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We develop a theory of magnetic breakdown (MB) near high-order saddle points in the dispersions of two-
dimensional materials, where two or more semiclassical cyclotron orbits approach each other. MB occurs due to
quantum tunneling between several trajectories, which leads to nontrivial scattering amplitudes and phases. We
show that for any saddle point this problem can be solved by mapping it to a scattering problem in a 1D tight-
binding chain. Moreover, the occurrence of magnetic breakdown on the edges of the Brillouin zone facilitates the
delocalization of the bulk Landau level states and the formation of 2D orbit networks. These extended network
states compose dispersive mini bands with finite energy broadening. This effect can be observed in transport
experiments as a strong enhancement of the longitudinal bulk conductance in a quantum Hall bar. In addition, it
may be probed in STM experiments by visualizing bulk current patterns.

DOI: 10.1103/PhysRevB.109.L081103

Magnetic breakdown (MB) in a single Bloch band occurs
when two semiclassical trajectories of quasiparticles come
close to each other and quantum tunneling between them
becomes possible. This situation naturally appears near usual
saddle points that give rise to logarithmic van Hove singu-
larities in the density of states [1]. In novel atomically thin
2D materials a new family of saddle points arises, around
which the dispersion is flatter than in the usual case. This leads
to power-law divergences in the density of states known as
high-order van Hove singularities [2–4]. In some cases, more
than two trajectories approach the saddle point, creating a
MB structure with a larger s-matrix size proportional to the
number of trajectories. In this paper, we present a method
to calculate the precise MB s matrix for any type of saddle
point. It is based on rewriting the effective Hamiltonian in the
Landau level basis, mapping the resulting algebraic problem
to the 1D scattering in the quantum chain, and calculating the
MB s matrix by properly fixing semiclassical modes in the
far-away region.

As was found in the 1960s in pioneering works by Pippard
[5–7], and Chambers [8–11], and summarized in Ref. [12],
MB can lead to formation of coherent orbit networks com-
posed of localized Landau level states (LLs) connected via
tunneling between them. For 2D materials, the orbit network
occurs in the vicinity of energy levels where the Bloch band
in momentum space has saddle points located at the bound-
aries of the Brillouin zone (BZ). Then, tunneling between
orbits in different cells of the extended BZ scheme forms
a network (see Fig. 1). In the real space, this corresponds
to a network of semiclassical cyclotron orbits, which makes
LLs to be extended [5,8,12]. The discovery of novel 2D ma-
terials [13–16] dramatically increased the number of lattice
geometries in which orbit networks can be formed. Below
we calculate the detailed structure of these states as well as

their band dispersion. In addition, we show that such ex-
tended LLs allow for longitudinal bulk conductance in the
quantum Hall bar, which strongly exceeds the standard edge
conductance [17].

There are two regimes of transport that orbit networks
can govern: coherent regime with quantum phase that is ac-
cumulated along the cyclotron orbits and defines the exact
energy spectrum, and incoherent regime with quantum phase
averaged by the presence of disorder. Below, we describe
the coherent regime and corresponding observable signatures
that allow us to distinguish between different types of MB
that happens at saddle points that connect cyclotron orbits. In
addition, we note that the mini band structure appearing due
to coherent orbit networks can be linked with the topological
Hall effect of electrons in skyrmion crystals [22].

Recent studies of coherent orbit networks in 1D geometry
predicted a number of interesting effects such as magic zeros
in Landau level spectra [23] and broadening of the Landau
levels by the coupling of Fermi arcs on opposite surfaces
in Kramers-Weyl semimetals [24]. Also, the predicted spec-
trum by 2D incoherent orbit network shows relatively good
agreement with the Hofstadter butterfly for twisted bilayer
graphene [25]. The scaling of mini band width appearing from
orbit networks with magnetic field was obtained for square
lattice [26,27] and graphene [28].

