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summary

In response to the transition toward sustainable energy production, offshore wind farms are increasingly
being developed in deeper and more challenging marine environments. This shift necessitates larger
and heavier turbine structures. To address these challenges, innovative installation approaches are
being explored that aim to enhance efficiency, improve positioning accuracy, and maintain high safety
standards.

This thesis explores the development and application of magnetic, non-contact control strategies for
monopile installation during offshore wind turbine deployment. In particular, the research focuses on
designing an effective control method that utilizes dipoles magnetic forces to regulate the motion of a
partially submerged monopile during its lowering phase.

To achieve this, a dynamic model of the crane-monopile system was developed based on a double
pendulum configuration. This model incorporated both wave-induced loads and the progressive sub-
mersion of the monopile, with hydrodynamic forces calculated using Airy wave theory and Morison’s
equation. This setup enabled a realistic assessment of how magnetic interaction behaves under typical
and realistic environmental and operational conditions.

The system’s dynamic behavior was investigated both analytically, where feasible, via eigenvalue anal-
ysis, and numerically through time-domain simulations. These analyses considered the combined ef-
fects of wave loading and submersion depth on the response of the system. A proportional-derivative
(PD) controller was implemented to govern dipole-dipole magnetic interactions, enabling active control
of the monopile’s motion. The model also accounted for nonlinearities present in magnetic forces and
hydrodynamic drag.

Through this control framework, the magnetic moment required to maintain system stability was quan-
tified. However, it became evident that force magnitude alone does not fully determine control effec-
tiveness. Therefore, different design parameters, particularly the horizontal spacing between magnets,
their vertical positioning along the monopile and the dipole moments, were systematically evaluated to
identify configurations that optimize control performance.

Compared to conventional installation methods, the proposed non-contact magnetic control strategy
offers several distinct advantages. It does not depend on mechanical attachment to the monopile or
active human intervention, which reduces potential damage and improves operational safety. Further-
more, it enables more precise and distributed control, as magnetic actuators can be placed at multiple
locations along the monopile, enhancing the system’s ability to counteract dynamic responses.

Overall, this research contributes to the broader understanding of magnetically controlled systems and
supports the development of more advanced methods for offshore wind turbine foundation installation.
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Introduction

1.1. Research Context

The impact of climate change has led to global efforts to prevent irreversible consequences. Among
the steps towards a greener future is the transition from fossil fuels to renewable energy. As one of
the most significant contributors to greenhouse gas emissions, the energy sector plays a critical role in
climate change mitigation. Therefore, advancement in sustainable energy technologies is of extreme
importance [1].

Wind energy has seen significant growth in recent years because of its cost, its energy production
efficiency, and the increasing demand for renewable energy sources [2]. Due to more stable wind
conditions and the scarcity of onshore locations, wind farms have progressively moved farther offshore

[3].

To meet the European shift toward the future sustainable energy goals [4], the offshore wind industry
is expanding farther into deeper waters. However, as turbines are placed in these deeper and more
hostile marine environments, they require larger, heavier designs, making the installation process more
complex and technically demanding [5]. As a result, new installation methods are being studied to
improve efficiency, facilitate a more accurate positioning, and ensure higher standards of operational
safety.

1.2. Research Problem

Monopiles are the most commonly used support structures for bottom-fixed offshore wind turbines
(OWTs). However, there is limited research focused on their installation. Traditionally, monopiles are
installed using jack-up vessels; however, the industry has been shifting toward the use of floating heavy-
lift vessels (HLVs) which offer greater efficiency and flexibility [6].

During installation, both the vessel and the monopile are subject to external forces from wind and
waves, which disturb the system and thus, compromise the installation precision. Therefore, for a
correct control during positioning and lowering phase, a prediction of the system’s response to these
disturbances is essential [7].

The successful deployment of offshore wind turbines depends heavily on the installation stage. Ex-
ternal disturbances or unbalanced control forces can induce vibrations and instability, highlighting the
importance of a precise and safe control of the monopile during positioning and lowering phase. Cur-
rently, fixed and motion compensation gripper frames are the most commonly used control methods for
bottom-founded OWT installations [6]. In addition, techniques involving tugger lines, either manually
operated or actively controlled, are also employed to stabilize the payload through constant tension [8].
However, tugger lines can only exert attractive forces, limiting their effectiveness in certain dynamic
scenarios where repulsive or bidirectional control could be beneficial. Other methods introduce mo-
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tion compensation indirectly via crane control strategies, such as motion-compensated platforms [9] or
crane parameter optimization [10].

These installation methods rely on either mechanical contact with the monopile or active human inter-
vention [6]. These limitations, combined with the delicate nature of positioning turbine components,
have led to research into non-contact magnetic position control techniques for OWTs. Such methods
could enhance safety by reducing the risks associated with human intervention and improve the effi-
ciency of the installation process, which is critical for minimizing operational costs [11].

This technique includes at least a fixed permanent magnet, attached to the monopile, and an actively
controlled external magnet, positioned theoretically on the vessel and opposite to the permanent one
(see Fig.1.1).

A key advantage of magnetic control systems is their ability to apply both attractive and repulsive forces
[11]. This bidirectional capability allows for more precise and flexible manipulation of the payload without
requiring physical contact.

To assess the feasibility and reliability of the non-contact magnetic control in offshore conditions, the in-
fluence of submersion level and wave-induced forces on magnetic control performance during monopile
installation must be taken into consideration. These factors can significantly affect the dynamic behav-
ior of the system and may impact the effectiveness of non-contact control strategies [5].

Figure 1.1: Schematic diagram of monopile installation with non-contact control.

1.3. Research Objectives

This research aims to develop an effective non-contact control strategy for a partially submerged
monopile during offshore installation using magnetic forces. To achieve this, a dynamic model of the
crane—monopile system is constructed, incorporating wave-induced loads and the effect of gradual sub-
mersion during the lowering stage. This model will help analyze the behavior of the magnetic interaction
throughout different stages of the operation.
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A key objective is to determine the submersion depths at which active control becomes most nec-
essary, thereby improving the understanding of how submersion level influences the performance of
non-contact control systems. This will be achieved by evaluating the combined effect of wave forces
and submersion level on the system dynamics.

Furthermore, the study aims to quantify the magnitude of the magnetic forces of the external magnets
required to maintain control throughout the installation. Based on this, the optimal arrangement and
positioning of magnets along the monopile will be explored to enable effective and stable control. Over-
all, this research will contribute to advancing knowledge in the use of magnetic, non-contact control
strategies for OWTs installation.

1.4. Research Scope

The scope of this research is limited to the lowering phase of the monopile after upending, and aims to
develop a numerical model to predict the system’s dynamic response with and without magnetic control.
The model represents the system as a simplified planar double pendulum. More specifically, effects
from vessel motion, such as tip displacement or lifting hook dynamics, are neglected by assuming a
fixed pivot point, thereby focusing on the pendular dynamics of the system.

The model considers wave loading as the dominant disturbance, in line with findings in literature where
wave forces account for up to 96% of dynamic effects during offshore wind turbine installation [5]. For
this reason, wind and current loads are not included in the present analysis.

Offshore wind turbine farms are located in diverse atmospheric and marine environments worldwide,
each presenting unique challenges in terms of environmental loadings. This research will specifically
focus on the conditions prevalent in the North Sea, using data [12] from this region to model and analyze
the wave-induced loads affecting monopile installation.

Magnetic stabilization is explored through dipole—dipole interaction models, where the external mag-
netic field is set to control the motion of the submerged monopile.

1.5. Research Theory and Methods

The system is modeled as a planar double pendulum, where the first component is a cable, and the other
is a hollow cylinder (the monopile) with small thickness relative to its length. Both bodies are assumed to
be rigid. In addition, the equations of motion are derived using Lagrangian mechanics, under a small-
angle approximation. A harmonic solution is applied to the linearized system for frequency domain
insights, while a numerical solver is used to simulate time-domain responses. Thus, the approach is
considered semi-analytical.

For the representation of offshore conditions, linear wave theory is used together with a JONSWAP
spectrum to define the characteristics of the irregular sea state. Furthermore, wave loading on the sub-
merged part of the monopile is modeled using the Morison equation, under the assumption of slender-
body theory and neglecting diffraction effects. The effects of diffraction would be more relevant for
larger monopile diameters.

On the other end, the magnetic control is based on dipole—dipole interactions, assuming that the mag-
netic dipole moment is aligned with the horizontal axis, such that only the horizontal component of the
magnetic force is considered. As illustrated in Fig.1.1 the fixed permanent magnets on the monopile
interact horizontally with the actively controlled external magnets on the vessel. The external magnets
are modeled as a controllable dipole whose moment is regulated via a Proportional-Derivative (PD)
controller. While in practice the magnetic field is generated by an electromagnet with variable current,
the model abstracts this behavior without explicitly modeling the current in the electromagnetic coil.
This simplification allows the model to neglect the full electromagnetic field theory, while still capturing
the key effects of controllable magnetic interaction on the system dynamics.

As mentioned, a Proportional-Derivative (PD) controller regulates the magnetic dipole moment of the
external magnet. This approach allows the PD controller to remain linear, as the non-linearity of the
magnetic force is handled separately. The Integral component of the controller is omitted, since in
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systems with sinusoidal responses, the integral of the error tends to cancel out over time. If a magnetic
force of great magnitude is needed, the system can be extended to include multiple magnets, allowing
for a superposition of dipole effects.

Due to nonlinearities in both the drag force and magnetic force, the time-domain response requires
numerical integration. To reduce computational complexity, linearization may be applied to the drag
force, however, linearizing the magnetic force is not ideal. The linearization of the magnetic interaction
would be of limited validity and may significantly misrepresent the force’s behavior over the system
dynamics. Thus, the full non-linear system will be considered.

1.6. Research Questions

Based on the research objectives and scope, the main research question guiding this study is:

What is an efficient non-contact magnetic control strategy of a partially submerged monopile subjected
to wave loads?

To address the main research question, the investigation is divided into two key thematic categories:
the effect of submersion and the magnetic control. Each category is explored through sub-questions
as outlined below:

Submersion Effect

» How does partial submersion affect the dynamic properties of a monopile during installation?

» How does variation in submersion level influence the control of the monopile throughout the in-
stallation stage?

Magnetic Control

* What magnitude of magnetic forces is necessary to control the monopile during installation off-
shore?

* What number and spatial arrangement of magnets ensures a reliable and efficient control perfor-
mance?

1.7. Report Structure

This thesis is organized into four main chapters, presenting the non-contact control strategy for monopile
installation under wave loading, from its theoretical foundations to its development, application, and as-
sessment.

Chapter 2 provides a comprehensive literature review that establishes the theoretical background for
this work. It introduces the fundamental principles of pendulum dynamics, irregular wave theory, and
the JONSWAP wave spectrum, which together form the basis for analyzing wave-induced loads. Fur-
thermore, one section is dedicated to the application of the Morison Equation for modeling hydrody-
namic forces. The chapter also reviews existing approaches to magnetic control in pendulum sys-
tems. Finally, it discusses the fundamentals of magnetic dipole—dipole interaction and the principles of
Proportional-Derivative (PD) control, both of which are of extreme importance for the proposed non-
contact control strategy.

Building on this foundation, Chapter 3 presents the model formulation. It derives the equations of motion
for the double pendulum using Lagrange’s method and defines the wave characteristics considered in
the study. The chapter then describes the integration of the Morison Equation along the submerged
length of the monopile, followed by a frequency-domain analysis to investigate the modal properties
of the linearized system. A sensitivity analysis is also included to evaluate how variations in system
parameters affect the pendulum’s behavior and to identify the optimal geometries for the subsequent
time-domain analyses, which investigate the dynamic response under Morison-based wave loading.

Once the response of the pendulum is quantified, Chapter 4 addresses the control strategy. First the
implementation of the magnetic control system is explained, emphasizing the interaction between the
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fixed permanent magnets on the monopile and the actively controlled external magnets on the ves-
sel. Then, the PD control gains, K, and K, are tuned to achieve effective control under a simplified
load of similar magnitude, without wave effects, and the performance of single and double magnet
configurations is compared under these conditions. Following this, wave loading and submersion ef-
fects are introduced, and a parametric study is conducted to assess system performance under varying
conditions, including different submersion lengths, magnet positions, and horizontal spacing between
magnets.

The concluding chapter summarize the key findings and identifies the most effective control strategy
for managing the dynamics of a partially submerged double pendulum under wave loading. It also
discusses practical engineering implications and offers recommendations for future work, highlighting
opportunities to refine the model and extend the applicability of the control approach in real-world off-
shore installation operations.



[Literature Review

2.1. Pendulum Dynamics

The dynamical behavior of a monopile during offshore installation can be approximated using pendulum
models. Depending on the desired level of accuracy, the system may be treated as a single, double,
or even triple pendulum. Pendulum systems are classical representations of nonlinear dynamics and
can exhibit complex behavior ranging from periodic motion to deterministic chaos. In particular, even a
single pendulum with a driving force or a double pendulum with a slight perturbation in initial conditions
can result in unpredictable, exponentially diverging responses over time.

The equation of motion for a single pendulum of length [ and mass m, in the absence of damping and
external forcing, is given by:

mi?6 + mgl sin(0) = 0 (2.1)

The motion of the monopile during installation remains relatively small, both in displacement and in
rotation due to the large dimensions of the system [13]. For this reason, the chaotic behavior of the
pendulum system is not considered in the current research. More in detail, this assumption allows to
adopt the small-angle approximation using the Taylor series expansions around the stable equilibrium
position of the dynamic system at 6§ = 0:

3 5 2 4
—%+%—-~- and cos(@)%l—e——i—e——--- (2.2)

sin(f) ~ 0 TR

This linearization of the trigonometric terms, simplifies the equations of motion reducing the system to
a linear form that is easier to analyze and integrate numerically.

For angles less than approximately 10° ~ 15° (or 0.17 ~ 0.26 rad ), the approximation

92
sin(f) ~ 0 and cos(fd) =1— 5 (2.3)
is considered sufficiently accurate. The second-order expansion for cos(6) is particularly useful, as it
ensures that potential energy terms remain non-constant in the linearized system. It is worth noting,
however, that the small-angle approximation becomes increasingly inaccurate for larger oscillations,
where higher-order terms may need to be retained to preserve physical realism.

Applying the small-angle approximation to the single pendulum, results in:
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§+w20=0, where w= % (2.4)

This equation of motion describes a simple harmonic oscillator with angular frequency w. The solution
leads to elliptical phase portraits, indicating conservation of mechanical energy and periodic motion [14].
In the research by Atzampou et al. [11], a single pendulum is adopted as the dynamical model. In their
experimental setup, an aluminum rod simulates the crane cable, and the suspended load, representing
the monopile, is modeled as a solid aluminium cube.

More complex dynamics are captured using a double pendulum model, which adds an additional degree
of freedom by introducing an interaction between the crane cable and the monopile. In the current
research, the system is treated as a double pendulum, allowing for a more realistic representation of
the suspended monopile, which is modeled as a hollow cylinder rather than a point mass.

A more elaborate configuration is presented in the work of Domingos et al. [5], where a triple pendulum
is used to simulate a crane—load—tugger system. In their research, the model includes the crane cable,
a block hook, and a sling rope that connects to the suspended monopile. The monopile itself is repre-
sented as a cylinder of uniform diameter. The block hook is modeled as a point mass at the end of a
pendulum, and is connected to the monopile by a rigid rod. This forms a triple pendulum system that
Domingos et al. [5] study in two planes. However, to reduce complexity, the current research restrict
motion to a planar motion.

The present study focuses on the rotational dynamics of the system, assuming all components to be-
have as rigid bodies. This assumption is justified by the fact that the dimensions and stiffness of the
monopile are large compared to the expected loads during installation. As a result, structural deforma-
tion is negligible, and the primary interest lies in capturing angular displacements rather than elastic
deflections. The rigid body approximation not only simplifies the equations of motion but also enables
an efficient preliminary analysis for control.

In addition to the gravitational restoring force, the system dynamics are influenced by external wave
loading (see Chapter 2.2) and magnetic forces (see Chapter 2.3), which introduce significant non-
linearities. The wave-induced forces alter the free vibration characteristics through added mass on
the submerged portion of the monopile and introduce natural damping via the hydrodynamic drag. Si-
multaneously, the magnetic interaction, which depends nonlinearly on the distance between dipoles,
adds further complexity and potential instability. These effects can lead to phenomena such as mode
shape coupling, where vibrational modes interact due to geometric or force-field nonlinearities, as well
as chaotic behavior, even though small angle approximation is applied.

Thus, adopting a double pendulum model provides a good compromise between capturing the essential
physics of the system and maintaining analytical simplicity, making it suitable for early-stage control
investigations.

2.2. Wave Load on Cylinder

To accurately describe and model the installation procedure of a monopile with non-contact control
offshore, the equation of motions have to be extended to include various loading conditions and con-
straints. These include the effects of wave loading, hydrodynamic effects and the varying level of
submersion of the monopile during installation.

Wave characteristics and wave-structure interaction are modeled using Morison’s equation [15, 16],
applied together with linear wave theory [16] and the JONSWAP [17] spectrum to represent realistic
sea states.

The resulting distributed hydrodynamic loads are integrated over the surface of the cylinder to predict
its dynamic behavior at different submersion levels [15]. It is important to mention that vertical hydro-
dynamic forces can be omitted due to the monopile’s thin walls [18].
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2.2.1. Linear Irregular Waves

In this research, linear irregular wave theory is employed to determine the wave kinematics that de-
scribe the wave loading on the system. Unlike regular waves, which are described by a single fre-
quency and amplitude, irregular waves capture the natural variability of ocean surface conditions by
modeling the sea state as a superposition of multiple linear sinusoidal wave components (harmonics).
This approach allows for a more realistic and comprehensive representation of complex sea states,
where multiple wave frequencies interact simultaneously [15].

This theory is rooted in Airy wave theory, also known as linear wave theory, and therefore inherits its
assumptions and limitations. Specifically, linear irregular wave theory assumes a linear relationship
between wave-induced particle kinematics and the wave surface elevation. This assumption is valid
for waves with small steepness (H/\ < 1, where H is the wave height and X is the wavelength). As
such, the theory is well-suited for deep water and moderate sea conditions.

The wave kinematics are derived from the potential flow theory, which assumes inviscid, incompressible,
and irrotational flow. In this context, the velocity field is derived from a scalar potential function ®, where
the velocity components in any direction are the spatial derivatives of this potential.

Applying the Cauchy-Poisson boundary condition at the free surface and the governing Laplace equa-
tion for the velocity potential, a key relation in linear wave theory is obtained: the dispersion relation.
This equation links the wave angular frequency w to the wave number £ and water depth d:

w? = gk tanh(kd) (2.5)

Since the equation is implicit in k, it must be solved numerically for a given frequency and depth.

For a single regular wave component with free surface elevation in the following form:

C(z,t) = (4 cos(kz — wt) , (2.6)

the horizontal particle velocity at depth z and time ¢ is given by:

cosh(k(d + z))

— (ke — 27
u(z,t) = Cw Sinh (k) cos(kx — wt) (2.7)
where (, is the wave amplitude. The angular frequency is defined as w = 27/T, and k denotes the
wave number. The total water depth is given by d, while the vertical coordinate = is defined as positive
upward from the still water level. The horizontal coordinate 2 corresponds to the location of the cylinder

and, in this study, it is chosen such that it corresponds with its central axis (x = 0) as shown in Fig.2.1.

