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Co-Learning in Hybrid Teams with Varying Robot
Personalities

Jesse Dolfin
Faculty: Mechanical Engineering
Department: Cognitive Robotics

TU Delft

Abstract—This study examines how fixed robot personalities
(patient, impatient, leader, follower) influence co-learning in
human-robot teams by answering the research question: How
do different robot personalities influence co-learning. To do this,
we implemented a reinforcement learning framework for a
handover task where a robot and human participant co-learn
to solve a task. The robot has personalities encoded along
two axes: patient/impatient (via motion speed and stiffness) and
leader/follower (via exploration rates and reward structures in
phased Q-learning).
Through a within-subject design, we analyze policy metrics and
human perceptions. While task success rates remain stable,
strategy and internal policy metrics vary significantly. This
underpins the key finding: robot personality does not affect
task performance since humans can adapt to overcome subtle
differences in robot personality. However, robot personality signif-
icantly affects how the collaboration is performed as human-robot
teams adopt different strategies for different robot personalities.
Results demonstrate that robot personality is salient for differ-
ences in physical behaviour yet is unperceivable for modifications
of internal parameters like exploration rate/decay and reward
function for short interactions. This work bridges a critical gap
in understanding how static robot traits shape collaborative adap-
tation, even when overt performance metrics remain unchanged.

I. Introduction
Human-robot collaboration has grown rapidly in recent
years, driven by advancements in robotics and artificial
intelligence (AI) [1], [2]. Robots are moving beyond repeti-
tive tasks and are becoming collaborative agents capable
of more dynamic and intuitive interactions with humans
[3]. These systems, often called human-AI systems or
hybrid teams, involve humans and robots working to-
gether on a shared task [4]. Hybrid teams are now widely
used in manufacturing, healthcare, and service industries,
where robots support humans in completing increasingly
complex tasks [5].
Designing robots for effective collaboration requires a
clear understanding of the dynamics in these hybrid
teams. Co-learning studies this collaborative process, fo-
cusing on how both parties adapt to each other to achieve
shared goals [6].
Since co-learning relies on team members adapting to
each other and collaborating effectively, strong team co-
hesion is essential for successful outcomes [7]. The per-
sonality traits of team members, human or robot, play a

critical role in building cohesion and shaping collaboration
[8].
A critical but underexplored aspect of human-robot inter-
action (HRI) is the interplay between human and robot
personality. While personality in HRI has been studied,
most research has focused on human personality, with
relatively few studies investigating how robot personal-
ity contributes to interaction outcomes. As noted in [9],
there is an ongoing debate in the HRI community re-
garding whether human-robot personality matching leads
to better interactions or whether strategic mismatches
can enhance collaboration. However, these discussions
remain inconclusive due to the limited number of studies
explicitly examining robot personality. Addressing this gap
is essential to developing robust design principles for
hybrid teams.
One key step toward closing this gap is understanding
how robots can exhibit personality in the first place. Stud-
ies show that, just like humans, robots can display dis-
tinct ’personalities’ through their behaviours and decision-
making patterns [10], [11]. These personalities influence
how humans perceive and adapt to robots in collaborative
settings. Since co-learning relies on mutual adaptation,
a robot’s personality may be crucial in shaping team
cohesion and long-term learning dynamics.
Despite the growing body of co-learning research, studies
have not yet directly examined the role of robot personal-
ity in these scenarios. Prior work has explored co-learning
in simulated environments [4], [6], wizard-of-oz setups
[12], and, more recently, in physically embodied environ-
ments [13]. However, these studies have not focused on
the influence of robot personality.
This study aims to close this gap by examining how
different robot personalities affect the co-learning process
in hybrid teams. We focus on four robot personality types-
patient, impatient, leader, and follower- implemented in
a co-learning scenario. The study addresses the re-
search question: How do different robot personalities
influence co-learning? These personality types remain
constant throughout the study, excluding dynamic per-
sonality adaptation to the human partner. The experiment
involves one human and one robot performing a handover
task based on the setup by Veldman-Loopik [13], where
the robot hands over an object to a human engaged in
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a secondary task. The robot can adapt and learn from
the task through a novel q-learning approach that allows
for the expression of personality through learning specific
parameters and by coupling the algorithm with a finite
state machine (FSM). The algorithm is explained in detail
in section III-C.
The key takeaway of our results is that robot personality
significantly impacts collaboration strategies and internal
policy metrics (e.g., action consistency) even when task
performance metrics are unaffected. This is likely due to
human adaptability, closing the performance gap between
personality types. Furthermore, we show that designing
personality along physical vectors is salient, while person-
ality modulated by internal metrics (e.g., epsilon decay) is
not noticeable in short interactions. We provide the nec-
essary background to support our method in Section II;
here, we review co-learning, reinforcement learning, and
personality modelling. To study the effects of personality,
we created an experiment whose design is outlined in
Sections III-IV; here, we detail our Q-learning framework
and define our metrics. Lastly, we present our work in
Section V and discuss these results in Section VI.

II. Background
To study how robot personalities affect co-learning, we
need to understand three things: (1) how robots and
humans adapt to each other (co-learning), (2) how robots
can learn from experience (reinforcement learning), and
(3) how to give robots consistent ”personalities” through
their actions. This section explains what prior research
tells us about these topics to support our design decisions
and analyze how personality affects collaboration. We
build on these ideas in our methods (Section III) and
results (Section V).

A. Co-learning
We will build on the co-learning framework to under-
stand how robots and humans adapt to one another. Van
Zoelen [6] outlines two phases in this process: Implicit
Co-Adaptation: Partners unconsciously adjust behav-
iors during interaction. For example, a robot might slow
its movements to match a human’s pace, with neither
party explicitly planning this change. 2. Explicit Rein-
forcement: Partners then formalize successful strategies
through direct feedback (e.g., reward signals or verbal
communication), making these behaviours repeatable in
new contexts.
In their work, Van Zoelen [12] studied these adaptations.
They identified four main categories of interaction pat-
terns during the co-adaptation phase.

1) Sudden adaptations happen when the human or the
robot quickly adapts their leader or follower role in
response to an event in the task or a partner’s be-
haviour. This could include, for example, the human
changing direction or the robot suddenly leading the
task.

2) Stable situations are interactions between adapta-
tions, where one of the partners (either human or
robot) leads while the other follows. These are steady
and recurring patterns of interaction without much
change, like the human leading and pulling the robot
along.

3) Gradual adaptations are slow transitions where the
human or the robot gradually shifts their role from
leader to follower (or vice versa). This process often
occurs as they learn more about their partner’s be-
haviour.

4) Active negotiations involve a series of short, back-
and-forth adaptations between humans and robots.
They eventually transition to a new, stable situation
through alternating minor adaptations.

These categories provide a basis for analyzing the var-
ious strategies that can emerge in hybrid teams, which
will be discussed further in Section V.
Veldman-Loopik [13] expanded on co-learning by devel-
oping a physical co-learning setup and introducing sev-
eral tools to evaluate co-learning dynamics in embodied
environments:

• Performance Rate: Quantitative analysis of the
team’s success rate based on task completion.

• Human Perception of Fluency: Participant question-
naires to assess subjective experiences of collabora-
tion fluency, as per the works of G. Hoffman [14].

• Strategy Identification: Analysis of interaction pat-
terns using video footage and Q-table data to identify
emerging collaboration strategies.

• Robot Action Preferences: Analysis of action se-
lection frequencies through the Q-table to observe
adaptation trends over time.

• Qualitative Feedback: Post-experiment interviews or
questionnaires to gather subjective insights from par-
ticipants on their collaboration experience.

These tools offer valuable metrics for evaluating co-
learning and will be used to assess how robot personality
influences the co-learning process.

Veldman-Loopik also outlined five design requirements to
ensure the presence of co-learning in a task [13], which
inform our task design in Section III:

R1 The method ensures hard dependencies and allows
for soft dependencies between humans and robots in
both directions.

R2 The robot and human team members must learn at a
comparable pace.

R3 Both the human and the robot are rewarded similarly
based on their collaborative performance.

R4 The reinforcement learning algorithm can continu-
ously adapt its behaviour during all stages of the
learning process.

R5 The human and the robot must be able to observe
each other’s state and actions, and neither should
have any observability advantages.
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To clarify the first requirement, a hard dependency exists
when neither team member can complete the task alone,
necessitating collaboration. A soft dependency is not
essential for task completion but offers opportunities to
enhance performance. The hard dependency is inher-
ent in a handover task, as the handover cannot occur
without both parties. Soft dependencies emerge in how
the handover is executed; for example, misalignment in
expectations about hand orientation can lead to failures,
prompting both team members to adapt for more effective
collaboration.

B. Reinforcement Learning

For robots to adapt dynamically in co-learning scenar-
ios, especially when embodying distinct personalities, we
employ reinforcement learning (RL) as the robot’s adap-
tive mechanism. RL algorithms solve Markov Decision
Processes (MDPs), which model interactions between an
agent (robot) and its environment (including the human
partner). An MDP is defined by the tuple ⟨S,A, T , r⟩,
where:

• S: Set of possible states.
• A: Set of available actions.
• T (s, a): Transition function determining the next state
s′ given current state s and action a.

• r(s, s′): Immediate reward received when transition-
ing from state s to s′.

In practice, the reward structure and transition probabil-
ities are usually unknown. RL enables agents to learn
optimal or near-optimal policies by interacting with the
environment and maximizing cumulative rewards. Agents
start by taking random actions but gradually approximate
the transition and reward functions from experience [15].
This process is illustrated in Figure 1.

Fig. 1. Reinforcement Learning Diagram

In co-learning scenarios, adaptations need to happen
quickly. Therefore, simple tabular methods like Q-learning
are commonly used due to their efficiency and explain-
ability. Van Zoelen [6] employed an adapted version of RL
with options, where the concept of actions is extended
to include temporally extended actions called options.
This allows the agent to execute multi-step strategies that
terminate upon reaching a subgoal, accelerating learning
by identifying useful subgoals and creating policies to
reach them [16].

