

Delft University of Technology

Pilot Proof-Load Test on Viaduct De Beek: Case Study

Lantsoght, Eva; Koekkoek, Rutger; van der Veen, Cor; Hordijk, Dick; de Boer, A.

DOI

[10.1061/\(ASCE\)BE.1943-5592.0001131](https://doi.org/10.1061/(ASCE)BE.1943-5592.0001131)

Publication date

2017

Document Version

Accepted author manuscript

Published in

Journal of Bridge Engineering

Citation (APA)

Lantsoght, E., Koekkoek, R., van der Veen, C., Hordijk, D., & de Boer, A. (2017). Pilot Proof-Load Test on Viaduct De Beek: Case Study. *Journal of Bridge Engineering*, 22(12), Article 05017014.
[https://doi.org/10.1061/\(ASCE\)BE.1943-5592.0001131](https://doi.org/10.1061/(ASCE)BE.1943-5592.0001131)

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights.

We will remove access to the work immediately and investigate your claim.

Case study: Pilot proof load test on viaduct De Beek

Eva O.L. Lantsoght, Ph.D., M. ASCE^{1,2}, Rutger T. Koekkoek³, Cor van der Veen, Ph.D.⁴, Dick

A. Hordijk, Ph.D.⁵, Ane de Boer, Ph.D.⁶

Abstract

7 For existing bridges, proof load testing can be a suitable assessment method. This paper
8 addresses the evaluation of a posted reinforced concrete slab bridge over the highway through
9 proof load testing, detailing the preparation, execution and analysis of the test. As the target
10 proof load and the required measurements for proof load testing currently are not well-defined in
11 the existing codes, this pilot case is used to develop and evaluate proposed recommendations for
12 proof load testing for a future guideline on proof load testing for the Netherlands. Moreover, the
13 pilot proof load test is used to study the feasibility of proof load testing for both shear and
14 flexure.

16 CE database subject headings

17 assessment; bridge maintenance; bridge tests; concrete slabs; field tests; flexural strength; shear
18 strength

¹ Researcher, Concrete Structures, Delft University of Technology, 2628CN Delft, The Netherlands, E-mail: E.O.Lantsoght@tudelft.nl

² Full Research Professor, Politecnico, Universidad San Francisco de Quito, EC170157 Quito, Ecuador, E-mail: elantsoght@usfq.edu.ec

³ Researcher, Concrete Structures, Delft University of Technology, 2628CN Delft, The Netherlands, E-mail: R.T.Koekkoek@tudelft.nl

⁴ Associate Professor, Concrete Structures, Delft University of Technology, 2628CN Delft, The Netherlands, E-mail: C.vanderveen@tudelft.nl

5 Full Professor, Concrete Structures, Delft University of Technology, 2628CN Delft, The Netherlands, E-mail:
D.A.Hordijk@tudelft.nl

⁶ Senior advisor, Rijkswaterstaat, Ministry of Infrastructure and the Environment, P.O.Box 24057, 3502MB Utrecht, The Netherlands, E-mail: ane.de.boer@rws.nl

20 **Introduction**

21 Load testing is the non-destructive field testing of bridges (Cochet et al. 2004; Fryba and
22 Pirner 2001; NRA 2014). Two types of load testing can be distinguished. Diagnostic load testing
23 (Ataei et al. 2016; Bentz and Hoult 2016; Farhey 2005; Fu et al. 1997; Gokce et al. 2011;
24 Halding et al. 2017; Jauregui et al. 2010; Kim et al. 2009; Maguire et al. 2015; Matta et al. 2008;
25 Moen et al. 2013; Murià-Vila et al. 2015; Nguyen et al. 2016; Ohanian et al. 2017; Olaszek et al.
26 2014; Russo et al. 2000; Sanayeи et al. 2012; Sanayeи et al. 2016; Stroh et al. 2010; Velázquez et
27 al. 2000) uses lower load levels, and is used to verify assumptions made in analytical models. In
28 practice, these models are often linear elastic, three-dimensional finite element models (Bell and
29 Sipple 2009; Bridge Diagnostics Inc. 2012; Hernandez and Myers 2015). The structural response
30 in the analytical model can be compared to the structural response measured in the field, and the
31 analytical model and the resulting rating can be updated accordingly. Proof load testing uses
32 higher load levels. In a proof load test (Aguilar et al. 2015; Anay et al. 2016; Arangjelovski et al.
33 2015; Cai and Shahawy 2003; Casas and Gómez 2013; Faber et al. 2000; Fu and Tang 1995;
34 Moses et al. 1994; Olaszek et al. 2012; Olaszek et al. 2016; Saraf et al. 1996; Spaethe 1994;
35 Zwicky and Brühwiler 2015), a load is applied that demonstrates that the bridge can carry the
36 loads prescribed by the code satisfactorily, or that higher or lower load levels can be carried by
37 the bridge. Whether the bridge behavior is satisfactory is typically expressed based on
38 “acceptance criteria” or “stop criteria”. These criteria, based on, among others, deflections, crack
39 widths and strains, identify the acceptable limits of the bridge’s structural response. If these
40 limits are exceeded during a proof load test, and higher loads are applied, there is a risk for
41 irreversible damage to the structure. If a stop criterion is exceeded, further loading is not
42 permitted. The conclusion of the proof load test is then that the bridge satisfies a lower load level

43 (i.e. the last load level that was achieved prior to exceedance of a stop criterion) than the target
44 load level. Alternatively, when the target load level is achieved, but no stop criterion has been
45 exceeded yet, further loading can be used to demonstrate a larger load level.

46 Diagnostic load testing can be used to determine the transverse flexural distribution (He
47 et al. 2012), to determine the stiffness of a structure (Barker 2001; Zhang et al. 2011), and to
48 verify if a design or repair intervention is functioning appropriately (Nilimaa et al. 2015; Puurula
49 et al. 2015; Shifferaw and Fanous 2013). For structures with limited uncertainties, such as steel
50 bridges or concrete girder bridges, diagnostic load testing is recommended. Strain gages can be
51 placed over the girder height to determine the position of the neutral axis. The differences in
52 structural response in the analytical model and the response measured in the field can be
53 attributed to different contributions, such as the actual impact factor, the actual dimensions, the
54 unaccounted stiffness of elements such as curbs and railing, the actual lateral live load
55 distribution, the bearing restraint effect, and unintended composite action (Barker 2001). For
56 bridges with large uncertainties, on the other hand, proof load testing is necessary. These large
57 uncertainties can include the effect of material degradation on the structure's response
58 (Koekkoek et al. 2015a), the geometry and reinforcement layout for bridges without plans
59 (Aguilar et al. 2015; Anay et al. 2016; Shenton et al. 2007), or the load path at higher load levels
60 (Taylor et al. 2007). For bridge types such as reinforced concrete slab bridges (Saraf 1998),
61 placing strain gages over the height is more complicated, and measurements can only be taken
62 from the bottom of the slab, from the side faces, and, provided that it does not obstruct the
63 loading process and that no wearing surface covering the concrete cross-section is present, from
64 the top faces. This paper deals with a case study of proof load testing of a reinforced concrete

65 slab bridge for both flexure and shear, and how the results of this case study can be used to
66 develop and evaluate recommendations for proof load testing.

67 **Proof load testing**

68 *Current standards and guideline*

69 Existing codes for load testing of bridges focus on diagnostic load testing. Examples are
70 the French guidelines (Cochet et al. 2004), the Irish guidelines (NRA 2014) and the British
71 guidelines (The Institution of Civil Engineers - National Steering Committee for the Load
72 Testing of Bridges 1998). Similar procedures are followed in Italy (Veneziano et al. 1984),
73 Switzerland (Brühwiler et al. 2012), and the Czech Republic and Slovakia (Frýba and Pirner
74 2001). The Manual for Bridge Rating through Load Testing (NCHRP 1998) and the Manual for
75 Bridge Evaluation (AASHTO 2016) deal with diagnostic load testing and proof load testing.
76 These manuals do not qualitatively describe stop criteria for proof load testing, but mention that
77 the test should be terminated when the bridge exhibits the onset of non-linear behavior or other
78 visible signs of distress. None of the existing codes for proof load testing allow for the testing of
79 non-ductile failure modes, such as shear in concrete bridges.