Figure 2.1: Schematic diagram of monopile installation coordinates.
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In the case of irregular waves, by breaking down the sea surface into a spectrum of linear harmonics
and applying the principles of linear wave theory, the particle velocities and accelerations at any point
in the water column can be obtained by summing the contributions of all wave components. Therefore,
the surface elevation is represented as a sum of N harmonic components:

N—-1
C(t) = Ancos(wnt + én) (2.8)
n=0

Each component is characterized by its amplitude, frequency, and phase. The amplitude of the n-th
component is given by

where S,..(f,,) is the wave energy spectrum at frequency f,,, and Af is the frequency interval between
components. The corresponding angular frequency is w,, = 2 f,,, and the phase angle ¢,, is randomly
chosen, typically following a uniform distribution over the interval [0, 27].

To accurately describe the particle kinematics induced by such an irregular sea state, each wave com-
ponent must be treated separately. The horizontal particle velocity at depth z is then given by the
superposition of the velocities associated with each harmonic:

= h(k, (d = h(k, (d
u(zt) =y AnwnW cos(wat +¢n) = 3 Cn(t)wnw (2.10)
n=0 n n=0 "

where k,, is the wave number corresponding to the frequency f,, and (,(¢) represents the surface
elevation component of the n-th wave.

Ca(t) = Ay cos(wnt + én) (2.11)

2.2.2. JONSWAP Spectrum

For the analysis of wave-induced loads, it is important to define a representative wave spectrum. This
spectrum is essential for identifying the frequency content of the sea state and understanding the pos-
sible associated loading conditions. In particular, the spectrum describes how the wave energy is dis-
tributed over frequencies, allowing the estimation of wave kinematics (see Chapter 2.2.1) and resulting
hydrodynamic forces (see Chapter 2.2.3).

Considering the study conducted by Hasselmann et al. [17], which is based on wave data from the
North Sea, region with a high concentration of offshore wind farms, the most suitable spectrum for
this analysis is the JONSWAP spectrum (Joint North Sea Wave Project). This spectrum is specifically
designed for fetch-limited seas like the North Sea, where waves are still developing and are affected
by: variable wind conditions, finite fetch (distance over which the wind blows), shallow to intermediate
water depths.

The JONSWAP spectral density function S(f) describes the energy distribution of waves over frequency
f as follows:

—4 exp |1 (f/fp=1 2
Ssonswap(f) = ag®(2m) = f % exp l_i (J{> ]7 p[ ) } (2.12)
p

In the formula, f denotes the wave frequency, and f, = T%, is the peak frequency corresponding to the
most energetic waves. The gravitational acceleration is represented by g, while a = 0.076F 022 is the
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Phillips constant, which serves as the energy scale parameter. The peak enhancement factor is given
by v = 3.3. The spectral width parameter, o, is defined conditionally as:

0.07 iff<f,
0.09 iff>f,

To compute the spectrum, several parameters derived from wind and fetch conditions are required.
These include non-dimensional forms of peak frequency f, and fetch F' used to relate wind speed U,
fetch length F, and peak frequency f,:

= Uinfp = gF
fp=—", F==
v g U120

According to empirical JONSWAP relationships:

~ - UlOfp gF —0.33
fp=35F03 — 0P _35( L
P g U120

From this relationship, one can determine either the peak frequency (f,) from the wind speed at 10
meters height (Uyy), or vice versa.

Solving for f, Solving for Uy
3.5g 3.5%g*
= 2.13 =
o = RO (2.13) Uto E (2.14)

Once the wave spectrum is defined, the irregular wave surface elevation can be reconstructed using
linear irregular wave theory through Equation 2.8. The corresponding wave kinematics, in particular
the horizontal particle velocity at a given depth = and time ¢, can then be obtained using Equation 2.10.
This velocity is essential for computing the wave-induced force on the structure (see Chapter 2.2.3)

2.2.3. Morison Equation

A possible approach to extend our 2-DoF system to account for fluid-structure interaction and wave
loading effects is to use Morison’s equation.

The application of Morison’s equation relies on several key assumptions. First, the monopile is consid-
ered a slender cylinder, with a diameter-to-wavelength ratio:

% <02. (2.15)

Additionally, the wave kinematics are assumed to be uniform around the circumference at each unit
length of the cylinder. Finally, the hydrodynamic forces are considered to act perpendicular to the axis
of the cylinder.

The first assumption ensures that the cylinder does not significantly alter the incident wave pattern. The
second allows us to consider the cylinder’s central axis (x = 0) for load calculations. Finally, the third
assumption confirms that only horizontal wave kinematics are relevant in the force analysis.

Morison’s equation as presented in Morison et al. [19] has two force components:

 Alinear inertia force, derived from potential flow theory and applicable to oscillatory flows.

1 1
fr= ZWDpru + Z?TDQCa,ow(u — ) (2.16)
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» A quadratic drag force, based on real flow effects and influenced by constant currents.

1 . .
Ip = 5DCppu(u — i)|u— | (2.17)

The Morison force f,,(t, z) is the summation of the two aforementioned expressions:

fm(taz) = fI(t7Z) + fD(t7Z) = %WD2pwu + 37D2Capw(u - x) + %DCDpw(u - 1’)"& - 1’| (218)

From the equation above, it is evident that the force depends on two key variables:

» The fluid flow, represented by the horizontal particle velocity « and the corresponding horizontal
particle acceleration .

» The structural motion, represented by the first and second derivatives of the displacement z (i.e.,
velocity & and acceleration ).

Meanwhile, the remaining terms in the equation are physical and empirical constants that characterize
the interaction between the structure and the surrounding fluid. The parameter D represents the diam-
eter of the cylindrical structure, while p,, denotes the density of seawater. The coefficient C,, accounts
for the added mass effect, which reflects the inertia of the fluid that moves with the structure. Lastly,
Cp is the drag coefficient, representing viscous effects and flow separation around the structure, which
contribute to the total hydrodynamic resistance.

The superposition of the v and & components allows us to analyze not only the effects of the fluid flow
on the structure but also the coupled interaction between the fluid flow and the oscillatory motion of the
monopile. This is particularly relevant when the monopile is submerged but not fixed to the seabed, as
its oscillations influence the overall force response [15].

As detailed by Journée and Massie [16], each term is further explained to understand its contribution
to the total hydrodynamic force.

Inertia Component

The inertial forces acting on a cylinder in a fluid can be studied using potential flow theory. This analysis
reveals that the total inertia force is composed of two main components:

» Froude-Krylov force: the force exerted on the body due to the undisturbed incident flow.

+ Disturbance force: the force resulting from the disturbance of the flow field caused by the pres-
ence of the body.

The Froude-Krylov force arises from the horizontal pressure gradient in the flow. It can be considered
the force generated by the mass of water displaced by the presence of the cylinder with the current
acceleration of undisturbed flow.

frx = iﬂ'Dpr?'L (2.19)
Furthermore, the Disturbance force takes into account the disturbance of the flow due to the inserted
cylinder. Thus, the monopile generates a force to separate the flow leading to the change of the local
velocities and accelerations. The disturbed flow pattern is taken into account by using the coefficient of
added mass C,. It can be described as the additional force required to accelerate an object in a fluid
due to the fluid’s resistance to being displaced.

According to the findings presented by Li, Gao, and Moan [18], the hydrodynamic behavior of hollow
cylindrical monopiles is affected by the presence of water both inside and outside the structure. Due
to their open-bottom geometry, water enters the interior of the monopile, which alters the resulting
hydrodynamic forcing. To accurately compute the distributed forces and moments, this internal water
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interaction must be considered using strip theory [20]. Their study further shows that as the monopile
is gradually submerged, its interaction with the surrounding fluid changes, making it necessary to deter-
mine updated hydrodynamic coefficients. In particular, the 2D added mass coefficient C, is observed
to stabilize at an asymptotic value of approximately 1.8 once the submergence exceeds 5 meters. This
stabilized value will be adopted for all depths in the current study.

1
fDist = ZwDQCapw(u —i#) where C, =18 (2.20)

The two terms together give Equation 2.16

Drag Component

Potential flow theory neglects the effects of viscosity, which is an important contributor to drag forces
in real fluid flow. Drag is generally composed of two main components:

* Friction drag - caused by shear stresses that develop along the surface of the cylinder due to the
fluid’s viscosity.

* Pressure drag - arises when the Reynolds number Re increases, leading to flow separation and
a pressure difference between the front and rear of the body.

Given a constant current it can be shown experimentally that the drag force is proportional to the diame-
ter of the cylinder taken into consideration and the quadratic of the current U2 [15]. In a time dependent
flow, the current can be replaced by the particle wave velocity as u(t)|u(t)| which guarantee that the
force is always in the same direction of the velocity in the oscillating flow. The above term can be ad-
justed to consider also the relative motion between the structure and the flow resulting in the expression
for the drag force presented in Equation 2.17.

The coefficient Cp is known as drag coefficient and varies for every different configurations of the sys-
tem. Similarly to the added mass coefficient C,, for a hollow cylinder it can be calculated experimentally.
Studies shows that for this shape, a coefficient with a value between 0.6 — 0.7 can be chosen [15][18].
These values represent a smooth surface with the possibility of marine growth that would effect the
roughness of the cylinder. For the model taken into consideration in the research, the smooth surface
is chosen resulting in Cp = 0.6.

2.3. Non-Contact Magnetic Control

A promising approach to control a monopile during the installation stage involves a contactless method
using magnetic fields.

Since the system can be generalized as a pendulum, this section also provides an overview of the
state-of-the-art in magnetic interaction and control techniques applied to such systems.

The equations of motion can be extended to incorporate the control forces by introducing a moment term
arising from magnetic interactions, which is highly dependent on the distance between the magnets and
the field strength they generate. Specifically, control is implemented using a Proportional-Derivative
(PD) controller, which adjusts the moment of one of the magnets to achieve desired motion during
installation.

2.3.1. Magnetic Interaction and Control of Pendulum

The study of pendulum systems influenced by magnetic fields is documented in literature mainly in
two key contexts: magnetic interaction and magnetic control. These concepts, while related, differ in
objective and mechanism, and it's important to distinguish between them.

Magnetic interaction has been widely investigated due to its potential for real-world applications such
as energy harvesting and vibration damping in engineering systems. The interaction can be either:

» Ferromagnetic, where a permanent magnet interacts with a material capable of being magnetized
(e.g. steel)
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» Magnetic, where both interacting bodies can be ideal dipoles or real magnets.

In the energy harvesting context, configurations such as a repulsive magnet pair have been used to in-
crease power extraction [21]. Similarly, magnetic pendulum systems have been proposed as vibration
dampers in offshore engineering to mitigate wave-induced motions [22]. Various magnetic configura-
tions have been explored, including vertically aligned magnets beneath the pendulum or horizontally
opposed magnets. Mann [23] proposed a nonlinear dynamics study with a ferromagnetic pendulum
interacting with both a permanent magnet and an electromagnet on the pendulum.

In the present research, the magnetic interaction is modeled using one or more pairs of horizontally
aligned and parallel dipoles: a fixed magnet 1. attached to the monopile, and one movable guiding
magnet 7, used to control a submerged body during offshore installation (see Fig. 1.1).

Magnetic control involves actively regulating the pendulum’s motion via externally modulated magnetic
fields. This approach is less explored and is mostly experimental. Austin and Wagner [24] implements
control by toggling electromagnetic fields to sustain or modify the pendulum’s oscillation.

Another experimental technique proposed by Ida [25] uses a pulsing coil to generate a repulsive mag-
netic field with a current-driven coil acting on a permanent magnet at the pendulum’s base.

The work by Atzampou et al. [11] presents a more refined contactless control technique, using a time-
varying electromagnet to generate both attractive and repulsive forces. The single-pendulum setup
achieves precise control by exploiting the relationship between current, voltage, and the generated
magnetic field, taking into account self-inductance. A PD controller is employed to minimize the position
error of the pendulum mass.

Inspired by this methodology, the current research numerically investigates a two DoFs system under
realistic wave loading conditions (see Chapter 2.2). This study introduces a more detailed and realistic
submerged geometry and simplifies the control strategy by omitting a detailed electromagnetic model-
ing, focusing instead on the system’s overall dynamic control performance during monopile installation.

2.3.2. Dipole-Dipole Magnetic Interaction

An external control excitation is applied to the pendulum system through the interaction between the
two magnets (1i.) and (7;). These magnets are modeled as ideal magnetic dipoles, a fundamental
assumption that allows for a simple but effective description of their behavior.
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Figure 2.2: Dipole-dipole magnetic field attractive and repulsive interaction.

The dipole-dipole interaction produces a magnetic moment that depends on the relative orientation of
the dipole moments and the distance separating them. The movable magnet’s polarity can be reversed
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in real time by a controller (see Chapter 2.3.3), enabling the system to alternate between attraction
and repulsion depending on the desired control strategy. The resulting moment acts as an external
excitation moment, designed to counteract the moment generated by the wave loading on the monopile.

The magnetic field B, at the position of the control magnet 1., created by the target dipole m;, can be
computed using the magnetic dipole-dipole interaction formula presented in Equation 2.21 [26].

By(m) = v (mt,' F) = O _13(my - #)i — my (2.21)

473

In the equation, pip = 47 x10~7 % is the magnetic permeability of free space. The vector i, represents
the magnetic moment of the target (or fixed) dipole, and 7 is the displacement vector pointing from the
target dipole to the control dipole. Its magnitude is given by r = |#], and the corresponding unit vector
is # = 7/r, which indicates the direction of 7. The notation 7i; refers to the full vector quantity, while m;

denotes its magnitude. The symbol V, known as the gradient operator, is defined as V = (%, a%’ %).
When applied to a scalar field, as in this case, it returns a vector field. The vector fields corresponding
to the attractive and repulsive interactions between two dipoles are illustrated in Fig. 2.2.

The potential energy of the control dipole .. in the field B, is given by Equation 2.22.

Wi = =i - ét (222)

Assuming small angular displacements and planar motion confined to the vertical plane, the system
can be simplified by aligning the magnetic dipole moments along the horizontal z-axis. Under this
assumption, the magnetic field generated by the target dipole reduces to its horizontal component B; .,
as expressed in Equation 2.23. Similarly, the dipole moments i, and 1. reduce to their z-components
me , and m. ., respectively. This leads to a scalar expression for the magnetic potential energy, as
shown in Equation 2.24. It is important to mention that the distance r between the dipoles depends on
the generalized coordinate vector §. The vector ¢is introduced in Chapter 3.1.2, while its relationship
with r is detailed in Chapter 4.1.

___ Ho _ _ Mo
Btw == A - T(q_)3 [3mt7m mmg] A - T(q_)3 2mt7ﬂc (223)

___Ho
ir - r(g)°

To compute the magnetic moment acting on the pendulum, we differentiate the magnetic potential
energy with respect to the components of the generalized vector, as shown in Equation 2.25.

Wm = _mc,wBt,z = : 2mc,zmt,x (224)

M,, = —aWj” (2.25)
0q

If multiple magnetic dipoles couples are used, the resulting magnetic field at each control magnet is
obtained by superposing the individual contributions from each fixed magnet. The superposition princi-
ple holds since the magnetic field is a linear quantity in an ideal environment [27]. In this research, all
magnets controlled by the generated field (17:.) are positioned exclusively along the monopile structure,
while the external dipoles () are allowed to move but remains always above the water level.

2.3.3. Control Strategy

The objective of the control system is to stabilize the motion of the monopile during installation after
upending, by counteracting wave-induced motions using magnetic force. For this purpose, a PID con-
troller (Proportional-Integral-Derivative) is employed, as it is widely used in control applications due to
its simplicity and effectiveness as a closed-loop, error-based control algorithm [28].
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The controller is defined in the time domain by the following equation:

c(t) = Kpe(t) + Ki/e(t) dt + Kqé(t) (2.26)

where c(t) is the control variable, e(t) = £(t) —x(t) is the error between the desired position £(¢) and the
measured position z(¢), and K,,, K;, and K, are respectively the proportional, integral, and derivative
gains.

The proportional gain K, responds to the current error and plays a key role in adjusting the system’s
stiffness and reducing settling time. The integral gain K;, by accounting for the accumulation of past
errors, helps eliminate any persistent steady-state offset. Meanwhile, the derivative gain K; anticipates
future behavior by considering the rate of change of the error, enhancing damping and improving the
system’s transient response [29].

In practice, these gains must be carefully tuned, often through trial and error, to achieve stable and
responsive control under varying initial conditions and external forces. In particular, the main study
addressing contactless pendulum control employs a PD control approach [11], where the integral term
K; is considered negligible because its contribution tends to cancel out over time due to oscillatory
behavior.

In the present application, the magnetic moment of the dipole magnet is chosen as the control variable
(my, = c(t)). Through the feedback loop (see Fig.2.3), this control input is adjusted in real time to
minimize the positional error and ensure effective stabilization of the monopile.

Controller Output Output
c(t) 6,(t) and 92(t)

Dynamic
System

. f—b K, e(t)
Set Point Error
£(t) e(t)
>@ » K; j'e(t)
l—» Kq e(t)

il

Feedback

Figure 2.3: PID controller feedback loop.



Modeling of Partially Submerged
Monopile

3.1. Double Pendulum Model Formulation

Before studying the effect of wave load and develop a control technique, the equation of motion of the
system must be derived to describe the free vibration of the system. As presented in the literature
review, the crane-load system that characterize the installation of a monopile can be simplified as a
pendulum. Specifically, this research describes the system as a double pendulum (see Fig.3.1).

The double pendulum consists of two bodies: a cable of mass m and a hollow cylinder of mass M,
representing a monopile of constant diameter. More specifically, the cable is modeled as a rigid rod,
while the monopile as a rigid thin shell cylinder. The system can be described with two degrees of
freedom: 6; and 0,. These DoFs correspond to the angles of rotation with respect to the z axis of the
system. In this study, the system is studied in plane in the z-x axis system.

Figure 3.1: Simplified scheme of an upended monopile modeled as a double pendulum

16
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The equation of motion of a simple pendulum (see Equation 2.1) is no longer sufficient to describe the
system. With two DoFs, two equations of motion are inherently required. Additionally, the interaction
between the two bodies introduces coupling between these equations. To derive them accurately, the
system’s energy expressions are formulated, and Lagrangian mechanics is applied.

The coordinates that describe the motion of the pendulum are given in terms of the two moving com-
ponents taken at their respective center of mass:

L o L . .
5 _ | 3sin(6r) 5 | 5sin(f) 4+ Isin(0:)
P = {—é cos(61) |’ Par = —Z cos(fa) — Lcos(0y) ] (3.1)

ﬁm and By, are respectively the position vector of the cable at G; and of the monopile at G, (see Fig.
3.1).

Another important property of the two rigid bodies is their moment of inertia about the > axis, denoted
in this work as I-,;. For planar rigid dynamics, this is the only relevant component. The Ix); at the
center of mass (CM) of the cable and cylinder are:

ml?
Icvim = — 2.
CMm 2 (3.2.a)
MR?> MIL?
Ieymm = CEEET (3.2.b)

In formulating the kinetic energy equations of the system (see Chapter 3.1.1), it is advantageous to
exploit the fact that the first body undergoes purely rotational motion about its center of instantaneous
rotation (CIR). This point generally does not coincide with its CM.