Similarly, Veldman-Loopik [13] used an adapted MAXQ
value decomposition algorithm, a hierarchical form of Q-
learning. MAXQ decomposes an MDP into smaller sub-
MDPs and breaks down the value function into an additive
combination of subtask value functions. This decompo-
sition enhances learning efficiency by allowing the algo-
rithm to solve smaller sub-problems first [17].
These works highlight the benefits of using simple, de-
composed Q-learning algorithms in co-learning scenar-
ios. The speed of these methods allows for quick adap-
tations, which is crucial when time and data are limited.
Moreover, the explainability of tabular methods enables
a straightforward interpretation of the agent’s policy by
examining state-action values.
Complex methods like Deep Q Networks (DQNs) are
impractical for co-learning due to their computational
complexity and lack of explainability. Qureshi [18] demon-
strated this limitation by requiring 14 days to train a DQN-
based robot for a simple handshake, which is too slow
for real-time human collaboration. This computational in-
efficiency motivates our approach of using lightweight,
interpretable Q-learning, which provides precise control
over the robot’s decision-making process.

C. Embedding Robot Personality
By strategically modulating Q-learning parameters such
as exploration rates and reward structures, we can
encode distinct robot personalities that shape adapta-
tion strategies during co-learning. To ground personality
within our Q-learning framework, we draw on the well-
established Big Five model [19]. Here, personality rep-
resents consistent behavioural tendencies—like patience
or assertiveness—that remain stable across interactions.
The Big Five traits provide our foundational model for
understanding these behavioural patterns.

1) Openness to Experience: Traits like imagination, aes-
thetic sensitivity, attentiveness to inner feelings, pref-
erence for variety, intellectual curiosity, and challeng-
ing authority.

2) Conscientiousness: Includes competence, orderli-
ness, dutifulness, striving for achievement, self-
discipline, and deliberation.

3) Extraversion: Characterized by an interest in the ex-
ternal world, enjoyment of social interactions, enthu-
siasm, talkativeness, assertiveness, and sociability
[20].

4) Agreeableness: Encompasses trust, straightforward-
ness, altruism, compliance, modesty, and tender-
mindedness.

5) Neuroticism: Associated with negative emotions
such as anxiety, worry, fear, anger, frustration, envy,
jealousy, pessimism, guilt, and depression [21].

The FFM is frequently used to describe robot personali-
ties, sometimes extended in novel ways [22]. In robotics,
personality embedding often focuses on one or a subset
of these traits, with extraversion being the most commonly
used [23].
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For example, Mileounis et al. [24] embedded extraversion
in an NAO robot using voice modulation to differentiate
between extroversion and introversion, dominance, and
submission. An extroverted, dominant robot spoke with
a low pitch and assertiveness, performed many ges-
tures, and spoke quickly with emotion. Conversely, an
introverted, submissive robot had a higher pitch, spoke
insecurely, used fewer gestures, and spoke slowly.
Since co-adaptation occurs implicitly in our research,
we focus on expressing personality through the robot’s
actions rather than voice. Luo et al. [10] achieved
implicit expression for extraversion, agreeableness,
and conscientiousness by embedding gestures in a
mechatronic face, such as nodding, head shaking,
gaze aversion, and eye-rolling. For example, an
agreeable robot smiled regardless of agreement or
disagreement, while an extroverted robot shook its head
when disagreeing.

III. Methods

With the background established, this section outlines
the methodology used to investigate the influence of
robot personality on co-learning. Specifically, we detail
the co-learning task design, structured around Veldman-
Loopik’s requirements (Section II-A), and describe the
experimental setup used to implement this task. Further-
more, we introduce a novel Q-learning implementation
that decomposes the Q-table into distinct phases, facili-
tating structured decision-making. Finally, we present our
approach to integrating the robot personality types within
the reinforcement learning framework.

A. Task design
Since we are trying to evaluate personality types for
co-learning, the task must allow co-learning to emerge.
To ensure this is the case, we will follow the requirements
outlined in section II-A by Veldman-Loopik.

Creating a coherent story for the experiment that makes
sense to the human participant is important, as this helps
to engage the human more naturally with the task. The
story chosen for the design of this experiment is that
the human participant needs to perform a teleoperated
lumbar puncture.
A lumbar puncture, also known as a spinal tap, is a
medical procedure where a needle is inserted into the
lower spine to collect cerebrospinal fluid from the spinal
canal [25].
A lumbar puncture is chosen because it is a sensitive
operation that requires a great deal of attention. This is
necessary to limit the observability of the human partic-
ipant and reduce its learning speed to match that of the
robot, contributing to requirement R5 and R2.
The participant needs to perform this puncture and drain
the epidural space. After the procedure, the human must

Phase Description
Phase 0 The robot is in its ’home’ position. It moves to a neutral,

upright position opposite the human participant and picks up
the scissors.

Phase 1 The robot decides when to initiate the handover immediately
as the human starts the draining process or after detecting a
state change (e.g., completion of the draining process or a
human request by holding up their hand).

Phase 2 The robot selects a handover orientation: ’serve’ (palm facing
up) or ’drop’ (palm facing down).

Phase 3 The robot moves towards the human’s hand and decides when
to open its hand. It can close, partially open, or fully open its
hand.

Phase 4 The handover is evaluated as either failed or successful. The
robot updates its decision-making based on this experience,
and the handover is reset, returning the robot to Phase 0.

TABLE I
Phases of the robot handover process

stop the bleeding, stitch up the patient, cut the suture
thread and bandage the wound. All of these handlings
require different objects for the robot to deliver. This
scenario naturally incorporates a handover task, making it
a fitting context for evaluating co-learning in hybrid teams.
To structure the task properly, we divided the different
stages of the handover into distinct phases, which can
be seen in table I. These phases provide clear decision
points which allow soft dependencies to emerge, thereby
contributing to design requirement R1.

Fig. 2. the secondary task interface screenshot showing the teleoperated
lumbar puncture simulation.

The lumbar puncture is implemented as a teleoperated
simulation via pygame, shown in figure 2. The human
controls the teleoperated arm on the left side of the
screen, while the right side displays the teleoperation
output. The right screen shows a needle and the
multiple layers of tissue found in the human body. The
task requires the human to push the needle through
these tissue layers, providing visual feedback to the
teleoperated arm on the left screen. Once the needle
punctures the epidural space, the human must press the
spacebar to initiate the draining process.

The damping and stiffness coefficients and the tissue
layer sizes are modelled based on average values found
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in the literature [26]. These parameters vary along a
normal distribution, with new stiffness, damping, and
size values sampled after each simulation reset. The
implementation code is available on GitHub [27].

To reward the human complying with requirement R3, we
introduced a negative chime and a red border when the
handover failed. When the handover was successful, we
introduced a positive chime and a green border. We also
provided an end-screen message, either positive when
the task was successful or negative when the task failed.

The task was adapted to better accommodate require-
ment R2, ensuring that the robot and human team mem-
bers learn at a comparable pace. To achieve this, the
feedback gain was decreased, and the tissue sizes were
increased to make the puncture more manageable. Ad-
ditionally, the code was modified to require the human
to hold the spacebar during the draining process, with
task failure resulting from premature release. This adjust-
ment ensured a balanced interaction between the human
and the robot. Finally, the code was integrated into the
robot operating system (ROS), enabling communication
between the simulation and the robot.

B. Software architecture
This communication is achieved by controlling the robot
via ROS through the iiwa ROS software package [28]. It
uses an impedance controller to interact with the human
participants safely.
On top of this software stack, we developed a python
package [29] that implemented vision-related tasks, a
finite state machine (FSM) to allow the robot to take
the relevant actions, and a novel Q learning algorithm
that enables the robot to perform complex tasks through
the introduction of specific decision points that we call
phases, which are directly coupled to a state in the FSM.
The FSM handles the initialisation of different personality
types and manages the main loop for testing multiple
runs. It also interacts with the Q-learning agent to retrieve
the current phase’s appropriate action and connects it to
the robot and hand controllers. A visual representation
can be found in appendix D. The FSM also allows
for secondary functions to be implemented for each
phase, e.g., in phase 2, the robot decides on a handover
orientation, ’serve’ or ’drop’, which is directly coupled
to the state space. However, it also moves towards the
participant’s hand in this phase. By decoupling the hand-
moving part from the RL mechanism, we significantly
speed up the learning process. Encoding hand-location
in the state space is costly regarding state-action values
as it introduces a tuple (xi, yi, zi) for some discrete
workspace with resolution i. We decided to disconnect
this from the RL mechanism since learning to move to
the hand location is irrelevant to the co-learning process.
Because the Q-learning algorithm is restricted to co-
learing actions, we have little control over the expression

of personality types. By introducing an FSM, we also
increase the range of control over the robot’s actions,
extending beyond those necessary for task completion.
For example, it allows us to change the robot and hand
speeds, increasing our control over the expression of
personality.

The vision-related tasks were achieved using a depth
camera. This camera provides the location of the human
hand so the robotic arm can move there accordingly. To
obtain the location of the hand, we used MediaPipe [30],
which offers ready-to-use Python implementations of a
hand land-marker model. A handover is successful when
the human has held the item for a second. The camera
provides an RGB and a disparity image to obtain the
location of the human hand. The RGB image is aligned
with the disparity image, which means that each point
in the RGB image corresponds to a depth point in the
disparity image. The hand land-marker model is applied
to the RGB image. Then, the point is deprojected from a
pixel in the RGB image to a 3D point in the camera frame
using the disparity image. This 3D point location is then
published to a ROS topic.

C. Q-Learning

With the software architecture supporting the robot’s inter-
action with its environment, we now detail the reinforce-
ment learning algorithm that drives the robot’s decision-
making during the handover task. As discussed in Section
II-B, we have chosen Q-learning as the most suitable al-
gorithm for implementing the decision-making framework
in our co-learning setup.
1) Algorithm Overview: Q-learning is a model-free
reinforcement learning algorithm that updates its action-
value function based on immediate rewards. However, the
agent may struggle to associate actions with outcomes
in scenarios with sparse or delayed rewards where
feedback is infrequent, such as in our handover task,
where success is determined only at the end of an
episode. This can lead to inefficient exploration and
slower learning, as the algorithm relies on consistent
reward signals to adjust its policy effectively [31]. To
address this challenge, we introduce an experience
replay mechanism that modifies and distributes the final
reward across the trajectory, facilitating better credit
assignment over time.

