X

245 X X

MSE full 0.0215 0.0215 0.0216 0.0211 0.0220 0.0208 0.0220 0.0222
MSEred. 0.0236 0.0230 0.0238 0.0233 0.0235 0.0239 0.0235 0.0239

experiment is performed for both full and reduced models. The kriging models are developed
by using the estimates of the validation data of the remaining sensors. The results are shown in
Figure 4.19 for the estimates and their corresponding error, respectively. The experiment is repeated
by omitting sensors 216, 217, 218, 240, 241, and 242. The estimates are shown in Figure 4.20 and
their corresponding errors in Figure 4.21.

The figures show that ordinary kriging estimates sufficiently well the values at locations that are
not measured. Furthermore, estimation differences between the full and the reduced models are
not significant. For the second experiment, it can be seen that the kriging estimates for sensors 216,
217, and 218 look similar; and so do those for sensors 240, 241, and 242. This can be explained by
looking at the validation data from sensors 216, 217, and 218 plotted as a group in Figure 4.22a and
those from sensors 240, 241, and 242 as the other group in Figure 4.22b. From the figure, it can be
seen that the temperature difference within a group is small and this creates kriging estimates with
insignificant differences among them.

Contour plots of the greenhouse temperature from the validation data for 0.6 = z; = 1.8, 0.767 =
z2 = 3.833, and fixed z3 = 1.1 at discrete-time step k = 400 are shown in Figure 4.23. The contour of
the estimated temperature from the full models for one-step ahead and 20-step ahead prediction
are shown in Figure 4.24, while contours from the reduced models are in Figure 4.25. The contours
The plots are in 2D because the 00DACE toolbox is only able to build kriging models from 2D data.
In the same way, as for the heated plate example, the plots show the contour of the validation data
and the one-step ahead prediction of the full and reduced models. It can be seen that the error is
larger with the reduced models than with the full model.

4.5. SUMMARY

In this chapter, a method for the identification of distributed-parameter systems was presented.
The method is a finite-difference based method that takes into account inputs from neighboring
measurements and actuators into the model. The method assumes that the underlying partial diffe-
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Figure 4.19: Validation data estimates for sensors 217, 238, and 241 by using ordinary kriging and their corre-
sponding error. For (a), (b), and (c), black lines are the validation data, magenta lines are estimates from the full
models, and blue lines are estimates from the reduced models. For (d), (e), and (f), magenta lines are errors

from the full models, and blue lines are errors from the reduced models.
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Figure 4.21: Validation data estimation error for sensors 216, 217, 218, 240, 241, and 242 by using ordinary
kriging. Magenta lines are errors from the full models and blue lines are errors from the reduced models.

Temperature [C]
53
3

=]
f=)}
Temperature [C]

25 5 . . . . .
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Discrete time step k Discrete time step k
(a) Sensor 216, 217, and 218 (b) Sensor 240, 241, and 242

Figure 4.22: Validation data plot from the sensor: (a) 216 in black, 217 in blue, 218 in magenta (b) 240 in black,
241 in blue, and 242 in magenta.
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Figure 4.23: Contours of the greenhouse temperature validation at discrete-time step k = 400 for 0.6 = z1 =
1.8,0.767 = zp = 3.833 and fixed z3 = 1.1. The black square markers are the sensor locations, and the labeled
sensors are used to build the kriging model.
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Figure 4.24: Contours of the greenhouse temperature from the full models at discrete-time step k =400 of the
validation data for 0.6 = z; = 1.8,0.767 = 2z, = 3.833 and fixed z3 = 1.1. The contours are from one-step and
20-step ahead predictions. The black square markers are the sensor locations, and the labeled sensors are used
to build the kriging model.
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Figure 4.25: Contours of the greenhouse temperature the reduced models at discrete-time step k = 400 of the
validation data for 0.6 = z; = 1.8,0.767 = 2z = 3.833 and fixed z3 = 1.1. The contours are from one-step and
20-step ahead prediction. The black square markers are the sensor locations, and the labeled sensors are used
to build the kriging model.
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rential equation is not known. Although a finite-difference based method is proposed, the method
does not require dense measurement locations in the system. This feature allows the applicability
of the method to real-life systems, which generally have a limited number of measurements. In
addition, model reduction methods were applied to reduce the complexity of the model in case a
large number of inputs are involved in the model. The effectiveness of the method has been shown
with the help of two examples, a simulated heated plate and a real greenhouse.



SEARCH TREE BASED REGRESSOR
SELECTION FOR NONLINEAR
SYSTEM IDENTIFICATION

5.1. INTRODUCTION

Nonlinear system identification methods have been developed and applied to further understand
real-life complex systems [148, 211]. In those methods, different models can be used, e.g., TS fuzzy
models [214], networks of wavelets [245], networks of FIR systems [173], among others. Nonlinear
system identification can also be performed online during the operation of the system [9]. Models
obtained from data through system identification may involve a large number of potential regressors
or inputs, but not all of them may be equally important. Simple models are usually desired because
they ease the interpretation and analysis of the model and reduce the computational load, especially
in applications where limited computing resources are available, e.g., in model-based real-time
control. The use of simple models also reduces the danger of overfitting, which might otherwise
result in unreliable parameter estimates and prediction errors.

Complex models can be simplified by keeping only the set of inputs that significantly influence
the output. When reducing the number of inputs, the main question is how to reach a good trade-off
between the complexity and accuracy of the model!. Besides providing a simplified model with
sufficient accuracy, a regressor selection method should be robust, i.e., for different data sets from
the same process, similar results should be obtained [106].

Regressor selection is an essential topic in statistics. Three main approaches can be used [72]:
exhaustive search, stepwise regression (which includes forward regression, backward elimination,
and their combinations), and optimization-based approaches, also called shrinkage methods.
Exhaustive search is a simple regressor selection method that is guaranteed to give the best model,
given the specified performance measure. However, for a large number of regressor candidates,
the method is computationally intractable. Stepwise regression commonly combines forward
regression and backward elimination in an automated regressor search. The regressor inclusion and
exclusion are based on the statistical F-test, )(2 -test, or other criteria, e.g., the Akaike Information

Un this article, the terms inputs and regressors are used interchangeably because in a dynamic system model,
the regressors consist of lagged inputs and outputs.

63
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Criterion [2]. In optimization-based formulations, regressor selection is included by adding a
regularization term in the objective function so that the least-squares optimization suppresses
parameters of unimportant regressors to zero. Examples of methods using the optimization-based
approach are in, e.g., [31, 185, 217].

The use of statistical regressor selection methods for linear system identification is quite com-
mon [159]. However, regressor selection for nonlinear system identification is not as established as
for linear system identification since nonlinear models can be represented in various forms, e.g.,
polynomial models, neural networks, fuzzy models, etc. In the literature, there are different regres-
sor selection methods for identification of nonlinear systems that can be considered as stepwise
regression because they evaluate one regressor at a time and select it if it fulfills the selection crite-
rion [15, 26, 95, 101, 126, 140, 153, 165, 187, 193, 195, 247]. Billings et al. [26] employed orthogonal
least squares to compute the error reduction ratio for nonlinear output-affine models that are linear
in their parameters. Zheng and Billings [247] studied the use of the mutual information criterion to
configure radial basis function networks. Autin et al. [15] defined an input-output matrix from a lin-
earized nonlinear SISO system and used that matrix to estimate the order of the system. Rhodes and
Morari [193] extended the false nearest neighbors method [126] to include exogenous inputs. He
and Asada [101] proposed a Lipschitz quotient to compute an index that can be used to determine
important regressors and also to define the order of a nonlinear system. Krishnaswami et al. [140]
proposed the use of the coherence function of input-output data to improve the approach of He and
Asada [101] for MIMO systems. Mendez and Billings [165] developed a two-step method by firstly
using orthogonal least-squares forward regression to reduce the number of regressor candidates
for nonlinear ARMAX structures. In the second step, all possible combinations from the reduced
number of regressor candidates are exhaustively searched. Lind and Ljung [153] investigated an
interaction test between regressors and dependent variables based on the analysis of the variance
called Test of Interactions using Layout for Intermixed ANOVA (TILIA). Sindelat and Babuska [229]
developed a fuzzy-clustering-based method to measure the similarity of regressors in both input
and output space. Regarding Takagi-Sugeno (TS) fuzzy models, Chiu [46] employed a backward
search approach to exclude the antecedent clauses of a TS fuzzy model generated from a full set
of regressors. However, the final model has to be selected manually by the user. Sdez and Zuiiga
[195] proposed a sensitivity analysis to select important regressors, while Hadjili and Wertz [95]
selected regressors based on greedy search. Zhang et al. [244] enhanced the firefly optimization
approach by simulated annealing for feature selection of classification and regression models. Kim
and Boukouvala [129] surveyed the literature for machine learning-based regressor selection for
data-driven-based models. Curreri et al. [55] studied methods for input selection in soft sensor
applications and compared the methods using a real-application data set. Valente and Maldonado
[221] developed a forward regressor selection approach for a support vector regression model of
time-series data. Sun et al. [212] proposed a selection method based on the unique causal effect of
aregressor to the key performance indicator of a soft sensor.

There are also evolutionary-based algorithms that are related to regressor selection and system
identification. Askari and Crevecoeur [10] developed an evolutionary symbolic sparse regression
approach for the system identification of multibody systems, aiming to discover the equations of
motion and system parameters from time-series data using genetic programming. Khandelwal
et al. [128] presented the use of genetic programming to automatically select model structures
and parameter estimation formulated as a bi-level optimization problem based on measured data.
Huang et al. [118] proposed a method for model order selection in nonlinear systems using a false
nearest neighbor algorithm based on Gaussian mixture model clustering and a genetic version of
the expectation-maximization algorithm. Zhang et al. [243] introduced a method for constructing a
diverse ensemble of decision trees using genetic programming and the Euclidean distance. Zhang
et al. [244] enhanced firefly optimization using simulated annealing for the feature selection of
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classification and regression models. Lagos-Eulogio et al. [145] designed a method for identification
of adaptive IIR by hybridizing cellular particle swarm optimization and differential evolution. Singh
et al. [203] combined particle swarm optimization and the Dingo optimizer for the parameter
estimation of proton exchange membrane fuel cells. Guo et al. [90] applied biogeography-based
learning particle swarm optimization to wearable robots to assist human motion.

The aforementioned methods from the literature tackle the regressor selection problem by
testing a regressor candidate to see whether the candidate effectively reduces the error of the model
output estimates. Moreover, these methods are developed for a specific model structure, and
most of them are for models that are linear in their parameters. This limits the applicability of the
methods for other model structures.

The contribution of this chapter is the development of a generic regressor selection method
for nonlinear system identification. The method searches a regressor combination set based on
combinatorial optimization. In particular, given a finite set of regressors and a cost function,
combinatorial optimization is used to find a subset of the regressors that corresponds to the optimal
value of the cost function. The method directly evaluates model candidates using different regressor
combinations given the performance measure, the model structure, and the number of regressors
in the model.

The search is performed by constructing a growing search tree to evaluate models with different
regressor combinations. The tree is grown by creating several regressor combinations with an
incremental number of regressors directed toward high-performance models. At each increment,
the search compares several models simultaneously to guide the tree growth. The expansion is
performed until the maximum number of regressors in the combinations or the stopping criterion
is met.

A comparison with lasso, the stepwise regression, and the exhaustive search is conducted. We
consider examples of models with linear-in-the-parameters, TS fuzzy, artificial neural network
structures, and support vector machine regression. The results show that the proposed method is
suitable for regressor selection for a variety of model structures.

5.2. PROBLEM STATEMENT

In this section, the regressor selection problem for nonlinear system identification is introduced.
Firstly, the identification problem for nonlinear systems based on input-output data is described.
Secondly, the formulation to include the regressor selection in the identification problem is pre-
sented.

Consider a set of input-output measurements {u(k), y(k)} .-, = {#, y} from a nonlinear system,
where u(k) is the input sample, y(k) is the output sample, u is the vector of input samples, y is
the vector of output samples, and k is the discrete-time index. The goal is to build a nonlinear
model whose parameters are estimated from the data. The parameters of the model are obtained
by solving the following optimization problem:

moinL(y, ) (5.1a)
st. 7=f(®,0) (5.1b)

where L(+) is the cost function that describes the difference between the data vector y and the model
output vector y, the function f(-) is determined by the selected nonlinear model, ® is the regressor
matrix, and 6 is the model parameter vector. The function L(-) sometimes is also referred to as the
loss function.
The regressor matrix ® € RN?*"r js constructed from vectors of lagged input-output measure-
ments, where:
Np = N —max(ny, ny) (5.2)
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is the number of rows of the regressor matrix, with ny and ny, respectively, the maximum lags of
output and input measurement data. The regressor matrix can be expressed as:

D= [(pl ¢’1r] (5.3)

where ¢; € RMP is the regressor vector with ¢; = [¢; (1) -+ ¢;(ny)] T where T denotes the
transpose operation.

The model parameter vector 8 is commonly estimated by a least-squares method to minimize
the difference between the measured output and the model output. In that case, the function L in
(5.1) is defined as:

N T N
Ly, =(y-3) (y-7) (5.4)

For input-output data from an unknown system, the identification begins by selecting the
model structure, i.e., f(-), and the regressors of the model from a set of delayed input-output signals.
The regressors that might be chosen depending on the selected model structure, including, e.g.:

¢ Linear regressors, e.g., ¢; (k) = y(k—1) with nonlinear f(-) in (5.1b). Artificial neural networks
and TS fuzzy models belong to this class of models.

¢ Nonlinear regressors by multiplication of delayed signals, e.g., ¢; (k) = y(k— 1) u(k — 1) with
linear f(-) in (5.1b). This class of models is called linear-in-the-parameters [31].

¢ Nonlinear regressors by mapping linear regressors through a nonlinear function, e.g., ¢; (k) =
x(y(k - 1)) with x () a kernel function, as in support vector regression models [205].

The model parameters are then estimated by using (5.1). The performance of the resulting
model will depend on the model structure and the estimated parameters. One may test models
with a rather large delay value for unknown systems to capture the relevant dynamics. In that case,
the model will involve a large number of regressors. However, from a practical point of view, it is
preferred to obtain models that consider only the most essential regressors that effectively reduce
the prediction error. Note that the optimal number of regressors is generally also unknown in
advance.

The regressor selection problem is to find a column-wise submatrix of ® that results in a high-
performance model. The measure of the model performance is usually based on (5.4), prediction
errors, and may include a penalty for a large number of parameters in the model as in Akaike’s
information criterion [2] that is used in this chapter. For the regressor selection problem, an
indicator vector ¢s € {0,1}"r is defined as follows:

" 1 if¢;, the i-th column of @, is used in the model (5.1b)
[¢7]= ) (5.5
0 otherwise
Using this indicator vector, the model output (5.1b) can be written as:
7=8(@,0,¢5) (5.6)

where g is determined by the selected nonlinear model. From (5.5), the number of regressors in
the model, denoted by ng4, can be obtained by summing up the elements of ¢s. As the optimal
number of regressors in the model is typically unknown, it is common to search models with several
different values of n4 and treat nq as an optimization variable.

The optimization problem (5.1) is modified to become the following:

min  J 4 (y,9) (5.7a)
0,‘P3)nd

st. y=g(®,0,¢;) (5.7b)
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[or]cton, i=1m (5.70)
ng = il[qﬁ‘] (5.7d)
=

where J 4 is the cost function for the chosen model structure ., and nq is the number of columns
of the regressor matrix ®@ selected to be used, i.e., the number of regressors in the model. In practice,
one may have several candidates of n4 and select one of the resulting models.

The problem of selecting the regressors and, at the same time, finding the optimal € can be
classified as a mixed-integer nonlinear programming (MINLP) problem. Moreover, in general,
these problems are NP-hard [34]. Analytical solutions to general MINLP problems do not exist.
In this chapter, a tree search algorithm is proposed to solve the regressor selection problem with
applications to linear-in-the-parameter, TS fuzzy, and artificial neural network models.

5.3. EXHAUSTIVE SEARCH REGRESSOR SELECTION

Before discussing the proposed method, a simple solution to the regressor selection problem by
exhaustive search is briefly presented.

Typically, the problem (5.7) is solved by firstly fixing the model structure and the maximum
number nq4 regressors in the model. Given ny, there are a number of regressor combinations. Let %
denote the set of indicator vectors @s. The cardinality || = n, where:

ny 7y !
n(p = [ —
ng| ngl(ng—ny)!

Hence, there are ny possible models, from which a combination of regressors that results in the
model with the best performance is sought. In general, nq < n; and consequently the value of ny
is large.

Each regressor combination ¢ ; € % corresponds to a model m; € ., with ./ the set of
possible models. The relation between % and ./ is one-to-one, i.e., for a regressor combination
indicator ¢ ; €2, there is one associated model m; €  whose performance is denoted by J, ;.
The elements of 2 and / can be sorted according to their performance, i.e., Jy ; < Jy i+1,i =
1,...,np — 1. The solution to the regressor selection problem is the model parameter 8* associated
with the regressor combination indicator ¢¢ with the optimal performance ][;.

Searching for the model with the best performance by computing and then sorting the perfor-
mance of models with all possible regressor combinations is called exhaustive search. The method
is a brute-force method and practically gives the exact solution to the regressor selection problem.
However, as the number of regressors n, increases while the desired number of regressors ngq is
fixed, the computation load increases factorially. In the following section, an alternative method
based on a search tree representation is presented.

5.4. SEARCH-TREE-BASED REGRESSOR SELECTION

In this section, the regression search method proposed in the chapter is presented by specifying
the terminology used for the search tree, how the search tree is built, and some remarks. A short
description of the Akaike’s information criterion is given at the end of this section.

5.4.1. SEARCH TREE TERMINOLOGY

In this section, the proposed regressor selection method is detailed by first introducing the search
tree terminology and the corresponding notation related to the regressor selection. In general, a
search tree is a tree consisting of connected nodes at different levels with specified rules to grow by
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Figure 5.1: llustration of a search tree 7. Parent nodes are solid line ellipses and leaf nodes are dash-dotted
ellipses. The root is a grey-shaded solid line ellipse, and the terminal node is a grey-shaded dash-dotted ellipse.
For the model corresponding to node 7;, the regressor indicator vector is ¢ ;, and the performance is denoted
by Jp;. The depth of the node 7; is denoted by d;. For the given tree max(d;) = 2.

adding more nodes into the tree by expanding a node that fulfills a specified criterion, e.g., Akaike’s
information criterion, which penalizes models that are too complex.