80 For proof load testing of concrete structures, building codes are available. The German
81 guidelines (Deutscher Ausschuss für Stahlbeton 2000) are originally developed for reinforced
82 and plain concrete buildings, but are also applied to concrete bridges (Schacht et al. 2016b). For
83 buildings, ACI 437.2M-13 (ACI Committee 437 2013), prescribing a slightly different required
84 proof load than ACI 318-14 (ACI Committee 318 2014), is available. Since these codes are
85 specialized for concrete structures (and buildings in particular), they contain detailed stop criteria
86 (nomenclature used in the German guidelines) or acceptance criteria (nomenclature used in ACI
87 437.2M-13 (ACI Committee 437 2013)). The stop criteria are only valid for flexure-critical

88 positions, and proof load testing for shear is not permitted. Testing for shear is a current topic of
89 research (Schacht et al. 2016a).

90 ***Goals of proof load testing and examples***

91 The main goal of a proof load test is to demonstrate experimentally that a bridge can
92 withstand the factored live loads given in the code. As such, a proof load test does not give an
93 estimate of the ultimate capacity of a bridge; only a lower bound of the capacity: the capacity is
94 known to be larger than the load effect induced by the proof load. However, because of the high
95 load levels involved in proof load tests, the risks for structural damage is larger. Adequate
96 preparation to guarantee the structural safety of the bridge and the safety of the personnel is thus
97 important (Cai and Shahawy 2003).

98 Some states and countries have developed special vehicles for proof loading. Examples
99 of these vehicles include the two proof loading vehicles of Florida that can be loaded with ballast
100 blocks (90 tons maximum each) (Shahawy 1995), and the BELFA (“Belastungsfahrzeug”,
101 German for loading vehicle) from Germany (ifem 2013), which can apply a maximum load of
102 150 tons.

103 In the state of New Mexico, a large number of bridges without plans exist (Aguilar et al.
104 2015), for which a rating method based on diagnostic and proof load tests, combined with other
105 non-destructive testing techniques has been developed. Similar testing has also been carried out
106 in New York state (Hag-Elsafi and Kunin 2006), in Delaware (Shenton et al. 2007), and on
107 bridges owned by the US Army (Varela-Ortiz et al. 2010), which are subjected to different live
108 loads (military vehicles).

109 Another type of uncertainty that can require proof load tests, is uncertainty related to the
110 effect of material deterioration and degradation on the structural performance of existing bridges.

111 An example is the proof load testing of a deteriorated bridge in Michigan (Juntunen and Isola
112 1995), where a proof load test with an 82-ton two-unit vehicle successfully showed that the load
113 restriction of 45 tons did not need to be reduced because of the extensive deterioration in the
114 bridge. A later analysis, however, showed that in the proof load test, composite action between
115 the old beams and the newly applied overlay had occurred. This composite action is lost over
116 time, but was still sufficient for the structure to keep the 45 ton two-unit vehicle limit.

117 ***Previous proof load tests in the Netherlands***

118 In the Netherlands, a large number of reinforced concrete slab bridges were built in the
119 decades following the Second World War (Lantsoght et al. 2013b). These bridges are reaching
120 the end of their originally devised service life. To assess these structures, and to investigate their
121 structural safety under the current live loads that are larger than those at the time of their design,
122 an assessment is necessary. In Europe, no separate live loads models are defined for the
123 assessment of existing bridges. Therefore, all assessment, including assessment through proof
124 load testing, needs to be carried out based on the live load model which consists of design
125 tandems and distributed lane loads. In North American practice, the target proof load can be
126 calculated as a multiple (reference value = 1.4) of the truck used for assessment. In Europe, the
127 target proof load needs to represent the full live load model.

128 During the last decade, a number of proof load tests on reinforced concrete slab bridges
129 have been carried out in the Netherlands. An overview of the program of pilot proof load tests
130 can be found elsewhere (Lantsoght et al. in press). In this paragraph, only the main reasons for
131 selecting the pilot cases, and main conclusions from the load tests are given. The first test was
132 carried out on the viaduct Heidijk (Dieteren and den Uijl 2009), to see if this bridge with material
133 degradation caused by alkali-silica reaction can carry a truck of 30 ton on a shear-critical

134 position. The load was applied through a loading frame and hydraulic jacks with a hand pump. It
135 was found that the 30 ton truck can be successfully carried. A second test was on the viaduct
136 Vlijmen-Oost (Koekkoek et al. 2015b), also affected by alkali-silica reaction. The BELFA
137 vehicle (Bretschneider et al. 2012) was used on a shear-critical position and on a critical position
138 for bending moment. It was concluded that the bridge fulfills the current code requirements. In a
139 next test, an existing slab bridge with insufficient flexural capacity according to the assessment
140 calculations was tested: the Halvemaans Bridge (Fennis and Hordijk 2014). This test was the
141 first test in which the load was applied by using a load spreader beam and hydraulic jacks.
142 Again, the load test was used to show that the bridge fulfills the requirements. In the summer of
143 2014, the Ruytenschilt bridge was tested to failure (Lantsoght et al. 2016a; Lantsoght et al.
144 2016b; Lantsoght et al. 2016c; Lantsoght et al. available online ahead of print) in two spans. The
145 last proof load test on a bridge with damage caused by alkali-silica reaction, the viaduct Zijlweg,
146 studied a shear- and flexure-critical position in the first span (Koekkoek et al. 2015a; Lantsoght
147 et al. in review). Upon assessment, it was found that the viaduct Zijlweg does not fulfill the
148 requirements of the code for shear. Through the proof load test, it could be shown that the
149 viaduct can carry the factored live loads of the code without signs of distress, and that it fulfills
150 the requirements for shear and bending moment. It should be emphasized that proof load testing
151 for shear is uncommon and typically not permitted, and that none of the existing codes or
152 guidelines prescribes stop criteria for shear.

153

154 **Description of viaduct De Beek**

155 *Restrictions on viaduct De Beek*

156 Viaduct De Beek, a reinforced concrete slab bridge, see Fig. 1a, lies in a local road, the
157 Beekstraat, over highway A67 close to Ommel in the province of Noord Brabant in the
158 Netherlands. The bridge was built in 1963 and is owned and managed by the Dutch Ministry of
159 Infrastructure and the Environment. An inspection and assessment for the current live loads in
160 2015 (Willems et al. 2015) led to the conclusion that the capacity of the viaduct is insufficient for
161 two lanes of unrestricted traffic. The assessment calculations (Iv-Infra 2015) determined that the
162 flexural capacity in the longitudinal and transverse direction is insufficient in all spans.
163 Originally, load posting was proposed, but for practical reasons it was decided to restrict traffic
164 to one lane by using barriers, see Fig. 1b. During the inspection of 2015, structural damage (wide
165 cracking) was observed at the bottom of the concrete deck, compromising the durability of the
166 structure.

167 *Geometry of viaduct De Beek*

168 The geometry of viaduct De Beek can be seen in Fig. 2. The viaduct has four spans, with
169 end spans of 10.81 m and central spans of 15.40 m. The width of the viaduct is 9.94 m, with a
170 carriageway width of 7.44 m, originally designed to carry one lane of traffic of 3.5 m wide in
171 each direction. The viaduct has a height that varies parabolically between 470 mm and 870 mm.
172 In the width direction, a curb with a height of 200 mm is available at the edge. The layer of
173 asphalt is measured to be between 50 mm and 75 mm.

174 ***Material properties of viaduct De Beek***

175 Nine cores were drilled from the slab to determine the concrete properties. The
176 characteristic concrete compressive strength f_{ck} equals 44.5 MPa and the concrete tensile splitting
177 strength $f_{ctm} = 4.4$ MPa. The design concrete compressive strength is thus $f_{cd} = 30$ MPa.

178 Three samples of the steel were taken, from which it was concluded that steel QR 24 was
179 used. QR 22 and QR 24 are types of plain reinforcement that were used in the Netherlands
180 during the 1950s and 1960s. The measured average yield strength $f_{ym} = 291$ MPa and the tensile
181 strength $f_{tm} = 420$ MPa. The design yield strength can be taking as $f_{yd} = 252$ MPa. The
182 reinforcement drawing is given in Fig. 3. The main flexural reinforcement in the longitudinal
183 direction in span 1 consists of 6 layers of ϕ 25 mm with a 560 mm spacing, so that the
184 reinforcement is $A_s = 5259$ mm²/m.

185 ***Determination of target proof load***

186 ***Practical application of the target proof load***

187 As mentioned previously, the live load model that is used for assessment of existing
188 bridges in Europe does not allow for a direct translation to a certain type of truck, unlike in North
189 America. Whereas in North America heavy dump trucks, special vehicles, and/or military
190 vehicles can be used for proof load tests, in Europe only the BELFA vehicle from Germany
191 (Bretschneider et al. 2012) is available with a maximum load of 150 metric ton. Regular vehicles
192 are not suitable. Other options for applying the target proof load in Europe include directly
193 applying dead weights on the deck (Olaszek et al. 2014), or by using an external structure
194 (Schwesinger and Bolle 2000).