2) State, Action, and Phase Spaces: We decompose the
overall state-action space into a sequential structure con-
sisting of distinct phases, each representing a specific
stage of the handover process. The phase p is a function
of the current state s. The phase transition function is
then expressed as p′ = Φ(s′). This relationship allows
the agent to update the phase based on the next state,
ensuring coherent transitions.
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Algorithm 1: Generalized Phase-Based State Transi-
tion Algorithm

Input: State s ∈ S, Phase p ∈ P , Action a ∈ A
Output: Next state s′, Next phase p′

Initialization: Define Ap ⊂ A for each p ∈ P
if Valid(a, p) = 1 then

s′ ← T (s, a)
p′ ← Φ(s′)

else
s′ ← s
p′ ← p

return s′, p′

Definition

Valid(a, p) =

{
1, if a ∈ Ap

0, if a /∈ Ap

Each phase p defines a specific subset of possible actions
Ap and valid states Sp that the robot can be in during that
phase. This is captured concisely in algorithm 1.
To enforce phase-specific action constraints, we introduce
a function avalid = A(p, a) that determines the validity of
an action a in the current phase p. This function ensures
that the agent only considers actions appropriate for the
specific stage of the handover process, effectively filtering
out invalid actions and reducing the state-action space.
For instance, in the initial phase, the robot’s actions are
limited to moving to its home position, while in the next
phase, the robot is allowed to choose a hand orientation.
By defining Φ(s) and A(p, a), we create a structured
environment where the agent’s decisions are both state-
and phase-dependent.

Fig. 3. Visualisation of the phase decomposition of a Q-table

This decomposition is visualised in Figure 3. The Q-table
Q(s, a) is structured such that Q(s, a) = 0 for all invalid
state-action pairs (s, a), as determined by the phase-
specific constraints A(p, a). For Phase 1 (p = 1), valid
states are S1 = {1, 2} and valid actions are A1 = {1},
resulting in Q(s, a) = 0 if s /∈ S1 or a /∈ A1. Similarly, for
Phase 2 (p = 2), valid states are S2 = {3, 4, 5, 6} and valid
actions are A2 = {2, 3}. For Phase 3 (p = 3), valid states
are S3 = {7, 8, 9} and valid actions are A3 = {4, 5, 6}.

Consequently, the algorithm only updates valid state and
phase pairs, enforcing the constraint defined by A(p, a).
By structuring the action and state spaces in this way, we
effectively reduce the number of Q-values that need to be
learned from 6 × 9 = 54 (states × actions) to 19. This is
calculated as:

|P|∑
p=1

|Ap| · |Sp| = 1× 2 + 2× 4 + 3× 3 = 2 + 8 + 9 = 19.

Detailed descriptions of the action and state spaces in
our co-learning setup are provided in Appendices A and
B, respectively.

3) Update Rule: We update the Q-values as follows:

Q(s, a)← Q(s, a) + αδt,

Where α is the learning rate and δt is the temporal-
difference error representing the difference between pre-
dicted and actual rewards.
The temporal-difference error is computed as:

δt = rt + γmax
a′

Q(st+1, a
′)−Q(st, at),

Where rt represents the reward received at time step t,
and γ is the discount factor weighing the importance of
future rewards.

4) Experience Replay Mechanism: One of the primary chal-
lenges in our setup is the delayed reward structure, as
rewards are only given at the end of an episode when the
success of the handover is evaluated. To address this, we
implemented an experience replay mechanism inspired
by Mnih et al. [32], enabling the agent to learn more
efficiently from these sparse rewards. Each episode’s ex-
periences are stored as tuples (s, a, s′, r, ϕ,Valid), where
ϕ denotes the phase and Valid indicates the validity of
the action in the given phase, determined by the function
A(p, a).
Once the episode concludes, the experience replay
mechanism reprocesses the collected experiences,
allowing the algorithm to distribute the final reward across
all valid state-action pairs in the trajectory. This approach
ensures that the agent considers the entire sequence of
decisions contributing to the handover’s outcome rather
than reinforcing only the final action.

5) Reward Function: In our setup, the agent receives re-
wards at the end of each episode based on the handover
outcome. A successful handover earns a base reward
of +10 per phase completed; a failed handover incurs a
penalty of −10 per phase.
A time limit is imposed to encourage efficient completion.
If the handover is completed within this limit, the agent
receives an additional reward equal to twice the unused
time. Failure to complete within the time results in an
episode failure and the associated penalties.
A penalty of −2 is assigned if the robot attempts to
close its hand when it is closed or partially open. This
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discourages repetitive actions and prevents the robot from
getting stuck in a loop.
Additionally, we augment the reward function to model the
’leader’ personality type, characterised by a preference
for the ’serve’ orientation during handovers. If the agent
selects the ’serve’ orientation when appropriate, we grant
an extra reward of +10.

6) Implementation Details: The primary implementation is
the real-time training loop. This function trains the robot
by selecting an appropriate action, outputting this to the
FSM, and updating the Q-table when required. This func-
tion is explained in algorithm 2.

Algorithm 2: Real-Time Training Loop for Q-Learning
Agent

Init: Q(s, a) ∼ 0.01 · Uniform(0, 1) // Q-table
Input: α, λ, Env// Learning rate, Discount

factor, RL environment

Function TrainStep(ϵ, Env):
if NewEpisode then

s, ϕ← Env.Reset()
E ← ∅ // Experience buffer
Terminated← False
NewEpisode← False

ϕcurrent ← ϕ
Valid← False
while ϕ = ϕcurrent and not Valid do

a← EpsilonGreedy(ϵ,Q(s, a))
s′, r, ϕ,Terminated,Valid← Env.Step(a)
E ← E ∪ {(s, a, s′, r,Valid)}
if r ̸= 0 and Valid then

UpdateQTable(s, a, r, s′, α, γ)
s← s′

if Terminated then
NewEpisode← True

return a, ϕ,Terminated

The FSM calls the TrainStep function during each
phase. This function initialises the state in the first phase
by resetting the environment. TrainStep then repeat-
edly calls the environment’s step function, updating the
state and phase until a valid action is taken while record-
ing the agent’s experiences. If an action is valid (Valid
parameter is True), the loop breaks, and the function
returns the action, current phase, and termination flag,
allowing the FSM to execute the action and proceed to
the next phase. If a valid action yields a reward, the Q-
table is immediately updated to prevent the agent from
getting stuck in a loop.
At the end of each episode, we invoke the experience
replay mechanism, which iterates over the stored expe-
riences E . For each valid action, it updates the Q-values

by redistributing the final reward over the entire trajectory.
Intermediate rewards are directly updated in the main
training loop, so these need not be accounted for in this
mechanism.
The training parameters are learning rate α = 0.15, dis-
count factor γ = 0.8. The exploration factor ϵ starts at 0.9
and decays by 5% per episode to a minimum of ϵ = 0.1,
ensuring the agent remains adaptable for co-learning.
These values were determined through parameter tuning
on a simulated version of the problem, optimising for the
highest mean Q-value in the solved Q-table.

D. Robot Personality
Building on the Q-learning framework, we introduce dis-
tinct robot personality types embedded into the robot’s
decision-making processes through tailored adjustments
in the learning algorithm.
The robot personalities are implemented through 2 vec-
tors: the leader-follower axis is implemented through the
reinforcement learning scheme, and the patient-impatient
axis is implemented through the robot and hand con-
trollers.
The leader personality type has a modified exploration
scheme. The leader starts with a slightly lower exploration
factor ϵ = 0.8, which decays by 10% down to ϵ = 0.2. The
argument for this is that a leader should converge to a
strategy quicker, hence the quicker decay rate, but should
also be more open to change, thus the higher floor. Since
a leader has a high extraversion, it will strongly prefer the
’serve’ orientation, so it will receive an additional +10 each
time it chooses this orientation, as explained in section
III-C5. This preference for the serve orientation and faster
convergence aligns with the FFM trait of extraversion,
where proactive engagement and quick adaptability re-
flect high extraversion and openness to experience.
The follower personality type has a modified exploration
scheme that starts with a lower exploration factor of ϵ =
0.6, which decays by 20% per episode; it also has a much
higher learning rate of α = 0.5. These modifications make
the follower personality type much quicker to converge
to whatever strategy the human initially decides to follow.
And since it has low extraversion, it will not try to change
the strategy too much and will likely keep the current
strategy. This design reflects low extraversion, aligning
with agreeableness in the FFM, as the follower personality
accommodates the human’s strategy and shows a stable,
cooperative approach.
The baseline time for the robot to complete a movement
is 5 seconds. The impatient personality type modifies this
to 2 seconds, significantly increasing the robot’s speed.
It also closes the hand in 1 second, where the baseline
is 2 seconds. Furthermore, the joint stiffness slightly in-
creases, making the movement more direct. These faster,
more forceful movements reflect high neuroticism, in line
with the FFM trait of impulsiveness, a lower tolerance
for delay, and extraversion through its direct, fast-paced
approach.
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The patient personality type has a robot movement time
of 7 seconds per movement and a hand closing speed of
3 seconds. It also has decreased joint stiffness, making
the robot slightly sluggish at the start and allowing it to
overshoot its target position slightly. It also has slightly
reduced damping values, introducing a small damped
oscillation around its setpoint value. This slower, more
deliberate approach aligns with high agreeableness and
low neuroticism in the FFM, showing a considerate, calm
style that accommodates the human partner’s pace.

IV. Experimental setup
Having outlined the task design and the Q-learning-
based personality integration, the next step is to imple-
ment these elements in a physical experimental setup
to test the robot’s interaction with a human participant.
The following section details the physical setup used to
implement our methods, followed by an explanation of the
experimental procedure and participant guidance. Finally,
we outline the metrics used for result analysis.

