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Abstract

A central task in information retrieval and the NLP communities is
relevance modeling, which aims to rank documents based on their
expressed information needs Many knowledge-intensive retrieval
tasks are powered by a first-stage retrieval stage for context selec-
tion, followed by a more involved task-specific model. However,
using this filtering (cascading) approach inherently limits the re-
call of subsequent stages. Recently, adaptive re-ranking techniques
have been proposed to overcome this issue by continually selecting
documents from the whole corpus, rather than only considering
an initial pool of documents. However, so far these approaches
have been limited to heuristic design choices, particularly in terms
of the criteria for document selection. In this work, we propose a
unifying view of the nascent area of adaptive retrieval by proposing
Quam, a query-affinity model of adaptive re-ranking that includes
two complementary components: (1) a more principled algorithm
for document selection, and (2) a data-driven approach to model
document co-relevance during indexing. Our extensive experimen-
tal evidence shows that our proposed approach improves the recall
performance by up to 26% over the standard re-ranking baselines.
Further, the query affinity modelling and relevance-aware docu-
ment graph components can be injected into any adaptive retrieval
approach. The experimental results show the existing adaptive
retrieval approach improves recall by up to 12%.

https://github.com/Mandeep-Rathee/quam
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1 Introduction

Relevance modelling, which estimates whether documents satisfy
an information need provided by a query, is a central task in in-
formation retrieval and NLP. Many knowledge-intense tasks are
powered by a first-stage retrieval/ranking stage for context selec-
tion, followed by a more involved task-specific model. Traditional
ranking models that rely on lexical matching (e.g., BM25) are effi-
cient and well-engineered based on decades of research, but they
exhibit the well-known vocabulary mismatch problem due to the in-
herent under-specificity of queries. Recent methods based on dense
retrieval [5] rely heavily on semantic similarity are slower and typ-
ically use a lossy approximate nearest neighbor search to achieve
efficiency. In both ranking approaches, the common paradigm for
ranking documents is based on the retrieve and re-rank paradigm;
where a first stage retrieval (lexical or dense) is followed by a more
involved re-ranking stage facilitated by a contextual transformer
model. The primary objective of the first-stage retrieval is to maxi-
mize recall and efficiently filter out the most irrelevant documents.
However, a major limitation of this paradigm is that the recall of
the final result list is, by definition, bounded by the recall of the
first-stage retrieval. In other words, documents filtered out by the
first stage cannot appear in the re-ranked results.

To solve the bounded-recall problem, adaptive ranking tech-
niques have been proposed that add additional opportunities to
retrieve documents [6, 12]. The key idea of adaptive retrieval is
based on modelling the similarities between documents in the cor-
pus by constructing a corpus graph offline. During the re-ranking
process, the neighbors of the top-scoring documents from the re-
ranker are expanded using the corpus graph, allowing documents
to be retrieved even if they were missed by the first-stage retriever.
Adaptive re-ranking algorithms typically either alternate between
scoring results from the first-stage and the corpus graph [12] or
completely score the first-stage and then iteratively expand over
the corpus graph [6]. Adaptive retrieval has shown to be successful
with recall improvements of up to 11% for cross-encoders [12] and
15% for bi-encoders [6] when compared with existing methods and
controlling for retrieval latency.

Limitations of current adaptive retrieval. However, there are
two major limitations of existing adaptive retrieval approaches.
Firstly, the quality of adaptive retrieval is based on the quality
of the corpus graph, which has so far been constructed based on
heuristic choices. Specifically, current corpus graphs encode lexical
or semantic similarities between documents and are agnostic to
query-based relevance. This results in corpus graphs considering
documents that have high similarity to potentially non-relevant
content and might not result in surfacing relevant documents. Sec-
ondly, adaptive re-ranking algorithms like Gar [12] do not consider
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Figure 1: Recall comparison on the TREC DL20 dataset when

the number of neighbors varies.

the degree of similarity between documents during the expansion
process. Consequently, Gar cannot differentiate between the de-
grees of relatedness of the documents—only which documents are
most similar. In an extreme case, consider a document that isn’t
related to any other document in the corpus;Garwill waste time by
scoring the nearest neighbors of this document, even though none
of them are even related to the original documents. This problem
is further accentuated when denser corpus graphs or graphs with a
larger number of neighbors. Figure 1 shows this phenomenon in
action, with Gar’s recall peaking at 32 neighbors per document,
then dropping off as more are added.

Improved Corpus Graph Construction. In this work, we solve
both the problems mentioned before by first improving the quality
of the corpus graph. Toward this end, we train an edge-prediction
model that predicts whether there should be an edge between a
pair of potentially relevant documents by exploiting co-relevance
information in ranking datasets. This learnt model as an additional
output also provides an edge weight based on the learnt affinity
between documents that we refer to as the learnt-affinity scores or
Laff scores in short. Using learnt affinities, we are able to prune the
original corpus graphs, leading to potential efficiency gains. The
affinity scoring can also be leveraged for better candidate selection
to improve overall recall.

Query processing using Affinity modelling. Our second con-
tribution is to propose an adaptive retrieval strategy calledQuam
(short for query affinity modelling) that judiciously chooses the
neighborhood documents to re-rank by exploiting the affinity scores
or edge weights. Unlike Gar which does not differentiate between
neighbors of a relevant document, we propose a query-affinity
model that exploits the relevance-aware document affinity graph.

Experimental Evaluation.We conduct an extensive experimental
evaluation on TREC-DL ’19 and ’20 passage re-ranking tasks under
multiple scenarios to show the efficacy and effectiveness of Quam.
Our results show that we can outperform the baselines resulting
in clear recall improvements by up to 26% and Gar by up to 12%.
Secondly, we show that our corpus graphs encode affinity scores
that help not onlyQuam but also existing algorithms like Gar. Gar
improves by up to 9% when using our corpus affinity graphs. Finally,
we show that Quam is robust to dense corpus graphs (see Figure 1)
in that it can effectively choose between relevant and non-relevant

neighbors, unlike Gar, which adds additional noise with increasing
graph neighborhoods.

Contributions.

• We propose a novel approach to construct a corpus graph
that faithfully encodes the co-relevance relations between
documents called as the document affinity graph.
• We provide concrete instantiation and a principled algorithm
Quam for adaptive query processing.
• We conduct extensive experimentation to show that we can
outperform existing static and adaptive retrieval baselines.

2 Background and Related Work

Based on the long-standing Probability Ranking Principle [24], most
contemporary search systems use a relevance model 𝜙 (𝑞, 𝑑) that
provides a real-valued estimate of the relevance of a document (𝑑)
to a query (𝑞). The goal of a retrieval engine is to identify the top 𝑘
documents with the highest relevance score 𝑅 from a large corpus
of documents 𝐶 .