195 **Target proof load in North America**

196 According to the Manual for Bridge Rating through Load Testing (NCHRP 1998) and the
197 Manual for Bridge Evaluation (AASHTO 2016), the target proof load is based on the load L_R of
198 the vehicle used for load rating at the legal load level, multiplied with a factor X_p and taking into
199 account the impact allowance I . The standard value of X_p equals 1.4. This value is adjusted as
200 follows:

- 201 • X_p needs to be increased by 15% if one lane load controls the response.
- 202 • For spans with fracture-critical details, X_p shall be increased by 10%.
- 203 • If routine inspections are performed less than every 2 years, X_p should be increased by
204 10%.
- 205 • If the structure is ratable, i.e. has no hidden details, X_p can be reduced by 5%.
- 206 • Additional factors including traffic intensity and bridge condition may also be
207 incorporated in the selection of the live load factor X_p .

208 Taking into account the effect of these adjustments, the target live load factor X_{pA} is found as
209 follows:

$$210 \quad X_{pA} = X_p \left(1 + \frac{\Sigma\%}{100} \right) \quad (1)$$

211 The value of the target proof load is then determined as:

$$212 \quad L_T = X_{pA} L_R (1 + I) \quad (2)$$

213 with $1.3 \leq X_{pA} \leq 2.2$.

214

215 **Application to Eurocode live loads and Dutch safety levels**

216 It has been suggested for Europe to use WIM data to determine the target proof load
217 (Casas and Gómez 2013), but these data are not available for most bridges. In the Netherlands,
218 different safety levels, associated with different reliability indices are defined for existing

219 structures in the national code NEN 8700:2011 (Code Committee 351001 2011) and the
220 Guidelines Assessment Bridges (Richtlijn Beoordeling Kunstwerken = “RBK”) (Rijkswaterstaat
221 2013). An overview of these different levels is given in Table 1, together with the ultimate limit
222 state and the serviceability limit state from the Eurocode for design of new structures (CEN
223 2002). These different safety levels correspond to different load factors. The load factors that are
224 used to determine the proof load are given in Table 2. Note that here the load factor of the self-
225 weight, $\gamma_{sw} = 1.10$ for all safety levels (except the serviceability limit state). The reason why a
226 lower load factor for the self-weight is used is that, because the calculations involve an existing
227 structure, the dimensions of the structure are not a random variable anymore, but can be
228 considered deterministic (i.e., the actual dimensions of the structure). Only the model factor
229 remains, which equals 1.07 in NEN-EN 1992-2+C1:2011 (CEN 2011). This value is rounded off
230 to 1.10. The target proof load to approve the structure is calculated for each safety level.
231 According to the RBK (Rijkswaterstaat 2013), the recommended safety level for the assessment
232 of existing bridges is the RBK Usage level. For the pilot proof load test, higher loads have been
233 applied to study the behavior of the bridge under all safety levels.

234 The proof load needs to be equivalent to the loads from Load Model 1 of NEN-EN 1991-
235 2:2003 (CEN 2003), which consists of a design tandem in each lane and a distributed lane load.
236 The position of the proof load is determined as the most critical position for bending moment and
237 the most critical position for shear. The proof load is applied as a single proof load tandem, of
238 which the load magnitude needs to represent the design tandem in both lanes, and the distributed
239 lane loads.

240 ***Case study: use of recommended target proof load in proof load test viaduct de Beek***

241 On viaduct De Beek, the proof load test was carried out in span 1. The critical span for
242 the assessment, and the span with the largest cracking damage, is span 2. However, span 2 is
243 over the highway. Testing span 2 would require the closing of the highway for safety reasons,
244 which is practically impossible. Therefore, span 1 is tested, and the results are then interpreted in
245 the light of the assessment of span 2. As currently no methods are available to extrapolate results
246 from a load test on one span to another span, an assessment of span 2 based on plastic
247 redistribution will be presented later in this paper. Both a flexure- and shear-critical position are
248 tested.

249 The following procedure is used to determine the required magnitude and position of the
250 proof load for bending moment:

- 251 1. A linear finite element model of the bridge is developed. The loads that need to be
252 considered are the self-weight of the concrete, the weight of the asphalt layer, and the
253 live loads from Load Model 1 from NEN-EN 1991-2:2003 (CEN 2003).
- 254 2. The design tandems from Load Model 1 are moved in their respective lanes until the
255 position of the tandems that causes the largest bending moment, distributed over 3 m
256 in the transverse direction, is found. The corresponding position of the design tandem
257 in the first lane is the critical position of the proof load tandem.
- 258 3. The live loads from Load Model 1 are removed and replaced by the proof load
259 tandem at the critical position. The load on the proof load tandem is now increased
260 until the same bending moment (distributed over 3 m transversely) is found as for the
261 bridge subjected to the live loads from Load Model 1 at the critical position.

262 For viaduct De Beek the critical position is found at 3.55 m from the end support. This position
263 (shown as position “A”) is sketched in Fig. 4. The required values of the proof load at the
264 different safety levels are then given in Table 3.

265 A similar procedure is used for the shear-critical position. The main difference is that the
266 critical position is predetermined as $2.5d_l$ for the face-to-face distance between the load and the
267 support (Lantsoght et al. 2013b). The distribution width in the transverse direction for the peak
268 shear stress is taken as $4d_l$ per wheel load (Lantsoght et al. 2013a). For viaduct De Beek, the
269 critical position for shear is at 1.1 m from the end support. The position of the proof load tandem
270 for the shear test is shown as position “B” in Fig. 4. An overview of the required values of the
271 proof load at the different safety levels is given in Table 3.

272 ***Resulting loading protocol***

273 The load is applied with four hydraulic jacks and a load spreader beam, see Fig. 5, so that
274 if a large deflection occurs, the load is removed from the bridge. The simulated tire contact area
275 (steel loading plate) is 230 mm \times 300 mm. The loading speed was determined as 5.4 kN/s in the
276 bending moment test, and as 7.3 kN/s in the shear test. A cyclic loading protocol was chosen, as
277 it allows for checking the stop criteria after each cycle, and linearity. In the bending moment test,
278 the following loading steps, referring to the load levels from Table 1 and Table 2, see Fig. 6a,
279 were used:

- 280 1. A low load level of 550 kN to check the functioning of all sensors.
- 281 2. A load level of 950 kN, which is slightly lower than the serviceability limit state.
- 282 3. A load level of 1350 kN, which corresponds with the RBK Usage level
283 (Rijkswaterstaat 2013).

284 4. A maximum load of 1699 kN, which corresponds with the Eurocode Ultimate
285 Limit State level.

286 The applied maximum load at the jacks was 1699 kN. Adding the weight of the setup, results in
287 the maximum total applied load of 1751 kN, which is 6% above the calculated Eurocode
288 Ultimate Limit State level. The additional percentage takes into account local material
289 variability, and can be considered as a model factor for a proof load test.

290 In the shear test, the following load levels (Fig. 6b) were applied:

- 291 1. A low load level of 250 kN to check the functioning of all sensors.
- 292 2. A load level of 750 kN, which is slightly lower than the serviceability limit state.
- 293 3. A load level of 1250 kN, which corresponds with the RBK Usage level
294 (Rijkswaterstaat 2013).
- 295 4. A maximum load of 1508 kN, which corresponds with the Eurocode Ultimate
296 Limit State level.

297 The maximum applied load, including the weight of the setup, was then 1560 kN, or the
298 calculated Eurocode ultimate limit state + 2%.