The Huygens-Steiner theorem allows to determine I-;r at the CIR of a system using Equation 3.1
where M is the mass of the body considered while d is the distance between CM and CIR.

Icir = Iem + Md? (3.3)

The CIR of the cable is located at the top of the body. This leads to the following expression for the
moment of inertia:

ml?

Icirm = Iomm + T 3 (3.4)

On the other hand, for the cylinder it is best to express the kinetic energy using the center of mass inertia,

since the motion of this body includes both rotation and translation. Moreover, due to the complexity

of the system, the CIR of the second body does not necessarily coincide with the top of the cylinder,
making it less practical in this case to use the Huygens-Steiner theorem.

3.1.1. Energy Formulation

Given the position vectors of the two rigid bodies and their mass moment of inertia, the kinetic energy
T and the potential energy U of the dynamical system can be defined as:

1 1

U = mgh . (3.6)
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Here, m denotes the mass of the rigid body, while v, represents the velocity of its center of mass. The
term I, refers to the moment of inertia about the z-axis calculated at the center of mass, and w is the
angular velocity of the rigid body. The symbol g refers to the acceleration of gravity, taken as 9.817,

and h denotes the vertical displacement of the mass m from its equilibrium position.

Note that for planar rigid body motion:

w=20. (3.7)

The total kinetic and potential energy of the double pendulum system are obtained by superimposing
the individual contributions from each body:

T = Thou + Ty (3.8)
U=Uproq+ Ucyl (39)
where:
1, 1 5 1 9
Troa = §mvm + §ICI\4mw1 = §IC[RMW1 (3103)
1 2 1 2
Tey = §MUM + ilczung (3.10.b)
UT'Od =mg Pm,z (311 -a)
Ucyl:MgpM,z (311b)

From the moving vectors, it is possible to retrieve the velocity of the center of mass and the vertical
component P, of the cable and of the cylinder, respectively at G; and G-.

_ 9'1%008(91) _ 92% cos(f2) + 611 cos(fy)
ven () = [915 sin(6;) vas () = 92% sin(0y) + 61sin(6;) (3.12)
L
Pn.= —é cos(fy) , P, = ~3 cos(fz) — L cos(6y) . (3.13)

The total kinetic energy of the system T is derived using Equations 3.10 and 3.12, while the total
potential energy U is obtained from Equations 3.11 and 3.13. For the complete derivation of Equations
3.14 and 3.15, please refer to Appendix A.

. 1 . 1 .. 1 2 L2\ .
m12912 + 5Ml2912 i 5MZL191¢92 cos(by —02) + =M <]Z + 3) g22 (3.14)

1
Ti
2

"6

U=— (% + M) lgcos(61) — %Lg cos(fs) (3.15)
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3.1.2. Equations of Motion

With the energy equation being derived, one possible way to determine the equations of motion of a
system is by using the Lagrangian L and the Euler-Lagrange equation:

L=T-U (3.16)
d (OL\ 0L L %]

where ¢ represents the vector of generalized coordinates that describe the system dynamics.

Substituting the previously derived expressions for kinetic and potential energy, it is possible to obtain
L and, following Equation 3.17 for each DoF, the non-linear equations of motion of the system are
derived:

(2 + M) 120, + 3 MILO cos(6; — 02) + SMILOZ sin(0; — 0) + (% + M) lgsin(6;) = 0
. ) . (3.18)
L MILGy cos(0: — 02) + M (5 + &) 6 — LMILZ sin(01 — 0) + M Lgsin(62) = 0

As discussed in the literature review (see Chapter 2.1), the large geometric dimensions of the system
lead to relatively small angular displacements during the monopile installation phase. Consequently, the
equations of motion can be linearized around the stable equilibrium position of the pendulum (6 = 0)
using the small-angle approximation. By applying Equations 2.3, the following linearized system of
equations of motion is obtained:

(m 4+ M) 126, + SMLI, + (2 + M) gl =0
“ o (3.19)
LML, + M (5 + 52) b, + Mgko, = 0

Linearization eliminates the trigonometric terms, resulting in a symmetric set of equations with respect
to the two degrees of freedom. Both the linear and nonlinear formulations reveal that the system is
coupled, as the motion of one degree of freedom influences the other. Additionally, it becomes evident
how the geometry of the cable and of the hollow cylinder influence the governing equations. The full
derivation of both the non-linear and linear equations of motion using Lagrangian mechanics is reported
in Appendix A.

Following the derivation of the equations of motion, the geometric values presented in Table 3.1 were
selected to enable the numerical evaluation based on the configuration used by Domingos et al. [5]. In
particular, the mass of the monopile was modified, while the remaining parameters were kept approx-
imately the same. This adjustment better reflects the scale and load conditions expected in offshore
installation scenarios under the intended conditions. The motivation for modifying the monopile mass,
while preserving the other parameters, is further discussed in Chapter 3.4.2.

Table 3.1: Parameter values used for the numerical model.

Parameter Symbol Value Unit
Monopile’s Mass M 1,000,000 kg
Cable’s Mass m 2,000 kg
Monopile’s Length L 74 m
Cable’s Length l 80 m
Monopile’s Radius R 1.8 m
Gravitational Acceleration g 9.81 =
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3.2. Wave Characteristics

Following the theories presented in Ch.2.2, an essential step, before incorporating the submersion
effects and the resulting hydrodynamic forces on the monopile model, is the characterization of the wave
loading. Since wave-induced forces are the result of a random vibration process, their characteristics
must be inferred and described through statistical analysis.

In this study, the required input parameters are obtained from publicly available datasets provided by
the website Hersbach et al. [12]. The data is extracted for a location representative of offshore wind
farm sites in the North Sea, specifically at Latitude 54° N and Longitude 6.2° E.

From the formulation of the JONSWAP spectrum in Ch.2.2.2, it is evident that the fetch length F’, along
with either the peak frequency f, or the wind speed at 10 meters height Uy, are essential input param-
eters for constructing the wave spectrum. Additionally, another important parameter is the significant
wave height H,, that ensure that the resulting sea surface elevation time series accurately represents
the expected wave loading behavior.

Fig. 3.2 presents the time series of wind velocity at a height of 10 meters above the surface. To
characterize an extreme yet representative scenario, the mean values of the monthly maxima and
minima are calculated. Given the vectorial nature of the data, which may assume negative values due
to variations in wind direction, both positive and negative extremes are incorporated in the analysis.
The maxima are indicated by red markers, whereas the minima are shown in green.

m
Mean of monthly maxima: Ujg = 13.6 5

Mean of monthly minima: U;o = 10.1 g

The wind speed corresponding to the monthly maxima is the highest of the two. Thus, it is selected as
the input for the wave spectrum calculation.

10m U Wind Component Over Time at Latitude 54°N, Longitude 6.2°E
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Figure 3.2: Mean wind speed at 10 m height time series in the North Sea

Using both wind direction data [2] and a geographical analysis of the North Sea, the effective fetch
length for the selected location is estimated to range between 100 ~ 200 km. For the purpose of this
study, it is adopted a representative fetch of:

F =150km.



3.2. Wave Characteristics 21

With known values for Uy, and F, the significant wave height can be estimated using the JONSWAP-
specific formula Equation 3.20.

2
H, = 4\/1.67 x 107 . % .F=275m (3.20)

As shown in Figure 3.3, this calculated value is representative of an above-average significant wave
height over time, supporting its use in further modeling for a preliminary control design.

Significant Wind Wave Height Over Time at Latitude 54°N, Longitude 6.2°E

Significant Wind Wave Height {m)

Figure 3.3: Significant wave height time series in the North Sea

The final set of parameters, used for constructing the JONSWAP spectrum, is presented in Table 3.2.
These values were derived using Uy to derive f, through Equation 2.13 as presented in Chapter 2.2.2.

Moreover, the study by Li, Gao, and Moan [18], which focuses on a similar region in the North Sea,
reports the following representative wave conditions:

Hy,=25m, T,=5~12s.

Thus, literature further support the validity of the parameters selected in this study.

As an additional check, the mean wave period T was also used to obtain the mean wave velocity via
Equation 2.14 and to compute the other parameters. The results from this alternative method were
found to be very similar and they are presented in Appendix B. Using both approaches provides a form
of cross-validation, confirming the consistency of the parameters.

Table 3.2: Input parameters for constructing JONSWAP spectrum

Hy(m) T,(s) fp(Hz) Usp(mis) F (km)
275 767 0.130 13.6 150

With the input parameters listed in Table 3.2, all the unknowns of the Equation 2.12 can be retrieved
as shown in Chapter 2.2.2. The resulting JONSWAP spectrum is presented in Fig. 3.4.
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Figure 3.4: JONSWAP spectrum

Through Equation 2.8, using the spectral density energy at each frequency of the spectrum, itis possible
to construct an irregular wave surface elevation time series. The time series preserves the stochastic
nature of the sea state due to the phase angle ¢,. For consistency reason, always the same time
series will be taken into account and is shown in Fig. 3.5.

To generate the JONSWAP spectrum and reconstruct the corresponding sea surface elevation time
series, specific frequency and time resolution parameters are defined. The frequency range is set
between a minimum of fi,in = 0.001 Hz and a maximum of fnhax = 0.5 Hz, capturing the relevant range
of ocean wave energy. The frequency resolution is specified as Af = 0.0002 Hz, which defines the
smoothness and accuracy of the spectrum. From this, the total duration of the time series is determined
as tmax = 1/Af = 5000s, ensuring compatibility between the time and frequency domains. The time
step is set to At = 1/fmax = 25, satisfying the Nyquist sampling criterion for the highest frequency
in the spectrum. As a result, the number of time steps used for reconstructing the time series is NV =
tmax/At = 2500, providing a well-resolved time-domain representation of the sea surface elevation.

Irregular Wave Time Series and Surface Elevation
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Figure 3.5: Wave height and surface elevation time series

To verify the accuracy of the time series and its representation of the JONSWAP spectrum, a conver-
gence check was performed by comparing the standard deviation of the generated time series to the
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theoretical standard deviation calculated from the JONSWAP spectrum. The standard deviation ¢ is
computed, from the area under the JONSWAP spectrum, using Equation 3.21. In addition, also the
significant wave height can be checked using Equation 3.22.

o= =\ [ star (3.21)

Hy=4x0 (3.22)

Table 3.3 compares the standard deviation ¢ and the significant wave height H, obtained from the
generated time series and the spectrum. The close agreement, especially of o, confirms that the
constructed time series adequately represents the characteristics and behavior of the target spectrum.

Table 3.3: Comparison between results obtained from time series and spectrum.

Parameter Symbol Units Time Series Spectrum
Standard Deviation o - 0.828 0.827
Significant Wave Height H, m 3.31 2.75

3.3. Morison Equation

To incorporate the effects of submersion and hydrodynamic forcing in the dynamic model, the Morison
equation is used. This choice is supported by the assumptions discussed in Ch.2.2.3, particularly the
condition regarding the diameter-to-wavelength ratio. As shown in Table 3.1, a small radius is chosen
for the monopile to ensure this ratio remains valid. Although this is a simplifying assumption, since it
allows to neglect diffraction effects, it is justified by the results of the sensitivity analysis presented in
Chapter 3.4.2.

In this study, the Morison equation (see Equation 2.18) incorporates two main variables: the structural
motion (61, 62), which is related to the rotational degrees of freedom of the double pendulum model,
and the horizontal water particle velocity u(t, z), which describes the wave-induced flow at a given
depth.

Moreover, introducing hydrodynamic loading into the system requires a new reference frame to account
for submersion, as shown in Figure 3.6. This redefinition is essential because the water particle velocity
u(t, z) and the hydrodynamic force both depend on time and submersion. For the force, submersion
refers to the portion of the monopile below the water surface (hereafter referred to as the submersion
length, ), while for u(t, z) it indicates the depth relative to the free surface, ranging from z = 0 at the
surface down to z = d at the seabed. In other words, both parameters describe vertical position, but
z represents the depth level in the water column independent of the monopile, whereas submersion
length describes the portion of the monopile that is submerged. Due to the assumptions made in this
research, these two quantities are equivalent.

The structural motion at a point along the submerged monopile is described by:

x=101+ (L+.L —s)b (3.23.a)
i=10,+ (L+ .2 —s)0, (3.23.b)

i=10, + (L+ % — s)b, (3.23.c)
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where s is the vertical coordinate along the submerged part of the monopile, and is taken as negative
below the water surface. The total submerged length .Z is also negative in this convention.

Figure 3.6: Submerged system reference frame

Since hydrodynamic forcing is distributed along the submerged length, it must be integrated across .
to obtain the net forcing acting on the structure. Physically, this represents a continuous load; however,
in the equations of motion, which are expressed in terms of angular degrees of freedom, the effect
is introduced as a single equivalent moment. This moment is calculated by integrating the local force
contributions multiplied by their respective lever arms. The result is a cumulative moment that captures
the contribution of each submerged segment s of the monopile.

To clearly describe the hydrodynamic excitation, the force components are separated into drag and
inertia terms according to Morison’s formulation. These can then be added as either a combined mo-
ment or as separate moments in the system of equations 3.24. Although the moments appear only in
the second equation of motion, due to the coupling between the cable and monopile, the response of
the first body is also indirectly affected. This coupling is evident in Equation 3.23, where the structural
motion depends on both 6, and 6.

Moreover, some components of the Morison’s terms influence not only the forcing vector but also the
mass matrix and damping characteristics of the system. This arises because the Morison forces depend
on both the structural velocity and acceleration, thereby introducing additional damping and inertia
effects beyond external forcing.

(2 + M) 120, + SMLIby + (2 + M) gloy =0
) L (3.24)
LMLIG, + M (% + %) by + MgLo, = My + Mp

3.3.1. Inertia Component

The first term in the Morison equation accounts for the inertia force. As detailed in the literature review
(see Equation 2.16), this term consists of two contributions: the Froude-Krylov force and the disturbance
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force. Both depend on the horizontal water particle acceleration «(t, s), but only the second component
includes the structural acceleration Z. Thus, the inertia force can be rewritten as shown in Equation
3.25.

1 1 1
jé[ = ;i 7rl:)2/?1U71 + Zi7rl:)2(:11;)101l — Zi7rl:)2(:nzfjiuii (:3.:255)

The first two terms, on the right-hand side, are proportional to the fluid acceleration and represent
external forcing. The third term depends on the system’s acceleration and must be included in the
system’s mass matrix, as it contributes to the added mass effect. As such, this component directly
influences the natural frequencies of the structure, particularly it allows to determine the undamped
natural frequencies at each submersion length as done in Ch.3.4.3.

The horizontal water particle acceleration used in the forcing terms is:

N—-1
is.6) = = 3 At D i +6,) (3.26)
n=0 n

Figure 3.7 shows how (s, t) evolves across depth for 50 time steps out of a 5000 seconds simulation.
On the vertical axis, the submersion depth ranges from 0 to —40 m, and each color represents a different
moment in time. From the plot, it is clear that the particle acceleration is random in nature, due to the
stochastic wave spectrum. Stronger accelerations occur near the surface (0 to —10m), where wave
energy is most concentrated, and then decay exponentially with depth. Beyond approximately —30m,
the signal becomes nearly constant and significantly weaker. The lower limit of —40 m was selected
based on the analysis discussed in Chapter 3.4.3.

Acceleration Profile vs Submersion depth at different Time Steps
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Figure 3.7: Horizontal water particle acceleration profile %(s, t) across submersion depths for different time steps.

The distributed force f; induces a moment on the structure. The total moment is computed by inte-
grating over the submerged length as presented in Equation 3.27. This expression accounts for the
moment arms associated with the pendulum geometry and includes both structural and hydrodynamic
contributions. Moreover, due to the dependence of the moment equation on 64, the first degree of free-
dom is also indirectly affected by the forcing term through coupling in the second equation of motion.
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0
My (t) = / U+ (L+ % — )] fr(s,t) ds =

<
0 1 1
= / [+ (L+2Z —s)] 1(1 + Co)TD?pyt(s, t) — 1wD?capwsé ds (3.27)
<

Figure 3.8 shows a possible evolution of the cumulative inertia moment M;(¢) for 50 time steps. The
moment magnitude is on the order of 1 x 107 Nm, peaking at a submersion depth of approximately 12 m,
after which it decreases. The initial rise reflects the increasing lever arm and stronger fluid acceleration
near the surface, while the decreasing pattern corresponds to the diminishing contribution from deeper
layers, where acceleration oscillates between positive and negative values. Despite this trend, the
moment profile is irregular, confirming the randomness of the excitation.

Cumulative Moment M(s) vs. vs Submersion length at different Time Steps
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Figure 3.8: Cumulative inertia moment M; across submersion lengths at different time steps.

In summary, the inertia component contributes to the internal system dynamics through added mass
and to time-varying external loading. These effects cannot be approximated as uniform or periodic
especially closer to the surface, where wave-induced forces are strongest and most variable.

3.3.2. Drag Component

The drag component of the Morison equation introduces a fundamentally different contribution to the
system’s dynamics compared to the inertia term. While the inertia force depends linearly on the water
particle acceleration and the structural acceleration, the drag force is inherently nonlinear, as it depends
on the square of the relative velocity between the fluid and the structure. This term, shown in Equation
2.17, couples the external flow field and structural response in a way that prevents their individual
separation.

In this context, the drag term contributes both as a time-varying and depth-dependent forcing effect,
due to the external wave field, and as an intrinsic damping effect linked to the structural velocity, which
consistently acts to resist motion and dissipate energy.

The nonlinearity is particularly important.The drag force opposes motion and increases quadratically
with the relative velocity, meaning it acts as a velocity-squared damping mechanism. Hence, when
the structure moves in phase with the wave-induced flow, the relative velocity, and thus drag, is low.
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However, when motion is out of phase, the relative velocity increases, and the drag term grows sig-
nificantly dissipating more energy and amplifying the nonlinear damping effect. The horizontal water
particle velocity (s, t) used in the drag moment term is defined in Equation 2.10.

Figure 3.9 illustrates the temporal evolution of u(s, t) along the submersion depth. As with the acceler-
ation case (Fig. 3.7), the velocity profile is visibly stochastic, reflecting the random nature of the input
wave spectrum. Stronger velocities are observed in the upper water column (from 0 to approximately
—15m), where the wave energy is concentrated, and decay exponentially with submersion depth. Be-
yond —30m, the profile becomes vertical, indicating a minimal contribution from deep water layers.

Velocity Profile vs Submersion depth at different Time Steps
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Figure 3.9: Horizontal water particle velocity profile u(s, t) across submersion lengths at different time steps.

The distributed drag force fp (s, t) generates a moment on the structure, integrated over the submerged
portion. The resulting moment is given in Equation 3.28, which combines the geometric moment arms
with the nonlinear interaction between the fluid velocity u(s,t) and the structural velocity i(s,t). As
for the inertia component, the dependence on 6., results in the first degree of freedom being indirectly
influenced through coupling in the second equation of motion.