The trivial solution to this problem is an exhaustive search, which
scores and sorts all documents in 𝐶 . This approach is inherently
unscalable since the cost increases linearly with the size of the
corpus. Some types of relevance models, particularly those that use
lexical [25] (and recently learned sparse [17]) representations to
calculate relevance, can leverage their sparsity with inverted index
data structures [30] and algorithms (e.g., MaxScore [26] and Block-
MaxWAND [3]) to reduce the cost of retrieval. These approaches
are able to guarantee that the exact top 𝑘 results from the corpus
are returned since the relevance models behave predictably over
their representations (e.g., they can often be reduced to a simple
dot product between the sparse representation of the query and
document).

For other types of relevance models, there are no known ap-
proaches to guarantee an exact set of top 𝑘 results faster than
an exhaustive search. For these types of models, an approxima-
tion of the top results is often used instead. For instance, engines
that use dense bi-encoder models [5] often use algorithms such
as HNSW [14] to perform an approximate search. HNSW builds
a neighborhood graph, where each document is linked to an ap-
proximation of its nearest neighbors. By using a hierarchy of these
neighborhoods with progressively smaller subsets of the corpus,
HNSW is able to scan the hierarchy to find an approximation of
the most similar documents to a query vector. This technique relies
on the long-standing Cluster Hypothesis [4], which suggests that
relevant documents are likely to be near other relevant ones.

Still, approaches like HNSW are not universally applicable since
they rely on scoring vectors using a simple, well-behaved function
(e.g., a dot product). Many relevance models do not have this quality.
For instance, learning-to-rank models often use a tree-based deci-
sion function over features [28], and neural cross-encoder models
estimate relevance through a complicated combination of query
and document signals [19]. The typical approach in this setting
is to perform re-ranking [16] (also called cascading in literature),
wherein an initial pool of 𝑘′ ≥ 𝑘 documents is retrieved using a
“first-stage” scalable approach (e.g., using the sparse or dense vec-
tor methods outlined above), and another relevance model (e.g., a
learning-to-rank model or cross-encoder) then re-orders only those
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Figure 2: An overview of the adaptive retrieval through the query affinity modelling Quam. The𝑊𝑖s represent the affinity or

edge weights.

documents. Remarkably, re-ranking is not only helpful for learning-
to-rank and cross-encoder models, but also highly competitive with
HNSW for dense bi-encoder models, given the high efficiency of
lexical retrieval [7, 8, 27]. The key limitation of re-ranking is that it
bounds performance by the documents recalled in the first stage;
if a relevant document is not retrieved at that stage, it cannot be
re-ranked in the final results. This limitation can be particularly
problematic when the first stage uses only lexical signals, since one
of the main benefits of models like cross-encoders is to overcome
lexical mismatches.

Adaptive re-ranking techniques have been proposed to overcome
the recall limitation of re-ranking [12]. By using a corpus graph
and by leveraging document relevance estimations obtained during
the re-ranking process, adaptive re-ranking retrieves and scores
documents that were not returned during first-stage retrieval. Simi-
lar to HNSW, adaptive re-ranking leverages the Cluster Hypothesis
by suggesting that documents nearby ones with high relevance
estimations may also score highly. It overcomes the recall problem
of re-ranking by not relying exclusively on the first stage results but
instead also leveraging pseudo-relevance signals obtained during
the re-ranking process itself. Several adaptive re-ranking strate-
gies have been proposed. For instance, Gar [12] alternates scoring
batches between the initial pool of documents and those obtained
from the corpus graph. Follow-up work from the Gar authors sug-
gests that this alternating strategy is comparable with other simple
strategies for document selection from a corpus graph [11]. Be-
yond cross-encoders, adaptive re-ranking approaches have also
been effectively applied to bi-encoders [6, 10] and ensemble mod-
els [29]. For instance, LADR [6] leverages an efficient lexical model
to identify good “seeds” to further explore its corpus graph.

We contrast our work with prior work in two main ways. First,
we replace the heuristic-based approaches of document selection,
such as the alternating approach in Gar, with query affinity mod-
elling to be more principled when selecting documents for scoring.
Second, we replace the neighborhood graph construction process
with a new learned document-document affinity model. Together,

we find these changes provide more favorable selection criteria for
documents and ultimately yield improved efficiency-effectiveness
trade-offs.

3 Query Affinity Modelling

In the following subsections, we focus on our proposed approach
called Quam, specifically the two main components: (1) the doc-
ument affinity graph 𝐺𝑎 based on Laff scores, and (2) the query
affinity modelling based on SetAff scores. Finally, we provide
a principled algorithm for using Quam in an adaptive retrieval
pipeline. An overview of our approach is presented in Figure 2.

3.1 Document Affinity Graph

Our main objective in this section is to construct document affin-
ity graphs (in reasonable time) that help estimate relevance accu-
rately while also improving query processing efficiency. Using the
notation presented in Section 2, we consider relevance 𝜙 (𝑞, 𝑑) a
relevance model 𝜙 ’s estimation of the relevance of document 𝑑 to
the information need expressed by query 𝑞. In contrast, we define
affinity as the degree of association between documents that models
co-relevance. In other words, a pair of documents should have high
affinity if two documents can satisfy similar information needs and
low affinity if they cannot. Existing adaptive retrieval approaches
use an unweighted top-𝑘 similarity graph (called a corpus graph)
denoted by𝐺𝑐 . In the case of dense retrieval, a corpus graph, can be
constructed from the representation space induced by the trained
document encoders. For sparse retrieval, the corpus graph can be
constructed using a document as a query. The top-𝑘-ranked result
documents are its 𝑘-nearest neighbors.

To construct this affinity graph𝐺𝑎 , we start from an initial corpus
graph,𝐺𝑐 , of the corpus documents and learn a model that predicts
the affinity for each of the edges in this corpus graph. For this, we
source the training data that uses query-document-label triples to
construct co-relevant document pairs that share the same query.
Consequently, we train a model f (learnt-affinity model) that learns
affinity score between the pairs of documents. The affinity or edge
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Table 1: Number of queries by the number of relevant docu-

ments labeled in MSMARCO passage train dataset.

#rel docs 1 2 3 4 5 6 7
#query 477580 21868 2718 612 131 22 8

weight between a pair of documents 𝑑𝑖 and 𝑑 𝑗 in 𝐺𝑎 is denoted by
f (𝑑𝑖 , 𝑑 𝑗 ). Theoretically, we could use any text-matching model for
𝑓 , though in this work, we use a cross-encoder between the two
documents, given their high effectiveness at relevance modelling.

3.2 Training Data for Learnt Affinity Model

In some cases, large-scale datasets may already contain human-
annotated co-relevance labels based on documents that are labeled
as relevant to the same query. However, in practice, we posit that
co-relevance labels will be sufficiently rare for training an affin-
ity model. Indeed, Table 1 shows that less than 5% of queries in
the popular MSMARCO passage train dataset [18] have positive
relevance labels to more than one passage, given only around 25k
queries available for training. This lack of true co-relevant pairs
motivates us to source pseudo co-relevant pairs.