299

300 **Determination of required measurements and stop criteria**

301 *Current practice*

302 As mentioned earlier, the only codes and guidelines that contain stop criteria for concrete
303 structures (originally developed for concrete buildings) are ACI 437.2M-13 (ACI Committee 437
304 2013) and the German guideline (Deutscher Ausschuss für Stahlbeton 2000), and these stop
305 criteria are only valid for flexure. In ACI 437.2M-13 (ACI Committee 437 2013), the stop
306 criteria depend on the loading protocol, which can be monotonic or cyclic. As the loading

307 protocol for viaduct De Beek is cyclic, the focus here will be on the cyclic loading protocol. The
 308 cyclic loading protocol of ACI 437.2M-13 consists of three load levels with two cycles per load
 309 level. The first load level is the serviceability load level, and the final load level corresponds to
 310 the target proof load. In ACI 437.2M-13, the stop criteria are defined as acceptance criteria –
 311 criteria that need to be fulfilled for the acceptance of the structure after the proof load test. The
 312 first acceptance criterion is that the structure should show no evidence of failure. The second
 313 acceptance criterion is called the deviation from linearity index, I_{DL} , derived from the load-
 314 displacement diagram. The angles α are determined based on the origin of the load-displacement
 315 diagram and the maximum point in a load cycle. The acceptance criterion for the deviation from
 316 linearity index is determined as:

$$317 \quad I_{DL} = 1 - \frac{\tan(\alpha_i)}{\tan(\alpha_{ref})} \leq 0.25 \quad (3)$$

318 The third acceptance criterion is the permanency ratio I_{pr} , expressed as:

$$319 \quad I_{pr} = \frac{I_{p(i+1)}}{I_{pi}} \leq 0.5 \quad (4)$$

320 $I_{p(i+1)}$ and I_{pi} are the permanency indices for the $(i+1)$ th and i th load cycles:

$$321 \quad I_{pi} = \frac{\Delta_r^i}{\Delta_{\max}^i} \quad (5)$$

$$322 \quad I_{p(i+1)} = \frac{\Delta_r^{(i+1)}}{\Delta_{\max}^{(i+1)}} \quad (6)$$

323 The final acceptance criterion is related to the residual deflection Δ_r , measured at least 24 hours
 324 after removal of the load. This value has to be smaller than or equal to 25% of the maximum
 325 deflection or 1/180 of the span length.

326 The second set of stop criteria comes from the German guideline for load testing
 327 (Deutscher Ausschuss für Stahlbeton 2000). This guideline uses a cyclic loading protocol of

328 three load levels with at least one cycle per level. The first stop criterion is based on the
329 measured strains in the concrete, ε_c :

$$\varepsilon_c < \varepsilon_{c,lim} - \varepsilon_{c0} \quad (7)$$

330 The limiting strain $\varepsilon_{c,lim}$ is 0.8 % if the concrete compressive strength is larger than 25 MPa,
331 minus the strain ε_{c0} caused by the permanent loads. The second stop criterion is based on the
332 measured strains in the steel reinforcement, ε_{s2} , which requires removal of the concrete cover:
333

$$\varepsilon_{s2} < 0.7 \frac{f_{ym}}{E_s} - \varepsilon_{s02} \quad (8)$$

334 The third stop criterion evaluates the crack width w for new cracks and the increases in crack
335 width Δw for existing cracks. New cracks can be maximum 0.5 mm, of which 30% is permitted
336 as residual crack width, and existing cracks can increase with maximum 0.3 mm, of which 20%
337 is permitted as residual crack width. The fourth stop criterion says that nonlinear behaviour
338 should not take place, and that the residual deformation is limited to 10% of the maximum
339 deformation.
340

341 ***Sensor plan for viaduct De Beek***

342 Since the proof load test on viaduct De Beek was a pilot test and part of a program of
343 proof load tests, the viaduct was heavily instrumented, so that the behavior of the viaduct could
344 be closely monitored during the experiment. Another goal was to analyze the measurements after
345 the test in order to come up with recommendations for proof loading of reinforced concrete slab
346 bridges and to evaluate the existing stop criteria for flexure. The following responses of the
347 bridge were measured:

348 1. The vertical deflections of the deck at different positions in the longitudinal and
349 transverse direction are measured with linear variable differential transformers
350 (LVDTs) and laser triangulation sensors.

351 2. The vertical deflections of the support beam are measured with LVDTs.
352 3. The strain in the reinforcement steel is measured at a few locations where the
353 concrete cover is removed, and strain gages are applied to the steel.
354 4. The strain in the concrete is measured at the bottom surface by applying LVDTs over
355 1 m.
356 5. The opening of existing cracks is followed by applying an LVDT over the crack.
357 6. The applied load is measured with load cells at the four wheel print positions of the
358 proof load tandem.

359 The position of the sensors is given in Fig. 7.

360 ***Measurements of viaduct de Beek***

361 Some interesting measurements and post-processing results of the bending moment test
362 are shown in Fig. 8. The first result that is studied is the load-deflection diagram, of which the
363 envelope is given in Fig. 8a. The maximum deflection during the proof load test was 11 mm.
364 From the results of the load-deflection diagram, the reduction of the slope over the applied load
365 cycles can be studied, see Fig. 8c. A 25% reduction of the slope is indicated in Fig. 8c with a red
366 line. It can be seen that during none of the load cycles this limit, which was proposed as a
367 possible stop criterion based on beam tests in the laboratory (Lantsoght et al. (in press)), is
368 exceeded.

369 Another element of post-processing is the determination of the deflection profiles in the
370 longitudinal and transverse directions. The longitudinal deflection profile is given in Fig. 8d,
371 from which it can be observed that the increases in deflection increase linearly with the load. The
372 supporting calculations can be found in the background report (Koekkoek et al. 2016).

373 The measurements of the deflections and strains can be compared to the results of the
374 linear finite element program. This comparison indicated that the stiffness of uncracked concrete,
375 32.9 GPa can be used for the finite element model. However, it must be noted that in the
376 simplified finite element model possible additional sources of stiffness (Barker 2001), such as
377 the effect of curbs and railings and the bearing restraint stiffness of aged bearings, were not taken
378 into account. The strain measurements showed good correspondence between the steel and
379 concrete strains. The calculated strains also corresponded reasonably well with the measured
380 strains, see Fig. 8b.

381 For the shear position test, the most important measurements and post-processing results
382 are shown in Fig. 9. The first result that is studied is the load-deflection diagram, of which the
383 envelope is given in Fig. 9a. The maximum deflection during the proof load test was 7 mm. The
384 reduction of the slope over the applied load cycles is shown in Fig. 9c. During none of the load
385 cycles the limit of maximum 25% reduction of the slope is exceeded. The longitudinal deflection
386 profile is given in Fig. 9d, from which it can be seen that under the applied loads the behavior
387 was linear.

388 The measurements of the deflections and strains can be compared to the results of the
389 linear finite element program. From the deflection results, it was concluded again that a stiffness
390 of uncracked concrete, 32.9 GPa can be used, see Fig. 9b.

391 ***Evaluation of stop criteria***

392 In this section, the existing stop criteria that are developed for buildings for flexure are
393 evaluated. The residual deformation after the test was determined. In the bending moment test
394 the ratio of the residual to maximum deflection was 15%, which does not fulfil the stop criterion
395 of the German guideline but fulfills the acceptance criterion of ACI 437.2M-13. In the shear test

396 the ratio of the residual to maximum deflection was 8%, which is below the limit of the German
397 guideline and ACI 437.M-13.

398 The stop criteria for the strains from Eq. (7) and (8) must be verified. The strain caused
399 by the self-weight of the concrete and the layer of asphalt is $\varepsilon_{c0} = 163 \mu\epsilon$. The limiting strain $\varepsilon_{c,lim}$
400 = 800 $\mu\epsilon$, so that the measured strain should be smaller than 637 $\mu\epsilon$. This maximum is exceeded
401 in the experiment, in the loading step leading up to the target load level, as can be seen in Fig.
402 8b. The stop criterion was exceeded at 97% of the target load. Loading to a higher load level than
403 the target load level could have resulted in permanent damage to the structure. The limiting steel
404 strain leads to a maximum strain of 857 $\mu\epsilon$, which is not exceeded during the experiment. The
405 stop criteria with regard to concrete and steel strains are not exceeded during the shear
406 experiment. This observation is not surprising, since the shear position activates less flexural
407 response.

408 The maximum measured opening of an existing crack during the bending test was 0.12
409 mm, after which the residual crack width was 0.03 mm. It is assumed that crack widths smaller
410 than 0.05 mm can be neglected. The conclusion is then that the studied crack fully closed after
411 the maximum load, and that no permanent damage was inflicted on the structure by the proof
412 load test. The maximum measured opening of an existing crack was 0.11 mm during the shear
413 test, after which the residual crack width was 0.01 mm. The studied crack fully closed after the
414 maximum load.