The semiclassical equations of motion for the electron in
crystal under external weak magnetic field are given by the
Lorentz force [29,30]

h̄∂t k = −c−1e(vk × B) (1)

with usual velocity replaced by group velocity found from the
dispersion law vk = 1

h̄∂kE (k) that depends on wave vector k.
Here, we consider 2D crystals placed in perpendicular mag-
netic field along the z-direction B = (0, 0, B). Equation (1)

2469-9950/2024/109(8)/L081103(7) L081103-1 ©2024 American Physical Society

https://orcid.org/0000-0002-6097-7521
https://orcid.org/0000-0003-0593-6062
https://orcid.org/0000-0001-8031-1340
https://orcid.org/0000-0002-1976-0937
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.L081103&domain=pdf&date_stamp=2024-02-05
https://doi.org/10.1103/PhysRevB.109.L081103


ZAKHAROV, BOZKURT, AKHMEROV, AND ORIEKHOV PHYSICAL REVIEW B 109, L081103 (2024)

(c)

FIG. 1. (a) Effective dispersion around Monkey saddle point in
momentum space given by Eq. (3) with three trajectories on a single
energy level coming close at the MB region (shown as blue lines).
(b) Tight-binding dispersion of triangular lattice with imaginary hop-
pings (18) in which monkey saddle points connect cyclotron orbits
into network. (c) Planar orbit network for dispersion (b) in rotated
coordinate frame with semiclassical regions labeled by weight coef-
ficients α [see Eq. (14)], and MB regions with s matrix (red circles).
Reciprocal lattice vectors bi and highly symmetric lines are shown.

restricts quasiparticles to move only along the lines of con-
stant energy in momentum space. In Fig. 1 such lines are
shown in the vicinity of the monkey saddle point and in the
dispersion of the tight-binding model introduced below in
Eq. (18). Before proceeding to MB, we note that after inte-
gration over time in Eq. (1) one finds that the trajectory in real
space is rotated by angle π/2 compared to the E (k) = const
line in k space, and its size is rescaled by squared magnetic
length [30,31]:

kx = −y − y0

l2
B

, ky = x − x0

l2
B

, lB =
√

h̄c

eB
. (2)

In what follows, we set h̄ = c = 1. Magnetic field is consid-
ered as weak if magnetic length is much larger than the lattice
constant of the crystal, lb � a.

We now focus on the detailed description of tunneling that
takes place in the vicinity saddle point in dispersion due to
magnetic breakdown. The saddle points are defined as points
where the gradient of dispersion vanishes, ∇kE (k) = 0. As
was shown in Ref. [2], they can be further classified as usual
or high-order depending on the “flatness” of dispersion around
that point. More formally, the usual type corresponds to non-
vanishing determinant of Hessian matrix Di j = ∂ki∂k j E (k) for

dispersion, while the high-order ones have zero determinant
and optionally zero Hessian itself. They could be further
classified into many types depending on the underlying sym-
metry point group, see Refs. [3,4]. Below, we show that our
approach works for all possible saddle points. The magnetic
breakdown happens because several constant energy lines in
k-space come close to each other near the saddle point, see
Fig. 1(a). Thus, the tunneling probability between them be-
comes of order of one, and therefore we have to properly
solve the scattering problem in the corresponding region. The
complication arises due to the fact that typical dispersion
around the saddle point has high powers of polynomials in
k, for example

EM (k) = −ta3
(
k3

x − 3kxk2
y

)
(3)

for the monkey saddle. Here t is a constant with dimension
of energy. Generally, it is not possible to solve a Schrödinger
equation for such a Hamiltonian analytically to match it with
plane-wave solutions away from the MB region. The only
available closed form solution of such kind exists for the usual
saddle point [18,20], a partial case of A2n−1 points,

Elog(k) = ta2
(
k2

x − k2
y

)
, EA2n−1 (k) = t

(
a2k2

x − (aky)2n
)
, (4)

with n = 1, 2, . . .. But we show that our seminumerical
method efficiently solves the Schrödinger equation up to any
precision and enables us to find the s matrix.