For each query, we source 𝑘 positive and negative documents.
We start with a standard re-ranking approach, such as a retriever,
followed by a ranker. Initially, the retriever retrieves the initial pool
of documents, and then the ranker is applied to re-rank this pool.
Let 𝑅0 denote the pool of documents retrieved by the retriever, and
𝑅1 denote the pool after it has been re-ranked by the ranker. Let
P𝑞 and N𝑞 denote the set of relevant and non-relevant documents
for the query 𝑞. We choose the top 𝑘 documents from 𝑅0 as set P𝑞
and the last 𝑘 documents as set N𝑞 and the top 𝑘 documents from
𝑅1 as set 𝑆 . Finally, for each 𝑝 ∈ P𝑞 , 𝑛 ∈ N𝑞 , and 𝑑 ∈ 𝑆 we have
(𝑝, 𝑑, 1) ∈ D and (𝑛,𝑑, 0) ∈ D.

We fine-tune a bert-base1 model (as a cross-encoder) on the
training Data D by minimizing the binary cross-entropy loss.

𝐿(D) = − 1
|D|

∑︁
(𝑥,𝑑,𝑦) ∈D

[𝑦 log(𝑓 (𝑥, 𝑑)) + (1 − 𝑦) log(1 − 𝑓 (𝑥, 𝑑))]

(1)
Further details on training are in Section A of supplementary

material 2 available with our code. Finally, we use the model 𝑓 to
create the affinity graph 𝐺𝑎 by re-scoring each value in an existing
corpus graph 𝐺𝑐 .

3.3 Query Processing Using Quam

Given a document affinity graph 𝐺𝑎 , the query affinity model in-
tends to characterize the affinity of any document to a ranked set
of documents 𝑆 . We define the expected set affinity (or SetAff in
short) of a document 𝑑 from an affinity graph𝐺𝑎 to a set of ranked
documents 𝑆 as

SetAff(𝑑, 𝑆) =
∑︁
𝑑 ′∈𝑆

𝑃 (𝑅𝑒𝑙 (𝑑′)) · 𝑓 (𝑑,𝑑′) (2)

1https://huggingface.co/google-bert/bert-base-uncased
2https://github.com/Mandeep-Rathee/quam/blob/main/appendix.pdf

Algorithm 1 Adaptive Retrieval Using Quam
Input: Initial ranking 𝑅0, batch size 𝑏, budget 𝑐 , affinity graph 𝐺𝑎 ,

top re-ranked documents 𝑠
Output: Re-Ranked pool 𝑅1
𝑅1 ← ∅ ⊲ Re-Ranking results
𝑃 ← 𝑅0 ⊲ Re-ranking pool
𝐹 ← ∅ ⊲ Graph frontier
𝑆 ← ∅ ⊲ top ranked documents
do

𝐵 ← Score(top 𝑏 from 𝑃 , subject to 𝑐) ⊲ Using monoT5
𝑅1 ← 𝑅1 ∪ 𝐵 ⊲ Add batch to results
𝑅0 ← 𝑅0 \ 𝐵 ⊲ Discard batch from initial ranking
𝐹 ← 𝐹 \ 𝐵 ⊲ Discard batch from frontier
𝑆 ← Select(top 𝑠 from 𝑅1) ⊲ Select top 𝑠 ranked docs
𝐹 ← 𝐹 ∪ (Neighbours(𝐵 ∩ 𝑆,𝐺𝑎) \ 𝑅1) ⊲ Update frontier
𝐹 ← SetAff(𝑑, 𝑆) ∀𝑑 ∈ 𝐹 ⊲ Assign set affinity scores

𝑃 ←
{
𝑅0 if 𝑃 = 𝐹

𝐹 if 𝑃 = 𝑅0
⊲ Alternate initial ranking and frontier

while |𝑅1 | < 𝑐

where 𝑃 (𝑅𝑒𝑙 (𝑑′)) encodes the estimated relevance distribution
induced by a relevance scorer (e.g., MonoT5 [20]) model𝜙 . 𝑃 (𝑅(𝑑′))
can be estimated inmultipleways.We let 𝑃 (𝑅𝑒𝑙 (𝑑′)) = 𝑒𝜙 (𝑞,𝑑 )∑

𝑑′ ∈𝑆 𝑒𝜙 (𝑞,𝑑
′ ) .

There are multiple methods that can be envisioned to estimate
the 𝑃 (𝑅𝑒𝑙 (𝑑′)). For example, one could use retrieval scores, normal-
ized ranked positions, or re-ranking scores. We posit that since 𝑑′
is already re-ranked (i.e., 𝑑′ ∈ 𝑆), we can use the re-ranking scores
as better relevance estimates in comparison to retrieval scores or
rank positions. We test this hypothesis empirically and find that
using re-ranking scores for calculating the SetAff yields superior
performance in comparison to using retrieval scores. We report the
results for this ablation of the effect of retriever and ranker scores
in Section B of the supplementary material available with our code.

For a given query𝑞, let𝑅0 be the pool of initial ranked documents
and 𝑅1 be the re-ranked pool. As shown in Figure 2, the top docu-
ments from 𝑅0 are used to explore the neighborhood documents
in the affinity graph. These neighborhood candidate documents
are assigned with set affinity scores using Equation 2. The high-set
affinity candidate documents are selected for ranking and added
to the re-ranked pool 𝑅1. We keep alternating between the initial
ranking and the neighbors to select the documents for re-ranking
until we reach the re-ranking budget.

3.4 Adaptive Retrieval Using Quam

Algorithm 1 illustrates how we perform adaptive retrieval using
ourQuam model.Quam takes as input the initial rank pool 𝑅0, a
batch size 𝑏, a budget 𝑐 , and an affinity graph 𝐺𝑎 . Let 𝐹 , initially
empty, be the frontier that stores potential candidate documents
for selection in 𝑅1. Let 𝑃 be the re-ranking pool, initialized with 𝑅0.
Let 𝑆 be the set of top 𝑠 (a hyper-parameter) re-ranked documents
from 𝑅1. We start with selecting top 𝑏 (batch size) documents from
𝑅0 and get relevance scores by using the Score( ) function. These 𝑏
documents are added to the re-ranked pool 𝑅1 and removed from
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𝑅0. Next, we select the set 𝑆 as top-𝑠 re-ranked documents from
𝑅1, i.e., the top 𝑠 documents we have re-ranked so far. Now, we
use the affinity graph, 𝐺𝑎 , to explore the neighborhood documents
(excluding the ones already in 𝑅1) of the documents that are newly
added to the set 𝑆 . We limit the neighbor lookup to only 𝑠 documents
because as the size of 𝑅1 increases, calculating the SetAff scores
becomes computationally expensive. The neighborhood documents
are added to the frontier 𝐹 . For each document 𝑑 in the frontier 𝐹 ,
the set affinity score to the set 𝑆 (SetAff(d, 𝑆)) is calculated using
Equation 2. In contrast to Gar, which considers all neighbors of
the source document equally important, we use these set affinity
scores to prioritize the documents in the frontier 𝐹 .