0
Mp(t) = /g [+ (L+.2—3)] fo(s,t) ds =

0
= ./z [+ (L+Z—s) l;DCDpw(u(s,t) — (s, t))|u(s,t) —@(s,t)|| ds (3.28)

Figure 3.10 presents the evolution of the cumulative drag-induced moment Mp(t) over time and sub-
mersion length. The magnitude of the moment reaches approximately 1 x 10 Nm, which is lower
compared to the inertia-induced moment. This difference suggests that during monopile installation,
the hydrodynamic load is primarily inertia-dominated in terms of excitation. However, in this research,
the drag contribution is retained as a fundamental component due to the damping it introduces. The
velocity-squared term ensures continuous energy dissipation, which plays a central role in enabling a
more robust and effective control strategy avoiding resonance.
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Cumulative Moment Mp(s) vs. Submersion length at different Time Steps
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Figure 3.10: Cumulative drag moment M across submersion lengths at different time steps.

Therefore, the drag component introduces complex nonlinear coupling between wave excitation and
structural response. The velocity-squared nature of the drag effect ensures that damping is always
present, reinforcing the importance of its contribution to both excitation and dissipation in the system.

3.4. Free Vibration of the System

To gain insight into the natural dynamic behavior of the double pendulum system, a free vibration
analysis is conducted. This involves studying the system in the absence of external forces by solving
the homogeneous form of the equations of motion. The initial analysis focuses on the double pendulum
without any influence of water or wave loading. This forms the foundation for understanding the intrinsic
behavior of the system.

The analysis enables the identification of the system’s natural frequencies and mode shapes, which
describe how the structure tends to vibrate when disturbed. This information is essential, as resonance
can occur when external excitations match one of these natural frequencies, potentially leading to large
and unsafe oscillations. This is particularly important in the context of offshore installation, where the
natural frequencies of crane—load systems often fall within the range of ocean wind-generated wave
frequencies.

To validate the results, two independent methods are employed to analyze the system in the frequency
domain:

» The first approach assumes a harmonic solution, enabling the analytical determination of the
system’s oscillatory behavior. This method is commonly referred to as modal analysis.

» The second approach involves reformulating the second-order system into first-order state-space
form, allowing the system’s vibrations to be studied through eigenvalue analysis.

In this chapter, only the modal analysis is presented, while the details of the state-space formulation and
eigenvalue analysis are provided in Appendix C. This second approach will later serve as the foundation
for the numerical integration of the equations of motion once external disturbances and control forces
are included.

In Chapter 3.4.3, the influence of the surrounding water is accounted for through the added mass term
of the Morison equation, enabling an investigation into how varying submersion depths affect the sys-
tem’s undamped natural frequencies. This analysis offers valuable insight into how the hydrodynamic
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environment, and specifically the depth at which the monopile is submerged during installation, modifies
the system’s intrinsic characteristics.

It is important to highlight that this study focuses exclusively on undamped natural frequencies. The
drag force, which introduces nonlinear damping through its dependence on the square of the relative
velocity between the structure and the fluid, is not included in this part of the analysis.

3.4.1. Modal Analysis of Double Pendulum

Before applying the modal analysis, the linearized equations of motion are conveniently rewritten in
matrix form as:

MO + KO =0 (3.29)

where:

(g +M) ML (Z4+M)lg 0

, 0=
0 LMLy

S otwm M (%48
(3.30)

Modal analysis relies on the assumption of a harmonic solution to determine the natural frequencies
and mode shapes of a system. By substituting a sinusoidal time response into the linear equations of
motion, the problem is transformed into a generalized eigenvalue problem.

The starting point is the homogeneous system (Equation 3.29). Then a harmonic solution is assumed
(Equation 3.31) and differentiated twice with respect to time for substitution in the equations of motion.

O(t) = Xe! (3.31)

O(t) = —w?Xe! (3.32)

Substituting Equation 3.32 in Equation 3.29, gives:

(—w?M + K)Xe™t =0 (3.33)

In the above equations, X represents the vector for the mode shapes while w denotes the natural
frequencies. Since ¢! +£ 0, it can be factored out, leading to the generalized eigenvalue problem:

(K —wM)X =0 (3.34)

To ensure a nontrivial solution (X # 0), the determinant of the coefficient matrix must be set equal to
zero. Solving Equation 3.35 yields the natural frequencies w,, of the system, where n stands for the
degree of freedom considered. For each frequency, the corresponding mode shape X,, is found by
solving the associated eigenvector equation. These mode shapes describe the deformation patterns
of the system at each resonant frequency.

det(K — w2 M) =0 (3.35)

Using the values listed in Table 3.1, Equation 3.35 can be numerically solved with respect to w?, allowing
to determine the natural frequency of the system that are reported in Table 3.4.
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Table 3.4: Natural frequencies of the double pendulum system

Modes Natural Frequency  Hz rad/s

Mode 1 0.045 0.284
Mode 2 0.174 1.095

Once the natural frequencies are identified, the associated mode shapes (eigenvectors) can be de-
termined solving Equation 3.34 for X. Under the small-angle approximation, these eigenvectors can
be interpreted as angular displacements and visualized as linear displacements, facilitating the inter-
pretation of the system’s motion at resonance. The normalized mode shapes are reported in Table
3.5. These results can be further visualized in Figure 3.11, which illustrates the relative motion of the
components excited at each natural frequency.

Table 3.5: Eigenvectors of the double pendulum system

Modes Natural Frequency [-]
—0.668
Mode 1 {_00744}
—0.458
Mode 2 { 0.889 }

The results of the free vibration analysis reveal a large gap between the first and second natural frequen-
cies. Consistent findings were obtained through the eigenvalue analysis of the state-space formulation
presented in Appendix C, confirming the free vibration results.

More specifically, the first natural frequency aligns closely with the value reported by Domingos et al. [5].
The second natural frequency is also in good agreement, although slightly higher than that observed in
the reference study. This discrepancy may originate from differences in the stiffness and mass matrices.
While the geometric parameters in the present model are similar to those used in the reference, they
are not identical, especially the mass of the monopile. Additionally, the variation could be attributed to
the simplification in the model that includes two degrees of freedom compared to the three considered
by Domingos et al. [5].

First natural frequency is 0.045 Hz Second natural frequency is 0.174 Hz
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Figure 3.11: Modal Shapes of Double Pendulum
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In the following section, the influence of key model parameters on the natural frequencies is investi-
gated, offering deeper insight into the dynamic behavior of the system.

3.4.2. Effect of Model Parameters on Natural Frequencies

To gain a deeper understanding of the behavior of the natural frequencies, a sensitivity analysis was
conducted on the key geometrical parameters defining the system. These parameters directly affect
both the mass and stiffness matrices, thereby influencing the system’s dynamic response.

Starting from the values of Table 3.1, three scaling parameters were introduced to investigate the re-
lationship between the system’s geometric properties and its natural frequencies. These parameters
allow for systematic variation of the physical dimensions. For both the bodies of the system, the mass,
the length, and the radius are assumed to scale proportionally, meaning that an increase in one leads
to a corresponding increase in the others.

» Cable length parameter &; - assumes direct proportionality between the cable’s mass m and its
length [.

m=2000-&, [=80-§& (3.36)

* Monopile length parameter £}, - assumes direct proportionality between the monopile’s mass M
and its length L.

M=1x10°-¢,, L=74-& (3.37)

* Monopile radius parameter £i - assumes direct proportionality between the monopile’s mass M
and its radius r.

M=1x10%-¢;, R=18-¢(g (3.38)

The scale parameters are varied from 0.01 to twice their original values, and the corresponding natural
frequencies of the system are computed and plotted against these variations.

0.01 <&,81,p <2

The natural frequencies are determined by the interplay between the mass and stiffness matrices, as
expressed in Equation 3.39.

K
w=1/7 (3.39)

This sensitivity analysis therefore enables a comprehensive investigation of the influence of the dou-
ble pendulum’s geometrical properties on its natural frequencies. Moreover, it provides a basis for
assessing whether the values listed in Table 3.1 represent reasonable assumptions.

Analysis of the elongation of the cable - &

First, the sensitivity analysis focuses on the effect of changing the geometry of the first pendulum by
varying &;, which affects both the mass m and the length {. More specifically, this is one of the most
interesting cases for the research since it also corresponds to the lowering of the monopile through the
elongation of the cable.

The results presented in Fig.3.12 show that both the first and second natural frequencies decrease as
the parameter increases, indicating that as the geometry of the cable expands, the system’s oscillations
occur at lower frequencies, meaning the system moves with a higher period.
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Increasing ¢; affects both the mass and the stiffness matrices, but M is more sensitive to changes in
the cable geometry. As a result, from the relation 3.39, the system’s inertia increases faster than its
stiffness, leading to a reduction in frequency. The first natural frequency decreases from 0.071 Hz to
0.035 Hz as & increases. Similarly, the second natural frequency decreases from 1.120 Hz to 0.158
Hz, with a particularly sharp drop observed when ¢; increases from 0.01 to 0.25.

First Natural Frequency vs. &

e
o
<

—— First Natural Frequency

e et
=} o
vl o

et
o
&

First Natural Frequency (Hz)

T T T T T T T T T
0.00 0.25 0.50 0.75 100 125 150 175 2.00
& - Cable Elongation

Second Natural Frequency vs. &

—— Second Natural Freguency

=
o
L

o
@
L

o
@
L

=}
ES
L

o
¥
L

Second Natural Frequency (Hz)

T T T T T T T T T
0.00 0.25 0.50 0.75 100 1.25 1.50 175 2.00
& - Cable Elongation

Figure 3.12: Effect of elongation of the cable on the natural frequencies

It can be concluded that the lowering of the monopile influences both natural frequencies of the sys-
tem in a similar manner. A slight reduction in frequency is observed when the system dimensions
are increased. However, when the cable dimensions are reduced to less than half of the reference
configuration, the second natural frequency is significantly affected. Furthermore, the variation of the
first natural frequency indicates that, for accurately simulating monopile installation, it is essential to
account for changes in the cable geometry, as these may have a considerable impact on the results.

Analysis of the elongation of the monopile - &/,

The next part of the analysis involves varying the geometry of the second body by adjusting the scale
factor &;,. Similar to the cable, increasing the values of the parameter leads to a proportional change
in both mass M and length L. The variation of the natural frequencies is shown in Fig. 3.13

For the first natural frequency, the trend observed is similar to that of the first body: as £, increases,
the first natural frequency decreases. This is because the increase in mass and inertia outweigh the
increase in stiffness, leading to lower frequencies and longer periods.

For the first natural frequency, the trend observed is similar to that of the first body: as £, increases,
the first natural frequency decreases. This occurs because the increase in mass and inertia outweighs
the increase in stiffness, leading to lower frequencies and longer periods. In particular, the first natural
frequency decreases from 0.056 Hz to 0.039 Hz as £, increases.

The second natural frequency exhibits a different trend compared to the first. At small values of &g,
the frequency initially increases due to the dominant effect of system stiffness and stronger coupling
between the two pendulums. However, after a critical point is reached, the influence of the mass matrix
outweighs that of the stiffness matrix, and the system’s inertia becomes dominant. As a result, the
natural frequency decreases as the system grows heavier and more resistant to motion. Specifically,
the second natural frequency decreases from 0.41 Hz to 0.145 Hz as &, increases beyond the critical
value of approximately £, = 0.05.
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Figure 3.13: Effect of elongation of the monopile on the natural frequencies

The results support the decision to increase the mass of the monopile to a more representative value
compared to the one used by Domingos et al. [5], as this parameter has a significant impact on the
system’s dynamics. Moreover, the analysis highlights the importance of the coupling between the
two bodies, showing that changes in the geometry of the second body can significantly influence both
natural frequencies, particularly the second one.

Analysis of the radius scaling of the monopile - ¢z

The monopile is also characterized by its radius, and this geometry is scaled using the parameter 5.
As &g increases, both the radius and the mass of the monopile increase leaving the thickness constant,
leading to potential changes in the natural frequencies of the system.

The analysis presented in Fig. 3.14 reveals that the impact of the radius scaling on the natural frequen-
cies is relatively minimal. For the first natural frequency, an increase in the radius results in a slight
decrease in frequency, similar to the trends observed for other geometric parameters. However, the
change in frequency is quite small. The first natural frequency decreases slightly from 0.0454 Hz to
0.0453 Hz as £j increases.

The second natural frequency exhibits a different behavior. Initially, the frequency increases as &g
increases, reaching a peak value of approximately 0.175 Hz at (g =~ 0.3. Beyond this point, however,
the frequency begins to decrease slowly, with the value reducing to around 0.173 Hz as the scaling
parameter £ continues to increase.
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Figure 3.14: Effect of radius of the monopile on the natural frequencies

In comparison to the effects of other geometric parameters, the radius scaling has a relatively small
impact on the natural frequencies. This suggests that the radius does not significantly influence the
system’s behavior as much as other parameters such as length scaling. Consequently, retaining the
radius value from Domingos et al. [5] is justified, as its impact on the natural frequencies is minimal.
Moreover, the results confirm that the small-radius assumption of the Morison equation is satisfied,
ensuring that diffraction effects can be neglected while still providing an accurate representation of the
system’s dynamic response to wave loading.

3.4.3. Effect of Submersion on Natural Frequencies

Having previously analyzed the free vibration behavior of the double pendulum without external influ-
ences, the effect of water submersion is now considered. This step is essential, as during monopile
installation, the structure is slowly lowered into the sea after upending until it reaches the seabed. As
discussed in Chapter 3.3, the presence of water introduces not only external forcing but also hydrody-
namic effects such as added mass and drag. For the study of undamped natural frequencies, drag,
which introduces damping, is neglected, while the added mass is incorporated through the mass matrix.

The equations of motion are therefore updated to include the added mass contribution. Specifically,
the mass matrix is modified to reflect the additional inertial effects due to water submersion. These
effects influence both the degrees of freedom and introduce coupling between them, as seen from
Equation 3.27. Moreover, the installation of a monopile requires the cable to elongate as the monopile
is brought to the seabed, meaning that both the cable length [ and its mass m vary with submersion.
The updated mass matrix is presented in Equation 3.41, where the added inertia terms are evaluated
through integration along the submerged portion of the monopile, while the cable geometry (I and m)
varies as a function of the submersion length .Z.

(L) =1-2 m(.i”):m—l-(%-\.ﬁﬂ). (3.40)

(=62 + M) iz IMLI(Z)
M = . , ) . , (3.41.a)
%MLI(X) + Mlnertia(elag) M (RT + %) + Mner‘tia(e%g)

£
Minerta (6:) = /O (L) + (L + % — 5] (iw?ca,oww)el) ds (3.41.b)
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. Z 1, .
M|nertia(02) = /0 [l(ﬁ) + (L + &£ — S)] (47TD Capw(L + £ — 5)92> ds . (341 .C)

The effect of submersion is analyzed using modal analysis. This method enables solving the eigen-
value problem in Equation 3.35 for different values of submerged length, giving insight into how natural
frequencies evolve as the monopile enters the water.
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Figure 3.15: Effect of submersion length on natural frequencies of the double pendulum system

Figure 3.15 shows how the natural frequencies decrease with increasing submersion length. This trend
is expected, as the added mass increases the overall inertia of the system. Although both the mass
and stiffness matrices are affected by the changing cable geometry (length [ and mass m), the relative
ratio between stiffness and inertia decreases due to the more dominant effect of the added mass. This
leads to a lower natural frequency, as reflected in the classical relation presented in Equation 3.39.

This behavior is also consistent with the sensitivity analysis of the non-submerged double pendulum
system (see Section 3.4.2), where an increase in m and [ resulted in a reduction of the natural frequency.

Both natural frequencies are affected due to coupling in the system, but the second mode exhibits the
most significant change. It drops from an initial frequency of 0.174 Hz to approximately 0.114 Hz, with
most of the reduction occurring within the first 20 meters of submersion.

Based on this trend, several key submersion lengths are selected for further analysis in the time domain
and in the design of the control strategy. The unsubmerged case (£ = 0 m) is included to represent
the baseline free vibration response without any added mass. To capture the sharp reduction in natural
frequencies observed in the early stages of submersion, the cases .¥ = —5 m, —10 m, and —15 m are
considered. Additionally, submersion lengths of —20 m and —30 m are included to monitor the gradual
approach toward the minimum, which occurs at —40 m. Table 3.6 summarizes the corresponding
natural frequencies for each of these selected cases while Table 3.7 does the same but for the mode
shapes.
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Table 3.6: Variation of natural frequencies [Hz] of the double pendulum system with submersion length

£ [m] Mode 1 Frequency [Hz] Mode 2 Frequency [Hz]

0 0.045 0.174

-5 0.043 0.146
-10 0.041 0.132
-15 0.039 0.124
-20 0.038 0.119
-30 0.036 0.115
-40 0.034 0.114

Table 3.7: Normalised amplitude of the mode shapes of the double pendulum system at different submersion lengths

Z [m] Mode 1 — 6, Mode 1 — 6, Mode 2 - 6, Mode 2 — 6,
0 -0.0534 -0.0551 -0.0366 0.0658
-5 -0.0501 -0.0598 -0.0383 0.0661

-10 -0.0476 -0.0628 -0.0395 0.0665
-15 -0.0459 -0.0648 -0.0403 0.0670
-20 -0.0448 -0.0662 -0.0409 0.0675
-30 -0.0440 -0.0678 -0.0414 0.0686
-40 -0.0447 -0.0687 -0.0413 0.0695

Figures 3.16 and 3.17 illustrate the mode shapes for the shallowest and deepest submersion depths
considered. While the natural frequencies change with submersion, the mode shapes remain qualita-
tively similar to those of the unsubmerged case shown in Figure 3.11. The first mode shape exhibits
the most noticeable variation, especially in the orientation of the second body, which becomes nearly
horizontal as submersion decreases and approaches the water surface.
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Figure 3.16: Mode shape of the double pendulum system at a submerged length of —5 m
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Figure 3.17: Mode shape of the double pendulum system at a submerged length of —40 m

3.5. Time Domain Response

After the frequency domain free vibration analysis, the focus shifts to the system response in the time
domain. This is particularly important because it provides the rotational response of the monopile and
cable to a given external forcing or initial condition, effectively simulating their possible oscillations dur-
ing installation. Understanding this response is fundamental for developing an efficient control strategy
that adapts over time based on the magnitude of the system’s oscillations.

Given the presence of nonlinearities, such as drag forces and, further into the research, magnetic
control forces, analytical solutions are not feasible. Consequently, a numerical simulation approach is
adopted. The method starts from rewriting the second-order differential equation describing the system
dynamics into a first-order state-space form as previously mentioned in Chapter 3.4. This allows the
use of standard ordinary differential equation (ODE) solvers.

As seen previously dynamic system is governed by the matrix differential equation
MO +KO = F(t), (3.42)

where © = [0y, 6,]T contains the generalized coordinates. To numerically integrate this system, the
augmented state vector is defined, leading to the state-space formulation (see Appendix C).

Y1
_ S} _ 1Y
Z2
d 0 I 0
%X = {—M_lK —M_lC] X+ {M_lF(t)} , (3.43)

At each time step, the solver receives the current state vector X = [y1,y2, 71, 22]T, computes the
acceleration ©, and returns the time derivatives X = [ 9,0 ]7.