A. Setup
The chosen hardware setup is visualised in Figure 4 and
consists of the KUKA LBR iiwa7 R800 robotic arm with the
qb-SoftHand as a gripper. The iiwa7 is a cobot arm, which
means it is designed to be safe to work in environments
alongside humans. It has torque sensors at each joint,
which allow the robot to measure the physical interactions
between the human and the robot, which improves the
safety of the arm and allows for the interaction to be part
of the co-learning process.

Fig. 4. Experimental setup for co-learning study. The operator area, KUKA
arm, secondary task, and overhead camera are indicated

The SoftHand is a hand-like gripper that is tactile enough
to pick up many objects. It is soft, so it can be safely used
in rigid environments and alongside humans, as the hand
will deform under load.
The chosen camera is the RealSense D455. This camera
can be operated via the RealSense API, which provides
standard functions for aligning the depth image to the
RGB image and a deproject function. The distance from
the ground to the camera is 3 meters. This camera is

highly accurate for the full workspace, with a depth error
of less than 2% at 4 meters.
The human participants sit at their desks next to the robot
arm. They are given a keyboard, mouse, and screen to
perform the secondary task.
The setup is filmed with a digital camera; the videos are
analysed to determine the interaction patterns.

B. Procedure

Before the experiment begins, the participants are asked
to complete an informed consent form. After the con-
sent has been given, the participants will receive an
introduction to the test setup and get time to familiarise
themselves with the robot arm, which will be in compliant
mode. This allows the participants to build trust in the arm
and show that it is safe to work with.
The participants are then provided with a high-level ex-
planation of the experiment. The robot’s action space is
not discussed, as this needs to be discovered during co-
learning. The participants are given time to familiarise
themselves with the secondary task and understand its
dynamics.
Once the participants are familiarised with the setup, they
will start the experiment with the baseline personality.
Each run takes 11 episodes. The participants will get a
form to fill out each time they complete a run. This form
measures team fluency as described in section II-A and
the perceived personality type. The personality types are
randomised via a Latin square to balance the order effects
of robot personality types on the co-learning process.
During the experiment, snapshots of the Q-table are taken
to see how the robot strategies evolved over the episodes.

C. Metrics

With the experimental setup in place, we now define the
key metrics used to evaluate the success and dynamics
of human-robot collaboration during the handover task.
We adopt metrics from Veldman-Loopik (introduced in
Section II-A) to assess various aspects of co-learning,
supplemented by measures tailored to our reinforcement-
learning (RL) framework and personality embeddings.

1) Performance Metrics: To gauge high-level task success,
we track the following:

• Performance Rate: the percentage of successful
episodes per run:

MPR =
Successful episodes

Total episodes
× 100%.

• Cumulative Reward: a traditional RL metric sum-
ming per-episode rewards over a run.

These metrics capture task-level outcomes, providing
insight into whether different robot personalities lead to
higher success or efficiency.
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2) Human Perception of Fluency: The fluency metric de-
scribes the human experience of collaboration. Building
on the works by Hoffman [14], we consider:

• Human-Robot Fluency, e.g., “The robot contributed
to the fluency of the interaction”.

• Robot Relative Contribution, e.g., ”I was the most
important team member on the team”.

• Trust in the robot, e.g., ”I trusted the robot to do the
right thing at the right time”.

• Positive Teammate Traits, e.g., “The robot was intelli-
gent”.

• Improvement, e.g., “The robot’s performance im-
proved over time”.

• Working Alliance for Hybrid Teams, e.g., ”I am confi-
dent in the robot’s ability to help me”.

We compiled a selection of these questions into a
questionnaire (Appendix C). Participants answered
them after interacting with each personality type. This
subjective measure of how different robot behaviours
affect collaboration quality was aggregated into a
composite Fluency Score (1-7 Likert scale average).

3) Strategy Identification: Robots and humans may use
various strategies because the task can be accomplished
in multiple ways. Table II outlines the human strategies
across the three primary handover phases. We combined
the robot’s chosen strategy (linked to its action space)
with the human’s strategy to form a joint strategy.

Phase Human Strategy
Phase 1 H1: Human asks for the item as soon as draining starts.

H2: The Human asks for the item after the draining process
finishes.
H3: Human does not ask for the item.

Phase 2 H4: Human chooses a ’serve’ orientation.
H5: Human chooses a ’drop’ orientation.

Phase 3 H6: Human signals robot by pulling on end-effector.
H7: Human waits for the robot to release the item.

TABLE II
Human strategies across different phases.

We quantify strategy evolution using the following:

• Total Strategy Changes: Count of distinct joint
strategies adopted per run

• stability: Percentage of consecutive episodes where
the joint strategy remained unchanged

Video footage of the experiment further supports our
identification of emergent collaborative patterns.

4) RL Metrics: The robot develops action preferences
through Q-learning within the reinforcement learning (RL)
framework. Analysing snapshots of the Q-table reveals
how the robot’s policy evolves throughout multiple
episodes. We adopt the following RL-specific metrics to
evaluate the learning dynamics and policy stability:

a) Entropy.: Measures the randomness or level of explo-
ration in the robot’s action choices [33]. For a given state
s, the Q-values are converted into a probability distribution
over actions using the softmax function:

p(a|s) =
exp(Q(s, a))∑
b exp(Q(s, b))

,

where Q(s, a) is the Q-value for state s and action a. The
entropy for a state is then computed as:

H(s) = −
∑
a

p(a|s) log(p(a|s)),

where p(a|s) is the probability of taking action a in state s.
Finally, the overall entropy is the average entropy across
all states:

H =
1

|S|
∑
s∈S

H(s),

Where S is the set of all states. Higher entropy values
indicate greater randomness or exploration in the robot’s
actions, while lower entropy suggests that the robot has
learned a more deterministic policy.

b) ActionConsistency.: Quantifies how consistently the
robot repeats specific actions once they are learned.
Formally:

ActionConsistency =
1

N

N∑
s=1

I
(
Li = Li+1

)
,

Where:

• N is the total number of states.
• Li = argmaxa Qi(s, a)
• I(·) is the indicator function, returning one if the best

actions match and zero otherwise.

c) QGap.: Measures how confidently the robot identifies
its best action in each state. For a given state s, we
define the gap as the difference between the highest and
second-highest Q-values:

gap(s) = max
a

Q(s, a) − max
a̸=argmaxb Q(s,b)

Q(s, a),

Where:

• Q(s, a) is the Q-value for state s and action a,
• argmaxa Q(s, a) gives the action with the highest Q-

value.

The overall QGap is then the average gap across all
states:

QGap =
1

|S|
∑
s∈S

gap(s),

Where S is the set of all states. A larger QGap indicates
greater confidence in the policy, as the best action is
much better than the alternatives. Conversely, a smaller
QGap reflects uncertainty or ties between actions.
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d) Convergence.: Assesses the overall stability of the Q-
table across episodes via the L1 distance between con-
secutive Q-tables. For two Q-tables Q(i) and Q(i+1) from
consecutive episodes, we define:

dL1 =
∑
s

∑
a

∣∣∣Q(i)(s, a) − Q(i+1)(s, a)
∣∣∣ .

A smaller dL1 indicates fewer changes in Q-values, im-
plying a more stable (converged) policy. If dL1 remains
very low for multiple consecutive episodes, we infer that
learning converges effectively.
These metrics provide insight into the learning process,
showing how well the task is performed and how
confidently and consistently the robot arrives at its
decisions.

5) Perceived Personality Feedback: Building on our per-
sonality implementation, we asked participants to rate
how patient or impatient the robot appeared (i.e., Pa-
tient Impatient Score). Similarly, they assessed whether
the robot’s behaviour seemed more leader -like or fol-
lower -like (Leader Follower Score). In Section V, we
report how these subjective ratings correlate with each
robot personality type.

• Patient Impatient Score: 1-7 rating (1=very pa-
tient, 7=very impatient)

• Leader Follower Score: 1-7 rating (1=strong fol-
lower, 7=strong leader)

V. Results
To investigate how different robot personalities (Follower,
Impatient, Leader, Patient) influenced our core metrics,
we conducted a series of repeated-measures ANOVAs,
treating personality as a within-subject factor [34]. Each
participant experienced all four conditions, enabling us to
assess how each outcome measure changed based on
the robot’s assigned personality type.

TABLE III
Repeated-measures ANOVA results. Degrees of freedom (df) reflect
Greenhouse-Geisser corrections (GG) where sphericity was unmet.

Sig. indicates significance at α = 0.05 (* for p < 0.05, ** for p < 0.01,
ns for non-significant).

Metric df (GG) MSE F p Sig.
Mean Performance Rate (2.28, 31.98) 560.57 1.64 .208 ns
Cumulative Reward (2.20, 30.77) 649280.32 1.54 .230 ns
Total Strategy Changes (2.40, 33.58) 5.40 4.97 .009 **
Stability (2.44, 34.13) 0.04 5.76 .005 **
Fluency Score (2.31, 32.34) 1.21 0.46 .664 ns
Patient-Impatient Score (2.16, 30.22) 1.84 4.94 .012 *
Leader-Follower Score (2.04, 28.51) 1.11 2.06 .145 ns
Avg Entropy (2.59, 36.22) 0.02 2.59 .075 ns
Avg QGap (2.41, 33.74) 2.10 2.87 .061 ns
Avg Convergence (1.61, 22.56) 93.99 0.30 .697 ns
Avg ActionConsistency (2.41, 33.75) 0.00 3.35 .039 *

Table III highlights significant main effects of Personality
(p < 0.05) on four metrics: Total Strategy Changes, stablil-
ity, Patient-Impatient Score, and Avg ActionConsistency.

Greenhouse–Geisser corrections (GG) were applied to
the degrees of freedom where sphericity assumptions
were violated [35]. All other metrics were non-significant
(p > 0.05), indicating that while high-level performance
outcomes (e.g., success rate, total reward) showed mini-
mal variation across personalities, the strategies used to
interact with the personality types differed significantly.
This subsection focuses on the metrics that showed
significant effects of robot personality: Total Strategy
Changes, stablility, Patient-Impatient Score, and Avg Ac-
tionConsistency. These metrics highlight how variations
in personality influenced the robot’s internal policy char-
acteristics and the chosen strategy, as well as the par-
ticipants’ perceptions, even as other performance-related
outcomes remained unaffected. We treat total strategy
changes and Stability as a single unified metric since Sta-
bility and total strategy changes follow a perfect negative
correlation, as shown in appendix F, Figure 19.