The simple tree % in Figure 5.1 visually illustrates the main terms used for search trees. Assume
that a model with two out of three regressors is searched, namely ¢ = [¢;  ¢2  ¢3]. The root of
the tree is labeled by 717 in the figure, and it has depth d; = 0. The root is not associated with a set of
regressors and, consequently, a model either. Expanding the root gives three children nodes: 12, n3,
and n4 with depth d» = d3 = ds = 1. These nodes are also called leaf nodes and the root is called the
parent node of 112, 112, and 3. The nodes 172, 73, and 14 represent models with a single regressor
indicated by the regressor indicator vectors s 2, s 3, and @s 4, respectively. The value of the cost
functions associated with the model represented by node 12, n3, 4 are respectively Jp,, Jns, Jn,-
Expanding node 74 results in two children nodes: 15 and 7g, which are associated with models with
two regressor indicator sets ¢g 5 and @s g and the cost function value Jy; and Jp. Terminal nodes
are nodes that cannot be expanded anymore, e.g., 115 and g, as the maximum depth of the tree is 2.

The terms can be described in detail as follows:

Regressor set ¢: A set of regressors from which a subset of it is sought for inclusion in the model.

Node n;,i € N: A node represents a model that uses a subset of regressors from ¢. The node 7; has
the following attributes:

Regressor subset vg ;: The subset of regressors that are used in the model represented by
ni-

Indicator vector ¢ ;: A binary vector that indicates which regressors are used in the model
represented by node ;. The vector components are defined in (5.5).

Node depth d;: The level of node 7; in the tree. The level also shows the number of regres-
sors used in the model.

Performance indicator J;;: The performance of a model that corresponds to the node ;.
As the model of 7; corresponds to indicator vector ¢ ; in (5.5), hence the performance
of the model corresponds to the cost function defined in (5.7).

As the node 7; represents a model that uses regressors indicated by ¢ ;, one can refer the
model to the model of node n;.

Leaf nodes ££: The set of nodes that have no children.
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Terminal leaf nodes £1: A set ofleaf nodes that cannot be expanded to have children because they
are at the maximum depth allowed in the tree (introduced to limit the number of parameters
in the model).

Rootn1: The initial node in the tree with d; = 0 that does not represent a model, because the root
is associated to the empty regressor subset.

Parent nodes: Nodes that have been expanded to have nodes at lower depths during the search.
Nodes, except the root, are expanded based on the performance of the node.

Children nodes 6;: The set of nodes that are built from the expansion of parent node 7;. The
children of node n; inherit regressors from their parent, ;, with an additional regressor that
is different from one child to another. Children nodes are connected to their parents by arcs.

Node expansion: Adding children nodes to nodes. Nodes cannot be expanded if they have been
expanded previously or if they are terminal nodes.

The rules for expanding nodes to grow the tree are presented in the next section.

5.4.2. SEARCH TREE EXPANSION

In this section, it is shown how to select a leaf to expand. This is the main feature of the algorithm,
because it is related to how to develop the tree such that it consists of nodes that correspond to
high-performance models.

The search space for the optimization of the cost function (5.7) consists of all possible combina-
tions of ¢ having at most nq regressors in the model. At a certain depth, the number of regressors
will be the same for all nodes. According to the search tree expansion rule, the tree grows to a
maximum depth of ng.

In principle, developing a search tree consists of the following two steps:

1. Select leaf nodes
2. Expand the leaf nodes

The second step is trivial; adding an available regressor and computing the performance associated
with the nodes. The key to obtaining a good search is the first step in selecting leaf nodes to expand.
The first step guides the search for a set of high-performance regressors. The search space related
to the first step is to optimize the cost function (5.7) consisting of all possible combinations of ¢s
with at most nq regressors in the model.

Given the number of regressors n; and the desired number of regressors in model n4, the search
tree expansion can be described as follows:

1. Initially, the root node n; of the tree is added. This node corresponds to the regressor
combination vg ] = @. In other words, no model corresponds to the root node.

2. Asthe only node in the tree, the root 1] is directly expanded to have child nodes n;, I € 6
with depth d; = 1, and their performance is computed.

3. Mark the children nodes as leaf nodes.
The following steps are repeated until the stopping criterion is met:

4. Find all non-terminal leaf nodes at depth d = d max where dmax < nq is the current maximum
depth of the tree. If no non-terminal leaf is found, then search at a lower depth, d = dmax — 1.
The search is repeated until d = 2.

5. Select the node that has the lowest cost value. This node is the one that will be expanded.

6. Expand the node found in the previous step to obtain child nodes. Compute the cost function
associated with the child nodes. Mark the child nodes as leaf nodes if they are at depth d < ng;
otherwise, mark them as terminal leaf nodes.
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The above steps describe the search tree expansion method, which is equivalent to greedy
search. The greedy search is achieved by constraining the expansion of only one node to the
maximum depth d = dmax. Within this constraint, the computational cost is the lowest, and
a shortlist of models is created. This may result in a regressor combination with sub-optimal
performance, similar to the proposed method.

However, there are variations in the proposed algorithm, which is mainly based on the rule of
node expansion. Consider a case in which no limitation is imposed on node expansion. In other
words, the nodes are expanded to allow all possible regressor combinations at each depth to have a
tree to the maximum depth of n4. Expanding all nodes at the current maximum depth d = dmax
implies creating all possible models that use dmax regressors. This is equivalent to an exhaustive
search to determine the best model from 1 to § max regressors.

Users can consider multiple node expansions at a certain depth, as shown in Example 2 of
Section 5.4.3 denoted by ne. A longer list of possible models is available in this case than in the
second case. This multiple node expansion avoids greedy behavior but should also be limited to
avoid exhaustive search. In other words, users can define their own rules of searching. There are
two search directions for a given nq:

» Vertical search, that is, each expansion repetition increases the depth of the tree as long as
the depth of the parent node is less than ng.

¢ Horizontal search, that is, expansion is repeated to leaf nodes at a certain depth, but without
limitation only to those at depth nq — 1.

In addition, the search may be performed by combining both directions. In general, there is no
single rule for developing a search tree that fits the regressor search problems. Experience or prior
knowledge of the problem may help in designing rules for search tree development.

The search time constraint can hypothetically be associated with the computation resource
allocated to build the tree, i.e., the number of computation units allocated to construct the tree.
Furthermore, different depths of the nodes are related to different complexities of the models.
Consequently, nodes at various depths require different computation efforts.

The proposed method is developed based on the observation that adding a regressor into a
model will lower the cost function value. However, the cost function reduction effect differs from
one regressor to the other. Adding a correct regressor will lower the cost function more significantly.
The purpose of building the search tree is to direct the search to find the best-performing node.

One can see the characteristics of the proposed method to solve a MINLP optimization problem
as follows. Each step of tree building incrementally creates new combinations of regressors, and
at the same time, their performance is evaluated and used to determine the next formation of
new combinations with more or less regressors in the combination. Note that the best-performing
regressor combination is not always obtained at the end of the search because the combination is
always created until a stopping criterion is met or the tree cannot be grown anymore.

The algorithm of the tree expansion is shown in Algorithm 1. In Algorithm 1, we define the
following function and variables:

fa(): a function that returns the depths of an ordered set of nodes. As an example, f(¥) =
{2,2,2,3,3,3} for £ = {2,4,5,6,7,8} as in Figure 5.2b

fi(): afunction that returns the regressor indices from the indicator vector

% 4: the set of leaf nodes at depth d

%Lrg: the set of ne leaf nodes that will be expanded

q;: the index of node that has the least Jaic, the value of Akaike information criterion, at depth d

In order to have a model with ng regressors, it is clear that nodes at depth d = nq should be
marked as terminal leaf nodes. This way, no model with more than nq regressors is built. The



5.4. SEARCH-TREE-BASED REGRESSOR SELECTION 71

algorithm returns regressors that deliver the least Jajc of models with 2 to ng parameters.

Algorithm 1 Search-tree-based regressor selection for nonlinear systems

Input: y, ®, nq, model class, J, fq(), £ = LT = @, ne, Stopping criterion
Stop — false
Initialize tree: 7 — {11}
61 — expand 11
Jn; — compute the Jojc of node 7;,i € 6,
L LUt
{Expand tree}
while Stop = false do
Smax — max(f (L))
if 0 < 6max < nq or Stop = false then
if $5max # @ then
g —nodesn;,i€Ls  thathave the lowest Jic, [£g| = ne
6; — expand n;,i € Lg
Jn; — compute the Joic of node n;,i € 6;
if fd ((gl) <ng then
L —LUE;
else
ffT — =(£T U Qgi
end if
L —L\Lg
SBT — .ffT U SBE
else
Omax — Omax—1
if 9 max = 0 then
Stop «— true
end if
end if
if Stopping criterion fulfilled then
Stop « true
end if
end if
end while
{Select the best performing node for each depth d, from d = 2}
&fA A fT
for d =2to ngdo
q; — node that has the least Jajc at depth d
Ys,q; — fi(‘Ps,qt*i)
end for
Output: Vs, d=2,...nq
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5.4.3. SEARCH TREE FOR REGRESSOR SELECTION
In this section, the rule for node expansion is presented by two examples to build a tree 7 for a set
of four regressors, where the discrete-time indicator k is omitted to simplify the notation:

Oo=[P1 P2 P3  ¢4)

In the examples, the goal is to find the best performance model with no more than three regressors,
nq =3.

EXAMPLE 1
The first example shows the proposed algorithm presented step-by-step.

Step 1. Initially, the tree 7 has only the root 7. The attributes of the root are:
e Depth: d; =0
* Regressors: vg] = @

As the only node in the tree, the root is then expanded. The root now currently has four
children nodes n;,i € ‘61 =1{1,2,3,4}.
The depth of the childrenis d; =1,i € 6
The models n;, i € 61 have one regressor
Us2 ={p1}  vs4 = i3}
Us3 =12} U5 = (s}
The tree has four leaf nodes at depth d; = 1,i € £ = {2,3,4,5}. The performance of the
leaf nodes, Jy;,i € £1, is then evaluated, and the values are sorted in ascending order. For
instance, the order of performance after sorting is J; < Jp; < Jp, < Jp,. As Jp; has the lowest
value, node 13 is expanded.

The tree is illustrated in Figure 5.2a.

Step 2. Node 13 has three children nodes n;,i € ‘63 = {6,7,8}.
The depth of the children is d; = 2,i € €3.
The models of the node 7, i € 63 have two regressors:
Vs ={P1, P2t vsg = {2, P3}
Vg7 = {¢27¢4}
Until this point, the tree is shown in Figure 5.2b.
The tree has now three leaf nodes at depth d; =2,i € £, = {6,7,8}. After evaluating the leaf
nodes £, assume the ascending performance values are Jpg < Jpg < Jp,. This means that
node 7g is expanded.

Step 3. Node ng has two children nodes n;, i € ‘6g = {9, 10}.
The depth of the children is d; = 3,i € ‘6.
The models of the nodes n;, i € ‘6g have three regressors:
Vs 9 ={P1,¢2,¢a}  Vs,10 = {P2,¢3, P4}
The tree at this step is illustrated in Figure 5.2c.
The regressors selected for the model with three parameters are based on the sorted perfor-
mance of the nodes 77; at depth d; = 3. Assuming Jp, < Jp,,, the regressor combination that
should be selected is vs g = {(p1, P2, P4}
One can also find the best-performing model with one parameter from the nodes at d; =1,
resulting in vs 3 = {¢p2}, and with two parameters from nodes at d; = 2, vs g = {¢p2, P4}
In the algorithm, a mechanism is included to avoid two or more nodes representing the same
model, i.e., node duplication. From the example above, one may see that the algorithm is similar to
stepwise regression by using tree representation.
The second example illustrates the ability of the proposed algorithm beyond the stepwise
regression.



5.4. SEARCH-TREE-BASED REGRESSOR SELECTION

73

51 =0
Step 1 i
J’]l
vs2 = {1} Us,3 = {$2} vs,a = {¢3} Vs,5 = {¢a}
Tna Ina N Ins
(@)
1= 0
Step 2 Vel
‘,’]l
Us2={¢1} Us3 = {¢2} vs,a={¢s} Us5 = {¢a}
o JIns N Ins
Voo = {2, 61} Jur Vs = {$2, pa}
T vs,7 = {¢2, ¢3} Ing
(b)
51 =0
Step 3 o
I
vs2={¢1} vs3 = {¢2} Vs = {3} Us5 = {¢a}
‘]’72 ',"3 J’]4 J”5
vo6 = {2, 41} Jur Uss = {¢2, a}

Ine Ing

vs7r={¢2, d3}

Ing 1o

Us,9 = Us,10 =
{¢2, #a. p1} {02, ds. ¢3}

(©

Figure 5.2: Illustration of a search tree to find a model from four regressors given that only one node is expanded
at each depth (resembling stepwise regression). In (a), the selected node is the root, and no regressor is selected.
The root is expanded to have four children, and the corresponding cost function values Jn;i=1,...,4 are
computed. Assuming model 73 has the smallest performance value at depth 1, and it is expanded, the resulting
tree structure is shown in (b). In (b), the yellow shaded nodes are the children of n3 with depth 2. After
computing the performance of the children, the best model is expanded. Assume that model ng is the one with
the smallest performance value. Expanding node ng gives the tree shown in (c).
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EXAMPLE 2

Step 2 iy
‘/711
ves= (1) ves = (62) Ve = (65) ves = (64

Iz

Vi = {01, ¢2} Inr

Ing Iy
Vss = {¢2, ba} Vs0 = {@1, Pa} [vs10 = {¢3. da}

e Ve,7 = {2, ¢3} Tng Tng Tn1o

(@)

s1=0
Step 3 s
I
vz ={61) vos = (¢2) voa = (#5) ves = {64)

Ina
v = {01, ¢2} Jur

Ing Ina
Vss = {h2, ba} vs0 = {P1. P} |Us10 = {h3. ba}

Ing vs,7 = {02, ¢3} Ing o

I I Iz

Vi1 = {61, b2, ¢3} Vo1 = {¢1, b2, 2} Vo1 = {1, ¢3, P}

(b)

Figure 5.3: Illustration of a search tree to find a model from four regressors, allowing expansion of two nodes
with the smallest performance values at each depth. Step 1 is omitted because it is the same as in Figure 5.2a.
In (a) assuming the model nodes 13 and 715 have the best performance values, and both are expanded. In (b),
both nodes ng and ng have the best performance values, and they are expanded. However, expanding node ng
results in only one child because the other child is the same as that of the node 19

The search can be performed by allowing a number of simultaneous node expansions denoted
by ne. This number is the key parameter of the proposed method. The second example shows a
variation with ne = 2 to show the flexibility of the proposed algorithm. The following are the steps:

Step 1. This step is the same as Step 1 in the previous example (see Figure 5.2a). The sorted node
performance values are: Jp; < Jpg < Jp, < Jp,. As Jp; and Jp; are the two smallest values, the
corresponding nodes are expanded, namely, node n3 and 75.

Step 2. The children of the node 73 are the same as in Step 2 of the previous example, i.e., n;,i €
‘63 =1{6,7,8}. Node 15 now has two children nodes n;, i € ‘€5 = {9, 10}.

The depth of the children is d; = 2,i € 65.
The models of the nodes 7;, i € €5 have two regressors as well:
Usg =1{¢2,¢1}  Vs10 = (2,3}
The tree is shown in Figure 5.3a.
Sorting the performance values of the leaf nodes at depth d; = 2 gives, e.g., Jpy < Jps <
Ing < Jn, < Jnye- Hence, nodes ng and 1 are selected for expansion. However, with node
duplication check, node ng has only one child as the other child in the same as that of node
19.
Step 3. Node ng has two children nodes n;,i € ‘69 = {11,12}.
The depth of the children is d; =3, i € 69g.
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The models of the nodes 7;, i € 69 have three regressors:
Us11 = {1, P2, Pal Vs12 = {2, Pa, P3}
Node 71 has one child node 7;, i € ‘65 = {13}.
The depth of the child is d; =3, i € 6.
The model of the node 7;, i € €¢ has three regressors: vs 12 = {¢p1, P2, 3}
Assuming Jp,, < Jy,5 < Jn,,, the node 71 that corresponds to the model using the regressors
Us,11 = {1, P2, 4} is selected.

5.4.4. PERFORMANCE MEASURE: AKAIKE’S INFORMATION CRITERION

To evaluate the performance of a regression model, different measures that consider model com-
plexity have been suggested in the literature [159]. In this chapter, Akaike’s information criterion [2]
is applied because it is commonly used in system identification. The Akaike’s information criterion
was derived using the approximation of the Kullback-Leibler (KL) distance based on data only. AIC
is one of the measures that can be used to penalize models that are too complex, among other
measures, e.g., Bayesian information criterion (BIC). Users may select any other measure that suits
their preference, and the proposed method provides flexibility for such selection.

For a model with ny regressors, Akaike’s information criterion is formulated as?:

Jarc = =2In(£n@1y)) +2ng
where £y, (1y) is the maximized value of the likelihood function for a model where the parameters
0 are estimated using observation data y. The criterion uses the number of parameters to penalize

models with a large number of parameters.
The value of Akaike’s information criterion can be computed using [35]:

LT
=NIn|—e' e
Jaic (N

+21’ld

with N the number of samples, and e = y — jy the difference between the observed data vector y
and the estimated data vector j. If the ratio N/nq is small (i.e., less than 40), Akaike’s information
criterion gives strongly biased estimates and, therefore, a modified Akaike’s information criterion,
AIC criterion should be used to increase the penalty of selecting a model with more parameters
[119]. The modified criterion in case of the small N/ng is given by [119]:

Zl’ld(l’ld +1)
Jaic =Jaic + Neng—1

For TS fuzzy models, the number of parameters can be computed as follows [241]. A TS fuzzy
model consists of R rules, where each rule has two parts: antecedent and consequent. In the
antecedent part, besides the number of antecedent variables, the number of parameters also
depends on the membership function used. In the case of Gaussian membership functions, as
used in this chapter, the parameters are the mean and the standard deviation. For a model with ngq
regressors, each rule has 2n4 antecedent parameters and nq + 1 consequent parameters. The total
number of parameters is then R(3ng + 1). It can be seen that a TS fuzzy model is a complex model
from the number of parameters in the model.