415 **Assessment of viaduct De Beek**

416 ***Assessment of the tested span***

417 All assessments for viaduct De Beek are carried out based on the original two lanes of
418 traffic, to see if the current traffic restrictions (Fig. 1b) can be removed. All acting bending

419 moments m_{Ed} are determined based on a transverse distribution of 3 m. With the reinforcement
420 from Fig. 3, the moment capacity in span 1 is determined as $m_{Rd} = 579$ kNm/m. The factored
421 acting moment in the cross-section with the load factors of the RBK Usage level, which is used
422 for the assessment of existing highway bridges (Rijkswaterstaat 2013) is $m_{Ed} = 463$ kNm/m. As a
423 result, the Unity Check for bending moment equals $UC = 0.8$. The Unity Check is determined as
424 the ratio of the load effect over the capacity. This result does not correspond with the 2015
425 assessment of the bridge (Iv-Infra 2015), which resulted in the lane restrictions applied to the
426 bridge. The 2015 assessment combined a calculation of the UCs based on a linear finite element
427 model with a visual inspection. A comparison showed that the 2015 assessment did not consider
428 all reinforcement as shown in Fig. 3. Moreover, the proof load test showed that the viaduct can
429 carry the factored live loads of the Eurocode Ultimate Limit State.

430 Using the rating factor from the Manual for Bridge Evaluation (AASHTO 2016) resulted
431 in $RF = 1.32 > 1$, so that the first span fulfills the requirements.

432 The shear capacity according to the RBK (Rijkswaterstaat 2013) was $v_{Rd,c} = 1.002$ MPa.
433 For the RBK Usage level, the acting shear stress is $v_{Ed} = 0.482$ MPa when using averaging over a
434 distance of $4d_l$ (Lantsoght et al. 2013a), so that $UC = 0.48$. The first span thus fulfills the
435 requirements for shear, prior to taking into account the information from the proof load test.

436 ***Assessment of span 2***

437 According to the reinforcement drawings, Fig. 3, less reinforcement is present in span 2
438 as compared to span 1 (4 layers of $\phi 25$ mm bars with a spacing of 560 mm as compared to 6
439 layers of $\phi 25$ mm bars with a spacing of 560 mm), while span 2 has a larger span length. The
440 moment capacity now is $m_{Rd} = 335$ kNm/m for the cross-section at the midspan. The bending
441 moment caused by the factored loads acting on this cross-section is $m_{Ed} = 422$ kNm/m, so that

442 UC = 1.26, which means that the cross-section does not fulfill the requirements for bending
443 moments under the RBK Usage loads (Rijkswaterstaat 2013). A further analysis of the cross-
444 section is thus necessary.

445 In a next step, the analysis is carried out with plastic redistribution. In this case, the Unity
446 Check for the hogging moment over support 2 is considered. The ultimate moment capacity at
447 support 2 equals $m_{Rd} = 1022$ kNm/m. Using plastic redistribution means that a plastic hinge will
448 form in the midspan cross-section when a moment of 335 kNm/m is achieved in this cross-
449 section. If higher loads are applied, redistribution of the moment diagram will occur, and higher
450 sectional moments will occur over the support. The moment $m_{Ed} = 335$ kNm/m is reached in the
451 midspan cross-section at 78% of the full factored RBK Usage loads. The moment at support 2 is
452 then $m_{Ed} = 900$ kNm/m. The midspan of the slab is now modeled as a plastic hinge over the full
453 width of the slab. With this model, the acting bending moments under the factored RBK Usage
454 live loads (Rijkswaterstaat 2013) are $m_{Ed} = 960$ kNm/m at support 2 and $m_{Ed} = 335$ kNm/m at
455 midspan. The amount of plastic redistribution that has taken place is 6.7%. With plastic
456 redistribution, UC = 0.94 over support 2 and UC = 1 at midspan. These results indicate that a
457 direct assessment of span 2 based on the test results does not lead to a recommendation for the
458 removal of the traffic restrictions. Only when plastic redistribution is allowed to take place, and
459 cracking and the reduction of the durability of the structure are acceptable by the owner, the
460 traffic restrictions can be removed.

461 The assessment for shear (Iv-Infra 2015) gave UC = 0.51 for the cross-section close to
462 the intermediate support in span 2. The second span thus fulfills the requirements for shear.

463 **Recommendations**

464 ***Viaduct de Beek***

465 Based on the presented analyses, it was recommended to check the reinforcement in span
466 2 with a scanner or by removing the concrete cover locally to verify the spacing between bars.
467 The reinforcement layout presented in the plans is unexpected, since the longer middle spans are
468 provided with less reinforcement. The acting bending moment for the RBK Usage level in span 1
469 is 463 kNm/m and in span 2 422 kNm/m. The reduction of the span moment due to the support
470 moment is thus rather limited in the second span. It is also recommended to carry out an
471 additional inspection of the cracks in span 2, and to carefully check for signs of corrosion, which
472 would further reduce the flexural capacity. If the condition of span 2 is considered satisfactory in
473 terms of present corrosion, the current traffic restriction can be removed, provided that plastic
474 redistribution is allowed.

475 ***Lessons learned for proof load testing***

476 The pilot proof load test shows that proof load testing can be carried out at flexure- and
477 shear-critical positions. The determination of the target proof load is currently carried out based
478 on equivalent sectional moments and shears. The presented method which uses a single proof
479 load tandem is valid for bridges of small width.

480 The analysis of the stop criteria shows that the concrete strain criterion of the German
481 guideline is suitable for the combination with proof load tests for flexure and shear. The criterion
482 for the steel strains cannot always be used, as not all bridge owners allow for the removal of the
483 concrete cover. The crack width criterion is useful, provided that cracks of less than 0.05 mm are
484 neglected. The residual deflection of 10% is rather conservative; the value of 25% from ACI
485 437.2M-13 could be more suitable. The other stop criteria from ACI 437.2M-13 could not be

486 evaluated, as these are directly associated with the loading protocol of ACI 437.2M-13, which
487 was not the same as the loading protocol used for viaduct De Beek. Stop criteria to evaluate
488 possible shear failure still need to be developed.

489 **Summary and Conclusions**

490 The viaduct De Beek is a reinforced concrete slab bridge with a traffic restriction that
491 reduces the use of the viaduct from one lane in each direction to a single lane, as the bending
492 moment capacity was found to be insufficient for the prescribed loads. The bridge was evaluated
493 in a pilot proof load test, which also served to study if proof load testing for shear is possible,
494 and if the existing stop criteria derived for buildings can be used in proof load tests for bridges.
495 As the stop criteria are a topic of research, a large number of sensors were applied on the viaduct
496 to closely monitor the structural response during the test.

497 A proof load test was carried out at a flexure- and shear critical position in the first span
498 of the viaduct. For both tests, the target proof load was achieved. The analysis of the
499 measurements showed that the structural response remained sufficiently close to the linear
500 behavior. However, some stop criteria from the German guideline were exceeded, which
501 indicates that further loading of the structure could have resulted in permanent damage to the
502 structure. Further research should focus on the development of stop criteria for shear.

503 The assessment with the Unity Checks showed that the capacity of span 1 is sufficient,
504 and was proven to be sufficient in the proof load tests, but the capacity of span 2 cannot directly
505 be proven to be sufficient. In an additional analysis, plastic redistribution was allowed. It was
506 found that if 6.7% of plastic redistribution is allowed to take place, the Unity Checks at the
507 support and in the midspan cross-section of span 2 can fulfill the requirements, provided that a
508 reduction of the durability is accepted.

509 **Notation List**

510 The following symbols are used in this paper:

511	d_l	effective depth to the longitudinal reinforcement
512	f_{cd}	design concrete compressive strength
513	f_{ck}	characteristic concrete compressive strength
514	f_{ctm}	characteristic tensile splitting strength of the concrete
515	f_{tm}	average tensile strength of the steel
516	f_{yd}	design yield strength of the steel
517	f_{ym}	average yield strength of the steel
518	m_{Ed}	design action moment on cross-section
519	m_{Rd}	design resistance moment of cross-section
520	$v_{Rd,c}$	design shear resistance
521	A_s	longitudinal reinforcement
522	E_s	modulus of elasticity of reinforcement steel
523	I	the AASHTO specifications impact allowance
524	I_{DL}	deviation from linearity index
525	I_{pi}	permanency index for the i -th load cycle
526	I_{pr}	permanency ratio
527	K_a	updating factor based on test results
528	K_b	updating factor based on situation of considered structural member
529	L_R	the comparable live load due to the rating vehicles for the lanes loaded
530	L_T	target proof load
531	$P_{load,bending}$	required proof load for bending moment