Next, we choose the top 𝑏 documents from this frontier 𝐹 . In
subsequent rounds, we alternate between 𝑅0 and the frontier 𝐹
similar to Gar [12] until the budget criteria are fulfilled.

4 Experimental Setup

We conduct a series of experiments to answer the following research
questions:
RQ1 What is the impact of Quam on retrieval effectiveness com-

pared to typical re-ranking and Gar?
RQ2 How helpful is the affinity-based graph𝐺𝑎 or Laff scores in

prioritizing the neighbors for adaptive retrieval?
RQ3 What is the effect of graph depth 𝑘 on adaptive retrieval

methods?
RQ4 How efficient isQuam in comparison to the Gar and stan-

dard re-ranking pipelines?

4.1 Datasets and Evaluation

We conduct our experiments mainly on the TREC Deep Learning
2019 (DL19) and 2020 (DL20) datasets [2] which share MSMARCO
passage corpus of 8.8M passages [18]. We validate our method on
the DL19 and test on the DL20. The DL19 (validation) dataset con-
sists of 43 queries with an average of 215 assessments per query.
The DL20 (test) dataset consists of 54 queries with 211 relevance
assessments per query. To evaluate the effectiveness of our ap-
proach, we use the nDCG@10, nDCG@c, and Recall@c, where 𝑐 is
the budget. We utilize the corpus graphs generated from a sparse
retriever, BM25 [25], and a dense retriever, TCT [9], reusing the
corpus graphs created by Gar.

4.2 Ranking Models and Baselines

For our experiments, we use different retrieval and ranking models
and the most comparable adaptive retrieval baseline.

4.2.1 Retrieval Methods. We use both sparse (BM25) and dense
(TCT) retrieval models. BM25 is a sparse retrieval method based
on the query terms present in the documents. We use top 𝑐 ∈
[50, 100, 1000] results from BM25 using a PISA [15] index. We use
default parameters for retrieval. TCT is a dense retrieval model, a
distilled version of the ColBERT model. We retrieve (exhaustively)
top 𝑐 ∈ [50, 100, 1000] documents using TCT-ColBERT-HNP3 [9].

4.2.2 Ranking Model. We use MonoT5 [20]4 as a ranker. MonoT5
is a variant of the T5 [23] model, which takes a query and document
3https://huggingface.co/castorini/tct_colbert-v2-hnp-msmarco
4https://huggingface.co/castorini/monot5-base-msmarco

Table 2: Hyper-parameters and their description.

Notation Description
𝑏 batch size
𝑐 re-ranking budget
𝑘 depth of the graph (number of neighbors to explore)
𝑠 number of the top re-ranked documents from 𝑅1

as input and generates a relevance score. This score is used to re-
rank the documents. In our experiments, we use the MonoT5-Base
(with 223M parameters) variant trained on the MS MARCO dataset.
We denote it as MonoT5 for convenience.

4.2.3 Baseline. We use the Graph Adaptive Retriever or Gar [12]
as a baseline to compare Quam. Gar is an adaptive re-ranking
approach that alternates between initial retrieved documents and
neighbors of these documents in the corpus graph. Given the source
document and its relevance score, Gar assigns the same score to
all its neighbors to prioritize them.

We conduct all experiments using PyTerrier [13] framework. We
follow the pipeline’s notations from PyTerrier. For example, the
pipeline "BM25»MonoT5" retrieves using BM25 and re-ranks them
using the MonoT5 model.

4.3 Other Hyper-parameters

Table 2 shows the hyper-parameters and their corresponding de-
scription. For Table 3, we choose batch size 𝑏=16, graph depth 𝑘=16,
and vary budget 𝑐 from 50, 100, and 1000 and select 𝑆 with 𝑠=10, 30,
and 300 respectively. We explore the robustness of our proposed
method by varying batch size 𝑏 and graph depth 𝑘 in [2,128] (by
power of 2).

5 Results and Analysis

In this section, we discuss the results and analysis of our experi-
ments. In all our experiments, we denote the vanilla graph-based
adaptive retrieval [12] by Gar and the corresponding type of cor-
pus graph indicated in subscript, for instance, GarBM25 represent
the graph-based adaptive retrieval method Gar when BM25-based
corpus graph (𝐺𝑐 ) is used. We denote our query affinity model as
Quam, with the type of affinity graph (𝐺𝑎) indicated in subscript.
For instance, QuamBM25 represents the query affinity model with
the BM25-based affinity graph (i.e., the Laff scores from the model
𝑓 between pairs of documents are used to calculate the SetAff
scores (Equation 2)).

5.1 Effectiveness of Quam

To answer RQ1, we assess the effectiveness of Quam by analyzing
its impact on re-ranking pipelines with sparse (BM25) and dense
(TCT) retrievals followed by a scoring function (MonoT5).We report
the performance of Quam in Table 3 on the TREC DL 19 and 20.
We incorporate lexical (BM25) and semantic (TCT) based corpus
graphs. We compare our approach Quam with standard re-ranking
pipelines and Gar. We vary re-ranking budgets 𝑐 to 50, 100, and
1000. Each row in Table 3 represents a ranking system.

The standard ranking pipelines (retriever»MonoT5) are shown
in gray color. Additionally, we include the MonoT5 exhaustive (in
short MonoT5-Exh.) search results for both TREC DL19 and 20. The
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Table 3: Effectiveness of Gar and Quam on TREC DL19 and 20 dataset. Significant improvements (paired t-test, 𝑝 < 0.05, using
Bonferroni correction) with the re-ranking baseline (retriever»MonoT5) and Gar are marked with 𝐵 and 𝐺 respectively in the

superscript. The best result for each pipeline is in bold.

𝑐 = 50 𝑐 = 100 𝑐 = 1000

Dataset Pipeline nDCG@10 nDCG@c Recall@c nDCG@10 nDCG@c Recall@c nDCG@10 nDCG@c Recall@c

DL19

MonoT5-Exh. 0.672 0.625 0.512 0.672 0.611 0.599 0.672 0.691 0.834

BM25»MonoT5 0.676 0.546 0.389 0.696 0.571 0.497 0.724 0.696 0.755
w/ GarBM25 0.694 0.573 0.426 0.716 0.605 0.547 0.719 0.736 𝐵0.833
w/ QuamBM25 0.706

𝐵𝐺
0.615

𝐵𝐺
0.480 0.720

𝐵𝐺
0.651

𝐵𝐺
0.611 0.732

𝐵
0.758

𝐵𝐺
0.867

w/ GarTCT 0.724
𝐵
0.620

𝐵0.476 𝐵
0.747

𝐵
0.656

𝐵
0.606 0.734

𝐵
0.754

𝐵
0.859

w/ QuamTCT 0.704 𝐵0.612 𝐵
0.481 0.722 𝐵0.642 𝐵0.601 0.721 𝐵0.747 𝐵0.857

TCT»MonoT5 0.732 0.647 0.506 0.722 0.638 0.610 0.699 0.704 0.830
w/ GarBM25 0.738 0.639 0.515 0.721 0.642 0.626 0.699