A. Patient-Impatient Score

The repeated-measures ANOVA for the Patient-Impatient
Score was significant (p = 0.012), indicating a differ-
ence in perceived personality across conditions. Post-
hoc Tukey-corrected pairwise comparisons [36] revealed
that only the difference between the impatient and pa-
tient personality types was significant (p = 0.0174).
Figure 5 visually supports this result, showing a clear
separation between patient and impatient personalities. In
contrast, the leader and follower personalities remained
closely clustered, with both having a leader-follow score
of around 0. The Patient personality type was perceived
as patient and slightly a follower.

Fig. 5. Perceived personality scores. These scores indicate how distinct the
personality types are from one another.

These results confirm that participants largely perceived
the patient and impatient personalities as intended, while
the leader and follower traits were less distinguishable.



15

On average, the robots were rated somewhat more pa-
tient, and even the impatient robot was not perceived as
impatient overall. Video analysis shows that the impatient
robot dropped the object most frequently (Appendix G),
which did not result in higher impatient scores. This is
likely because some participants found this personality
type to be the most precisely timed and the quickest for
their strategy. Conversations with participants after the
experiment revealed that many preferred the impatient
robot, as it allowed them to obtain the item quickly and
shift focus away from the secondary task, reducing mental
strain.

B. Strategy
(Total Strategy Changes/Stability ) showed significance
with p = 0.009 and p = 0.005, respectively.

Fig. 6. Box plot showing stability distributions by personality type.

The Follower personality exhibits the highest median sta-
bility score, approximately 0.65, though it also has the
largest variability among all personality types. Notably,
it is the only personality type with a stability score of
1.00, indicating zero strategy changes. The Impatient and
Leader personalities show similar median stability scores,
with the Impatient personality exhibiting slightly greater
variability.
Post-hoc Tukey-corrected pairwise comparisons con-
firmed that the Follower personality had significantly
higher Stability than both Impatient (p = 0.018) and
Leader (p = 0.023). However, no significant differences
were found between the Patient and any other personality
type. This suggests that while the Patient personality
demonstrated relatively high median Stability, it did not
differ enough from the others to reach statistical signifi-
cance.
The Patient personality type is also the only one that
does not show a stability score of 0. This means that
no participants exhibited entirely random strategies with
this personality. One possible explanation is that the
Patient personality’s slower, more predictable handovers

provided a consistent interaction pattern, preventing er-
ratic strategy shifts. Participants may have adapted to this
personality by adjusting their behaviour in a structured
manner, leading to greater overall Stability. In contrast,
personality types with more aggressive or unpredictable
handover timing may have induced more frequent and
erratic adjustments in participant strategies.
While the stability analysis provides insight into overall
trends in human-robot collaboration, it does not capture
how humans adjust their behavior to different robot per-
sonalities. We conducted a video analysis to classify and
quantify interaction patterns to better understand these
adaptations. Following the framework in Section II-A,
interactions were categorized as either stable situations,
where behavior remained consistent over time, or sud-
den adaptations, where abrupt adjustments occurred in
response to task demands. Table IV summarizes the
observed interaction patterns.

TABLE IV
Categorized interaction patterns observed during human-robot

collaboration.

Interaction Pattern Category

Human holds item until the robot releases Stable Situation
Human waits for robot to open hand Stable Situation
Misalignment Stable Situation
Robot and human meet in the middle Sudden Adaptation
Human moves towards robot Sudden Adaptation
Human takes object from robot with force Sudden Adaptation
Human touches hand unnecessarily Sudden Adaptation
Robot drops object Sudden Adaptation
Robot moves away Sudden Adaptation
Robot moves towards human Sudden Adaptation

To quantify the influence of robot personality on inter-
action dynamics, we analyzed how frequently each pat-
tern occurred for different robot personalities. Table V
highlights the two interaction patterns with the most
pronounced variation across personality types: ”Human
takes object from robot with force” and ”Robot drops
object.”

TABLE V
Interaction patterns with significant variation across personality

types.

Interaction Pattern Personality Type Count

Human takes object from robot with force Follower 17
Leader 18
Impatient 13
Patient 47

Robot drops object Follower 9
Leader 14
Impatient 36
Patient 2
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Participants were far more likely to take the object when
interacting forcefully with the Patient personality. In these
cases, the human had already drained the epidural space
and was actively waiting for the object. Given the relatively
high cognitive load of monitoring the screen, participants
likely sought to reduce it by forcibly taking the object
instead of waiting for the slower, patient robot to release
it. In contrast, robots with more precisely timed handovers
(Leader, Follower) synchronized better with the human’s
task rhythm, reducing the need for forceful retrieval.
Similarly, the Impatient robot dropped objects significantly
more often than the other personality types. This occurred
because the impatient robot was more likely to release
the object prematurely, before the human had finished
draining the epidural space. As a result, participants could
not catch the object, leading to a failed handover. This
aligns with the impatient robot’s design, where faster ac-
tions prioritize speed over synchronization with the human
partner’s availability.
These findings suggest that Stability plays a crucial role in
human-robot collaboration, but an important question re-
mains: Does Stability correlate with actual performance?
Figure 7 explores this relationship by illustrating the
connection between mean performance rate (MPR) and
Stability.

Fig. 7. Scatter plot of Mean Performance Rate (MPR) versus Stability across
personality types. Each point represents an individual participant’s data, color-
coded by personality type. A clear upward trend is evident, with higher
Stability generally coinciding with higher performance rates. The dashed line
indicates a linear regression fit with a 95% confidence band (shaded region).

Statistical tests confirm this observation, with a Pearson
correlation coefficient of r = 0.724 (p < 0.0001) and a
Spearman rank correlation of ρ = 0.728 (p < 0.0001) [37].
Both coefficients indicate a robust correlation, suggesting
that participants who maintained more stable interaction
strategies (i.e., changed their approach less frequently)
tended to achieve higher performance rates.
These findings align with reinforcement learning princi-
ples, wherein a consistently successful strategy is pos-
itively reinforced, making the algorithm more likely to
converge on a policy.

Notably, although personality type influenced the degree
of strategy stability, it did not significantly affect the mean
performance rate. Instead, Stability itself emerges as the
key factor: Participants with predictable, well-practiced
interaction patterns realized more consistent and efficient
handovers, thereby improving performance outcomes.

C. Avg ActionConsistency
With p = 0.039, robot personality significantly influenced
how consistently it repeated selected actions. The fol-
lower condition had the highest average action consis-
tency, while the impatient condition exhibited the lowest.
The Leader and patient personalities fell in between.

Fig. 8. Box plot showing the average action consistency for each personality
type

Figure 8 shows that the follower personality type has
the highest median action consistency. The impatient
personality type has the lowest action consistency and
the highest deviation out of all personality types. The
leader and follower personality types show similar trends
in personality type.
Post-hoc Tukey-corrected pairwise comparisons con-
firmed that the Follower personality had significantly
higher action consistency than both Impatient (p = 0.021)
and Leader (p = 0.038). However, no significant difference
was found between the Patient and other conditions,
suggesting that while Patient and Leader personalities
demonstrated moderate action consistency, they were
not statistically distinct from each other or the Impatient
condition. This aligns with expectations, as the Follower
personality is designed to be highly consistent, converg-
ing to a learned policy quickly with its quicker epsilon (ϵ)
decay and higher learning rate (α).
Figure 9 illustrates how action consistency evolved over
episodes. The Follower personality consistently demon-
strated the highest action consistency, with a smooth
increasing trend reaching near 1.00 in later episodes.
In contrast, the Impatient personality exhibited the
most erratic behaviour, with frequent fluctuations across
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Fig. 9. Average action consistency over episodes, grouped by personality type.

episodes. The Leader and Patient personalities followed
a similar trajectory, displaying moderate consistency but
not as smooth as the Follower. By the final episodes, the
action consistency of the Leader, Patient, and Impatient
personalities converged to similar values. This suggests
that while the Follower maintained strong repeatability
throughout, the other personalities gradually stabilized,
albeit at a lower consistency level than the Follower.

VI. Discussion

With the results laid out, we now reflect on their implica-
tions. This chapter aims to answer the research question:
”How do different robot personalities influence co-
learning?” Our findings reveal that while overall task
performance remains stable across personality types,
significant differences emerge in strategy adaptation and
subjective perception. This suggests that robot personal-
ity does not directly impact performance but plays a key
role in shaping how collaborative strategies evolve within
human-robot teams.

A. Strategy Adaptation and Performance
Our results indicate that robot personality significantly in-
fluences strategy metrics, demonstrating that personality
expression affects the stability of the strategies partici-
pants adopt.
Qualitative observations further support this finding: par-
ticipants adjust their behaviour in response to the robot’s
personality. For example, when interacting with the impa-
tient robot, they take the object more often with force (see
Table V). This suggests that humans dynamically adapt to
the robot’s behaviour to establish more stable interaction
patterns.
Moreover, we observe a strong positive correlation be-
tween strategy stability and performance (r = 0.724, p <
0.0001; see Fig. 7), indicating that as participants settle on
a stable strategy, their performance improves.
Despite these adaptations, task performance metrics
such as Mean Performance Rate and Cumulative Reward
show no significant differences across personality types.

This suggests that humans compensate for variations in
robot behaviour by adjusting their strategies, effectively
stabilizing performance across different robot personali-
ties rather than improving overall task performance.
Interestingly, the robot’s strategy also changed in re-
sponse to its personality type. For instance, although
the impatient robot initially dropped the object frequently,
repeated failures led it to adjust by keeping its hand
closed longer, ultimately giving participants enough time
to grasp the object successfully.
This mutual adaptation demonstrates the flexibility of
human-robot teams and reinforces that optimizing robot
behaviour alone is insufficient for successful collabora-
tion. Instead, it highlights the importance of designing
robots that support strategy discovery and mutual adap-
tation rather than enforcing rigid interaction patterns [6].