532	$P_{load,shear}$	required proof load for shear
533	RF	rating factor
534	RF_T	updated rating factor based on proof load test results
535	UC	unity check
536	X_p	factor to determine target proof load, without adjustments
537	X_{pA}	target live load factor
538	α	angle of line between origin of load-displacement diagram and maximum value of considered load cycle
540	α_i	angle of line between origin of load-displacement diagram and maximum value of load cycle i
542	α_{ref}	angle of line between origin of load-displacement diagram and maximum value of first load cycle
544	β	reliability index
545	γ_{as}	load factor for the superimposed dead load
546	γ_{ll}	load factor for the live load
547	γ_{sw}	load factor for the self-weight
548	ε_c	the theoretically determined strain in the finite element model under the maximum proof load
550	$\varepsilon_{c,meas}$	strain measured during proof loading
551	$\varepsilon_{c,lim}$	limit value of the concrete strain : 0.6 %, and for $f_{cd} \geq 25$ MPa this can be increased up to maximum 0.8 %.
553	ε_{c0}	analytically determined short-term strain in the concrete caused by the permanent loads that are acting on the structure before the application of the proof load

555	ε_{s02}	analytically determined strain (assuming cracked conditions) in the reinforcement
556		steel caused by the permanent loads that are acting on the structure before the
557		application of the proof load.
558	ε_{s2}	steel strain during experiment: directly measured or derived from other
559		measurements
560	ε_T	the measured strain during the proof load test under the maximum proof load
561	Δ_{max}^i	the maximum deflection after the i -th load cycle
562	Δ_r^i	the residual deflection (non-cumulative) after the i -th load cycle
563	Δ_r	residual deflection, measured at least 24 hours after removal of the load
564		

565

566 **Acknowledgement**

567 The authors wish to express their gratitude and sincere appreciation to the Dutch Ministry of
 568 Infrastructure and the Environment (Rijkswaterstaat) and the Province of Noord Brabant for
 569 financing this research work. The contributions and help of our colleagues Albert Bosman,
 570 Sebastiaan Ensink, and Yuguang Yang, and student Werner Vos of Delft University of
 571 Technology, of Witteveen+Bos, responsible for the logistics and safety, and of Mammoet,
 572 responsible for applying the load, are gratefully acknowledged. The fruitful discussions with
 573 Frank Linthorst and Danny den Boef of Witteveen+Bos, and with Otto Illing and the late Chris
 574 Huissen of Mammoet are also acknowledged.

575

576 **References**

577 AASHTO (2016). *The manual for bridge evaluation with 2016 interim revisions*, 2nd ed.
 578 American Association of State Highway and Transportation Officials; Washington, D.C.

579 ACI Committee 318 (2014). *Building code requirements for structural concrete (ACI 318-14)*
580 and commentary, American Concrete Institute; Farmington Hills, MI.

581 ACI Committee 437 (2013). "Code Requirements for Load Testing of Existing Concrete
582 Structures (ACI 437.2M-13) and Commentary ", Farmington Hills, MA, 24 pp.

583 Aguilar, C. V., Jáuregui, D. V., Newtson, C. M., Weldon, B. D. and Cortez, T. M. (2015). "Load
584 Rating a Prestressed Concrete Double-Tee Beam Bridge without Plans by Proof Testing," *Proc.,*
585 *Transportation Research Board Annual Compendium of Papers*, Washington DC, pp. 19.

586 Anay, R., Cortez, T. M., Jáuregui, D. V., ElBatanouny, M. K. and Ziehl, P. (2016). "On-Site
587 Acoustic-Emission Monitoring for Assessment of a Prestressed Concrete Double-Tee-Beam
588 Bridge without Plans," *Journal of Performance of Constructed Facilities*, 30(4).

589 Arangjelovski, T., Gramatikov, K. and Docevska, M. (2015). "Assessment of damaged timber
590 structures using proof load test – Experience from case studies," *Construction and Building*
591 *Materials*, 101, Part 2, 1271-1277.

592 Ataei, S., Jahangiri Alikamar, M. and Kazemiashtiani, V. (2016). "Evaluation of axle load
593 increasing on a monumental masonry arch bridge based on field load testing," *Construction and*
594 *Building Materials*, 116, 413-421.

595 Barker, M. G. (2001). "Quantifying Field-Test Behavior for Rating Steel Girder Bridges,"
596 *Journal of Bridge Engineering*, 6(4), 254-261.

597 Bell, E. S. and Sipple, J. D. (2009). "Special topics studies for baseline structural modeling for
598 condition assessment of in-service bridges," *Safety and Reliability of Bridge Structures*, pp. 274-
599 289.

600 Bentz, E. C. and Hoult, N. A. (2016). "Bridge model updating using distributed sensor data,"
601 *Institute of Civil Engineers – Bridge Engineering*, 170(1), 74-86.

602 Bretschneider, N., Fiedler, L., Kapphahn, G. and Slowik, V. (2012). "Technical possibilities for
603 load tests of concrete and masonry bridges," *Bautechnik*, 89(2), 102-110 (in German).

604 Bridge Diagnostics Inc. (2012). "Integrated Approach to Load Testing," 44 pp.

605 Brühwiler, E., Vogel, T., Lang, T. and Luechinger, P. (2012). "Swiss Standards for Existing
606 Structures," *Structural Engineering International*, 22(2), 275-280.

607 Cai, C. S. and Shahawy, M. (2003). "Understanding Capacity Rating of Bridges from Load
608 Tests," *Practice Periodical on Structural Design and Construction*, 8, 209-2016.

609 Casas, J. R. and Gómez, J. D. (2013). "Load Rating of Highway Bridges by Proof-loading,"
610 *KSCE Journal of Civil Engineering*, 17(3), 556-567.

611 CEN, (2002). "Eurocode – Basis of structural design, NEN-EN 1990:2002 ", Comité Européen
612 de Normalisation, Brussels, Belgium, 103 pp.

613 CEN, (2003). "Eurocode 1: Actions on structures - Part 2: Traffic loads on bridges, NEN-EN
614 1991-2:2003," Comité Européen de Normalisation, Brussels, Belgium, 168 pp.

615 CEN, (2011). "Eurocode 2: Design of concrete structures - Concrete bridges - Design and
616 detailing rules. NEN-EN 1992-2+C1:2011," Comité Européen de Normalisation, Brussels,
617 Belgium, 113 pp.

618 Cochet, D., Corfdir, P., Delfosse, G., Jaffre, Y., Kretz, T., Lacoste, G., Lefaucheur, D., Khac, V.
619 L. and Prat, M. (2004). "Load tests on highway bridges and pedestrian bridges (in French),"
620 Setra - Service d'Etudes techniques des routes et autoroutes, Bagneux-Cedex, France, pp.

621 Code Committee 351001 (2011). *Assessemment of structural safety of an existing structure at
622 repair or unfit for use - Basic Requirements, NEN 8700:2011 (in Dutch)*, Civil center for the
623 execution of research and standard, Dutch Normalisation Institute; Delft, The Netherlands.

624 Deutscher Ausschuss für Stahlbeton (2000). "DAfStb-Guideline: Load tests on concrete
625 structures," Deutscher Ausschuss fur Stahlbeton,, 7 (in German) pp.

626 Dieteren, G. G. A. and den Uijl, J. A. (2009). "Evaluatie Proefbelasting Heidijk," V. 2008-
627 DWARS-MOLO, TNO Bouw en Ondergrond / TU Delft, 70 pp.

628 Faber, M. H., Val, D. V. and Stewart, M. G. (2000). "Proof load testing for bridge assessment
629 and upgrading," *Engineering Structures*, 22, 1677-1689.

630 Farhey, D. N. (2005). "Bridge Instrumentation and Monitoring for Structural Diagnostics,"
631 *Structural Health Monitoring*, 4(4), 301-318.

632 Fennis, S. A. A. M. and Hordijk, D. A. (2014). "Proof loading Halvemaans Bridge Alkmaar," V.
633 Stevin Report 25.5-14-05, Delft University of Technology, Delft, The Netherlands, 72 (in Dutch)
634 pp.

635 Frýba, L. and Pirner, M. (2001). "Load tests and modal analysis of bridges," *Engineering
636 Structures*, 23(1), 102-109.

637 Fu, G., Pezze III, F. P. and Alampalli, S. (1997). "Diagnostic Load Testing for Bridge Load
638 Rating," *Transportation Research Record*, 1594, 125-133.

639 Fu, G. K. and Tang, J. G. (1995). "Risk-based Proof-load Requirements for Bridge Evaluation,"
640 *Journal of Structural Engineering-ASCE*, 121(3), 542-556.

641 Gokce, H. B., Catbas, F. N. and Frangopol, D. M. (2011). "Evaluation of Load Rating and
642 System Reliability of Movable Bridge," *Transportation Research Record*, 2251(Structures),
643 114-122.