𝐵0.740 𝐵0.891
w/ QuamBM25 0.743

𝐵𝐺
0.684

𝐵
0.556 0.722

𝐵𝐺
0.678

𝐵
0.670 0.696 𝐵

0.741
𝐵
0.896

w/ GarTCT 0.732 0.658 0.534 0.721 0.653 0.638 0.697 0.722 0.860
w/ QuamTCT 0.740

𝐵
0.673 0.538 0.721

𝐵
0.667 0.659 0.692 𝐵

0.728 0.881

DL20

MonoT5-Exh. 0.649 0.592 0.576 0.649 0.593 0.670 0.649 0.682 0.852

BM25»MonoT5 0.660 0.549 0.465 0.675 0.574 0.569 0.716 0.710 0.805
w/ GarBM25 0.679 0.569 0.501 0.703 𝐵0.603 0.607 0.711 𝐵0.748 𝐵0.882
w/ QuamBM25

𝐵𝐺
0.716

𝐵𝐺
0.617

𝐵𝐺
0.558

𝐵
0.715

𝐵𝐺
0.645

𝐵𝐺
0.664 0.707 𝐵

0.755
𝐵
0.901

w/ GarTCT 𝐵0.720 𝐵0.617 𝐵0.570 0.718
𝐵0.650 𝐵0.688 0.699 0.740 𝐵0.894

w/ QuamTCT
𝐵
0.727

𝐵
0.628

𝐵
0.575 0.713 𝐵

0.652
𝐵
0.696 0.703 0.751

𝐵
0.900

TCT»MonoT5 0.722 0.642 0.652 0.701 0.627 0.713 0.672 0.691 0.848
w/ GarBM25 0.724 0.640 0.637 0.717 0.643 0.730 0.669 𝐵0.720 𝐵0.891
w/ QuamBM25 0.720 𝐵𝐺

0.664 0.660 0.709 𝐵𝐺
0.669

𝐵
0.755 0.670 𝐵𝐺

0.732
𝐵
0.916

w/ GarTCT 0.722 0.658 0.647 0.702 0.643 0.729 0.669
𝐵0.707 0.868

w/ QuamTCT 0.720 𝐵
0.664 0.658 0.708

𝐵𝐺
0.663

𝐵
0.750 0.669

𝐵𝐺
0.720

𝐵𝐺
0.887

recall difference betweenMonoT5-Exh. and the standard re-ranking
pipeline BM25»MonoT5 indicates that the BM25 retrieval fails to
retrieve relevant documents that MonoT5 is capable of ranking well
and hence does a poor job approximating a full MonoT5 search.
This observation highlights the potential for further improvements
in retrieval performance using, for instance, adaptive re-ranking
techniques.

We observe the significant improvements by Quam with the
affinity graph from both BM25 and TCT over the standard rank-
ing baselines across different budget sizes. The most substantial
recall improvements can be seen with a low re-ranking budget,
and hence, the improved recall results in better ranking perfor-
mance. In particular, in comparison to the BM25»MonoT5 pipeline,
QuamBM25 improves the recall@50 from 0.389 to 0.480 (23.39%) on
DL19 and from 0.465 to 0.558 (20%) on DL20. Similarly,QuamBM25
improves the nDCG@50 by 12.64% on DL19 and 12.39% on DL20.
QuamBM25 shows similar trends as we increase the budget size. In
addition, the QuamTCT improves the recall@50 from 0.465 to 0.588
(26.45%) and recall@100 from 0.569 to 0.696 (22.32%) on DL20. It
is important to note that the improvements made by GarBM25 over
the standard re-ranking baseline are not statistically significant,
particularly at budget c=50 and 100. However, Quam demonstrates
significant improvements over Gar when a sparse (BM25) retriever
in combination with the BM25-based graph. In particular,QuamBM25

improves recall@50 from 0.426 to 0.480 (12.68%) on DL 19 and from
0.569 to 0.617 (11.38%) on DL 20. For a dense (TCT) retriever, the
QuamBM25 significantly improves nDCG@50 and nDCG@100.

Surprisingly, theQuamBM25outperforms the expensive MonoT5
exhaustive pipeline. In particular, QuamBM25 improves recall@100
from 0.599 to 0.611 (2%), and nDCG@100 from 0.611 to 0.651 (6.55%),
and nDCG@10 from 0.672 to 0.720 (7.14%) on DL19. The TCT-based
affinity graph also leads to similar trends. We note that MonoT5
is not an oracle relevance model; it can mistakenly assign high
relevance scores to non-relevant documents. An exhaustive search
setting maximizes the chances of retrieving these non-relevant
documents since all documents are scored, ultimately reducing
effectiveness. Meanwhile, adaptive re-ranking systems inherently
constrain the search space through the initial pool and corpus
graph, thereby reducing the chance of encountering this noise and
resulting in higher effectiveness.

QuamTCT does not show significant improvements over GarTCT
(except TCT»MonoT5 on DL20), but the performance remains com-
parable. Also, the GarTCT does not show significant improvements
over TCT»MonoT5 pipeline, however, the QuamTCT can achieve
significant improvements, especially in terms of nDCG@c. It is
also important to compare both adaptive retrieval approaches with
exhaustive search results. The lack of significant improvements
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Figure 3: Effect of Learnt Affinity (Laff) scores on adaptive

retrieval on the DL19 dataset.
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Figure 4: Effect of Learnt Affinity (Laff) scores on adaptive

retrieval on the DL20 dataset.

of QuamTCT over GarTCT could be due to the upper bound of the
MonoT5 scoring function.

5.2 Effect of the Affinity Graph

To answer RQ2, we assess the effect of the Laff scores on adap-
tive retrieval methods. Specifically, we want to see the impact of
affinity graphs 𝐺𝑎 provided to Quam and Gar. Towards this, we
inject the BM25-based affinity graph to Gar which we denote by
GarBM25+Laff. An affinity graph with Gar adds no computational
overhead since the affinity scores are pre-computed.

We show the effectiveness of Laff in Figure 3 (on DL19) and 4
(on DL20). The GarBM25+Laff shows improvements over vanilla
GarBM25, especially at lower re-ranking budgets. For instance, the
GarBM25+Laff improves recall@50 from 0.426 to 0.451 (5.87%) on
DL19 and 0.501 to 0.549 (9.58%) on DL20. Similarly, it improves the
nDCG@50 by 5.58% on DL19 and 7.1% on DL20. We observe similar
trends at budget c=100.