2Note that in the literature, the criterion is often written using log based on the natural number e. Here the
notation In is used in order to avoid confusion, where In = log,,.
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5.5. EVALUATION EXAMPLES

The effectiveness of the algorithm is evaluated using examples with both synthetic and real-life
application data. The synthetic data are from the Hénon map [104], which is a chaotic time series.
The real-life application data sets are from a heat transfer process [122] and a fermenter laboratory
setup [222]. All experiments were performed on a Personal Computer with an Intel® i7-9700T
processor and 16GB RAM.

To evaluate the proposed method, important regressors are sought for NARX models with the
following structures:

1. Linear-in-the-parameter model.
2. TS fuzzy model.

3. Artificial neural networks model.
4

. Support vector regression model.

Linear-in-the-parameter models are used for all data sets. The models use polynomial regressors
with a maximum of second order3. For heat transfer data, the other three structures above are also
applied. Using common practice in system identification, the data set is divided into two subsets:
one subset containing two-thirds of the total samples for identification (or parameter estimation)
and one subset containing the remaining data for validation.

For the proposed method, regressor selection is performed based on the performance of the
model in predicting the validation data. Two prediction approaches are used to compute the model
performance:

1. One-step ahead prediction.

2. Free-run simulation prediction. This prediction only uses the data for the initial conditions.
The next output predictions are computed using the input and only the previous output
predictions without using any output from the data set.

The proposed method is mainly benchmarked against the exhaustive search, because it allows
a straightforward implementation of both prediction methods. Additional benchmarks in the case
of linear-in-the-parameter models are stepwise regression and lasso [217] from the Statistics and
Machine Learning™ toolbox in MATLAB®. For completeness, the performance of the free-run
simulations is also computed for the models obtained by lasso and stepwise regression.

According to the documentation, the stepwise regression function does not allow the use of
validation data, meaning that the function selects the best model based only on the identification
data. A different case pertains to the lasso function. A K-fold cross-validation method is used. The
lasso function can randomly divide the data into K subsets and use K—1 subsets as the identification
data and one subset as the validation data. In these examples, we set K = 3. Hence, the lasso
function obtains all data samples without manually dividing the identification and validation data.
In addition, the use of lasso here is purely for regressor selection, therefore, the parameters from
MATLAB toolbox are not used. Instead, new parameters are computed based on the selected
regressors.

To improve the presentation, plots that are not directly related to the experiment results are put
in the 5.7 at the end of the chapter. They are the plots of the input-output data and the outputs of
models and their corresponding errors.

3Polynomial regressors are ones that are formed from the multiplications of lagged input-output data, including
self-multiplication and bias.
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Table 5.1: Frequency of the selected regressors for the Hénon map example. The incorrect regressors are shaded
in pink. The proposed method incrementally expands 6 leaves at depth 2 to construct models with 3 parameters.
The selected regressors after the 4th 5t and eth expansion are shown. They correspond to tree sizes of 885,
1056, and 1225, respectively. As a comparison, the exhaustive search has to search from 121485 combinations.

(a) One-step ahead prediction

Selected Exhaustive Proposed
regressors Lasso Stepwise search method
y(k—-4) 100 100 100 26 66 100
y2 (k-2) 100 100 100 100 100 100
Constant 100 100 100 100 100 100
y2(k-12) 0 0 0 72 34 0
Others 0 74 0 2 0 0

(b) Free-run prediction

Selected Exhaustive Proposed
regressors search method
y(k—4) 2 2 2 2
2 (k-2) 0 0 0 0
Constant 100 100 100 100
y2(k—12) 0 0 0 o0
Others 198 198 198 198

5.5.1. EXAMPLE 1: HENON MAP
The Hénon map is a discrete-time dynamical system that exhibits chaotic behavior. The system is
defined by [104]:

yo) =1-a(y(k-2)-e(k —2))2 +b(y(k—4)—e(k—4)) (5.8

where e(k) is zero-mean Gaussian random noise. For the experiment, 100 sets of data are generated
to allow consistency checks of the selected regressors.

The chaotic behavior is obtained by setting a = 1.4 and b = 0.3. From the model, 100 data sets of
1000 samples are simulated using the initial condition y(1) =0, y(2) =1, y(3) = 0.5, and y(4) = -0.5
and uniform random noise e(k) in the range [—0.01,0.01]. The regressor candidates are monomials
from y(k—1i),i =1,...,12 and multiplication of two monomials, including self-multiplication and a
constant. The total number of regressor candidates is 91.

In this example, only nodes at depth d < 3 are expanded to result in models with 3 regressors
for the proposed method. For the proposed method, we expand the leaves at depth 2 repeatedly to
6, and for each expansion, we check if the proposed method selects the correct regressors, i.e., the
ones that are in (5.8). The repeated expansion is performed because the proposed method mostly
selects incorrect regressors for the first 3 repetitions. The results are shown in Tables 5.1 and 5.2.
Only after more than 3 repetitions the proposed method starts selecting the correct regressors, and,
therefore, their results are included in the tables.

Table 5.1 shows the frequency of the selected regressors for the compared methods. The first
column of the table lists the regressors selected by the compared methods, where the incorrect
regressors are shaded in pink. The other columns show the number of times a regressor is chosen
from 100 experiments with different noise realizations.

For the one-step ahead prediction, the table shows that lasso and exhaustive search select all
correct regressors, and stepwise regression frequently selects more regressors in addition to the




78

5. SEARCH TREE BASED REGRESSOR SELECTION

Table 5.2: Mean and standard deviation of the Jzjc values and computation time for the Hénon map example

(@) Jaic
Methods One-step ahead Free-run
prediction prediction
Lasso —-2551.0+18.0 —-191.1+14.3
Stepwise —2857.2+24.1 -229+21.9
Exhaustive search —2863.1+23.5 -225.4+10.8
4 | —1543.4+784.2 —-225.1+10.8
Proposed method 5 | —2259.6+848.0 —225.1+10.8
6 | —2863.1+23.5 —-225.1+10.8
(b) Computation time in seconds
Methods One-step ahead Free-run
prediction prediction
Lasso 0.015+0.004 -
Stepwise 0.009 +0.003 -
Exhaustive search 83.551+1.230  251.746+0.310
4 0.582 +0.004 1.742 £ 0.003
Proposed method 5 0.673 £0.002 2.073+£0.008
6 0.764 +0.002 2.393 +0.005

correct ones. The table also shows the results of the proposed method with 4, 5, and 6 expansions
of leaf nodes at depth 2. The expansions correspond to tree sizes 885, 1056, and 1225. It can be seen
that after 6 leaf node expansions at depth 2, the proposed method can find all correct regressors.

Table 5.2 shows the mean and the standard variance of the Jzic values for the compared
methods and the corresponding computation time to obtain the regressors. For the one-step-ahead
prediction approach, the exhaustive search and the proposed method with 6 expansions yield
models with the lowest mean and standard deviation of Jajc, followed by stepwise regression,
which delivers a model with more regressors and lasso. The lower performance shows that stepwise
regression is penalized by selecting more regressors.

The lower performance of lasso comes from the fact that lasso computes the parameters in a
different way compared to the least-squares method, resulting in models with lower performance.
The proposed method correctly selects y(k —8) and the constant in all runs, while the frequency of
choosing y(k —4) increases with more expansions of leaves at depth 2. The table also shows that
choosing incorrect regressors results in a higher standard deviation of Jojc than when selecting
correct regressors.

In case of the free-run prediction approach, the exhaustive search and the proposed method
cannot find the correct regressors. While both methods can consistently find the constant, a
different regressor combination is yielded for each data set. It is presumed that the chaotic nature of
the system results in data that cannot be used for long-term prediction. Consequently, the identified
models return a poor long-term prediction performance.

With respect to the computation time for the one-step ahead prediction, the proposed method
is much faster than the exhaustive search but slower than lasso and stepwise regression. In the case
of free-run prediction, the proposed method is still faster than the exhaustive search.
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Table 5.3: Regressor candidate indices of the polynomial model for the heat transfer process example.

Index Regressor Index Regressor Index Regressor
I yk-1 10  yk-Dy(k-3) 19 yk-3)uk-3)
2 yk-2) 11 yk-2)yk=3) 20  u(k—2)u(k-3)
3 yk-3) 12 y2(k-3) 21 uP(k-3)
4 u(k—2) 13 yk—-Nu(k-2) 22 yk—Du(k-4)
5  u(k-3) 14 yk-2uk-2) 23  yk-2ulk-4)
6  ulk-4) 15 yk-3)uk-2) 24  yk-3)ulk-4)
7 Yk-1 16 u?(k-2) 25 u(k-2)u(k—4)
8  yk-Dyk-2 17 ylk-Duk-3) 26 u(k-3)uk—4)
9 (k-2 18 yk-2uk-3) 27  ulk-4)

28 1

5.5.2. EXAMPLE 2: HEAT TRANSFER PROCESS

The data set in this example comes from a simple heat transfer experiment [122]. The process
consists of a 30 cm tube with a fan, a heating resistor, and a temperature sensor as illustrated in
Figure 5.4. The resistor and the fan are located at one end, and the sensor is at the other end. The
input is the voltage over the heating resistor u(k) € [0V,12V] and the output is the voltage that
corresponds to the air temperature measurement y(k) € [0V, 10V]. The airflow of the fan can be
controlled manually by a valve, considered as an independent measurable variable v (k) € [0°,180°].
The value of v(k) is set constant. A more detailed description and a first-principles model of this
process can be found in [122].

Fan
Temperature
AIR sensor AIR
—> —>
Anéle
AIR Voltage y(k)

u(k)

Figure 5.4: Schematic illustration of the heat transfer setup adapted from [122].

The data set contains 1309 samples, from which 873 samples are used for identification. The
data is plotted in Figure 5.13. The data was centered to remove the offset before the search. For this
data set, monomial regressors with the maximum degree of 2 from y(k—i) and u(k—-i—1),i=1,2,3
are created so that there are 27 regressor candidates. These regressors are indexed and shown in
Table 5.3. Regressors of models with 2 to 10 parameters are searched by using exhaustive search,
lasso, stepwise regression, and the proposed method. The search tree is grown by expanding three
nodes at each level.

The chosen regressors are shown in Table 5.4, using the same format as in the previous ex-
amples, and the corresponding Jajc values are demonstrated in Figure 5.5. Comparing the Jaic
performance, it can be seen that the proposed method outperforms lasso, and it performs slightly
worse than exhaustive search and stepwise regression for the same number of regressors. The
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Table 5.4: Indices of the selected regressors for models of the heat transfer data with 2 up to 10 parameters
obtained by the exhaustive search, lasso, stepwise regression, and the proposed method with three node
expansions in each depth. The dashes indicate that a model with the corresponding number of regressors could
not be found.

(a) One-step ahead prediction

Number of Lasso Stepwise Exhaustive Proposed
parameters search method
2 7,28 — 1,2 1,2
3 7,21,28 — 1,2,7 1,2,7
4 7,19,21,28 — 1,2,7,28 1,2,7,28
5 7,9,26,27,28 — 1,2,6,7,28 1,2,6,7,28
6 7,9,21,26,27,28 — 1,2,3,6,7,28 1,2,3,6,7,28
7 7,9,12,21,26,27 1,2,3,6,7,9 1,2,3,6,7,10 1,2,3,6,7,10
28 28 28 28
8 7,8,912,21,26 — 1,2,6,7,13,17 1,2,3,6,7,8
27,28 22,28 10, 28
9 — — 1,2,6,7,10,13 1,2,3,5,6,7
17,22, 28 8,10, 28
10 7,8,912,21,23 — 1,2,6,7,8,10 1,2,3,4,5,6
24,26, 27,28 13,17, 22,28 7, 8,10, 28
(b) Free-run prediction
Number of Exhaustive Proposed
parameters search method
2 13,28 13,28
3 1,7,28 1,13,28
4 1,3,8,28 1,7,13,28
5 1,3,5,8,28 1,3,7,13,28
6 1,3,6,8,17,28 1,3,6,7,13,28
7 1,3,4,5,8,17,28 1,3,4,6,7,13,28
8 1,3,6,8,10,17,24 1,3,4,6,7,13,22
28 28
9 1,3,56,9,10,17 1,3,4,6,7,12,13
24,28 22,28
10 1,4,5,6,8,9, 14 1,3,4,6,7,10,12
16,19, 22 13,22,28

performance difference between lasso and the other methods is relatively large. It can also be seen
that for the one-step ahead prediction approach, the proposed method returns models that are
close to those obtained by exhaustive search. Note that lasso does not give results for models with 9
parameters. The cause is unknown because no error message is returned. The stepwise regression
is only able to return a model with 7 parameters, which performs close to the models returned by
exhaustive search.

To visually assess the fit of the models, the one-step ahead predictions and their corresponding
errors for the validation data for models with 7 parameters are plotted in Figures 5.14 and 5.15.
Predictions for models with 7 parameters have been chosen because the stepwise regression results
in a model with 7 parameters only. The predictions from the exhaustive search overlap with those
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Figure 5.5: Values of Jajc of the heat transfer validation data from models with different numbers of parameters:
exhaustive search (blue-filled [J), lasso (red A), stepwise regression for 6 parameters (black v7), and the proposed
method (black o) for the heat transfer data.
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Figure 5.6: Computation time, in seconds, for exhaustive search (blue-filled [J) and the proposed method (black
o) for the heat transfer data.

from the stepwise regression because both methods select mostly the same regressors and produce
the same models. As Figure 5.5 suggests, the prediction error from the model obtained by lasso
is the largest, while the errors from the models obtained by the proposed method, exhaustive
search and stepwise regression are close each other. Remark: it can be seen that using the one-step
ahead prediction, the proposed method and exhaustive search use linear regressors, that is, y(k—1)
and y(k —2) in all sets of selected regressors. This may raise an idea of the sufficiency of using
linear models instead of nonlinear ones. The discussion about this observation is detailed in the
discussion section.

The computation times required for the method proposed in this chapter and the exhaustive
search are shown in Figure 5.6. It can be seen that the proposed method is faster than the exhaustive
search. As the number of regressors in the model increases, the log computation time of the
proposed method increases significantly smaller than that of exhaustive search. Note that lasso and
stepwise regression are omitted in Figure 5.6 as the lasso function is implemented to find several
models in a run, while the stepwise regression function does not allow to specify the number of
regressors.

5.5.3. EXAMPLE 3: LABORATORY FERMENTER

In this example, a laboratory fermenter is considered. The setup is the one used in [222], and
it is illustrated in Figure 5.7. The capacity of the fermenter tank is 40 liter, and it is filled with
25 liter water. Air is fed from the bottom of the tank, controlled by a local mass-flow controller.
The air pressure in the head space is determined by the position of an outlet valve at the top of the
fermenter.

The system has two inputs: the position of the outlet valve and the position of the inlet air
flow rate. The output is the pressure in the head space. To obtain a SISO system, which is used
in this example, the inlet flow rate is kept constant. The time constant of 45 s allows for a sample
period of 5s. For identification, the system is excited with multi-sinusoidal signals that cover the
amplitudes and the frequencies of interest. The amplitude is between 0 and 100 % valve opening,
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Outlet valve  u

Controlled
Pressure

Inlet valve

Mass-flow
controller

|— U

Figure 5.7: Illustration of the laboratory fermenter.

and the frequencies are 1000, 500, 250, and 100 Hz. There are two data sets for identification and
also two sets for validation. The identification data sets consist of 757 and 480 samples, and they are
plotted in Figure 5.16, while the validation data sets consist of 185 and 281 samples. More details on
the setup are given in [222].

In this example, the effectiveness of the proposed method is tested further by using structures
that are not linear-in-the-parameters. For that purpose, this section is divided into two parts. In the
first part, the same experiments as for Example 2 are performed. In the second part, the proposed
method is compared to a TS fuzzy model, an artificial neural networks (ANN) model, and a support
vector regression (SVR) model.

PART 1: LINEAR-IN-THE-PARAMETERS

In this part, the regressor candidates are the same as in Example 2 and shown in Table 5.3. For the
proposed method, the search tree is grown by expanding three nodes at each depth of the tree. The
selected regressors from the one-step ahead prediction and the free-run simulation are shown in
Table 5.5 for models consisting of two to ten regressors. As shown in the table, the proposed method
selects different regressors compared to the ones of exhaustive search, except for two regressors.
For the one-step ahead prediction, the proposed method does not select the constant, the regressor
28. This shows that the short horizon of the one-step-ahead prediction may not be preferable to
select regressors for the model. This is different from the free-run simulation experiment, where
the constant is consistently chosen by both the exhaustive search and the proposed method. The
result from stepwise regression is omitted in Table 5.5 as it selected 15 regressors, which is larger
than the desired maximum number of regressors.

It can also be observed that lasso delivers models that have a relatively constant performance
for different numbers of regressors based on the one-step ahead prediction. Using the models for
the free-run simulation, the performance of lasso shows relatively small differences across different
numbers of regressors.

The results in ¢ performance are shown in Figure 5.8. Exhaustive search selects regressors
for models with better performance, but this comes at the cost of high computation times, as shown
in Figure 5.9. To assess the performance difference with respect to the prediction by the model, the
model output and the corresponding error output for the validation data are shown in Figures 5.18
and 5.19. From the figures, it can be seen that the models with regressors selected by the exhaustive
search and the proposed method result in relatively small prediction errors.
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Table 5.5: Indices of the selected regressors for models of the laboratory fermenter data with 2 up to 10
parameters obtained by the exhaustive search, lasso, and the proposed method with three node expansions in
each depth. The dashes indicate that a model with the corresponding number of regressors could not be found.