To introduce our method, we use the cylindrical gauge
for vector potential A = B

2 (−y, x, 0) and make use of the
oscillator-type basis for Landau levels |n〉, with their coordi-
nate representation given by

ψn(x, y) =
(

∂

∂w
− w∗

4l2
B

)n

wne−|w|2/4l2
B , w = x + iy. (5)

Using Landau level basis [32], the effective Hamiltonian of
the saddle point in magnetic field that is written in terms of
canonical momenta �i = ki + eAi can be expressed in terms
of ladder operators by using the replacement

kx → �x = â + â†

√
2lB

, ky → �y = i(â − â†)√
2lB

, (6)

with standard commutation relation [â, â†] = 1. In the sim-
plest case of the usual saddle point, we find

Hlog = ta2l−2
B [â2 + (â†)2]. (7)

Here, we rescaled energy by t and set lB = a = 1, which
can be later restored by rescaling energy dependence of the
s matrix. The more complicated example of monkey saddle
(3) with mixed kxk2

y product requires a symmetrization pro-
cedure to make the Hamiltonian Hermitian in terms of ladder
operators. In the general case, different symmetrizations of
particular polynomial Hamiltonian give different results for
the lower order terms due to nontrivial commutation relations.
To uniquely fix the symmetrization procedure, we expand
the tight-binding Hamiltonian of the underlying lattice with
assumption that momenta operators do not commute. For the
Monkey saddle after simplification this reads [33]

HM = − ta3l−3
B

2
√

2
[(â + â†)3 + 3(â − â†)(â + â†)(â − â†)].

(8)
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FIG. 2. (a) The geometry of usual, Monkey and A3 saddle points with equi-energy contours in k − space. (b): The corresponding 1D chains
after mapping. The cut-off region with plane wave approximation is shown as a set of red sites with equal hopping parameters. (c) The absolute
value of S-matrix elements (reflection - Ri and transmission - T ). (d): The basis-independent scattering phase calculated as arg(det[S]). For
the usual saddle point (top panels in (c), (d)) we also show the comparison with exact analytic solution [18–20] marked by dots that perfectly
agrees with the results obtained with our approach. In (c), (d) we set lB = 1 and for any other magnetic field the results can be obtained by
proper rescaling of energy [21].

We note that in more the general case of higher polynomial
Hamiltonians one might find different symmetrization results
depending on the lattice. If the tight-binding Hamiltonian
is not known exactly, all possible symmetrizations that give
different expressions in terms of ladder operators should be
analyzed.

Next, we explain how to obtain the scattering matrix that
describes magnetic breakdown around a saddle point. We start
by noting that the exact solution of the Schödinger equa-
tion H� = E� with � = ∑∞

n=0 φn|n〉 yields a set of recursive
equations. For a usual van Hove singularity, we find

Eϕ0 −
√

2φ2 = 0, Eφ1 −
√

6φ3 = 0,

Eφn −
√

n(n − 1)φn−2 −
√

(n + 1)(n + 2)φn+2 = 0. (9)

Recursive equations for other saddle points are derived in the
Supplemental Material [33]. We note that a set of recursive
equations can be mapped onto a 1D tight-binding problem:
the term multiplying ϕn corresponds to an on-site potential
for the site with index n, while the terms involving ϕm with
m 	= n represent the tight-binding hopping parameters that
connect the nth site to the mth site. By imposing truncation at
large index n = Nc and replacing all remaining equation with
those where n = Nc, we obtain a natural mapping to Nc-site
1D chain of atoms connected to a translationally invariant
semiinfinite lead, shown in Fig. 2(b). Then, we obtain the
s matrix using the propagating modes of the lead at energy
E , with the number of scattering states corresponding to the
number of semiclassical orbits coming close at the MB region.

However, the obtained s matrix is in the LL basis. To
transform the s matrix into basis of modes with a definite angle
in momentum space, we use the creation ladder operator

a† ∼ kx + iky ≡ keiφk , (10)

where φk is the angle in momentum space. Hence, per-
forming a basis transformation on the propagating modes in

semiinfinite leads to a basis where a† is diagonal and converts
the obtained s matrix into a physical one. The technical de-
tails of this procedure for the usual and Monkey saddle are
discussed in the Supplemental Material [33]. The chirality
and consequent absence of backscattering of the states with
definite angle, that are spatially separated, ensures the unique
definition of the physical s matrix.