5.3 Effect of Graph Depth

Like in standard retrieval settings, where recall improvements can
be achieved by processing higher retrieval depths, in adaptive re-
trieval, higher recall can be achieved by processing deeper graph
neighborhoods. However, traversing more documents either by ac-
cessing higher retrieval depths or graph neighborhoods adds more
non-relevant documents that need to be differentiated from the

relevant documents. In this experiment, we closely examine the
ability of adaptive retrieval methods to achieve higher recall by
traversing deeper graph neighborhoods. Towards this, in addition
to Gar, we re-inforce Gar with components of our Quam model –
the Laff scores and dynamic set affinity computation–to construct
even stronger baselines. In Figure 5, we show the effect of graph
depth 𝑘 (in the first row) to show the performance of Gar,Quam
and the two baselines Gar+SetAff and Gar+Laff.

We firstly observe that there is a noticeable difference in perfor-
mance between Gar andQuam at all graph depths and is magnified
at higher graph depths. In fact, the performance of Gar degrades
substantially at higher graph depths due to its inability to differen-
tiate between relevant or non-relevant documents. It is also clear
that Laff scores have a positive impact on Gar (similar to our ob-
servation in the last section). However, even Gar+Laff degrades in
performance at higher graph depths. This is mainly due to the fact
that Gar cannot differentiate between two neighbors of the same
relevant document. Secondly, Gar also processes all neighbors of a
re-ranked document before going to the next relevant document,
introducing the risk of adding potentially non-relevant documents
if the ranked document is also non-relevant. Finally, we can also
see that when Gar is re-inforced with the careful SetAff selec-
tion in the Gar+SetAff baseline, it is able to source from more
relevant neighbors. However, the inability of Gar to differentiate
between two neighbors of the same relevant document means it
still underperforms Quam at higher retrieval depths.

We also show the effect of the graph depth on ranking perfor-
mances across different budgets in Figure 7 (on DL19) and 8 (on
DL20) in Section C of supplementary material.

Interestingly, all approaches show insensitivity to variations
in batch size. This characteristic of batch size insensitivity is ad-
vantageous as it enables the utilization of the full computational
capacity of the hardware, consequently reducing latency. We show
the effect of batch size on the ranking performances across different
budgets in Figure 9 (on DL19) and 10 (on DL20) in Section D of
supplementary material.

5.4 Efficiency of Query Processing

We re-iterate that re-ranking pipelines using adaptive retrieval have
the same number of re-ranking operations as classical re-ranking
pipelines, and this cost dominates the total computational cost of the
pipeline. Indeed, adaptive retrieval procedures like Gar and Quam
are designed to contribute minimally to the total computational cost.
To verify this property empirically, we performed latency experi-
ments to assess the computational overhead introduced byQuam in
comparison toGar. Note that whileGar indiscriminately schedules
candidate documents for re-ranking,Quam selects documents by
computing a set-affinity score for each candidate document.

For a fair comparison between Gar and Quam, we use the same
MonoT5 re-ranker, a BM25-based graph of depth 𝑘 = 16 and a batch
𝑏 = 16 on the same hardware. While the MonoT5 scoring process
leverages a GPU for hardware acceleration, both Gar and Quam
utilize only a single thread on CPU. In Table 4, we report the recall
and mean latency (in ms) per query at different re-ranking budgets.
For stable measurements, we take the average over 5 consecutive
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Figure 5: Recall comparison on the TREC DL20 dataset when

the number of neighbours 𝑘 (with fixed 𝑏 = 16) and batch size

𝑏 (with fixed 𝑘 = 16) vary. The vertical line at 𝑏 = 64 separates
the region where 𝑏 > 𝑐.

runs. We find that the variance in runtimes is as low as 0.01 ms,
and hence we discard it in the table.

We first observe that both adaptive retrieval-based approaches,
Gar and Quam account for only 2 − 3% of the total time taken
by ranker (MonoT5). For instance, the MonoT5 takes an average
of approximately 3479.66 ms (with a batch size of 64) to re-rank
1000 documents per query on our hardware. On the other hand,
the adaptive retrieval components of Gar andQuam (with batch
size 𝑏=16) take around 97.05 and 95.72 ms, respectively.

At lower re-ranking budgets (𝑐 = 50 and 𝑐 = 100), the Quam
takes slightly longer (an additional time of 0.74 and 1.97 ms, but
with recall improvement of 12.7% and 11.7% respectively) to process
the neighborhood documents. Since the Gar looks for neighbors
of 𝑏 documents at each iteration, on the other hand,Quam looks
for neighbors of |𝑆 | = 𝑠 documents and uses the Equation 2 to
compute the SetAff scores. However, as the budget 𝑐 increases,
Quam also outperforms Gar in terms of speed since the number
of lookups for Quam is less than that of Gar. The most important
observation is that theQuam achieves the recall of 0.849 in 57.36
ms/query whereas Gar takes 97.05 ms/query to obtain a recall of
0.833. This demonstrates that, for a given sufficient budget size,
Quam outperforms Gar in both the quality and latency of adaptive
retrieval. In conclusion, we see that the computational overheads
for Quam are comparable or sometimes better than Gar while
delivering consistently better recall at all re-ranking budgets.

Table 4: Mean latency overheads for Quam and Gar

(ms/query). |𝑆 | denotes the size of set 𝑆 in Equation 2. We

denote the gain/drop in performance byQuam by a green/red

triangle over the Gar.

time (ms) Recall@c

c |𝑆 | GarBM25 QuamBM25 GarBM25 QuamBM25

50 10 2.64 3.38( 28%) 0.426 0.480( 12.7%)

100 30 5.54 7.51( 35.6%) 0.547 0.611( 11.7%)

250 50 19.55 16.78( 14.2%) 0.693 0.742( 7.1%)

500 100 44.45 36.06( 18.9%) 0.772 0.821( 6.3%)

750 150 69.77 57.36( 17.8%) 0.811 0.849( 4.7%)

1000 300 97.05 95.72( 1.4%) 0.833 0.867( 4.1%)

6 Conclusion and Outlook

In this paper, we advance the new area of adaptive retrieval as
a recall-improving approach for ad-hoc retrieval. We improve on
the heuristic graph construction approaches used in earlier works
by constructing a data-driven affinity graph with learned edge
weights based on co-relevance information. Additionally, we pro-
pose a more principled adaptive retrieval algorithm (Quam) that
effectively chooses potential relevant documents from the affinity
graph. Our experiments clearly show that our affinity modeling
for graph construction and query processing improves not only
our proposed approaches but also existing adaptive retrieval ap-
proaches. Secondly, we show that Quam is able to judiciously filter
out non-relevant documents, resulting in higher recall at deeper
graph neighborhoods. Finally, we show that Quam has a low com-
putational overhead in comparison to Gar and can be used in many
low-latency use cases. In the future, it would be important to extend
adaptive retrieval techniques to scenarios where LLMs are either
used to re-rank [21, 22], or in interactive query understanding [1].
Additionally, we would want to explore if one can further optimize
the choice of candidate documents at low retrieval depths.

References

[1] Avishek Anand, Abhijit Anand, Vinay Setty, et al. 2023. Query understanding in
the age of large language models. arXiv preprint arXiv:2306.16004 (2023).