(a) One-step ahead prediction

Number of Lasso Exhaustive Proposed
parameters search method
2 7,28 1,3 1,3
3 7,8,28 4, 24,28 1,12,13
4 7,8,9,28 1, 4, 24, 28 1,4,12,13
5 - 1,4,12, 24,28 1,5,12,13, 22
6 7,8,9,13, 14,28 3,4,12,15, 24,28 1,3,5,12,13,22
7 - 3,4,12,15,16,24,28 1,5,6,12,13, 14,22
8 7,8,9,11,13,14,15 3,4,12,14,15,23,24 1,2,3,6,13,14,18
28 28 22
9 7,8,9,10,11,13,14 3,4,12,14,15,16,23 1,3,5,6,12,13,14
15,28 24,28 18, 22
10 7,8,9,10,11,12,13 3,4,9,12, 14,15, 16 1,2,3,5,6,12,13
14, 15, 28 23,24,28 14, 18, 22
(b) Free-run prediction
Number of Exhaustive Proposed
parameters search method
2 13,28 13,28
3 4, 24,28 6,17,28
4 4,17, 24,28 5,11, 14, 28
5 4,11, 16, 24, 28 5,11, 14, 23, 28
6 3,4,12,15, 24,28 5,7,10, 14, 23, 28
7 4,10, 19, 20, 24, 27,28 5,6,7,10, 14, 23, 28
8 3,4,7,10, 15, 24, 25 4,5,7,9,10, 14, 23
28 28
9 4,8,10,14,19,21,24  4,5,7,10,13, 14,23
26, 28 24,28
10 4,8,10,14,15,18,20 3,4,5,7,10,13, 14
24, 25,28 23,24, 28
0 0
G Gt
géAAA A AA 22 @6A A AAA
<1®00000090 4 *¥990000
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(b) Free-run prediction

Figure 5.8: Values of Jaic of the laboratory fermenter validation data from models with different numbers of
parameters: exhaustive search (blue-filled [J), lasso (red A), and the proposed method (black o) for the heat

transfer data.
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Figure 5.9: Computation time for the exhaustive search (blue-filled [J) and the proposed method (black o) for
the laboratory fermenter data.

Table 5.6: Regressor candidates indices for the laboratory fermenter example.

Index Regressor Index Regressor

1 u(k—1) 5 yk-1)
2 u(k-2) 6 y(k-2)
3 u(k—3) 7 y(k—=3)
4 u(k—4) 8 y(k—4)

PART 2: TS FUZZY, NEURAL NETWORK, AND SUPPORT VECTOR REGRESSION MODELS
The regressor candidates in this example are u(k — i) and y(k—1i), i =1,...,4 and they are indexed
as shown in Table 5.6. In this example, it is intended to find models with two to five regressors.

Different from the previous examples, the proposed method is evaluated for three models with
a NARX structure: Takagi-Sugeno (TS) fuzzy models, Neural Networks (NN), and Support Vector
Machine for Regression (SVR). In this example, the feature of the proposed method to work with
models that are not linear-in-the-parameters is shown. Here, the search by the proposed method
is compared to that of the exhaustive search. The other methods considered before cannot be
included in the comparison as no result has been found with lasso and forward selection for the TS,
NN, and SVR models.

In this example, the TS fuzzy models are constructed by using product space clustering [16],
which involves fuzzy clustering with the Gustafson-Kessel algorithm [91] followed by consequent
parameter estimation. For the clustering, the fuzziness index of the clusters is set to 2. This value is
typical for system identification [16]. A larger fuzziness index means more fuzzier or overlapping
clusters. The TS fuzzy models have 3 rules, where the antecedent membership functions are
obtained by projection and the degree of fulfillment of the antecedent is computed by using the
product of the individual components. The consequent parameters are computed by using the
least-squares method. The NN models use a hidden layer with 20 neurons, a hyperbolic tangent
activation function, and the Levenberg-Marquardt algorithm for training. The SVR models are
computed using the fitrsmv of the Statistics and Machine Learning™ toolbox in MATLAB®.

Table 5.7: Selected regressors for the TS fuzzy model of the laboratory fermenter data.

One-step ahead prediction Free-run prediction
Number of Exhaustive Proposed Exhaustive Proposed
regressors  search method search method
2 1,5 1,5 2,5 1,5

3 1,56 1,56 1,3,5 1,3,5
4 1,56,7 1,56,7 1,3,57 1,3,57
5 1,2,56,8 1,2,56,7 13,578 1,3,578
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Table 5.8: Selected regressors for the neural network model of the laboratory fermenter data.

One-step ahead prediction Free-run prediction

Number of Exhaustive Proposed Exhaustive Proposed
regressors  search method search method
2 1,5 1,5 2,6 1,8
3 1,56 1,56 1,58 1,58
4 1,5,6,7 1,56,7 1,56,8 1,56,8
5 1,2,56,7 1,2,56,7 1,56,7,8 1,56,7,8

Table 5.9: Selected regressors for the support vector regression model of the laboratory fermenter data.

One-step ahead prediction Free-run prediction

Number of Exhaustive Proposed Exhaustive Proposed
regressors  search method search method
2 1,3 1,3 5,6 5,6
3 1,34 1,3,4 2,4,7 5,6,8
4 1,2,3,4 1,2,3,4 2,4,7,8 5,6,7,8
5 1,2,3,4,6 1,2,3,4,6 1,3,4,7,8 2,4,57,8

Table 5.10: Number of models evaluated to find regressors of the highest performing models.

Number of Exhaustive Proposed

regressors search method
2 28 16
3 56 28
4 70 43
5 56 60
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The results of the regressor selection are shown in Tables 5.7, 5.8, and 5.9 for, respectively,
the TS models, NN models, and SVR models. For the TS and NN models, it can be seen that the
proposed method selects the same regressor sets as the exhaustive search. There are only two
cases out of 16 that the proposed method give different results from the exhaustive search, i.e., the
5-regressor model based on the one-step ahead prediction and the 2-regressor model based on the
free-run simulation. For the SVR models and the search based on the one-step ahead prediction,
the proposed method results in the same selected regressors as the exhaustive search. However, the
results are different for the search based on the free-run simulation. The proposed method delivers
a different regressor selection for models with more than two regressors, but the performance of the
model with three regressors is not significantly different from the one obtained from the exhaustive
search.
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Figure 5.10: Values of Jaic (a and b) and the computation time (c and d) for the laboratory fermenter validation
data prediction for models with different numbers of parameters: exhaustive search (blue o) and proposed
method (red A) for the TS fuzzy models

The performance of models using the selected regressors and the corresponding computation
time to find the regressors are shown in Figure 5.10 for the TS fuzzy models, Figure 5.11 for the NN
models, and Figure 5.12 for the SVR models. It can be seen that the performance of models selected
by the proposed method is generally comparable to the performance of models from the exhaustive
search for both types of prediction in the case of TS and NN models. Indeed, from Figures 5.10a
and 5.11b, there are two cases where the proposed method delivers lower performance models
compared to those obtained from the exhaustive search. For the SVR models, the Jaic performance
of models obtained by the proposed method with the free-run simulation search is generally lower
than the performance of models obtained by the exhaustive search. This can also be seen based on
the different regressor selections shown in Table 5.9 for models with more than 2 regressors.

Table 5.10 shows the number of models evaluated to find the regressors of the highest-performing
models. It can be shown that the exhaustive search evaluates fewer models than the proposed
method to find the best-performing models with 5 regressors.

With respect to computation load, the proposed method has a computation load advantage
over the exhaustive search until searching models with 4 regressors, as shown in Figures 5.10c
and 5.10d for the search for TS fuzzy models, in Figures 5.11c and 5.10d for the NN models, and
in Figures 5.12c and 5.12d for the SVR models. This is visible for a small number of candidates,
as in this example. The computation advantage begins to decrease as soon as the number of
parameters is one-half of the number of regressor candidates. Note that for the exhaustive search
in this example, there are 70 candidates for the model with 4 regressors and 56 candidates for the
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model with 5 regressors.

To see the difference in performance due to the different regressor selections, the free-run
prediction of the validation data and the corresponding error of the models are plotted. For the
2-regressor TS fuzzy models, these are shown in Figure 5.20, for the 2-regressor NN models, they are
in Figure 5.21, and for 3-regressor SVR models, they are in Figure 5.22. The prediction error from

the TS fuzzy model is the smallest, while from the NN model is larger, and from the SVR model is
the largest.
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Figure 5.11: Values of Jaic (a and b) and the computation time (c and d) for the laboratory fermenter validation

data prediction for models with different numbers of parameters: exhaustive search (blue o) and proposed
method (red A) for the NN models
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Figure 5.12: Values of Jaic (a and b) and the computation time (c and d) for the laboratory fermenter validation
data prediction for models with different numbers of parameters: exhaustive search (blue o) and proposed
method (red A) for the SV models

5.5.4. DISCUSSION

From all data sets with different prediction approaches, searching from all possible regressor com-
binations is the best way to find the set of important regressors for a given model structure as
demonstrated in the previous section. The disadvantage of exhaustive search is the high compu-
tation load to find the best model from all possible combinations. The enormous increase of the
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number of combinations as the number of regressors increases restrains the use of this method in
practical real-life applications.

LINEAR-IN-THE-PARAMETER STRUCTURE

In the case of using the one-step-ahead prediction selection, the performance of the proposed
method is generally better than that of lasso or stepwise regression with respect to selecting regres-
sors that form models with good performance. This is demonstrated in Example 1 and Example 2.
The price for good performance and flexibility is the longer computation time required to examine
regressor combination candidates in the tree. However, the computation time is lower than the
exhaustive search.

For the Hénon map example, the chaotic characteristic of the system that generates the data,
forces the proposed method to build more regressor combinations to include the correct combina-
tion. In this case, there exist local minima in the search space, whereas the global minimum is not
known because it is not yet on the search tree. Expanding the search space by growing the search
tree for several expansion rounds yields a correct combination.

However, lasso can find the correct regressor for the Hénon map example in every run. This can
be explained by using the least-angle regression, an interpretation of lasso based on the correlation
analysis between the regressors and the residuals [77]. This method uses the fact that the smallest
angle between the regressors and the corresponding residuals is related to the largest correlation
between the regressors and residuals. The method works by selecting regressors with the highest
correlation with the residuals, determined by the least angle between the regressors and residuals.
The coefficients of the selected regressors are moved; that is, they increase or decrease in the
direction that preserves the angle. If another regressor is correlated with the residuals, it is added
to the selected regressor group. If the coefficient of a regressor becomes zero, then the regressor
is removed from the selected group. These steps are repeated until the number of regressors is
reached or the coefficients no longer change.

With the correlation approach, the lasso works well with the Hénon map example. However,
it does not work equally well for data from dynamic systems in other examples. The lower Jaic
performance in Examples 2 and 3, suggests that lasso might not be suitable for system identifi-
cation, especially if the system involves external inputs as in the examples here. This might be
because the correlations between external inputs and outputs are not as strong as those between
outputs. However, further experiments are required to draw a definitive conclusion. Based on Jaic
performance, the performance of the lasso does not change significantly with different numbers
of regressors and prediction horizons. This is not in line with the common intuition that more
regressors will result in better performance and that a larger prediction horizon will yield worse
performance. However, this may require further investigation.

The other method used in the chapter is the stepwise regression. With regard to performance,
stepwise regression selects regressors that provide models with a good performance that is compa-
rable to that obtained with the exhaustive search. However, the results from the synthetic data show
that stepwise regression always selects more regressors than the correct ones. Another problem is
that the stepwise regression based on the F statistics test does not provide the freedom to determine
the number of regressors. Hence, this method is fully automatic.

Using orthogonal regressors as in, e.g., [24] is also of interest for this particular structure class.
The orthogonalization of regressors requires additional computational efforts; however, it simplifies
the search process. As reported by Billings and Voon [24], greedy search is typically sufficient to
obtain a set of high-performance regressor sets.

OTHER NONLINEAR STRUCTURES
The proposed method can also be used for models with structures other than those with the linear-
in-the-parameters. In this case, the proposed method is comparable only to exhaustive search as
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illustrated in Example 3. In this example, the number of regressors is smaller than that of the linear-
in-the-parameter; therefore, the number of combinations is also smaller. However, the computation
time depends on the selected structure. In general, the ANN structure with back-propagation takes
more time than the TS fuzzy and SVR models.

From the second part of Example 3, it can be observed that the proposed method delivers
regressors that are mostly equal to the exhaustive search for all TS fuzzy, NN, and SVR models
for the search based on one-step-ahead prediction. This shows that the proposed method works
independently of the model structure in this particular case.

Structures other than the linear-in-the-parameters provide a lower number of regressors to
select. This simplifies the search using a smaller number of possible regressor combinations. Using
the exhaustive search is likely to be possible for SISO nonlinear systems. In the second part of
Example 3, the exhaustive search is compared with the greedy search. In this case, the advantage of
the proposed method is no longer significant.

In these examples, the nodes in the proposed method represent sets of regressors with a NARX
structure. However, other structures can be used, such as nonlinear output error structure or
nonlinear Autoregressive moving-average structure. The decision on which model structure is
selected to compute the performance of the node can be selected freely by the user. This flexibility
is possible using a combinatorial method of selecting important regressors.

PREDICTION METHODS

Comparing the results obtained by the one-step-ahead prediction approach with those obtained
by the free-run prediction approach reveals that the first prediction approach is preferred in ex-
periments where there are high chances to include in the set of regressors the true ones (leading
to the true model). Free-run prediction is favored for real-life application data where there is no
guarantee to find the true regressors, and also for applications that require long-term prediction as
in optimal control.

From Examples 2 and 3, the proposed method performs less well in terms of model output
accuracy compared to the exhaustive search when using the free-run simulation prediction. How-
ever, the proposed method is better based on the computational load. So the proposed method
is preferred for applications with limited computational resources owing to its low computation
requirement.

Also from Example 2, the proposed method and exhaustive search select y(k—1) and y(k—2) in
all selected regressor sets when using the one-step ahead prediction. Using this prediction method,
the current prediction is computed using known input and past output measurements. In other
words, the predictions are linear combinations of input and output measurements. Therefore,
the linear regressors, that is y(k — 1) and y(k — 2), are dominant in the model; whereas nonlinear
regressors are less important for fitting the model to the data. On the other hand, using free-run
simulation shows that the nonlinear regressors are more influential than the linear ones because
the current prediction depends on previous predictions instead of measurements.

This shows that using real-application data, a model whose parameters are estimated using
free-run simulation is closer to the true unknown model than that using one-step-ahead prediction.
A sufficiently good prediction accuracy of the model from the one-step-ahead prediction is obtained
when using past measurements that can be seen as information from the true unknown model.

From the second part of Example 3, it can be observed that the proposed method delivers
regressors that are mostly equal to the ones obtained using the exhaustive search for all TS fuzzy,
NN, and SVR models for the search based on one-step-ahead prediction. This shows that the
proposed method works independently of the model structure in this particular case.

Using the free-run simulation prediction in the search, the resulting SVR models are less
accurate than the TS and NN models. This is due to the fact that the parameter computations of the
SVR models use one-step-ahead prediction while the node expansions use the free-run prediction.
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Because the accuracy of predictions does not depend on past measurements, in general, models
obtained using free-run simulation are better than those obtained using one-step-ahead prediction.
The models obtained by the free-run simulation delivered sufficiently accurate predictions without
using past output measurements. This allows the models to be used in other applications such as
soft sensors [155].

5.6. SUMMARY

In this chapter, a search-tree-based method is proposed to solve the regressor selection problem
for nonlinear system identification. The method solves the problem by directly searching for the
best regressor combination for a given model performance measure, which in this case is Akaike’s
information criterion, by building a search tree. The tree consists of hierarchically expanded nodes
that represent different regressor combinations. The tree is formed with the aim of models with
good performance.

The tree in the proposed method represents regressor combinations. The proposed method
is independent of the model structure, although the corresponding performance computed will
depend on the model structure selected. The proposed method can be applied to a large class of
nonlinear models, and we have shown examples using the TS fuzzy models, ANN models, and SVR
models.

The proposed method can be seen as an extension of the stepwise regression method by per-
forming multiple stepwise regressions at a time. This is done by allowing multiple node expansions
at each level of the tree. In addition, the proposed method can also be considered as a simplification
of exhaustive search, because not all possible regressor combinations are evaluated. Only combi-
nations resulting in models with good performance are evaluated. Consequently, the proposed
method is faster than the exhaustive search.

5.7. INPUT-OUTPUT DATA AND MODEL OUTPUT PLOTS
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Figure 5.13: Input-output data set of the heat transfer process. The vertical line divides the data set into two
parts, with the identification data on the left-hand side and the validation data on the right-hand side.
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Figure 5.14: One-step ahead predictions of the heat transfer validation data for models with 7 parameters and

their corresponding errors: measurements (black solid line), exhaustive search (blue dashed line), lasso (green
dash-dotted line), stepwise (red dash-dotted line), and proposed method (black dashed line)
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Figure 5.15: Free-run simulation predictions of the heat transfer validation data for models with 7 parameters
and their corresponding errors: measurements (black solid line), exhaustive search (blue dashed line), lasso
(green dash-dotted line), stepwise (red dash-dotted line), and proposed method (black dashed line)
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Figure 5.16: Identification data sets for the laboratory fermenter.
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Figure 5.17: Validation data sets for the laboratory fermenter.
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Figure 5.18: One-step ahead predictions of the laboratory fermenter validation data for models with 7 parameters
and their corresponding errors: measurements (black solid line), exhaustive search (blue dashed line), lasso
(green dash-dot line), and the proposed method (black dashed line)
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Figure 5.19: Free-run simulation predictions of the laboratory fermenter validation data for models with 7
parameters and their corresponding errors: measurements (black solid line), exhaustive search (blue dashed
line), lasso (green dash-dotted line), stepwise (red dash-doted line), and proposed method (black dashed line)
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Figure 5.20: (a) one-step ahead and free-run prediction, and (b) prediction error from the TS fuzzy models of
the laboratory fermenter with 5 regressors: measurement (dark grey solid line), one-step ahead prediction from
the exhaustive search (red dashed line), and from the proposed method (blue dotted line).
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Figure 5.21: (a) one-step ahead and free-run prediction, and (b) prediction error from the NN models of the
laboratory fermenter with 2 regressors: measurement (dark grey solid line), one-step-ahead prediction (red
dashed line), and free-run prediction (blue dotted line) from the proposed search.