B. Internal Policy Dynamics

Analyzing internal policy metrics reveals that robot
personality significantly affects behavioural consistency.
Specifically, the Avg ActionConsistency metric varied with
personality type (p = 0.039), with the Follower condi-
tion exhibiting the highest consistency and the Impatient
condition the lowest. This finding aligns with the strategy
stability results reported in Figure 6, where the Follower
personality type exhibited the highest median stability.
While Avg ActionConsistency reached significance, other
reinforcement learning metrics did not. However, Avg
Entropy (p = 0.075) and Avg QGap (p = 0.061) displayed
notable trends. These trends align with theoretical expec-
tations regarding reinforcement learning dynamics.
The Avg QGap metric reflects the difference in Q-values
between the best and second-best action. A larger Q-
gap indicates that a specific action is consistently rein-
forced with a positive reward, leading to more repeatable
behaviour [38]. Hence, a higher Q-gap suggests a more
stable strategy. This aligns with the earlier finding that
stable strategies differ between personality types.
Similarly, Avg Entropy provides insight into action selec-
tion variability. In stable strategies, positive reinforcement
strengthens preferred actions, reducing entropy as ac-
tions become more predictable [39]. In contrast, unstable
strategies, where failed handovers frequently receive neg-
ative rewards, result in fluctuating action preferences. The
policy fails to converge since, in our implementation, the
agent repeatedly selects the action with the highest value,
receives a negative reward, and then shifts its preference
to another action.
Importantly, this instability persists regardless of ϵ. Ac-
tions are naturally more random when ϵ is high. When ϵ is
low, the selection process becomes more deterministic,
but instability remains because negative reinforcement
pushes different actions to take precedence at different
moments. This prevents a single action from being rein-
forced consistently, leading to a broader action distribution
and higher entropy.
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In contrast to these trends, Avg Convergence shows no
significance for personality (p = 0.697). This suggests
that, on average, participants settled on stable policies
regardless of the robot’s personality. The overall conver-
gence is likely driven more by human adaptation than
personality, leading to similar final policies across con-
ditions. This further supports our finding that humans
compensate for variations in robot behaviour to maintain
task performance.
These findings contribute to understanding how human
adaptation shapes strategy formation in human-robot col-
laboration. Our results suggest that even when initial
conditions differ due to personality implementation, hu-
man adaptability helps establish stable interaction pat-
terns over time, which may be leveraged in reinforcement
learning-based approaches. [40].

C. Perception Metrics

The results show a significant difference in the Patient-
Impatient Score (p = 0.012), indicating that designing
robot personality along physical vectors is salient. In
contrast, the Leader-Follower Score does not show any
significance for personality type (p = 0.145), which shows
that humans are less likely to perceive changes in the
decision-making patterns of the robot. This could be
because the RL parameters require time to decay and
update the q-values meaningfully. Given the short dura-
tion of the runs, participants may not have experienced
a noticeable difference in the robot’s decision-making
behaviour.
This finding has important implications for robot design.
If the goal is to create robots with recognizable person-
alities, emphasis should be placed on physical manifes-
tations of personality traits rather than internal decision-
making parameters. Physical traits create immediate per-
ceptual cues humans can recognize and adapt to, while
decision-making patterns may only become apparent
over extended interactions.
Similarly, perceived fluency of interaction did not vary
significantly with personality type (p = 0.664), suggest-
ing that, on average, the specific robot personality did
not influence how smoothly participants experienced the
collaboration. A likely explanation is that individual prefer-
ences differed enough to cancel out the effects of fluency
on average. For example, some participants preferred the
Impatient personality because it was faster, while others
favoured the Patient personality because it allowed them
to focus on the screen without feeling rushed.
Another possible explanation is that participants naturally
adapted their expectations and behaviour to the robot’s
personality over time. For instance, those interacting with
an Impatient robot may have unconsciously adjusted their
timing to match its faster pace, while those with a Patient
robot may have felt no urgency to change their approach.
This adaptive behaviour could have minimized perceived
differences in fluency across personality types.

These findings suggest that if the goal is to design robot
personalities that are immediately perceptible, emphasis
should be placed on physical vectors such as movement
speed or timing, as these provide clear and recogniz-
able cues for users. However, the aim is to shape team
dynamics and influence collaboration patterns over time.
Decision-making traits can still be integrated into person-
ality expression as they do not significantly impact initial
perception. This enables greater control over team strat-
egy without distorting the robot’s perceived personality.

D. Implications for Co-Learning in Hybrid Teams
Our results contribute to the ongoing debate in the HRI
community on whether human-robot personality match-
ing enhances interaction quality or whether mismatches
might be more effective [9]. Our findings indicate that
robot personality does not significantly impact perceived
team fluency or task performance, suggesting strict per-
sonality matching is not required for effective collabora-
tion. Instead, the ability to adapt interaction strategies
appears to be the key factor in maintaining successful
human-robot teamwork.
These findings have practical implications for designing
collaborative robots across various domains, including
manufacturing, healthcare, and service sectors. To en-
hance hybrid team performance, designers should con-
sider the following:

1) Adopting follower-type designs for stable poli-
cies: Robots converging on strategies quickly lead
to higher action consistency and more stable interac-
tions, improving task performance.

2) Promoting strategic flexibility: Co-learning sys-
tems should support diverse interaction strategies,
enabling teams to find suitable approaches that mit-
igate potential performance issues from personality-
specific behaviours.

3) Implementing personality through mixed vectors:
Prioritize physical vectors (e.g., movement speed,
stiffness) for clear and immediate personality ex-
pression, especially in short-term interactions, while
using decision-making parameters to shape long-
term collaboration dynamics.

These design recommendations closely reflect van Zoe-
len et al.’s emphasis on ”co-learning,” wherein humans
and robots iteratively adapt their behavior to each other
rather than relying on rigid, predefined roles (Section 2
in their paper). In particular, van Zoelen et al.’s analysis
of co-adaptive interaction patterns illustrates how suc-
cessful collaboration emerges from recurring co-adaptive
behaviors, such as dynamically adjusting who takes the
lead or reacting to changes in the partner’s actions. This
approach supports flexible strategy discovery, ultimately
improving collaborative fluency over time. Although van
Zoelen et al. did not focus on personality traits, our results
(Section VI-C, Table V, Figure 5) show that expressing
personality through clear, perceivable behaviors (such as
speed and timing) similarly supports mutual adaptation,
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reinforcing van Zoelen et al.’s conclusion that transparent,
dynamically evolving actions foster stronger co-learning
and engagement.

E. Methodological Reflections and Limitations
a) Sample Size and Statistical Power.: A notable constraint
of this study is the relatively small participant pool
(n = 15) in a repeated measures design. While repeated
measures can enhance statistical efficiency, such a
modest sample size may limit the power to detect
subtler effects of robot personality. Therefore, certain
performance metrics, such as Mean Performance
Rate and Cumulative Reward, could show undetected
differences. This limitation is particularly relevant for
metrics that approached but did not reach statistical
significance, such as Avg Entropy (p = 0.075) and
Avg QGap (p = 0.061), which might reveal significant
differences with a larger sample. However, as this study
is exploratory, the sample size is sufficient to identify key
trends and provide insights into the influence of robot
personality on co-learning. Future work can build upon
these findings with larger participant pools to improve
generalizability.

b) Time Constraints on Real-Time Reinforcement Learning.:
Each condition involved a limited number of interaction
episodes (11 per personality), restricting the time
available for the human or robot to converge on
optimal strategies. Reinforcement learning typically
benefits from extended interaction horizons for policy
stabilization. When participants must simultaneously
learn a secondary task (the lumbar puncture simulation),
this short timeframe could also limit their ability to adjust
effectively. This limitation might particularly affect the
perception of leader/follower traits, which rely more
heavily on reinforcement learning parameters and require
more interactions to become salient.

c) Control of Human Factors.: Individual variations in
motor skills, adaptability, and cognitive strategies were
not explicitly controlled. Some participants may have
more difficulty navigating the teleoperation task, while
others adapt readily. In addition, no direct measures of
mental workload (e.g., NASA-TLX [41]) were collected.
Different perceived task difficulty and stress levels
could shape how participants respond to or perceive
the robot’s behaviours. Future work could incorporate
these measures to understand better how cognitive load
influences adaptation to different robot personalities.

d) System Implementation Constraints.: The phase-based
Q-learning architecture and finite-state machine (FSM)
streamline the action space, allowing a greater expres-
sion of personality at the cost of limiting emergent be-
haviours that might otherwise develop in a more flexible
or continuous learning environment. While this approach
enabled precise experimental control over the personality

types, it may not fully capture the richness of human-
robot co-adaptation that could emerge in less constrained
interaction paradigms.

F. Future Directions
a) Long-Term Interactions and Statistical Power.: As noted
in our methodological reflections, a small participant
pool and limited interaction episodes may obscure the
subtle effects of robot personality. Future studies should
include more participants and extend the number of
episodes per condition to allow humans and robots
to reach more stable strategies. Larger-scale, longer-
term experiments would boost statistical power and
better capture the evolving nature of co-learning,
especially where humans require time to fully develop
strategies and the robot benefits from extended learning
horizons. Longitudinal studies could reveal whether the
leader/follower distinction becomes more salient over
time as reinforcement learning parameters have more
opportunity to influence observable behaviour.

b) Personality Design.: While this work focused on two
primary axes of personality, incorporating additional Big
Five traits or multi-dimensional models could reveal a
wider spectrum of behaviours and further differentiate
robot interactions. Designing personalities suited for
low-modality robots where expressive capabilities are
limited to movement speed, orientation, or force remains
challenging. However, innovations in reward shaping
and motion-parameter tuning could help produce more
distinct behaviours and clearer human perceptions.
Future work might explore how combinations of physical
characteristics and decision-making parameters could
create more recognizable and consistent personality
expressions.

c) Adaptive Personalities.: While this study focused on
static robot personalities, future work could explore adap-
tive personality models that adjust in real time based
on human preferences, task performance, or contex-
tual cues. Since individuals have different collaboration
preferences, a robot capable of dynamically adjusting
personality-related parameters could enhance engage-
ment and improve interaction efficiency over time.
For example, a collaborative robot could initially adopt a
consistent behavioural pattern, such as a follower role,
to help the human form a mental model. Then, it could
gradually adjust its behaviour based on observed user
tendencies, potentially shifting toward a leader-patient
role. Investigating the impact of such adaptations on team
performance and engagement could provide valuable in-
sights into optimizing long-term human-robot collabora-
tion.