[2] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, Ellen M. Voorhees,
and Ian Soboroff. 2021. TREC Deep Learning Track: Reusable Test Collections in
the Large Data Regime. In SIGIR ’21: The 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval, Virtual Event, Canada, July
11-15, 2021, Fernando Diaz, Chirag Shah, Torsten Suel, Pablo Castells, Rosie Jones,
and Tetsuya Sakai (Eds.). ACM, 2369–2375. https://doi.org/10.1145/3404835.
3463249

[3] Shuai Ding and Torsten Suel. 2011. Faster top-k document retrieval using block-
max indexes. In Proceeding of the 34th International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR 2011, Beijing, China, July
25-29, 2011, Wei-Ying Ma, Jian-Yun Nie, Ricardo Baeza-Yates, Tat-Seng Chua, and
W. Bruce Croft (Eds.). ACM, 993–1002. https://doi.org/10.1145/2009916.2010048

[4] N. Jardine and Cornelis Joost van Rijsbergen. 1971. The use of hierarchic
clustering in information retrieval. Inf. Storage Retr. 7, 5 (1971), 217–240.
https://doi.org/10.1016/0020-0271(71)90051-9

[5] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick S. H. Lewis, Ledell Wu,
Sergey Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval
for Open-Domain Question Answering. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, No-
vember 16-20, 2020, Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (Eds.).
Association for Computational Linguistics, 6769–6781. https://doi.org/10.18653/
V1/2020.EMNLP-MAIN.550

[6] Hrishikesh Kulkarni, Sean MacAvaney, Nazli Goharian, and Ophir Frieder. 2023.
Lexically-Accelerated Dense Retrieval. In Proceedings of the 46th International
ACM SIGIR Conference on Research and Development in Information Retrieval,

961

https://doi.org/10.1145/3404835.3463249
https://doi.org/10.1145/3404835.3463249
https://doi.org/10.1145/2009916.2010048
https://doi.org/10.1016/0020-0271(71)90051-9
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.550
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.550


Quam: Adaptive Retrieval throughQuery Affinity Modelling WSDM ’25, March 10–14, 2025, Hannover, Germany

SIGIR 2023, Taipei, Taiwan, July 23-27, 2023, Hsin-Hsi Chen, Wei-Jou (Edward)
Duh, Hen-Hsen Huang, Makoto P. Kato, Josiane Mothe, and Barbara Poblete
(Eds.). ACM, 152–162. https://doi.org/10.1145/3539618.3591715

[7] Jurek Leonhardt, Henrik Müller, Koustav Rudra, Megha Khosla, Abhijit Anand,
and Avishek Anand. 2024. Efficient neural ranking using forward indexes and
lightweight encoders. ACM Transactions on Information Systems 42, 5 (2024),
1–34.

[8] Jurek Leonhardt, Koustav Rudra, Megha Khosla, Abhijit Anand, and Avishek
Anand. 2022. Efficient Neural Ranking using Forward Indexes. In WWW ’22:
The ACM Web Conference 2022, Virtual Event, Lyon, France, April 25 - 29, 2022,
Frédérique Laforest, Raphaël Troncy, Elena Simperl, Deepak Agarwal, Aristides
Gionis, Ivan Herman, and Lionel Médini (Eds.). ACM, 266–276. https://doi.org/
10.1145/3485447.3511955

[9] Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. 2021. In-Batch Nega-
tives for Knowledge Distillation with Tightly-Coupled Teachers for Dense Re-
trieval. In Proceedings of the 6th Workshop on Representation Learning for NLP,
RepL4NLP@ACL-IJCNLP 2021, Online, August 6, 2021, Anna Rogers, Iacer Calixto,
Ivan Vulic, Naomi Saphra, Nora Kassner, Oana-Maria Camburu, Trapit Bansal,
and Vered Shwartz (Eds.). Association for Computational Linguistics, 163–173.
https://doi.org/10.18653/V1/2021.REPL4NLP-1.17

[10] Sean MacAvaney and Nicola Tonellotto. 2024. A Reproducibility Study of PLAID.
In Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR 2024, Washington DC, USA, July 14-18,
2024, Grace Hui Yang, Hongning Wang, Sam Han, Claudia Hauff, Guido Zuccon,
and Yi Zhang (Eds.). ACM, 1411–1419. https://doi.org/10.1145/3626772.3657856

[11] Sean MacAvaney, Nicola Tonellotto, and Craig Macdonald. 2022. Adaptive Re-
Ranking as an Information-Seeking Agent. In Proceedings of the CIKM 2022
Workshops co-located with 31st ACM International Conference on Information and
Knowledge Management (CIKM 2022), Atlanta, USA, October 17-21, 2022 (CEUR
Workshop Proceedings, Vol. 3318), Georgios Drakopoulos and Eleanna Kafeza
(Eds.). CEUR-WS.org. https://ceur-ws.org/Vol-3318/paper9.pdf

[12] Sean MacAvaney, Nicola Tonellotto, and Craig Macdonald. 2022. Adaptive Re-
Ranking with a Corpus Graph. In Proceedings of the 31st ACM International
Conference on Information & Knowledge Management, Atlanta, GA, USA, October
17-21, 2022, Mohammad Al Hasan and Li Xiong (Eds.). ACM, 1491–1500. https:
//doi.org/10.1145/3511808.3557231

[13] Craig Macdonald, Nicola Tonellotto, Sean MacAvaney, and Iadh Ounis. 2021.
PyTerrier: Declarative Experimentation in Python from BM25 to Dense Retrieval.
In CIKM ’21: The 30th ACM International Conference on Information and Knowledge
Management, Virtual Event, Queensland, Australia, November 1 - 5, 2021, Gianluca
Demartini, Guido Zuccon, J. Shane Culpepper, Zi Huang, and Hanghang Tong
(Eds.). ACM, 4526–4533. https://doi.org/10.1145/3459637.3482013

[14] Yury A. Malkov and Dmitry A. Yashunin. 2020. Efficient and Robust Approximate
Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs. IEEE
Trans. Pattern Anal. Mach. Intell. 42, 4 (2020), 824–836. https://doi.org/10.1109/
TPAMI.2018.2889473

[15] Antonio Mallia, Michal Siedlaczek, Joel M. Mackenzie, and Torsten Suel. 2019.
PISA: Performant Indexes and Search for Academia. In Proceedings of the Open-
Source IR Replicability Challenge co-located with 42nd International ACM SIGIR
Conference on Research and Development in Information Retrieval, OSIRRC@SIGIR
2019, Paris, France, July 25, 2019 (CEUR Workshop Proceedings, Vol. 2409), Ryan
Clancy, Nicola Ferro, Claudia Hauff, Jimmy Lin, Tetsuya Sakai, and Ze Zhong
Wu (Eds.). CEUR-WS.org, 50–56. https://ceur-ws.org/Vol-2409/docker08.pdf