For some saddle points the asymptotic modes at large
momenta are indistinguishable by their angle in momentum
space. In this case, we cannot apply our procedure of trans-
forming the s matrix into a physical basis. An example of
such a saddle point is A2n−1 described by Eq. (4). For this
saddle point, the angle of trajectory in momentum space with
respect to the x axis tends to zero as the wave number tends
to infinity, see the bottom panel of Fig. 2(a). We resolve this
by introducing angle-fixing regularization, achieved through
the inclusion of sufficient amount of subleading terms in the
effective Hamiltonian

E ′
A2n−1

(k) = t
(
a2k2

x − a2n
(
k2n

y − βk2n
x

))
, n � 2, (11)

where we use the β > 0 constant as a regularization parameter
and this parameter defines angles far away from the scatter-
ing region, not playing a role in the vicinity of the saddle
point. We choose the truncation number Nc such that the
leading terms strongly dominate in effective 1D tight-binding
equations, and the mode separation into the angle basis can
be done with good precision: tmax

Nc+1 � E , . . .. Physically, this
corresponds to taking the region where the scattering between
modes with different angles is absent.

To demonstrate our method, we numerically solve for the
scattering matrix using Kwant code [34,35]. We show our re-
sults for the absolute values of the transmission and reflection
elements of the s matrix and scattering phases in panels (c)
and (d) of Fig. 2. All these elements are gauge invariant and
independent of incoming and outgoing basis modes selection.

L081103-3
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In the case of usual van Hove singularity, it demonstrates per-
fect agreement with analytic expressions (see [20,33]). For the
A3 saddle point, we find a nontrivial behavior of transmission
coefficients shown in bottom row in Fig. 2(c). The presence
of zeros in the transmission coefficient signifies the complete
reflection of a quasiparticle moving along a cyclotron trajec-
tory at that specific energy. Consequently, this phenomenon
results in the effective reduction of orbit network to a single
cell. The manifestation of this effect is demonstrated below by
the narrowing of the mini band width in the spectrum and the
corresponding reduction in bulk conductance. With the com-
plete description of MB at hand, we now propose a transport
setup which would probe the features of the high-order saddle
points. Since our goal is to distinguish energy dependence
of both scattering amplitude and phase of MB at different
saddle points, we use the coherent orbit networks that appear
when the saddle points are placed at the edge of the BZ. Such
coherent orbit networks were widely discussed in literature in
the late 1960s [5,8,12], but the absence of experiments with
2D atomically thin crystals limited discussion to the simplest
geometries, such as weak perturbative potential with square
lattice geometry. Here, we use the same approach of magnetic
translation symmetry groups and describe the orbit networks
that are connected via usual as well as high-order saddle
points. As it is clear from the constant energy curves in the
spectrum in the extended BZ scheme [see Fig. 1(b)], the orbits
networks in k space have perfect periodicity and thus should
be periodic in r space. However, in the presence of external
magnetic field, the translation operators of the lattice T̂Ri =
exp{∇rRi}, with Ri being a basis vector, should be replaced
by magnetic translation operators [12], which up to phase
factor are equal to T̂ M

Ri
= exp{(∇r + ie(A(Ri ) + Ri × B))Ri}.

The corresponding operators define a magnetic unit cell. To
obtain a closed set of equations for the orbit network, we
should restrict the value of magnetic flux per unit cell of the
lattice to be a rational number

� = B|R1 × R2| = B
(2π )2

|b1 × b2| = q

p
�0, �0 = h

e
. (12)

Here, bi are the basis vectors of reciprocal lattice. In the
further calculations, we restrict ourselves to the case of q = 1.
This relation is equivalent to setting magnetic unit cell to the
integer number p of lattice unit cells. Now we are ready to
proceed with defining a basis of semiclassical wave functions
on the links of networks. These are Zilberman-Fischbeck (ZF)
wave functions [12,20,36], written using the WKB-type ap-
proximation far from scattering region. The ZF functions are
expressed in a gauge-invariant coordinate space with replace-
ment �x → kx and �y → −il−2