VII. Conclusion
This paper investigated how different robot personali-
ties influence co-learning in human-robot collaboration.
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The results demonstrate that while personality does not
directly impact overall task performance, it significantly
affects strategy adaptation and perceived interaction dy-
namics. Specifically, we found that stability in human-
robot interaction strategies strongly correlates with per-
formance, reinforcing that adaptability is a key factor in
effective co-learning.
Our findings indicate that personality-driven behavioural
differences primarily shape how hybrid teams adjust their
strategies rather than determining final task outcomes.
For instance, the impatient personality led to frequent ob-
ject drops, yet the robot adapted by waiting longer before
releasing, allowing participants to retrieve the item in time.
Conversely, the patient personality increased forceful ob-
ject retrievals, suggesting that participants compensated
for the robot’s slower release timing. These adaptations
highlight the bidirectional nature of co-learning, where
both the human and the robot adjust to form coherent
strategies.
Moreover, our analysis of reinforcement learning dynam-
ics showed that personality influences action consistency,
with the follower personality exhibiting the highest re-
peatability and the impatient personality the lowest. De-
spite these differences, traditional reinforcement learning
convergence metrics did not reveal significant effects of
personality, suggesting that humans ultimately compen-
sate for behavioural inconsistencies. This underscores
the robustness of human adaptation in hybrid teams and
raises questions about the necessity of strict personality
matching in human-robot collaboration.
These findings have important implications for designing
robots in collaborative settings. First, ensuring that robots
quickly converge on a stable strategy enhances interac-
tion consistency. Second, encouraging strategic flexibility
allows teams to find suitable approaches that mitigate
potential performance issues arising from personality-
specific behaviours. Lastly, personality implementation
should prioritize easily perceptible physical traits like
movement speed and stiffness to enhance perception
while using decision-making parameters to shape long-
term collaboration dynamics.

References
[1] G. Kootstra, A. Bender, T. Perez, and E. van Henten, Robotics in

Agriculture. Germany: Springer, Mar. 2020, pp. 1–19.
[2] N. G. Hockstein, C. Gourin, R. Faust, and D. J. Terris, “A history of

robots: from science fiction to surgical robotics,” Journal of robotic
surgery, vol. 1, pp. 113–118, 2007.

[3] A. Hentout, M. Aouache, A. Maoudj, and I. Akli, “Human–robot
interaction in industrial collaborative robotics: a literature review of
the decade 2008–2017,” Advanced Robotics, vol. 33, no. 15-16,
pp. 764–799, 2019.

[4] K. van den Bosch, T. Schoonderwoerd, R. Blankendaal, and
M. Neerincx, “Six challenges for human-ai co-learning,” in Adaptive
Instructional Systems: First International Conference, AIS 2019,
Held as Part of the 21st HCI International Conference, HCII 2019,
Orlando, FL, USA, July 26–31, 2019, Proceedings 21. Springer,
2019, pp. 572–589.

[5] Futura Automation, “A history timeline of industrial
robotics,” 2019, accessed: 2024-09-26. [Online]. Avail-
able: https://futura-automation.com/2019/05/15/a-history-timeline-
of-industrial-robotics/

[6] E. M. Van Zoelen, K. Van Den Bosch, and M. Neerincx, “Becoming
team members: Identifying interaction patterns of mutual adap-
tation for human-robot co-learning,” Frontiers in Robotics and AI,
vol. 8, p. 692811, 2021.

[7] M. R. Barrick, G. L. Stewart, M. J. Neubert, and M. K. Mount,
“Relating member ability and personality to work-team processes
and team effectiveness,” Journal of Applied Psychology, vol. 83,
no. 3, pp. 377–391, 1998.

[8] B. Tay, Y. Jung, and T. Park, “When stereotypes meet robots: the
double-edge sword of robot gender and personality in human–
robot interaction,” Computers in Human Behavior, vol. 38, pp. 75–
84, 2014.

[9] C. Esterwood and L. P. Robert, “A systematic review of human and
robot personality in health care human-robot interaction,” Frontiers
in Robotics and AI, vol. 8, p. 748246, 2021.

[10] L. Luo, K. Ogawa, G. Peebles, and H. Ishiguro, “Towards a per-
sonality ai for robots: Potential colony capacity of a goal-shaped
generative personality model when used for expressing person-
alities via non-verbal behaviour of humanoid robots,” Frontiers in
Robotics and AI, vol. 9, p. 728776, 2022.

[11] M. Y. Lim, J. D. A. Lopes, D. A. Robb, B. W. Wilson, M. Moujahid,
E. De Pellegrin, and H. Hastie, “We are all individuals: The role
of robot personality and human traits in trustworthy interaction,” in
2022 31st IEEE International Conference on Robot and Human
Interactive Communication (RO-MAN). IEEE, Aug. 2022. [Online].
Available: http://dx.doi.org/10.1109/RO-MAN53752.2022.9900772

[12] E. M. van Zoelen, K. van den Bosch, M. Rauterberg, E. Barakova,
and M. Neerincx, “Identifying interaction patterns of tangible co-
adaptations in human-robot team behaviors,” Frontiers in Psychol-
ogy, vol. 12, p. 645545, 2021.

[13] H. W. Veldman-Loopik, “A method for embodied co-learning in in-
terdependent human-robot teams,” Master’s thesis, Delft University
of Technology, 2023, supervisors: Dr. Ir. Luka Peternel, Ir. Emma
van Zoelen.

[14] G. Hoffman, “Evaluating fluency in human–robot collaboration,”
IEEE Transactions on Human-Machine Systems, vol. 49, no. 3, pp.
209–218, 2019.

[15] C. Sammut and G. I. Webb, Encyclopedia of machine learning and
data mining. Springer Publishing Company, Incorporated, 2017.

[16] M. Stolle and D. Precup, “Learning options in reinforcement learn-
ing,” in Abstraction, Reformulation, and Approximation: 5th Inter-
national Symposium, SARA 2002 Kananaskis, Alberta, Canada
August 2–4, 2002 Proceedings 5. Springer, 2002, pp. 212–223.

[17] T. G. Dietterich, “Hierarchical reinforcement learning with the maxq
value function decomposition,” Journal of artificial intelligence re-
search, vol. 13, pp. 227–303, 2000.

[18] A. H. Qureshi, Y. Nakamura, Y. Yoshikawa, and H. Ishiguro, “Robot
gains social intelligence through multimodal deep reinforcement
learning,” in 2016 IEEE-RAS 16th international conference on
humanoid robots (humanoids). IEEE, 2016, pp. 745–751.

[19] S. Roccas, L. Sagiv, S. H. Schwartz, and A. Knafo, “The big five
personality factors and personal values,” Personality and social
psychology bulletin, vol. 28, no. 6, pp. 789–801, 2002.

[20] Oxford University Press. (2023) Extroversion. Oxford English
Dictionary. [Online; accessed 30-Sep-2024]. [Online]. Available:
https://www.oed.com

[21] E. R. Thompson, “Development and validation of an international
english big-five mini-markers,” Personality and individual differ-
ences, vol. 45, no. 6, pp. 542–548, 2008.

[22] G. Matthews, P. A. Hancock, J. Lin, A. R. Panganiban, L. E.
Reinerman-Jones, J. L. Szalma, and R. W. Wohleber, “Evolution
and revolution: Personality research for the coming world of robots,
artificial intelligence, and autonomous systems,” Personality and
individual differences, vol. 169, p. 109969, 2021.

[23] R. Alahmad, C. Esterwood, S. Kim, S. You, and Q. Zhang, “A review
of personality in human–robot interactions,” Ann Arbor, vol. 1001,
pp. 48 109–1285, 2020.

[24] A. Mileounis, R. H. Cuijpers, and E. I. Barakova, “Creating robots
with personality: The effect of personality on social intelligence,” in
Artificial Computation in Biology and Medicine: International Work-
Conference on the Interplay Between Natural and Artificial Compu-
tation, IWINAC 2015, Elche, Spain, June 1-5, 2015, Proceedings,
Part I 6. Springer, 2015, pp. 119–132.

[25] C. M. Doherty and R. B. Forbes, “Diagnostic lumbar puncture,” The
Ulster medical journal, vol. 83, no. 2, p. 93, 2014.



21

[26] I. Foundation, “Tissue properties database: Density,” 2024,
accessed: 2024-10-02. [Online]. Available: https://itis.swiss/virtual-
population/tissue-properties/database/density/

[27] J. Dolfin, “Teleoperated lumbar puncture simulation,”
2024, accessed: 2024-11-14. [Online]. Available:
https://github.com/JesseDolfin/Teleoperated LumbarPuncture Simulation

[28] K. Chatzilygeroudis, M. Mayr, B. Fichera, and A. Billard,
“iiwa ros: A ROS stack for KUKA’s IIWA robots using the
Fast Research Interface,” 2019, software available from GitHub.
[Online]. Available: https://github.com/epfl-lasa/iiwa ros

[29] J. Dolfin, “Co-learning robot personalities reposi-
tory,” 2024, accessed: 2024-10-02. [Online]. Available:
https://github.com/JesseDolfin/co learning robot personalities

[30] C. Lugaresi, J. Tang, H. Nash, C. McClanahan, E. Uboweja,
M. Hays, F. Zhang, C.-L. Chang, M. G. Yong, J. Lee et al.,
“Mediapipe: A framework for building perception pipelines,” arXiv
preprint arXiv:1906.08172, 2019.