[16] IrinaMatveeva, Chris Burges, Timo Burkard, Andy Laucius, and LeonWong. 2006.
High accuracy retrieval with multiple nested ranker. In SIGIR 2006: Proceedings of
the 29th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, Seattle, Washington, USA, August 6-11, 2006, Efthimis N.
Efthimiadis, Susan T. Dumais, David Hawking, and Kalervo Järvelin (Eds.). ACM,
437–444. https://doi.org/10.1145/1148170.1148246

[17] Thong Nguyen, Sean MacAvaney, and Andrew Yates. 2023. A Unified Framework
for Learned Sparse Retrieval. In Advances in Information Retrieval - 45th European
Conference on Information Retrieval, ECIR 2023, Dublin, Ireland, April 2-6, 2023,
Proceedings, Part III (Lecture Notes in Computer Science, Vol. 13982), Jaap Kamps,
Lorraine Goeuriot, Fabio Crestani, Maria Maistro, Hideo Joho, Brian Davis, Cathal
Gurrin, Udo Kruschwitz, and Annalina Caputo (Eds.). Springer, 101–116. https:
//doi.org/10.1007/978-3-031-28241-6_7

[18] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan
Majumder, and Li Deng. 2016. MS MARCO: A Human Generated MAchine
Reading COmprehension Dataset. In Proceedings of the Workshop on Cogni-
tive Computation: Integrating neural and symbolic approaches 2016 co-located
with the 30th Annual Conference on Neural Information Processing Systems (NIPS
2016), Barcelona, Spain, December 9, 2016 (CEUR Workshop Proceedings, Vol. 1773),
Tarek Richard Besold, Antoine Bordes, Artur S. d’Avila Garcez, and Greg Wayne
(Eds.). CEUR-WS.org. https://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf

[19] Rodrigo Frassetto Nogueira and Kyunghyun Cho. 2019. Passage Re-ranking with
BERT. CoRR abs/1901.04085 (2019). arXiv:1901.04085 http://arxiv.org/abs/1901.
04085

[20] Rodrigo Frassetto Nogueira, Zhiying Jiang, Ronak Pradeep, and Jimmy Lin. 2020.
Document Ranking with a Pretrained Sequence-to-Sequence Model. In Findings
of the Association for Computational Linguistics: EMNLP 2020, Online Event, 16-20
November 2020 (Findings of ACL, Vol. EMNLP 2020), Trevor Cohn, Yulan He, and
Yang Liu (Eds.). Association for Computational Linguistics, 708–718. https:
//doi.org/10.18653/V1/2020.FINDINGS-EMNLP.63

[21] Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. 2023. Rankvicuna:
Zero-shot listwise document reranking with open-source large language models.
arXiv preprint arXiv:2309.15088 (2023).

[22] Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. 2023. RankZephyr:
Effective and Robust Zero-Shot Listwise Reranking is a Breeze! arXiv preprint
arXiv:2312.02724 (2023).

[23] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. J. Mach.
Learn. Res. 21 (2020), 140:1–140:67. http://jmlr.org/papers/v21/20-074.html

[24] Stephen E Robertson. 1977. The probability ranking principle in IR. Journal of
documentation 33, 4 (1977), 294–304.

[25] Stephen E. Robertson and Hugo Zaragoza. 2009. The Probabilistic Relevance
Framework: BM25 and Beyond. Found. Trends Inf. Retr. 3, 4 (2009), 333–389.
https://doi.org/10.1561/1500000019

[26] Howard R. Turtle and James Flood. 1995. Query Evaluation: Strategies and
Optimizations. Inf. Process. Manag. 31, 6 (1995), 831–850. https://doi.org/10.1016/
0306-4573(95)00020-H

[27] Xiao Wang, Sean MacAvaney, Craig Macdonald, and Iadh Ounis. 2022. An
Inspection of the Reproducibility and Replicability of TCT-ColBERT. In SIGIR
’22: The 45th International ACM SIGIR Conference on Research and Development
in Information Retrieval, Madrid, Spain, July 11 - 15, 2022, Enrique Amigó, Pablo
Castells, Julio Gonzalo, Ben Carterette, J. Shane Culpepper, and Gabriella Kazai
(Eds.). ACM, 2790–2800. https://doi.org/10.1145/3477495.3531721

[28] Qiang Wu, Christopher J. C. Burges, Krysta M. Svore, and Jianfeng Gao. 2010.
Adapting boosting for information retrieval measures. Inf. Retr. 13, 3 (2010),
254–270. https://doi.org/10.1007/S10791-009-9112-1

[29] Yingrui Yang, Parker Carlson, Shanxiu He, Yifan Qiao, and Tao Yang. 2024.
Cluster-based Partial Dense Retrieval Fused with Sparse Text Retrieval. In Pro-
ceedings of the 47th International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, SIGIR 2024, Washington DC, USA, July 14-18, 2024,
Grace Hui Yang, Hongning Wang, Sam Han, Claudia Hauff, Guido Zuccon, and
Yi Zhang (Eds.). ACM, 2327–2331. https://doi.org/10.1145/3626772.3657972

[30] Justin Zobel and Alistair Moffat. 2006. Inverted files for text search engines. ACM
Comput. Surv. 38, 2 (2006), 6. https://doi.org/10.1145/1132956.1132959

962

https://doi.org/10.1145/3539618.3591715
https://doi.org/10.1145/3485447.3511955
https://doi.org/10.1145/3485447.3511955
https://doi.org/10.18653/V1/2021.REPL4NLP-1.17
https://doi.org/10.1145/3626772.3657856
https://ceur-ws.org/Vol-3318/paper9.pdf
https://doi.org/10.1145/3511808.3557231
https://doi.org/10.1145/3511808.3557231
https://doi.org/10.1145/3459637.3482013
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://ceur-ws.org/Vol-2409/docker08.pdf
https://doi.org/10.1145/1148170.1148246
https://doi.org/10.1007/978-3-031-28241-6_7
https://doi.org/10.1007/978-3-031-28241-6_7
https://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
https://arxiv.org/abs/1901.04085
http://arxiv.org/abs/1901.04085
http://arxiv.org/abs/1901.04085
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.63
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.63
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1561/1500000019
https://doi.org/10.1016/0306-4573(95)00020-H
https://doi.org/10.1016/0306-4573(95)00020-H
https://doi.org/10.1145/3477495.3531721
https://doi.org/10.1007/S10791-009-9112-1
https://doi.org/10.1145/3626772.3657972
https://doi.org/10.1145/1132956.1132959

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Query Affinity Modelling
	3.1 Document Affinity Graph
	3.2 Training Data for Learnt Affinity Model 
	3.3 Query Processing Using Quam
	3.4 Adaptive Retrieval Using Quam

	4 Experimental Setup
	4.1 Datasets and Evaluation
	4.2 Ranking Models and Baselines
	4.3 Other Hyper-parameters

	5 Results and Analysis
	5.1 Effectiveness of Quam
	5.2 Effect of the Affinity Graph
	5.3 Effect of Graph Depth
	5.4 Efficiency of Query Processing

	6 Conclusion and Outlook
	References