2
18
s
g_ 16 E
3 i 2
T 14 5
g s
= 8
12 =
¥ -0.6
100 200 300 400 100 200 300 400
Discrete-time step k Discrete-time step k
(a) Prediction (b) Prediction error

Figure 5.22: (a) free-run prediction, and (b) prediction error from the SVR models of the laboratory fermenter
with 3 regressors: measurement (dark grey solid line), one-step-ahead prediction (red dashed line), and free-run
prediction (blue dotted line) from the proposed method .






TAKAGI-SUGENO FUzZzy SYSTEM
IDENTIFICATION WITH INCOMPLETE
DATA

6.1. INTRODUCTION

Data-driven system modeling is becoming more important because of the need to better represent
complex systems for control and estimation purposes. As the complexity of the modeled systems
increases, applying first-principles modeling becomes more difficult. In this case, a data-driven
approach is preferred, especially for modeling nonlinear systems [94, 117]. In addition, one of the
features of data-driven modeling is its independence from the physical system; consequently, the
resulting model may not allow direct physical interpretations.

In general, the availability of the data plays an important role in data-driven modeling. However,
data acquisition can suffer from problems that prevent the availability of a complete data set. The
problems, e.g., might be due to the following issues:

1. Intermittent measurements caused by sensor faults or transmission failures.
2. Asynchronous sampling due to the absence of globally synchronized clocks.

3. Storage failure to retrieve recorded input-output data.

This requires the development of methods that can cope with missing measurements. The problem
becomes more complex when dealing with nonlinear systems. For the identification of such systems,
a Takagi-Sugeno (TS) fuzzy model representation [214] can be employed. TS fuzzy models have been
successfully applied in control and estimation applications [188]. Moreover, methods have been
developed for various TS fuzzy model-based control and estimation applications [82]. This is done
by exploiting the capability of TS fuzzy models as universal function approximators for nonlinear
functions [33], which implies that TS fuzzy models can approximate a large class of nonlinear
systems with an arbitrary degree of accuracy. In this chapter, TS fuzzy system identification using
incomplete data is studied by assuming that the input-output sample pairs are synchronized and
the unavailable output samples are detected when the input samples are not accompanied by the
output samples.

97
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To the best knowledge of the author, the incomplete data problem for TS fuzzy system iden-
tification has not yet been addressed in the literature. Most algorithms have been developed for
classification and regression problems. Although both regression and system identification are
closely related, the difference in the data set structure means that the regression solutions cannot
always be applied to system identification.

In this chapter, the problem of TS fuzzy identification with incomplete data is addressed. In
particular, two methods are proposed to enable system identification with incomplete data. In
the first method, the fuzzy c-means clustering approach for incomplete data called the optimal
completion strategy [99] is extended for system identification by fusing different approximations
of a missing measurement to produce a single value. The second method is an iteration of the
identification procedure in which the missing samples are treated as optimization variables. These
missing values are optimized (and consequently approximated) by the model obtained in each
identification iteration. The approximation is terminated when a stopping criterion is satisfied.

6.2. RELATED WORK

In general, there are two approaches to dealing with system identification with incomplete data:

1. Direct approach. The algorithms of this approach can process the data without approximat-
ing the missing data.

2. Indirect approach. This approach involves an approximation of the missing samples in the
identification procedure.

In the first approach, deleting the set of data pairs related to unavailable samples is a simple
and obvious method. This method is not preferred if the number of missing samples is high. Hans-
son and Wallin [97] proposed several equivalent optimization formulations to directly estimate
maximum-likelihood models from incomplete data. For the indirect approach, there are methods
in the literature for linear and nonlinear systems. For the identification of linear systems, the nu-
clear norm [28] is used, e.g., in [158]. The Expectation Maximization (EM) method [66] can also be
applied for linear systems as in, e.g., [69]. For nonlinear system identification with incomplete data,
EM-based methods have also been developed. Gopaluni [87] proposed an EM-based method for
nonlinear state-space system identification with incomplete data. More specifically, in the Expecta-
tion step, a particle filter and a particle smoother are used to perform pointwise state estimation to
reduce the variance of the states. Gopaluni [88] developed another EM-based identification method
for nonlinear systems approximated by using radial basis functions centered around the maximum
a posteriori estimate of the state trajectory. At the same time, a particle filter is employed to estimate
the states in the Expectation step. Deng and Huang [67] formulated an EM-based method for the
identification of nonlinear parameter-varying systems modeled by multiple models with different
working points. Similar to the previous methods, a particle filter is employed in the Expectation
step. Yang et al. [237] developed an EM-based method for state-space model identification where a
particle filter is used to numerically approximate the expected log-likelihood value of the complete
data. Patel et al. [186] adapted nonlinear iterative partial least-squares to minimize the impact of
missing data values.

A disadvantage in using the EM algorithm for nonlinear identification is that the Expectation
step requires the smoothed estimates of the states, which are approximated using particle filters
and smoothers. Given that particle filters are computationally intensive [198], their use in the Expec-
tation step further increases the computational load during the optimization in the Maximization
step.

Nonlinear system identification with incomplete data with artificial neural networks has also
been reported in the literature. Tanaka and Dai [216] represented a Gaussian mixture model using
a neural network structure. This network is trained using the EM method and applied to identify
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anonlinear model. Salini et al. [197] applied an evolving neural model for wastewater treatment
data. The missing data are predicted by the output of a feedforward network trained by removing
incomplete samples. Qiao et al. [189] employed a sensor evaluation and restoration scheme to deal
with missing measurements in a power plant. The scheme contains an auto-encoder consisting of
aneural network and a particle swarm optimizer fed with input-output data for the power plant
operation. The auto-encoder is trained to capture the correlation between its complete inputs.
Missing measurements are determined by particle swarm optimization based on the correlation
between the available and the missing data.

Imputation of missing data is also a subject in other fields, e.g., machine learning. Imputation
methods to approximate missing samples are one of the popular topics. There have already been
some literature surveys on the topic, e.g., by Emmanuel et al. [79], Alabadla et al. [4] and Miao et al.
[167]. As they are developed for applications in machine learning, these imputation methods may
need adjustment for the identification of nonlinear systems.

A publication that is close to this chapter is by Almeida et al. [5], who solved a nonlinear
regression problem with incomplete data with a TS fuzzy model using product space clustering
[16]. Almeida et al. [5] used the partial distance strategy, one of the strategies proposed in [99].
Specifically, Hathaway and Bezdek [99] proposed four modifications of fuzzy c-means clustering to
allow processing incomplete data:

1. Whole data strategy. This strategy removes incomplete data so that only complete data are
processed.

2. Partial distance strategy. In this strategy, the distance from a prototype to incomplete data is
computed based on the available elements of the data.

3. Optimal completion strategy. In this strategy, the unavailable elements of the incomplete
data are approximated during the clustering process.

4. Nearest prototype strategy. This is a modification of the optimal completion strategy by
substituting the unavailable elements of data with the nearest prototype and computing the
distance based on the partial distance.

In a regression problem, a regressor matrix is constructed by appending regressor vectors. In this
case, missing samples in the regressor vectors are uniquely located according to the position of the
regressor vectors in the regressor matrix. In system identification, however, the regressor matrix is
built by appending delayed input-output vectors so that a missing sample is in the output vector.
For instance, the missing sample is propagated to the delayed output vectors located in different
rows, depending on the order of the system. In this chapter, the optimal completion strategy is
extended for system identification by allowing a unique estimation of missing regressor matrix
elements that represent a missing sample.

6.3. PROBLEM FORMULATION

The problem of system identification with incomplete data is introduced in this section.

Consider a pair of input-output data vectors: an input vector u € RN and the corresponding
output vector y € RV

T
w=[ul) - ulV)]

T
y=[y® - yiN]
where N is the number of data samples, u(k) and y(k) are scalars, T is the transpose operation, and
k is the discrete-time step. Note that in this chapter, a SISO system is considered, but the proposed
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approach can be straightforwardly extended to MISO and MIMO systems. For system identification
purposes, a lagged input-output vector ¢ is defined as follows:

.
Gr=[Pk1 0 kg Ponatl 0 Pkmaany)

=[yle=1) - yk-na) ulk=1 - ulk—np)]" 6.1)

where n, is the maximum output lag, and ny, is the maximum input lag where typically, and also
assumed here, n, > ny,. The vector ¢y is also called the regressor vector. Collecting these vectors for

different time steps gives the regressor matrix ® = [¢,+1 -+ ¢x]suchthat®e R *No with:
Nd’ =N-ny
Ny =nNg+ np

Note that the systems considered in this chapter are nonlinear ARX (NARX) systems that use the
regressor vector (6.1).
For identification, this chapter uses the input-output data to parameterize a model given by

Jk) = f(¢r.0) 6.2)

with j the model output, 8 the vector of model parameters, and f(-) a nonlinear function. The
parameter vector @ is estimated by minimizing the squared difference between the output data and
the model output e(k) = y(k) — y(k), i.e., by solving the following optimization problem:

N 2
argmin Z [y(k)—f((pk,ﬂ)) (6.3)

0 k=n,+1

Using the regressor matrix @, the optimization formulation (6.3) can also be written as:

argmin(¢y - g(@,0) (¢ - g(®@,0)) (6.4)
0

forpy = [y(na+1) - y(N)]T the regressand vector, g(-) a nonlinear function similar to (6.2)
but accepting a vector and a matrix as parameters.

In case of incomplete data, some regressor vectors and, consequently, the regressor matrix
contain unavailable elements. The following are some observations on the relation between the
missing output samples and the regressor matrix:

¢ Depending on the order of the system, a missing output sample is propagated to different
rows and columns of the regressors matrix.

* From a missing output sample, a larger n, creates more rows with incomplete elements in
the regressor matrix ®.

Introducing missing output samples means that (6.4), in general, cannot be solved as the output
model g(®,0) cannot be evaluated due to the unknown values of the missing elements.

6.4. TS FUZZY SYSTEM IDENTIFICATION: COMPLETE MEASURE-
MENT CASE

The TS fuzzy model [214] is a mathematical model that uses fuzzy if-then rules with local linear
or affine consequents to represent nonlinear systems. Identification of such a model takes the
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regressor vector (6.1). Eachrule i = 1,..., c of the affine TS fuzzy model is defined as:

Rule i:

IF ¢y is M;; and... and ¢y, is M; ,,, and
Pkyna+118 Mj p 1 and ... and ¢y, is M;

THEN y; (k) = ¢].0; +0p;

(6.5)

where ¢ is the number of rules, M;; is a fuzzy set of rule i, regressor j with membership function
By - R—0,1], and 0; € R™*! and 6 are respectively the vector of parameters and the scalar

offset of the i-th rule !.
The global model, as a blend of local models represented by the rules, is computed by using the
weighted average equation:

_ T Bil@r)yito XL, Bilek) (¢ 8 +6o,:)
¢, Bildr) ¢, Bilog)

y(k) (6.6)

where f; (¢y) is the degree of fulfillment of the i-th rule’s antecedent obtained from the membership
degree of all variables in the antecedent computed by using:

Bilr) = tim;, (Dr1) * pingy, (Pr2) * -+ * iy, (Prony)

where * denotes the t-norm [251]. For instance, one can use the minimum t-norm defined by

Bi(@r) = min g, (@r 1) kng,, Br2)s - B0y i)
For identification using product space clustering, the data matrix @y is constructed as follows:
Op=[¢, @] (6.7)

The TS fuzzy identification using product space clustering consists of two steps [16]:

1. Applying fuzzy clustering to the data matrix @4 . This step includes determining the cluster
parameters and the number of clusters. This step results in a fuzzy parameter matrix U =
[ﬂi,j] with U € RN¢*€, where Wi, j is the fuzzy membership value of the i-th row of @4 to the
cluster j. A commonly used clustering method is the Gustafson-Kessel algorithm [91]. The
ability to construct ellipsoidal clusters makes this clustering algorithm suited for TS fuzzy
system identification.

2. Constructing the rules. This includes antecedent parameter estimation from the clusters
and consequent parameter estimation. This is done by solving a set of linear equations using
the ordinary least-squares or the total least-squares methods, where each linear equation is
weighted by its fuzzy membership value.

6.5. TS FUZZY IDENTIFICATION: INCOMPLETE DATA CASE

In this section, TS fuzzy identification in case of missing measurements is discussed, and two
possible methods to deal with the problem are proposed.

In general, the matrix ®4 can be viewed as a set of information required to build a model.
Unavailable samples reduce the information to build the model in comparison with the complete

IThe rule i basically tells to use the model y; (k) = ([)ZG,- +0; with a certain weight calculated by combining of
the weights of the antecedent variables ¢y ;
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data. The remaining measurements can still be used to build a model, although the model might
not be as accurate as that with complete data. We explore methods to make better use of the
available measurements and to complete the data set.

One possible way to tackle the incomplete data problem is by removing rows containing
unavailable samples. This is called the whole data strategy [99] or row deletion strategy. This
approach is feasible when the number of missing samples Ny, is relatively small so that there
is still an adequate number of rows left to obtain an acceptable model. It should be noted that
deleting rows containing missing samples also removes elements available in the other columns of
the removed rows. The row deletion approach might not be preferred, especially for higher-order
systems, because the number of incomplete rows increases with the increase of the maximum order
of the input n, and the output n;.

The other approach is by imputing the missing measurements, called the optimal completion
strategy [99]. A typical method of imputation is by considering the missing measurements as
parameters and including them in the model parametrization. This method can be viewed as an
estimator of the missing elements by utilizing the available measurements in the incomplete rows
as they still have information about the system, but they are disturbed by the unavailable values.

In the following sections, two methods belonging to the second approach to perform TS fuzzy
identification are presented:

1. Clustering-based imputation in Section 6.5.1

2. Iterative imputation in Section 6.5.2

6.5.1. CLUSTERING-BASED IMPUTATION

Fuzzy clustering methods for incomplete data in the literature were developed for classification
and regression purposes, see, e.g., [99, 149, 218]. In principle, a system identification problem
can be seen as a regression problem. The difference appears only in the regressor matrix, as the
regressor matrix in system identification consists of delayed input-output data. Indeed, as it has
been noted in Section 6.3, a missing sample will be propagated to different rows and columns of the
regressor matrix. As an illustration, consider the matrix ®, , below, an implementation of (6.7),
which contains a missing sample. In (6.8) the output y(5) is not available, which is marked by the
subscript * as follows:

y@  y3 y2 yd u@d
y«(5) y@ y@ y@2) u@
®Prm=|y6) y«5) y@ yB ul®) (6.8)
y@  y® y«5B) y@ u@®)
y®  y@  y6) y«(5) u@

Approximations of the missing elements in (6.8) using algorithms developed for classification
or/and regression will result in different values of y« (5), while in system identification, the value of
¥+ (5) should be the same everywhere in the matrix. To achieve that, a set of discrete-time indices at
which the measurements are unavailable, denoted by Ky, is defined. In addition, for each member
of K, a set containing the approximation of the unavailable measurement, denoted by ¢, (), is
also defined. In (6.8), for instance, Km = {5} and ¢, 5) = {21,032, P43, P54}

Applying the optimal completion strategy [99] to @j p, typically results in the different approxi-
mation of the unavailable elements in ¢,, (). To obtain a single value of the unavailable sample,
the elements of ¢, () are fused by using a functional that takes ¢, () as its parameter:

200 = h(dy, 1) (6.9)
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with h(-) the functional that fuses the elements of ¢, (x). This functional may perform, e.g.,
averaging of all elements of ¢, (x). In the case of the example, the estimate of the missing y(5) is
then calculated by averaging the members of ¢, (5):

1
y06) = 1 (P21 + P32 +Pa3+¢s54)

where j(5) is the approximation of y. (5). The algorithm is shown in Algorithm 2. In the algorithm,
the missing samples can be initialized, e.g., by interpolation from the available samples.

Itis necessary to evaluate the convergence of the algorithm because of the addition of the fusion
step in the optimal completion strategy [99]. Hathaway and Bezdek [99] stated that the convergence
of the optimal completion strategy is guaranteed, as shown in [23]. This means the members of
¢y, (k) the estimated value y. (k) in @4 m, will also converge. Assuming

min (¢, 1)) < h(@y, (1)) < max(¢y, k) (6.10)

we can also say that (k) will converge following the convergence of ¢y, ().

6.5.2. ITERATIVE IMPUTATION
The iterative imputation method treats missing measurements as optimization variables to obtain
the optimal values of the imputed measurements besides the model parameters. The problem is
formulated as:
2
argmin ) (y(k) - fr(6g, Bm)) (6.11)
Or,0m k¢Km

with fr(-) the TS fuzzy model whose parameter O consists of antecedent parameters and conse-
quent parameters, and the missing data treated as model parameters 8y,. Because the missing
samples are optimization variables, the performance of the model in the identification step is
computed from the available measurements.

In this method, no missing data-specific technique is used to find the optimal imputation
values. The approach purely focuses on using optimization to search for imputation values with
which a model with the best performance is obtained.

Solutions to (6.11) are combinations of imputation values 8y, together with the model parame-
ters O, that minimize the cost function. The combination might not be unique because (6.11) is, in
general, a non-convex optimization problem. This problem is typically hard to solve because of the
local minima.

There are some methods to solve non-convex optimization problems of the form (6.11), e.g.,
meta-heuristic methods such as genetic algorithms [85] or particle swarm optimization [125]. In
addition, these methods have also been extended to involve multiple initial search locations [235].
These methods approximate the solution of a global optimization problem. The optimization
problem (6.11) has two sets of optimization variables; we may use the alternating optimization
approach to solve the problem. The alternating optimization alternatingly performs the following
steps, given the initial value of Oy,:

1. Solve for 8% by performing TS fuzzy identification to obtain a TS fuzzy model.
2. Solve for 01, based on the prediction obtained by the obtained TS fuzzy model.