For the numerical integration, the LSODA solver is employed due to its capability to efficiently handle
systems with variable stiffness and nonlinearities. LSODA automatically switches between an implicit
and an explicit solver based on the detected stiffness of the system. This adaptability is particularly
beneficial for the present study where, submerged length changes, fluid-structure interaction effects
and nonlinear drag introduce transient stiffness variations. LSODA’s adaptive time-stepping ensures
stability and accuracy without prior knowledge of the system’s stiffness [30].
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3.5.1. Time Domain Analysis of the Response without External Forcing

The case without external forcing is first analyzed in the time domain, corresponding to the simulation
with a submersion length of . = 0m. The system response is obtained by applying a nonzero initial
condition. Figure 3.18 presents the rotational displacements of the two degrees of freedom over time.
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Figure 3.18: Time domain response of the two degrees of freedom at zero submersion length with initial condition applied to
the first body.

The response exhibits oscillations governed by the initial condition applied to the first body. The cor-
responding frequency content, obtained via a fast Fourier transform (FFT) and presented in Figure
3.19, confirms that the frequencies excited coincide with the natural frequencies previously identified in
Chapter 3.4.1. The first degree of freedom is mainly dominated by the first natural frequency, reflecting
the initial condition being applied to the cable. In contrast, the second degree of freedom displays an
increasing influence of the second natural frequency, reaching a comparable magnitude. This behavior
highlights the dynamic coupling between the two bodies, where excitation of the cable also activates
the second natural frequency in the monopile.
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Figure 3.19: Frequency amplitude spectrum of the two degrees of freedom before submersion.
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3.5.2. Time Domain Analysis of the Response with Morison Equation Forcing

External forcing is introduced into the system by incorporating the added mass and damping effects
arising from the components of Morison’s equation, as described in Chapter 3.3. Numerical simula-
tions are then performed for different submersion lengths of the monopile, replicating the installation
procedure.

Figures 3.20 illustrates the time domain angular responses for different submersion lengths. The an-
gular displacements for both degrees of freedom remain around 0.2 rad, supporting the validity of the
small-angle approximation in this simulation context.
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Figure 3.20: Time domain response of the system under full Morison forcing for multiple submersion lengths

As expected, the monopile’s angular displacement is generally greater than that of the cable, since the
wave load directly acts on the second body while the first is influenced mainly through coupling effects.
Notably, the monopile’s displacement remains significant and cannot be neglected.

The numerical simulations indicate that the maximum response occurs for submersion lengths between
—10 and —15 meters. This finding is in agreement with the cumulative drag and inertia moments shown
in Figures 3.10 and 3.8, which demonstrate that the highest excitation arises at these submersion levels.
On the contrary, the weakest response corresponds to the —40 meter submersion, where the forcing
is weaker. For comparison, Figure 3.22 compares the time domain responses at these two extremes.
Given that other responses fall between these bounds, the control strategy developed in Chapter 4
focuses primarily on these submersion lengths.

While these results provide a clear picture of the system response, it should be noted that the added
mass coefficient C,, as discussed in Chapter 2.2.3, varies significantly in shallow submersions, which
may affect the accuracy of the results for the smallest depths.
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Figure 3.21: Comparison of time domain responses at submersion lengths of —10 m and —40 m

The effect of drag is highlighted by comparing the full Morison forcing response with that obtained con-
sidering only the inertia component, shown in Figure 3.22. The drag forces act as an energy dissipation
mechanism, preventing unbounded growth of oscillations that would otherwise occur with inertia forc-
ing alone. This damping effect is crucial in containing the response amplitudes and ensuring realistic
system behavior. The graph shows that at lower submersion lengths, the angular displacement for both
degrees of freedom tends to resonate and reach very high values. However, for submersion lengths
around —30 to —40 meters, the response becomes large but does not continue to grow indefinitely.
This is likely due to increased energy dissipation from drag forces, which become more effective as
the submerged length increases, combined with the reduction in wave-induced forcing magnitude at
greater depths.
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Figure 3.22: Time-domain response of the system under inertia dominant Morison forcing

Furthermore, Figure 3.20 shows that all submersion lengths exhibit clear beating patterns, indicative of
the interaction of multiple frequency components. This behavior arises from closely spaced frequencies
in the wave forcing, characterized by a spectrum of energy. The beating is particularly pronounced for
submersion lengths between —5 and —20 meters, whereas at deeper submersions such as —30 and
—40 meters, the forcing is weaker and more broadband, resulting in less noticeable beating.
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The amplitude spectrum of the FFT of the response at a submersion of —10 meters, shown in Figure
3.23), indicates that the second natural frequency dominates, while the first natural frequency is only
weakly excited. Additional peaks close to the second frequency are also present, consistent with the
irregular wave forcing described by the JONSWAP spectrum in Figure 3.4 and the beating pattern
observed. Moreover, the JONSWAP spectrum peaks at f, = 0.13 Hz, which lies close to the second
natural frequency, explaining the relative prominence of this mode in the response.
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Figure 3.23: Frequency amplitude spectrum at —10 m submersion length

It should be noted that, due to the computational cost of the numerical solver, the time-domain simula-
tion was limited to 200 seconds. This constraint reduces the frequency resolution in the FFT and limits
spectral precision.

Fig. ?? shows the system responses at each constant submersion level. However, during installation
these levels occur sequentially over time rather than independently. To capture this process more
realistically, Fig. ?? presents a simulation with a time-varying submersion length. In this case, .Z is
progressively lowered of 5 m every 20 seconds, starting from —5 m and reaching —40 m.
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Figure 3.24: Time-domain response of the system under full Morison forcing with varying submersion lengths in time

The angular displacements still exhibit the characteristic beating phenomenon, but the peak responses
of both 8, and 6, are lower than those observed under constant submersion levels. As expected, the
response tends to decrease with deeper submersion since the hydrodynamic excitation on the monopile
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becomes weaker. Nevertheless, this simulation is relatively short, so these trends should be interpreted
with caution given the strong temporal fluctuations of the response.

Overall, the time-domain simulations support the modeling assumptions made and provide key angular
response insights that form the foundation for the control strategy developed in the next chapter.



Magnetic Control Strategy for Double
Pendulum System

4.1. Implementation of Magnetic Control

After determining the system’s response during the installation procedure under wave loading, it is now
possible to develop an efficient control strategy. This strategy uses dipole-dipole magnetic interaction
to counteract the angular displacements by generating an appropriate magnetic moment.

As introduced in Chapter 2.3, this non-contact control method combines the magnetic moment gen-
erated between dipoles and a Proportional-Derivative (PD) controller. The double pendulum system
derived in Chapter 3 provides the framework for implementing this strategy.

The magnetic moment applied to the system is derived from the magnetic potential energy by differen-
tiating it with respect to the generalized coordinate vector © = [, 6,]7, using the general formulation
introduced in Equation 2.25. Under the small-angle approximation, the distance between the interact-
ing dipoles is defined in Equation 4.1 and illustrated in Fig. 4.1. In the equation, / is the cable length, L,
defines the location of the fixed magnet along the monopile, and d is the distance between the dipoles
when the system is at rest.

r(©) = 0,0+ 051, +d (4.1)

The magnetic potential energy W, is expressed in Equation 4.2, while the corresponding magnetic mo-
ment M, (0©), derived by taking the partial derivative of W,,, with respect to the generalized coordinates
O, is presented in Equation 4.3.

Ho
Wpn=— 2Me 2 My 4.2
47T(91€—|-92L$+d)3( ) t,) ( )

Mm(e)) = -

6L0Me,x Mt { 4 } (4.3)

4 (916 + GQL_T —+ d)4 Lz

This moment introduces two additional external forcing terms in the system of equations presented
in Equation 4.4: one coupling term in the first equation and one direct moment acting on the second
equation, reflecting the influence of the magnetic force on the monopile.

m 0 1 n m _ 6pome Mt o
(% + M) 1201 + $MLIO, + (3 + M) gl = ——M(gfzwﬂﬁd)ﬂ

(4.4)

. 2 2 o Me,cMt,x
SMLGy + M (5 + 5 ) B+ Mgk, = My + Mp — 0o L,

43



41. Implementation of Magnetic Control 44

Control is achieved by dynamically adjusting the external magnetic dipole moment m ,, which charac-
terizes the strength and geometry of the actuating magnet. As outlined in Chapter 2.3.3, a Proportional-
Derivative (PD) controller is implemented to provide feedback control based on both position and ve-
locity errors. The error signal e(t), defined in Equation 4.5, captures the difference between the desired
displacement ¢ = 0 and the actual horizontal displacement of the monopile. The resulting control law,
which determines the necessary magnetic dipole moment m; ., is given by Equation 4.6.

e(t) =& —a(t) =& — (10 + 02 Ly) (4.5)

c(t) = myp = Kp(€ — (010 + 02L,)) + Kq(€ — (614 + 02L,)) (4.6)

The proportional and derivative gains K, and K4 must be carefully tuned to ensure the desired position
is reached while maintaining system stability. Moreover, several other parameters influence the control
strategy, such as the distance between the external and monopile magnets d, the positioning L, of the
magnet along the monopile and the submersion length (.Z).

Figure 4.1: Simplified model for monopile installation using magnetic control.

To determine suitable values for K, and K4, and an efficient placement of the magnets along the
monopile, a simplified wave forcing model is adopted. This simplification is necessary due the compu-
tational cost of the full simulation, which includes nonlinear magnetic interactions and wave-induced
drag. On the other hand, the influence of the remaining parameters, particularly those related to geom-
etry and submersion, will be assessed using the moment formulation introduced in Chapter 3, where
the wave loading is modeled in greater detail.
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4.2. Control of the System Subjected to Harmonic Moment

Building on the simplification introduced above, this section presents a trial and error tuning process for
the proportional and derivative gains (K, and K ;) using a simplified version of the forcing. A harmonic
moment, chosen to reflect the amplitude of the irregular wave-induced loading, is applied to enable
a faster and more efficient evaluation of the controller response across different gain settings. The
same setup is also leveraged to explore optimal magnet positions along the monopile, enabling testing
without the computational burden of the full non-linear model.

The applied harmonic moment is expressed in Equation 4.7, where M is the amplitude of the torque
and f, is its frequency. The value of My = 5 x 107 Nm is chosen to be slightly higher than the maxi-
mum wave moment previously estimated (see Fig. 3.8) to be conservative in the control design. The
frequency f, = 0.1 Hz corresponds to a representative component of the wave spectrum (see Fig.
3.4) and is intentionally selected not to coincide with the natural frequencies of the system identified in
Chapter 3.4.

Mparmonic(t) = My sin(27wfy -t) where My =15 x 10" Nm, f; =0.1Hz 4.7)

This forcing is added as external moment to the second equation of motion in the coupled system (see
Equation 4.4). The subsequent subsections present two control configurations: first, the case with
a single magnet; then, the more advanced case with a pair of magnets, which introduces a moment
couple. The latter case presents one of the main advantages of using magnetic control that is the
ability to apply forces and moments at multiple points along the monopile without any physical contact,
something not possible with traditional systems.

In both cases, the parameter values listed in Table 4.1 are used for quantities not yet defined, which
contribute to the magnetic moment expression in Equation 4.3.

Table 4.1: Parameters used in the magnetic moment model.

Parameter Symbol Value Unit
Controlled magnet dipole moment Me 1 A-m?
Magnet offset distance d 0.5 m

Vacuum permeability 1o 41 x 1077 NJ/A?

The single magnet case is addressed first since this configuration provides a useful baseline for un-
derstanding the limitations of a localized control. Moreover, from a modeling and control design per-
spective, the single magnet scenario is simpler and less computationally demanding, which makes it a
suitable starting point for tuning control gains and validating the control strategy.

4.2.1. Single Magnet Control Strategy

In order to facilitate the tuning of the controller gains, a single magnet configuration is first analyzed. The
magnet is placed at L, = 37 m, which corresponds to the centroid of the monopile. This configuration
also closely resembles the control scheme used in current industrial installation practices where the
monopiles are guided during the post-upending phase through a gripper (see Fig. 4.2).

The values of the proportional and derivative gains were determined through trial and error. Multiple
combinations of gains were tested to evaluate their influence on the angular displacements, 6; and
62, as well as the linear displacement, z(¢) = 6111 + 62L,. Note that setting K, = 0 and Ky = 0 is
equivalent to having no control acting on the system.
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Figure 4.2: Comparison of control strategies: a) single magnet non-contact control strategy; b) gripper control strategy.

Fig. 4.3 shows the response of 6, and displacement at L., where the control is activated after 100
seconds in the simulation. The angular displacement shows limited improvement across all gain combi-
nations. This outcome is expected because the control is localized at a single point along the monopile.
Therefore, it cannot resist rotations effectively. This behavior highlights one of the main limitations of
single-point control systems such as grippers, which cannot suppress the full angular motion of the
structure.

On the other hand, the control can have a significant impact on the linear displacement response.
When the gains reach or exceed K, = 10'? and K, = 10'?, the displacement is driven effectively
toward the target value ¢ = 0. Below this threshold, specifically for K, = 10'!, the displacement
diverges and increases over time. Moreover, in the marginal case of K, = 10'2, control is successful
only if K, is also equal to 10'2. Any reduction in the derivative gain with this scenario causes instability
or uncontrolled behavior (see the legend for case K, = 10'? and K, = 10! in the figure).
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Figure 4.3: Single magnet control - Effect of PD gain values on angular and horizontal displacement under harmonic moment.

Based on these findings, K, = 10'3 is selected to ensure stability even in the presence of irregular
wave-induced loading, which may produce more abrupt moment fluctuations than the harmonic case.
Moreover, while K, = 10'? and K, = 10'? is also an effective combination (see the legend for case
K, =10'? and K, = 102 in the figure), the sensitivity to K, in that case suggests a reduced robustness.
On the other hand, once K, = 10'3, the effect of varying K, is reduced, indicating the system is
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dominated by proportional action. Nevertheless, for consistency and conservatism, K; = 10'? is also
adopted. Therefore, the values selected for the proportional and derivative gains after extensive testing
are:

K,=1x10" and K;=1x 10"

This equal-gain strategy weights position error and velocity error equally, helping avoid overshoot and
oscillations in the control response. In particular, as mentioned in Chapter 2.3.3, the K, gain increases
the effective stiffness of the double pendulum, while K; enhances its damping. Hence, the chosen
values dramatically increase both stiffness and damping, enforcing a rigid-like control of the monopile
and suppressing undesired oscillations.

During the testing phase, smaller values of K, and K, were found to be insufficient: either the system
became unstable and diverged or it exhibited large overshoots and prolonged oscillations. The selected
values of 103 represent gains for which the control was able to stabilize the system effectively while
maintaining accurate tracking.

It is important to note that, since the angular displacement is not directly controlled, the system’s dis-
placement is regulated to the target value only at the location of the single magnet, L, (see Fig. 4.4).
Further down the monopile, the displacement increases due to the inclination induced by the uncon-
trolled angle. This single-magnet analysis therefore serves as a benchmark for evaluating the benefits
of extending the control strategy to a moment-couple configuration. By employing a double-magnet
setup, it is expected that not only the displacement at specific locations but also the rotational behavior
of the system can be influenced, providing a more complete and effective form of control.

4.2.2. Double Magnet Strategy

Following the identification of optimal gain values in the single magnet control strategy, this section
investigates the application of those same parameters in a more advanced configuration: the double
magnet strategy. As previously mentioned, the advantage of using two magnetic dipoles along the
monopile, is the ability to influence both the angular displacement of the structure and the horizontal
displacement at multiple control points, thereby enhancing controllability as shown in Fig. 4.4.
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Figure 4.4: Comparison of non-contact control strategies: a) single magnet strategy; b) double magnets strategy.

In this configuration, one magnet is placed at L, = 37m, located at the centroid of the monopile, to
allow direct comparison with the single magnet case. The second magnet is positioned at L, = 2m,
close to the top of the monopile but with a margin to the edge of the cylinder. This layout enables the
generation of a magnetic couple moment that is more suitable for all vibrational mode shapes.

The pair of proportional and derivative gains that showed good performance in the single-magnet anal-
ysis is now reassessed for the double-magnet strategy to verify whether it remains effective. The
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objective of this configuration is to achieve accurate and efficient control by simultaneously regulat-
ing the angular displacements of both degrees of freedom, 6, and 65, while minimizing the horizontal
displacements at the two magnet locations, L, and L.

Figure 4.5 shows the angular responses of the two degrees of freedom under harmonic excitation
for different gain combinations. For K, = 10!3, both angular displacements are well controlled across
derivative gains of K; = 10'2 and 10'3. This marks a clear improvement compared to the single-magnet
case, where rotational control could not be achieved with any pair of gain values.
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Figure 4.5: Double magnet control — Effect of PD gain values on angular displacements 6, and 62 under harmonic moment.

The corresponding horizontal displacements at L, and L, are presented in Figure 4.6. Effective control
is obtained for K, = 10'® combined with either K; = 10'? or 10'3, whereas lower proportional gains
lead to degraded performance and increased oscillations. In particular, the gain pair K, = 10'? and
K4 = 10'2, which proved effective in the single-magnet strategy, fails to provide sufficient control in the
double-magnet setup. This underlines that only higher gain values, such as those selected at the end
of Chapter 4.2.1, ensure good performance in the extended strategy.
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Figure 4.6: Double magnet control — Effect of PD gain values on horizontal displacements at L, and L,2 under harmonic
moment.

Overall, the gain pair K, = 102 and K, = 10'? confirms its suitability for the extended double-magnet
strategy and is therefore retained for further analysis. This combination achieves a balance between
stability, accuracy, and efficiency, although it does so at the expense of increased system stiffness and
damping, as previously discussed in Chapter 4.2.1.
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With the control gains fixed, attention shifts to magnet placement, which also influences control per-
formance. According to equations 4.3 and 4.6, both L, and L., directly affect the moment arm over
which the magnetic forces act, as well as the distance between the internal and external magnets ( see
Equation 4.1).

To evaluate placement efficiency, a brute-force parameter sweep is conducted across a range of phys-
ically feasible positions:

L, €[37m, 62m] (lower half of the monopile)

L,> €[2m, 37m] (upper half of the monopile)

The upper bound for L, excludes the final meters of the monopile. Placing a magnet in this region
would offer little benefit, as submerged external magnets are not considered in this study. Moreover,
the strongest response occurs within the first 10 m of submersion, as shown earlier in Fig. 3.20. Hence,
setting L,, = 62 m (out of a 74 m monopile) allows for control during this initial installation phase while
maintaining a safety margin of a few meters from the water surface.

In addition to analyzing the rotational and horizontal displacements, another key indicator of effective
control is the total dipole moment magnitude, mex(t). A low value reflects reduced magnetic effort.
Efficiency can be further assessed through the ratio of forcing moment output to dipole moment input,
where higher values indicate a more effective use of the magnets.

To capture this, each configuration is evaluated using a performance index (PI), defined in Equation
4.8. The Pl measures the moment delivered per unit of magnetic actuation, providing a direct measure
of efficiency. In this formulation, M,e: denotes the total moment produced by both magnets, while m; tot
represents the combined absolute magnitudes of the dipole moments generated by the PD controllers.

| Mnet ()|

PI(t) = 100 e s (4.8a)
Mnet(t) = My 1 (t) + M, o(t) (4.8b)
Mugot(t) = [me,1(t)] + [me 2(2)] (4.8¢)

Figure 4.7 shows the Pl evaluated for each magnet location combination. The optimal configuration
occurs at (L2, L) = (2,62) m, maximizing the moment arm between the two magnets. Indeed, placing
the magnets farther apart and near the extremes of the monopile enhances the couple effect, allowing
higher moment generation with lower dipole effort. In contrast, poor performance is observed when
both magnets are near the midpoint of the structure, where moment arm is shortest.
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Figure 4.7: Performance index Pl across combinations of magnet locations L, and L, along the monopile.