[31] J. Eschmann, “Reward function design in reinforcement learning,”
in Reinforcement Learning Algorithms: Analysis and Applications,
B. Belousov, H. Abdulsamad, P. Klink, S. Parisi, and J. Peters,
Eds. Cham: Springer International Publishing, 2021, pp. 25–33.
[Online]. Available: https://doi.org/10.1007/978-3-030-41188-6 3

[32] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostro-
vski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level
control through deep reinforcement learning,” Nature, vol. 518, no.
7540, pp. 529–533, 2015.

[33] A. Juliani, “Maximum entropy policies in reinforce-
ment learning & everyday life,” 2018. [Online]. Avail-
able: https://awjuliani.medium.com/maximum-entropy-policies-in-
reinforcement-learning-everyday-life-f5a1cc18d32d

[34] L. Statistics, “Repeated measures anova - understanding a
repeated measures anova,” https://statistics.laerd.com/statistical-
guides/repeated-measures-anova-statistical-guide.php, accessed:
2025-01-21.

[35] S. W. Greenhouse and S. Geisser, “On methods in the analysis of
profile data,” Psychometrika, vol. 24, no. 2, pp. 95–112, 1959.

[36] XLSTAT Help Center, “How to interpret contradictory results
between anova and multiple pairwise comparisons,” 2023. [Online].
Available: https://help.xlstat.com/6741-how-interpret-contradictory-
results-between-anova-and

[37] Melanie, “Pearson and spearman correlations: A guide
to understanding and applying correlation methods,”
DataScientest, January 2024. [Online]. Available:
https://datascientest.com/en/pearson-and-spearman-correlations-
a-guide-to-understanding-and-applying-correlation-methods

[38] M. G. Bellemare, G. Ostrovski, A. Guez, P. S.
Thomas, and R. Munos, “Increasing the action gap: New
operators for reinforcement learning,” 2015. [Online]. Available:
https://arxiv.org/abs/1512.04860

[39] N. Team, “Entropy in machine learning — applications, examples,
alternatives,” 2024, accessed: 2025-02-24. [Online]. Available:
https://nebius.com/blog/posts/entropy-in-machine-learning

[40] S. Nikolaidis, S. Nath, A. D. Procaccia, and S. Srinivasa, “Game-
theoretic modeling of human adaptation in human-robot collabora-
tion,” in Proceedings of the 2017 ACM/IEEE international confer-
ence on human-robot interaction, 2017, pp. 323–331.

[41] NASA Human Systems Integration Division, “NASA
Task Load Index (TLX) Paper/Pencil Version,”
https://humansystems.arc.nasa.gov/groups/tlx/downloads/TLXScale.pdf,
accessed: 2025-02-20.



22

Appendix
A. Action Space Table
The full set of action that the algorithm can take per phase are shown in table VI

Phase Action Description Index
0 Move to the home position 0
1 Initiate the handover immediately 1
1 Wait for a state change 2
2 Go to the ’serve’ handover orientation 3
2 Go to ’drop’ handover orientation 4
3 Open the hand 5
3 Open the hand partially 6
3 Close the hand 7

TABLE VI
Actions with Phase and Index

B. State Space Table
Similarly, the states are defined in table VII. The state of the robot signifies the phase the experiment is in; for this
reason, the phases are also added to the table.

Phase State Description Index
0 Home 0
1 Start handover immediately & the hand is in the

workspace
1

1 Start handover immediately & the hand is not in the
workspace

2

1 Wait for a state change & the hand is in the workspace 3
1 Wait for a state change & the hand is not in the

workspace
4

2 Human hand orientation: serve & robot hand
orientation: serve

5

2 Human hand orientation: serve & robot hand
orientation: drop

6

2 Human hand orientation: drop & robot hand
orientation: serve

7

2 Human hand orientation: drop & robot hand
orientation: drop

8

2 Human hand orientation: unknown & robot hand
orientation: serve

9

2 Human hand orientation: unknown & robot hand
orientation: drop

10

3 Human input detected & Robot hand is open 11
3 Human input detected & Robot hand is partially open 12
3 Human input detected & Robot hand is closed 13
3 No human input detected & Robot hand is open 14
3 No human input detected & Robot hand is partially

open
15

3 No human input detected & Robot hand is closed 16
TABLE VII

States with Phase and Index
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C. Human Fluency Questionaire
This questionnaire aims to evaluate the perceived fluency and effectiveness of the collaboration between the human
participant and the robot. The questions are designed to measure several key aspects of interaction, such as
collaboration fluency, trust, shared goals, and the relative contribution of each party. Participants are asked to rate
their level of agreement with each statement based on their experience during the experiment, using a Likert scale
from 1 (Strongly Disagree) to 7 (Strongly Agree).

1 2 3 4 5 6 7

Strongly Disagree Somewhat Disagree Disagree Neutral Agree Somewhat Agree Strongly Agree

Questionnaire
Please rate the following statements based on your experience collaborating with the robot. Indicate your level of
agreement by writing a number between 1 (Strongly Disagree) and 7 (Strongly Agree).

1. The robot improved over time. (1-7)

2. The team worked fluently together. (1-7)

3. The robot adapted to my input as the task progressed. (1-7)

4. The robot contributed to the team’s success. (1-7)

5. I trusted the robot to act according to our shared goals. (1-7)

6. The robot made decisions that aligned with my expectations for timing and handover actions. (1-7)

7. The robot was committed to the task. (1-7)

8. I felt like an equal partner in the team. (1-7)

9. I had to guide the robot more than expected. (reverse scored) (1-7)

10. The robot demonstrated an understanding of the shared task goals. (1-7)

11. I adjusted my actions based on the robot’s behaviour. (1-7)

12. The robot made independent decisions when appropriate. (1-7)

13. I had to constantly monitor the robot’s actions to ensure task success. (reverse scored) (1-7)

14. The robot and I shared a mutual understanding of the task requirements. (1-7)

15. The robot made independent decisions when appropriate to support the task. (1-7)

Categories
• Collaboration Fluency: 2, 3, 4
• Relative Contribution: 8, 9, 12
• Trust in Robot: 5, 13
• Positive Teammate Traits: 6, 7, 12, 15
• Perception of Improvement: 1, 3, 11
• Perception of Shared Goal: 5, 10, 14
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D. Finite state machine
Figure 10 shows the FSM used to control the robotic arm during the handover task. It defines the task’s phases,
transitions, and actions based on sensory inputs, human signals, and reinforcement learning decisions.

Fig. 10. Finite State Machine Diagram
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E. Correlation Matrix
Figure 11 shows the full correlation matrix of all the key metrics used in the analysis of the results.

Fig. 11. Correlation Matrix
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F. Extra Plots
In these appendices, we outline all the remaining plots we examined in our paper that are not significant and/or do not
show any visually interesting effects.

Fig. 12. Box plot showing the average Q-table convergence across different personality types.

Fig. 13. Box plot showing the average entropy per personality type.
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Fig. 14. Box plot showing the average Q-gap for each personality type.

Fig. 15. Fluency score comparison across different personality types.
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Fig. 16. Mean performance rate for each personality type.

Fig. 17. Total number of strategy changes per personality type.
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Fig. 18. Cumulative reward distribution across different personality types, separated by positive and negative rewards.

Fig. 19. Perfect negative correlation between stability and strategy changes.
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Fig. 20. Scatter plot of entropy vs. QGap, color-coded by personality type. The dashed line represents a linear regression fit, with the shaded region denoting
the confidence interval.

Fig. 21. Average entropy for each personality type plotted over the learning episodes
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Fig. 22. Average Q-table convergence for each personality type plotted for the learning episodes

Fig. 23. QGap over episodes by personality type.
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G. Interaction Patterns

TABLE VIII
Categorized interaction patterns observed during human-robot collaboration. Interaction patterns are classified as either Stable Situations,
which represent consistent and recurring behaviours, or Sudden Adaptations, which involve abrupt changes in behaviour in response to task

demands or partner actions.

Interaction Pattern Category Personality Type Count

Human holds item until the robot releases Stable Situation Patient 16
Human holds item until the robot releases Stable Situation Impatient 14
Human holds item until the robot releases Stable Situation Leader 25
Human holds item until the robot releases Stable Situation Follower 35
Human waits for robot to open hand Stable Situation Patient 49
Human waits for robot to open hand Stable Situation Impatient 50
Human waits for robot to open hand Stable Situation Leader 43
Human waits for robot to open hand Stable Situation Follower 48
misalignment Stable Situation Patient 6
misalignment Stable Situation Impatient 5
misalignment Stable Situation Leader 5
misalignment Stable Situation Follower 5
Robot and human meet in the middle Sudden Adaptation Patient 11
Robot and human meet in the middle Sudden Adaptation Impatient 9
Robot and human meet in the middle Sudden Adaptation Leader 14
Robot and human meet in the middle Sudden Adaptation Follower 1
Human moves towards robot Sudden Adaptation Patient 44
Human moves towards robot Sudden Adaptation Impatient 45
Human moves towards robot Sudden Adaptation Leader 31
Human moves towards robot Sudden Adaptation Follower 33
Human takes object from robot with force Sudden Adaptation Patient 47
Human takes object from robot with force Sudden Adaptation Impatient 13
Human takes object from robot with force Sudden Adaptation Leader 18
Human takes object from robot with force Sudden Adaptation Follower 17
Human touches hand unnecessarily Sudden Adaptation Patient 4
Human touches hand unnecessarily Sudden Adaptation Impatient 3
Human touches hand unnecessarily Sudden Adaptation Leader 1
Human touches hand unnecessarily Sudden Adaptation Follower 3
Robot drops object Sudden Adaptation Patient 2
Robot drops object Sudden Adaptation Impatient 36
Robot drops object Sudden Adaptation Leader 14
Robot drops object Sudden Adaptation Follower 9
Robot moves away Sudden Adaptation Patient 12
Robot moves away Sudden Adaptation Impatient 21
Robot moves away Sudden Adaptation Leader 24
Robot moves away Sudden Adaptation Follower 12
Robot moves towards human Sudden Adaptation Patient 56
Robot moves towards human Sudden Adaptation Impatient 66
Robot moves towards human Sudden Adaptation Leader 66
Robot moves towards human Sudden Adaptation Follower 73