644 Hag-Elsafi, O. and Kunin, J. (2006). "Load Testing For Bridge Rating: Dean's Mill Road Over
645 Hannacrois Creek," V. Special Report 147, Transportation Research and Development Bureau,
646 New York State Department of Transportation, Albany, NY, 71 pp.

647 Halding, P. S., Hertz, K. D., Schmidt, J. W. and Kennedy, B. J. (2017). "Full-scale load tests of
648 Pearl-Chain arches," *Engineering Structures*, 131, 101-114.

649 He, J., Liu, Y., Chen, A. and Dai, L. (2012). "Experimental investigation of movable hybrid
650 GFRP and concrete bridge deck," *Construction and Building Materials*, 26(1), 49-64.

651 Hernandez, E. S. and Myers, J. J. (2015). "In-situ field test and service response of Missouri
652 Bridge A7957," *Proc., European Bridge Conference*, Edinburgh, UK, pp. 10.

653 ifem (2013). "Brücke Vlijmen Oost (NL): Belastungsversuche mit dem BELFA," V. Project
654 172013, pp.

655 Iv-Infra (2015). "51H-304-01 - De Beek - Recalculation bridge deck (in Dutch)," 104 pp.

656 Jauregui, D. V., Licon-Lozano, A. and Kulkarni, K. (2010). "Higher Level Evaluation of a
657 Reinforced Concrete Slab Bridge," *Journal of Bridge Engineering*, 15(2), 172-182.

658 Juntunen, D. A. and Isola, M. C. (1995). "Proof load test of R01 of 61131 M-37 over CSX
659 Railroad, South of Bailey, Michigan," V. Research Report No. R-1336, Michigan Department of
660 Transportation, 58 pp.

661 Kim, Y. J., Tanovic, R. and Wight, R. G. (2009). "Recent Advances in Performance Evaluation
662 and Flexural Response of Existing Bridges," *Journal of Performance of Constructed Facilities*,
663 23(3), 190-200.

664 Koekkoek, R. T., Lantsoght, E. O. L. and Hordijk, D. A. (2015a). "Proof loading of the ASR-
665 affected viaduct Zijlweg over highway A59," V. Stevin Report nr. 25.5-15-08, Delft University
666 of Technology, Delft, The Netherlands, 180 pp.

667 Koekkoek, R. T., Yang, Y., Fennis, S. A. A. M. and Hordijk, D. A. (2015b). "Assessment of
668 Viaduct Vlijmen Oost by Proof Loading," V. Stevin Report 25.5-15-10, 126 pp.

669 Koekkoek, R. T., Lantsoght, E. O. L., Yang, Y. and Hordijk, D. A. (2016). "Analysis report for
670 the assessment of Viaduct De Beek by Proof Loading," V. Stevin Report 25.5-16-01, Delft
671 University of Technology, Delft, The Netherlands, 125 pp.

672 Lantsoght, E., van der Veen, C. and de Boer, A. (2016a). "Shear and moment capacity of the
673 Ruytenschilt bridge," *Proc., IABMAS 2016*, pp. 8.

674 Lantsoght, E., Yang, Y., van der Veen, C., de Boer, A. and Hordijk, D. (2016b). "Ruytenschilt
675 Bridge: field and laboratory testing," *Engineering Structures*, 128(december), 111-123.

676 Lantsoght, E. O. L., de Boer, A., Van der Veen, C. and Walraven, J. C. (2013a). "Peak shear
677 stress distribution in finite element models of concrete slabs," *Proc., Research and Applications*
678 *in Structural Engineering, Mechanics and Computation*, Zingoni, A., ed. Cape Town, South
679 Africa, pp. 475-480.

680 Lantsoght, E. O. L., van der Veen, C., de Boer, A. and Walraven, J. C. (2013b).
681 "Recommendations for the Shear Assessment of Reinforced Concrete Slab Bridges from
682 Experiments" *Structural Engineering International*, 23(4), 418-426.

683 Lantsoght, E. O. L., van der Veen, C., de Boer, A. and Hordijk, D. A. (2016c). "Probabilistic
684 prediction of the failure mode of the Ruytenschilt Bridge," *Engineering Structures*, 127, 549-
685 558.

686 Lantsoght, E. O. L., Yang, Y., van der Veen, C., de Boer, A. and Hordijk, D. A. ((in press)).
687 "Beam experiments on acceptance criteria for bridge load tests," *ACI Structural Journal*.

688 Lantsoght, E. O. L., Van der Veen , C., De Boer, A. and Hordijk, D. A. (available online ahead
689 of print). "Collapse test and moment capacity of the Ruytenschilt Reinforced Concrete Slab
690 Bridge" *Structure and Infrastructure Engineering*.

691 Lantsoght, E. O. L., Van der Veen , C., De Boer, A. and Hordijk, D. A. (in press). "Proof load
692 testing of reinforced concrete slab bridges in the Netherlands," *Structural Concrete*, 29.

693 Lantsoght, E. O. L., Koekkoek, R. T., Hordijk, D. A. and De Boer, A. (in review). "Towards
694 standardization of proof load testing: pilot test on viaduct Zijlweg," *Structure and Infrastructure
695 Engineering*.

696 Maguire, M., Moen, C. D., Roberts-Wollmann, C. and Cousins, T. (2015). "Field Verification of
697 Simplified Analysis Procedures for Segmental Concrete Bridges," *Journal of Structural
698 Engineering*, 141(1), D4014007.

699 Matta, F., Bastianini, F., Galati, N., Casadei, P. and Nanni, A. (2008). "Distributed Strain
700 Measurement in Steel Bridge with Fiber Optic Sensors: Validation through Diagnostic Load
701 Test," *Journal of Performance of Constructed Facilities*, 22(4), 264-273.

702 Moen, C. D., Shapiro, E. E. and Hart, J. (2013). "Structural Analysis and Load Test of a
703 Nineteenth-Century Iron Bowstring Arch-Truss Bridge," *Journal of Bridge Engineering*, 18(3),
704 261-271.

705 Moses, F., Lebet, J. P. and Bez, R. (1994). "Applications of field testing to bridge evaluation,"
706 *Journal of Structural Engineering-ASCE*, 120(6), 1745-1762.

707 Murià-Vila, D., Sánchez-Ramírez, A. R., Huerta-Carpizo, C. H., Aguilar, G., Pérez, J. C. and
708 Cruzo, R. E. C. (2015). "Field Tests of Elevated Viaducts in Mexico City," *Journal of Structural
709 Engineering*, 141(1), D4014001.

710 NCHRP (1998). "Manual for Bridge Rating through Load Testing," V. NCHRP Project 12-
711 28(13)A, Washington, DC, 152 pp.

712 Nguyen, V. H., Schommer, S., Maas, S. and Zürbes, A. (2016). "Static load testing with
713 temperature compensation for structural health monitoring of bridges," *Engineering Structures*,
714 127, 700-718.

715 Nilimaa, J., Bagge, N., Blanksvärd, T. and Täljsten, B. (2015). "NSM CFRP Strengthening and
716 Failure Loading of a Posttensioned Concrete Bridge," *Journal of Composites for Construction*,
717 04015076:04015071-04015077.

718 NRA (2014). "Load Testing for Bridge Assessment," National Roads Authority, Dublin, Ireland,
719 11 pp.

720 Ohanian, E., White, D. and Bell, E. S. (2017). "Benefit Analysis of In-Place Load Testing for
721 Bridges," *Transportation Research Board Annual Compendium of Papers*, 14.

722 Olaszek, P., Świt, G. and Casas, J. R. (2012). "Proof load testing supported by acoustic emission.
723 An example of application," *Proc., IABMAS 2012*.

724 Olaszek, P., Lagoda, M. and Ramon Casas, J. (2014). "Diagnostic load testing and assessment of
725 existing bridges: examples of application," *Structure and Infrastructure Engineering*, 10(6),
726 834-842.

727 Olaszek, P., Casas, J. R. and Świt, G. (2016). "On-site assessment of bridges supported by
728 acoustic emission," *Proceedings of the Institution of Civil Engineers - Bridge Engineering*,
729 169(2), 81-92.

730 Puurula, A. M., Enochsson, O., Sas, G., Blanksvärd, T., Ohlsson, U., Bernspång, L., Täljsten, B.,
731 Carolin, A., Paulsson, B. and Elfgren, L. (2015). "Assessment of the Strengthening of an RC
732 Railway Bridge with CFRP Utilizing a Full-Scale Failure Test and Finite-Element Analysis,"
733 *Journal of Structural Engineering*, 141(1), D4014008.