The configuration that achieved the highest PI, (L.2, L) = (2,64) m, is selected as a reference case.
For comparison, a more conservative yet effective configuration, (L.2, L) = (2,32,) m, is also con-
sidered. The choice of L, = 32 m follows from subtracting the maximum submersion depth of 40 m
from the monopile length, while leaving a safety margin of a few meters below the water surface. This
setup ensures operational feasibility without requiring magnets submersion and allows the system to
remain controllable at large depths. Including both configurations in the irregular wave simulations pro-
vides a balanced evaluation of efficiency versus practicality, while also enabling the assessment of how
magnet positioning along the monopile influences control performance in realistic installation scenarios
involving wave loading and varying submersion.

4.3. Control of the System Subjected to Wave Load

In the previous section, the controller gains and two representative placements for the magnets along
the monopile were identified. Building on those findings, this section investigates the performance of
the control strategy under a realistic irregular wave load. Since a single magnet was shown to be
insufficient for controlling both rotation and displacement, the simulations now focus exclusively on a
double magnet configuration.

The effectiveness of the magnetic control depends not only on the previously introduced parameters
but also on other aspects of the system. In particular, the submersion length .Z plays a significant role.
As discussed in earlier chapters, the hydrodynamic loading varies considerably during the installation
process, and larger responses can demand higher control efforts. Another key geometric factor is
the horizontal distance d between the external magnets and the monopile. This distance introduces a
physical constraint, avoiding contact between the magnets, but also directly influences the magnetic
moment described in Equation 4.3.

Figure 4.8 illustrates the relationship between the magnetic forcing and the dipole separation r, high-
lighting the nonlinear nature of this dependency. Since the distance d directly affects the separation
r between the dipoles, the magnetic forcing, which scales with 1/7#, decreases rapidly. As a result,
increasing d can reduce the magnetic forcing by more than 99%.
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Figure 4.8: Influence of dipole separation d on magnetic interaction forcing
Table 4.2 summarizes the specific values selected for further analysis. These parameters are chosen to
allow a comparative investigation of their effect on control performance during the installation process.

Table 4.2: Selected parameters for numerical simulations of double pendulum system subjected to wave load

Parameter Symbol Values used Unit
Submersion length < —10, —40 [m]
Magnet positions [Ly, Lyo] 12,32], [2,62] [m]
Horizontal magnet distance d 0.25, 0.5, 1.0 [m]
Controller gains [Kp, Ka)  [1x10%, 1x10%]  []
The submersion lengths .¥ = —10 m and —40 m are selected based on the results from Chapter

3, representing the early and late stages of installation. These two conditions produce significantly
different responses, making them particularly relevant for evaluating the controller’s adaptability.

The magnet placement configurations (2,32) m and (2,62) m are introduced in Section 4.2.2. These
combinations are designed to assess whether adding a magnet closer to the lower end of the monopile
improves control during the initial phase, which typically experiences the highest dynamic response.

The horizontal spacing, d, between the external and monopile magnets was initially set at 0.5 m (see
Tab.4.1). To assess its influence, two additional values, 0.25 m and 1 m, are considered. These
values span a realistic design range and provide insight into how d affects both moment generation and
magnetic stability. The smaller spacing, 0.25 m, is included because, as shown in Fig.4.8, reducing
d allows for higher magnetic forcing with the same input. The larger spacing, 1 m, is examined to
understand how increased separation impacts control performance while ensuring safety, as 0.25 m
may be too close for practical implementation.

Finally, the PD controller gains K, and K, are fixed at 1 x 10'3. These values were determined through
trial-and-error tuning in the simplified harmonic moment scenario in Chapter 4.2, where they showed
satisfactory performance.

As in the harmonic forcing case, the effectiveness of the control is evaluated based on the ability of the
angular displacements, 6; and 6,, and the horizontal displacements at the magnet locations (L,», L) to
reach the target position, £. Additionally, the magnetic dipole moment magnitude, the resulting moment
on the monopile, and the magnetic field are examined to assess the feasibility, scalability, and practical
implementation of the non-contact strategy. These results help quantify the control effort required and
guide design decisions.
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Regarding the magnetic field, it should be noted that the monopile’s magnet dipole moment, m.. , is
fixed at 1 Am?. Controlling my . therefore effectively regulates the product m; . -m. . (see Equation 4.3),
which dominates the overall magnetic interaction. In this analysis, m. , is treated as equivalent to m; ,
when computing B, ., yielding reasonable magnetic field values that would otherwise be excessively
large.

To maintain clarity in the presentation of results, the analysis primarily focuses on the magnet at ., and
its influence on the second body’s angular motion, 6, as this degree of freedom is directly affected by
the applied loading. The remaining responses, particularly those associated with L., and 6;, are not
presented in this report since very similar results to the analyzed cases were obtained.

Based on the selected parameters, several configuration combinations are possible. These are listed
in Table 4.3, which provides an overview of the simulation cases used to evaluate control performance
under varying conditions.

Table 4.3: Possible configurations with selected parameters for numerical simulations of double pendulum system subjected to
wave load

Cases d[m] K, K; (L,2,L;)[m] Z[m]

0.25 10' 103 (2, 62) -10
0.25 10* 1013 (2, 32) -10
0.25 10%3 103 (2, 32) -40

0.5 103 1013 (2, 62) -10
0.5 103 1013 (2, 32) -10
05 103 1013 (2, 32) -40
1.0 108 10 (2, 62) -10
1.0 108 10% (2, 32) -10
1.0 108 10% (2, 32) -40

© 00 N OO 0o A WODN -~

4.3.1. Effect of Submersion Length on Control Performance

The influence of submersion length on control performance is assessed by comparing Cases 5 and 6
in Tab. 4.3, which differ only in the submersion level: .¥ = [-10, —40] m. These two cases are selected
because the magnet positioning (L,2, L,) = (2,32) m is feasible at both depths. At a submersion
length of —40 m, the alternative configuration (L2, L;) = (2,62) m would require the magnets to be
submerged, which falls outside the scope of this research. For consistency with the earlier time-domain
simulations (see Tab. 4.1), the chosen cases have horizontal spacing d = 0.5 m.

The angular and horizontal displacements of the pendulum system subjected to wave load over time
with different . are presented in Fig. 4.9. As for the previous cases, the control strategy is activated
att=100s.
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Figure 4.9: Responses of the controlled double pendulum for submersion lengths . = —10 m and . = —40 m: a) angular
displacement 63; b) horizontal displacement at L.; ¢c) zoomed-in angular displacement 62 controlled response; d) zoomed-in
horizontal displacement at L, controlled response.

Despite the difference in submersion length .#, the responses of the system under control are re-
markably similar. In both Cases, the system converges toward the desired equilibrium, demonstrating
effective suppression of motion. This similarity probably arises from the initial dynamic behavior of the
two configurations that are almost identical in the first 100 seconds. This trend can also be observed in
the uncontrolled case shown in Figure 3.21 where the response for the —10 m submersion eventually
grows larger after the 100 second mark. Overall, looking at the displacements responses, the control
performance remains largely unaffected by the variation in submersion length.

Furthermore, these results suggest that the magnet placement (L., L) = (2,32) m, is sufficient for
effective control across different submersion lengths. This implies that the use of lower magnet place-
ments (higher value of L,) may not be necessary, at least for this range of depths. Consequently,
adding a third magnet at 62 m along the monopile might only be required for safety redundancy rather
than for performance enhancement.

Further insight is provided by Fig. 4.10, which reports the control moments, magnetic dipole moments,
and magnetic fields generated during the simulations. In both Cases 5 and 6, the control moment
reaches values on the order of 107 Nm, corresponding to forces of about 10° N. This outcome is con-
sistent with expectations, as the control must counteract wave loads of similar magnitude (see Chapter
3.3). The dipole moment m, , reaches values up to 10'° Am?, producing maximum magnetic fields of
around 500 mT. The control related results for both submersion lengths are largely overlapping, except
at the peaks, where the —40 m configuration exhibits slightly higher values, particularly for the control
moment and dipole moment, where the large axis range highlights the significance of even relatively
small changes.

Plateau regions appear in the magnetic and dipole moment curves near their peaks, suggesting numer-
ical issues likely linked to non-linearities in the magnetic interaction. Nevertheless, the overall wave-
forms maintain a sinusoidal character, providing a representative picture of the magnitudes involved.

Submersion Lengths
-10m
— -40m
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Figure 4.10: Magnetic control strategy for submersion lengths .2 = —10 m and . = —40 m: a) magnetic moment generated

by the control; b) dipole moment generated by the control; c) magnetic field required for generating my ...

Although the magnetic fields required to generate such high forcing are relatively large, they remain
reasonable in light of the system scale and the necessity of fully counteracting wave loads. Similar
magnitudes are also encountered in practice: Domingos et al. [5] reports that tugger line stiffness for
highly restrained wind turbine components can reach 10° N/m, resulting in moments of a similar order
depending on lever arm and displacement. Likewise, Ren et al. [31] shows that forces of around 65 kN
are typical for tugger lines, lower than the simulated values but of comparable scale. It should be noted,
however, that these studies consider lighter components, such as blades of about 200 tons, whereas
the present system involves a 1000 ton monopile. Thus, the use of large magnetic fields through
non-contact actuation remains feasible and acceptable.

In summary, the results demonstrate that the proposed double-magnet control strategy is robust to
changes in submersion length, and that effective control can be achieved without additional magnets
or reconfiguration. Moreover, the similarities in early-time response between depths suggest that a
more complex magnet setup may not be required, especially if the control is initiated promptly.

4.3.2. Effect of Magnet Positioning on Control Performance

Following the observation that the magnet positioning at (L2, L) = [2,32] m is sufficient for con-
trolling the system across different submersion lengths, this subsection investigates whether higher
placements could offer performance advantages. The analysis focuses on a fixed submersion depth of
% = —10 m and compares the control response for two configurations with the same horizontal offset
d=0.5m: (Ly2,L:) = (2,32) mand (2,62) m, corresponding to Cases 4 and 5 in Table 4.3.

The idea behind testing the higher placement (2, 62) m stems from earlier findings in Chapter 3, where
the first 10 m of the pendulum length submerged contributed most significantly to system dynamics. A
longer lever arm, as provided by the lower magnet, could potentially enhance control.

Fig. 4.11 show that both magnet configurations effectively stabilize the system, with angular and hor-
izontal displacements converging closely to the desired equilibrium (£ = 0). At (Lz2, L) = (2,32) m
higher oscillations are present compared to the other case. However, the differences in response mag-
nitude between the two setups are minimal, confirming that both magnet pairs are capable of achieving
the control objective.
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Figure 4.11: Responses of the controlled double pendulum for (Ly2, L) = [2,32] m and [2, 62] m: a) angular displacement
62; b) horizontal displacement at L; c) zoomed-in angular displacement 65 controlled response; d) zoomed-in horizontal
displacement at L, controlled response.

A clearer distinction emerges in the actuation effort required. As shown in Fig. 4.12, the dipole moment
generated by the (2,62) m configuration has lower peaks than that of the (2, 32) m setup, remaining in
the order of 10'° Am? but toward its lower range. In contrast, the control moments essentially coincide,
indicating that magnet positioning has little influence on this response. The magnetic field also shows
similar trends for both configurations, with the (2,62) m case requiring a lower field due to its reduced
dipole moment. These findings imply that equivalent control performance can be achieved with reduced
magnetic effort when the magnets are placed closer to the bottom edge of the monopile. This highlights
the advantage of a longer couple arm, which decreases the magnetic strength needed for effective
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Figure 4.12: Magnetic control strategy for positioning (L,2, Lz) = (2,32) m and (2,62) m: a) magnetic moment generated by
the control; b) dipole moment generated by the control; c) magnetic field required for generating my .

These findings align with the brute force analysis presented earlier in Fig. 4.7, where the (2,62) m



4.3. Control of the System Subjected to Wave Load 56

configuration was identified as one of the most effective setups for magnetic control. Although the
system responses are nearly identical between the two cases, the reduced actuation effort makes the
lower positioning a more efficient and preferable choice. In particular, placing the magnets at (2,62) m
achieves the same level of control with lower dipole moment and magnetic field requirements, thereby
enhancing the overall energy efficiency of the control strategy.

4.3.3. Effect of Horizontal Distance d on Control Performance

This subsection investigates the influence of the horizontal distance d between the external and the
monopile-mounted dipole magnets on the control performance. There are two possible approaches to
understand the influence of this parameter: varying the submersion length .# and varying the magnet
positions along the monopile (L2, L.).

For different submersion lengths, using the positioning of (L,2, L;) = (2,32) m, the Cases examined

from Tab. 4.3 correspond to Configurations 2, 5, and 8 for . = —10 m and to Configurations 3, 6,
and 9 for ¥ = —40 m. For different positioning of the magnets, specifically at a submersion length of
% = —10 m, the configurations considered include Cases 1, 4, and 7 for (L., L,) = (2,62) m, and

Cases 2, 5, and 8 for (L,2, L) = (2,32) m, according to Table 4.3.

Fig. 4.13 and Fig. 4.14 illustrate the angular displacement of the second body (6;) and the horizontal
displacement of the system at L,, = 32 m, respectively. From these plots, it is evident that increasing
the distance d results in reduced control performance for both submersion depths. Nonetheless, even
at the largest distance of d = 1 m, the horizontal displacement remains within 0.5 m and within the
small angle approximation, indicating that the control strategy remains effective across the distances
tested.

Comparing the two submersion levels, the shallower configuration at 10 m generally exhibits slightly
lower angular displacement and overall movement, consistent with earlier findings in Chapter 4.3.1.
Hence, the submersion levels, also in the case where the horizontal distance between the magnets is
increased, have negligible effect in the responses of the system.

Angular Displacement 6, with Magnetic PD Control at ¥ = —10m with Ly =32m (b) Horizontal Displacement with Magnetic PD Control at ¥ = —10m with L, = 32m

g

Submersion Lengths
02 —— d=0.25m
—— d=05m
— d=1m

01

00

°

Displacement [m]

Angular Displacement 6, [rad]
|

!

o 25 50 75 100 125 150 175 200 o 25 50 [ 100 125 150 175 200
Time [s] Time [s]

() Zoomed View - 6; at = —10m with L, = 32m (d) Zoomed View - Horizontal Displacement at ¥ = —10m with Ly = 32m

s ° °
& g &

Displacement [m]

Angular Displacement 6, [rad]
&
e

-0.015

Time [s] Time [s]

Figure 4.13: Responses of the controlled double pendulum for d = [ 0.25, 0.5, 1| m at submersion length ¥ = —10 m: a)
angular displacement 62; b) horizontal displacement at L, = 32 m; c) zoomed-in angular displacement 62 controlled response;
d) zoomed-in horizontal displacement at L, = 32 m controlled response.
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(a) Angular Displacement 8, with Magnetic PD Control at £ = —40m with Ly=32m (p) Horizontal Displacement with Magnetic PD Control at # = —40m with L, = 32m
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Figure 4.14: Responses of the controlled double pendulum for d = [ 0.25, 0.5, 1] m at submersion length ¥ = —40 m: a)
angular displacement 02; b) horizontal displacement at L,, = 32 m; c) zoomed-in angular displacement 62 controlled response;
d) zoomed-in horizontal displacement at L, = 32 m controlled response.

Similarly, when comparing the positioning effect on the displacement responses (see Fig. 4.13 and 4.15),
effective control is achieved across all configurations, regardless of the values of d and (L2, L.). Nev-
ertheless, increasing d makes the system response more oscillatory and leads to larger deviations from
the desired equilibrium position ¢ = 0. This trend is particularly evident in the displacement plots, where
stronger fluctuations appear for larger horizontal distances, such as d = 1 m.

(a) Angular Displacement 6, with Magnetic PD Control at # = —10m with Ly =62m (b) Horizontal Displacement with Magnetic PD Control at # = — 10m with Ly =62m
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Figure 4.15: Responses of the controlled double pendulum for d = [ 0.25, 0.5, 1] m at submersion length ¥ = —10 m: a)
angular displacement 02; b) horizontal displacement at L, = 62 m; c) zoomed-in angular displacement 62 controlled response;
d) zoomed-in horizontal displacement at L, = 62 m controlled response.

A direct comparison of the two magnet placements highlights a performance advantage for the con-
figuration with L. = 62 m. The interaction between magnet positioning and the horizontal distance d
indicates that control accuracy decreases with larger d values and smaller L. Forinstance,atd = 1m,
the displacement for L, = 62 m is nearly half that observed with L, = 32m. This finding is consistent
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with the conclusions of Chapter 4.3.2, where lower magnet placements in the monopile were shown
to improve control effectiveness through the longer lever arm effect. Moreover, the negative impact of

a large d is partially mitigated when the magnets are placed at higher L, values (i.e., lower down the
monopile).

Further insight is gained by examining the magnetic actuation requirements. Fig. 4.16 and Fig. 4.17
show the time histories of the magnetic dipole moment m; , and the resulting moment for each dis-
tance d at the two submersion lengths. The effect of submersion length becomes more pronounced at
larger d. For example, at d = 1 m, the required dipole moment at —40 m is nearly double that at —10
m. In contrast, when magnets are placed closer together, the difference in magnetic effort between
submersion depths becomes smaller and smaller.
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Changing the magnet positioning produces effects similar to those observed for different submersion
lengths, as shown by comparing Fig. 4.16 and Fig. 4.18. Since the external load remains constant,
the magnitude of the generated moments is largely unaffected by variations in d or by the magnet
placement. However, maintaining this same moment magnitude requires progressively larger dipole
moments as d increases, consistent with the trends identified for varying submersion lengths.

Both variations in positioning (L2, L. ) and in submersion length . show a clear trend: as the horizontal
distance d increases, the required magnetic dipole moment rises sharply. Specifically, values are on
the order of 10° A-m? for d = 0.25 m, increase to 10'° A-m? at d = 0.5 m, and reach up to 10'?> A-m?
for d = 1 m. This escalation occurs because a larger d increases the effective separation r between
dipoles, forcing the controller to compensate by amplifying the dipole moment. Given that the magnetic
moment scales with 1/r%, even modest increases in d lead to a steep, exponential rise in the required
my , to sustain the same moment, as illustrated in Fig. 4.8.

Additionally, the increase of L, generally leads to lower dipole moment requirements. However, as d
becomes smaller, the difference in performance between the two positioning configurations diminishes.