The steps above are repeated until a termination criterion is met. It should be noted, however, that
the iteration may not always converge. In addition, the non-convex nature of the optimization
may also lead to a local minimum. In this chapter, the iteration process is terminated when the
performance change of the identified model gets small enough.

This method is simple because no special algorithm is needed for the clustering and consequent
estimation steps to deal with the missing measurements. In general, the performance of the
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Algorithm 2 Fuzzy c-means clustering for incomplete system identification data

Input: The input-output data vector u, y, the fuzziness cluster constant m, the number
of clusters c, the stopping criterion threshold ¢, the discrete-time indices of missing
samples K, the initial cluster centers V© = [vio) v©

. Initially impute missing samples

: Create augmented regressor matrix ®x

Loop « true

<1

: while Loop do

{ *Compute square of distance* }

T
Dy — (¢,~ - v;.l)) ((pi— v}”) , i=1,..,Npj=1,..,c
7. {*Compute fuzzy partition matrix*}
—(1-m)
o _ P
Hi ZLID;S"”)
8. {*Update prototype centers*}

U £ (u)" o

A R i e

, j=1,...,c
I
o i [V - V0D < then
10: Loop — false
11: else
12: { *Compute estimates of unavailable elements in ®p* }
13: for all (p:.“j € ¢y, (1 and ‘P;'k,j €y, do
” ¢r . — Zivfl(Uﬂf)m%j
AT
15: end for
16: for all ke K,, do
17: Puk — fuse {<P?j 7 € bu, o}
18: Replace {¢];1¢]; € pu. sy} With @y
19: Pyk) — fuse {Qb:}k,b:} € ‘py*(k)}
20: Replace {¢};1¢]; € by, i} with @y
21: end for
22:  endif

230 l—1[+1
24: end while
Output: U,V
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resulting model is expected to decrease with the increasing number of missing measurements. On
the other hand, the required computation resources are higher with the increase in the number of
missing measurements due to the increasing number of optimization variables.

Algorithm 3 Method 2: Iterative Imputation

Input: u, y, ¢, m, termination criterion
Initially impute missing measurements samples in y
Create augmented regressor matrix ®
-0
repeat
{—0+1
O — TS fuzzy system identification with product space clustering
J — run prediction with fr(0%)
O — ¥
until termination criterion is met
Insert 0%) into the corresponding missing measurements
O — TS fuzzy system identification with product space clustering
Output: fr(0F)

6.6. SIMULATION EXPERIMENTS

In this section, the methods of Section 6.5.1 and 6.5.2 are applied. There are three data sets that are
used for the experiments. The first data set is from a toy problem, the second is from a simulation
of a pH neutralization process, and the third is from the measurements of a simple real-life heat
transfer process. The second and the third data sets are obtained from [122]. All data sets are
complete data sets.

The synthetic data set with the corresponding time stamps is recorded. The missing sample
instants are generated from 7 different randomly selected randomized time stamps. This allows
experiments with an incrementally increasing number of missing samples.

In this example, it is assumed that the missing values occur randomly during an input-output
data acquisition. These random events can be modeled as Bernoulli trials, namely, independent
trials with only two possible outcomes: success or failure. The probability of success for each trial is
assumed to be the same throughout the trials [132]. Seeing data acquisition as a random experiment,
the possible outcomes at each sampling instant are “unavailable sample” with probability p and
“available sample” with probability 1 — p. From N samples of input-output data acquisition, one
can expect to have Niy = N - p output samples missing. In other words, p can be interpreted as the
fraction of missing samples and therefore expressed as a percentage of missing samples denoted by
myp in percent, mp = p-100. In practice, the value of p is generally unknown until the end of the
data acquisition experiment.

Four fractions of missing identification data samples mp, are simulated: 10%, 20%, 30%, 40%. No
missing samples are assumed in the validation data. This allows for a fair performance evaluation
of the models obtained from incomplete measurements. In addition, in the simulation, only output
measurements are assumed to be missing, as the input samples are typically given in the data
acquisition experiments. The experiments are repeated with 100 different randomized time stamp
sets to allow statistical analysis of the performance of the algorithm.

To obtain the initial imputed values, the available samples are fitted to a piecewise cubic spline.
There are some advantages of using cubic spline interpolation, e.g., differentiability, integrability,
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Table 6.1: Consequent parameters of the toy example

i ai b,’
1 09 -0.1
2 02 07

and smoothness. It has also been used in system identification [65]. The resulting spline is used to
interpolate the unavailable samples. When the missing samples are at the beginning or the end of
the data set, extrapolation is used instead of interpolation.

The R? values of the validation data free-run predictions? are presented to show the perfor-
mance of the algorithms. This measure indicates how well the variance of the output/dependent
variable is predicted by the input/independent variable. The statistics of the computation are also
shown. The mean and standard deviation are also presented in the tables, where 'Stdv’ stands for
standard deviation.

In this section, the imputation with the extended fuzzy c-means is called the Clustering Method,
and the iterative imputation is called the Iterative Method. As a benchmark, the identification by
removing regressors containing unavailable samples is also shown. This is called Deletion Method.

The experiment is simulated using MATLAB™, where the clustering and deletion methods are
self-scripted. The iterative method uses the 1sqnonlin function from the Optimization toolbox
of MATLAB™,

2

6.6.1. TOY PROBLEM
A synthetic data set for identification and validation is generated from the following TS fuzzy model:

Rule 1:

IF u(k—-1)is LOW and y(k—1) is LOW
THEN y(k) =a1y(k—1)+biu(k—1) +c1
Rule 2:

IF u(k—1)is HIGH and y(k —1) is HIGH
THEN y(k) = a2 y(k—1) + bou(k— 1) + c»

for the values of the consequent parameters given in Table 6.1 and the fuzzy membership functions
of the antecedent shown in Figure 6.1.

There are 800 samples generated from the model, 400 of them are for identification, and the
rest are for validation. The data are shown in Figure 6.2, where the identification data is on the left
side of the vertical blue dotted line and the validation data is on the right side. The input samples
are staircase signals of random step heights in the set {—0.4,-0.2,0,0.2,0.4}. The duration of the
steps is also random in the set {3,6,9,...,24}.

The performance of the model with different percentages of missing data is shown in Table 6.2.
As the number of missing data increases, the means of the R? performance shows the model
performance degradation for all schemes, but the standard deviations have the opposite trend.

The R? performance of the model with different percentages of missing samples and the
computation time is plotted in Figure 6.3. The numerical results, i.e., the mean and the standard
deviation, of the results are shown in Table 6.2.

2A free-run prediction uses the identified model by using the output data for the initial condition only. After
the initial condition, the simulation uses the measured input and the predicted output to compute the next
predictions.
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Figure 6.1: Membership functions of the antecedent for the toy problem.
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Figure 6.2: Input-output data set of the toy problem. The identification data are on the left of the vertical dotted
line, while the validation data are on the right.

Table 6.2: The mean and the standard deviation of the R? performance for the toy problem in percent.

Clustering Iterative Deletion
mp (%) Mean Stdv.  Mean Stdv Mean  Stdv
0 99.53  2.45x107%
10 97.42 1.67 98.29 1.03 95.25 8.87
20 96.41 1.83 97.91 1.14 94.48 9.30
30 94.79 2.90 97.65 0.99 93.75 7.80
40 91.08 6.15 97.56 1.41 93.14 8.87

Table 6.3: The mean and standard deviation of the computation time for the toy problem in seconds

Clustering Iterative Deletion
mp (%) Mean Stdv  Mean Stdv.  Mean Stdv
0 0.05 0.21
10 0.09 0.02 138.63 87.69 0.04 0.02
20 0.10 0.03 297.82 19437 0.05 0.02
30 0.11 0.03 458.81 386.31 0.05 0.02

40 0.11 0.03  317.43 134.50 0.04 0.01
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Figure 6.3: The R? performance and the computation time for the toy example. The blue lines and markers
are from the clustering method, the red ones are from the iterative method, and the green ones are from the
deletion method. In Figure 6.3a, the markers (circles, x, and squares) indicate the mean of the Rz, and the upper
and the lower horizontal bars are, respectively, the maximum and the minimum values.

As shown in the plots, the mean of the R? values increases with the increasing fraction of missing
samples. The iterative method results in relatively smaller mean and minimum performance values
compared to the clustering method and the deletion method. The minimum values are comparable
to those of the iterative method for 10% and 20% of missing data but clearly worse for larger fractions
of missing data. This is also evident from Table 6.2, where the iterative method performs better
than the clustering method, while the deletion method has the lowest performance with respect to
performance mean and standard deviation.

For the computation time, Figure 6.3b and Table 6.3 show that the iterative method is generally
much slower than the clustering method and the deletion method, while the clustering method
and the deletion method do not have a significant difference in computation time. The high
computation load of the iterative method is expected as it iteratively performs a full TS fuzzy
identification to optimize the missing samples.

The pattern of computation time, however, is not regular for increasing missing data fractions.
One may expect an increase in computation time due to the higher number of variables to optimize
to compensate for the larger missing data fraction. For all methods, the mean and the standard
deviation do not continuously increase or decrease with the increase of missing data fractions. This
observation will be discussed in Section 6.6.4.

6.6.2. PH NEUTRALIZATION

The identification of a neutralization tank is presented in this section. The tank has three influent
streams and one effluent stream. The influent streams are acid, buffer, and base. The data are
obtained by simulating the model of [96] by varying the base stream flow rate between 2 and
35mLs ™1, while the other influent streams are kept constant at 16.6mLs ™! and 0.55 mLs™!. The
output is the pH in the tank. The identification data set contains 480 samples, and the validation set
contains 500 samples. As there are two data sets already, we just took one data set for identification
and the other for validation. No technical consideration was taken in dividing the data sets for
identification and validation. The input-output data are shown in Figure 6.5. These data sets were
obtained from [123].

For identification, the TS fuzzy model consists of rules with cluster fuzziness 1.2 [16], and the
consequent parameters are computed by the least-squares method for each rule. The regressor
vector used in the modelis p(k) = [y(k—1)  y(k—2) u(k-1)] T
are taken from [16].

The results of this example are shown in Figure 6.6b to 6.6d and Table 6.4 for the R? perfor-

. The TS fuzzy model parameters
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Figure 6.4: Schematic diagram of the pH neutralization setup.
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Figure 6.5: Input-output data sets for the pH neutralization example. Figure 6.5a and 6.5b are the identification
data and Figure 6.5c and 6.5d are the validation data

Table 6.4: The mean and the standard deviation of the R? performance for the pH example in percent.

Clustering Iterative Deletion
mp (%) Mean Stdvn. Mean  Stdv Mean Stdv
0 99.87 0.81
10 89.79 0.66 90.49 0.70 71.68 42.89
20 89.75 0.82 89.47 1.35 66.01 51.08
30 89.18 1.77 89.21 1.56 —126.56 1808.62
40 88.31 3.56 88.91 1.64 -106.52 912.33

Table 6.5: The mean and standard deviation of the computation time for the pH example in seconds.

Clustering Iterative Deletion
mp (%) Mean Stdv. Mean  Stdv Mean Stdv
0 0.08 0.01
10 0.13 0.02 428.58 257.48 0.10 0.03
20 0.16 0.02 1012.70 752.89 0.10 0.03
30 0.16  0.03 1379.071418.39 0.08 0.03

40 0.16  0.02 1474.771367.76 0.06 0.01
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Figure 6.6: The R? performance and the computation time for the pH example. The blue lines and markers
are from the clustering method, the red ones are from the iterative method, and the green ones are from the
deletion method.

mance of the identified models and Figure 6.6e and Table 6.5 for the computation time. The R?
performance is presented in different figures to accommodate the large performance discrepancy
for the 30% and 40% of missing data.

Figure 6.6b to 6.6d show that the clustering method and the iterative method produce models
with better performance than those produced by the deletion method. As can be seen from Table 6.4,
for the models from the clustering method and the iterative method, the R? performance has a mean
of more than 88% with a standard deviation of less than 5%, while some of the models obtained
using the deletion method have a negative R? performance mean and a standard deviation larger
than 40%. The performance of models using the clustering method and the iterative method
decreases as the fraction of missing data increases, but this does not occur for the deletion method.

The computation time for the clustering method and deletion method is generally much lower
than that for the iterative method, with the clustering method being the fastest. Similar to the
previous example, a larger fraction of missing data does not always lead to a higher computation
time. For this example, however, the iterative method shows that the mean and standard deviation
of the computation time increase with the fraction of missing data.

6.6.3. HEAT TRANSFER

In this section, the input-output data is from a simple heat transfer system. The data are obtained
from a lab-scale real setup consisting of a 30 cm tube with a fan and an air valve, a heating resistor,
and a temperature sensor as illustrated in Figure 6.7. The heating resistor and the fan are located
at one end and the sensor is at the other end of the tube. The input voltage over the resistor is
u(k) € [0V,12V] and the output voltage that corresponds to the air temperature is y(k) € [0V,10V].
The airflow inside the tube is manually controlled by the opening of the valve v(k) € [0°,180°].
In this example, the valve opening is set to a constant value of 20°, and the input is random,
covering the full range of operation. The first-principles derivation and the details of the process
are described in [122].
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Figure 6.7: Schematic illustration of the heat transfer setup [122].
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Figure 6.8: Input-output data set of the heat transfer example. The identification data are to the left of the
vertical dotted line, while the validation data are to the right.

The data set shown in Figure 6.8 contains 1300 samples. The first two-thirds of them, which are
800 samples, are used for identification, and the rest are for validation. The TS fuzzy model has 3
rules with cluster fuzziness 2 [16]. Antecedent membership functions are computed by projecting
the fuzzy partition onto the antecedent variables, and consequent parameters are computed by the

least-squares method for each rule with regressor vector ¢ (k) = [y(k -1) yk-2) yk-3) ulk-4)

[16].

Figure 6.9a and Table 6.6 show the R? values for the validation data. All methods result in
models with a sufficiently good mean and standard deviation, except for the deletion method with
amean R? value of 28.76% and a standard deviation of 650.14%. It can also be seen that increasing
the missing data fraction results in deterioration of the performance of the models, although the
reduction seems small except for the deletion method with a missing data level of 40%. In this
example, the clustering method outperforms the iterative and deletion methods for all fractions of
missing data. The deletion method performs better than the iterative method except for a missing
data fraction of 40%.

The computation time is shown in Figure 6.9b and Table 6.7. Similar to the previous examples,
the iterative method generally needs much more time than the clustering and iterative methods. It
is also observed that a larger missing data fraction does not necessarily imply a larger computation
time.

6.6.4. DISCUSSION OF THE RESULTS

The results and observations are discussed in this section. Recall that the deletion method is used
as a benchmark for the other methods, as this is a simple solution obtained by removing rows with

]T
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Figure 6.9: The R? performance and the computation time for the heat example. The blue lines and markers
are from the clustering method, the red ones are from the iterative method, and the green ones are from the
deletion method.

Table 6.6: The mean and the standard deviation of the R? performance for the heat example in percent

Clustering Iterative Deletion
mp (%) Mean Stdve. Mean Stdv Mean Stdv
0 99.12  0.00
10 99.09 0.06 9859 0.36 98.88 0.29
20 98.97 0.19 9726 085 98.70 0.57
30 98.74 0.24 97.02 0.95 98.15 1.10
40 98.35 0.37 96.71 125 28.76 650.14

missing elements from the regressor matrix. By using the deletion method, one can inspect the
implications of removing rows containing missing samples on the performance of the resulting
models.

As commonly known, missing measurements cause information decline for building models.
By applying different realizations (simulations) of missing measurements, the resulting models
might be different from one realization to the other. This is clearly shown in Example 3 for the
deletion method, where 40% of missing samples gives a relatively large difference between the
R? performance for the complete data and the incomplete data. The standard deviation of the
R? performance is then also very large. Using this view for other examples, the data in the toy
problem might be highly redundant and taking a relatively small number of measurements might
be sufficient to have a model that is comparable to the one obtained with a large number of samples.
The heat example shows the same pattern until 30% of missing data.

In case a sufficiently good model can be obtained by using a data set with a large number of
missing samples, it can be assumed that the complete data set contains redundant information

Table 6.7: The mean and standard deviation of the computation time for the heat example in seconds

Clustering Iterative Deletion
mp (%) Mean Stdv Mean Stdv Mean  Stdv
0 0.10 0.01
10 0.30 0.07 934.81 920.46 0.22 0.06
20 0.29 0.03 1408.54 1202.65 0.13 0.03
30 0.33 0.03 2118.35 2332.64 0.14 0.05
40 0.39 0.03 1718.41 1444.28 0.10 0.02
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Table 6.8: The R? performance and computation time with complete data for 100 different clustering initializa-
tion.

R? Computation time [s]
Example Mean Stdv Max Min Mean Stdvnz. Max Min
Toy 99.53 2.45x10~% 9953 99.53 0.05 0.21 2.15  0.02
pH 93.87 0.81 95.22 92.72 0.08 0.01 0.15 0.06

Heat 99.12 2.00x1073 99.12  99.12 0.01 0.01 0.19 0.08

for performing identification. This can be seen in the toy problem example. In that example, the
performance difference between 10% and 40% missing data is less than 3%. The proposed methods,
i.e., the clustering method and the iterative method, can be seen as an approach to recover the
missing samples and the information by using the available data. This is done by adjusting the
value of the missing samples to solve the optimization problem (6.11) for the available samples.

With respect to the computation time, it is clear from all examples that a larger missing data
level does not necessarily imply a longer optimization duration. The mean of the computation time
and the standard deviation as well do not always increase when the level of missing data increases.
Intuitively, an increase in the number of missing data enlarges the number of optimization variables
of (6.11) and consequently increases the optimization duration. For this situation, one should
realize that the TS system identification with product space clustering employs the clustering
algorithm in which the regressor matrix undergoes an iterative process to minimize a class of fuzzy
c-means cost functions. Although the convergence of the algorithm has been proven [116], global
optimality is not guaranteed. In addition, the number of iterations for convergence depends on
the initial condition, which is typically calculated from the regressor matrix. By selecting the initial
condition based on the regressor matrix, different missing sample sets generate different initial
conditions. Consequently, clustering a regressor matrix involving different sets of missing samples
takes different computation times to converge. In addition, the performance of the resulting
models is different as well. Hypothetically, some missing sample sets might cause the clustering
of the regressor matrix to require a higher number of iterations, thus increasing the computation
time. Indeed, different clustering initializations also influence the identification process of the
complete data. Table 6.8 shows the identification of the complete data with 100 different clustering
initializations for all examples. It is evident that the different clustering initializations result in
models with different performances that need slightly different computation times.