B ∂kx . Since the scope of this
paper is limited by the linear effects in magnetic field, we use
the first order expansion of ZF functions with a2/l2

B 
 1:

�ZF (kx ) =
∣∣∣∣ ∂E (k)

∂ky(kx )

∣∣∣∣
− 1

2

exp

[
−il2

B

∫ kx

kx,0

kE
y (kx ) dkx

]
. (13)

Here kE
y (kx ) stands for the solution of constant energy contour

equation E (kx, kE
y (kx )) = E . The full wave function of the

orbit network state is composed as a weighted superposition

of the �ZF wave functions in different unit cells:

�(kx ) =
∞∑
k,l

eil2
B[kxlb2,y− l2

2 b2,xb2,y]

×
∑

j

α
(l,k)
j �

j
ZF (kx − kb1,x − lb2,x ). (14)

In this expression, each weight coefficient α
(l,k)
j contains two

cell indices l, k as well as a unique index j corresponding
to the different parts of the orbit between scattering points
inside single cell of the network. The example of this notation
is shown in Fig. 1. Due to periodicity of the network, the
solutions have the form of Bloch waves α

(l,k)
j = α jei(pk k+pl l ).

The magnetic translation group restricts the allowed values
of pl,k to particular dependence on translation operator T̂ M

Ri

eigenvalues q: pl = −l2
B(qxb2,y − qyb2,x ), pk = l2

BqyK1,x [33].
Next, we use the s matrices obtained above to couple the ZF
solutions in the neighboring cells. By noting that ZF functions
from Eq. (13) correspond to the modes with proper angles, we
can straightforwardly insert parameters of the s matrix into the
system of equations, and write it in the form of a Ho-Chalker
operator [37]:

ŜHC (E , q)α = 0. (15)

While substituting the s matrix, we subtracted the difference
in dynamical phases of modes with defined angles and ZF
functions (13) at given energy. Such a difference appears due
to the fact that in geometry of the scattering problem one
assumes semiclassical ZF solutions with the phase fixed at
infinity, while in the orbit network ZF function phase is fixed
at particular point inside the network unit cell.

The nonlinear eigenvalue problem for the Ho-Chalker
operator (15) can be rewritten in the form of spectral equa-
tion det ŜHS (E , q) = 0 for a given lattice model [33]. Below
we demonstrate this for square and triangular lattice, and show
that the MB s matrix calculated above plays a key role in
definition of the properties of coherent orbit network. In the
case of square lattice with only first and third NN hoppings
taken into account,

Hsq(k) = −2
∑
i=x,y

(t cos kia + t3 cos 2kia), (16)

the spectral equation is

cos

(
l2
BA(E )

2
− ϕsc

)
= ±T R

[
cos

(
l2
Bq1b2,y

) + cos
(
l2
Bq2b1,x

)]
.

(17)

Here, A(E ) is the area enclosed by the constant energy curve
in momentum space. The elements of the s matrix, denoted
as R reflection, T transmission, and ϕsc = arg(det S) is the
scattering phase, are shown in Fig. 2. For such a lattice Hamil-
tonian, the connection of orbits happens via usual van Hove
singularity at the x point of BZ for t3 = 0 or via high-order
van Hove singularity of A3 type for t3 = t/4. In the case of the

L081103-4
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FIG. 3. Comparison of Landau mini band spectrum with longitudinal conductance in the quantum Hall bar for three systems: (a), (b) square
lattice with usual [hopping t2 = 0 in Eq. (16)] and A3 (t2 = t/4) saddle points, and (c) triangular lattice with imaginary hoppings that
contain Monkey saddles. LL mini bands (orange solid lines) obtained from tight-binding simulations are compared with solutions of spectral
equations (17), (19) for a set of qya (blue dashed lines). The flux value per unit cell was taken equal to � = 1/40 �0 and the width of the Hall
bar was W = 320a. For the spectrum calculation a periodic boundary condition was imposed. A single period of Landau mini band oscillation
is shown and corresponds to

√
�/�0 part of BZ. The width of conductance peaks measures the Landau mini band broadening. In panel

(b) the mini band around E ≈ −0.8t is wider than the one at E ≈ −0.9t due to the first zero of transmission coefficient at the A3 saddle point
(see Fig. 2(c) [21]).

triangular lattice with imaginary hoppings, the dispersion is

Htr (k) = 2t

(
sin kxa − sin

kx − √
3ky

2
a − sin

kx + √
3ky

2
a

)
.