Overall, this implies that smaller values of d enable the same control moment to be generated with
substantially smaller dipole moments, highlighting the higher efficiency of closer magnet placements.
However, these benefits come with trade-offs: high magnetic field, lower accuracy and lower safety.
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Having a low dipole moment m, , is essential to ensure that the non-contact control strategy remains
feasible. However, this requirement must be balanced against the magnetic field strength, which also
needs to remain within the limits of what existing magnets can generate. As shown in Equation 2.21, the
field B, . is highly sensitive to the dipole separation r. From the magnetic field plots (see Fig. 4.16 c),
4.17 c) and 4.18 c)), it becomes clear that small values of d result in low dipole moments but extremely
high magnetic fields, which exceed the capabilities of magnets with such dipole strengths. Conversely,
at larger distances such as d = 1 m, the magnetic field falls within more realistic limits, but the required
dipole moment becomes excessively large, demanding magnets of impractical strength or size. This
trade-off highlights the need to find an appropriate balance between dipole moment and magnetic field
to achieve both efficiency and feasibility in practice.

Furthermore, the forcing moment time histories at smaller d values, particularly d = 0.25 m and d = 0.5
m, display irregular, plateau-like shapes due to the strong nonlinear dependence on the separation
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distance r in the magnetic moment expression (Equation 2.25). These plateaus generally indicate
numerical issues, making the response less accurate. In contrast, the d = 1 m case produces a
smoother, more sinusoidal response, which is also more reliable. A similar trend appears with magnet
positioning: while increasing L, does not significantly change the overall moment magnitude, higher
placements (e.g., L, = 62 m) tend to produce less smooth profiles and stronger nonlinearities. This
is evident when comparing the d = 1 m cases, where L, = 32 m yields a more accurate sinusoidal
moment curve than L, = 62 m.

It is also important to mention that, in real-world applications, smaller distances between magnets
increase the risk of physical interaction or instability which can increase danger during installation op-
erations. Moreover, while this is not reflected in the idealized dipole-dipole interaction model used in
this research, such stability constraints could limit the practical use of very low d values which could
lead the magnets to be too close to each other or to the vessel.

In summary, reducing the horizontal distance d between the magnets enhances control efficiency by
lowering the required magnetic dipole moment. However, this advantage comes with drawbacks such
as stronger nonlinear effects, potential instability, and safety concerns when magnets are placed too
close. At larger distances, the system requires higher dipole moments. However, the moment re-
sponses become smoother and more reliable, and the sensitivity to submersion depth is reduced. This
makes the configuration more robust in practice. Magnet positioning also plays a key role: while higher
placements can improve displacement control, particularly at larger d, they tend to introduce numerical
nonlinearities. The magnetic field behavior further complicates this balance: at high d, the field drops
to more realistic levels but would require impractically large dipole moments to generate, while at low
d the dipole moment is feasible but the resulting field becomes unrealistically high. Thus, achieving
effective magnetic actuation requires carefully balancing d and L, to minimize dipole effort and field
demands while avoiding excessive nonlinearity or impractical operating conditions.

4.4. Best Configuration for Non-Contact Control of the System sub-
jected to Wave Loads

Based on the outcomes of the simulation of the different Cases from Tab. 4.3, the best parameters
for achieving efficient magnetic control of the double pendulum system, among the one considered,
have been identified. These parameters are summarized in Tab. 4.4. The configuration includes two
strategically positioned magnets along the monopile, with a horizontal spacing of d = 0.5 m. The
magnets are placed at L, = 2 m and L, = 32 m, while the PD controller gains are set to K, =
1 x 10" Nm/rad and K ; = 1 x 10'3 Nm-s/rad.

Table 4.4: Control strategy parameters for double pendulum system subjected to wave loads.

Parameter Symbol Value Units
Horizontal distance between magnets d 0.5 m
Magnet position 1 L, 32 m
Magnet position 2 Lo 2 m
Proportional gain K, 1x 103 [
Derivative gain K, 1x 103 [

To validate the effectiveness of this configuration, a final time-domain simulation was carried out. In this
simulation, the monopile undergoes a staged lowering process: starting at ¢ = 100 s, it is submerged
in increments of 5 meters every 10 seconds, progressing from a submersion depth of ¥ = —5 m to
£ = —40m. This configuration is similar to the response showed in Fig. 3.24 at the end of Chapter 3.5.2.
The control is activated after 100 sec when the monopile is already partially submerged with . = —5m.

Fig. 4.19 shows the angular displacements of 8, and 65, as well as the corresponding displacements
measured at the cable end and at L, respectively. The results confirm that the control strategy per-
forms well across all submersion depths. The angular displacements remain small, demonstrating
stable and precise control even under increasing hydrodynamic loading.
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It is also evident from the plots that as the monopile is lowered and submersion depth increases, the dy-
namic response becomes more pronounced. This is expected, as a greater submerged length leads to
higher actuation from the control system as seen in Chapter 4. Despite this, the PD controller maintains
effective performance, highlighting the robustness of the selected configuration.

An interesting observation is that, before control, the displacement associated with ¢, exceeds that
of f;. This difference arises from the location at which the displacements are measured. Since the
response is dominated by the second mode, 6; and 65 are out of phase, causing the region near L, to
remain closer to its desired position due to the monopile’s inclination. For reference, see Fig. ?7?.
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Figure 4.19: Responses of the controlled double pendulum for 6; and 62 with varying submersion length: a) angular
displacements ; b) horizontal displacements at L, = 32 m; c) zoomed-in angular displacements controlled response; d)
zoomed-in horizontal displacement at L, = 32 m controlled response.

The control efforts at both magnet locations (L, and L,5) are shown in Fig. ??, including the generated
moments, dipole moments, and magnetic fields for 6s.

The results confirm that the control strategy remains effective across all submersion depths. The peak
moment for 6, is around 107 Nm, while at L, it is approximately 10 Nm. This difference reflects the
shorter lever arm and proximity of the second magnet to the rotation axis, which naturally limits its
contribution. These values are consistent with the moments that must be counteracted from the wave
loading. The plots also reveal that the two moments are always opposite, forming a couple as expected.

Both the dipole moment and magnetic field plots follow the system’s beating pattern. Interestingly,
despite the lower torque at L., the required dipole moments and magnetic fields are higher. This
highlights the critical role of lever arm length in the efficiency of the control strategy.
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Overall, the magnetic fields and dipole moments required at both magnet positions remain very high,
highlighting the physical challenges of achieving full control during monopile installation. The results
show that such control strategies can indeed mitigate wave-induced responses, but with current tech-
nology, a full-control approach may not be practical. A mitigation-oriented strategy is therefore more
realistic. This research offers a valuable starting point for developing magnetic control systems for
offshore structural components and exploring more efficient implementations.
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Conclusion and Discussion

This thesis investigated the use of magnetic, non-contact control strategies to stabilize a monopile
during offshore installation. A dynamic model of the crane—monopile system was developed using
a double-pendulum representation, capturing wave loading, progressive submersion, and nonlinear
magnetic effects. The system’s behavior was analyzed in both the frequency and time domains to
understand its response under realistic installation conditions.

A proportional—derivative (PD) controller was then designed to generate dipole—dipole forces that coun-
teract wave-induced motion. Time-domain simulations were carried out for multiple magnet positions,
spacings, and dipole moments to identify configurations that achieve effective stabilization while mini-
mizing actuation effort.

The following sections present and discuss the main findings of this work, explicitly addressing the
main research question and sub-questions introduced in Chapter 1.6. The conclusions are drawn from
the results of Chapter 3, which analyzed the behavior of the partially submerged monopile, and from
Chapter 4, which evaluated the magnetic control strategy.

5.1. Research Conclusions

The central research question of this thesis is the follwoing:

What is an efficient non-contact magnetic control strategy of a partially submerged monopile
subjected to wave loads?

To address this question, the investigation was structured around two key themes: the influence of
submersion on the system’s dynamic behavior and the development of a magnetic control strategy.
Each area was explored through specific sub-questions, helping to build a clearer picture of the key
factors that influence the effectiveness and feasibility of using magnetic forces for non-contact control.

How does partial submersion affect the dynamic properties of a monopile during installation?

The system considered in this study models the monopile installation process using a planar double
pendulum. This consists of a rigid rod representing the crane cable and a rigid hollow cylinder represent-
ing the monopile. Assuming rigidity and applying the small-angle approximation allows for linearization
of the equations of motion, focusing solely on the system’s two rotational degrees of freedom and how
they are influenced by wave loading and submersion effects.

Chapter 3 details the construction of the dynamic model. Wave loads are introduced using Airy wave
theory, and hydrodynamic forces due to submersion are modeled using Morison’s equation. In this
formulation, two main variables drive the hydrodynamic load: the horizontal water particle velocity and
the structural oscillation of the submerged monopile. Both variables vary with time and submersion
depth, which introduces submersion effects into the system’s dynamics. It is important to mention that,

63
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Morison’s equation is best suited for slender structures, whereas monopiles generally have a relatively
large diameter. However, a parameter sensitivity analysis shows that variations in the assumed radius
do not produce significant changes in the system’s dynamic response. Thus, although the assumption
of a small radius is not entirely precise, it remains justified and sufficiently accurate for the objectives
of this study.

One key feature of Morison’s equation is its dependency on structural velocity, meaning that the monopile’s
motion influences the hydrodynamic load it experiences. This results in two dynamic effects: an added
mass term that modifies the system’s inertia and affects the mass matrix, and a quadratic drag term
that provides a natural damping effect during submersion. As a result, the system’s dynamic behavior
changes continuously with submersion length.

To investigate how submersion alters the system’s inherent dynamics, an eigenvalue analysis was
conducted in the absence of flow. This allowed for the study of how natural frequencies and mode
shapes vary with increasing submersion. The results showed that the added mass, representing the sur-
rounding water particles carried along with the structure, causes both natural frequencies to decrease
with submersion length. This effect is particularly significant for the second natural frequency, as the
monopile (second body) is directly in contact with water. More in detail, it drops from an initial frequency
of 0.174 Hz to approximately 0.114 Hz, with a steep reduction observed in the first —10 ~ —15 meters,
followed by stabilization around —40 meters depth. This rapid frequency shift near the surface is impor-
tant, as real offshore conditions are characterized by irregular wave spectra that can excite resonant
modes.

The corresponding mode shapes exhibit expected behavior: the first mode shows in-phase rotation
of both bodies, and the second mode shows out-of-phase motion. While submersion does introduce
minor shape changes, the overall mode characteristics remain consistent.

To simulate realistic environmental forcing, irregular waves were introduced using the JONSWAP spec-
trum. These irregular waves produce time varying forces converted into moments in the model, ac-
counting for both drag (proportional to horizontal water particle velocity) and inertia (proportional to
acceleration). Since both are depth dependent, the magnitude of excitation varies with submersion.
Near the surface (first —10 meters below water line), acceleration and velocity peaks are highest. The
resulting cumulative moment initially increases due to higher surface-level accelerations and longer
moment arms, then plateaus as contributions from deeper layers diminish. Inertial forces dominate the
loading, reaching magnitudes around 10" Nm compared to 106 Nm from drag.

Due to the nonlinear drag term, time-domain simulations are required. Without drag, the system’s
response exhibits unrealistic, unbounded growth due to resonance. Including drag leads to stable os-
cillations, with angular displacements of both bodies remaining below approximately 0.2 rad, validating
the small-angle approximation. As expected, the monopile’s displacement is generally larger than that
of the cable, given the direct application of wave loads on the former and only indirect excitation of the
latter via coupling.

The simulation confirms that the system'’s response is weakest at deeper submersion levels (—40 m)
and strongest near the surface (—10 m). It is worth noting that the added mass coefficient undergoes
its largest variation in the first —5 meters of submersion, a critical zone during installation.

Additionally, all time-domain responses display beating phenomena, indicating the presence of closely
spaced frequencies excited by the wave spectrum. A Fast Fourier Transform (FFT) analysis confirms
that the response is primarily governed by frequency components near the system’s second natural
frequency, making this the most likely resonance region during real operations.

In conclusion, both the eigenvalue and time-domain analyses demonstrate that the monopile’s dynamic
response is sensitive to submersion depth. The most critical zone appears near the surface, where
natural frequencies shift rapidly, excitation forces are strongest, and added mass effects are most
variable. Interestingly, the system’s initial response remains similar across different submersion levels,
with significant differences becoming apparent only when the responses approach the transient phase
of motion. This observation has important implications for the timing and control of the installation
process.
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How does variation in submersion level influence the control of the monopile throughout the
installation stage?

This research implements a control strategy based on dipole-dipole magnetic interactions regulated by
a PD controller, which generates counteracting moments to mitigate the effects of wave loads and sub-
mersion forces acting on the monopile. The controller operates by measuring the displacement error
from the equilibrium position (defined at = 0) and modulates the external dipole moment m; , accord-
ingly. Since the monopile’s magnet dipole moment m.. ,, is fixed at 1 Am?, controlling m, ., effectively
controls the product m; , - m. 5, which contributes substantially to the overall magnetic interaction. This
approach allows the PD controller to generate both repulsive and attractive magnetic forces depend-
ing on the monopile’s displacement, enabling the application of the necessary magnetic moments to
counteract wave-induced motion. These magnetic forces affect both rotation directions of the system,
causing one moment that couples the two motions and another that acts directly on the second part of
the system.

Controller gains K, and K were calibrated using a simplified harmonic moment input to reduce com-
putational cost and facilitate parameter tuning. Both gains were set at 10'3, a configuration that proved
effective for both single and double magnet arrangements. Time-domain simulations demonstrated that
a double magnet configuration offers superior control, particularly in managing angular displacements.
This improvement arises because a single magnet’s effect is localized, whereas multiple magnets dis-
tributed along the monopile enable more comprehensive control of both displacement and rotation.
This advantage of non-contact magnetic control contrasts with traditional installation methods, which
typically apply control forces at a single point, similar to the single magnet scenario.

Time-domain simulations with the wave load were conducted at two representative submersion depths,
£ = —10mand —40 m, corresponding to early and later installation stages identified as critical through
earlier analyses. As the monopile is progressively lowered, the cable length [ increases correspond-
ingly, modeling the actual installation dynamics.

Despite the disparity in submersion depth, system responses under control were notably consistent
across both cases. In each scenario, the monopile’s motion converged toward the desired equilibrium
position, demonstrating the controller’s robust performance. While the response at —10 m showed a
slight increase in displacement beyond 100 seconds, the overall effectiveness of the control was only
marginally reduced at the deeper submersion of —40m.

Analysis of control moments and magnetic dipole moments revealed similar magnitudes between the
two submersion depths: moments reached on the order of 107 Nm, and dipole moments hovered near
10'*° Am2. The corresponding magnetic field also remained comparable across submersion lengths,
with peak values around 500 mT. The temporal profiles of these quantities exhibited plateau regions
near their peaks, reflecting the nonlinear nature of magnetic moment generation, while still preserving
the characteristic sinusoidal waveform.

The comparable initial responses at both submersion lenghts explain the similarity in control efforts
observed early in the simulation. However, considering that actual installation procedures may extend
up to thirty minutes, it is reasonable to expect that differences in system response will grow over time,
with deeper submersion increasingly impacting control performance. This aligns with physical intuition,
as greater submersion entails stronger interactions between the monopile and the surrounding water,
influencing the hydrodynamic forces acting on the structure.

What magnitude of magnetic forces is necessary to enhance the control of the monopile during
installation offshore?

To determine the magnitude of magnetic forces necessary for effective monopile control during offshore
installation, Chapter 4 explored various control scenarios and configurations, including changes in sub-
mersion length, the horizontal distance between dipoles, and the positioning of double magnets along
the monopile. Despite these variations, the magnitude of the control moment consistently remained
on the order of 10 Nm. Due to the inherent nonlinearity of magnetic forces, the moment time histories
generally display sinusoidal patterns with plateau-like peaks, which limit the precision of the moment
definition. Nonetheless, the consistent magnitude across different scenarios indicates that approxi-
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mately 107 Nm represents the ideal level of control effort for effective system regulation. This finding
aligns with the external wave load moment, which is of the same order, confirming that the control is
appropriately scaled to fully counteract the applied loads during the simulation.

Although these moment values are relatively large, they remain reasonable given the scale of the
system. Domingos et al. [5] and Ren et al. [31] report that the stiffness of tugger lines used to restrain
wind turbine components can generate forces on the order of 10° N, potentially producing comparable
moment magnitudes depending on the lever arm length and structural displacement. It should be noted
that those references pertain to wind turbine blades, whereas this study focuses on a significantly
heavier monopile. Taking this scale difference into account, and considering that the proposed control
strategy relies exclusively on non-contact magnetic actuation, moments on the order of 10 Nm can be
considered realistic to mitigate wave loads.

To assess the practical feasibility of the non-contact control strategy, it is essential to consider both the
magnetic dipole moment and the resulting magnetic field, as these are the quantities directly manipu-
lated by the PD controller to generate the control moment counteracting the wave forcing.

As previously noted, by assuming a reference dipole moment m. , =1 Am?, the controller effectively
regulates the product m, , - m. ., rather than solely acting on the external dipole m;, ... This approach
allows the magnetic effort to be distributed between the two dipoles, which are considered equivalent
in all relevant aspects. Simulations consistently show that the magnetic field varies sinusoidally with
the angular displacements 6, and 6., reaching peak values between 250 mT and 500 mT regardless of
submersion depth or magnet positioning along the monopile.

While such field strengths are theoretically achievable with certain magnet types, they would require
magnets of extremely large size and special design considerations. Consequently, implementing full
control of a heavy monopile in a real-world setting using this approach would be impractical and likely
infeasible.

A potential way to reduce the required moments is by selecting an appropriate horizontal distance d
that balances the magnetic field and the dipole moment. The results indicate that a larger d lowers
the magnetic field, as expected from the inverse cubic relationship between B, ,, and the separation 7.
However, this comes at the cost of requiring excessively high dipole moments, which are impractical
to achieve in reality. Therefore, an optimal equilibrium must be identified to maintain reasonably low
magnetic fields while keeping the dipole moments within feasible limits.

Furthermore, the magnetic field values observed in this study can be considered as an upper bound,
since the simulations were conducted under moderate to high ocean conditions. In the context of
offshore monopile installation, operations are typically performed under optimal sea states with low sig-
nificant wave heights and low wind velocities, which primarily generate short-period waves. Under such
milder conditions, the external forcing moment would be smaller, requiring lower magnetic moments
to achieve control. Consequently, both the resulting magnetic fields and the required dipole moments
would also decrease.

Given that the goal of the installation is precise placement on the seabed—which represents the final
stages of the process—full active control is not strictly necessary. Instead, the objective can be to
mitigate excessive motion, allowing smaller magnetic fields and dipole moments. In practice, the control
system is designed to return the monopile to z = 0 m, but a tolerance margin is always allowed. This
margin permits the monopile to oscillate during installation as long as it ultimately reaches the correct
position on the seabed. Consequently, the magnets do not need to generate maximum moments
continuously, enabling intermittent activation and reduced magnetic effort.

This mitigation strategy can exploit the beating phenomenon observed in the time-domain simulations.
By activating control when the response is approaching a peak, the system can reduce the amplitude
of the oscillation preemptively, minimizing the required magnetic moment. The exact timing could be
determined based on a reference oscillation magnitude, chosen according to safety considerations and
the capabilities of the magnets.

The main drawback of this approach is that the monopile’s oscillations must be carefully monitored and
predicted to avoid collisions with the installation vessel. Additionally, the distance between the magnets
must always be maintained to prevent excessive interaction, which could induce instability. Overall, this
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strategy reduces the required magnetic effort and increases the feasibility of non-contact control while
maintaining safe installation conditions.