Based on the examples in the previous sections, one may see the trade-off between the perfor-
mance of the resulting models and the computation time in the identification of a TS fuzzy system
by using an incomplete data set. This leads to the following order of algorithms is suggested:

1. The deletion method. This method should first be applied, especially for data sets with a
small fraction of missing samples. The simple algorithm requires low computation time but
can result in sufficiently good models. Different initial conditions for the clustering step
should be examined to search for the best model.

2. The clustering method. This method should be employed in case the deletion method does
not return an acceptable model. The computation time of this method is slightly higher
than that of the deletion method. However, the resulting models are somewhat better for a
larger missing data fraction. Trials with different clustering initial conditions should also be
performed to get better results.

3. The iterative method. This method is the last choice in case the clustering method cannot
return an adequate model either. This method requires the highest computation time of
all, but the resulting models would have a better performance. Experiments with different
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clustering initial conditions are also suggested.

6.7. SUMMARY

The problem of the TS fuzzy system identification using the product space clustering method
when the identification data set contains missing samples has been presented and discussed in
this chapter. Two methods are introduced to overcome the problem of missing samples in system
identification data. The proposed methods approximate the missing samples to enable the use
of identification methods with complete data. The first method includes an extension to fuzzy
c-means clustering for classification of incomplete data to use the data for system identification.
The second proposed method uses the idea of alternating optimization to minimize the prediction
error of the measured samples. The effectiveness of both methods has been demonstrated on three
examples: a toy data set, pH neutralization data, and a real-application data set of a heat transfer
process. The method of removing the incomplete regressor matrix rows is used as a benchmark.
The experiment shows that the proposed methods are able to deliver better R? performance models.
With respect to computation time, the first method requires a lower computation time than that of
the second one. Analysis and recommendations have also been presented for those who want to
implement the method for their own applications.



CONCLUSIONS AND
RECOMMENDATIONS

In this thesis, several problems related to state estimation and system identification have been
presented and discussed. This chapter summarizes the contributions of the thesis in Section 7.1
followed by the details of the contributions. Recommendations and some directions to extend the
thesis results are indicated in Section 7.2.

7.1. CONTRIBUTIONS AND CONCLUSIONS

The main contributions of this thesis on system identification can be summarized as follows:

1. We have developed a practical identification method for spatiotemporal systems when only
sparse measurements are available (Chapter 4). Using the developed method, one can build
a finite-dimensional model from data from a small number of sensors compared to the
spatial size.

2. We have proposed a method to select important regressors using tree representations for
linear and nonlinear system identification (Chapter 5). The proposed method examines the
regressor selection problem as a combinatorial optimization and searches for the solution
based on the tree representation.

3. We have introduced techniques for TS fuzzy system identification in case of incomplete
identification data (Chapter 6). The first technique solves the missing samples in the an-
tecedent step by improving the clustering algorithm to estimate the missing samples. The
second technique takes an optimization view by treating the missing samples as optimiza-
tion variables and alternatingly optimizing the estimation of missing samples and the model
output.

There are also additional results in state estimation:

1. We have reviewed the literature on state observer design for linear distributed-parameter
systems (Chapter 2). Different state observer designs found in the literature have been
presented. We also identified open problems for future research on the topic.

2. We have compared some implementations of the distributed Kalman filter applied to a linear
distributed-parameter system (Chapter 3).

115
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3. We have developed a discrete-time TS fuzzy observer for the METANET traffic model (Ap-
pendix A).

STATE ESTIMATION

The observer design problem for distributed-parameter systems is a more complicated task com-
pared to that for lumped-parameter systems. The infinite-dimensional nature of the problem leads
to two fundamental approaches to design observers: early lumping and late lumping. Utilizing
any of the two approaches, several observer design methods have been derived in literature, with
some of them extending to lumped-parameter systems. Therefore, based on the two approaches,
techniques can be developed to design an observer for distributed-parameter systems.

Spatial discretization of distributed-parameter systems results in coupled lumped-parameter
systems. We have compared methods in distributed Kalman filters and used the centralized me-
thod as a benchmark. The advantage of a distributed Kalman filter lies in the distribution of the
estimate computation among different nodes of filters. The computation distribution increases
the robustness to the failure of filter nodes. The other advantage is the flexibility in designing the
connection topology. In addition, extension to an adaptive topology is also possible, for instance,
by dynamically moving the sensors to cover the system spatially. However, only when the Kalman
filter nodes are fully connected is the performance equal to that of the centralized Kalman filter.

SYSTEM IDENTIFICATION

Identification of distributed-parameter systems can be performed with early lumping by finite-
difference method. The spatial discretization results in grid points and a set of coupled models
corresponding to the grid points. A grid point at which a sensor or an actuator is deployed is called
anode. The lumped-parameter system model at each grid point is coupled with the models at the
adjacent grids. It is common to create a relatively small grid size to increase the accuracy of the
model. Assuming all grid points are nodes, model reduction is performed to obtain simple models,
models that depend on a small number of nodes.

In the case of a small number of nodes at irregular locations, a model corresponding to a node
can be identified by also employing the measurements from the surrounding nodes with a larger lag
to compensate for the spatial propagation of the system variable. With this approach, the resulting
models have a large number of parameters because of both the number of surrounding nodes and
the time lag. Subsequently, the number of parameters is reduced to obtain reasonable complex
models. This identification method, described in Chapter 4, is a pragmatic approach. It can be
applied to non-sophisticated systems where investment in a large number of sensors is not viable.
For instance, the system spatially covers a wide area.

A model with a large number of parameters may contain parameters with low significance to
the performance of the model. In most cases, simplifying the model to decrease the number of
parameters is desired to simplify the model. Model simplification selects a subset of regressors that
gives a higher model performance than other subsets. In Chapter 5 of this thesis, the selection is
performed incrementally by building a tree consisting of regressor combinations with different
subset sizes. The tree is built greedily, and in each step, several combinations can be added to the
tree simultaneously.

The tree representation allows a flexible way of combinatorial regressor selection. Depending
on how the tree is built, one can mimic a typical regressor selection approach such as stepwise
regression or exhaustive search. One can adjust how the tree is built to control the selection process.
In addition, the search is not limited to using a certain model structure. As the tree represents sub-
sets of regressors, their performance can be evaluated using any pre-selected structure. The ability
to assess the potential of the regressors for a given structure is the advantage of the combinatorial
approach for regressor selection.
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The regressor selection in this thesis assumes that the important regressors in a model follow the
pre-selected structure. Compared to linear systems, nonlinear systems have more model structures
to apply. This gives more flexibility in selecting which structure is used in the model, but this may
lead to structure-dependent important regressors. In this case, the method in Chapter 5 is useful,
especially for nonlinear system identification.

Missing samples in identification data create missing information in the data and can be seen
as missing pieces of information to build the model. The unavailable pieces might be insignificant
in case the samples are abundant, and one can just ignore them. In this thesis, TS fuzzy system
identification is extended to use incomplete identification data. The missing samples are imputed
in the clustering step by modifying a fuzzy c-means clustering algorithm. The modified algorithm
results in a single estimate of a missing sample at a different location of the regressor matrix.

An optimization approach for identification using an incomplete data set is also presented
in this thesis. Missing samples can then be viewed as optimization variables. The optimization
problem is then solved by alternating between the missing sample estimation and model parameter
estimation. In other words, the missing samples are estimated using the model obtained in the
parameter estimation step. These two steps are iterated until the model performance is convergent.

7.2. RECOMMENDATIONS FOR FUTURE RESEARCH

There are several ways to extend the methods presented in this thesis. One of them is the application
to different real-world problems. Examples include large-scale infrastructure networks that cover a
wide area with only a few available measurements, such as smart grid networks [240]. Connecting
different types of power generators, this system involves a number of states that are essential to
monitor the power delivery from generators to end consumers. Another possible application is
pipeline networks, e.g., gas transmission [1].

The following subsections provide further recommendations and point out potential research
directions.

STATE ESTIMATION

Observer design heavily depends on the plant model, while it is known that the plant model
always contains uncertainty due to modeling limitations. In this case, observer design methods for
distributed-parameter systems that are robust to model uncertainty are important for reliable state
estimates. Robust observer design methods for distributed-parameter systems might be developed
by extending the methods for the lumped-parameter system, e.g., the methods of [48] or [227]
for robust observer design; or they can be developed directly based on the distributed-parameter
model.

Distributed-parameter systems that have been discretized both in time and space can be
considered high-dimensional lumped-parameter systems. Moreover, for a spatially large system,
the spatially temporally discretized system will have a large number of elements in the state vector.
Therefore, fast and reliable numerical computation methods to estimate the state of the system are
of great importance to this field.

From a computational point of view, several aspects affect the computation load; the number
of sensor nodes, the network topology, and the quality of the sensors. Adding more sensors means
adding more local measurements, which requires more computing resources for estimation. A
complex topology requires more communication among sensors and, consequently, increasing
computation to process the data from the neighboring sensors. Adaptive topology switching by
considering computation and/or communication load will ease the implementation of the state
estimator using sensors with different sophistication level.

The quality of the data communicated from neighboring sensors influences the quality of the
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resulting estimates. In real-life cases, noisy data and missing data are not uncommon, especially for
low-quality sensing devices. Highly noisy data introduce high uncertainty and, therefore, require a
more robust estimation algorithm. Missing or unavailable data further complicates the estimation
process by requiring data imputation. A robust algorithm to tackle these issues together is essential
to widen the application spectrum of distributed state estimation.

From the distributed Kalman filter comparison, an important future research topic concerns
spatially dynamic measurements. In this case, mobile measurement devices move cooperatively
across a large spatial system. The movements should ensure that all the states, or at least those of
some important locations, are estimated. The movement should consider the observability and
controllability of the system and the spatial dynamics as well. Another relevant topic for moving
sensors involves selecting the number of optimal measurements and the corresponding locations.
The selection should also consider, e.g., the analysis of the system’s observability.

SYSTEM IDENTIFICATION

Typically, an important purpose of system identification is to control the system. After obtaining
the model, one should be able to design a controller on top of it. From the approach in Chapter 4,
one may ask how to use the identified model to design a controller or an observer. Models from
each sensor can be stacked to form a state space representation, where the measurements at
sensor locations represent the states of the system. From the fact that the states are coupled
across different measurement locations and the number of states may be very large, the question is
how straightforward it is to apply available control design methods for the identified model while
preserving the control performance and computational practicability.

Another related question concerns the choice of dominant neighbors, the measurements that
highly influence the model and, consequently, the measurements from other neighbors that can
possibly be neglected. The neighbor selection can be made dynamic by directly selecting dominant
neighbors when the dynamics at a certain location is high, e.g., due to disturbances, and online
control/estimation is required. In this case, we can directly simplify the model from the selection of
neighbors, after which the model can even be simplified further by a regressor selection step. The
greenhouse example considered in Chapter 4 is a limited implementation of this framework with a
spatial stationary assumption.

For the regressor selection problem, the current implementation requires much of memory.
It cannot handle the number of regressors that go significantly beyond the numbers presented
in the example of Chapter 5, i.e., about 91 regressors. Therefore, one should consider designing
software with efficient memory management to implement the tree with low memory resources.
More experiments with real-life applications and different tree-building rules and comparisons
with other methods will be useful to further evaluate the effectiveness of the method. Moreover,
since the regressor selection method in this thesis is a heuristic method, a theoretical foundation is
needed to support the validity of the proposed method analytically.

For the identification of the fuzzy system TS with an incomplete data set, for the antecedent
identification step, the hyper-ellipsoid clusters give a better model performance than the hyper-
sphere clusters resulting from fuzzy ¢ means clustering. An extension of fuzzy clustering to handle
incomplete samples beyond the fuzzy c-means method is still not explored, especially for algo-
rithms that build hyper-ellipsoid clusters.

The convergence of alternating optimization for fuzzy c-means clustering has been proven; see,
e.g. [23]. Although it worked well in the example of Chapter 6, it is necessary to provide a theoretical
argumentation proof that the extension used for system identification keeps the convergence
property. Furthermore, it could be assessed whether the same extension also works for other
clustering algorithms employed in classification and system identification applications.

Another open problem is to establish a general theoretical framework for TS fuzzy identification
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with incomplete data. The methods in Chapter 6 can be classified as two-step methods as they
include the estimation of the missing samples; so they will generally be slow. A clustering algorithm
that can handle missing samples and, at the same time, results in hyper-ellipsoid clusters may
improve the computation time significantly.







FuzzYy OBSERVER FOR STATE
ESTIMATION OF THE METANET
TRAFFIC MODEL

A.1. INTRODUCTION

Traffic jams waste significant amounts of time and fuel and contribute to the deterioration of air
quality and the environment. Hence, effective traffic control on freeways is necessary to reduce
congestion. In this context, traffic control is an important component of the traffic management
system that aims to make better use of the available infrastructure.

Appropriate traffic control actions must be based on the actual traffic state, which, however,
is not always available at any point in the traffic network. Not all relevant state variables can be
measured due to technical limitations, such as the sparse arrangement of sensors or the occurrence
of sensor failures. Moreover, the available measurements are corrupted by noise. For these reasons,
traffic state estimation is a very relevant topic regarding effective traffic control.

Designing a state estimator requires a traffic model. Traffic models are generally classified into
microscopic, mesoscopic, and macroscopic models [115]. In the case of online model-based traffic
control, it is common to use a macroscopic traffic flow model, see, e.g., [136, 166, 223]. Macroscopic
models express the average behavior of vehicles at specific locations and time instants. Such a
model is typically nonlinear and captures the average traffic behavior through aggregated variables
at different locations in the network [115]. The variables used in macroscopic models include flow,
density, and speed. The model used in this appendix is the well-known METANET model [183],
selected because it is frequently employed in model-based freeway traffic control [204, 239].

Among the methods applied to traffic state estimation are the extended Kalman filter (KF) [232],
the unscented Kalman filter [168], and the particle filter [169]. In [233], an adaptive approach to the
extended Kalman filter was used. In [102], different filter configurations are compared for the case
of traffic flow estimation and parameter estimation.

A common limitation of the above approaches is the lack of convergence guarantees. Although
awell-tuned extended KE unscented KE or particle filter can perform well in simulations, there is no
guarantee that they will perform equally well in real-life situations. In this appendix, we propose an
alternative approach that is based on transforming the METANET traffic model into a Takagi-Sugeno
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(TS) fuzzy model representation and consequently applying a systematic observer design method
with stability guarantees. The TS model [214] is a general function approximator that can exactly
represent or approximate to an arbitrary degree of accuracy a large class of nonlinear systems. The
TS model consists of fuzzy if-then rules. The rule antecedents partition a given subspace of the
model variables into fuzzy regions. The consequents of the rules are linear or affine models that are
valid locally in the corresponding fuzzy region.

In the literature, there are several approaches to designing TS fuzzy observers for continu-
ous-time systems [21] and for discrete-time systems [215]. The design of TS fuzzy observers is
formulated as a feasibility problem of a Linear Matrix Inequality (LMI), which can be solved by
convex optimization algorithms.

In this appendix, we develop a TS fuzzy observer for the METANET traffic flow model. The
design starts by transforming the METANET model into a TS fuzzy model. Then a discrete-time
fuzzy observer is designed by applying stability and robustness conditions. This method is the
discrete-time counterpart of the approach proposed in [146]. While in [146] the METANET model
was first transformed into a continuous-time model, here we design the TS observer directly in the
discrete-time setting. This is a much more realistic approach, as the METANET model is essentially a
discrete-time model validated for sampling times that are typically in the order of 10 s. In addition,
the measurements are available at discrete time instants as well.

A.2. PRELIMINARIES

In this section, we briefly review the METANET model.

A.2.1. THE METANET TRAFFIC MODEL
In this section, we present the macroscopic traffic flow model METANET developed in [183]. In
METANET, three state variables reflect the behavior of the traffic, namely, [183]

e Traffic density p: the number of vehicles per length unit and per lane in a freeway segment,

* Space-mean speed v: the instantaneous average speed of vehicles per length unit in a freeway
segment,

e Traffic volume or flow g: the number of vehicles leaving a freeway segment per time unit.

The METANET model represents a freeway network as a directed graph whose links are associ-
ated with stretches in the freeway network. Each link in the graph corresponds to a stretch that has
uniform characteristics. A node is placed in the graph when there is a change in the geometry, such
as an on-ramp or a split.

The METANET model is discrete in time and space. In the model, the m-th link of a freeway
is divided into N segments of length L;;. For each link m and segment I, the state variables of
the traffic as described above are expressed as the average density p,y, ; (k), the space-mean speed
Ui (k), and flow g, ; (k). The definitions of the variables that are used in the METANET model are
in Table A.1 while the parameters and their typical values (as used in the case study in Section A.5)
are listed in Table A.2. The values of the parameters have been adapted from [137].

In the segment I of link m, the flow at time step k is determined by the speed, density, and the
number of lanes:

Am,i () = P, i (K) - Uy 1 () - A (A1)
where A, is the number of lanes in the corresponding segment. At time step k + 1, the density of
segment [ is influenced by the density at time step k, the number of vehicles entering from segment
i —1 (inflow), and the number of vehicles leaving segment I (outflow). This relationship can be
expressed as

T
Pm,i(k+1) = ppy (k) + —(Qm,i—l(k) - Qm,i(k)) (A.2)
LmAm
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Table A.1: Variables in the traffic model.