(18)

The monkey saddle (see Fig. 1) connects orbits from different
cells into a network. The corresponding spectral equation is

cos

(
l2
BA(E ) − ϕsc

2

)
= T

[
cos

(
l2
Bq2b1,x − π p

2

)

+ cos

(
l2
B[q1b2,y + q2(b1,x − b2,x )] − π p

2

)

+ cos

(
l2
B[q1b2,y − q2b2,x] − π p

2

)]
. (19)

The left-hand side of each spectral equation, as defined in
(17) and (19), yields the conventional flat Landau levels when
equated to zero. On the other hand, the nonzero right-hand
side converts Landau levels into mini bands. The width of
these mini bands is determined by the van Hove singularity,
the s-matrix transmission coefficient, and the lattice-specific
dispersion. To explore this behavior, we numerically solve
[35] the spectral equations for different values of qx and for a
small set of qy. The resulting mini band structures are depicted
by the blue dashed lines in Fig. 3, showing both the width and
internal structure of analytic spectrum of a mini band. The
spectrum obtained from a tight-binding simulation [34,35]
is shown as orange lines filling the corresponding regions
and demonstrates excellent agreement with the semiclassical
predictions. For our analysis, we utilized a narrow Hall bar
geometry with periodic boundary conditions, having a width
several times larger than the magnetic unit cell. That width is
already enough to have many bulk conducting states inside the
orbit network.

The appearance of oscillating dispersion and broadening
of Landau levels due to orbit networks is expected to be
manifested in the transport experiments such as Shubnikov-
de-Haas oscillations or high-frequency magnetic breakdown

oscillations [24,38–42]. As the most pronounced signature,
we present a calculation of longitudinal conductance in two-
terminal Hall bar geometry. Typically, such conductance is
governed by edge states [17] and is strongly suppressed. As it
is shown in the right part of each panel in Fig. 3, the dispersive
Landau mini bands induce bulk conductance that is much
larger than background edge conductance. We compared the
spectrum for the lattices with periodic boundary condition
with the conductance shape in finite size systems for the same
values of magnetic field. The width of the peaks in the con-
ductance agrees with the broadening of Landau mini bands,
thus providing a tool for estimation of the tunneling proba-
bilities T for MB s matrix at the saddle point. In addition,
we note that the specific property of the A3 saddle point with
zero transmission coefficient [see Fig. 2(c)] leads to a much
smaller conductance peak at corresponding chemical potential
compared to other peaks, shown in Fig. 3(b).

To give an estimate of magnetic field required for the
experiment, we use an estimate of magnetic length lB ≈
26 nm/

√
B[T ] with typical experimental values of magnetic

field B ∼ 10 T [43], which gives lB ≈ 10 nm. The broadening
of the Landau mini band becomes significant compared to
the hopping parameter (see Fig. 3) and larger than disor-
der broadening for magnetic fluxes around � = 10−2�0 per
lattice unit cell. Thus, it requires lattice constant to be of
the order of a ∼ lB

√
2π�/�0 ∼ 2.5 nm. Such an estimate

shows that one requires extremely high magnetic field to
measure such effects in conventional systems, such as highly
doped monolayer graphene [44]. But, such lattice constants
are typical for the modern artificial lattices [45] as well as
for Moiré materials such as twisted bilayer graphene [46–48].
In addition, we point out that the method of solving the MB
problem developed above can be applied for the systems with
spin-orbit coupling, such as Moiré bilayer transition-metal
dichalcogenides [49]. The structure of the orbit network might
be visualized by injecting the current at proper chemical po-
tential levels into the system via narrow lead. The picture of
current density distribution is expected to follow the pattern
of orbit network shown in Fig. 1 and might be probed by
STM-type microscopy techniques [50,51].

L081103-5
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