What number and spatial arrangement of magnets ensure reliable and efficient control perfor-
mance?

The effectiveness of the magnetic control strategy depends not only on the number of magnets but
also on their spatial configuration relative to the monopile. Several key parameters were investigated
to determine optimal performance: submersion depth ., the horizontal distance between the external
and monopile-mounted dipoles d, and the positioning of magnets along the monopile (L2, L.).

The initial performance evaluation to identify the control gains was based on simplified harmonic mo-
ment simulations, which quickly revealed the advantages of using two magnets instead of one. The
dual-magnet configuration provided superior control over both displacement and angular motions (6,
and 65), highlighting the limitations of the single-magnet setup, which only acts effectively at one loca-
tion.

To find the best performing placement, a brute-force parameter sweep was conducted over the monopile
length. The first magnet L, was restricted to the lower half of the monopile (L. € [37m, 62m]), while
the second magnet L., was placed in the upper half, above the centroid (L.> € [2m, 37m]). Due to
the design constraint that magnets must remain above the waterline.

Among all the tested configurations, the setup (L2, L..) = (2,62) m delivered the highest performance.
This is attributed to the large moment arm, which allowed for effective control with a lower magnetic
dipole moment. However, as this configuration is no longer feasible beyond 10 m submersion, an
alternative configuration of (2, 32) m was also evaluated, enabling full control throughout deeper stages
of installation, down to .2 = —40 m.

While both configurations showed similar moment outputs, the (2, 62) m setup required lower magnetic
effort, with dipole moments in the order of 10'° Am? and nearly reaching 10° Am?, compared to higher
requirements for the (2, 32) m case. This indicates that the same control performance is achieved with
reduced magnetic effort when the magnets are placed closer to the bottom edge along the monopile.
Nevertheless, the relatively small performance gap between the two suggests that the (2,32) m con-
figuration is suitable for complete installation control without requiring a third magnet. That said, the
addition of a third magnet could still enhance redundancy and improve response efficiency in early
stages.

Another important design variable examined was the horizontal distance d between the external mag-
nets and the monopile mounted ones. Two complementary approaches were used to study its effect:
evaluating different values of d for a fixed configuration (2,32) m across various submersion depths,
and analyzing the response across multiple L, values at a fixed submersion depth of & = —10 m.

In both cases, increasing d led to a decrease in control performance. However, the overall effectiveness
of the controller was maintained across all tested distances, with maximum horizontal displacements
remaining around 0.5 m even at d = 1 m. Despite d not being an explicit parameter in the PD control
law, the dipole moment required by the controller increased sharply with distance. This is explained by
the strong dependence of the magnetic moment on the dipole separation r, which grows with d. Since
magnetic moment scales with 1/r%, the controller compensates for larger separations by substantially
increasing m. . This reveals a key trade-off: small d values yield low dipole moments but produce
extremely strong magnetic fields, often beyond what magnets of such size can realistically generate.
Conversely, at larger d, the magnetic field strength becomes more realistic, but the required dipole
moments reach impractically high levels. Thus, an optimal intermediate d must be chosen to keep both
the dipole moment and magnetic field within feasible limits.

Moment magnitudes remained nearly constant across different d values, indicating that variations in d
primarily affect actuation effort rather than force output. However, moment time histories revealed that
lower d values ( 0.25 m and 0.5 m) result in more irregular, plateau-like behaviors, reflecting nonlineari-
ties in the magnetic interaction. In contrast, higher distances yield smoother moment curves but at the
cost of greater actuation effort.
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Interestingly, the influence of submersion depth becomes more pronounced at larger d. Atd = 1 m, the
required dipole moment nearly doubles when comparing . = —10 m and .2 = —40 m. Conversely,
when magnets are closer together, the required magnetic effort becomes less sensitive to submersion
depth, although nonlinearity issues become more prominent.

Practical considerations also play a crucial role in determining an appropriate value of d. In real-world
applications, smaller distances between magnets can increase the risk of physical interference or un-
stable magnetic interactions, effects that are not captured by the idealized dipole-dipole model. In
addition, d must be selected with safety in mind to prevent collisions with the installation vessel or other
components during the process.

In conclusion, the tested configurations show that reliable and efficient magnetic control is possible. The
best-performing setup uses two strategically placed magnets at (L2, L.) = (2, 32) m with a horizontal
spacing of d = 0.5m. This arrangement achieves strong performance across all submersion stages
while providing the best compromise between magnetic field intensity and dipole moment requirements,
reducing the risk of excessive nonlinearity or magnetic instabilities compared to other tested configu-
rations. While the required magnetic fields and dipole moments exceed the capabilities of current
magnetic actuation technologies, they provide a valuable benchmark for understanding the scale of
effort needed to stabilize such a highly dynamic system. Therefore, the results of this work should
be regarded as an idealized performance reference for PD-based non-contact control, rather than a
directly implementable solution.

5.2. Discussion and Recommendations

This research introduced a non-contact magnetic control strategy for a double pendulum system repre-
senting the progressive submersion of a monopile during offshore installation. A simplified PD controller
was implemented using fixed permanent magnets, offering a practical approach that avoids reliance
on active electromagnets.

Several improvements are recommended to enhance the model’'s realism and control performance.
First, the hydrodynamic loading could be more accurately modeled by incorporating diffraction theory
instead of relying solely on the Morison equation, especially for larger-diameter monopiles. Moreover,
the use of electromagnets would allow for active control of the magnetic force by varying the input
voltage. This would require formulating a new control equation and considering the physical limitations
of electromagnets, such as saturation effects, which could significantly influence the control response
and feasibility.

Further development should also focus on the dynamic analysis of the control system. Linearizing the
equations of motion could help identify regions of potential instability, particularly as functions of the
controller gains K, and K4. Moreover, introducing vessel motion through the monopile tip or vessel
coupling could reveal additional challenges. Adding a third rotational degree of freedom to the system
would provide a more complete representation of the dynamics involved during installation or operation
in rough sea states.

Another promising future extension of this work would be to investigate ferromagnetic interaction with
the steel monopile. This would eliminate the need to pre-install permanent magnets on the monopile,
a process that is costly, time-consuming, and may complicate logistics during offshore preparation. A
ferromagnetic approach could therefore offer a simpler, more scalable, and cost-effective solution.

It is acknowledged that validation of the results was not possible within this work, as no physical exper-
iments were conducted. Experimental testing will be essential in future studies to assess the feasibility
and effectiveness of the proposed control strategies under real environmental conditions. Furthermore,
the present results focus on full control, which leads to magnetic requirements that exceed the capa-
bilities of current magnet technologies but can serve as valuable reference results. Building on these
insights, future research could explore mitigation strategies that activate only during critical events,
reducing magnetic demands and making practical implementation more achievable.

Despite these limitations, the study presents a comprehensive framework for exploring non-contact
control in offshore applications. The results demonstrate that such control strategies can be effective
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even in dynamically complex scenarios involving wave loading and submersion effects. Overall, this
research provides a promising starting point for the development of a magnetic control systems for
offshore structural components.
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Appendix A

A.l. Extended Energy Formulation

This section presents the complete derivation of the kinetic energy 7" and potential energy U introduced
in Equations 3.8 and 3.9. The formulation builds upon the principles outlined in Chapter 3.1.1.

By substituting the relevant components, the expressions for both the rod and the hollow cylinder are
derived in detail.

The kinetic energy of the rod is obtained as:
Troa = (M2 6,2 = Lz, (A1)
rod — 9 3 1 = 6m 1 .
The kinetic energy of the hollow cylinder is expressed as:

2 . . . .
Toy = %M (ZHQQ (cos?(62) + sin®(62)) + l2912 (cos?(61) + sin®(61)) + 1LO162 (cos(61) cos(2) + sin(6,) sin(6‘2))>

Ll MR? . MI?2 Ik
2\ 2 12 )7
1 L? .2 .2 - 1 /MRZ MIL2\ .2
= §M (492 +l291 + L6160, COS(91 - 92)) + 5 ( 5 + D ) )
1 o 1 . 1 /R L2\ .2
= M6 + S ML cos(6h — 62) + 5 M (2 + 3) d,

(A.2)
For simplifying 7, the trigonometric identities cos? a+sin? a = 1and cos a cos B+sin asin = cos(a—f3)

are used.

For the potential energy, the vertical displacement of the center of mass of each component is consid-
ered. For the rod:

l
Uroda = mg (2 cos(91)> , (A.3)
while for the hollow cylinder:
L
Ueyt = My (—2 cos(fz) — lcos(91)> . (A.4)
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By summing the contributions of the two components, the total kinetic energy 7" and potential energy
U of the system are obtained, providing a complete energy formulation consistent with the dynamics
of the double pendulum system under consideration.

A.2. Lagrange derivation of Non Linear Equations of Motion

Given the expressions for the kinetic and potential energy of the system, the equations of motion of the
non-linear double pendulum can be derived by applying the Lagrangian formulation using Equations
3.16 and 3.17.

The Lagrangian L of the system resulted in:

1 1 . 1 ..
L= (6ml2 + 2MZ2) 912 + 5]\41[/9192 COS(01 - 92)

1 R* L%\ .2 /(m M (A-5)
+ 5]\/[ (2 + 3) 02 + <5 + M) lgcos(01) + ?Lg cos(f2)

Then, knowing L, the each term of the Euler-Lagrange equation can be derived for each of the gener-
alized coordinates 6, and 6.

d (0L oL .

Euler-Lagrange equation solved for 6,

The Euler—Lagrange equation for the generalized coordinate 6, is derived by first computing the partial
derivative of the Lagrangian with respect to 6, followed by taking its total time derivative. The first term
is obtained as:

1

oL . 1 .
= ml2+Ml2> 61 + = ML cos(0, — 0
891 (3 1 2 2 ( 1 2)

d (oL 1 o1 o o
% <891> = <3ml2 + ]V[F) 01 + iMlLHQ COS(91 — 92) — iMlLag 3111(91 — 92)(91 — 92)

For the second term, the partial derivative with respect to 6, is computed:

oL

20, ~ —iMlLé)ng sin(6, — 02) — (— + M) lgsin(6q)

2

Substituting both the terms into the Euler-Lagrange equation leads to the first nonlinear equation of
motion:

1 .1 . 1 .
<3m v M) (261 + 3 MILGy cos(01 — 02) + 5Mzwf sin(6; — 6s) + (% + M) lgsin(6;) = 0

Euler-Lagrange equation solved for 6,

Similarly, the Euler-Lagrange equation for the generalized coordinate ¢ is derived by first computing
the partial derivative of the Lagrangian with respect to 6, followed by taking its total time derivative.
Then, the first term reads:

oL 1 R? L2> .

879_2 = §MZL91 COS(91 — 92) + M (2 + ? 02



A.3. Lagrange derivation of Linear Equations of Motion 74

d (0L 1 . 1 - . . R2 2\ .
@ (802) = §MZL91 COS(91 — 92) — §MZL91 sm(91 — 92)(91 — (92) + M (2 + 3) 02

For the second term, the partial derivative with respect to 6, is computed:

oL 1 S 1 .
8792 = §]VIZL0102 5111(91 — 92) - §ML9 Sln(92)

Substituting the new derived terms into the Euler—Lagrange equation leads to the second nonlinear
equation of motion:

1 - R L%\ . 1 -2 1 .
5M1L91 cos(01 — 62) + M 7 + ? 92 — §MZL91 SIH(91 - 02) + §MLg sm(@g) =0

Final Form of the Non-linear Equations of Motion

Collecting both equations, the non-linear equations of motion of the double pendulum described in
Chapter 3 are expressed as:

(m 4+ M) 126) + L MILO5 cos(0y — 02) + LMILO,” sin(0y — 02) + (2 + M) Igsin(6;) = 0

LMILG, cos(0y — 05) + M (% + %) 6y — LMILO,” sin(0y — 05) + LM Lgsin(6y) = 0

A.3. Lagrange derivation of Linear Equations of Motion

In order to linearize the equations of motion, as mentioned in Chapter 2.1, it is possible to exploit the
small angle approximation.

2
sin(f) =60 , cos(d)=1-— % (A7)

The coordinates that describe the motion of the double pendulum can be simplified as follow:

L
Ly, 502416,

_ 2 o
Pr(t) = (U Py(t) (L g 1| (A.8)
2 4 1 2 4 2 9 1

Resulting in the following velocities:

l. L. .
591 592 + 16,
ve, () = | 1= |, ve,(t) = | = . (A.9)
59191 59292 + 16164

Since the kinetic energy of the cable do not include the velocity term, it remains unchanged. On the
other hand the cylinder new kinetic energy is presented below:

1ml? .

_ 1T ae Mo
Trod = 573 07 6l 07 (A.10)
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1 L2 2 292 2 202 29202 ) N
Toyt = 5M( 03 + 120 + Lia01 + ~- 0303 + 120363 +L192010291)

L (MR ML o,
+2< 5 )92
1 L? 2 1202\ 42
=M (7 + 02 03 + M(l +1%03) 07 + M(Ll+L19192)9192 (A.11)

1RL2
FeM (Gt )02

M
R? L2 9759
—2 492—1- Ml 9 + MLZ9192

l\DM—l

The terms 6202, 0202, and 0,0,0,0, are of fourth order. Hence, under the small-angle assumption, they
can be neglected as they have a minimal effect on the system dynamics.

Thus, by summing the components, the total kinetic energy of the system is:

2 2 L2
T = @92 + 5 (}Z + ) 62 + Ml292 + ML19192

From P, . and Py, . components of the moving vectors, the potential energy can be calculated:

l
Urod = —ng( a5

l
5~ 1)

L L l
Ucyl = _Mg(§ +1- Zeg — 59%)

Therefore, the resulting total potential energy is:

l l L
U= mng)f + Mg§9% + MgZGS + constant

Having derived the new equations for the energy in the linear case, the Lagrangian becomes:

2 1 o 1 2 L2 ! L
L= <"; + 2M12> 07 + 5 M @ + ) 02 + MLl0102 —mg; 92 Mgiﬂf - Mgzeg + constant
(A.12)

Using the Euler-Lagrange equation for the generalized coordinates 6;, the Linear equations of motion
are obtained.

Euler-Lagrange equation solved for 6,

The Euler-Lagrange equation for the generalized coordinate ¢, is derived by first computing the partial
derivative of the Lagrangian with respect to 6,, followed by taking its total time derivative. The first term
is obtained as:

2 . .
;%.L = <mgl + Ml2> 61 + %MLZGQ (A-13)
1
i () = (55w e o o
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For the second term, the partial derivative with respect to 6, is computed:

oL l
= — 4+ M A1
20, <m92 + gl) 01 (A.15)
Substituting both the terms into the Euler—Lagrange equation leads to the first linear equation of motion:

(% n M) 120, + %MLléz + (% + M) gloy =0 (A.16)

Euler-Lagrange equation solved for 6,

Similarly, the Euler—Lagrange equation for the generalized coordinate 0 is derived by first computing
the partial derivative of the Lagrangian with respect to 6, followed by taking its total time derivative.
Then, the first term reads:

oL 1 . RZ L2\ .

= =ML+ M —=—+=)6 A7

e = MLl + (2 n 3> ) (A17)
ALY _ Y i+ R—2+L—2 0. (A.18)
dt \ 96,) 2 ! 2 " 3)7? '

For the second term, the partial derivative with respect to 6, is computed:

oL L

Substituting the new derived terms into the Euler-Lagrange equation leads to the second linear equa-
tion of motion:

1 . 2 L2\ . L
§MLl01 + M <]Z + 3) 0y + Mg§92 =0 (A.20)

Final Form of the Linear Equations of Motion

Collecting both equations, the linear equations of motion of the double pendulum described in Chapter
3 are expressed as:

(B + M) 126, + SMLIfy + (2 + M) glo, =0

LMLIG, + M (R{ + L;) iy + MgLoy =0



Appendix B

B.1. JONSWAP Spectrum Alternative Derivation

An alternative approach for determining the wave parameters relevant to the selected site, as presented
in Tab.3.2, involves using the mean wave period 7.

Similarly to the procedure followed in Chapter 3.2 for U,(, the monthly extreme values are extracted
from the time series of the mean wave period, shown in Fig. B.1. The mean of these extreme values
is then computed, yielding a representative estimate of the monthly maximum mean wave period:

T, = 7.46s (B.1)

Mean Wind Wave Period Over Time at Latitude 54°N, Longitude 6.2°E

—— Wind Wave Period

I .ﬂI " ' W l

10 4

@

Mean Wind Wave Period (s)
o

Figure B.1: Mean wave period time series in the North Sea

From this value, the peak frequency of the spectrum can be calculated using the relation f, = 1/75.
Once f, is known, the wind speed at 10 meters height, U;(, can be determined via Equation 2.13.
Subsequently, all other necessary parameters can be derived, as summarized in Table B.1.

7
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Hs (M) | T, (8) | fp (HZ) | Uio (M/s) | F (km)
23 | 746 | 0134 | 1142 150

Table B.1: Input Parameter for JONSWAP spectrum based on T’

The values presented in Table B.1 are consistent with those introduced in Chapter 3.2, confirming that
the input parameters are representative for the conditions considered.
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Appendix C

The state-space from method is particularly useful when a damping term is added to the system in-
troducing a first derivative of the unknowns in the equations making the modal analysis method not

applicable.

To express the system in state-space form, we define the state vector as:

Y1 h
X = |%2|. where (¥
Z1 X
To To

-0,
— 0,
=0,
= 0y

The system of equations governing the motion can then be formulated as:

1 = x1

Yo = T2

Rewriting the system in matrix form:

The state matrix A is defined as:

0 I
-M~'K 0

where:

79

(%4 M) Piy + MLy + (% +M)lgy: =0

M (% + %) @y + g MLliy + 3 MLgy, =0

(C.1)

(C.2)

(C.3)

(C.4)
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(3 + M)l $MLI

(m+M)lg 0
v M (—R2 + —Lz) ’ N
2 2

0 1MLg

M:

I b C5
7 —[O 1]. (5)

By looking at determinant of the state matrix A it is possible to obtain the eigenvalues of the system.

3

det(A — AI) =0, where X\ = eigenvalues (C.6)

In undamped systems the eigenvalues \ of A are typically imaginary numbers and Equation C.7 rep-
resents the natural frequencies in Hz.

A

w= Im(2—
T

) (C.7)
Using the values of Table 3.1, the following A matrix is obtained:

0 0 1

0 0 0
—0.48883984  0.36614277 0O
0.79201033  —0.79189357 0O

A:

OO = O

Using Equation C.7, the eigenvalues can be calculated.

—5.3283667 x 10718 4 0.17432991
—5.3283667 x 10718 — 0.174329913
0+ 0.04528176i
0 — 0.04528176i

A:

Since no damping is included in the system, the eigenvalues are expected to be purely imaginary, with
zero real part Re. Although a small real component appears for two of the eigenvalues, it is negligibly
close to zero, confirming that the solution is consistent with theoretical expectations. Looking at the I'm
part, the natural frequencies are obtained and reported in Table C.1. The results are consistent with
those obtained in Chapter 3.4.1 with the Modal analysis method.

Table C.1: Natural frequencies of the double pendulum system using state-space form

Modes Natural Frequency Hz  rad/s

Mode 1 0.045 0.284
Mode 2 0.174 1.095
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