Symbol Variable Units

k time step -

i segment index -

pm,i(k) traffic density veh/km/lane
Um,i(k) space-mean speed km/h

Gm,i(k) traffic volume or flow veh/h

where T is the sampling time, which typically has a value of 10s. The space-mean speed of the
segment i at time step k + 1 is influenced by three terms, expressing relaxation, convection, and
anticipation. The relaxation term expresses the speed change to achieve a desired equilibrium
speed V(py,; (k) corresponding to the density p,, ; (k). This term is proportional to the difference
between the current space-mean speed and V(p; ; (k). The convection term expresses the speed
difference between the segment i and the upstream segment i — 1. The anticipation term is the
speed change due to the density change when moving from the upstream segment i — 1 to the
downstream segment i. Using these terms, the space-mean speed at time step k + 1 can be written
as

T
U, i (k1) = Uy i (K)+ — [V(012, (0) = v, (K]

T
+ L_Vm,i(k)(vm,i—l(k)_ Vm,i(k)) (A.3)
m

v T pm,i+1(k) - Pm,i(k)
T'Lm Pm,i(k)"’KM

(k am
_L(_pm”( )) ] (A4)

am \ Pcr,m

Note that the METANET model (A.1)-(A.4) presented above is the basic model without geometry
changes such as on-ramp, off-ramp, split, or merge. However, the model can be extended to include
those cases (see [183] for details). In the sequel, for the sake of simplicity but without loss of
generality, we consider only one link, and therefore the index m is dropped.

where

V(pm,i (k) = Ut m - €Xp

A.3. TS FUZZY REPRESENTATION OF THE METANET MODEL

In this section, a TS fuzzy model is developed that exactly represents the METANET model presented
in the previous section. Before the TS model is derived, the set of equations of the METANET
model, i.e., (A.1), (A.2), (A.3), and (A.4), have to be written as a state space representation of a
nonlinear system. Since, in general, TS fuzzy models do not use algebraic equations, g; (k) in (A.1)
is eliminated by substituting it into (A.2). The information needed from the neighboring segments,
namely p;,1 (k) and v;_; (k), is treated as input to the model. After some algebraic manipulations,
the METANET model can be rewritten as a state equation with an affine term as follows:

(pl-(k+1) (1-Tvi 0 (pi(k))
vi(k+1) - %m 1—%—%1}1'(]() v;(k)
NE7IRTC I (vi_luc))
Vi T o) P ()
0
A5
+(%V(pi(kn) (49)




124 A. Fuzzy OBSERVER FOR STATE ESTIMATION OF THE METANET TRAFFIC MODEL

Table A.2: Parameters of the traffic model and the values used in the case study of Section A.5.

Symbol Parameter Value Units

Ly, length of segment 0.5 km

Am number of lanes 3 -

Vtm free-flow speed 102 km/h

Per,m critical density 30 veh/km/lane
T time constant 18 s

v anticipation constant 60 km?/h

KM constant 40 veh/km

am parameter 234 -

Vmin minimum velocity 7.4 km/h

Vmax maximum velocity 200 km/h

OPmin minimum density 0 veh/km/lane
OPmax maximum density 150 veh/km/lane
T sampling time 10 s

Voo =] L (2]

am *Pcr

The development of the TS fuzzy representation of this model is presented in the next section.

A.3.1. TS FUZZY MODEL CONSTRUCTION

Consider a nonlinear system described by the following state space model':

x(k+1) = f(2)x(k) + g(@uk) + a(z)

A.6
y(k) = fo (2)x(k) (46

Here, f, g, a, and fi are smooth nonlinear matrix and vector functions, respectively, x € R" is the
state vector, # € R™ the input vector, y € RY the measurement vector, and z = [z1 (k)y --- zp(k)] T
a given vector function® of x, y, and u; z is called the vector of scheduling variables. All variables x,
¥, u are assumed to be bounded and to belong to a compact set Cyyy.

An approximation of TS representation to a nonlinear system can be obtained using the sector
nonlinearity approach [176]. The basic idea of the sector nonlinearity approach is to represent
each of the nonconstant terms in the matrix functions f, g, and #, and the vector function a of
the model as the convex combination of two constant terms and to build the set of fuzzy rules
as all combinations of the so-obtained terms. Therefore, in this approach, the number of rules is
determined by the number of nonconstant terms in the matrix functions.

First, consider the state equation of the nonlinear system (A.6). The sector nonlinearity ap-
proach requires the nonlinear functions to be bounded. Therefore, we consider the nonconstant
terms in either f, g, or a of (A.6), and we represent them by nlj e [Qlj,aj],j =1,2,...,p where

nl j and nl j are respectively the lower and upper bound of the j-th term. Now, for each nonlinearity

1n the output equation we use % to denote the nonlinear function and not & as could be expected, since the
symbol & is used to denote membership functions.

2Each element of the vector z is time-dependent, i.e., z should be denoted as z(k). For the simplicity of notation,
the explicit time-dependence is omitted in this appendix.
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nl;, we construct two weighting functions as follows
_ nl ji— nl i )

/0

Wy

=) wl()=1-w)()
nlj -nl; A7)

forj=1,2,...,p

We can see that for each nonconstant term, the two weighting functions w(]) and w{ are normalized,
ie., w(]) (ml;()+ w{ (nlj(-)) = 1, for any nl; (). To define the membership functions we consider all

possible products of the weight functions wé for j €11,2,...,p} and ¢ € {0,1}. This results in 2P
membership functions of the form

p .
hi(2) = [T w)(z)) (A.8)
Jj=1

fori=1,2,---,2P, ¢ €{0,1}. These membership functions are normal, i.e., /;(z) = 0 and Z;zl h;(z) =
1, r = 2P, where r is the number of rules. Then the fuzzy representation of the state update equation
in (A.6) is given as

.
x(k+1) =) h;(2)(A;x(k) +Bjuk) + a;) (A.9)
i=1

where A;, B;, and a;, i = 1,2,...,r are matrices and vectors of proper dimensions, obtained by

substituting the nonlinear terms nl;(-) by either nl jor nl j depending on whether wé or w{ is

selected.
The TS representation of the output function can be obtained in a similar way.

A.3.2. TS FUZZY REPRESENTATION OF THE METANET MODEL
We can see that the METANET model (A.5) does not have the form (A.6). To construct the TS
fuzzy representation of (A.5) using the sector nonlinearity approach, it is necessary to assume that
the values of the variables p;_; (k), p;(k), and v; (k) are bounded, p;_; (k) € [0;—1,min, Pi—1,max]
i (k) € [0;,min» Pi,max), and v; (k) € [V; min, Vi,max], for all k. This assumption is reasonable since a
freeway segment always has capacity limits. Furthermore, when the segment is in congestion, the
space-mean speed will be very small, while there is always an upper limit of the speed of a car on a
freeway.

First, we consider the state equation of (A.5). There are four nonconstant terms in the matrix
functions f, g, and a, based on which the weighting functions are defined as follows:

1. Fortheterm1— % v;(k), the space-mean speed v; (k) has a maximum and minimum value
of v; max and v; miy, respectively. Applying (A.7), one obtains
v; -v;(k)
wo (v;(k) = —= (A.10)

Vi max ~ Vi,min

and
wi (v; (k) = 1 - wh (v; (k) (A.11)
Note that 1 - % vi(k)and 1—- % - %vi (k) lead to the same weighting function;
2. Similarly to the above, m leads to
i (K) = Pimi i +x
wS(pi(k))z Pi(k)—pimin Pimax+KM

Pi(k)+XM  Pimax—Pimin
wi(p; (k) =1 - w3 (p; (k)
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pi(k)

Dor )um] appearing in V(p;) is expressed using the weighting

o] - (%) - - 342)"
o[ &) ] oo

w3 (pi—1 (k) =1-wy(pi—1 (k)

3. The term exp [ - L[

am
functions

wi (pi(k) =

From the above four nonconstant terms to describe all possible combinations, result in a fuzzy
system with 2% = 16 rules.
Consider now the output equation:

_ qi(k))
y(k)—(vi(k)
(A.12)
_[(vitA  0)(pitk)
o 1)lym

The measurement matrix has one nonconstant term, namely, v; (k). However, since v; (k) in the
measurement matrix is the same as that of the system equation, the same weighting function as
above can be used. The speed v; (k) is also assumed to be measured, which means the membership
functions of the measurement do not depend on the states that have to be estimated. The space-
mean speed measurements can be approximated by the time-mean speed [234], which can be
measured easily by, for instance, loop detectors.

Using the weighting functions developed above, the consequent model of the fuzzy rules can
be written as

x(k+1) = A;x(k) + B;u(k) + a;

A.13
y(k) = Cix(k) (A13)

where
_ Pi(k)) _ (Vi—l(k))
x(h) = (Vi(k) uth) = pi+1(k)

and A;, B, a;, and C; are obtained by substituting the minimum or maximum values corresponding
to the weighting functions used in rule i into the functions f, g, f, and a.
The TS fuzzy model of the METANET is then expressed as

;
x(k+1) =) h;i(2)(A;x(k) +B;uk) + a;)
o (A.14)
Yk =Y he i (2)Cix(k)
i=1

1

where h,, ; () is the membership function for the output equation, the same as (A.8). This concludes
the TS fuzzy representation of the METANET model.

A.4. OBSERVER DESIGN FOR THE TS METANET MODEL

In general, an observer designed for the model (A.14) has the form

.
Rk+1) =) h;j(&)[A; 2 + Biu(k) + a; + K; (y(k) - (k)]
i=1 (A.15)

;
k) =) hoi(RC;i%
i=1
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where Z denotes the estimated scheduling vector and K;,i = 1,...,r, are the observer gains. The
observer design problem is to calculate the values of Kj,i = 1,...,r such that the estimation error
converges to zero. The estimation error can be written as

e(k) = (k) — x(k) (A.16)

Substituting (A.14) and (A.15) into (A.16) yields

.
e(k) =Y h;i(2)[A;x(k)+ Bju(k) + a;]
i=1

.
- Z hi(2)[A; (k) + Bju(k) + a; + K; (y(k) - (k)]

Adding to and subtracting from the right-hand side of the above equation Z;zl hi(2)(A;x(k) +
Bju(k) + a;), after some algebraic manipulations we obtain

.
e(k+1)= Z hi(2)[Ajek) - K;(y(k) - 9(K))]
. (A17)
+ Y (hi(@ - h;i(®)[A;x(k) + Bju(k) + a; |
i=1

Since the speed is measured, the membership functions of the measurement model do not depend
on the estimated states. Therefore, we can rewrite (A.17) as

r r
e(k+1)= Z Y hi(@hj@)[A; -K;Cjle(k)
= r’: (A.18)
Z (hi(2) — hi(8))| Ajx(k) + Biu(k) + a;]

In order for the estimation error to converge to zero, the observer gains K; have to be calculated
such that the first term of (A.18) converges to zero and such that the disturbance due to the second
term, h;(z) — h;(2) becomes zero as Z approaches z.

The observer gains K; are usually computed using the stability conditions developed for TS
systems. The estimation error dynamics (A.18) is asymptotically stable, i.e., the estimation error
converges to zero if there exists a positive definite matrix P such that [215]:

GLPG;i-P<0
G;i+GiNT  (Gji+Gip) (A.19)
l]2]l p l]2 Jt _pP<0

forall i, j such that i < j and such that 3z s.t. h;(2)h(2) # 0, where G;; = A; — K;C;. The inequali-
ties above can be transformed into the following LMI problem:

Find a positive definite matrix P and matrices M;, where M; = PK;,i =1,...,r, such that

p 2Ll =0
2L;; P

T (A.20)
( P (Lij +Lji) ) >0
(L ) P

for all 7, j such that i < j and such that 3z s.t. hi(z)hj (2) # 0 where L;j = (PA; — M;Cj)/2.
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The condition (A.20) above ensures the asymptotic stability of the first term of the right-hand
side of (A.18). The asymptotic stability of (A.18) can be guaranteed using stability conditions for
uncertain fuzzy systems (see [120]). Provided the initial estimate is close enough to the true state,
(A.18) is stable [22].

The LMIs above can, e.g., be solved using the Sedumi solver of YALMIP [160]. Subsequently, the
values of K; are substituted into the observer model.

The approach presented above can be extended to include the node equations of the METANET
model, which implies that the proposed approach is not only applicable to freeway stretches but
also to (complex) freeway networks.

Under the condition of measured flow and nonzero flow speed in a segment, it is possible to
design a fuzzy observer similar to (A.15) that can estimate both the speed and the density. This
indicates that it is possible to design observers in a distributed fashion for a whole stretch or even a
whole network, given that the neighboring observers communicate the estimated states among
them.

A.5. SIMPLE CASE STUDY
Now the proposed approach is illustrated by a simple case study in which we consider one segment

i. The true initial state of the segment is x = [p U]T =[10 ZO]T. The boundary inputs for
the segment were constructed such that the downstream speed was equal to the initial speed of
the segment plus uniformly distributed random noise between 0 and 15 km/h, and such that the
upstream density was equal to the initial density of the segment plus uniformly distributed random
noise between 0 and 15 veh/km/lane. The observer has been simulated using the initial estimate

x=[20 100]T. The output of the TS fuzzy representation of the METANET model is shown in
Figure A.1a and A.1b. The estimation error using the observer is shown in Figure A.1c and A.1d. As
expected, the estimation error converges to zero.

The simulation and estimation reported here have been performed on a PC with an Intel T9300
2.5 GHz processor and 3GB RAM. The total computation time, including the computation of the
observer gains (1.75s, done offline, before the actual estimation), simulation of the model, and
estimation of the states was 2.26 s. Computing the estimate in one time step on average requires
0.0042 s, with 0.008 s being the maximum time that was encountered. These values are well below
the typical sampling times for freeway traffic networks (which currently are typically in the range of
several tens of seconds to minutes). This clearly indicates that the proposed observer is applicable
online.

A.6. SUMMARY

A discrete-time Takagi-Sugeno (TS) fuzzy observer has been proposed for the METANET traffic
model. An exact TS representation of the METANET model has been obtained using the sector
nonlinearity approach as an illustration. The observer has been designed based on the TS fuzzy
representation of the METANET model for one segment of highway stretch. The designed observer
is able to estimate the non-measurable traffic states.

In our future research, we will investigate how the performance of the proposed observer
compares to that of other types of observers that can be applied to the METANET model such as
extended Kalman filter, unscented Kalman filters, or particle filters (see also [102, 168, 169, 232, 233]),
in particular for models of real-life networks and using real measurement data as input. We will
also consider a robust TS fuzzy observer design to handle uncertainties in the METANET model, as
well as TS fuzzy observers for other traffic flow models.
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Figure A.1: Estimation error using the TS fuzzy observer.






SYMBOLS AND NOTATIONS

This part contains a list of symbols and notations used throughout the thesis.

Symbol
General
R

N

N +

-
%
&y,

Chapter 2

= R
=4+

NDm QMmN

> oS s
2 w:o

AY

Chapter 4
Mg
My

Meaning

set of real numbers

set of natural numbers

set of positive natural numbers

transpose operator of matrix and vector
set of spatial coordinates

set of spatial coordinates at the boundaries

continuous-time state matrix or state operator of abstract state equation
continuous-time input matrix or input operator of abstract state equation
finite dimensional part of abstract state equation

infinite dimensional part of abstract state equation

continuous-time output matrix or output operator of abstract state equation
observer gain

domain

orthogonal projection of state space in Hilbert space

damping operator

stiffness operator

state vector of systems

a priori estimate of state x

a posteriori estimate of state x

local estimates at node i

measurement vector

discrete-time state matrix

input matrix of discrete-time state equation
measurement matrix of discrete-time state equation
Kalman gain

process noise and its corresponding covariance matrix
measurement noise and its corresponding covariance matrix
estimation error covariance matrix

information vector of information filter

information matrix of information filter

set of grid points from discretized space
set of inputs at grid points
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Symbol
./%s

Ny

N

Ts

Az

Ns,i

LNu,i

bi

0;,0;

E{-}
Y(z,1),Y(2)
L(z,1),L(z)
L(2)

Vi(z, t)

8zy

Yz
Ny,
ML, le
Cy,
Var(:)
Cov(:,*)
Vi(z, 1)
o

K

Cp

Chapter 5
T

[}
Ny
Iy
Np
¢
Vs,i
Ps
Ds
nq
ny
Nne

Iy

Meaning

set of actuators at grid points

number of actuators

number of sensors

sampling period in temporal discretization

inter-node distance in spatial discretization

set of neighbor indices of ith sensor, including i

set of neighbor indices of ith actuators, including i
regressors of ith model

parameter vector of ith model and its estimate

expectation operator

measurement equation of spatiotemporal process, and of spatial process
spatiotemporal random process and spatial random process
estimator of L(z)

noise of spatiotemporal random process and of spatial random process
true but unknown value of L(z)

measurement vector of random spatial process

length of vector y,

mean value of L(z) and its estimate

covariance matrix of measurement y,

variance operator

covariance operator

spatiotemporal measurement noise

material density

thermal conductivity

heat capacity

search tree consisting of nodes that represent models with different numbers
of regressors

regressor matrix

maximum lags of input used in the model

maximum lags of output used in the model

number of rows of the regressor matrix

vector of regressor

subset of regressors used in the node n;

vector that indicates the regressors used in the node n;

regressor matrix

number of regressors in the matrix

number of possible regressors

number of simultaneous node expansions for the propsed method
number of possible combinations of models that takes nq regressors out of 7y
regressors

model represented by the node i

performance of a model based on the Akaike information criterion
performance of a model that corresponds to the node 7;

set of nodes that are built from the expansion of parent node n;

set of nodes that do not have children nodes

set of terminal nodes that cannot be expanded to build children nodes
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Symbol

Chapter 6
Tr

Ux

V=
Km
Dy
¢i,j
Pr
Nm
(I)A,m
Na

np

O
mMp

Appendix A
Lin
Am
UVt m
Pcr,m
T

v

KM
am
Umin
Umax
Pmin
Pmax

Meaning

nonlinear function represented by a TS fuzzy model

input data containing missing samples

output data containing missing samples

set indices of unavailable measurements

regressor matrix augmented by the target vector

element of ® at row i and column j

regressor vector consisting of lagged input-output samples
number of missing samples

regressor matrix containing missing elements

maximum delay of output samples

maximum delay of input samples

set of antecedent and consequent parameters of TS fuzzy model
fraction of missing samples

length of segment
number of lanes
free flow speed
critical density
time constant
anticipation constant
constant
parameter
minimum velocity
maximum velocity
minimum density
maximum density
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