734 Rijkswaterstaat, (2013). "Guidelines Assessment Bridges - assessment of structural safety of an
735 existing bridge at reconstruction, usage and disapproval (in Dutch)," 117 pp.

736 Russo, F. M., Wipf, T. J. and Klaiber, F. W. (2000). "Diagnostic Load Tests of a Prestressed
737 Concrete Bridge Damaged by Overheight Vehicle Impact," *Transportation Research Record*,
738 1696, 103-110.

739 Sanayei, M., Phelps, J. E., Sipple, J. D., Bell, E. S. and Brenner, B. R. (2012). "Instrumentation,
740 Nondestructive Testing, and Finite-Element Model Updating for Bridge Evaluation Using Strain
741 Measurements," *Journal of Bridge Engineering*, 17(1), 130-138.

742 Sanayei, M., Reiff, A. J., Brenner, B. R. and Imbaro, G. R. (2016). "Load Rating of a Fully
743 Instrumented Bridge: Comparison of LRFR Approaches," *Journal of Performance of
744 Constructed Facilities*, 2016(30), 2.

745 Saraf, V. K., Nowak, A. S. and Till, R. (1996). "Proof load testing of bridges," *Proc.,
746 Probabilistic Mechanics & Structural Reliability: Proceedings of the Seventh Specialty
747 Conference*, Frangopol, D. M. and Grigoriu, M. D., eds., pp. 526-529.

748 Saraf, V. K. (1998). "Evaluation of Existing RC Slab Bridges," *Journal of Performance of
749 Constructed Facilities*, 12(1), 20-24.

750 Schacht, G., Bolle, G., Curbach, M. and Marx, S. (2016a). "Experimental Evaluation of the shear
751 bearing safety (in German)," *Beton- und Stahlbetonbau*, 111(6), 343-354.

752 Schacht, G., Bolle, G. and Marx, S. (2016b). "Load testing - international state of the art (in
753 German)," *Bautechnik*, 93(2), 85-97.

754 Schwesinger, P. and Bolle, G. (2000). "EXTRA - a new experiment supported condition
755 assessment method for concrete bridges," *Proc., Proc. SPIE 3995, Nondestructive Evaluation of
756 Highways, Utilities, and Pipelines IV*, Aktan, A. E. and Gosselin, S. R., eds., pp. 11.

757 Shahawy, M. A. (1995). "Non Destructive Strength Evaluation Of Florida Bridges," *Proc., SPIE*,
758 Oakland, CA, pp. 23.

759 Shenton, H. W., Chajes, M. J. and Huang, J. (2007). "Load Rating of Bridges Without Plans," V.
760 DCT 195, Department of Civil and Environmental Engineering, University of Delaware;
761 Department of Civil Engineering, Widener University, Newark, Delaware, 66 pp.

762 Shifferaw, Y. and Fanous, F. S. (2013). "Field testing and finite element analysis of steel bridge
763 retrofits for distortion-induced fatigue," *Engineering Structures*, 49, 385-395.

764 Spaethe, G. (1994). "The effect of proof load testing on the safety of a structure (in German),"
765 *Bauingenieur*, 69(12), 459-468.

766 Stroh, S. L., Sen, R. and Ansley, M. (2010). "Load Testing a Double-Composite Steel Box
767 Girder Bridge," *Transportation Research Record*, 2200(Bridge Engineering, Vol. 1), 36-42.

768 Taylor, S. E., Rankin, B., Cleland, D. J. and Kirkpatrick, J. (2007). "Serviceability of bridge deck
769 slabs with arching action," *Aci Structural Journal*, 104(1), 39-48.

770 The Institution of Civil Engineers - National Steering Committee for the Load Testing of Bridges
771 (1998). "Guidelines for the Supplementary Load Testing of Bridges," London, UK, 44 pp.

772 Varela-Ortiz, W., Cintrón, C. Y. L., Velázquez, G. I. and Stanton, T. R. (2010). "Load testing
773 and GPR assessment for concrete bridges on military installations," *Construction and Building
774 Materials*, 38, 1255-1269.

775 Velázquez, B. M., Yura, J. A., Frank, K. H., Kreger, M. E. and Wood, S. L. (2000). "Diagnostic
776 load tests of a reinforced concrete pan-girder bridge," V. Research Report 7-2986-2, The
777 University of Texas at Austin, Austin, TX, USA, 121 pp.

778 Veneziano, D., Galeota, D. and Giannatto, M. M. (1984). "Analysis of bridge proof-load data
779 I: Model and statistical procedures," *Structural Safety*, 2, 91-104.

780 Willems, M., Ruiter, P. B. d. and Heystek, A. P. (2015). "Inspection report object 51H-304-01
781 (in Dutch)," V. Zaaknummer 31081272, 47 pp.

782 Zhang, J., Peng, H. and Cai, C. S. (2011). "Field Study of Overload Behavior of an Existing
783 Reinforced Concrete Bridge under Simulated Vehicle Loads," *Journal of Bridge Engineering*,
784 16(2), 226-237.

785 Zwicky, D. and Brühwiler, E. (2015). "Chillon Viaduct deck slab strengthening using reinforced
786 UHPFRC: Full-scale tests," *Proc., Concrete Repair, Rehabilitation and Retrofitting IV* F. Dehn,
787 Beushausen, H.-D., Alexander, M. G. and Moyo, P., eds., Leipzig, Germany, pp. 557 - 564.

788

789

790

791 **List of Figures**

792 **Fig. 1:** Viaduct De Beek: (a) overview photograph; (b) current traffic restrictions.

793 **Fig. 2:** Geometry of viaduct De Beek: (a) top view; (b) longitudinal direction (cut A-A'); (c)
794 transverse direction (cut C-C'). All dimensions in [mm].

795 **Fig. 3:** Reinforcement drawing of viaduct De Beek: (a) side view; (b) cross-section. Units: bar
796 diameters in mm, all other distances in cm.

797 **Fig. 4:** Position of proof load tandem: top view of viaduct.

798 **Fig. 5:** Test setup with load spreader beam, ballast, and jacks.

799 **Fig. 6:** Loading protocol, showing numbering of different loading cycles: (a) bending moment
800 test; (b) shear test.

801 **Fig. 7:** Sensor plan: (a) position of deflection measurements; (b) position of strain
802 measurements for the bending moment test; (c) position of strain measurements for the shear test
803 (position of strain gages not altered with respect to the bending moment test).

804 **Fig. 8:** Overview of measurements of the bending moment test: (a) envelope of the load-
805 displacement diagram at LVDT7; (b) comparison between calculated and measured strains in the
806 transverse direction; (c) slope of load-displacement diagram per load cycle; (d) longitudinal
807 deflection.

808 **Fig. 9:** Overview of measurements of the shear test: (a) envelope of the load-displacement
809 diagram at LVDT6; (b) comparison between calculated and measured deflections in the
810 longitudinal direction; (c) slope of load-displacement diagram per load cycle; (d) longitudinal
811 deflection.

812

813 **List of Tables**

814 **Table 1.** Overview of different safety levels used in the Netherlands for the assessment of
815 existing highway bridges (Data from CEN 2002; Rijkswaterstaat 2013).

Reliability level	β	Reference period
Eurocode Ultimate Limit State	4.3	100 years
RBK Design	4.3	100 years
RBK Reconstruction	3.6	30 years
RBK Usage	3.3	30 years
RBK Disapproval	3.1	15 years
Eurocode Serviceability Limit State	1.5	50 years

816

817

818 **Table 2.** Overview of load factors associated with the different reliability levels as used for proof
819 load testing.

Reliability level	γ_{sw}	γ_{as}	γ_{ll}
Eurocode Ultimate Limit State	1.10	1.35	1.50
RBK Design	1.10	1.25	1.50
RBK Reconstruction	1.10	1.15	1.30
RBK Usage	1.10	1.15	1.25
RBK Disapproval	1.10	1.10	1.25
Eurocode Serviceability Limit State	1.00	1.00	1.00

820

821

822 **Table 3.** Determined required proof load for bending moment and shear

Reliability level	$P_{load,bending}$ [kN]	$P_{load,shear}$ [kN]
Eurocode Ultimate Limit State	1656	1525
RBK Design	1649	1516
RBK Reconstruction	1427	1311
RBK Usage	1373	1262
RBK Disapproval	1369	1257
Eurocode Serviceability Limit State	1070	976

823

824